Sample records for quantification linearity accuracy

  1. Linearization of the bradford protein assay.

    PubMed

    Ernst, Orna; Zor, Tsaffrir

    2010-04-12

    Determination of microgram quantities of protein in the Bradford Coomassie brilliant blue assay is accomplished by measurement of absorbance at 590 nm. This most common assay enables rapid and simple protein quantification in cell lysates, cellular fractions, or recombinant protein samples, for the purpose of normalization of biochemical measurements. However, an intrinsic nonlinearity compromises the sensitivity and accuracy of this method. It is shown that under standard assay conditions, the ratio of the absorbance measurements at 590 nm and 450 nm is strictly linear with protein concentration. This simple procedure increases the accuracy and improves the sensitivity of the assay about 10-fold, permitting quantification down to 50 ng of bovine serum albumin. Furthermore, the interference commonly introduced by detergents that are used to create the cell lysates is greatly reduced by the new protocol. A linear equation developed on the basis of mass action and Beer's law perfectly fits the experimental data.

  2. Metering error quantification under voltage and current waveform distortion

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  3. Compositional Solution Space Quantification for Probabilistic Software Analysis

    NASA Technical Reports Server (NTRS)

    Borges, Mateus; Pasareanu, Corina S.; Filieri, Antonio; d'Amorim, Marcelo; Visser, Willem

    2014-01-01

    Probabilistic software analysis aims at quantifying how likely a target event is to occur during program execution. Current approaches rely on symbolic execution to identify the conditions to reach the target event and try to quantify the fraction of the input domain satisfying these conditions. Precise quantification is usually limited to linear constraints, while only approximate solutions can be provided in general through statistical approaches. However, statistical approaches may fail to converge to an acceptable accuracy within a reasonable time. We present a compositional statistical approach for the efficient quantification of solution spaces for arbitrarily complex constraints over bounded floating-point domains. The approach leverages interval constraint propagation to improve the accuracy of the estimation by focusing the sampling on the regions of the input domain containing the sought solutions. Preliminary experiments show significant improvement on previous approaches both in results accuracy and analysis time.

  4. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica

    PubMed Central

    Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica. Abbreviations Used: M. indica: Mangifera indica, RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification. PMID:28539748

  5. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica.

    PubMed

    Naveen, P; Lingaraju, H B; Prasad, K Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica . Abbreviations Used: M. indica : Mangifera indica , RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification.

  6. Ariadne's Thread: A Robust Software Solution Leading to Automated Absolute and Relative Quantification of SRM Data.

    PubMed

    Nasso, Sara; Goetze, Sandra; Martens, Lennart

    2015-09-04

    Selected reaction monitoring (SRM) MS is a highly selective and sensitive technique to quantify protein abundances in complex biological samples. To enhance the pace of SRM large studies, a validated, robust method to fully automate absolute quantification and to substitute for interactive evaluation would be valuable. To address this demand, we present Ariadne, a Matlab software. To quantify monitored targets, Ariadne exploits metadata imported from the transition lists, and targets can be filtered according to mProphet output. Signal processing and statistical learning approaches are combined to compute peptide quantifications. To robustly estimate absolute abundances, the external calibration curve method is applied, ensuring linearity over the measured dynamic range. Ariadne was benchmarked against mProphet and Skyline by comparing its quantification performance on three different dilution series, featuring either noisy/smooth traces without background or smooth traces with complex background. Results, evaluated as efficiency, linearity, accuracy, and precision of quantification, showed that Ariadne's performance is independent of data smoothness and complex background presence and that Ariadne outperforms mProphet on the noisier data set and improved 2-fold Skyline's accuracy and precision for the lowest abundant dilution with complex background. Remarkably, Ariadne could statistically distinguish from each other all different abundances, discriminating dilutions as low as 0.1 and 0.2 fmol. These results suggest that Ariadne offers reliable and automated analysis of large-scale SRM differential expression studies.

  7. Enhancing sparsity of Hermite polynomial expansions by iterative rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Baker, Nathan A.

    2016-02-01

    Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.

  8. An accurate proteomic quantification method: fluorescence labeling absolute quantification (FLAQ) using multidimensional liquid chromatography and tandem mass spectrometry.

    PubMed

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    A facile proteomic quantification method, fluorescent labeling absolute quantification (FLAQ), was developed. Instead of using MS for quantification, the FLAQ method is a chromatography-based quantification in combination with MS for identification. Multidimensional liquid chromatography (MDLC) with laser-induced fluorescence (LIF) detection with high accuracy and tandem MS system were employed for FLAQ. Several requirements should be met for fluorescent labeling in MS identification: Labeling completeness, minimum side-reactions, simple MS spectra, and no extra tandem MS fragmentations for structure elucidations. A fluorescence dye, 5-iodoacetamidofluorescein, was finally chosen to label proteins on all cysteine residues. The fluorescent dye was compatible with the process of the trypsin digestion and MALDI MS identification. Quantitative labeling was achieved with optimization of reacting conditions. A synthesized peptide and model proteins, BSA (35 cysteines), OVA (five cysteines), were used for verifying the completeness of labeling. Proteins were separated through MDLC and quantified based on fluorescent intensities, followed by MS identification. High accuracy (RSD% < 1.58) and wide linearity of quantification (1-10(5) ) were achieved by LIF detection. The limit of quantitation for the model protein was as low as 0.34 amol. Parts of proteins in human liver proteome were quantified and demonstrated using FLAQ. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Accuracy of 1H magnetic resonance spectroscopy for quantification of 2-hydroxyglutarate using linear combination and J-difference editing at 9.4T.

    PubMed

    Neuberger, Ulf; Kickingereder, Philipp; Helluy, Xavier; Fischer, Manuel; Bendszus, Martin; Heiland, Sabine

    2017-12-01

    Non-invasive detection of 2-hydroxyglutarate (2HG) by magnetic resonance spectroscopy is attractive since it is related to tumor metabolism. Here, we compare the detection accuracy of 2HG in a controlled phantom setting via widely used localized spectroscopy sequences quantified by linear combination of metabolite signals vs. a more complex approach applying a J-difference editing technique at 9.4T. Different phantoms, comprised out of a concentration series of 2HG and overlapping brain metabolites, were measured with an optimized point-resolved-spectroscopy sequence (PRESS) and an in-house developed J-difference editing sequence. The acquired spectra were post-processed with LCModel and a simulated metabolite set (PRESS) or with a quantification formula for J-difference editing. Linear regression analysis demonstrated a high correlation of real 2HG values with those measured with the PRESS method (adjusted R-squared: 0.700, p<0.001) as well as with those measured with the J-difference editing method (adjusted R-squared: 0.908, p<0.001). The regression model with the J-difference editing method however had a significantly higher explanatory value over the regression model with the PRESS method (p<0.0001). Moreover, with J-difference editing 2HG was discernible down to 1mM, whereas with the PRESS method 2HG values were not discernable below 2mM and with higher systematic errors, particularly in phantoms with high concentrations of N-acetyl-asparate (NAA) and glutamate (Glu). In summary, quantification of 2HG with linear combination of metabolite signals shows high systematic errors particularly at low 2HG concentration and high concentration of confounding metabolites such as NAA and Glu. In contrast, J-difference editing offers a more accurate quantification even at low 2HG concentrations, which outweighs the downsides of longer measurement time and more complex postprocessing. Copyright © 2017. Published by Elsevier GmbH.

  10. Quantification of endocrine disruptors and pesticides in water by gas chromatography-tandem mass spectrometry. Method validation using weighted linear regression schemes.

    PubMed

    Mansilha, C; Melo, A; Rebelo, H; Ferreira, I M P L V O; Pinho, O; Domingues, V; Pinho, C; Gameiro, P

    2010-10-22

    A multi-residue methodology based on a solid phase extraction followed by gas chromatography-tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC-MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A novel approach for quantification and analysis of the color Doppler twinkling artifact with application in noninvasive surface roughness characterization: an in vitro phantom study.

    PubMed

    Jamzad, Amoon; Setarehdan, Seyed Kamaledin

    2014-04-01

    The twinkling artifact is an undesired phenomenon within color Doppler sonograms that usually appears at the site of internal calcifications. Since the appearance of the twinkling artifact is correlated with the roughness of the calculi, noninvasive roughness estimation of the internal stones may be considered as a potential twinkling artifact application. This article proposes a novel quantitative approach for measurement and analysis of twinkling artifact data for roughness estimation. A phantom was developed with 7 quantified levels of roughness. The Doppler system was initially calibrated by the proposed procedure to facilitate the analysis. A total of 1050 twinkling artifact images were acquired from the phantom, and 32 novel numerical measures were introduced and computed for each image. The measures were then ranked on the basis of roughness quantification ability using different methods. The performance of the proposed twinkling artifact-based surface roughness quantification method was finally investigated for different combinations of features and classifiers. Eleven features were shown to be the most efficient numerical twinkling artifact measures in roughness characterization. The linear classifier outperformed other methods for twinkling artifact classification. The pixel count measures produced better results among the other categories. The sequential selection method showed higher accuracy than other individual rankings. The best roughness recognition average accuracy of 98.33% was obtained by the first 5 principle components and the linear classifier. The proposed twinkling artifact analysis method could recognize the phantom surface roughness with average accuracy of 98.33%. This method may also be applicable for noninvasive calculi characterization in treatment management.

  12. Quantifying circular RNA expression from RNA-seq data using model-based framework.

    PubMed

    Li, Musheng; Xie, Xueying; Zhou, Jing; Sheng, Mengying; Yin, Xiaofeng; Ko, Eun-A; Zhou, Tong; Gu, Wanjun

    2017-07-15

    Circular RNAs (circRNAs) are a class of non-coding RNAs that are widely expressed in various cell lines and tissues of many organisms. Although the exact function of many circRNAs is largely unknown, the cell type-and tissue-specific circRNA expression has implicated their crucial functions in many biological processes. Hence, the quantification of circRNA expression from high-throughput RNA-seq data is becoming important to ascertain. Although many model-based methods have been developed to quantify linear RNA expression from RNA-seq data, these methods are not applicable to circRNA quantification. Here, we proposed a novel strategy that transforms circular transcripts to pseudo-linear transcripts and estimates the expression values of both circular and linear transcripts using an existing model-based algorithm, Sailfish. The new strategy can accurately estimate transcript expression of both linear and circular transcripts from RNA-seq data. Several factors, such as gene length, amount of expression and the ratio of circular to linear transcripts, had impacts on quantification performance of circular transcripts. In comparison to count-based tools, the new computational framework had superior performance in estimating the amount of circRNA expression from both simulated and real ribosomal RNA-depleted (rRNA-depleted) RNA-seq datasets. On the other hand, the consideration of circular transcripts in expression quantification from rRNA-depleted RNA-seq data showed substantial increased accuracy of linear transcript expression. Our proposed strategy was implemented in a program named Sailfish-cir. Sailfish-cir is freely available at https://github.com/zerodel/Sailfish-cir . tongz@medicine.nevada.edu or wanjun.gu@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Simultaneous quantification and semi-quantification of ginkgolic acids and their metabolites in rat plasma by UHPLC-LTQ-Orbitrap-MS and its application to pharmacokinetics study.

    PubMed

    Qian, Yiyun; Zhu, Zhenhua; Duan, Jin-Ao; Guo, Sheng; Shang, Erxin; Tao, Jinhua; Su, Shulan; Guo, Jianming

    2017-01-15

    A highly sensitive method using ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS) has been developed and validated for the simultaneous identification and quantification of ginkgolic acids and semi-quantification of their metabolites in rat plasma. For the five selected ginkgolic acids, the method was found to be with good linearities (r>0.9991), good intra- and inter-day precisions (RSD<15%), and good accuracies (RE, from -10.33% to 4.92%) as well. Extraction recoveries, matrix effects and stabilities for rat plasm samples were within the required limits. The validated method was successfully applied to investigate the pharmacokinetics of the five ginkgolic acids in rat plasma after oral administration of 3 dosage groups (900mg/kg, 300mg/kg and 100mg/kg). Meanwhile, six metabolites of GA (15:1) and GA (17:1) were identified by comparison of MS data with reported values. The results of validation in terms of linear ranges, precisions and stabilities were established for semi-quantification of metabolites. The curves of relative changes of these metabolites during the metabolic process were constructed by plotting the peak area ratios of metabolites to salicylic acid (internal standard, IS), respectively. Double peaks were observed in all 3 dose groups. Different type of metabolites and different dosage of each metabolite both resulted in different T max . Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies.

    PubMed

    Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi

    2017-09-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Accuracy of Liver Fat Quantification With Advanced CT, MRI, and Ultrasound Techniques: Prospective Comparison With MR Spectroscopy.

    PubMed

    Kramer, Harald; Pickhardt, Perry J; Kliewer, Mark A; Hernando, Diego; Chen, Guang-Hong; Zagzebski, James A; Reeder, Scott B

    2017-01-01

    The purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale ultrasound (US), and US shear-wave elastography (US-SWE) in the quantification of hepatic steatosis with MR spectroscopy (MRS) as the reference standard. Fifty adults who did not have symptoms (23 men, 27 women; mean age, 57 ± 5 years; body mass index, 27 ± 5) underwent liver imaging with un-enhanced SECT, DECT, gray-scale US, US-SWE, proton-density fat-fraction MRI, and MRS for this prospective trial. MRS voxels for the reference standard were colocalized with all other modalities under investigation. For SECT (120 kVp), attenuation values were recorded. For rapid-switching DECT (80/140 kVp), monochromatic images (70-140 keV) and fat density-derived material decomposition images were reconstructed. For proton-density fat fraction MRI, a quantitative chemical shift-encoded method was used. For US, echogenicity was evaluated on a qualitative 0-3 scale. Quantitative US shear-wave velocities were also recorded. Data were analyzed by linear regression for each technique compared with MRS. There was excellent correlation between MRS and both proton-density fat-fraction MRI (r 2 = 0.992; slope, 0.974; intercept, -0.943) and SECT (r 2 = 0.856; slope, -0.559; intercept, 35.418). DECT fat attenuation had moderate correlation with MRS measurements (r 2 = 0.423; slope, 0.034; intercept, 8.459). There was good correlation between qualitative US echogenicity and MRS measurements with a weighted kappa value of 0.82. US-SWE velocity did not have reliable correlation with MRS measurements (r 2 = 0.004; slope, 0.069; intercept, 6.168). Quantitative MRI proton-density fat fraction and SECT fat attenuation have excellent linear correlation with MRS measurements and can serve as accurate noninvasive biomarkers for quantifying steatosis. Material decomposition with DECT does not improve the accuracy of fat quantification over conventional SECT attenuation. US-SWE has poor accuracy for liver fat quantification.

  16. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.

    PubMed

    Liu, Kehui; Zhang, Jiyang; Fu, Bin; Xie, Hongwei; Wang, Yingchun; Qian, Xiaohong

    2014-07-01

    Precise protein quantification is essential in comparative proteomics. Currently, quantification bias is inevitable when using proteotypic peptide-based quantitative proteomics strategy for the differences in peptides measurability. To improve quantification accuracy, we proposed an "empirical rule for linearly correlated peptide selection (ERLPS)" in quantitative proteomics in our previous work. However, a systematic evaluation on general application of ERLPS in quantitative proteomics under diverse experimental conditions needs to be conducted. In this study, the practice workflow of ERLPS was explicitly illustrated; different experimental variables, such as, different MS systems, sample complexities, sample preparations, elution gradients, matrix effects, loading amounts, and other factors were comprehensively investigated to evaluate the applicability, reproducibility, and transferability of ERPLS. The results demonstrated that ERLPS was highly reproducible and transferable within appropriate loading amounts and linearly correlated response peptides should be selected for each specific experiment. ERLPS was used to proteome samples from yeast to mouse and human, and in quantitative methods from label-free to O18/O16-labeled and SILAC analysis, and enabled accurate measurements for all proteotypic peptide-based quantitative proteomics over a large dynamic range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A computational framework to detect normal and tuberculosis infected lung from H and E-stained whole slide images

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.

    2017-03-01

    Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.

  18. Procedure for the Selection and Validation of a Calibration Model I-Description and Application.

    PubMed

    Desharnais, Brigitte; Camirand-Lemyre, Félix; Mireault, Pascal; Skinner, Cameron D

    2017-05-01

    Calibration model selection is required for all quantitative methods in toxicology and more broadly in bioanalysis. This typically involves selecting the equation order (quadratic or linear) and weighting factor correctly modelizing the data. A mis-selection of the calibration model will generate lower quality control (QC) accuracy, with an error up to 154%. Unfortunately, simple tools to perform this selection and tests to validate the resulting model are lacking. We present a stepwise, analyst-independent scheme for selection and validation of calibration models. The success rate of this scheme is on average 40% higher than a traditional "fit and check the QCs accuracy" method of selecting the calibration model. Moreover, the process was completely automated through a script (available in Supplemental Data 3) running in RStudio (free, open-source software). The need for weighting was assessed through an F-test using the variances of the upper limit of quantification and lower limit of quantification replicate measurements. When weighting was required, the choice between 1/x and 1/x2 was determined by calculating which option generated the smallest spread of weighted normalized variances. Finally, model order was selected through a partial F-test. The chosen calibration model was validated through Cramer-von Mises or Kolmogorov-Smirnov normality testing of the standardized residuals. Performance of the different tests was assessed using 50 simulated data sets per possible calibration model (e.g., linear-no weight, quadratic-no weight, linear-1/x, etc.). This first of two papers describes the tests, procedures and outcomes of the developed procedure using real LC-MS-MS results for the quantification of cocaine and naltrexone. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Quantification of strontium in human serum by ICP-MS using alternate analyte-free matrix and its application to a pilot bioequivalence study of two strontium ranelate oral formulations in healthy Chinese subjects.

    PubMed

    Zhang, Dan; Wang, Xiaolin; Liu, Man; Zhang, Lina; Deng, Ming; Liu, Huichen

    2015-01-01

    A rapid, sensitive and accurate ICP-MS method using alternate analyte-free matrix for calibration standards preparation and a rapid direct dilution procedure for sample preparation was developed and validated for the quantification of exogenous strontium (Sr) from the drug in human serum. Serum was prepared by direct dilution (1:29, v/v) in an acidic solution consisting of nitric acid (0.1%) and germanium (Ge) added as internal standard (IS), to obtain simple and high-throughput preparation procedure with minimized matrix effect, and good repeatability. ICP-MS analysis was performed using collision cell technology (CCT) mode. Alternate matrix method by using distilled water as an alternate analyte-free matrix for the preparation of calibration standards (CS) was used to avoid the influence of endogenous Sr in serum on the quantification. The method was validated in terms of selectivity, carry-over, matrix effects, lower limit of quantification (LLOQ), linearity, precision and accuracy, and stability. Instrumental linearity was verified in the range of 1.00-500ng/mL, corresponding to a concentration range of 0.0300-15.0μg/mL in 50μL sample of serum matrix and alternate matrix. Intra- and inter-day precision as relative standard deviation (RSD) were less than 8.0% and accuracy as relative error (RE) was within ±3.0%. The method allowed a high sample throughput, and was sensitive and accurate enough for a pilot bioequivalence study in healthy male Chinese subjects following single oral administration of two strontium ranelate formulations containing 2g strontium ranelate. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Automated Detection of Stereotypical Motor Movements in Autism Spectrum Disorder Using Recurrence Quantification Analysis

    PubMed Central

    Großekathöfer, Ulf; Manyakov, Nikolay V.; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S.

    2017-01-01

    A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier. PMID:28261082

  1. Automated Detection of Stereotypical Motor Movements in Autism Spectrum Disorder Using Recurrence Quantification Analysis.

    PubMed

    Großekathöfer, Ulf; Manyakov, Nikolay V; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S

    2017-01-01

    A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier.

  2. Highly sensitive quantification for human plasma-targeted metabolomics using an amine derivatization reagent.

    PubMed

    Arashida, Naoko; Nishimoto, Rumi; Harada, Masashi; Shimbo, Kazutaka; Yamada, Naoyuki

    2017-02-15

    Amino acids and their related metabolites play important roles in various physiological processes and have consequently become biomarkers for diseases. However, accurate quantification methods have only been established for major compounds, such as amino acids and a limited number of target metabolites. We previously reported a highly sensitive high-throughput method for the simultaneous quantification of amines using 3-aminopyridyl-N-succinimidyl carbamate as a derivatization reagent combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Herein, we report the successful development of a practical and accurate LC-MS/MS method to analyze low concentrations of 40 physiological amines in 19 min. Thirty-five of these amines showed good linearity, limits of quantification, accuracy, precision, and recovery characteristics in plasma, with scheduled selected reaction monitoring acquisitions. Plasma samples from 10 healthy volunteers were evaluated using our newly developed method. The results revealed that 27 amines were detected in one of the samples, and that 24 of these compounds could be quantified. Notably, this new method successfully quantified metabolites with high accuracy across three orders of magnitude, with lowest and highest averaged concentrations of 31.7 nM (for spermine) and 18.3 μM (for α-aminobutyric acid), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Recurrence quantification analysis and support vector machines for golf handicap and low back pain EMG classification.

    PubMed

    Silva, Luís; Vaz, João Rocha; Castro, Maria António; Serranho, Pedro; Cabri, Jan; Pezarat-Correia, Pedro

    2015-08-01

    The quantification of non-linear characteristics of electromyography (EMG) must contain information allowing to discriminate neuromuscular strategies during dynamic skills. There are a lack of studies about muscle coordination under motor constrains during dynamic contractions. In golf, both handicap (Hc) and low back pain (LBP) are the main factors associated with the occurrence of injuries. The aim of this study was to analyze the accuracy of support vector machines SVM on EMG-based classification to discriminate Hc (low and high handicap) and LBP (with and without LPB) in the main phases of golf swing. For this purpose recurrence quantification analysis (RQA) features of the trunk and the lower limb muscles were used to feed a SVM classifier. Recurrence rate (RR) and the ratio between determinism (DET) and RR showed a high discriminant power. The Hc accuracy for the swing, backswing, and downswing were 94.4±2.7%, 97.1±2.3%, and 95.3±2.6%, respectively. For LBP, the accuracy was 96.9±3.8% for the swing, and 99.7±0.4% in the backswing. External oblique (EO), biceps femoris (BF), semitendinosus (ST) and rectus femoris (RF) showed high accuracy depending on the laterality within the phase. RQA features and SVM showed a high muscle discriminant capacity within swing phases by Hc and by LBP. Low back pain golfers showed different neuromuscular coordination strategies when compared with asymptomatic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Simultaneous quantification of coumarins, flavonoids and limonoids in Fructus Citri Sarcodactylis by high performance liquid chromatography coupled with diode array detector.

    PubMed

    Chu, Jun; Li, Song-Lin; Yin, Zhi-Qi; Ye, Wen-Cai; Zhang, Qing-Wen

    2012-07-01

    A high performance liquid chromatography coupled with diode array detector (HPLC-DAD) method was developed for simultaneous quantification of eleven major bioactive components including six coumarins, three flavonoids and two limonoids in Fructus Citri Sarcodactylis. The analysis was performed on a Cosmosil 5 C(18)-MS-II column (4.6 mm × 250 mm, 5 μm) with water-acetonitrile gradient elution. The method was validated in terms of linearity, sensitivity, precision, stability and accuracy. It was found that the calibration curves for all analytes showed good linearity (R(2)>0.9993) within the test ranges. The overall limit of detection (LOD) and limit of quantification (LOQ) were less than 3.0 and 10.2 ng. The relative standard deviations (RSDs) for intra- and inter-day repeatability were not more than 4.99% and 4.92%, respectively. The sample was stable for at least 48 h. The spike recoveries of eleven components were 95.1-104.9%. The established method was successfully applied to determine eleven components in three samples from different locations. The results showed that the newly developed HPLC-DAD method was linear, sensitive, precise and accurate, and could be used for quality control of Fructus Citri Sarcodactylis. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Sensitive and selective determination of methylenedioxylated amphetamines by high-performance liquid chromatography with fluorimetric detection.

    PubMed

    Sadeghipour, F; Veuthey, J L

    1997-11-07

    A rapid, sensitive and selective liquid chromatographic method with fluorimetric detection was developed for the separation and quantification of four methylenedioxylated amphetamines without interference of other drugs of abuse and common substances found in illicit tablets. The method was validated by examining linearity, precision and accuracy as well as detection and quantification limits. Methylenedioxylated amphetamines were quantified in eight tablets from illicit drug seizures and results were quantitatively compared to HPLC-UV analyses. To demonstrate the better sensitivity of the fluorimetric detection, methylenedioxylated amphetamines were analyzed in serum after a liquid-liquid extraction procedure and results were also compared to HPLC-UV analyses.

  6. Quantification of maltol in Korean ginseng (Panax ginseng) products by high-performance liquid chromatography-diode array detector

    PubMed Central

    Jeong, Hyun Cheol; Hong, Hee-Do; Kim, Young-Chan; Rhee, Young Kyoung; Choi, Sang Yoon; Kim, Kyung-Tack; Kim, Sung Soo; Lee, Young-Chul; Cho, Chang-Won

    2015-01-01

    Background: Maltol, as a type of phenolic compounds, is produced by the browning reaction during the high-temperature treatment of ginseng. Thus, maltol can be used as a marker for the quality control of various ginseng products manufactured by high-temperature treatment including red ginseng. For the quantification of maltol in Korean ginseng products, an effective high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed. Materials and Methods: The HPLC-DAD method for maltol quantification coupled with a liquid-liquid extraction (LLE) method was developed and validated in terms of linearity, precision, and accuracy. An HPLC separation was performed on a C18 column. Results: The LLE methods and HPLC running conditions for maltol quantification were optimized. The calibration curve of the maltol exhibited good linearity (R2 = 1.00). The limit of detection value of maltol was 0.26 μg/mL, and the limit of quantification value was 0.79 μg/mL. The relative standard deviations (RSDs) of the data of the intra- and inter-day experiments were <1.27% and 0.61%, respectively. The results of the recovery test were 101.35–101.75% with an RSD value of 0.21–1.65%. The developed method was applied successfully to quantify the maltol in three ginseng products manufactured by different methods. Conclusion: The results of validation demonstrated that the proposed HPLC-DAD method was useful for the quantification of maltol in various ginseng products. PMID:26246746

  7. Comparison of machine learning and semi-quantification algorithms for (I123)FP-CIT classification: the beginning of the end for semi-quantification?

    PubMed

    Taylor, Jonathan Christopher; Fenner, John Wesley

    2017-11-29

    Semi-quantification methods are well established in the clinic for assisted reporting of (I123) Ioflupane images. Arguably, these are limited diagnostic tools. Recent research has demonstrated the potential for improved classification performance offered by machine learning algorithms. A direct comparison between methods is required to establish whether a move towards widespread clinical adoption of machine learning algorithms is justified. This study compared three machine learning algorithms with that of a range of semi-quantification methods, using the Parkinson's Progression Markers Initiative (PPMI) research database and a locally derived clinical database for validation. Machine learning algorithms were based on support vector machine classifiers with three different sets of features: Voxel intensities Principal components of image voxel intensities Striatal binding radios from the putamen and caudate. Semi-quantification methods were based on striatal binding ratios (SBRs) from both putamina, with and without consideration of the caudates. Normal limits for the SBRs were defined through four different methods: Minimum of age-matched controls Mean minus 1/1.5/2 standard deviations from age-matched controls Linear regression of normal patient data against age (minus 1/1.5/2 standard errors) Selection of the optimum operating point on the receiver operator characteristic curve from normal and abnormal training data Each machine learning and semi-quantification technique was evaluated with stratified, nested 10-fold cross-validation, repeated 10 times. The mean accuracy of the semi-quantitative methods for classification of local data into Parkinsonian and non-Parkinsonian groups varied from 0.78 to 0.87, contrasting with 0.89 to 0.95 for classifying PPMI data into healthy controls and Parkinson's disease groups. The machine learning algorithms gave mean accuracies between 0.88 to 0.92 and 0.95 to 0.97 for local and PPMI data respectively. Classification performance was lower for the local database than the research database for both semi-quantitative and machine learning algorithms. However, for both databases, the machine learning methods generated equal or higher mean accuracies (with lower variance) than any of the semi-quantification approaches. The gain in performance from using machine learning algorithms as compared to semi-quantification was relatively small and may be insufficient, when considered in isolation, to offer significant advantages in the clinical context.

  8. Group refractive index quantification using a Fourier domain short coherence Sagnac interferometer.

    PubMed

    Montonen, Risto; Kassamakov, Ivan; Lehmann, Peter; Österberg, Kenneth; Hæggström, Edward

    2018-02-15

    The group refractive index is important in length calibration of Fourier domain interferometers by transparent transfer standards. We demonstrate accurate group refractive index quantification using a Fourier domain short coherence Sagnac interferometer. Because of a justified linear length calibration function, the calibration constants cancel out in the evaluation of the group refractive index, which is then obtained accurately from two uncalibrated lengths. Measurements of two standard thickness coverslips revealed group indices of 1.5426±0.0042 and 1.5434±0.0046, with accuracies quoted at the 95% confidence level. This agreed with the dispersion data of the coverslip manufacturer and therefore validates our method. Our method provides a sample specific and accurate group refractive index quantification using the same Fourier domain interferometer that is to be calibrated for the length. This reduces significantly the requirements of the calibration transfer standard.

  9. Rapid capillary electrophoresis approach for the quantification of ewe milk adulteration with cow milk.

    PubMed

    Trimboli, Francesca; Morittu, Valeria Maria; Cicino, Caterina; Palmieri, Camillo; Britti, Domenico

    2017-10-13

    The substitution of ewe milk with more economic cow milk is a common fraud. Here we present a capillary electrophoresis method for the quantification of ewe milk in ovine/bovine milk mixtures, which allows for the rapid and inexpensive recognition of ewe milk adulteration with cow milk. We utilized a routine CE method for human blood and urine proteins analysis, which fulfilled the separation of skimmed milk proteins in alkaline buffer. Under this condition, ovine and bovine milk exhibited a recognizable and distinct CE protein profiles, with a specific ewe peak showing a reproducible migration zone in ovine/bovine mixtures. Based on ewe specific CE peak, we developed a method for ewe milk quantification in ovine/bovine skimmed milk mixtures, which showed good linearity, precision and accuracy, and a minimum amount of detectable fraudulent cow milk equal to 5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. High Performance Thin layer Chromatography: Densitometry Method for Determination of Rubraxanthone in the Stem Bark Extract of Garcinia cowa Roxb.

    PubMed

    Hamidi, Dachriyanus; Aulia, Hilyatul; Susanti, Meri

    2017-01-01

    Garcinia cowa is a medicinal plant widely grown in Southeast Asia and tropical countries. Various parts of this plant have been used in traditional folk medicine. The bark, latex, and root have been used as an antipyretic agent, while fruit and leaves have been used as an expectorant, for indigestion and improvement of blood circulation. This study aims to determine the concentration of rubraxanthone found in ethyl acetate extract of the stem bark of G. cowa by the high-performance thin-layer chromatography (HPTLC). HPTLC method was performed on precoated silica gel G 60 F254 plates using an HPTLC system with a developed mobile-phase system of chloroform: ethyl acetate: methanol: formic acid (86:6:3:5). A volume of 5 μL of standard and sample solutions was applied to the chromatographic plates. The plates were developed in saturated mode of twin trough chamber at room temperature. The method was validated based on linearity, accuracy, precision, limit of detection (LOD), limit of quantification (LOQ), and specificity. The spots were observed at ultraviolet 243 nm. The linearity of rubraxanthone was obtained between 52.5 and 157.5 ppm/spot. The LOD and LOQ were found to be 4.03 and 13.42 ppm/spot, respectively. The proposed method showed good linearity, precision, accuracy, and high sensitivity. Therefore, it may be applied for the quantification of rubraxanthone in ethyl acetate extract of the stem bark of G. cowa . High performance thin layer chromatography (HPTLC) method provides rapid qualitative and quantitative estimation of rubraxanthone as a marker com¬pound in G. cowa extract used for commercial productRubraxanthone found in ethyl acetate extracts of G. cowa was successfully quantified using HPTLC method. Abbreviations Used : TLC: Thin-layer chromatography, HPTLC: High-performance thin-layer chromatography, LOD: Limit of detection, LOQ: Limit of quantification, ICH: International Conference on Harmonization.

  11. QUANTIFICATION OF GLYCYRRHIZIN BIOMARKER IN GLYCYRRHIZA GLABRA RHIZOME AND BABY HERBAL FORMULATIONS BY VALIDATED RP-HPTLC METHODS

    PubMed Central

    Alam, Prawez; Foudah, Ahmed I.; Zaatout, Hala H.; T, Kamal Y; Abdel-Kader, Maged S.

    2017-01-01

    Background: A simple and sensitive thin-layer chromatographic method has been established for quantification of glycyrrhizin in Glycyrrhiza glabra rhizome and baby herbal formulations by validated Reverse Phase HPTLC method. Materials and Methods: RP-HPTLC Method was carried out using glass coated with RP-18 silica gel 60 F254S HPTLC plates using methanol-water (7: 3 v/v) as mobile phase. Results: The developed plate was scanned and quantified densitometrically at 256 nm. Glycyrrhizin peaks from Glycyrrhiza glabra rhizome and baby herbal formulations were identified by comparing their single spot at Rf = 0.63 ± 0.01. Linear regression analysis revealed a good linear relationship between peak area and amount of glycyrrhizin in the range of 2000-7000 ng/band. Conclusion: The method was validated, in accordance with ICH guidelines for precision, accuracy, and robustness. The proposed method will be useful to enumerate the therapeutic dose of glycyrrhizin in herbal formulations as well as in bulk drug. PMID:28573236

  12. Multiresidue analysis of 22 sulfonamides and their metabolites in animal tissues using quick, easy, cheap, effective, rugged, and safe extraction and high resolution mass spectrometry (hybrid linear ion trap-Orbitrap).

    PubMed

    Abdallah, H; Arnaudguilhem, C; Jaber, F; Lobinski, R

    2014-08-15

    A new high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method was developed for a simultaneous multi-residue analysis of 22 sulfonamides (SAs) and their metabolites in edible animal (pig, beef, sheep and chicken) tissues. Sample preparation was optimized on the basis of the "QuEChERS" protocol. The analytes were identified using their LC retention times and accurate mass; the identification was further confirmed by multi-stage high mass accuracy (<5ppm) mass spectrometry. The performance of the method was evaluated according to the EU guidelines for the validation of screening methods for the analysis of veterinary drugs residues. Acceptable values were obtained for: linearity (R(2)<0.99), limit of detection (LOD, 3-26μg/kg), limit of quantification (LOQ, 11-88μg/kg), accuracy (recovery 88-112%), intra- and inter-day precision 1-14 and 1-17%, respectively, decision limit (CCα) and detection capability (CCβ) around the maximum residue limits (MRL) of SAs (100μg/kg). The method was validated by analysis of a reference material FAPAS-02188 "Pig kidney" with ǀ Z-scoreǀ<0.63. The method was applied to various matrices (kidney, liver, muscle) originated from pig, beef, sheep, and chicken) allowing the simultaneous quantification of target sulfonamides at concentration levels above the MRL/2 and the identification of untargeted compounds such as N(4)-acetyl metabolites using multi-stage high mass accuracy mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Determination of statin drugs in hospital effluent with dispersive liquid-liquid microextraction and quantification by liquid chromatography.

    PubMed

    Martins, Ayrton F; Frank, Carla da S; Altissimo, Joseline; de Oliveira, Júlia A; da Silva, Daiane S; Reichert, Jaqueline F; Souza, Darliana M

    2017-08-24

    Statins are classified as being amongst the most prescribed agents for treating hypercholesterolaemia and preventing vascular diseases. In this study, a rapid and effective liquid chromatography method, assisted by diode array detection, was designed and validated for the simultaneous quantification of atorvastatin (ATO) and simvastatin (SIM) in hospital effluent samples. The solid phase extraction (SPE) of the analytes was optimized regarding sorbent material and pH, and the dispersive liquid-liquid microextraction (DLLME), in terms of pH, ionic strength, type and volume of extractor/dispersor solvents. The performance of both extraction procedures was evaluated in terms of linearity, quantification limits, accuracy (recovery %), precision and matrix effects for each analyte. The methods proved to be linear in the concentration range considered; the quantification limits were 0.45 µg L -1 for ATO and 0.75 µg L -1 for SIM; the matrix effect was almost absent in both methods and the average recoveries remained between 81.5-90.0%; and the RSD values were <20%. The validated methods were applied to the quantification of the statins in real samples of hospital effluent; the concentrations ranged from 18.8 µg L -1 to 35.3 µg L -1 for ATO, and from 30.3 µg L -1 to 38.5 µg L -1 for SIM. Since the calculated risk quotient was ≤192, the occurrence of ATO and SIM in hospital effluent poses a potential serious risk to human health and the aquatic ecosystem.

  14. Simultaneous quantification of five major active components in capsules of the traditional Chinese medicine ‘Shu-Jin-Zhi-Tong’ by high performance liquid chromatography

    PubMed Central

    Yang, Xing-Xin; Zhang, Xiao-Xia; Chang, Rui-Miao; Wang, Yan-Wei; Li, Xiao-Ni

    2011-01-01

    A simple and reliable high performance liquid chromatography (HPLC) method has been developed for the simultaneous quantification of five major bioactive components in ‘Shu-Jin-Zhi-Tong’ capsules (SJZTC), for the purposes of quality control of this commonly prescribed traditional Chinese medicine. Under the optimum conditions, excellent separation was achieved, and the assay was fully validated in terms of linearity, precision, repeatability, stability and accuracy. The validated method was applied successfully to the determination of the five compounds in SJZTC samples from different production batches. The HPLC method can be used as a valid analytical method to evaluate the intrinsic quality of SJZTC. PMID:29403711

  15. Simultaneous determination of chromones and coumarins in Radix Saposhnikoviae by high performance liquid chromatography with diode array and tandem mass detectors.

    PubMed

    Kim, Min Kyung; Yang, Dong-Hyug; Jung, Mihye; Jung, Eun Ha; Eom, Han Young; Suh, Joon Hyuk; Min, Jung Won; Kim, Unyong; Min, Hyeyoung; Kim, Jinwoong; Han, Sang Beom

    2011-09-16

    Methods using high performance liquid chromatography with diode array detection (HPLC-DAD) and tandem mass spectrometry (HPLC-MS/MS) were developed and validated for the simultaneous determination of 5 chromones and 6 coumarins: prim-O-glucosylcimifugin (1), cimifugin (2), nodakenin (3), 4'-O-β-d-glucosyl-5-O-methylvisamminol (4), sec-O-glucosylhamaudol (5), psoralen (6), bergapten (7), imperatorin (8), phellopterin (9), 3'-O-angeloylhamaudol (10) and anomalin (11), in Radix Saposhnikoviae. The separation conditions for HPLC-DAD were optimized using an Ascentis Express C18 (4.6 mm×100 mm, 2.7 μm particle size) fused-core column. The mobile phase was composed of 10% aqueous acetonitrile (A) and 90% acetonitrile (B) and the elution was performed under a gradient mode at a flow rate of 1.0 mL/min. The detection wavelength was set at 300 nm. The HPLC-DAD method yielded a base line separation of the 11 components in 50% methanol extract of Radix Saposhnikoviae with no interfering peaks detected. The HPLC-DAD method was validated in terms of linearity, accuracy and precision (intra- and inter-day), limit of quantification (LOQ), recovery, and robustness. Specific determination of the 11 components was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization (ESI) source. This HPLC-MS/MS method was also validated by determining the linearity, limit of quantification, accuracy, and precision. Quantification of the 11 components in 51 commercial Radix Saposhnikoviae samples was successfully performed using the developed HPLC-DAD method. The identity, batch-to-batch consistency, and authenticity of Radix Saposhnikoviae were successfully monitored by the proposed HPLC-DAD and HPLC-MS/MS methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Development & validation of a quantitative anti-protective antigen IgG enzyme linked immunosorbent assay for serodiagnosis of cutaneous anthrax.

    PubMed

    Ghosh, N; Gunti, D; Lukka, H; Reddy, B R; Padmaja, Jyothi; Goel, A K

    2015-08-01

    Anthrax caused by Bacillus anthracis is primarily a disease of herbivorous animals, although several mammals are vulnerable to it. ELISA is the most widely accepted serodiagnostic assay for large scale surveillance of cutaneous anthrax. The aims of this study were to develop and evaluate a quantitative ELISA for determination of IgG antibodies against B. anthracis protective antigen (PA) in human cutaneous anthrax cases. Quantitative ELISA was developed using the recombinant PA for coating and standard reference serum AVR801 for quantification. A total of 116 human test and control serum samples were used in the study. The assay was evaluated for its precision, accuracy and linearity. The minimum detection limit and lower limit of quantification of the assay for anti-PA IgG were 3.2 and 4 µg/ml, respectively. The serum samples collected from the anthrax infected patients were found to have anti-PA IgG concentrations of 5.2 to 166.3 µg/ml. The intra-assay precision per cent CV within an assay and within an operator ranged from 0.99 to 7.4 per cent and 1.7 to 3.9 per cent, respectively. The accuracy of the assay was high with a per cent error of 6.5 - 24.1 per cent. The described assay was found to be linear between the range of 4 to 80 ng/ml (R [2] = 0.9982; slope = 0.9186; intercept = 0.1108). The results suggested that the developed assay could be a useful tool for quantification of anti-PA IgG response in human after anthrax infection or vaccination.

  17. The Accuracy of Al and Cu Film Thickness Determinations and the Implications for Electron Probe Microanalysis.

    PubMed

    Matthews, Mike B; Kearns, Stuart L; Buse, Ben

    2018-04-01

    The accuracy to which Cu and Al coatings can be determined, and the effect this has on the quantification of the substrate, is investigated. Cu and Al coatings of nominally 5, 10, 15, and 20 nm were sputter coated onto polished Bi using two configurations of coater: One with the film thickness monitor (FTM) sensor colocated with the samples, and one where the sensor is located to one side. The FTM thicknesses are compared against those calculated from measured Cu Lα and Al Kα k-ratios using PENEPMA, GMRFilm, and DTSA-II. Selected samples were also cross-sectioned using focused ion beam. Both systems produced repeatable coatings, the thickest coating being approximately four times the thinnest coating. The side-located FTM sensor indicated thicknesses less than half those of the software modeled results, propagating on to 70% errors in substrate quantification at 5 kV. The colocated FTM sensor produced errors in film thickness and substrate quantification of 10-20%. Over the range of film thicknesses and accelerating voltages modeled both the substrate and coating k-ratios can be approximated by linear trends as functions of film thickness. The Al films were found to have a reduced density of ~2 g/cm2.

  18. Breast density quantification with cone-beam CT: A post-mortem study

    PubMed Central

    Johnson, Travis; Ding, Huanjun; Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2014-01-01

    Forty post-mortem breasts were imaged with a flat-panel based cone-beam x-ray CT system at 50 kVp. The feasibility of breast density quantification has been investigated using standard histogram thresholding and an automatic segmentation method based on the fuzzy c-means algorithm (FCM). The breasts were chemically decomposed into water, lipid, and protein immediately after image acquisition was completed. The percent fibroglandular volume (%FGV) from chemical analysis was used as the gold standard for breast density comparison. Both image-based segmentation techniques showed good precision in breast density quantification with high linear coefficients between the right and left breast of each pair. When comparing with the gold standard using %FGV from chemical analysis, Pearson’s r-values were estimated to be 0.983 and 0.968 for the FCM clustering and the histogram thresholding techniques, respectively. The standard error of the estimate (SEE) was also reduced from 3.92% to 2.45% by applying the automatic clustering technique. The results of the postmortem study suggested that breast tissue can be characterized in terms of water, lipid and protein contents with high accuracy by using chemical analysis, which offers a gold standard for breast density studies comparing different techniques. In the investigated image segmentation techniques, the FCM algorithm had high precision and accuracy in breast density quantification. In comparison to conventional histogram thresholding, it was more efficient and reduced inter-observer variation. PMID:24254317

  19. Quantitative Method for Simultaneous Analysis of Acetaminophen and 6 Metabolites.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; Pistorius, Marcel C M; Romijn, Johannes A; Mathôt, Ron A A

    2017-04-01

    Hepatotoxicity after ingestion of high-dose acetaminophen [N-acetyl-para-aminophenol (APAP)] is caused by the metabolites of the drug. To gain more insight into factors influencing susceptibility to APAP hepatotoxicity, quantification of APAP and metabolites is important. A few methods have been developed to simultaneously quantify APAP and its most important metabolites. However, these methods require a comprehensive sample preparation and long run times. The aim of this study was to develop and validate a simplified, but sensitive method for the simultaneous quantification of acetaminophen, the main metabolites acetaminophen glucuronide and acetaminophen sulfate, and 4 Cytochrome P450-mediated metabolites by using liquid chromatography with mass spectrometric (LC-MS) detection. The method was developed and validated for the human plasma, and it entailed a single method for sample preparation, enabling quick processing of the samples followed by an LC-MS method with a chromatographic run time of 9 minutes. The method was validated for selectivity, linearity, accuracy, imprecision, dilution integrity, recovery, process efficiency, ionization efficiency, and carryover effect. The method showed good selectivity without matrix interferences. For all analytes, the mean process efficiency was >86%, and the mean ionization efficiency was >94%. Furthermore, the accuracy was between 90.3% and 112% for all analytes, and the within- and between-run imprecision were <20% for the lower limit of quantification and <14.3% for the middle level and upper limit of quantification. The method presented here enables the simultaneous quantification of APAP and 6 of its metabolites. It is less time consuming than previously reported methods because it requires only a single and simple method for the sample preparation followed by an LC-MS method with a short run time. Therefore, this analytical method provides a useful method for both clinical and research purposes.

  20. Validated method for quantification of genetically modified organisms in samples of maize flour.

    PubMed

    Kunert, Renate; Gach, Johannes S; Vorauer-Uhl, Karola; Engel, Edwin; Katinger, Hermann

    2006-02-08

    Sensitive and accurate testing for trace amounts of biotechnology-derived DNA from plant material is the prerequisite for detection of 1% or 0.5% genetically modified ingredients in food products or raw materials thereof. Compared to ELISA detection of expressed proteins, real-time PCR (RT-PCR) amplification has easier sample preparation and detection limits are lower. Of the different methods of DNA preparation CTAB method with high flexibility in starting material and generation of sufficient DNA with relevant quality was chosen. Previous RT-PCR data generated with the SYBR green detection method showed that the method is highly sensitive to sample matrices and genomic DNA content influencing the interpretation of results. Therefore, this paper describes a real-time DNA quantification based on the TaqMan probe method, indicating high accuracy and sensitivity with detection limits of lower than 18 copies per sample applicable and comparable to highly purified plasmid standards as well as complex matrices of genomic DNA samples. The results were evaluated with ValiData for homology of variance, linearity, accuracy of the standard curve, and standard deviation.

  1. Development and application of a high-performance liquid chromatography method using monolithic columns for the analysis of ecstasy tablets.

    PubMed

    Mc Fadden, Kim; Gillespie, John; Carney, Brian; O'Driscoll, Daniel

    2006-07-07

    A rapid and selective HPLC method using monolithic columns was developed for the separation and quantification of the principal amphetamines in ecstasy tablets. Three monolithic (Chromolith RP18e) columns of different lengths (25, 50 and 100 mm) were assessed. Validation studies including linearity, selectivity, precision, accuracy and limit of detection and quantification were carried out using the Chromolith SpeedROD, RP-18e, 50 mm x 4.6 mm column. Column backpressure and van Deemter plots demonstrated that monolithic columns provide higher efficiency at higher flow rates when compared to particulate columns without the loss of peak resolution. Application of the monolithic column to a large number of ecstasy tablets seized in Ireland ensured its suitability for the routine analysis of ecstasy tablets.

  2. Accurate quantification of creatinine in serum by coupling a measurement standard to extractive electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Keke; Li, Ming; Li, Hongmei; Li, Mengwan; Jiang, You; Fang, Xiang

    2016-01-01

    Ambient ionization (AI) techniques have been widely used in chemistry, medicine, material science, environmental science, forensic science. AI takes advantage of direct desorption/ionization of chemicals in raw samples under ambient environmental conditions with minimal or no sample preparation. However, its quantitative accuracy is restricted by matrix effects during the ionization process. To improve the quantitative accuracy of AI, a matrix reference material, which is a particular form of measurement standard, was coupled to an AI technique in this study. Consequently the analyte concentration in a complex matrix can be easily quantified with high accuracy. As a demonstration, this novel method was applied for the accurate quantification of creatinine in serum by using extractive electrospray ionization (EESI) mass spectrometry. Over the concentration range investigated (0.166 ~ 1.617 μg/mL), a calibration curve was obtained with a satisfactory linearity (R2 = 0.994), and acceptable relative standard deviations (RSD) of 4.6 ~ 8.0% (n = 6). Finally, the creatinine concentration value of a serum sample was determined to be 36.18 ± 1.08 μg/mL, which is in excellent agreement with the certified value of 35.16 ± 0.39 μg/mL.

  3. Optimized, Fast-Throughput UHPLC-DAD Based Method for Carotenoid Quantification in Spinach, Serum, Chylomicrons, and Feces.

    PubMed

    Eriksen, Jane N; Madsen, Pia L; Dragsted, Lars O; Arrigoni, Eva

    2017-02-01

    An improved UHPLC-DAD-based method was developed and validated for quantification of major carotenoids present in spinach, serum, chylomicrons, and feces. Separation was achieved with gradient elution within 12.5 min for six dietary carotenoids and the internal standard, echinenone. The proposed method provides, for all standard components, resolution > 1.1, linearity covering the target range (R > 0.99), LOQ < 0.035 mg/L, and intraday and interday RSDs < 2 and 10%, respectively. Suitability of the method was tested on biological matrices. Method precision (RSD%) for carotenoid quantification in serum, chylomicrons, and feces was below 10% for intra- and interday analysis, except for lycopene. Method accuracy was consistent with mean recoveries ranging from 78.8 to 96.9% and from 57.2 to 96.9% for all carotenoids, except for lycopene, in serum and feces, respectively. Additionally, an interlaboratory validation study on spinach at two institutions showed no significant differences in lutein or β-carotene content, when evaluated on four occasions.

  4. Sensitive and selective liquid chromatography-tandem mass spectrometry method for the quantification of aniracetam in human plasma.

    PubMed

    Zhang, Jingjing; Liang, Jiabi; Tian, Yuan; Zhang, Zunjian; Chen, Yun

    2007-10-15

    A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.

  5. Simultaneous quantification of withanolides in Withania somnifera by a validated high-performance thin-layer chromatographic method.

    PubMed

    Srivastava, Pooja; Tiwari, Neerja; Yadav, Akhilesh K; Kumar, Vijendra; Shanker, Karuna; Verma, Ram K; Gupta, Madan M; Gupta, Anil K; Khanuja, Suman P S

    2008-01-01

    This paper describes a sensitive, selective, specific, robust, and validated densitometric high-performance thin-layer chromatographic (HPTLC) method for the simultaneous determination of 3 key withanolides, namely, withaferin-A, 12-deoxywithastramonolide, and withanolide-A, in Ashwagandha (Withania somnifera) plant samples. The separation was performed on aluminum-backed silica gel 60F254 HPTLC plates using dichloromethane-methanol-acetone-diethyl ether (15 + 1 + 1 + 1, v/v/v/v) as the mobile phase. The withanolides were quantified by densitometry in the reflection/absorption mode at 230 nm. Precise and accurate quantification could be performed in the linear working concentration range of 66-330 ng/band with good correlation (r2 = 0.997, 0.999, and 0.996, respectively). The method was validated for recovery, precision, accuracy, robustness, limit of detection, limit of quantitation, and specificity according to International Conference on Harmonization guidelines. Specificity of quantification was confirmed using retention factor (Rf) values, UV-Vis spectral correlation, and electrospray ionization mass spectra of marker compounds in sample tracks.

  6. Determination of rifampicin in human plasma by high-performance liquid chromatography coupled with ultraviolet detection after automatized solid-liquid extraction.

    PubMed

    Louveau, B; Fernandez, C; Zahr, N; Sauvageon-Martre, H; Maslanka, P; Faure, P; Mourah, S; Goldwirt, L

    2016-12-01

    A precise and accurate high-performance liquid chromatography (HPLC) quantification method of rifampicin in human plasma was developed and validated using ultraviolet detection after an automatized solid-phase extraction. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision, accuracy, lower limit of quantification and stability. Chromatographic separation was performed on a Chromolith RP 8 column using a mixture of 0.05 m acetate buffer pH 5.7-acetonitrile (35:65, v/v) as mobile phase. The compounds were detected at a wavelength of 335 nm with a lower limit of quantification of 0.05 mg/L in human plasma. Retention times for rifampicin and 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline used as internal standard were respectively 3.77 and 4.81 min. This robust and exact method was successfully applied in routine for therapeutic drug monitoring in patients treated with rifampicin. Copyright © 2016 John Wiley & Sons, Ltd.

  7. CMOS based image cytometry for detection of phytoplankton in ballast water.

    PubMed

    Pérez, J M; Jofre, M; Martínez, P; Yáñez, M A; Catalan, V; Parker, A; Veldhuis, M; Pruneri, V

    2017-02-01

    We introduce an image cytometer (I-CYT) for the analysis of phytoplankton in fresh and marine water environments. A linear quantification of cell numbers was observed covering several orders of magnitude using cultures of Tetraselmis and Nannochloropsis measured by autofluorescence in a laboratory environment. We assessed the functionality of the system outside the laboratory by phytoplankton quantification of samples taken from a marine water environment (Dutch Wadden Sea, The Netherlands) and a fresh water environment (Lake Ijssel, The Netherlands). The I-CYT was also employed to study the effects of two ballast water treatment systems (BWTS), based on chlorine electrolysis and UV sterilization, with the analysis including the vitality of the phytoplankton. For comparative study and benchmarking of the I-CYT, a standard flow cytometer was used. Our results prove a limit of detection (LOD) of 10 cells/ml with an accuracy between 0.7 and 0.5 log, and a correlation of 88.29% in quantification and 96.21% in vitality, with respect to the flow cytometry results.

  8. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    PubMed

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025.

  9. TU-A-12A-12: Improved Airway Measurement Accuracy for Low Dose Quantitative CT (qCT) Using Statistical (ASIR), at Reduced DFOV, and High Resolution Kernels in a Phantom and Swine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadava, G; Imai, Y; Hsieh, J

    2014-06-15

    Purpose: Quantitative accuracy of Iodine Hounsfield Unit (HU) in conventional single-kVp scanning is susceptible to beam-hardening effect. Dual-energy CT has unique capabilities of quantification using monochromatic CT images, but this scanning mode requires the availability of the state-of-the-art CT scanner and, therefore, is limited in routine clinical practice. Purpose of this work was to develop a beam-hardening-correction (BHC) for single-kVp CT that can linearize Iodine projections at any nominal energy, apply this approach to study Iodine response with respect to keV, and compare with dual-energy based monochromatic images obtained from material-decomposition using 80kVp and 140kVp. Methods: Tissue characterization phantoms (Gammexmore » Inc.), containing solid-Iodine inserts of different concentrations, were scanned using GE multi-slice CT scanner at 80, 100, 120, and 140 kVp. A model-based BHC algorithm was developed where Iodine was estimated using re-projection of image volume and corrected through an iterative process. In the correction, the re-projected Iodine was linearized using a polynomial mapping between monochromatic path-lengths at various nominal energies (40 to 140 keV) and physically modeled polychromatic path-lengths. The beam-hardening-corrected 80kVp and 140kVp images (linearized approximately at effective energy of the beam) were used for dual-energy material-decomposition in Water-Iodine basis-pair followed by generation of monochromatic images. Characterization of Iodine HU and noise in the images obtained from singlekVp with BHC at various nominal keV, and corresponding dual-energy monochromatic images, was carried out. Results: Iodine HU vs. keV response from single-kVp with BHC and dual-energy monochromatic images were found to be very similar, indicating that single-kVp data may be used to create material specific monochromatic equivalent using modelbased projection linearization. Conclusion: This approach may enable quantification of Iodine contrast enhancement and potential reduction in injected contrast without using dual-energy scanning. However, in general, dual-energy scanning has unique value in material characterization and quantification, and its value cannot be discounted. GE Healthcare Employee.« less

  10. An Atmospheric Pressure Chemical Ionization MS/MS Assay Using Online Extraction for the Analysis of 11 Cannabinoids and Metabolites in Human Plasma and Urine.

    PubMed

    Klawitter, Jelena; Sempio, Cristina; Mörlein, Sophie; De Bloois, Erik; Klepacki, Jacek; Henthorn, Thomas; Leehey, Maureen A; Hoffenberg, Edward J; Knupp, Kelly; Wang, George S; Hopfer, Christian; Kinney, Greg; Bowler, Russell; Foreman, Nicholas; Galinkin, Jeffrey; Christians, Uwe; Klawitter, Jost

    2017-10-01

    Although, especially in the United States, there has been a recent surge of legalized cannabis for either recreational or medicinal purposes, surprisingly little is known about clinical dose-response relationships, pharmacodynamic and toxicodynamic effects of cannabinoids such as Δ9-tetrahydrocannabinol (THC). Even less is known about other active cannabinoids. To address this knowledge gap, an online extraction, high-performance liquid chromatography coupled with tandem mass spectrometry method for simultaneous quantification of 11 cannabinoids and metabolites including THC, 11-hydroxy-Δ9-tetrahydrocannabinol, 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid, 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid glucuronide (THC-C-gluc), cannabinol, cannabidiol, cannabigerol, cannabidivarin, Δ9-tetrahydrocannabivarin (THCV), and 11-nor-9-carboxy-Δ9-tetrahydrocannabivarin (THCV-COOH) was developed and validated in human urine and plasma. In contrast to atmospheric pressure chemical ionization, electrospray ionization was associated with extensive ion suppression in plasma and urine samples. Thus, the atmospheric pressure chemical ionization assay was validated showing a lower limit of quantification ranging from 0.39 to 3.91 ng/mL depending on study compound and matrix. The upper limit of quantification was 400 ng/mL except for THC-C-gluc with an upper limit of quantification of 2000 ng/mL. The linearity was r > 0.99 for all analyzed calibration curves. Acceptance criteria for intrabatch and interbatch accuracy (85%-115%) and imprecision (<15%) were met for all compounds. In plasma, the only exceptions were THCV (75.3%-121.2% interbatch accuracy) and cannabidivarin (interbatch imprecision, 15.7%-17.2%). In urine, THCV did not meet predefined acceptance criteria for intrabatch accuracy. This assay allows for monitoring not only THC and its major metabolites but also major cannabinoids that are of interest for marijuana research and clinical practice.

  11. A qualitative and quantitative HPTLC densitometry method for the analysis of cannabinoids in Cannabis sativa L.

    PubMed

    Fischedick, Justin T; Glas, Ronald; Hazekamp, Arno; Verpoorte, Rob

    2009-01-01

    Cannabis and cannabinoid based medicines are currently under serious investigation for legitimate development as medicinal agents, necessitating new low-cost, high-throughput analytical methods for quality control. The goal of this study was to develop and validate, according to ICH guidelines, a simple rapid HPTLC method for the quantification of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and qualitative analysis of other main neutral cannabinoids found in cannabis. The method was developed and validated with the use of pure cannabinoid reference standards and two medicinal cannabis cultivars. Accuracy was determined by comparing results obtained from the HTPLC method with those obtained from a validated HPLC method. Delta(9)-THC gives linear calibration curves in the range of 50-500 ng at 206 nm with a linear regression of y = 11.858x + 125.99 and r(2) = 0.9968. Results have shown that the HPTLC method is reproducible and accurate for the quantification of Delta(9)-THC in cannabis. The method is also useful for the qualitative screening of the main neutral cannabinoids found in cannabis cultivars.

  12. A Simple RP-HPLC Method for Quantitation of Itopride HCl in Tablet Dosage Form.

    PubMed

    Thiruvengada, Rajan Vs; Mohamed, Saleem Ts; Ramkanth, S; Alagusundaram, M; Ganaprakash, K; Madhusudhana, Chetty C

    2010-10-01

    An isocratic reversed phase high-performance liquid chromatographic method with ultraviolet detection at 220 nm has been developed for the quantification of itopride hydrochloride in tablet dosage form. The quantification was carried out using C(8) column (250 mm × 4.6 mm), 5-μm particle size SS column. The mobile phase comprised of two solvents (Solvent A: buffer 1.4 mL ortho-phosphoric acid adjusted to pH 3.0 with triethyl amine and Solvent B: acetonitrile). The ratio of Solvent A: Solvent B was 75:25 v/v. The flow rate was 1.0 mL (-1)with UV detection at 220 nm. The method has been validated and proved to be robust. The calibration curve was linear in the concentration range of 80-120% with coefficient of correlation 0.9995. The percentage recovery for itopride HCl was 100.01%. The proposed method was validated for its selectivity, linearity, accuracy, and precision. The method was found to be suitable for the quality control of itopride HCl in tablet dosage formulation.

  13. A Simple RP-HPLC Method for Quantitation of Itopride HCl in Tablet Dosage Form

    PubMed Central

    Thiruvengada, Rajan VS; Mohamed, Saleem TS; Ramkanth, S; Alagusundaram, M; Ganaprakash, K; Madhusudhana, Chetty C

    2010-01-01

    An isocratic reversed phase high-performance liquid chromatographic method with ultraviolet detection at 220 nm has been developed for the quantification of itopride hydrochloride in tablet dosage form. The quantification was carried out using C8 column (250 mm × 4.6 mm), 5-μm particle size SS column. The mobile phase comprised of two solvents (Solvent A: buffer 1.4 mL ortho-phosphoric acid adjusted to pH 3.0 with triethyl amine and Solvent B: acetonitrile). The ratio of Solvent A: Solvent B was 75:25 v/v. The flow rate was 1.0 mL -1with UV detection at 220 nm. The method has been validated and proved to be robust. The calibration curve was linear in the concentration range of 80-120% with coefficient of correlation 0.9995. The percentage recovery for itopride HCl was 100.01%. The proposed method was validated for its selectivity, linearity, accuracy, and precision. The method was found to be suitable for the quality control of itopride HCl in tablet dosage formulation. PMID:21264104

  14. Development and validation of a liquid chromatography-isotope dilution tandem mass spectrometry for determination of olanzapine in human plasma and its application to bioavailability study.

    PubMed

    Zhang, Meng-Qi; Jia, Jing-Ying; Lu, Chuan; Liu, Gang-Yi; Yu, Cheng-Yin; Gui, Yu-Zhou; Liu, Yun; Liu, Yan-Mei; Wang, Wei; Li, Shui-Jun; Yu, Chen

    2010-06-01

    A simple, reliable and sensitive liquid chromatography-isotope dilution mass spectrometry (LC-ID/MS) was developed and validated for quantification of olanzapine in human plasma. Plasma samples (50 microL) were extracted with tert-butyl methyl ether and isotope-labeled internal standard (olanzapine-D3) was used. The chromatographic separation was performed on XBridge Shield RP 18 (100 mm x 2.1 mm, 3.5 microm, Waters). An isocratic program was used at a flow rate of 0.4 m x min(-1) with mobile phase consisting of acetonitrile and ammonium buffer (pH 8). The protonated ions of analytes were detected in positive ionization by multiple reactions monitoring (MRM) mode. The plasma method, with a lower limit of quantification (LLOQ) of 0.1 ng x mL(-1), demonstrated good linearity over a range of 0.1 - 30 ng x mL(-1) of olanzapine. Specificity, linearity, accuracy, precision, recovery, matrix effect and stability were evaluated during method validation. The validated method was successfully applied to analyzing human plasma samples in bioavailability study.

  15. Quality control of test iodine in urine by spectrophotometry UV-Vis

    NASA Astrophysics Data System (ADS)

    Huda, Thorikul; Nafisah, Durotun; Kumorowulan, Suryati; Lestari, Sri

    2017-12-01

    A quality control of iodine test in with UV-Vis spectrophotometry has been done. The purpose of this research is to find out whether the test results of samples conducted by Clinical Office of Research and Development Of GAKI (BP2GAKI) laboratory are still controlled, feasible and reliable, and still consistent over time, as indicated by the control chart. Quality control parameters are linearity, precision, accuracy, limit of detection, and limit of quantification. Based on the quality control that has been done, obtained linearity (r)= -0.9974, the detection limit and the limit of quantitation are respectively 2.26 µg/L and 7.54 µg/L, while the accuracy is calculated by %recovery and precision with value % RSD are 97.4161% and 1.7136% respectively. The quality control of iodine test in urine using the control chart shows excellent or stable results for 30 days and no variation of the results is very different for each day.

  16. Determination of low-level acrylamide in drinking water by liquid chromatography/tandem mass spectrometry.

    PubMed

    Lucentini, Luca; Ferretti, Emanuele; Veschetti, Enrico; Achene, Laura; Turrio-Baldassarri, Luigi; Ottaviani, Massimo; Bogialli, Sara

    2009-01-01

    A simple and sensitive liquid chromatographic-tandem mass spectrometric (LC/MS/MS) method has been developed and validated to confirm and quantify acrylamide monomer (AA) in drinking water using [13C3] acrylamide as internal standard (IS). After a preconcentration by solid-phase extraction with spherical activated carbon, analytes were chromatographed on IonPac ICE-AS1 column (9 x 250 mm) under isocratic conditions using acetonitrile-water-0.1 M formic acid (43 + 52 + 5, v/v/v) as the mobile phase. Analysis was achieved using a triple-quadrupole mass analyzer equipped with a turbo ion spray interface. For confirmation and quantification of the analytes, MS data acquisition was performed in the multireaction monitoring mode, selecting 2 precursor ion to product ion transitions for both AA and IS. The method was validated for linearity, sensitivity, accuracy, precision, extraction efficiency, and matrix effect. Linearity in tap water was observed over the concentration range 0.1-2.0 microg/L. Limits of detection and quantification were 0.02 and 0.1 microg/L, respectively. Interday and intraday assays were performed across 3 validation levels (0.1, 0.5, and 1.5 microg/L). Accuracy (as mean recovery) ranged from 89.3 to 96.2% with relative standard deviation <7.98%. Performance characteristics of this LC/MS/MS method make it suitable for regulatory confirmatory analysis of AA in drinking water in compliance with European Union and U.S. Environmental Protection Agency standards.

  17. A Fast and Validated Reversed-Phase HPLC Method for Simultaneous Determination of Simvastatin, Atorvastatin, Telmisartan and Irbesartan in Bulk Drugs and Tablet Formulations

    PubMed Central

    Alhazmi, Hassan A.; Alnami, Ahmed M.; Arishi, Mohammed A. A.; Alameer, Raad K.; Al Bratty, Mohammed; Rehman, Zia ur; Javed, Sadique A.; Arbab, Ismail A.

    2017-01-01

    The aim of this study was to develop and validate a fast and simple reversed-phase HPLC method for simultaneous determination of four cardiovascular agents—atorvastatin, simvastatin, telmisartan and irbesartan in bulk drugs and tablet oral dosage forms. The chromatographic separation was accomplished by using Symmetry C18 column (75 mm × 4.6 mm; 3.5 μ) with a mobile phase consisting of ammonium acetate buffer (10 mM; pH 4.0) and acetonitrile in a ratio 40:60 v/v. Flow rate was maintained at 1 mL/min up to 3.5 min, and then suddenly changed to 2 mL/min till the end of the run (7.5 min). The data was acquired using ultraviolet detector monitored at 220 nm. The method was validated for linearity, precision, accuracy and specificity. The developed method has shown excellent linearity (R2 > 0.999) over the concentration range of 1–16 µg/mL. The limits of detection (LODs) and limits of quantification (LOQs) were in the range of 0.189–0.190 and 0.603–0.630 µg/mL, respectively. Inter-day and intra-day accuracy and precision data were recorded in the acceptable limits. The new method has successfully been applied for quantification of all four drugs in their tablet dosage forms with percent recovery within 100 ± 2%. PMID:29257120

  18. HPLC Quantification of astaxanthin and canthaxanthin in Salmonidae eggs.

    PubMed

    Tzanova, Milena; Argirova, Mariana; Atanasov, Vasil

    2017-04-01

    Astaxanthin and canthaxanthin are naturally occurring antioxidants referred to as xanthophylls. They are used as food additives in fish farms to improve the organoleptic qualities of salmonid products and to prevent reproductive diseases. This study reports the development and single-laboratory validation of a rapid method for quantification of astaxanthin and canthaxanthin in eggs of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis М.). An advantage of the proposed method is the perfect combination of selective extraction of the xanthophylls and analysis of the extract by high-performance liquid chromatography and photodiode array detection. The method validation was carried out in terms of linearity, accuracy, precision, recovery and limits of detection and quantification. The method was applied for simultaneous quantification of the two xanthophylls in eggs of rainbow trout and brook trout after their selective extraction. The results show that astaxanthin accumulations in salmonid fish eggs are larger than those of canthaxanthin. As the levels of these two xanthophylls affect fish fertility, this method can be used to improve the nutritional quality and to minimize the occurrence of the M74 syndrome in fish populations. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Validated method for determination of bromopride in human plasma by liquid chromatography--electrospray tandem mass spectrometry: application to the bioequivalence study.

    PubMed

    Nazare, P; Massaroti, P; Duarte, L F; Campos, D R; Marchioretto, M A M; Bernasconi, G; Calafatti, S; Barros, F A P; Meurer, E C; Pedrazzoli, J; Moraes, L A B

    2005-09-01

    A simple, sensitive and specific liquid chromatography-tandem mass spectrometry method for the quantification of bromopride I in human plasma is presented. Sample preparation consisted of the addition of procainamide II as the internal standard, liquid-liquid extraction in alkaline conditions using hexane-ethyl acetate (1 : 1, v/v) as the extracting solvent, followed by centrifugation, evaporation of the solvent and sample reconstitution in acetonitrile. Both I and II (internal standard, IS) were analyzed using a C18 column and the mobile-phase acetonitrile-water (formic acid 0.1%). The eluted compounds were monitored using electrospray tandem mass spectrometry. The analyses were carried out by multiple reaction monitoring (MRM) using the parent-to-daughter combinations of m/z 344.20 > 271.00 and m/z 236.30 > 163.10. The areas of peaks from analyte and IS were used for quantification of I. The achieved limit of quantification was 1.0 ng/ml and the assay exhibited a linear dynamic range of 1-100.0 ng/ml and gave a correlation coefficient (r) of 0.995 or better. Validation results on linearity, specificity, accuracy, precision and stability, as well as application to the analysis of samples taken up to 24 h after oral administration of 10 mg of I in healthy volunteers demonstrated the applicability to bioequivalence studies.

  20. Simultaneous analysis of 11 main active components in Cirsium setosum based on HPLC-ESI-MS/MS and combined with statistical methods.

    PubMed

    Sun, Qian; Chang, Lu; Ren, Yanping; Cao, Liang; Sun, Yingguang; Du, Yingfeng; Shi, Xiaowei; Wang, Qiao; Zhang, Lantong

    2012-11-01

    A novel method based on high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry was developed for simultaneous determination of the 11 major active components including ten flavonoids and one phenolic acid in Cirsium setosum. Separation was performed on a reversed-phase C(18) column with gradient elution of methanol and 0.1‰ acetic acid (v/v). The identification and quantification of the analytes were achieved on a hybrid quadrupole linear ion trap mass spectrometer. Multiple-reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Full validation of the assay was carried out including linearity, precision, accuracy, stability, limits of detection and quantification. The results demonstrated that the method developed was reliable, rapid, and specific. The 25 batches of C. setosum samples from different sources were first determined using the developed method and the total contents of 11 analytes ranged from 1717.460 to 23028.258 μg/g. Among them, the content of linarin was highest, and its mean value was 7340.967 μg/g. Principal component analysis and hierarchical clustering analysis were performed to differentiate and classify the samples, which is helpful for comprehensive evaluation of the quality of C. setosum. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simultaneous quantification of metronidazole, tinidazole, ornidazole and morinidazole in human saliva.

    PubMed

    Wang, Yongqing; Zhang, Peipei; Jiang, Ningling; Gong, Xiaojian; Meng, Ling; Wang, Dewang; Ou, Ning; Zhang, Haibo

    2012-06-15

    The aim of this study was to develop a rapid and sensitive method for the simultaneous quantification of metronidazole (MEZ), tinidazole (TNZ), ornidazole (ONZ) and morinidazole (MNZ) in human saliva. A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection at 318 nm was carried out on a C18 column, using a mixture of potassium dihydrogen phosphate buffer, acetonitrile, and methanol (55:15:30, v/v/v) as a mobile phase with a flow rate of 1.0 ml/min. The saliva samples (100 μl) were firstly deproteinized by precipitation with methanol (400 μl), after which they were centrifuged and the supernatants were directly injected into the HPLC system. This method produced linear responses in the concentration ranges of 25.2-5040.0, 23.9-4790.0, 25.4-5080.0, 25.0-5000.0 ng/ml with detection limits of 6.0, 17.6, 10.0 and 11.3 ng/ml for MEZ, TNZ, ONZ and MNZ (S/N=3), respectively. The methods were validated in terms of intra- and inter-batch precision (within 7.3% and 9.1%, respectively), accuracy, linearity, recovery and stability. The study proved that HPLC is both sensitive and selective for the simultaneous quantification of MEZ, TNZ, ONZ and MNZ in human saliva using a single mobile phase. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Determination of Sphingosine-1-Phosphate in Human Plasma Using Liquid Chromatography Coupled with Q-Tof Mass Spectrometry

    PubMed Central

    Egom, Emmanuel E.; Fitzgerald, Ross; Canning, Rebecca; Pharithi, Rebabonye B.; Murphy, Colin; Maher, Vincent

    2017-01-01

    Evidence suggests that high-density lipoprotein (HDL) components distinct from cholesterol, such as sphingosine-1-phosphate (S1P), may account for the anti-atherothrombotic effects attributed to this lipoprotein. The current method for the determination of plasma levels of S1P as well as levels associated with HDL particles is still cumbersome an assay method to be worldwide practical. Recently, a simplified protocol based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the sensitive and specific quantification of plasma levels of S1P with good accuracy has been reported. This work utilized a triple quadrupole (QqQ)-based LC-MS/MS system. Here we adapt that method for the determination of plasma levels of S1P using a quadrupole time of flight (Q-Tof) based LC-MS system. Calibration curves were linear in the range of 0.05 to 2 µM. The lower limit of quantification (LOQ) was 0.05 µM. The concentration of S1P in human plasma was determined to be 1 ± 0.09 µM (n = 6). The average accuracy over the stated range of the method was found to be 100 ± 5.9% with precision at the LOQ better than 10% when predicting the calibration standards. The concentration of plasma S1P in the prepared samples was stable for 24 h at room temperature. We have demonstrated the quantification of plasma S1P using Q-Tof based LC-MS with very good sensitivity, accuracy, and precision that can used for future studies in this field. PMID:28820460

  3. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. Conclusions: The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications. PMID:24320536

  4. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    PubMed

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.

  5. Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm.

    PubMed

    Zhang, Xiao-Hua; Wu, Hai-Long; Wang, Jian-Yao; Tu, De-Zhu; Kang, Chao; Zhao, Juan; Chen, Yao; Miu, Xiao-Xia; Yu, Ru-Qin

    2013-05-01

    This paper describes the use of second-order calibration for development of HPLC-DAD method to quantify nine polyphenols in five kinds of honey samples. The sample treatment procedure was simplified effectively relative to the traditional ways. Baselines drift was also overcome by means of regarding the drift as additional factor(s) as well as the analytes of interest in the mathematical model. The contents of polyphenols obtained by the alternating trilinear decomposition (ATLD) method have been successfully used to distinguish different types of honey. This method shows good linearity (r>0.99), rapidity (t<7.60 min) and accuracy, which may be extremely promising as an excellent routine strategy for identification and quantification of polyphenols in the complex matrices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. High-performance Thin-layer Chromatography Method Development, Validation, and Simultaneous Quantification of Four Compounds Identified in Standardized Extracts of Orthosiphon stamineus.

    PubMed

    Hashim, Suzana; Beh, Hooi Kheng; Hamil, Mohamad Shahrul Ridzuan; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Orthosiphon stamineus is a medicinal herb widely grown in Southeast Asia and tropical countries. It has been used traditionally as a diuretic, abdominal pain, kidney and bladder inflammation, gout, and hypertension. This study aims to develop and validate the high-performance thin layer chromatography (HPTLC) method for quantification of rosmarinic acid (RA), 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF), sinensitin (SIN) and eupatorin (EUP) found in ethanol, 50% ethanol and water extract of O. stamineus leaves. HPTLC method was conducted using an HPTLC system with a developed mobile phase system of toluene: ethyl acetate: formic acid (3:7:0.1) performed on precoated silica gel 60 F254 TLC plates. The method was validated based on linearity, accuracy, precision, limit of detection, limit of quantification (LOQ), and specificity, respectively. The detection of spots was observed at ultraviolet 254 nm and 366 nm. The linearity of RA, TMF, SIN, and EUP were obtained between 10 and 100 ng/spot with high correlation coefficient value (R 2 ) of more than 0.986. The limit of detection was found to be 122.47 ± 3.95 (RA), 43.38 ± 0.79 (SIN), 17.26 ± 1.16 (TMF), and 46.80 ± 1.33 ng/spot (EUP), respectively. Whereas the LOQ was found to be 376.44 ± 6.70 (RA), 131.45 ± 2.39 (SIN), 52.30 ± 2.01 (TMF), and 141.82 ± 1.58 ng/spot (EUP), respectively. The proposed method showed good linearity, precision, accuracy, and high sensitivity. Hence, it may be applied in a routine quantification of RA, SIN, TMF, and EUP found in ethanol, 50% of ethanol and water extract of O. stamineus leaves. HPTLC method provides rapid estimation of the marker compound for routine quality control analysis.The established HPTLC method is rapid for qualitative and quantitative fingerprinting of Orthosiphon stamineus extract used for commercial product.Four identified markers (RA, SIN, EUP and TMF) found in three a different type of O. stamineus extracts specifically ethanol, 50% ethanol and water extract were successfully quantified using HPTLC method. Abbreviations Used : HPTLC: High-performance thin layer chromatography; RA: Rosmarinic acid; TMF: 3'-hydroxy-5,6,7,4'-tetramethoxyflavone; SIN: Sinensitin; EUP: Eupatorin; E: Ethanol; EW: 50% ethanol; W: Water; BK: Batu Kurau; KB: Kepala Batas; S: Sik; CJ: Changkat Jering; SB: Sungai Buloh.

  7. Development and validation of a gas chromatography/ion trap-mass spectrometry method for simultaneous quantification of cocaine and its metabolites benzoylecgonine and norcocaine: application to the study of cocaine metabolism in human primary cultured renal cells.

    PubMed

    Valente, Maria João; Carvalho, Félix; Bastos, M Lourdes; Carvalho, Márcia; de Pinho, Paula Guedes

    2010-11-15

    Acute renal failure is a common finding in cocaine abusers. While cocaine metabolism may contribute to its nephrotoxic mechanisms, its pharmacokinetics in kidney cells is hitherto to be clarified. Primary cultures of human proximal tubular cells (HPTCs) provide a well-characterized in vitro model, phenotypically representative of HPTCs in vivo. Thus, the present work describes the first sensitive gas chromatography/ion trap-mass spectrometry (GC/IT-MS) method for measurement of cocaine and its metabolites benzoylecgonine (BE) and norcocaine (NCOC) using a primary culture of HPTCs as cellular matrix, following solid phase extraction (SPE) and derivatization with N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). The application of this methodology also enables the identification of two other cocaine metabolites: ecgonine methyl ester (EME) and anhydroecgonine methyl ester (AEME). The validation of the method was performed through the evaluation of selectivity, linearity, precision and accuracy, limit of detection (LOD), and limit of quantification (LOQ). Its applicability was demonstrated through the quantification of cocaine, BE and NCOC in primary cultured HPTCs after incubation, at physiological conditions, with 1 mM cocaine for 72 h. The developed GC/IT-MS method was found to be linear (r² > 0.99). The intra-day precision varied between 3.6% and 13.5% and the values of accuracy between 92.7% and 111.9%. The LOD values for cocaine, BE and NCOC were 0.97±0.09, 0.40±0.04 and 20.89±1.81 ng/mL, respectively, and 3.24±0.30, 1.34±0.14 and 69.62±6.05 ng/mL as LOQ values. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Development and validation of a selective, sensitive and stability indicating UPLC-MS/MS method for rapid, simultaneous determination of six process related impurities in darunavir drug substance.

    PubMed

    A, Vijaya Bhaskar Reddy; Yusop, Zulkifli; Jaafar, Jafariah; Aris, Azmi B; Majid, Zaiton A; Umar, Khalid; Talib, Juhaizah

    2016-09-05

    In this study a sensitive and selective gradient reverse phase UPLC-MS/MS method was developed for the simultaneous determination of six process related impurities viz., Imp-I, Imp-II, Imp-III, Imp-IV, Imp-V and Imp-VI in darunavir. The chromatographic separation was performed on Acquity UPLC BEH C18 (50 mm×2.1mm, 1.7μm) column using gradient elution of acetonitrile-methanol (80:20, v/v) and 5.0mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4mL/min. Both negative and positive electrospray ionization (ESI) modes were operated simultaneously using multiple reaction monitoring (MRM) for the quantification of all six impurities in darunavir. The developed method was fully validated following ICH guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness and sample solution stability. The method was able to quantitate Imp-I, Imp-IV, Imp-V at 0.3ppm and Imp-II, Imp-III, and Imp-VI at 0.2ppm with respect to 5.0mg/mL of darunavir. The calibration curves showed good linearity over the concentration range of LOQ to 250% for all six impurities. The correlation coefficient obtained was >0.9989 in all the cases. The accuracy of the method lies between 89.90% and 104.60% for all six impurities. Finally, the method has been successfully applied for three formulation batches of darunavir to determine the above mentioned impurities, however no impurity was found beyond the LOQ. This method is a good quality control tool for the trace level quantification of six process related impurities in darunavir during its synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. UFLC-ESI-MS/MS analysis of multiple mycotoxins in medicinal and edible Areca catechu.

    PubMed

    Liu, Hongmei; Luo, Jiaoyang; Kong, Weijun; Liu, Qiutao; Hu, Yichen; Yang, Meihua

    2016-05-01

    A robust, sensitive and reliable ultra fast liquid chromatography combined with electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) was optimized and validated for simultaneous identification and quantification of eleven mycotoxins in medicinal and edible Areca catechu, based on one-step extraction without any further clean-up. Separation and quantification were performed in both positive and negative modes under multiple reaction monitoring (MRM) in a single run with zearalanone (ZAN) as internal standard. The chromatographic conditions and MS/MS parameters were carefully optimized. Matrix-matched calibration was recommended to reduce matrix effects and improve accuracy, showing good linearity within wide concentration ranges. Limits of quantification (LOQ) were lower than 50 μg kg(-1), while limits of detection (LOD) were in the range of 0.1-20 μg kg(-1). The accuracy of the developed method was validated for recoveries, ranging from 85% to 115% with relative standard deviation (RSD) ≤14.87% at low level, from 75% to 119% with RSD ≤ 14.43% at medium level and from 61% to 120% with RSD ≤ 13.18% at high level, respectively. Finally, the developed multi-mycotoxin method was applied for screening of these mycotoxins in 24 commercial samples. Only aflatoxin B2 and zearalenone were found in 2 samples. This is the first report on the application of UFLC-ESI(+/-)-MS/MS for multi-class mycotoxins in A. catechu. The developed method with many advantages of simple pretreatment, rapid determination and high sensitivity is a proposed candidate for large-scale detection and quantification of multiple mycotoxins in other complex matrixes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development and validation of high-performance liquid chromatography and high-performance thin-layer chromatography methods for the quantification of khellin in Ammi visnaga seed

    PubMed Central

    Kamal, Abid; Khan, Washim; Ahmad, Sayeed; Ahmad, F. J.; Saleem, Kishwar

    2015-01-01

    Objective: The present study was used to design simple, accurate and sensitive reversed phase-high-performance liquid chromatography RP-HPLC and high-performance thin-layer chromatography (HPTLC) methods for the development of quantification of khellin present in the seeds of Ammi visnaga. Materials and Methods: RP-HPLC analysis was performed on a C18 column with methanol: Water (75: 25, v/v) as a mobile phase. The HPTLC method involved densitometric evaluation of khellin after resolving it on silica gel plate using ethyl acetate: Toluene: Formic acid (5.5:4.0:0.5, v/v/v) as a mobile phase. Results: The developed HPLC and HPTLC methods were validated for precision (interday, intraday and intersystem), robustness and accuracy, limit of detection and limit of quantification. The relationship between the concentration of standard solutions and the peak response was linear in both HPLC and HPTLC methods with the concentration range of 10–80 μg/mL in HPLC and 25–1,000 ng/spot in HPTLC for khellin. The % relative standard deviation values for method precision was found to be 0.63–1.97%, 0.62–2.05% in HPLC and HPTLC for khellin respectively. Accuracy of the method was checked by recovery studies conducted at three different concentration levels and the average percentage recovery was found to be 100.53% in HPLC and 100.08% in HPTLC for khellin. Conclusions: The developed HPLC and HPTLC methods for the quantification of khellin were found simple, precise, specific, sensitive and accurate which can be used for routine analysis and quality control of A. visnaga and several formulations containing it as an ingredient. PMID:26681890

  11. Simultaneous determination of multiclass preservatives including isothiazolinones and benzophenone-type UV filters in household and personal care products by micellar electrokinetic chromatography.

    PubMed

    Lopez-Gazpio, Josu; Garcia-Arrona, Rosa; Millán, Esmeralda

    2015-04-01

    In this work, a simple and reliable micellar electrokinetic chromatography method for the separation and quantification of 14 preservatives, including isothiazolinones, and two benzophenone-type UV filters in household, cosmetic and personal care products was developed. The selected priority compounds are widely used as ingredients in many personal care products, and are included in the European Regulation concerning cosmetic products. The electrophoretic separation parameters were optimized by means of a modified chromatographic response function in combination with an experimental design, namely a central composite design. After optimization of experimental conditions, the BGE selected for the separation of the targets consisted of 60 mM SDS, 18 mM sodium tetraborate, pH 9.4 and 10% v/v methanol. The MEKC method was checked in terms of linearity, LODs and quantification, repeatability, intermediate precision, and accuracy, providing appropriate values (i.e. R(2) ≥ 0.992, repeatability RSD values ˂9%, and accuracy 90-115%). Applicability of the validated method was successfully assessed by quantifying preservatives and UV filters in commercial consumer products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Accuracy of Rhenium-188 SPECT/CT activity quantification for applications in radionuclide therapy using clinical reconstruction methods.

    PubMed

    Esquinas, Pedro L; Uribe, Carlos F; Gonzalez, M; Rodríguez-Rodríguez, Cristina; Häfeli, Urs O; Celler, Anna

    2017-07-20

    The main applications of 188 Re in radionuclide therapies include trans-arterial liver radioembolization and palliation of painful bone-metastases. In order to optimize 188 Re therapies, the accurate determination of radiation dose delivered to tumors and organs at risk is required. Single photon emission computed tomography (SPECT) can be used to perform such dosimetry calculations. However, the accuracy of dosimetry estimates strongly depends on the accuracy of activity quantification in 188 Re images. In this study, we performed a series of phantom experiments aiming to investigate the accuracy of activity quantification for 188 Re SPECT using high-energy and medium-energy collimators. Objects of different shapes and sizes were scanned in Air, non-radioactive water (Cold-water) and water with activity (Hot-water). The ordered subset expectation maximization algorithm with clinically available corrections (CT-based attenuation, triple-energy window (TEW) scatter and resolution recovery was used). For high activities, the dead-time corrections were applied. The accuracy of activity quantification was evaluated using the ratio of the reconstructed activity in each object to this object's true activity. Each object's activity was determined with three segmentation methods: a 1% fixed threshold (for cold background), a 40% fixed threshold and a CT-based segmentation. Additionally, the activity recovered in the entire phantom, as well as the average activity concentration of the phantom background were compared to their true values. Finally, Monte-Carlo simulations of a commercial [Formula: see text]-camera were performed to investigate the accuracy of the TEW method. Good quantification accuracy (errors  <10%) was achieved for the entire phantom, the hot-background activity concentration and for objects in cold background segmented with a 1% threshold. However, the accuracy of activity quantification for objects segmented with 40% threshold or CT-based methods decreased (errors  >15%), mostly due to partial-volume effects. The Monte-Carlo simulations confirmed that TEW-scatter correction applied to 188 Re, although practical, yields only approximate estimates of the true scatter.

  13. Laboratory measurement of the anticoagulant activity of the non-vitamin K oral anticoagulants.

    PubMed

    Cuker, Adam; Siegal, Deborah M; Crowther, Mark A; Garcia, David A

    2014-09-16

    Non-vitamin K oral anticoagulants (NOACs) do not require routine laboratory monitoring. However, laboratory measurement may be desirable in special situations and populations. This study's objective was to systematically review and summarize current evidence regarding laboratory measurement of the anticoagulant activity of dabigatran, rivaroxaban, and apixaban. We searched PubMed and Web of Science for studies that reported a relationship between drug levels of dabigatran, rivaroxaban, and apixaban and coagulation assay results. Study quality was evaluated using QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2). We identified 17 eligible studies for dabigatran, 15 for rivaroxaban, and 4 for apixaban. For dabigatran, a normal thrombin time excludes clinically relevant drug concentrations. The activated partial thromboplastin time (APTT) and prothrombin time (PT) are less sensitive and may be normal at trough drug levels. The dilute thrombin time (R(2) = 0.92 to 0.99) and ecarin-based assays (R(2) = 0.92 to 1.00) show excellent linearity across on-therapy drug concentrations and may be used for drug quantification. For rivaroxaban and apixaban, anti-Xa activity is linear (R(2) = 0.89 to 1.00) over a wide range of drug levels and may be used for drug quantification. Undetectable anti-Xa activity likely excludes clinically relevant drug concentrations. The PT is less sensitive (especially for apixaban); a normal PT may not exclude clinically relevant levels. The APTT demonstrates insufficient sensitivity and linearity for quantification. Dabigatran, rivaroxaban, and apixaban exhibit variable effects on coagulation assays. Understanding these effects facilitates interpretation of test results in NOAC-treated patients. More information on the relationship between drug levels and clinical outcomes is needed. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Automated quantification of Epstein-Barr Virus in whole blood of hematopoietic stem cell transplant patients using the Abbott m2000 system.

    PubMed

    Salmona, Maud; Fourati, Slim; Feghoul, Linda; Scieux, Catherine; Thiriez, Aline; Simon, François; Resche-Rigon, Matthieu; LeGoff, Jérôme

    2016-08-01

    Accurate quantification of Epstein-Barr virus (EBV) load in blood is essential for the management of post-transplant lymphoproliferative disorders. The automation of DNA extraction and amplification may improve accuracy and reproducibility. We evaluated the EBV PCR Kit V1 with fully automated DNA extraction and amplification on the m2000 system (Abbott assay). Conversion factor between copies and international units (IU), lower limit of quantification, imprecision and linearity were determined in a whole blood (WB) matrix. Results from 339 clinical WB specimens were compared with a home-brew real-time PCR assay used in our laboratory (in-house assay). The conversion factor between copies and IU was 3.22 copies/IU. The lower limit of quantification (LLQ) was 1000 copies/mL. Intra- and inter-assay coefficients of variation were 3.1% and 7.9% respectively for samples with EBV load higher than the LLQ. The comparison between Abbott assay and in-house assay showed a good concordance (kappa = 0.77). Loads were higher with the Abbott assay (mean difference = 0.62 log10 copies/mL). The EBV PCR Kit V1 assay on the m2000 system provides a reliable and easy-to-use method for quantification of EBV DNA in WB. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development of a High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for the Identification and Quantification of CP-47,497, CP-47,497-C8 and JWH-250 in Mouse Brain

    PubMed Central

    Samano, Kimberly L.; Poklis, Justin L.; Lichtman, Aron H.; Poklis, Alphonse

    2014-01-01

    While Marijuana continues to be the most widely used illicit drug, abuse of synthetic cannabinoid (SCB) compounds in ‘Spice’ or ‘K2’ herbal incense products has emerged as a significant public health concern in many European countries and in the USA. Several of these SCBs have been declared Schedule I controlled substances but detection and quantification in biological samples remain a challenge. Therefore, we present a liquid chromatography–tandem mass spectrometry method after liquid–liquid extraction for the quantitation of CP-47,497, CP-47,497-C8 and JWH-250 in mouse brain. We report data for linearity, limit of quantification, accuracy/bias, precision, recovery, selectivity, carryover, matrix effects and stability experiments which were developed and fully validated based on Scientific Working Group for Forensic Toxicology guidelines for forensic toxicology method validation. Acceptable coefficients of variation for accuracy/bias, within- and between-run precision and selectivity were determined, with all values within ±15% of the target concentration. Validation experiments revealed degradation of CP-47, 497 and CP-47,497-C8 at different temperatures, and significant ion suppression was produced in brain for all compounds tested. The method was successfully applied to detect and quantify CP-47,497 in brains from mice demonstrating significant cannabimimetic behavioral effects as assessed by the classical tetrad paradigm. PMID:24816398

  16. 18O-labeled proteome reference as global internal standards for targeted quantification by selected reaction monitoring-mass spectrometry.

    PubMed

    Kim, Jong-Seo; Fillmore, Thomas L; Liu, Tao; Robinson, Errol; Hossain, Mahmud; Champion, Boyd L; Moore, Ronald J; Camp, David G; Smith, Richard D; Qian, Wei-Jun

    2011-12-01

    Selected reaction monitoring (SRM)-MS is an emerging technology for high throughput targeted protein quantification and verification in biomarker discovery studies; however, the cost associated with the application of stable isotope-labeled synthetic peptides as internal standards can be prohibitive for screening a large number of candidate proteins as often required in the preverification phase of discovery studies. Herein we present a proof of concept study using an (18)O-labeled proteome reference as global internal standards (GIS) for SRM-based relative quantification. The (18)O-labeled proteome reference (or GIS) can be readily prepared and contains a heavy isotope ((18)O)-labeled internal standard for every possible tryptic peptide. Our results showed that the percentage of heavy isotope ((18)O) incorporation applying an improved protocol was >99.5% for most peptides investigated. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into the labeled mouse plasma reference. Reliable quantification was observed with high reproducibility (i.e. coefficient of variance <10%) for analyte concentrations that were set at 100-fold higher or lower than those of the GIS based on the light ((16)O)/heavy ((18)O) peak area ratios. The utility of (18)O-labeled GIS was further illustrated by accurate relative quantification of 45 major human plasma proteins. Moreover, quantification of the concentrations of C-reactive protein and prostate-specific antigen was illustrated by coupling the GIS with standard additions of purified protein standards. Collectively, our results demonstrated that the use of (18)O-labeled proteome reference as GIS provides a convenient, low cost, and effective strategy for relative quantification of a large number of candidate proteins in biological or clinical samples using SRM.

  17. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  18. Identification and quantification of flavonoids and chromes in Baeckea frutescens by using HPLC coupled with diode-array detection and quadruple time-of-flight mass spectrometry.

    PubMed

    Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang

    2015-01-01

    This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens.

  19. Ultrafast gas chromatography method with direct injection for the quantitative determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline.

    PubMed

    Miranda, Nahieh Toscano; Sequinel, Rodrigo; Hatanaka, Rafael Rodrigues; de Oliveira, José Eduardo; Flumignan, Danilo Luiz

    2017-04-01

    Benzene, toluene, ethylbenzene, and xylenes are some of the most hazardous constituents found in commercial gasoline samples; therefore, these components must be monitored to avoid toxicological problems. We propose a new routine method of ultrafast gas chromatography coupled to flame ionization detection for the direct determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline. This method is based on external standard calibration to quantify each compound, including the validation step of the study of linearity, detection and quantification limits, precision, and accuracy. The time of analysis was less than 3.2 min, with quantitative statements regarding the separation and quantification of all compounds in commercial gasoline samples. Ultrafast gas chromatography is a promising alternative method to official analytical techniques. Government laboratories could consider using this method for quality control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative bioanalysis of strontium in human serum by inductively coupled plasma-mass spectrometry

    PubMed Central

    Somarouthu, Srikanth; Ohh, Jayoung; Shaked, Jonathan; Cunico, Robert L; Yakatan, Gerald; Corritori, Suzana; Tami, Joe; Foehr, Erik D

    2015-01-01

    Aim: A bioanalytical method using inductively-coupled plasma-mass spectrometry to measure endogenous levels of strontium in human serum was developed and validated. Results & methodology: This article details the experimental procedures used for the method development and validation thus demonstrating the application of the inductively-coupled plasma-mass spectrometry method for quantification of strontium in human serum samples. The assay was validated for specificity, linearity, accuracy, precision, recovery and stability. Significant endogenous levels of strontium are present in human serum samples ranging from 19 to 96 ng/ml with a mean of 34.6 ± 15.2 ng/ml (SD). Discussion & conclusion: Calibration procedures and sample pretreatment were simplified for high throughput analysis. The validation demonstrates that the method was sensitive, selective for quantification of strontium (88Sr) and is suitable for routine clinical testing of strontium in human serum samples. PMID:28031925

  1. Quantification of residual EDU (N-ethyl-N'-(dimethylaminopropyl) carbodiimide (EDC) hydrolyzed urea derivative) and other residual by LC-MS/MS.

    PubMed

    Lei, Q Paula; Lamb, David H; Shannon, Anthony G; Cai, Xinxing; Heller, Ronald K; Huang, Michael; Zablackis, Earl; Ryall, Robert; Cash, Patricia

    2004-12-25

    An LC-MS/MS method for determination of the break down product of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) urea derivative, EDU, has been developed and validated for monitoring the residual coupling reagents. Results indicate that the method exhibits suitable specificity, sensitivity, precision, linearity and accuracy for quantification of residual EDU in the presence of meningococcal polysaccharide-diphtheria toxoid conjugate vaccine and other vaccine matrix compounds. The assay has been validated for a detection range of 10-100 ng/mL and then successfully transferred to quality control (QC) lab. This same method has also been applied to the determination of residual diaminohexane (DAH) in the presence of EDU. LC-MS/MS has proven to be useful as a quick and sensitive approach for simultaneous determination of multiple residual compounds in glycoconjugate vaccine samples.

  2. Rapid quantification of gabapentin, pregabalin, and vigabatrin in human serum by ultraperformance liquid chromatography with mass-spectrometric detection.

    PubMed

    Chahbouni, Abdel; Sinjewel, Arno; den Burger, Jeroen C G; Vos, René M; Wilhelm, Abraham J; Veldkamp, Agnes I; Swart, Eleanora L

    2013-02-01

    Gabapentin (GBP), pregabalin (PRG), and vigabatrin (VIG) are used for the prevention and treatment of epileptic seizures. The developed method was applied to samples from subjects participating in a pharmacokinetic study of GBP. Sample pretreatment consisted of adding 20 μL of trichloroacetic acid (30%; vol/vol) and 200 μL of GBP-d4 in acetonitrile as an internal standard to 20 μL of serum. Chromatographic separation was performed on an Acquity separation module using a Kinetex RP18 column. The aqueous and organic mobile phases were 2 mM ammonium acetate supplemented with 0.1% formic acid in water and acetonitrile, respectively. The detection by a tandem quadrupole mass spectrometer, operating in the positive mode using multiple reaction monitoring, was completed within 2 minutes. The method was linear over the range of 0.03-25 mg/L for GBP, 0.03-25 mg/L for PRG, and 0.06-50 mg/L for VIG. The between- and within-run accuracies ranged from 90% to 107%. The between- and within-run imprecisions of the method were <10%. Stability data show no significant decrease of the analytes. A relative matrix effect of -1%, 0.2%, and -5% was determined for GBP, PRG, and VIG, respectively. A simple and sensitive ultraperformance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantification of GBP, PRG, and VIG in human serum. The reported method provided the necessary linearity, precision, and accuracy to allow the determination of GBP, PRG, and VIG for therapeutic drug monitoring and clinical research purposes.

  3. Development of an improved sample preparation platform for acidic endogenous hormones in plant tissues using electromembrane extraction.

    PubMed

    Suh, Joon Hyuk; Han, Sang Beom; Wang, Yu

    2018-02-02

    Despite their importance in pivotal signaling pathways due to trace quantities and complex matrices, the analysis of plant hormones is a challenge. Here, to improve this issue, we present an electromembrane extraction technology combined with liquid chromatography-tandem mass spectrometry for determination of acidic plant hormones including jasmonic acid, abscisic acid, salicylic acid, benzoic acid, gibberellic acid and gibberellin A 4 in plant tissues. Factors influencing extraction efficiency, such as voltage, extraction time and stirring rate were optimized using a design of experiments. Analytical performance was evaluated in terms of specificity, linearity, limit of quantification, precision, accuracy, recovery and repeatability. The results showed good linearity (r 2  > 0.995), precision and acceptable accuracy. The limit of quantification ranged from 0.1 to 10 ng mL -1 , and the recoveries were 34.6-50.3%. The developed method was applied in citrus leaf samples, showing better clean-up efficiency, as well as higher sensitivity compared to a previous method using liquid-liquid extraction. Organic solvent consumption was minimized during the process, making it an appealing method. More noteworthy, electromembrane extraction has been scarcely applied to plant tissues, and this is the first time that major plant hormones were extracted using this technology, with high sensitivity and selectivity. Taken together, this work gives not only a novel sample preparation platform using an electric field for plant hormones, but also a good example of extracting complex plant tissues in a simple and effective way. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Identification and quantification of anthocyanins in fruits from Neomitranthes obscura (DC.) N. Silveira an endemic specie from Brazil by comparison of chromatographic methodologies.

    PubMed

    Gouvêa, Ana Cristina M S; Melo, Armindo; Santiago, Manuela C P A; Peixoto, Fernanda M; Freitas, Vitor; Godoy, Ronoel L O; Ferreira, Isabel M P L V O

    2015-10-15

    Neomitranthes obscura (DC.) N. Silveira is a Brazilian fruit belonging to the Myrtaceae family that contains anthocyanins in the peel and was studied for the first time in this work. Delphinidin-3-O-galactoside, delphinidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, petunidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-galactoside, peonidin-3-O-glucoside, cyanidin-3-O-xyloside were separated and identified by LC/DAD/MS and by co-elution with standards. Reliable quantification of anthocyanins in the mature fruits was performed by HPLC/DAD using weighted linear regression model from 0.05 to 50mg of cyaniding-3-O-glucoside L(-1) because it gave better fit quality than least squares linear regression. Good precision and accuracy were obtained. The total anthocyanin content of mature fruits was 263.6 ± 8.2 mg of cyanidin-3-O-glucoside equivalents 100 g(-1) fresh weight, which was in the same range found in literature for anthocyanin rich fruits. Copyright © 2015. Published by Elsevier Ltd.

  5. High-Performance Liquid Chromatography with Tandem Mass Spectrometry for the Determination of Nine Hallucinogenic 25-NBOMe Designer Drugs in Urine Specimens

    PubMed Central

    Poklis, Justin L.; Clay, Deborah J.; Poklis, Alphonse

    2014-01-01

    We present a high-performance liquid chromatography triple quadrupole mass spectrometry (HPLC–MS-MS) method for the identification and quantification of nine serotonin 5-HT2A receptor agonist hallucinogenic substances from a new class of N-methoxybenzyl derivatives of methoxyphenylethylamine (NBOMe) designer drugs in human urine: 25H-NBOMe, 2CC-NBOMe, 25I-NBF, 25D-NBOMe, 25B-NBOMe, 2CT-NBOMe, 25I-NBMD, 25G-NBOMe and 25I-NBOMe. This assay was developed for the Virginia Commonwealth University Clinical and Forensic Toxicology laboratory to screen emergency department specimens in response to an outbreak of N-benzyl-phenethylamine derivative abuse and overdose cases in Virginia. The NBOMe derivatives were rapidly extracted from the urine specimens by use of FASt™ solid-phase extraction columns. Assay performance was determined as recommended for validation by the Scientific Working Group for Forensic Toxicology (SWGTOX) for linearity, lower limit of quantification, lower limit of detection, accuracy/bias, precision, dilution integrity, carryover, selectivity, absolute recovery, ion suppression and stability. Linearity was verified to be from 1 to 100 ng/mL for each of the nine analytes. The bias determined for the NBOMe derivatives was 86–116% with a <14% coefficient of variation over the linear range of the assay. Four different NBOMe derivatives were detected using the presented method in patient urine specimens. PMID:24535338

  6. Quantification of neutral human milk oligosaccharides by graphitic carbon HPLC with tandem mass spectrometry

    PubMed Central

    Bao, Yuanwu; Chen, Ceng; Newburg, David S.

    2012-01-01

    Defining the biologic roles of human milk oligosaccharides (HMOS) requires an efficient, simple, reliable, and robust analytical method for simultaneous quantification of oligosaccharide profiles from multiple samples. The HMOS fraction of milk is a complex mixture of polar, highly branched, isomeric structures that contain no intrinsic facile chromophore, making their resolution and quantification challenging. A liquid chromatography-mass spectrometry (LC-MS) method was devised to resolve and quantify 11 major neutral oligosaccharides of human milk simultaneously. Crude HMOS fractions are reduced, resolved by porous graphitic carbon HPLC with a water/acetonitrile gradient, detected by mass spectrometric specific ion monitoring, and quantified. The HPLC separates isomers of identical molecular weights allowing 11 peaks to be fully resolved and quantified by monitoring mass to charge (m/z) ratios of the deprotonated negative ions. The standard curves for each of the 11 oligosaccharides is linear from 0.078 or 0.156 to 20 μg/mL (R2 > 0.998). Precision (CV) ranges from 1% to 9%. Accuracy is from 86% to 104%. This analytical technique provides sensitive, precise, accurate quantification for each of the 11 milk oligosaccharides and allows measurement of differences in milk oligosaccharide patterns between individuals and at different stages of lactation. PMID:23068043

  7. Quantification of Liver Proton-Density Fat Fraction in an 7.1 Tesla preclinical MR Systems: Impact of the Fitting Technique

    PubMed Central

    Mahlke, C; Hernando, D; Jahn, C; Cigliano, A; Ittermann, T; Mössler, A; Kromrey, ML; Domaska, G; Reeder, SB; Kühn, JP

    2016-01-01

    Purpose To investigate the feasibility of estimating the proton-density fat fraction (PDFF) using a 7.1 Tesla magnetic resonance imaging (MRI) system and to compare the accuracy of liver fat quantification using different fitting approaches. Materials and Methods Fourteen leptin-deficient ob/ob mice and eight intact controls were examined in a 7.1 Tesla animal scanner using a 3-dimensional six-echo chemical shift-encoded pulse sequence. Confounder-corrected PDFF was calculated using magnitude (magnitude data alone) and combined fitting (complex and magnitude data). Differences between fitting techniques were compared using Bland-Altman analysis. In addition, PDFFs derived with both reconstructions were correlated with histopathological fat content and triglyceride mass fraction using linear regression analysis. Results The PDFFs determined with use of both reconstructions correlated very strongly (r=0.91). However, small mean bias between reconstructions demonstrated divergent results (3.9%; CI 2.7%-5.1%). For both reconstructions, there was linear correlation with histopathology (combined fitting: r=0.61; magnitude fitting: r=0.64) and triglyceride content (combined fitting: r=0.79; magnitude fitting: r=0.70). Conclusion Liver fat quantification using the PDFF derived from MRI performed at 7.1 Tesla is feasible. PDFF has strong correlations with histopathologically determined fat and with triglyceride content. However, small differences between PDFF reconstruction techniques may impair the robustness and reliability of the biomarker at 7.1 Tesla. PMID:27197806

  8. Quantification of anti-Leishmania antibodies in saliva of dogs.

    PubMed

    Cantos-Barreda, Ana; Escribano, Damián; Bernal, Luis J; Cerón, José J; Martínez-Subiela, Silvia

    2017-08-15

    Detection of serum anti-Leishmania antibodies by quantitative or qualitative techniques has been the most used method to diagnose Canine Leishmaniosis (CanL). Nevertheless, saliva may represent an alternative to blood because it is easy to collect, painless and non-invasive in comparison with serum. In this study, two time-resolved immunofluorometric assays (TR-IFMAs) for quantification of anti-Leishmania IgG2 and IgA antibodies in saliva were developed and validated and their ability to distinguish Leishmania-seronegative from seropositive dogs was evaluated. The analytical study was performed by evaluation of assay precision, sensitivity and accuracy. In addition, serum from 48 dogs (21 Leishmania-seropositive and 27 Leishmania-seronegative) were analyzed by TR-IFMAs. The assays were precise, with an intra- and inter-assay coefficients of variation lower than 11%, and showed high level of accuracy, as determined by linearity under dilution (R 2 =0.99) and recovery tests (>88.60%). Anti-Leishmania IgG2 antibodies in saliva were significantly higher in the seropositive group compared with the seronegative (p<0.0001), whereas no significant differences for anti-Leishmania IgA antibodies between both groups were observed. Furthermore, TR-IFMA for quantification of anti-Leishmania IgG2 antibodies in saliva showed higher differences between seropositive and seronegative dogs than the commercial assay used in serum. In conclusion, TR-IFMAs developed may be used to quantify anti-Leishmania IgG2 and IgA antibodies in canine saliva with an adequate precision, analytical sensitivity and accuracy. Quantification of anti-Leishmania IgG2 antibodies in saliva could be potentially used to evaluate the humoral response in CanL. However, IgA in saliva seemed not to have diagnostic value for this disease. For future studies, it would be desirable to evaluate the ability of the IgG2 assay to detect dogs with subclinical disease or with low antibody titers in serum and also to study the antibodies behaviour in saliva during the treatment of CanL. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A candidate reference method using ICP-MS for sweat chloride quantification.

    PubMed

    Collie, Jake T; Massie, R John; Jones, Oliver A H; Morrison, Paul D; Greaves, Ronda F

    2016-04-01

    The aim of the study was to develop a method for sweat chloride (Cl) quantification using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to present to the Joint Committee for Traceability in Laboratory Medicine (JCTLM) as a candidate reference method for the diagnosis of cystic fibrosis (CF). Calibration standards were prepared from sodium chloride (NaCl) to cover the expected range of sweat Cl values. Germanium (Ge) and scandium (Sc) were selected as on-line (instrument based) internal standards (IS) and gallium (Ga) as the off-line (sample based) IS. The method was validated through linearity, accuracy and imprecision studies as well as enrolment into the Royal College of Pathologists of Australasia Quality Assurance Program (RCPAQAP) for sweat electrolyte testing. Two variations of the ICP-MS method were developed, an on-line and off-line IS, and compared. Linearity was determined up to 225 mmol/L with a limit of quantitation of 7.4 mmol/L. The off-line IS demonstrated increased accuracy through the RCPAQAP performance assessment (CV of 1.9%, bias of 1.5 mmol/L) in comparison to the on-line IS (CV of 8.0%, bias of 3.8 mmol/L). Paired t-tests confirmed no significant differences between sample means of the two IS methods (p=0.53) or from each method against the RCPAQAP target values (p=0.08 and p=0.29). Both on and off-line IS methods generated highly reproducible results and excellent linear comparison to the RCPAQAP target results. ICP-MS is a highly accurate method with a low limit of quantitation for sweat Cl analysis and should be recognised as a candidate reference method for the monitoring and diagnosis of CF. Laboratories that currently practice sweat Cl analysis using ICP-MS should include an off-line IS to help negate any pre-analytical errors.

  10. Simultaneous determination of dextromethorphan, dextrorphan, and guaifenesin in human plasma using semi-automated liquid/liquid extraction and gradient liquid chromatography tandem mass spectrometry.

    PubMed

    Eichhold, Thomas H; McCauley-Myers, David L; Khambe, Deepa A; Thompson, Gary A; Hoke, Steven H

    2007-01-17

    A method for the simultaneous determination of dextromethorphan (DEX), dextrorphan (DET), and guaifenesin (GG) in human plasma was developed, validated, and applied to determine plasma concentrations of these compounds in samples from six clinical pharmacokinetic (PK) studies. Semi-automated liquid handling systems were used to perform the majority of the sample manipulation including liquid/liquid extraction (LLE) of the analytes from human plasma. Stable-isotope-labeled analogues were utilized as internal standards (ISTDs) for each analyte to facilitate accurate and precise quantification. Extracts were analyzed using gradient liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Use of semi-automated LLE with LC-MS/MS proved to be a very rugged and reliable approach for analysis of more than 6200 clinical study samples. The lower limit of quantification was validated at 0.010, 0.010, and 1.0 ng/mL of plasma for DEX, DET, and GG, respectively. Accuracy and precision of quality control (QC) samples for all three analytes met FDA Guidance criteria of +/-15% for average QC accuracy with coefficients of variation less than 15%. Data from the thorough evaluation of the method during development, validation, and application are presented to characterize selectivity, linearity, over-range sample analysis, accuracy, precision, autosampler carry-over, ruggedness, extraction efficiency, ionization suppression, and stability. Pharmacokinetic data are also provided to illustrate improvements in systemic drug and metabolite concentration-time profiles that were achieved by formulation optimization.

  11. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  12. Development and validation of a method for gefitinib quantification in dried blood spots using liquid chromatography-tandem mass spectrometry: Application to finger-prick clinical blood samples of patients with non-small cell lung cancer.

    PubMed

    Irie, Kei; Shobu, Saori; Hiratsuji, Seika; Yamasaki, Yuta; Nanjo, Shigeki; Kokan, Chiyuki; Hata, Akito; Kaji, Reiko; Masago, Katsuhiro; Fujita, Shiro; Okada, Yutaka; Katakami, Nobuyuki; Fukushima, Shoji

    2018-06-15

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of gefitinib in dried blood spots (DBSs). Gefitinib was extracted with methanol from DBS of 3 mm in diameter and detected using a triple quadrupole mass spectrometer. The method was validated by evaluating its precision, accuracy, selectivity, carryover, matrix effect, recovery, and stability. For clinical validation, paired finger-prick DBS and plasma concentrations were compared for 10 patients with non-small cell lung cancer (NSCLC) taking gefitinib. The calibration linear range was 37.5-2400 ng/mL (coefficient of determination [R 2 ] = 0.99), encompassing the therapeutic concentrations of gefitinib. The accuracy and precision were within 15% of the quality control (QC) concentrations of 80, 200, and 2000 ng/mL. The lower limit of quantification was determined to be 40 ng/mL. Gefitinib was stable in DBSs for up to 5 months at room temperature and -20 °C, and at 40 °C for 24 h. A good correlation was observed between the gefitinib levels measured by the DBS method and plasma concentrations (R 2  = 0.99). This method provides a simple, fast, and accurate approach to the quantitative analysis of gefitinib in finger-prick DBSs. The method would be useful for minimally invasive evaluation of the clinical gefitinib blood concentration. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Development of a LC-MS method for simultaneous determination of amoxicillin and metronidazole in human serum using hydrophilic interaction chromatography (HILIC).

    PubMed

    Kathriarachchi, Udani L; Vidhate, Sagar S; Al-Tannak, Naser; Thomson, Alison H; da Silva Neto, Michael J J; Watson, David G

    2018-07-01

    A method was developed for the determination of amoxicillin and metronidazole in human serum. The procedure used was hydrophilic interaction chromatography (HILIC) followed by mass spectrometric (MS) detection. Chromatographic separation was achieved on a ZIC-HILIC column and the mobile phase consisted of a mixture of 0.1% (v/v) formic acid in water and 0.1% (v/v) formic acid in acetonitrile. The method was validated with regard to selectivity, accuracy, precision, calibration, lower limit of quantification (LOQ), extraction recovery and matrix effect. The LOQs were 0.0138 and 0.008 μg/ml for amoxicillin and metronidazole respectively, while for quantification purposes linearity was achieved in the range of 0.1 μg/ml to 6.4 μg/ml for both drugs with correlation coefficients >0.9990. The intraday precision (expressed as %RSD) and the accuracy (expressed as the % deviation from the nominal value) was <15% for both antibiotics at all QC levels. Extraction recoveries for both drugs and internal standards were >80%, while a considerable matrix effect (<60%) was observed for amoxicillin. Finally, the method was applied to the determination of amoxicillin and metronidazole concentrations in serum for 20 patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A reliable and rapid tool for plasma quantification of 18 psychotropic drugs by ESI tandem mass spectrometry.

    PubMed

    Vecchione, Gennaro; Casetta, Bruno; Chiapparino, Antonella; Bertolino, Alessandro; Tomaiuolo, Michela; Cappucci, Filomena; Gatta, Raffaella; Margaglione, Maurizio; Grandone, Elvira

    2012-01-01

    A simple liquid chromatographic tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous analysis of 17 basic and one acid psychotropic drugs in human plasma. The method relies on a protein precipitation step for sample preparation and offers high sensitivity, wide linearity without interferences from endogenous matrix components. Chromatography was run on a reversed-phase column with an acetonitrile-H₂O mixture. The quantification of target compounds was performed in multiple reaction monitoring (MRM) and by switching the ionization polarity within the analytical run. A further sensitivity increase was obtained by implementing the functionality "scheduled multiple reaction monitoring" (sMRM) offered by the recent version of the software package managing the instrument. The overall injection interval was less than 5.5 min. Regression coefficients of the calibration curves and limits of quantification (LOQ) showed a good coverage of over-therapeutic, therapeutic and sub-therapeutic ranges. Recovery rates, measured as percentage of recovery of spiked plasma samples, were ≥ 94%. Precision and accuracy data have been satisfactory for a therapeutic drug monitoring (TDM) service as for managing plasma samples from patients receiving psycho-pharmacological treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Development and Evaluation of a Parallel Reaction Monitoring Strategy for Large-Scale Targeted Metabolomics Quantification.

    PubMed

    Zhou, Juntuo; Liu, Huiying; Liu, Yang; Liu, Jia; Zhao, Xuyang; Yin, Yuxin

    2016-04-19

    Recent advances in mass spectrometers which have yielded higher resolution and faster scanning speeds have expanded their application in metabolomics of diverse diseases. Using a quadrupole-Orbitrap LC-MS system, we developed an efficient large-scale quantitative method targeting 237 metabolites involved in various metabolic pathways using scheduled, parallel reaction monitoring (PRM). We assessed the dynamic range, linearity, reproducibility, and system suitability of the PRM assay by measuring concentration curves, biological samples, and clinical serum samples. The quantification performances of PRM and MS1-based assays in Q-Exactive were compared, and the MRM assay in QTRAP 6500 was also compared. The PRM assay monitoring 237 polar metabolites showed greater reproducibility and quantitative accuracy than MS1-based quantification and also showed greater flexibility in postacquisition assay refinement than the MRM assay in QTRAP 6500. We present a workflow for convenient PRM data processing using Skyline software which is free of charge. In this study we have established a reliable PRM methodology on a quadrupole-Orbitrap platform for evaluation of large-scale targeted metabolomics, which provides a new choice for basic and clinical metabolomics study.

  16. Comprehensive screening and quantification of veterinary drugs in milk using UPLC–ToF-MS

    PubMed Central

    Rutgers, P.; Oosterink, E.; Lasaroms, J. J. P.; Peters, R. J. B.; van Rhijn, J. A.; Nielen, M. W. F.

    2008-01-01

    Ultra-performance liquid chromatography combined with time-of-flight mass spectrometry (UPLC–ToF-MS) has been used for screening and quantification of more than 100 veterinary drugs in milk. The veterinary drugs represent different classes including benzimidazoles, macrolides, penicillins, quinolones, sulphonamides, pyrimidines, tetracylines, nitroimidazoles, tranquillizers, ionophores, amphenicols and non-steroidal anti-inflammatory agents (NSAIDs). After protein precipitation, centrifugation and solid-phase extraction (SPE), the extracts were analysed by UPLC–ToF-MS. From the acquired full scan data the drug-specific ions were extracted for construction of the chromatograms and evaluation of the results. The analytical method was validated according to the EU guidelines (2002/657/EC) for a quantitative screening method. At the concentration level of interest (MRL level) the results for repeatability (%RSD < 20% for 86% of the compounds), reproducibility (%RSD < 40% for 96% of the compounds) and the accuracy (80–120% for 88% of the compounds) were satisfactory. Evaluation of the CCβ values and the linearity results demonstrates that the developed method shows adequate sensitivity and linearity to provide quantitative results. Furthermore, the method is accurate enough to differentiate between suspected and negative samples or drug concentrations below or above the MRL. A set of 100 samples of raw milk were screened for residues. No suspected (positive) results were obtained except for the included blind reference sample containing sulphamethazine (88 μg/l) that tested positive for this compound. UPLC–ToF-MS combines high resolution for both LC and MS with high mass accuracy which is very powerful for the multi-compound analysis of veterinary drugs. The technique seems to be powerful enough for the analysis of not only veterinary drugs but also organic contaminants like pesticides, mycotoxins and plant toxins in one single method. PMID:18491081

  17. Fundamental Analysis of the Linear Multiple Regression Technique for Quantification of Water Quality Parameters from Remote Sensing Data. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H., III

    1977-01-01

    Constituents with linear radiance gradients with concentration may be quantified from signals which contain nonlinear atmospheric and surface reflection effects for both homogeneous and non-homogeneous water bodies provided accurate data can be obtained and nonlinearities are constant with wavelength. Statistical parameters must be used which give an indication of bias as well as total squared error to insure that an equation with an optimum combination of bands is selected. It is concluded that the effect of error in upwelled radiance measurements is to reduce the accuracy of the least square fitting process and to increase the number of points required to obtain a satisfactory fit. The problem of obtaining a multiple regression equation that is extremely sensitive to error is discussed.

  18. Quantification of Paclitaxel and Polyaspartate Paclitaxel Conjugate in Beagle Plasma: Application to a Pharmacokinetic Study.

    PubMed

    Gao, Yangyang; Chen, Junying; Zhang, Xiqian; Xie, Huiru; Wang, Yanran; Guo, Shuquan

    2017-03-01

    An LC-MS/MS method for the determination of polyaspartate paclitaxel conjugate (PASP-PTX) and paclitaxel (PTX) in dog plasma with cephalomannine (Internal Standard for PASP-PTX, IS-I) and clopidogrel bisulfate (Internal Standard for PTX, IS-II) as the internal standards was developed and validated. Plasma samples of PASP-PTX were extracted by ethyl acetate following the hydrolysis reaction, while protein precipitation was used for the extraction of PTX using acetonitrile. Analytes were separated by a CAPCELL PAK C18 MG II column using a gradient elution with the mobile phase (A) 5 mM ammonium containing 0.1% formic acid, and (B) acetonitrile. Quantification was performed by monitoring the m/z transitions of 286.2/105.0 for PASP-PTX, 264.2/83.0 for IS-I, 854.4/286.0 for PTX, and 322.1/184.1 for IS-II in the ESI positive mode. This method was validated in terms of specificity, linearity, precision, accuracy, and stability. The lower limit of quantification was 0.15 µg/mL for PASP-PTX and 0.01 µg/mL for PTX, and the calibration curves were linear over 0.15-300 µg/mL for PASP-PTX and over 0.01-10 µg/mL for PTX. The samples were stable under all the tested conditions. The method was successfully applied to study the pharmacokinetic profiles of PASP-PTX and PTX in beagles following intravenous administration of PASP-PTX. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of Zanthoxylum armatum using UPLC-DAD-ESI-QTOF-MS/MS.

    PubMed

    Bhatt, Vinod; Sharma, Sushila; Kumar, Neeraj; Sharma, Upendra; Singh, Bikram

    2017-01-05

    The current study presents isolation and characterization of twelve compounds including catechin (1), isovitexin (2), hesperidin (3), psoralin (4), eudesmin (5), kobusin (6), fargesin (7), sesamin (8), asarinin (9), planispine-A (10), α-sanshool (11) and vitexin (12), from the leaves of Zanthoxylum armatum. Further, two rapid and simple ultra performance liquid chromatography-diode array detection (UPLC-DAD) methods were developed for the simultaneous quantitative determination of isolated compounds from Z. armatum leaves. These analytical methods were validated for linearity, precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ). The LOD and LOQ were in the range of 0.06-0.21μg/mL and 0.19-0.69μg/mL, respectively. The validated method was linear (R 2 ≥0.9906), precise in terms of peak area (intra-day RSDs <3.8% and inter-day RSDs <2.7%), and accurate (109.6-92.5%). This is the first report on the isolation and quantification of 1, 2, 4 and 12 in Z. armatum and 3 in Zanthoxylum genus. The methods: were successfully applied to assess the quality of samples collected from different locations of Himachal Pradesh during summer and winter season. The results demonstrated that flavonoids and furofuran lignans were the major constituents in Z. armatum leaves. The developed methods: were further applied for tandem electrospray ionization-mass spectrometry (UPLC-DAD-ESI-MS/MS) and total eighteen compounds were identified including phenolic acid, flavonoids, furofuran lignans, coumarin and isobutyl amides. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Chattopadhyay, Subhagata; Yu, Wenwei; Ang, Peng Chuan Alvin

    2011-06-01

    Epilepsy is a common neurological disorder that is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals are widely used to diagnose seizures. Because of the non-linear and dynamic nature of the EEG signals, it is difficult to effectively decipher the subtle changes in these signals by visual inspection and by using linear techniques. Therefore, non-linear methods are being researched to analyze the EEG signals. In this work, we use the recorded EEG signals in Recurrence Plots (RP), and extract Recurrence Quantification Analysis (RQA) parameters from the RP in order to classify the EEG signals into normal, ictal, and interictal classes. Recurrence Plot (RP) is a graph that shows all the times at which a state of the dynamical system recurs. Studies have reported significantly different RQA parameters for the three classes. However, more studies are needed to develop classifiers that use these promising features and present good classification accuracy in differentiating the three types of EEG segments. Therefore, in this work, we have used ten RQA parameters to quantify the important features in the EEG signals.These features were fed to seven different classifiers: Support vector machine (SVM), Gaussian Mixture Model (GMM), Fuzzy Sugeno Classifier, K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree (DT), and Radial Basis Probabilistic Neural Network (RBPNN). Our results show that the SVM classifier was able to identify the EEG class with an average efficiency of 95.6%, sensitivity and specificity of 98.9% and 97.8%, respectively.

  1. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[S

    PubMed Central

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.

    2015-01-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050

  2. Validation and evaluation of an HPLC methodology for the quantification of the potent antimitotic compound (+)-discodermolide in the Caribbean marine sponge Discodermia dissoluta.

    PubMed

    Valderrama, Katherine; Castellanos, Leonardo; Zea, Sven

    2010-08-01

    The sponge Discodermia dissoluta is the source of the potent antimitotic compound (+)-discodermolide. The relatively abundant and shallow populations of this sponge in Santa Marta, Colombia, allow for studies to evaluate the natural and biotechnological supply options of (+)-discodermolide. In this work, an RP-HPLC-UV methodology for the quantification of (+)-discodermolide from sponge samples was tested and validated. Our protocol for extracting this compound from the sponge included lyophilization, exhaustive methanol extraction, partitioning using water and dichloromethane, purification of the organic fraction in RP-18 cartridges and then finally retrieving the (+)-discodermolide in the methanol-water (80:20 v/v) fraction. This fraction was injected into an HPLC system with an Xterra RP-18 column and a detection wavelength of 235 nm. The calibration curve was linear, making it possible to calculate the LODs and quantification in these experiments. The intra-day and inter-day precision showed relative standard deviations lower than 5%. The accuracy, determined as the percentage recovery, was 99.4%. Nine samples of the sponge from the Bahamas, Bonaire, Curaçao and Santa Marta had concentrations of (+)-discodermolide ranging from 5.3 to 29.3 microg/g(-1) of wet sponge. This methodology is quick and simple, allowing for the quantification in sponges from natural environments, in situ cultures or dissociated cells.

  3. Sensitive and selective quantification of free and total malondialdehyde in plasma using UHPLC-HRMS.

    PubMed

    Mendonça, Rute; Gning, Ophélie; Di Cesaré, Claudia; Lachat, Laurence; Bennett, Nigel C; Helfenstein, Fabrice; Glauser, Gaétan

    2017-09-01

    Quantification of malondialdehyde (MDA) as a marker of lipid peroxidation is relevant for many research fields. We describe a new sensitive and selective method to measure free and total plasmatic MDA using derivatization with 2,4-dinitrophenylhydrazine (DNPH) and ultra-HPLC-high-resolution MS. Free and total MDA were extracted from minute sample amounts (10 μl) using acidic precipitation and alkaline hydrolysis followed by acidic precipitation, respectively. Derivatization was completed within 10 min at room temperature, and the excess DNPH discarded by liquid-liquid extraction. Quantification was achieved by internal standardization using dideuterated MDA as internal standard. The method's lowest limit of quantification was 100 nM and linearity spanned greater than three orders of magnitude. Intra- and inter-day precisions for total MDA were 2.9% and 3.0%, respectively, and those for free MDA were 12.8% and 24.9%, respectively. Accuracy was 101% and 107% at low and high concentrations, respectively. In human plasma, free MDA levels were 120 nM (SD 36.26) and total MDA levels were 6.7 μM (SD 0.46). In addition, we show the applicability of this method to measure MDA plasma levels from a variety of animal species, making it invaluable to scientists in various fields. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Comparative study of label and label-free techniques using shotgun proteomics for relative protein quantification.

    PubMed

    Sjödin, Marcus O D; Wetterhall, Magnus; Kultima, Kim; Artemenko, Konstantin

    2013-06-01

    The analytical performance of three different strategies, iTRAQ (isobaric tag for relative and absolute quantification), dimethyl labeling (DML) and label free (LF) for relative protein quantification using shotgun proteomics have been evaluated. The methods have been explored using samples containing (i) Bovine proteins in known ratios and (ii) Bovine proteins in known ratios spiked into Escherichia coli. The latter case mimics the actual conditions in a typical biological sample with a few differentially expressed proteins and a bulk of proteins with unchanged ratios. Additionally, the evaluation was performed on both QStar and LTQ-FTICR mass spectrometers. LF LTQ-FTICR was found to have the highest proteome coverage while the highest accuracy based on the artificially regulated proteins was found for DML LTQ-FTICR (54%). A varying linearity (k: 0.55-1.16, r(2): 0.61-0.96) was shown for all methods within selected dynamic ranges. All methods were found to consistently underestimate Bovine protein ratios when matrix proteins were added. However, LF LTQ-FTICR was more tolerant toward a compression effect. A single peptide was demonstrated to be sufficient for a reliable quantification using iTRAQ. A ranking system utilizing several parameters important for quantitative proteomics demonstrated that the overall performance of the five different methods was; DML LTQ-FTICR>iTRAQ QStar>LF LTQ-FTICR>DML QStar>LF QStar. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Quantification of Rifaximin in Tablets by Spectrophotometric Method Ecofriendly in Ultraviolet Region

    PubMed Central

    2016-01-01

    Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10–30 mg L−1 with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L−1, respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment. PMID:27429835

  6. Development and Validation of High-performance Thin Layer Chromatographic Method for Ursolic Acid in Malus domestica Peel

    PubMed Central

    Nikam, P. H.; Kareparamban, J. A.; Jadhav, A. P.; Kadam, V. J.

    2013-01-01

    Ursolic acid, a pentacyclic triterpenoid possess a wide range of pharmacological activities. It shows hypoglycemic, antiandrogenic, antibacterial, antiinflammatory, antioxidant, diuretic and cynogenic activity. It is commonly present in plants especially coating of leaves and fruits, such as apple fruit, vinca leaves, rosemary leaves, and eucalyptus leaves. A simple high-performance thin layer chromatographic method has been developed for the quantification of ursolic acid from apple peel (Malus domestica). The samples dissolved in methanol and linear ascending development was carried out in twin trough glass chamber. The mobile phase was selected as toluene:ethyl acetate:glacial acetic acid (70:30:2). The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.9982 in the concentration range 0.2-7 μg/spot with respect to peak area. According to the ICH guidelines the method was validated for linearity, accuracy, precision, and robustness. Statistical analysis of the data showed that the method is reproducible and selective for the estimation of ursolic acid. PMID:24302805

  7. High-performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in culture samples of Bacillus species.

    PubMed

    Geissler, Mareen; Oellig, Claudia; Moss, Karin; Schwack, Wolfgang; Henkel, Marius; Hausmann, Rudolf

    2017-02-15

    A high-performance thin-layer chromatography method has been established for the identification and simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in Bacillus culture samples. B. subtilis DSM 10 T , B. amyloliquefaciens DSM 7 T and B. methylotrophicus DSM 23117 were used as model strains. Culture samples indicated that a sample pretreatment is necessary in order to run HPTLC analyses. A threefold extraction of the cell-free broth with the solvent chloroform/methanol (2:1, v/v) gave best results, when all three lipopeptides were included in the analysis. For the mobile phase, a two-step development was considered most suitable. The first development is conducted with chloroform/methanol/water (65:25:4, v/v/v) over a migration distance of 60mm and the second development using butanol/ethanol/0.1% acetic acid (1:4:1, v/v/v) over a migration distance of 60mm, as well. The method was validated according to Validation of Analytical Procedures: Methodology (FDA Guidance) with respect to the parameters linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and recovery rate. A linear range with R 2 >0.99 was obtained for all samples from 30ng/zone up to 600ng/zone. The results indicated that quantification of Surfactin has to be performed after the first development (hR F =44), while Fengycin is quantified after the second development (hR F =36, hR F range=20-40). For Iturin A, the results demonstrated that quantification is in favor after the first (hR F =19) development, but also possible after the second (hR F =59) development. LOD and LOQ for Surfactin and Iturin A after the first development, and Fengycin after the second development were determined to be 16ng/zone and 47ng/zone, 13ng/zone and 39ng/zone, and 27ng/zone and 82ng/zone, respectively. Results further revealed the highly accurate and precise character of the developed method with a good inter- and intraday reproducibility. For the precision and accuracy, expressed as % recovery and relative standard deviation, respectively, the determined values did not exceed ±15% as specified by the FDA Guidance. The recovery assay conducted for samples obtained from two strains with the solvent chloroform/methanol (2:1, v/v), which was determined to be most suitable if all three lipopeptides are of interest, gave recoveries of 96.5% and 99.6%, 68.6% and 71.6%, and 102.5% and 95.2% for Surfactin, Iturin A and Fengycin, respectively. Overall, a suitable and reliable method for the simultaneous quantification of the lipopeptides Surfactin, Iturin A and Fengycin in biological samples using HPTLC was successfully developed and validated. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantification of Kryptofix 2.2.2 in [18F]fluorine-labelled radiopharmaceuticals by rapid-resolution liquid chromatography.

    PubMed

    Lao, Yexing; Yang, Cuiping; Zou, Wei; Gan, Manquan; Chen, Ping; Su, Weiwei

    2012-05-01

    The cryptand Kryptofix 2.2.2 is used extensively as a phase-transfer reagent in the preparation of [18F]fluoride-labelled radiopharmaceuticals. However, it has considerable acute toxicity. The aim of this study was to develop and validate a method for rapid (within 1 min), specific and sensitive quantification of Kryptofix 2.2.2 at trace levels. Chromatographic separations were carried out by rapid-resolution liquid chromatography (Agilent ZORBAX SB-C18 rapid-resolution column, 2.1 × 30 mm, 3.5 μm). Tandem mass spectra were acquired using a triple quadrupole mass spectrometer equipped with an electrospray ionization interface. Quantitative mass spectrometric analysis was conducted in positive ion mode and multiple reaction monitoring mode for the m/z 377.3 → 114.1 transition for Kryptofix 2.2.2. The external standard method was used for quantification. The method met the precision and efficiency requirements for PET radiopharmaceuticals, providing satisfactory results for specificity, matrix effect, stability, linearity (0.5-100 ng/ml, r(2)=0.9975), precision (coefficient of variation < 5%), accuracy (relative error < ± 3%), sensitivity (lower limit of quantification=0.5 ng) and detection time (<1 min). Fluorodeoxyglucose (n=6) was analysed, and the Kryptofix 2.2.2 content was found to be well below the maximum permissible levels approved by the US Food and Drug Administration. The developed method has a short analysis time (<1 min) and high sensitivity (lower limit of quantification=0.5 ng/ml) and can be successfully applied to rapid quantification of Kryptofix 2.2.2 at trace levels in fluorodeoxyglucose. This method could also be applied to other [18F]fluorine-labelled radiopharmaceuticals that use Kryptofix 2.2.2 as a phase-transfer reagent.

  9. Quantification of astaxanthin in shrimp waste hydrolysate by HPLC.

    PubMed

    López-Cervantes, J; Sánchez-Machado, D I; Gutiérrez-Coronado, M A; Ríos-Vázquez, N J

    2006-10-01

    In the present study, a simple and rapid reversed-phase HPLC method for the determination of astaxanthin in shrimp waste hydrolysate has been developed and validated. The analytical procedure involves the direct extraction of astaxanthin from the lipid fraction with methanol. The analytical column, SS Exil ODS, was operated at 25C. The mobile phase consisted of a mixture of water:methanol:dichloromethane:acetonitrile (4.5:28:22:45.5 v/v/v/v) at a flow rate of 1.0 mL/min. Detection and identification were performed using a photodiode array detector (lambda(detection) = 476 nm). The proposed HPLC method showed adequate linearity, repeatability and accuracy.

  10. Development and validation of a high performance liquid chromatographic method for the determination of oxcarbazepine and its main metabolites in human plasma and cerebrospinal fluid and its application to pharmacokinetic study.

    PubMed

    Kimiskidis, Vasilios; Spanakis, Marios; Niopas, Ioannis; Kazis, Dimitrios; Gabrieli, Chrysi; Kanaze, Feras Imad; Divanoglou, Daniil

    2007-01-17

    An isocratic reversed-phase HPLC-UV procedure for the determination of oxcarbazepine and its main metabolites 10-hydroxy-10,11-dihydrocarbamazepine and 10,11-dihydroxy-trans-10,11-dihydrocarbamazepine in human plasma and cerebrospinal fluid has been developed and validated. After addition of bromazepam as internal standard, the analytes were isolated from plasma and cerebrospinal fluid by liquid-liquid extraction. Separation was achieved on a X-TERRA C18 column using a mobile phase composed of 20 mM KH(2)PO(4), acetonitrile, and n-octylamine (76:24:0.05, v/v/v) at 40 degrees C and detected at 237 nm. The described assay was validated in terms of linearity, accuracy, precision, recovery and lower limit of quantification according to the FDA validation guidelines. Calibration curves were linear with a coefficient of variation (r) greater than 0.998. Accuracy ranged from 92.3% to 106.0% and precision was between 2.3% and 8.2%. The method has been applied to plasma and cerebrospinal fluid samples obtained from patients treated with oxcarbazepine, both in monotherapy and adjunctive therapy.

  11. Comparative analysis of the processing accuracy of high strength metal sheets by AWJ, laser and plasma

    NASA Astrophysics Data System (ADS)

    Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.

    2016-08-01

    Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.

  12. An HPLC tandem mass spectrometry for quantification of ET-26-HCl and its major metabolite in plasma and application to a pharmacokinetic study in rats.

    PubMed

    Chen, Xu; Zhang, Wensheng; Rios, Sandy; Morkos, Miriam B; Ye, Xiaoli; Li, Gen; Jiang, Xuehua; Wang, Zhijun; Wang, Ling

    2018-02-05

    ET-26-HCl is a new analog of etomidate, a short-acting anesthetic drug, with less adrenal cortex inhibition. The pharmacokinetics of ET-26-HCl in rats needs to be determined for future clinical trials in human subjects. In order to facilitate the pharmacokinetic study, a liquid chromatography based tandem mass spectrometric (HPLC-MS/MS) method was developed and validated for quantification of ET-26-HCl and its major metabolite, ET-26-acid. These two compounds and gabapentin (internal standard) were extracted using a protein precipitation method with methanol and detected by Multiple Reaction Monitoring of m/z transition of 275.6-170.9, 217.7-113.1, and 172.5-154.3 for ET-26-HCl, ET-26-acid, and gabapentin respectively. This method was validated in terms of sensitivity, linearity, reproducibility, and stability. The HPLC-MS/MS method was found linear over the concentration ranges of 21.76-4352ng/mL, and 18.62-3724ng/mL with LLOQ of 21.76 and 18.62ng/mL for ET-26-HCl and ET-26-acid respectively. The mean intra-day and inter-day accuracy was between 94.11-107.78%, while the precision was within the limit of 15.0% for all the quality control samples. A pharmacokinetic study was then conducted in rats following intravenous injection of 2.1, 4.2, and 8.4mg/kg. The linear pharmacokinetics of ET-26-HCl was observed over the dose range of 2.1-8.4mg/kg. The average terminal phase elimination half-lives were 0.87 and 1.03h for ET-26-HCl and ET-26-acid respectively. In summary, an HPLC-MS/MS method for quantification of ET-26-HCl in rat plasma has been developed and successfully applied to a pharmacokinetic study. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture.

    PubMed

    Padrela, Luis; de Azevedo, Edmundo Gomes; Velaga, Sitaram P

    2012-08-01

    The solid state purity of cocrystals critically affects their performance. Thus, it is important to accurately quantify the purity of cocrystals in the final crystallization product. The aim of this study was to develop a powder X-ray diffraction (PXRD) quantification method for investigating the purity of cocrystals. The method developed was employed to study the formation of indomethacin-saccharin (IND-SAC) cocrystals by mechanochemical methods. Pure IND-SAC cocrystals were geometrically mixed with 1:1 w/w mixture of indomethacin/saccharin in various proportions. An accurately measured amount (550 mg) of the mixture was used for the PXRD measurements. The most intense, non-overlapping, characteristic diffraction peak of IND-SAC was used to construct the calibration curve in the range 0-100% (w/w). This calibration model was validated and used to monitor the formation of IND-SAC cocrystals by liquid-assisted grinding (LAG). The IND-SAC cocrystal calibration curve showed excellent linearity (R(2) = 0.9996) over the entire concentration range, displaying limit of detection (LOD) and limit of quantification (LOQ) values of 1.23% (w/w) and 3.74% (w/w), respectively. Validation results showed excellent correlations between actual and predicted concentrations of IND-SAC cocrystals (R(2) = 0.9981). The accuracy and reliability of the PXRD quantification method depend on the methods of sample preparation and handling. The crystallinity of the IND-SAC cocrystals was higher when larger amounts of methanol were used in the LAG method. The PXRD quantification method is suitable and reliable for verifying the purity of cocrystals in the final crystallization product.

  14. Influence of Co-57 and CT Transmission Measurements on the Quantification Accuracy and Partial Volume Effect of a Small Animal PET Scanner.

    PubMed

    Mannheim, Julia G; Schmid, Andreas M; Pichler, Bernd J

    2017-12-01

    Non-invasive in vivo positron emission tomography (PET) provides high detection sensitivity in the nano- to picomolar range and in addition to other advantages, the possibility to absolutely quantify the acquired data. The present study focuses on the comparison of transmission data acquired with an X-ray computed tomography (CT) scanner or a Co-57 source for the Inveon small animal PET scanner (Siemens Healthcare, Knoxville, TN, USA), as well as determines their influences on the quantification accuracy and partial volume effect (PVE). A special focus included the impact of the performed calibration on the quantification accuracy. Phantom measurements were carried out to determine the quantification accuracy, the influence of the object size on the quantification, and the PVE for different sphere sizes, along the field of view and for different contrast ratios. An influence of the emission activity on the Co-57 transmission measurements was discovered (deviations up to 24.06 % measured to true activity), whereas no influence of the emission activity on the CT attenuation correction was identified (deviations <3 % for measured to true activity). The quantification accuracy was substantially influenced by the applied calibration factor and by the object size. The PVE demonstrated a dependency on the sphere size, the position within the field of view, the reconstruction and correction algorithms and the count statistics. Depending on the reconstruction algorithm, only ∼30-40 % of the true activity within a small sphere could be resolved. The iterative 3D reconstruction algorithms uncovered substantially increased recovery values compared to the analytical and 2D iterative reconstruction algorithms (up to 70.46 % and 80.82 % recovery for the smallest and largest sphere using iterative 3D reconstruction algorithms). The transmission measurement (CT or Co-57 source) to correct for attenuation did not severely influence the PVE. The analysis of the quantification accuracy and the PVE revealed an influence of the object size, the reconstruction algorithm and the applied corrections. Particularly, the influence of the emission activity during the transmission measurement performed with a Co-57 source must be considered. To receive comparable results, also among different scanner configurations, standardization of the acquisition (imaging parameters, as well as applied reconstruction and correction protocols) is necessary.

  15. Plasma L-ergothioneine measurement by high-performance liquid chromatography and capillary electrophoresis after a pre-column derivatization with 5-iodoacetamidofluorescein (5-IAF) and fluorescence detection.

    PubMed

    Sotgia, Salvatore; Pisanu, Elisabetta; Pintus, Gianfranco; Erre, Gian Luca; Pinna, Gerard Aime; Deiana, Luca; Carru, Ciriaco; Zinellu, Angelo

    2013-01-01

    Two sensitive and reproducible capillary electrophoresis and high-performance liquid chromatography-fluorescence procedures were established for quantitative determination of L-egothioneine in plasma. After derivatization of L-ergothioneine with 5-iodoacetamidofluorescein, the separation was carried out by HPLC on an ODS-2 C-18 sperisorb column by using a linear gradient elution and by HPCE on an uncoated fused silica capillary, 50 µm id, and 60 cm length. The methods were validated and found to be linear in the range of 0.3 to 10 µmol/l. The limit of quantification was 0.27 µmol/l for HPCE and 0.15 µmol/l for HPLC. The variations for intra- and inter-assay precision were around 6 RSD%, and the mean recovery accuracy close to 100% (96.11%).

  16. Plasma L-Ergothioneine Measurement by High-Performance Liquid Chromatography and Capillary Electrophoresis after a Pre-Column Derivatization with 5-Iodoacetamidofluorescein (5-IAF) and Fluorescence Detection

    PubMed Central

    Sotgia, Salvatore; Pisanu, Elisabetta; Pintus, Gianfranco; Erre, Gian Luca; Pinna, Gerard Aime; Deiana, Luca; Carru, Ciriaco; Zinellu, Angelo

    2013-01-01

    Two sensitive and reproducible capillary electrophoresis and high-performance liquid chromatography-fluorescence procedures were established for quantitative determination of L-egothioneine in plasma. After derivatization of L-ergothioneine with 5-iodoacetamidofluorescein, the separation was carried out by HPLC on an ODS-2 C-18 sperisorb column by using a linear gradient elution and by HPCE on an uncoated fused silica capillary, 50 µm id, and 60 cm length. The methods were validated and found to be linear in the range of 0.3 to 10 µmol/l. The limit of quantification was 0.27 µmol/l for HPCE and 0.15 µmol/l for HPLC. The variations for intra- and inter-assay precision were around 6 RSD%, and the mean recovery accuracy close to 100% (96.11%). PMID:23922985

  17. Computer-aided Assessment of Regional Abdominal Fat with Food Residue Removal in CT

    PubMed Central

    Makrogiannis, Sokratis; Caturegli, Giorgio; Davatzikos, Christos; Ferrucci, Luigi

    2014-01-01

    Rationale and Objectives Separate quantification of abdominal subcutaneous and visceral fat regions is essential to understand the role of regional adiposity as risk factor in epidemiological studies. Fat quantification is often based on computed tomography (CT) because fat density is distinct from other tissue densities in the abdomen. However, the presence of intestinal food residues with densities similar to fat may reduce fat quantification accuracy. We introduce an abdominal fat quantification method in CT with interest in food residue removal. Materials and Methods Total fat was identified in the feature space of Hounsfield units and divided into subcutaneous and visceral components using model-based segmentation. Regions of food residues were identified and removed from visceral fat using a machine learning method integrating intensity, texture, and spatial information. Cost-weighting and bagging techniques were investigated to address class imbalance. Results We validated our automated food residue removal technique against semimanual quantifications. Our feature selection experiments indicated that joint intensity and texture features produce the highest classification accuracy at 95%. We explored generalization capability using k-fold cross-validation and receiver operating characteristic (ROC) analysis with variable k. Losses in accuracy and area under ROC curve between maximum and minimum k were limited to 0.1% and 0.3%. We validated tissue segmentation against reference semimanual delineations. The Dice similarity scores were as high as 93.1 for subcutaneous fat and 85.6 for visceral fat. Conclusions Computer-aided regional abdominal fat quantification is a reliable computational tool for large-scale epidemiological studies. Our proposed intestinal food residue reduction scheme is an original contribution of this work. Validation experiments indicate very good accuracy and generalization capability. PMID:24119354

  18. Computer-aided assessment of regional abdominal fat with food residue removal in CT.

    PubMed

    Makrogiannis, Sokratis; Caturegli, Giorgio; Davatzikos, Christos; Ferrucci, Luigi

    2013-11-01

    Separate quantification of abdominal subcutaneous and visceral fat regions is essential to understand the role of regional adiposity as risk factor in epidemiological studies. Fat quantification is often based on computed tomography (CT) because fat density is distinct from other tissue densities in the abdomen. However, the presence of intestinal food residues with densities similar to fat may reduce fat quantification accuracy. We introduce an abdominal fat quantification method in CT with interest in food residue removal. Total fat was identified in the feature space of Hounsfield units and divided into subcutaneous and visceral components using model-based segmentation. Regions of food residues were identified and removed from visceral fat using a machine learning method integrating intensity, texture, and spatial information. Cost-weighting and bagging techniques were investigated to address class imbalance. We validated our automated food residue removal technique against semimanual quantifications. Our feature selection experiments indicated that joint intensity and texture features produce the highest classification accuracy at 95%. We explored generalization capability using k-fold cross-validation and receiver operating characteristic (ROC) analysis with variable k. Losses in accuracy and area under ROC curve between maximum and minimum k were limited to 0.1% and 0.3%. We validated tissue segmentation against reference semimanual delineations. The Dice similarity scores were as high as 93.1 for subcutaneous fat and 85.6 for visceral fat. Computer-aided regional abdominal fat quantification is a reliable computational tool for large-scale epidemiological studies. Our proposed intestinal food residue reduction scheme is an original contribution of this work. Validation experiments indicate very good accuracy and generalization capability. Published by Elsevier Inc.

  19. Radiographic absorptiometry method in measurement of localized alveolar bone density changes.

    PubMed

    Kuhl, E D; Nummikoski, P V

    2000-03-01

    The objective of this study was to measure the accuracy and precision of a radiographic absorptiometry method by using an occlusal density reference wedge in quantification of localized alveolar bone density changes. Twenty-two volunteer subjects had baseline and follow-up radiographs taken of mandibular premolar-molar regions with an occlusal density reference wedge in both films and added bone chips in the baseline films. The absolute bone equivalent densities were calculated in the areas that contained bone chips from the baseline and follow-up radiographs. The differences in densities described the masses of the added bone chips that were then compared with the true masses by using regression analysis. The correlation between the estimated and true bone-chip masses ranged from R = 0.82 to 0.94, depending on the background bone density. There was an average 22% overestimation of the mass of the bone chips when they were in low-density background, and up to 69% overestimation when in high-density background. The precision error of the method, which was calculated from duplicate bone density measurements of non-changing areas in both films, was 4.5%. The accuracy of the intraoral radiographic absorptiometry method is low when used for absolute quantification of bone density. However, the precision of the method is good and the correlation is linear, indicating that the method can be used for serial assessment of bone density changes at individual sites.

  20. Verification of Bioanalytical Method for Quantification of Exogenous Insulin (Insulin Aspart) by the Analyser Advia Centaur® XP.

    PubMed

    Mihailov, Rossen; Stoeva, Dilyana; Pencheva, Blagovesta; Pentchev, Eugeni

    2018-03-01

    In a number of cases the monitoring of patients with type I diabetes mellitus requires measurement of the exogenous insulin levels. For the purpose of a clinical investigation of the efficacy of a medical device for application of exogenous insulin aspart, a verification of the method for measurement of this synthetic analogue of the hormone was needed. The information in the available medical literature for the measurement of the different exogenous insulin analogs is insufficient. Thus, verification was required to be in compliance with the active standards in Republic of Bulgaria. A manufactured method developed for ADVIA Centaur XP Immunoassay, Siemens Healthcare, was used which we verified using standard solutions and a patient serum pool by adding the appropriate quantity exogenous insulin aspart. The method was verified in accordance with the bioanalytical method verification criteria and regulatory requirements for using a standard method: CLIA chemiluminescence immunoassay ADVIA Centaur® XP. The following parameters are determined and monitored: intra-day precision and accuracy, inter-day precision and accuracy, limit of detection and lower limit of quantification, linearity, analytical recovery. The routine application of the method for measurement of immunoreactive insulin using the analyzer ADVIA Centaur® XP is directed to the measurement of endogenous insulin. The method is applicable for measuring different types of exogenous insulin, including insulin aspart.

  1. Development and validation of an UHPLC-LTQ-Orbitrap MS method for non-anthocyanin flavonoids quantification in Euterpe oleracea juice.

    PubMed

    Dias, Aécio L S; Rozet, Eric; Larondelle, Yvan; Hubert, Philippe; Rogez, Hervé; Quetin-Leclercq, Joëlle

    2013-11-01

    Euterpe oleracea fruits have gained much attention because of their phenolic constituents that have shown potential health benefits. The aim of this work was to quantify the major non-anthocyanin flavonoids (NAF) in the fruit juice by an accurate method coupling ultra-high pressure liquid chromatography with a linear ion trap-high resolution Orbitrap mass spectrometry system (UHPLC-LTQ-Orbitrap MS). Fruits were processed to juice, and then the juice was lyophilized and defatted. The residue was then extracted in the presence of methanol by sonication. The extraction time was optimized and recovery rates of the extraction were >90%. The extracts were dried and solubilized again in 40% MeOH, which showed the best compromise for MS detection. For the UHPLC quantification, a HSS C18 column (1.8 μm) was used with a gradient elution of methanol and water both with 0.1% formic acid. Total error and accuracy profiles were used as validation criteria. Seven compounds and their isomers were successfully separated, including the major NAF. Calibration in the matrix was found to be more accurate than calibration without matrix. Trueness (<15% relative bias), repeatability, and intermediate precision (<13% RSD), selectivity, response function, linearity, LOD (ranged from 0.04 to 0.81 μg/mL) and LOQ (0.15-5.78 μg/mL) for 12 compounds were evaluated and the quantification method was validated. Its applicability was demonstrated on real samples from different suppliers. Their qualitative and quantitative profiles were similar and some compounds were for the first time quantified. In addition, eriodictyol was identified for the first time in this fruit along with five other flavonoids for which possible structures were proposed.

  2. Therapeutic drug monitoring of carbamazepine and its metabolite in children from dried blood spots using liquid chromatography and tandem mass spectrometry.

    PubMed

    Shokry, Engy; Villanelli, Fabio; Malvagia, Sabrina; Rosati, Anna; Forni, Giulia; Funghini, Silvia; Ombrone, Daniela; Della Bona, Maria; Guerrini, Renzo; la Marca, Giancarlo

    2015-05-10

    Carbamazepine (CBZ) is a first-line drug for the treatment of different forms of epilepsy and the first choice drug for trigeminal neuralgia. CBZ is metabolized in the liver by oxidation into carbamazepine-10,11-epoxide (CBZE), its major metabolite which is equipotent and known to contribute to the pharmacological activity of CBZ. The aim of the present study was to develop and validate a reliable, selective and sensitive liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of CBZ and its active metabolite in dried blood spots (DBS). The extraction process was carried out from DBS using methanol-water-formic acid (80:20:0.1, v/v/v). Chromatographic elution was achieved by using a linear gradient with a mobile phase consisting of acetonitrile-water-0.1% formic acid at a flow rate of 0.50mL/min. The method was linear over the range 1-40mg/L and 0.25-20mg/L for CBZ and CBZE, respectively. The limit of quantification was 0.75mg/L and 0.25mg/L for CBZ and CBZE. Intra-day and inter-day assay precisions were found to be lower than 5.13%, 6.46% and 11.76%, 4.72% with mean percentage accuracies of 102.1%, 97.5% and 99.2%, 97.8% for CBZ and CBZE. We successfully applied the method for determining DBS finger-prick samples in paediatric patients and confirmed the results with concentrations measured in matched plasma samples. This novel approach allows quantification of CBZ and its metabolite from only one 3.2mm DBS disc by LC-MS/MS thus combining advantages of DBS technique and LC-MS/MS in clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A liquid chromatography/tandem mass spectrometry assay for the analysis of atomoxetine in human plasma and in vitro cellular samples

    PubMed Central

    Appel, David I.; Brinda, Bryan; Markowitz, John S.; Newcorn, Jeffrey H.; Zhu, Hao-Jie

    2012-01-01

    A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography- tandem mass spectrometry (LC-MS/MS) was developed. This assay represents the first LC-MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3-atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/ml and 10 nM for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3 ng/ml to 900 ng/ml and 10 nM to 10 μM for human plasma and cellular samples, respectively (r2 > 0.999). The intra- and inter-day assay accuracy and precision were evaluated using quality control samples at 3 different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect, and recovery were also successfully demonstrated. The present assay is superior to previously published LC-MS and LC-MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. PMID:22275222

  4. Trace quantification of selected sulfonamides in aqueous media by implementation of a new dispersive solid-phase extraction method using a nanomagnetic titanium dioxide graphene-based sorbent and HPLC-UV.

    PubMed

    Izanloo, Maryam; Esrafili, Ali; Behbahani, Mohammad; Ghambarian, Mahnaz; Reza Sobhi, Hamid

    2018-02-01

    Herein, a new dispersive solid-phase extraction method using a nano magnetic titanium dioxide graphene-based sorbent in conjunction with high-performance liquid chromatography and ultraviolet detection was successfully developed. The method was proved to be simple, sensitive, and highly efficient for the trace quantification of sulfacetamide, sulfathiazole, sulfamethoxazole, and sulfadiazine in relatively large volume of aqueous media. Initially, the nano magnetic titanium dioxide graphene-based sorbent was successfully synthesized and subsequently characterized by scanning electron microscopy and X-ray diffraction. Then, the sorbent was used for the sorption and extraction of the selected sulfonamides mainly through π-π stacking hydrophobic interactions. Under the established conditions, the calibration curves were linear over the concentration range of 1-200 μg/L. The limit of quantification (precision of 20%, and accuracy of 80-120%) for the detection of each sulfonamide by the proposed method was 1.0 μg/L. To test the extraction efficiency, the method was applied to various fortified real water samples. The average relative recoveries obtained from the fortified samples varied between 90 and 108% with the relative standard deviations of 5.3-10.7%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. HPLC-ESI-MS/MS validated method for simultaneous quantification of zopiclone and its metabolites, N-desmethyl zopiclone and zopiclone-N-oxide in human plasma.

    PubMed

    Mistri, Hiren N; Jangid, Arvind G; Pudage, Ashutosh; Shrivastav, Pranav

    2008-03-15

    A simple, selective and sensitive isocratic HPLC method with triple quadrupole mass spectrometry detection has been developed and validated for simultaneous quantification of zopiclone and its metabolites in human plasma. The analytes were extracted using solid phase extraction, separated on Symmetry shield RP8 column (150 mm x 4.6 mm i.d., 3.5 microm particle size) and detected by tandem mass spectrometry with a turbo ion spray interface. Metaxalone was used as an internal standard. The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration range of 0.5-150 ng/mL for both zopiclone and N-desmethyl zopiclone and 1-150 ng/mL for zopiclone-N-oxide. The intra-batch and inter-batch accuracy and precision evaluated at lower limit of quantification and quality control levels were within 89.5-109.1% and 3.0-14.7%, respectively, for all the analytes. The recoveries calculated for the analytes and internal standard were > or = 90% from spiked plasma samples. The validated method was successfully employed for a comparative bioavailability study after oral administration of 7.5 mg zopiclone (test and reference) to 16 healthy volunteers under fasted condition.

  6. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS.

    PubMed

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A

    2015-09-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Protein quantification using a cleavable reporter peptide.

    PubMed

    Duriez, Elodie; Trevisiol, Stephane; Domon, Bruno

    2015-02-06

    Peptide and protein quantification based on isotope dilution and mass spectrometry analysis are widely employed for the measurement of biomarkers and in system biology applications. The accuracy and reliability of such quantitative assays depend on the quality of the stable-isotope labeled standards. Although the quantification using stable-isotope labeled peptides is precise, the accuracy of the results can be severely biased by the purity of the internal standards, their stability and formulation, and the determination of their concentration. Here we describe a rapid and cost-efficient method to recalibrate stable isotope labeled peptides in a single LC-MS analysis. The method is based on the equimolar release of a protein reference peptide (used as surrogate for the protein of interest) and a universal reporter peptide during the trypsinization of a concatenated polypeptide standard. The quality and accuracy of data generated with such concatenated polypeptide standards are highlighted by the quantification of two clinically important proteins in urine samples and compared with results obtained with conventional stable isotope labeled reference peptides. Furthermore, the application of the UCRP standards in complex samples is described.

  8. Biotransformation of lignan glycoside to its aglycone by Woodfordia fruticosa flowers: quantification of compounds using a validated HPTLC method.

    PubMed

    Mishra, Shikha; Aeri, Vidhu

    2017-12-01

    Saraca asoca Linn. (Caesalpiniaceae) is an important traditional remedy for gynaecological disorders and it contains lyoniside, an aryl tetralin lignan glycoside. The aglycone of lyoniside, lyoniresinol possesses structural similarity to enterolignan precursors which are established phytoestrogens. This work illustrates biotransformation of lyoniside to lyoniresinol using Woodfordia fruticosa Kurz. (Lythraceae) flowers and simultaneous quantification of lyoniside and lyoniresinol using a validated HPTLC method. The aqueous extract prepared from S. asoca bark was fermented using W. fruticosa flowers. The substrate and fermented product both were simultaneously analyzed using solvent system:toluene:ethyl acetate:formic acid (4:3:0.4) at 254 nm. The method was validated for specificity, accuracy, precision, linearity, sensitivity and robustness as per ICH guidelines. The substrate showed the presence of lyoniside, however, it decreased as the fermentation proceeded. On 3rd day, lyoniresinol starts appearing in the medium. In 8 days duration most of the lyoniside converted to lyoniresinol. The developed method was specific for lyoniside and lyoniresinol. Lyoniside and lyoniresinol showed linearity in the range of 250-3000 and 500-2500 ng. The method was accurate as resulted in 99.84% and 99.83% recovery, respectively, for lyoniside and lyoniresinol. Aryl tetralin lignan glycoside, lyoniside was successfully transformed into lyoniresinol using W. fruticosa flowers and their contents were simultaneously analyzed using developed validated HPTLC method.

  9. Multi-wavelength colorimetric determination of large-ring cyclodextrin content for the cyclization activity of 4-α-glucanotransferase.

    PubMed

    Wang, Jinpeng; Wei, Ren; Tian, Yaoqi; Yang, Na; Xu, Xueming; Zimmermann, Wolfgang; Jin, Zhengyu

    2015-05-20

    Large-ring cyclodextrins (LR-CDs) have a number of intriguing properties for potential use in pharmaceutical and food industry. To date, no colorimetric method has been reported for LR-CD content quantification. In this study, triple wavelength colorimetry (TWC) and orthogonal-function spectrophotometry (OFS) have been successfully applied to determine ingredient concentrations in a mixture of amylose and LR-CDs. Both TWC and OFS yielded precise amylose content data in good agreement with expected values. For quantification of LR-CD content, OFS provided a higher accuracy than TWC, which resulted in a slight over-determination. As a comparison, single-wavelength colorimetry performed at the corresponding absorption maximum led to a significant over-determination of both amylose and LR-CD contents. The validity of TWC and OFS allowed their application for discriminative detection of the cyclization and total activity of a 4-α-glucanotransferase (4 αGTase) from Thermus aquaticus regarding the synthesis of LR-CDs and the conversion of amylose to small molecules, respectively. High pressure size exclusion chromatography analysis of the post-reaction mixtures following 4 αGTase-catalyzed conversion of amylose revealed the presence of linear malto-oligosaccharides in the LR-CD fraction. By introduction of a correction factor, the interference caused by linear malto-oligosaccharides was eliminated for a more accurate determination of LR-CD cyclization activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Analytical performances of a new enzymatic assay for hemoglobin A1c.

    PubMed

    Jaisson, Stéphane; Desmons, Aurore; Renard, Benoît; Chevelle, Benjamin; Leroy, Nathalie; Gillery, Philippe

    2014-07-01

    HbA1c is considered the gold standard for the follow-up of diabetic patients and a new diagnostic tool for diabetes mellitus, which implies the availability of reliable assay methods. We have evaluated a new assay developed by Abbott Laboratories, based on the enzymatic quantification of HbA1c by a fructosyl dipeptide oxidase using Architect analyzers. Precision, linearity, correlation with a HPLC method, accuracy and potential impact interferences on HbA1c measurement have been evaluated. Intra-day and between-day CVs were lower than 1.2% and linearity was excellent from 19 mmol/mol (3.9%) to 163 mmol/mol (17.1%). The results were well correlated with those obtained by the HPLC (Variant II device, kit NU - BioRad): HbA1c [Architect, mmol/mol]=0.986×HbA1c [Variant II, mmol/mol]+0.713 (r=0.998, n=109). This method provided consistent results with IFCC titrated quality control samples. Classical interferences in HbA1c assays (i.e. labile HbA1c, carbamylated hemoglobin, triglycerides or bilirubin) did not have an impact on HbA1c quantification by this method. This new enzymatic assay proved to be a robust and reliable method for HbA1c measurement suitable for routine practice in clinical chemistry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Identification and Quantification of Dimethylamylamine in Geranium by Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Li, J.S.; Chen, M.; Li, Z.C.

    2012-01-01

    A sensitive and reliable method of liquid chromatography–electrospray ionization/tandem mass spectrometry (LC-ESI/MS/ MS) was developed and validated for determining 1,3-dimethylamylamine (1,3-DMAA) and 1,4-dimethylamylamine (1,4-DMAA) in geranium plants (Pelargonium graveolens). The sample was extracted with 0.5 M HCl and purified by liquid-liquid partition with hexane. The parameters for reverse-phase (C18) LC and positive ESI/MS/MS were optimized. The matrix effect, specificity, linearity, precision, accuracy and reproducibility of the method were determined and evaluated. The method was linear over a range of 0.10–10.00 ng/mL examined, with R2 of 0.99 for both 1,3-DMAA and 1,4-DMAA. The recoveries from spiked concentrations between 5.00–40.00 ng/g were 85.1%–104.9% for 1,3-DMAA, with relative standard deviation (RSD) of 2.9%–11.0%, and 82.9%–101.8% for 1,4-DMAA, with RSD of 3.2%–11.7%. The instrument detection limit was 1–2 pg for both DMAAs. The quantification limit was estimated to be 1–2 ng/g for the plant sample. This method was successfully applied to the quantitative determination of 1,3- and 1,4-DMAA in both geranium plant and geranium oil. PMID:22915838

  12. Simultaneous Quantification of Syringic Acid and Kaempferol in Extracts of Bergenia Species Using Validated High-Performance Thin-Layer Chromatographic-Densitometric Method.

    PubMed

    Srivastava, Nishi; Srivastava, Amit; Srivastava, Sharad; Rawat, Ajay Kumar Singh; Khan, Abdul Rahman

    2016-03-01

    A rapid, sensitive, selective and robust quantitative densitometric high-performance thin-layer chromatographic method was developed and validated for separation and quantification of syringic acid (SYA) and kaempferol (KML) in the hydrolyzed extracts of Bergenia ciliata and Bergenia stracheyi. The separation was performed on silica gel 60F254 high-performance thin-layer chromatography plates using toluene : ethyl acetate : formic acid (5 : 4: 1, v/v/v) as the mobile phase. The quantification of SYA and KML was carried out using a densitometric reflection/absorption mode at 290 nm. A dense spot of SYA and KML appeared on the developed plate at a retention factor value of 0.61 ± 0.02 and 0.70 ± 0.01. A precise and accurate quantification was performed using linear regression analysis by plotting the peak area vs concentration 100-600 ng/band (correlation coefficient: r = 0.997, regression coefficient: R(2) = 0.996) for SYA and 100-600 ng/band (correlation coefficient: r = 0.995, regression coefficient: R(2) = 0.991) for KML. The developed method was validated in terms of accuracy, recovery and inter- and intraday study as per International Conference on Harmonisation guidelines. The limit of detection and limit of quantification of SYA and KML were determined, respectively, as 91.63, 142.26 and 277.67, 431.09 ng. The statistical data analysis showed that the method is reproducible and selective for the estimation of SYA and KML in extracts of B. ciliata and B. stracheyi. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. [Development and validation of an HPLC method for the quantification of vitamin A in human milk. Its application to a rural population in Argentina].

    PubMed

    López, Laura B; Baroni, Andrea V; Rodríguez, Viviana G; Greco, Carola B; de Costa, Sara Macías; de Ferrer, Patricia Ronayne; Rodríguez de Pece, Silvia

    2005-06-01

    A methodology for the quantification of vitamin A in human milk was developed and validated. Vitamin A levels were assessed in 223 samples corresponding to the 5th, 6th and 7th postpartum months, obtained in the province of Santiago del Estero, Argentina. The samples (500 microL) were saponified with potassium hydroxide/ethanol, extracted with hexane, evaporated to dryness and reconstituted with methanol. A column RP-C18, a mobile phase methanol/water (91:9 v/v) and a fluorescence detector (lambda excitation 330 nm and lambda emition 470 nm) were used for the separation and quantification of vitamin A. The analytical parameters of linearity (r2: 0.9995), detection (0.010 microg/mL) and quantification (0.025 microg/mL) limits, precision of the method (relative standard deviation, RSD = 9.0% within a day and RSD = 8.9% among days) and accuracy (recovery = 83.8%) demonstrate that the developed method allows the quantification of vitamin A in an efficient way. The mean values + standard deviation (SD) obtained for the analyzed samples were 0.60 +/- 0.32; 0.65 +/- 0.33 and 0.61 +/- 0.26 microg/ mL for the 5th, 6th and 7th postpartum months, respectively. There were no significant differences among the three months studied and the values found were similar to those in the literature. Considering the whole population under study, 19.3% showed vitamin A levels less than 0.40 microg/mL, which represents a risk to the children in this group since at least 0.50 microg/mL are necessary to meet the infant daily needs.

  14. Validated modified Lycopodium spore method development for standardisation of ingredients of an ayurvedic powdered formulation Shatavaryadi churna.

    PubMed

    Kumar, Puspendra; Jha, Shivesh; Naved, Tanveer

    2013-01-01

    Validated modified lycopodium spore method has been developed for simple and rapid quantification of herbal powdered drugs. Lycopodium spore method was performed on ingredients of Shatavaryadi churna, an ayurvedic formulation used as immunomodulator, galactagogue, aphrodisiac and rejuvenator. Estimation of diagnostic characters of each ingredient of Shatavaryadi churna individually was carried out. Microscopic determination, counting of identifying number, measurement of area, length and breadth of identifying characters were performed using Leica DMLS-2 microscope. The method was validated for intraday precision, linearity, specificity, repeatability, accuracy and system suitability, respectively. The method is simple, precise, sensitive, and accurate, and can be used for routine standardisation of raw materials of herbal drugs. This method gives the ratio of individual ingredients in the powdered drug so that any adulteration of genuine drug with its adulterant can be found out. The method shows very good linearity value between 0.988-0.999 for number of identifying character and area of identifying character. Percentage purity of the sample drug can be determined by using the linear equation of standard genuine drug.

  15. Development of a stability-indicating UPLC method for determining olanzapine and its associated degradation products present in active pharmaceutical ingredients and pharmaceutical dosage forms.

    PubMed

    Krishnaiah, Ch; Vishnu Murthy, M; Kumar, Ramesh; Mukkanti, K

    2011-03-25

    A simple, sensitive and reproducible ultra performance liquid chromatography (UPLC) coupled with a photodiode array detector method was developed for the quantitative determination of olanzapine (OLN) in API and pharmaceutical dosage forms. The method is applicable to the quantification of related substances and assays of drug substances. Chromatographic separation was achieved on Acquity UPLC BEH 100-mm, 2.1-mm, and 1.7-μm C-18 columns, and the gradient eluted within a short runtime, i.e., within 10.0 min. The eluted compounds were monitored at 250 nm, the flow rate was 0.3 mL/min, and the column oven temperature was maintained at 27°C. The resolution of OLN and eight (potential, bi-products and degradation) impurities was greater than 2.0 for all pairs of components. The high correlation coefficient (r(2)>0.9991) values indicated clear correlations between the investigated compound concentrations and their peak areas within the test ranges. The repeatability and intermediate precision, expressed by the RSD, were less than 2.4%. The accuracy and validity of the method were further ascertained by performing recovery studies via a spike method. The accuracy of the method expressed as relative error was satisfactory. No interference was observed from concomitant substances normally added to the tablets. The drug was subjected to the International Conference on Harmonization (ICH)-prescribed hydrolytic, oxidative, photolytic and thermal stress conditions. The performance of the method was validated according to the present ICH guidelines for specificity, limit of detection, limit of quantification, linearity, accuracy, precision, ruggedness and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Advanced Technologies and Methodology for Automated Ultrasonic Testing Systems Quantification

    DOT National Transportation Integrated Search

    2011-04-29

    For automated ultrasonic testing (AUT) detection and sizing accuracy, this program developed a methodology for quantification of AUT systems, advancing and quantifying AUT systems imagecapture capabilities, quantifying the performance of multiple AUT...

  17. Sensitive quantification of apomorphine in human plasma using a LC-ESI-MS-MS method.

    PubMed

    Abe, Emuri; Alvarez, Jean-Claude

    2006-06-01

    An analytical method based on liquid chromatography coupled with ion trap mass spectrometry (MS) detection with electrospray ionization interface has been developed for the identification and quantification of apomorphine in human plasma. Apomorphine was isolated from 0.5 mL of plasma using a liquid-liquid extraction with diethyl ether and boldine as internal standard, with satisfactory extraction recoveries. Analytes were separated on a 5-microm C18 Highpurity (Thermohypersil) column (150 mm x 2.1 mm I.D.) maintained at 30 degrees C, coupled to a precolumn (C18, 5-microm, 10 mm x 2.0 mm I.D., Thermo). The elution was achieved isocratically with a mobile phase of 2 mM NH4COOH buffer pH 3.8/acetonitrile (50/50, vol/vol) at a flow rate of 200 microL per minute. Data were collected either in full-scan MS mode at m/z 150 to 500 or in full-scan tandem mass spectrometry mode, selecting the [M+H]ion at m/z 268.0 for apomorphine and m/z 328.0 for boldine. The most intense daughter ion of apomorphine (m/z 237.1) and boldine (m/z 297.0) were used for quantification. Retention times were 2.03 and 2.11 minutes for boldine and apomorphine, respectively. Calibration curves were linear in the 0.025 to 20 ng/mL range. The limits of detection and quantification were 0.010 ng/mL and 0.025 ng/mL, respectively. Accuracy and precision of the assay were measured by analyzing 54 quality control samples for 3 days. At concentrations of 0.075, 1.5, and 15 ng/mL, intraday precisions were less than 10.1%, 5.3%, and 3.8%, and interday precisions were less than 4.8%, 6.6%, and 6.5%, respectively. Accuracies were in the 99.5 to 104.2% range. An example of a patient who was given 6 mg of apomorphine subcutaneously is shown, with concentrations of 14.1 ng/mL after 30 minutes and 0.20 ng/mL after 6 hours. The method described enables the unambiguous identification and quantification of apomorphine with very good sensitivity using only 0.5 mL of sample, and is very convenient for therapeutic drug monitoring and pharmacokinetic studies.

  18. Simultaneous determination of trace migration of phthalate esters in honey and royal jelly by GC-MS.

    PubMed

    Zhou, Jinhui; Qi, Yitao; Wu, Hongmei; Diao, Qingyun; Tian, Feifei; Li, Yi

    2014-03-01

    A simple, rapid, and reliable liquid-liquid extraction coupled to GC-MS method was developed and validated for the quantification of 22 phthalate esters (PAEs) in honey and royal jelly. Instrument parameters for GC-MS were tested to obtain the satisfactory separation between 22 PAEs with high sensitivity. The extraction procedure was optimized in order to achieve the best recovery. The following criteria were used to validate the developed method: linearity, LOD, lower LOQ, precision, accuracy, matrix effect and carry-over. Correlation coefficients were >0.999 by applying the linear regression model based on the least-squares method with a weighting factor (1/x). The intra- and interday precision were within 12.7% in terms of RSD, and the accuracy was within -11.8% in terms of relative error. The mean extraction recoveries ranged between 80.1 and 110.9% for honey and royal jelly. No significant matrix effect and carry-over for PAEs were observed for the analysis of honey and royal jelly samples. A total of 20 real samples were analyzed for a mini-survey using the developed method. Seven PAEs in honey samples and five PAEs in royal jelly samples were found, indicating potential contamination with several PAEs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Simultaneous Determination of Crypto-Chlorogenic Acid, Isoquercetin, and Astragalin Contents in Moringa oleifera Leaf Extracts by TLC-Densitometric Method.

    PubMed

    Vongsak, Boonyadist; Sithisarn, Pongtip; Gritsanapan, Wandee

    2013-01-01

    Moringa oleifera Lamarck (Moringaceae) is used as a multipurpose medicinal plant for the treatment of various diseases. Isoquercetin, astragalin, and crypto-chlorogenic acid have been previously found to be major active components in the leaves of this plant. In this study, a thin-layer-chromatography (TLC-)densitometric method was developed and validated for simultaneous quantification of these major components in the 70% ethanolic extracts of M. oleifera leaves collected from 12 locations. The average amounts of crypto-chlorogenic acid, isoquercetin, and astragalin were found to be 0.0473, 0.0427, and 0.0534% dry weight, respectively. The method was validated for linearity, precision, accuracy, limit of detection, limit of quantitation, and robustness. The linearity was obtained in the range of 100-500 ng/spot with a correlation coefficient (r) over 0.9961. Intraday and interday precisions demonstrated relative standard deviations of less than 5%. The accuracy of the method was confirmed by determining the recovery. The average recoveries of each component from the extracts were in the range of 98.28 to 99.65%. Additionally, the leaves from Chiang Mai province contained the highest amounts of all active components. The proposed TLC-densitometric method was simple, accurate, precise, and cost-effective for routine quality controlling of M. oleifera leaf extracts.

  20. Separation of catechins and methylxanthines in tea samples by capillary electrochromatography.

    PubMed

    Uysal, Ulku Dilek; Aturki, Zeineb; Raggi, Maria Augusta; Fanali, Salvatore

    2009-04-01

    In this paper, the simultaneous separation of several polyphenols such as (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, theophylline, caffeine in green and black teas by capillary electrochromatography (CEC) was developed. Several experimental parameters such as stationary phase type, mobile phase composition, buffer and pH, inner diameter of the columns, sample injection, were evaluated to obtain the complete separation of the analysed compounds. Baseline resolution of the studied polyphenols was achieved within 30 min by using a capillary column (id 100 microm) packed with bidentate C(18) particles for 24.5 cm and a mobile phase composed of 5 mM ammonium acetate buffer pH 4 with H(2)O/ACN (80:20, v/v). The applied voltage and the temperature were set at 30 kV and 20 degrees C. Precision, detection and quantification limits, linearity, and accuracy were investigated. A good linearity (R(2) > 0.9992) was achieved over a concentration working range of 2-100 microg/mL for all the analytes. LOD and LOQ were 1 and 2 microg/mL, respectively, for all studied compounds. The CEC method was applied to the analysis of those polyphenols in green and black tea samples after an extraction procedure. Good recovery data from accuracy studies ranged between 90% and 112% for all analytes.

  1. Lesion Quantification in Dual-Modality Mammotomography

    NASA Astrophysics Data System (ADS)

    Li, Heng; Zheng, Yibin; More, Mitali J.; Goodale, Patricia J.; Williams, Mark B.

    2007-02-01

    This paper describes a novel x-ray/SPECT dual modality breast imaging system that provides 3D structural and functional information. While only a limited number of views on one side of the breast can be acquired due to mechanical and time constraints, we developed a technique to compensate for the limited angle artifact in reconstruction images and accurately estimate both the lesion size and radioactivity concentration. Various angular sampling strategies were evaluated using both simulated and experimental data. It was demonstrated that quantification of lesion size to an accuracy of 10% and quantification of radioactivity to an accuracy of 20% are feasible from limited-angle data acquired with clinically practical dosage and acquisition time

  2. Simultaneous extraction, identification and quantification of phenolic compounds in Eclipta prostrata using microwave-assisted extraction combined with HPLC-DAD-ESI-MS/MS.

    PubMed

    Fang, Xinsheng; Wang, Jianhua; Hao, Jifu; Li, Xueke; Guo, Ning

    2015-12-01

    A simple and rapid method was developed using microwave-assisted extraction (MAE) combined with HPLC-DAD-ESI-MS/MS for the simultaneous extraction, identification, and quantification of phenolic compounds in Eclipta prostrata, a common herb and vegetable in China. The optimized parameters of MAE were: employing 50% ethanol as solvent, microwave power 400 W, temperature 70 °C, ratio of liquid/solid 30 mL/g and extraction time 2 min. Compared to conventional extraction methods, the optimized MAE can avoid the degradation of the phenolic compounds and simultaneously obtained the highest yields of all components faster with less consumption of solvent and energy. Six phenolic acids, six flavonoid glycosides and one coumarin were firstly identified. The phenolic compounds were quantified by HPLC-DAD with good linearity, precision, and accuracy. The extract obtained by MAE showed significant antioxidant activity. The proposed method provides a valuable and green analytical methodology for the investigation of phenolic components in natural plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Simultaneous determination of flavonoids, isochlorogenic acids and triterpenoids in Ilex hainanensis Using high performance liquid chromatography coupled with diode array and evaporative light scattering detection.

    PubMed

    Peng, Bo; Qiao, Chun-Feng; Zhao, Jing; Huang, Wei-Hua; Hu, De-Jun; Liu, Hua-Gang; Li, Shao-Ping

    2013-03-04

    A high performance liquid chromatography coupled with diode array and evaporative light scattering detection (HPLC-DAD-ELSD) method for simultaneous determination of eight major bioactive compounds including two flavonoids (rutin and eriodictyol-7-O-β-D-glucopyranoside), two isochlorogenic acids (isochlorogenic acid A and isochlorogenic acid C) and four triterpenoids (ilexhainanoside D, ilexsaponin A1, ilexgenin A and ursolic acid) in Ilex hainanensis has been developed for the first time. The 283 nm wavelength was chosen for determination of two flavonoids and two isochlorogenic acids. ELSD was applied to determine four triterpenoids. The analysis was performed on an Agilent Zorbax SB-C18 column (250 × 4.6 mm i.d., 5 µm) with gradient elution of 0.2% formic acid in water and acetonitrile. The method was validated for linearity, limit of detection, limit of quantification, precision, repeatability and accuracy. The proposed method has been successfully applied for simultaneous quantification of the analytes in four samples of Ilex hainanensis, which is helpful for quality control of this plant.

  4. Simultaneous determination of 19 flavonoids in commercial trollflowers by using high-performance liquid chromatography and classification of samples by hierarchical clustering analysis.

    PubMed

    Song, Zhiling; Hashi, Yuki; Sun, Hongyang; Liang, Yi; Lan, Yuexiang; Wang, Hong; Chen, Shizhong

    2013-12-01

    The flowers of Trollius species, named Jin Lianhua in Chinese, are widely used traditional Chinese herbs with vital biological activity that has been used for several decades in China to treat upper respiratory infections, pharyngitis, tonsillitis, and bronchitis. We developed a rapid and reliable method for simultaneous quantitative analysis of 19 flavonoids in trollflowers by using high-performance liquid chromatography (HPLC). Chromatography was performed on Inertsil ODS-3 C18 column, with gradient elution methanol-acetonitrile-water with 0.02% (v/v) formic acid. Content determination was used to evaluate the quality of commercial trollflowers from different regions in China, while three Trollius species (Trollius chinensis Bunge, Trollius ledebouri Reichb, Trollius buddae Schipcz) were explicitly distinguished by using hierarchical clustering analysis. The linearity, precision, accuracy, limit of detection, and limit of quantification were validated for the quantification method, which proved sensitive, accurate and reproducible indicating that the proposed approach was applicable for the routine analysis and quality control of trollflowers. © 2013.

  5. Semi-preparative HPLC preparation and HPTLC quantification of tetrahydroamentoflavone as marker in Semecarpus anacardium and its polyherbal formulations.

    PubMed

    Aravind, S G; Arimboor, Ranjith; Rangan, Meena; Madhavan, Soumya N; Arumughan, C

    2008-11-04

    Application of modern scientific knowledge coupled with sensitive analytical technique is important for the quality evaluation and standardization of polyherbal formulations. Semecarpus anacardium, an important medicinal plant with wide medicinal properties, is frequently used in a large number of traditional herbal preparations. Tetrahydroamentoflavone (THA), a major bioactive biflavonoid was selected as a chemical marker of S. anacardium and RP-semi-preparative HPLC conditions were optimized for the isolation of tetrahydroamentoflavone. HPTLC analytical method was developed for the fingerprinting of S. anacardium flavonoids and quantification of tetrahydroamentoflavone. The method was validated in terms of their linearity, LOD, LOQ, precision and accuracy and compared with RP-HPLC-DAD method. The methods were demonstrated for the chemical fingerprinting of S. anacardium plant parts and some commercial polyherbal formulations and the amount of tetrahydroamentoflavone was quantified. HPTLC analysis showed that S. anacardium seed contained approximately 10 g kg(-1) of tetrahydroamentoflavone. The methods were able to identify and quantify tetrahydroamentoflavone from complex mixtures of phytochemicals and could be extended to the marker-based standardization of polyherbal formulations, containing S. anacardium.

  6. Sensitive spectrofluorimetric determination of tizanidine in pharmaceutical preparations, human plasma and urine through derivatization with dansyl chloride.

    PubMed

    Ulu, Sevgi Tatar

    2012-01-01

    A sensitive spectrofluorimetric method was developed for the determination of tizanidine in human plasma, urine and pharmaceutical preparations. The method is based on reaction of tizanidine with 1-dimethylaminonaphthalene-5-sulphonyl chloride (dansyl chloride) in an alkaline medium to form a highly fluorescent derivative that was measured at 511 nm after excitation at 383 nm. The different experimental parameters affecting the fluorescence intensity of tizanidine was carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the ranges 50-500 and 20-300 ng/mL for plasma and urine, respectively, detection limits of 1.81 and 0.54 ng/mL and quantification limits of 5.43 and 1.62 ng/mL for plasma and urine, respectively. The method presents good performance in terms of linearity, detection and quantification limits, precision, accuracy and specificity. The proposed method was successfully applied for the determination of tizanidine in pharmaceutical preparations. The results obtained were compared with a reference method, using t- and F-tests. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Validation of a quantitative NMR method for suspected counterfeit products exemplified on determination of benzethonium chloride in grapefruit seed extracts.

    PubMed

    Bekiroglu, Somer; Myrberg, Olle; Ostman, Kristina; Ek, Marianne; Arvidsson, Torbjörn; Rundlöf, Torgny; Hakkarainen, Birgit

    2008-08-05

    A 1H-nuclear magnetic resonance (NMR) spectroscopy method for quantitative determination of benzethonium chloride (BTC) as a constituent of grapefruit seed extract was developed. The method was validated, assessing its specificity, linearity, range, and precision, as well as accuracy, limit of quantification and robustness. The method includes quantification using an internal reference standard, 1,3,5-trimethoxybenzene, and regarded as simple, rapid, and easy to implement. A commercial grapefruit seed extract was studied and the experiments were performed on spectrometers operating at two different fields, 300 and 600 MHz for proton frequencies, the former with a broad band (BB) probe and the latter equipped with both a BB probe and a CryoProbe. The concentration average for the product sample was 78.0, 77.8 and 78.4 mg/ml using the 300 BB probe, the 600MHz BB probe and CryoProbe, respectively. The standard deviation and relative standard deviation (R.S.D., in parenthesis) for the average concentrations was 0.2 (0.3%), 0.3 (0.4%) and 0.3mg/ml (0.4%), respectively.

  8. Separation and quantification of monoclonal-antibody aggregates by hollow-fiber-flow field-flow fractionation.

    PubMed

    Fukuda, Jun; Iwura, Takafumi; Yanagihara, Shigehiro; Kano, Kenji

    2014-10-01

    Hollow-fiber-flow field-flow fractionation (HF5) separates protein molecules on the basis of the difference in the diffusion coefficient, and can evaluate the aggregation ratio of proteins. However, HF5 is still a minor technique because information on the separation conditions is limited. We examined in detail the effect of different settings, including the main-flow rate, the cross-flow rate, the focus point, the injection amount, and the ionic strength of the mobile phase, on fractographic characteristics. On the basis of the results, we proposed optimized conditions of the HF5 method for quantification of monoclonal antibody in sample solutions. The HF5 method was qualified regarding the precision, accuracy, linearity of the main peak, and quantitation limit. In addition, the HF5 method was applied to non-heated Mab A and heat-induced-antibody-aggregate-containing samples to evaluate the aggregation ratio and the distribution extent. The separation performance was comparable with or better than that of conventional methods including analytical ultracentrifugation-sedimentation velocity and asymmetric-flow field-flow fractionation.

  9. Capillary zone electrophoresis for the determination of amodiaquine and three of its synthetic impurities in pharmaceutical formulations.

    PubMed

    Mufusama, Jean-Pierre; Hoellein, Ludwig; Feineis, Doris; Holzgrabe, Ulrike; Bringmann, Gerhard

    2018-05-29

    A simple and robust CZE method was developed for the separation and quantification of the antimalarial compound amodiaquine as well as three of its synthetic impurities at a concentration equal to or lower than 0.5%. For capillary electrophoresis, a fused-silica capillary, a background electrolyte of 100 mM sodium phosphate buffer at a pH value of 6.2, a voltage of +20 kV, and a detection wavelength of 220 nm were used, allowing the determination of the analytes within 20 minutes. The method was validated according to the guideline Q2(R1) of the International Council for Harmonization with respect to linearity, precision, accuracy, limit of detection and limit of quantification, and was successfully applied to evaluate the quality of drug samples collected in the Democratic Republic of the Congo. Quantitative analysis results obtained by the CZE method were compared to those obtained with the contemporary HPLC method described in The International Pharmacopoeia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method.

    PubMed

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-02-01

    To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.

  11. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method

    PubMed Central

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-01-01

    Objective To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. Methods TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Results Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. Conclusions The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil. PMID:25182282

  12. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation.

    PubMed

    Yang, Jian-Yi; Peng, Zhen-Ling; Yu, Zu-Guo; Zhang, Rui-Jie; Anh, Vo; Wang, Desheng

    2009-04-21

    In this paper, we intend to predict protein structural classes (alpha, beta, alpha+beta, or alpha/beta) for low-homology data sets. Two data sets were used widely, 1189 (containing 1092 proteins) and 25PDB (containing 1673 proteins) with sequence homology being 40% and 25%, respectively. We propose to decompose the chaos game representation of proteins into two kinds of time series. Then, a novel and powerful nonlinear analysis technique, recurrence quantification analysis (RQA), is applied to analyze these time series. For a given protein sequence, a total of 16 characteristic parameters can be calculated with RQA, which are treated as feature representation of protein sequences. Based on such feature representation, the structural class for each protein is predicted with Fisher's linear discriminant algorithm. The jackknife test is used to test and compare our method with other existing methods. The overall accuracies with step-by-step procedure are 65.8% and 64.2% for 1189 and 25PDB data sets, respectively. With one-against-others procedure used widely, we compare our method with five other existing methods. Especially, the overall accuracies of our method are 6.3% and 4.1% higher for the two data sets, respectively. Furthermore, only 16 parameters are used in our method, which is less than that used by other methods. This suggests that the current method may play a complementary role to the existing methods and is promising to perform the prediction of protein structural classes.

  13. Dependence of quantitative accuracy of CT perfusion imaging on system parameters

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2017-03-01

    Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.

  14. Quantitative Evaluation of Segmentation- and Atlas-Based Attenuation Correction for PET/MR on Pediatric Patients.

    PubMed

    Bezrukov, Ilja; Schmidt, Holger; Gatidis, Sergios; Mantlik, Frédéric; Schäfer, Jürgen F; Schwenzer, Nina; Pichler, Bernd J

    2015-07-01

    Pediatric imaging is regarded as a key application for combined PET/MR imaging systems. Because existing MR-based attenuation-correction methods were not designed specifically for pediatric patients, we assessed the impact of 2 potentially influential factors: inter- and intrapatient variability of attenuation coefficients and anatomic variability. Furthermore, we evaluated the quantification accuracy of 3 methods for MR-based attenuation correction without (SEGbase) and with bone prediction using an adult and a pediatric atlas (SEGwBONEad and SEGwBONEpe, respectively) on PET data of pediatric patients. The variability of attenuation coefficients between and within pediatric (5-17 y, n = 17) and adult (27-66 y, n = 16) patient collectives was assessed on volumes of interest (VOIs) in CT datasets for different tissue types. Anatomic variability was assessed on SEGwBONEad/pe attenuation maps by computing mean differences to CT-based attenuation maps for regions of bone tissue, lungs, and soft tissue. PET quantification was evaluated on VOIs with physiologic uptake and on 80% isocontour VOIs with elevated uptake in the thorax and abdomen/pelvis. Inter- and intrapatient variability of the bias was assessed for each VOI group and method. Statistically significant differences in mean VOI Hounsfield unit values and linear attenuation coefficients between adult and pediatric collectives were found in the lungs and femur. The prediction of attenuation maps using the pediatric atlas showed a reduced error in bone tissue and better delineation of bone structure. Evaluation of PET quantification accuracy showed statistically significant mean errors in mean standardized uptake values of -14% ± 5% and -23% ± 6% in bone marrow and femur-adjacent VOIs with physiologic uptake for SEGbase, which could be reduced to 0% ± 4% and -1% ± 5% using SEGwBONEpe attenuation maps. Bias in soft-tissue VOIs was less than 5% for all methods. Lung VOIs showed high SDs in the range of 15% for all methods. For VOIs with elevated uptake, mean and SD were less than 5% except in the thorax. The use of a dedicated atlas for the pediatric patient collective resulted in improved attenuation map prediction in osseous regions and reduced interpatient bias variation in femur-adjacent VOIs. For the lungs, in which intrapatient variation was higher for the pediatric collective, a patient- or group-specific attenuation coefficient might improve attenuation map accuracy. Mean errors of -14% and -23% in bone marrow and femur-adjacent VOIs can affect PET quantification in these regions when bone tissue is ignored. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. Simultaneous quantification of flavonoids and triterpenoids in licorice using HPLC.

    PubMed

    Wang, Yuan-Chuen; Yang, Yi-Shan

    2007-05-01

    Numerous bioactive compounds are present in licorice (Glycyrrhizae Radix), including flavonoids and triterpenoids. In this study, a reversed-phase high-performance liquid chromatography (HPLC) method for simultaneous quantification of three flavonoids (liquiritin, liquiritigenin and isoliquiritigenin) and four triterpenoids (glycyrrhizin, 18alpha-glycyrrhetinic acid, 18beta-glycyrrhetinic acid and 18beta-glycyrrhetinic acid methyl ester) from licorice was developed, and further, to quantify these 7 compounds from 20 different licorice samples. Specifically, the reverse-phase HPLC was performed with a gradient mobile phase composed of 25 mM phosphate buffer (pH 2.5)-acetonitrile featuring gradient elution steps as follows: 0 min, 100:0; 10 min, 80:20; 50 min, 70:30; 73 min, 50:50; 110 min, 50:50; 125 min, 20:80; 140 min, 20:80, and peaks were detected at 254 nm. By using our technique, a rather good specificity was obtained regarding to the separation of these seven compounds. The regression coefficient for the linear equations for the seven compounds lay between 0.9978 and 0.9992. The limits of detection and quantification lay in the range of 0.044-0.084 and 0.13-0.25 microg/ml, respectively. The relative recovery rates for the seven compounds lay between 96.63+/-2.43 and 103.55+/-2.77%. Coefficient variation for intra-day and inter-day precisions lay in the range of 0.20-1.84 and 0.28-1.86%, respectively. Based upon our validation results, this analytical technique is a convenient method to simultaneous quantify numerous bioactive compounds derived from licorice, featuring good quantification parameters, accuracy and precision.

  16. Development of an indirect competitive enzyme-linked immunosorbent assay applied to the Botrytis cinerea quantification in tissues of postharvest fruits

    PubMed Central

    2011-01-01

    Background Botrytis cinerea is a phytopathogenic fungus responsible for the disease known as gray mold, which causes substantial losses of fruits at postharvest. This fungus is present often as latent infection and an apparently healthy fruit can deteriorate suddenly due to the development of this infection. For this reason, rapid and sensitive methods are necessary for its detection and quantification. This article describes the development of an indirect competitive enzyme-linked immunosorbent assay (ELISA) for quantification of B. cinerea in apple (Red Delicious), table grape (pink Moscatel), and pear (William's) tissues. Results The method was based in the competition for the binding site of monoclonal antibodies between B. cinerea antigens present in fruit tissues and B. cinerea purified antigens immobilized by a crosslinking agent onto the surface of the microtiter plates. The method was validated considering parameters such as selectivity, linearity, precision, accuracy and sensibility. The calculated detection limit was 0.97 μg mL-1 B. cinerea antigens. The immobilized antigen was perfectly stable for at least 4 months assuring the reproducibility of the assay. The fungus was detected and quantified in any of the fruits tested when the rot was not visible yet. Results were compared with a DNA quantification method and these studies showed good correlation. Conclusions The developed method allowed detects the presence of B. cinerea in asymptomatic fruits and provides the advantages of low cost, easy operation, and short analysis time determination for its possible application in the phytosanitary programs of the fruit industry worldwide. PMID:21970317

  17. Clarity™ digital PCR system: a novel platform for absolute quantification of nucleic acids.

    PubMed

    Low, Huiyu; Chan, Shun-Jie; Soo, Guo-Hao; Ling, Belinda; Tan, Eng-Lee

    2017-03-01

    In recent years, digital polymerase chain reaction (dPCR) has gained recognition in biomedical research as it provides a platform for precise and accurate quantification of nucleic acids without the need for a standard curve. However, this technology has not yet been widely adopted as compared to real-time quantitative PCR due to its more cumbersome workflow arising from the need to sub-divide a PCR sample into a large number of smaller partitions prior to thermal cycling to achieve zero or at least one copy of the target RNA/DNA per partition. A recently launched platform, the Clarity™ system from JN Medsys, simplifies dPCR workflow through the use of a novel chip-in-a-tube technology for sample partitioning. In this study, the performance of Clarity™ was evaluated through quantification of the single-copy human RNase P gene. The system demonstrated high precision and accuracy and also excellent linearity across a range of over 4 orders of magnitude for the absolute quantification of the target gene. Moreover, consistent DNA copy measurements were also attained using a panel of different probe- and dye-based master mixes, demonstrating the system's compatibility with commercial master mixes. The Clarity™ was then compared to the QX100™ droplet dPCR system from Bio-Rad using a set of DNA reference materials, and the copy number concentrations derived from both systems were found to be closely associated. Collectively, the results showed that Clarity™ is a reliable, robust and flexible platform for next-generation genetic analysis.

  18. HPLC determination of flavonoid glycosides in Mongolian Dianthus versicolor Fisch. (Caryophyllaceae) compared with quantification by UV spectrophotometry.

    PubMed

    Obmann, Astrid; Purevsuren, Sodnomtseren; Zehl, Martin; Kletter, Christa; Reznicek, Gottfried; Narantuya, Samdan; Glasl, Sabine

    2012-01-01

    Dianthus versicolor is used in traditional Mongolian medicine against liver impairment. Fractions enriched in flavone-di- and triglycosides were shown to enhance bile secretion. Therefore, reliable and accurate analytical methods are needed for the determination of these flavonoids in the crude drug and extracts thereof. To provide a validated HPLC-DAD (diode array detector) method especially developed for the separation of polar flavonoids and to compare the data obtained with those evaluated by UV spectrophotometry. Separations were carried out on an Aquasil® C₁₈-column (4.6 mm × 250.0 mm, 5 µm) with a linear gradient of acetonitrile and water (adjusted to pH 2.8 with trifluoroacetic acid) as mobile phase. Rutoside was employed as internal standard with linear behavior in a concentration range of 0.007-3.5 mg/mL. Accuracy was determined by spiking the crude drug with saponarin resulting in recoveries between 92% and 102%. The method allows the quantification of highly polar flavonoid glycosides and the determination of their total content. For saponarin a linear response was evaluated within the range 0.007-3.5 mg/mL (R²  > 0.9999). It was proven that threefold sonication represents a time-saving, effective and cheap method for the extraction of the polar flavonoid glycosides. The contents determined by HPLC were shown to be in agreement with those obtained employing UV spectrophotometry. The study has indicated that the newly developed HPLC method represents a powerful technique for the quality control of D. versicolor. Ultraviolet spectrophotometry may be used alternatively provided that the less polar flavonoids are removed by purification. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Sensitive quantification of coixol, a potent insulin secretagogue, in Scoparia dulcis extract using high-performance liquid chromatography combined with tandem mass spectrometry and UV detection.

    PubMed

    Ali, Arslan; Haq, Faraz Ul; Ul Arfeen, Qamar; Sharma, Khaga Raj; Adhikari, Achyut; Musharraf, Syed Ghulam

    2017-10-01

    Diabetes is a major global health problem which requires new studies for its prevention and control. Scoparia dulcis, a herbal product, is widely used for treatment of diabetes. Recent studies demonstrate coixol as a potent and nontoxic insulin secretagog from S. dulcis. This study focuses on developing two quantitative methods of coixol in S. dulcis methanol-based extracts. Quantification of coixol was performed using high-performance liquid chromatography-tandem mass spectrometry (method 1) and high-performance liquid chromatography-ultraviolet detection (method 2) with limits of detection of 0.26 and 11.6 pg/μL, respectively, and limits of quantification of 0.78 and 35.5 pg/μL, respectively. S. dulcis is rich in coixol content with values of 255.5 ± 2.1 mg/kg (method 1) and 220.4 ± 2.9 mg/kg (method 2). Excellent linearity with determination coefficients >0.999 was achieved for calibration curves from 10 to 7500 ng/mL (method 1) and from 175 to 7500 ng/mL (method 2). Good accuracy (bias < -8.6%) and precision (RSD < 8.5%) were obtained for both methods. Thus, they can be employed to analyze coixol in plant extracts and herbal formulations. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Simultaneous quantification of 25 active constituents in the total flavonoids extract from Herba Desmodii Styracifolii by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry.

    PubMed

    Guo, Panpan; Yan, Wenying; Han, Qingjie; Wang, Chunying; Zhang, Zijian

    2015-04-01

    A sensitive and selective high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry method has been developed and validated for the simultaneous determination of 25 active constituents, including 21 flavonoids and four phenolic acids in the total flavonoids extract from Herba Desmodii Styracifolii for the first time. Among the 25 compounds, seven compounds including caffeic acid, acacetin, genistein, genistin, diosmetin, diosmin and hesperidin were identified and quantified for the first time in Herba Desmodii Styracifolii. Chromatographic separation was accomplished on a ZORBAX SB-C18 (250 mm×4.6 mm, 5.0 μm) column using gradient elution of methanol and 0.1‰ acetic acid v/v at a flow rate of 1.0 mL/min. The identification and quantification of the analytes were achieved using negative electrospray ionization mass spectrometry in multiple-reaction monitoring mode. The method was fully validated in terms of limits of detection and quantification, linearity, precision and accuracy. The results indicated that the developed method is simple, rapid, specific and reliable. Furthermore, the developed method was successfully applied to quantify the 25 active components in six batches of total flavonoids extract from Herba Desmodii Styracifolii. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simultaneous quantification of fentanyl, sufentanil, cefazolin, doxapram and keto-doxapram in plasma using liquid chromatography - tandem mass spectrometry.

    PubMed

    Flint, Robert B; Bahmany, Soma; van der Nagel, Bart C H; Koch, Birgit C P

    2018-05-16

    A simple and specific UPLC-MS/MS method was developed and validated for simultaneous quantification of fentanyl, sufentanil, cefazolin, doxapram and its active metabolite keto-doxapram. The internal standard was fentanyl-d5 for all analytes. Chromatographic separation was achieved with a reversed phase Acquity UPLC HSS T3 column with a run-time of only 5.0 minutes per injected sample. Gradient elution was performed with a mobile phase consisting of ammonium acetate, formic acid in Milli-Q ultrapure water or in methanol with a total flow rate of 0.4 mL minute -1 . A plasma volume of only 50 μL was required to achieve both adequate accuracy and precision. Calibration curves of all 5 analytes were linear. All analytes were stable for at least 48 hours in the autosampler. The method was validated according to US Food and Drug Administration guidelines. This method allows quantification of fentanyl, sufentanil, cefazolin, doxapram and keto-doxapram, which serves purposes for research, as well as therapeutic drug monitoring, if applicable. The strength of this method is the combination of a small sample volume, a short run-time, a deuterated internal standard, an easy sample preparation method and the ability to simultaneously quantify all analytes in one run. This article is protected by copyright. All rights reserved.

  2. Validation protocol of analytical procedures for quantification of drugs in polymeric systems for parenteral administration: dexamethasone phosphate disodium microparticles.

    PubMed

    Martín-Sabroso, Cristina; Tavares-Fernandes, Daniel Filipe; Espada-García, Juan Ignacio; Torres-Suárez, Ana Isabel

    2013-12-15

    In this work a protocol to validate analytical procedures for the quantification of drug substances formulated in polymeric systems that comprise both drug entrapped into the polymeric matrix (assay:content test) and drug released from the systems (assay:dissolution test) is developed. This protocol is applied to the validation two isocratic HPLC analytical procedures for the analysis of dexamethasone phosphate disodium microparticles for parenteral administration. Preparation of authentic samples and artificially "spiked" and "unspiked" samples is described. Specificity (ability to quantify dexamethasone phosphate disodium in presence of constituents of the dissolution medium and other microparticle constituents), linearity, accuracy and precision are evaluated, in the range from 10 to 50 μg mL(-1) in the assay:content test procedure and from 0.25 to 10 μg mL(-1) in the assay:dissolution test procedure. The robustness of the analytical method to extract drug from microparticles is also assessed. The validation protocol developed allows us to conclude that both analytical methods are suitable for their intended purpose, but the lack of proportionality of the assay:dissolution analytical method should be taken into account. The validation protocol designed in this work could be applied to the validation of any analytical procedure for the quantification of drugs formulated in controlled release polymeric microparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Different mathematical processing of absorption, ratio and derivative spectra for quantification of mixtures containing minor component: An application to the analysis of the recently co-formulated antidiabetic drugs; canagliflozin and metformin

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Mohamed, Dalia; Elshahed, Mona S.

    2018-01-01

    In the presented work several spectrophotometric methods were performed for the quantification of canagliflozin (CGZ) and metformin hydrochloride (MTF) simultaneously in their binary mixture. Two of these methods; response correlation (RC) and advanced balance point-spectrum subtraction (ABP-SS) were developed and introduced for the first time in this work, where the latter method (ABP-SS) was performed on both the zero order and the first derivative spectra of the drugs. Besides, two recently established methods; advanced amplitude modulation (AAM) and advanced absorbance subtraction (AAS) were also accomplished. All the proposed methods were validated in accordance to the ICH guidelines, where all methods were proved to be accurate and precise. Additionally, the linearity range, limit of detection and limit of quantification were determined and the selectivity was examined through the analysis of laboratory prepared mixtures and the combined dosage form of the drugs. The proposed methods were capable of determining the two drugs in the ratio present in the pharmaceutical formulation CGZ:MTF (1:17) without the requirement of any preliminary separation, further dilution or standard spiking. The results obtained by the proposed methods were in compliance with the reported chromatographic method when compared statistically, proving the absence of any significant difference in accuracy and precision between the proposed and reported methods.

  4. Determination of lipophilic marine toxins in mussels. Quantification and confirmation criteria using high resolution mass spectrometry.

    PubMed

    Domènech, Albert; Cortés-Francisco, Nuria; Palacios, Oscar; Franco, José M; Riobó, Pilar; Llerena, José J; Vichi, Stefania; Caixach, Josep

    2014-02-07

    A multitoxin method has been developed for quantification and confirmation of lipophilic marine biotoxins in mussels by liquid chromatography coupled to high resolution mass spectrometry (HRMS), using an Orbitrap-Exactive HCD mass spectrometer. Okadaic acid (OA), yessotoxin, azaspiracid-1, gymnodimine, 13-desmethyl spirolide C, pectenotoxin-2 and Brevetoxin B were analyzed as representative compounds of each lipophilic toxin group. HRMS identification and confirmation criteria were established. Fragment and isotope ions and ion ratios were studied and evaluated for confirmation purpose. In depth characterization of full scan and fragmentation spectrum of the main toxins were carried out. Accuracy (trueness and precision), linearity, calibration curve check, limit of quantification (LOQ) and specificity were the parameters established for the method validation. The validation was performed at 0.5 times the current European Union permitted levels. The method performed very well for the parameters investigated. The trueness, expressed as recovery, ranged from 80% to 94%, the precision, expressed as intralaboratory reproducibility, ranged from 5% to 22% and the LOQs range from 0.9 to 4.8pg on column. Uncertainty of the method was also estimated for OA, using a certified reference material. A top-down approach considering two main contributions: those arising from the trueness studies and those coming from the precision's determination, was used. An overall expanded uncertainty of 38% was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Determination of Colistin and Colistimethate Levels in Human Plasma and Urine by High-Performance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Bihan, Kevin; Lu, Qin; Enjalbert, Manon; Apparuit, Maxime; Langeron, Olivier; Rouby, Jean-Jacques; Funck-Brentano, Christian; Zahr, Noël

    2016-12-01

    Colistin is a polypeptide antibiotic from the polymyxin E group used for the treatment of infections caused by multidrug-resistant gram-negative bacteria. The main constituents, accounting for approximately 85% of this mixture, are colistin A (polymyxin E1) and colistin B (polymyxin E2). The aim of this study was to develop and validate new and fast methods of quantification of colistin A and B and its precursors [colistin methanesulfonate sodium (CMS) A and B] by ultraperformance liquid chromatography-tandem mass spectrometry in plasma and urine with short pretreatment and run times. Chromatography was performed on an Acquity UPLC-MS/MS system (WATERS) with a WATERS Acquity UPLC C18 column (4.6 × 150 mm, 3.5 μm particle size). The pretreatment of samples consists of precipitation and extraction into microcolumns plate and HLB 96-well plate 30 μm-30 mg (OASIS) with a Positive Pressure-96 (WATERS). Quantification was performed using a multiple reaction monitoring of the following transitions: m/z 390.9 → 385.1 for colistin A, m/z 386.2 → 101.0 for colistin B, and m/z 602.4 → 241.1 for polymyxin B1 sulfate. In plasma and urine, calibration curves were linear from 30 to 6000 ng/mL for colistin A and from 15 to 3000 ng/mL for colistin B. With an acceptable accuracy and precision, the lower limit of quantification were set at 24.0 ng/mL and 12.0 ng/mL for colistin A and B in plasma, and at 18.0 ng/mL and 9.0 ng/mL for colistin A and B in urine. These LC-MS/MS methods of quantification for colistin A and B and its precursors (CMS A and B) in plasma and urine are fast, simple, specific, sensitive, accurate, precise, and reliable. Furthermore, they are linear and repeatable. These procedures were successfully applied to a pharmacokinetic study of a critically ill patient suffering from ventilator-associated pneumonia, who was treated with nebulized CMS.

  6. Validated spectrofluorimetric method for the determination of tamsulosin in spiked human urine, pure and pharmaceutical preparations.

    PubMed

    Karasakal, A; Ulu, S T

    2014-05-01

    A novel, sensitive and selective spectrofluorimetric method was developed for the determination of tamsulosin in spiked human urine and pharmaceutical preparations. The proposed method is based on the reaction of tamsulosin with 1-dimethylaminonaphthalene-5-sulfonyl chloride in carbonate buffer pH 10.5 to yield a highly fluorescent derivative. The described method was validated and the analytical parameters of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, recovery and robustness were evaluated. The proposed method showed a linear dependence of the fluorescence intensity on drug concentration over the range 1.22 × 10(-7) to 7.35 × 10(-6)  M. LOD and LOQ were calculated as 1.07 × 10(-7) and 3.23 × 10(-7)  M, respectively. The proposed method was successfully applied for the determination of tamsulosin in pharmaceutical preparations and the obtained results were in good agreement with those obtained using the reference method. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Development and Validation of an HPLC Method for Karanjin in Pongamia pinnata linn. Leaves.

    PubMed

    Katekhaye, S; Kale, M S; Laddha, K S

    2012-01-01

    A rapid, simple and specific reversed-phase HPLC method has been developed for analysis of karanjin in Pongamia pinnata Linn. leaves. HPLC analysis was performed on a C(18) column using an 85:13.5:1.5 (v/v) mixtures of methanol, water and acetic acid as isocratic mobile phase at a flow rate of 1 ml/min. UV detection was at 300 nm. The method was validated for accuracy, precision, linearity, specificity. Validation revealed the method is specific, accurate, precise, reliable and reproducible. Good linear correlation coefficients (r(2)>0.997) were obtained for calibration plots in the ranges tested. Limit of detection was 4.35 μg and limit of quantification was 16.56 μg. Intra and inter-day RSD of retention times and peak areas was less than 1.24% and recovery was between 95.05 and 101.05%. The established HPLC method is appropriate enabling efficient quantitative analysis of karanjin in Pongamia pinnata leaves.

  8. Development and Validation of an HPLC Method for Karanjin in Pongamia pinnata linn. Leaves

    PubMed Central

    Katekhaye, S; Kale, M. S.; Laddha, K. S.

    2012-01-01

    A rapid, simple and specific reversed-phase HPLC method has been developed for analysis of karanjin in Pongamia pinnata Linn. leaves. HPLC analysis was performed on a C18 column using an 85:13.5:1.5 (v/v) mixtures of methanol, water and acetic acid as isocratic mobile phase at a flow rate of 1 ml/min. UV detection was at 300 nm. The method was validated for accuracy, precision, linearity, specificity. Validation revealed the method is specific, accurate, precise, reliable and reproducible. Good linear correlation coefficients (r2>0.997) were obtained for calibration plots in the ranges tested. Limit of detection was 4.35 μg and limit of quantification was 16.56 μg. Intra and inter-day RSD of retention times and peak areas was less than 1.24% and recovery was between 95.05 and 101.05%. The established HPLC method is appropriate enabling efficient quantitative analysis of karanjin in Pongamia pinnata leaves. PMID:23204626

  9. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection.

    PubMed

    Shim, You-Shin; Yoon, Won-Jin; Hwang, Jin-Bong; Park, Hyun-Jin; Seo, Dongwon; Ha, Jaeho

    2015-11-15

    A rapid method for the determination of 14 types of isoflavones in food using ultra-high performance liquid chromatography (UHPLC) was validated in terms of precision, accuracy, sensitivity and linearity. The UHPLC separation was performed on a reverse-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) using a photo diode array detector that was fixed to 260 nm. The limits of detection and quantification of the UHPLC analyses ranged from 0.03 to 0.33 mg kg(-1). The intra-day and inter-day precision of the individual isoflavones were less than 11.77% and calibration curves exhibited good linearity (r(2) = 0.99) within the tested ranges. These results suggest that the rapid method used in this study could be available to determine of 14 types of isoflavones in a variety of food such as soy bean, black bean, red bean and soybean paste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of the QuEChERS Method and Gas Chromatography–Mass Spectrometry for the Analysis Pesticide Residues in Water and Sediment

    PubMed Central

    de Macedo, A. N.; Vicente, G. H. L.; Nogueira, A. R. A.

    2010-01-01

    A method for the determination of pesticide residues in water and sediment was developed using the QuEChERS method followed by gas chromatography – mass spectrometry. The method was validated in terms of accuracy, specificity, linearity, detection and quantification limits. The recovery percentages obtained for the pesticides in water at different concentrations ranged from 63 to 116%, with relative standard deviations below 12%. The corresponding results from the sediment ranged from 48 to 115% with relative standard deviations below 16%. The limits of detection for the pesticides in water and sediment were below 0.003 mg L−1 and 0.02 mg kg−1, respectively. PMID:21165598

  11. Quantification of urinary uric acid in the presence of thymol and thimerosal by high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Chen, Y.; Pietrzyk, R. A.; Whitson, P. A.

    1997-01-01

    A high-performance liquid chromatographic method was developed as an alternative to automated enzymatic analysis of uric acid in human urine preserved with thymol and/or thimerosal. Uric acid (tR = 10 min) and creatinine (tR = 5 min) were separated and quantified during isocratic elution (0.025 M acetate buffer, pH 4.5) from a mu Bondapak C18 column. The uric-acid peak was identified chemically by incubating urine samples with uricase. The thymol/thimerosal peak appeared at 31 min during the washing step and did not interfere with the analysis. We validated the high-performance liquid chromatographic method for linearity, precision and accuracy, and the results were found to be excellent.

  12. Accuracy of iodine quantification in dual-layer spectral CT: Influence of iterative reconstruction, patient habitus and tube parameters.

    PubMed

    Sauter, Andreas P; Kopp, Felix K; Münzel, Daniela; Dangelmaier, Julia; Renz, Martin; Renger, Bernhard; Braren, Rickmer; Fingerle, Alexander A; Rummeny, Ernst J; Noël, Peter B

    2018-05-01

    Evaluation of the influence of iterative reconstruction, tube settings and patient habitus on the accuracy of iodine quantification with dual-layer spectral CT (DL-CT). A CT abdomen phantom with different extension rings and four iodine inserts (1, 2, 5 and 10 mg/ml) was scanned on a DL-CT. The phantom was scanned with tube-voltages of 120 and 140 kVp and CTDI vol of 2.5, 5, 10 and 20 mGy. Reconstructions were performed for eight levels of iterative reconstruction (i0-i7). Diagnostic dose levels are classified depending on patient-size and radiation dose. Measurements of iodine concentration showed accurate and reliable results. Taking all CTDI vol -levels into account, the mean absolute percentage difference (MAPD) showed less accuracy for low CTDI vol -levels (2.5 mGy: 34.72%) than for high CTDI vol -levels (20 mGy: 5.89%). At diagnostic dose levels, accurate quantification of iodine was possible (MAPD 3.38%). Level of iterative reconstruction did not significantly influence iodine measurements. Iodine quantification worked more accurately at a tube voltage of 140 kVp. Phantom size had a considerable effect only at low-dose-levels; at diagnostic dose levels the effect of phantom size decreased (MAPD <5% for all phantom sizes). With DL-CT, even low iodine concentrations can be accurately quantified. Accuracies are higher when diagnostic radiation doses are employed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Development and validation of a UPLC-MS/MS method for quantitation of droxidopa in human plasma: Application to a pharmacokinetic study.

    PubMed

    Wang, Haidong; Yang, Guangsheng; Zhou, Jinyu; Pei, Jiang; Zhang, Qiangfeng; Song, Xingfa; Sun, Zengxian

    2016-08-01

    In this study, a simple and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for quantitation of droxidopa in human plasma for the first time. A simple plasma protein precipitation method using methanol containing 3% formic acid was selected, and the separation was achieved by an Acquity UPLC™ BEH Amide column (2.1mm×50mm, 1.7μm) with a gradient elution using acetonitrile, ammonium formate buffer and formic acid as mobile phase. The detection of droxidopa and benserazide (internal standard, IS) was performed using positive-ion electrospray tandem mass spectrometry via multiple reaction monitoring (MRM). The precursor-to-product ion transitions m/z 214.2→m/z 152.0 for droxidopa, and m/z 258.1→m/z 139.1 for IS were used for quantification. A lower limit of quantification of 5.00ng/mL was achieved and the linear curve range was 5.00-4000ng/mL using a weighted (1/x(2)) linear regression model. Intra-assay and inter-assay precision was less than 10.2%, and the accuracy ranged from 0.1% to 2.1%. Stability, recovery and matrix effects were within the acceptance criteria recommended by the regulatory bioanalytical guidelines. The method was successfully applied to a pharmacokinetic study of droxidopa in healthy Chinese volunteers. Copyright © 2016. Published by Elsevier B.V.

  14. Determination of bupropion using liquid chromatography with fluorescence detection in pharmaceutical preparations, human plasma and human urine.

    PubMed

    Ulu, Sevgi Tatar; Tuncel, Muzaffer

    2012-05-01

    A novel pre-column derivatization reversed-phase high-performance liquid chromatography with fluorescence detection is described for the determination of bupropion in pharmaceutical preparation, human plasma and human urine using mexiletine as internal standard. The proposed method is based on the reaction of 4-chloro-7-nitrobenzofurazan (NBD-Cl) with bupropion to produce a fluorescent derivative. The derivative formed is monitored on a C18 (150 mm × 4.6 mm i.d., 5 µm) column using a mobile phase consisting of methanol-water 75:25 (v/v), at a flow-rate of 1.2 mL/min and detected fluorimetrically at λ(ex) = 458 and λ(em) = 533 nm. The assay was linear over the concentration ranges of 5-500 and 10-500 ng/mL for plasma and urine, respectively. The limits of detection and quantification were calculated to be 0.24 and 0.72 ng/mL for plasma and urine, respectively (inter-day results). The recoveries obtained for plasma and urine were 97.12% ± 0.45 and 96.00% ± 0.45, respectively. The method presents good performance in terms of precision, accuracy, specificity, linearity, detection and quantification limits and robustness. The proposed method is applied to determine bupropion in commercially available tablets. The results were compared with an ultraviolet spectrophotometry method using t- and F-tests. © The Author [2012]. Published by Oxford University Press. All rights reserved.

  15. Bio-assay guided isolation of α-glucosidase inhibitory constituents from Hibiscus mutabilis leaves.

    PubMed

    Kumar, Deepak; Kumar, Hemanth; Vedasiromoni, J R; Pal, Bikas C

    2012-01-01

    The increasing demand for natural-product-based medicines and health-care products for the management of diabetes encouraged investigation of this commonly available Indian plant. To establish the anti-diabetic (α-glucosidase inhibitory) activity of H. mutabilis leaf extract, isolate and identify the constituents responsible for the activity, and validate a HPLC method for quantification of the active constituents for standardisation of the extract. The methanolic extract of leaves was partitioned between water, n-butanol and ethyl acetate. Bio-assay guided fractionation, based on inhibition of α-glucosidase, allowed isolation and identification of the active components. The active components were quantified using RP-HPLC-DAD validated for linearity, limit of detection, limit of quantification, precision, accuracy and robustness for this plant extract and the partitioned fractions. Ferulic acid and caffeic acid were identified as the α-glucosidase inhibitors present in H. mutabilis. They were partitioned into an ethyl acetate fraction. The HPLC-DAD calibration curve showed good linearity (r² > 0.99). For the recovery studies the %RSD was less than 2%. The interday and intraday variations were found to be less than 4% RSD for retention time and response. The identification of α-glucosidase inhibition activity in H. mutabilis supports further investigations into the possible use of the plant for the management of diabetes. The HPLC method validated for these extracts will be useful in future research with the plant. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Lithium adduct as precursor ion for sensitive and rapid quantification of 20 (S)-protopanaxadiol in rat plasma by liquid chromatography/quadrupole linear ion trap mass spectrometry and application to rat pharmacokinetic study.

    PubMed

    Bao, Yuanwu; Wang, Quanying; Tang, Pingming

    2013-03-01

    A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC-ESI-(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP-C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN-water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple-reaction-monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5-100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Development and validation of a UV-spectrophotometric method for the determination of pheniramine maleate and its stability studies

    NASA Astrophysics Data System (ADS)

    Raghu, M. S.; Basavaiah, K.; Ramesh, P. J.; Abdulrahman, Sameer A. M.; Vinay, K. B.

    2012-03-01

    A sensitive, precise, and cost-effective UV-spectrophotometric method is described for the determination of pheniramine maleate (PAM) in bulk drug and tablets. The method is based on the measurement of absorbance of a PAM solution in 0.1 N HCl at 264 nm. As per the International Conference on Harmonization (ICH) guidelines, the method was validated for linearity, accuracy, precision, limits of detection (LOD) and quantification (LOQ), and robustness and ruggedness. A linear relationship between absorbance and concentration of PAM in the range of 2-40 μg/ml with a correlation coefficient (r) of 0.9998 was obtained. The LOD and LOQ values were found to be 0.18 and 0.39 μg/ml PAM, respectively. The precision of the method was satisfactory: the value of relative standard deviation (RSD) did not exceed 3.47%. The proposed method was applied successfully to the determination of PAM in tablets with good accuracy and precision. Percentages of the label claims ranged from 101.8 to 102.01% with the standard deviation (SD) from 0.64 to 0.72%. The accuracy of the method was further ascertained by recovery studies via a standard addition procedure. In addition, the forced degradation of PAM was conducted in accordance with the ICH guidelines. Acidic and basic hydrolysis, thermal stress, peroxide, and photolytic degradation were used to assess the stability-indicating power of the method. A substantial degradation was observed during oxidative and alkaline degradations. No degradation was observed under other stress conditions.

  18. Fast method for simultaneous quantification of tamoxifen and metabolites in dried blood spots using an entry level LC-MS/MS system.

    PubMed

    Tré-Hardy, Marie; Capron, Arnaud; Antunes, Marina Venzon; Linden, Rafael; Wallemacq, Pierre

    2016-11-01

    The purpose of this study was to develop and validate a new liquid chromatography-tandem mass spectrometric (LC-MSMS) assay for the simultaneous quantification of tamoxifen (TAM) and its main therapeutically active metabolites, N-desmethyltamoxifen (NDT), 4-hydroxytamoxifen (4HT) and endoxifen (END) in dried blood spots. Ultrasound assisted methanolic extraction was used for TAM and metabolites extraction from dried blood spot. After evaporation and methanol reconstitution, the extract was injected into a LC-MSMS system. Reversed phase chromatography was performed on a C18 grafted column in gradient mode. TAM, metabolites, and internal standard (diazepam-d 5 ; IS) were identified in positive electrospray ionization mode using m/z transition of 372.5>72.1 (TAM); 374.23>58.10 (END); 358.27>58.10 (NDT); 388.23>44.80 (4HT) and 290.00>198.00 (IS). Total analytical run time was 6.5min. Assay was linear from 1 to 500ng/mL for all substances and presented intra and inter-assay precision and accuracy <15%. TAM, NDT, 4HT and END limits of quantification and detection were of 1 and 0.5ng/mL; 1 and 3ng/mL; 1.7 and 3ng/mL; 0.6 and 2ng/mL, respectively. Recovery ranged from 83.8 to 96.3% with matrix effect ranged from 4.3 to 29.8% for TAM and its metabolites. Hematocrit value ≤40% appeared to negatively influence accuracy of the method. In conclusion, the method described here is somewhat accessible, relatively fast, sensitive and selective with no interference. This assay might be used to investigate the level of TAM and its metabolites in DBS for therapeutic drug monitoring purposes. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Quantitative MR Imaging of Hepatic Steatosis: Validation in Ex Vivo Human Livers

    PubMed Central

    Bannas, Peter; Kramer, Harald; Hernando, Diego; Agni, Rashmi; Cunningham, Ashley M.; Mandal, Rakesh; Motosugi, Utaroh; Sharma, Samir D.; del Rio, Alejandro Munoz; Fernandez, Luis; Reeder, Scott B.

    2015-01-01

    Emerging magnetic resonance imaging (MRI) biomarkers of hepatic steatosis have demonstrated tremendous promise for accurate quantification of hepatic triglyceride concentration. These methods quantify the “proton density fat-fraction” (PDFF), which reflects the concentration of triglycerides in tissue. Previous in vivo studies have compared MRI-PDFF with histologic steatosis grading for assessment of hepatic steatosis. However, the correlation of MRI-PDFF with the underlying hepatic triglyceride content remained unknown. The aim of this ex vivo study was to validate the accuracy of MRI-PDFF as an imaging biomarker of hepatic steatosis. Using ex vivo human livers, we compared MRI-PDFF with magnetic resonance spectroscopy-PDFF (MRS-PDFF), biochemical triglyceride extraction and histology as three independent reference standards. A secondary aim was to compare the precision of MRI-PDFF relative to biopsy for the quantification of hepatic steatosis. MRI-PDFF was prospectively performed at 1.5T in 13 explanted human livers. We performed co-localized paired evaluation of liver fat content in all nine Couinaud segments using single-voxel MRS-PDFF (n=117), tissue wedges for biochemical triglyceride extraction (n=117), and five core biopsies performed in each segment for histologic grading (n=585). Accuracy of MRI-PDFF was assessed through linear regression with MRS-PDFF, triglyceride extraction and histology. Intra-observer agreement, inter-observer agreement and repeatability of MRI-PDFF and histologic grading were assessed through Bland-Altman analyses. MRI-PDFF showed an excellent correlation with MRS-PDFF (r=0.984; CI: 0.978–0.989) and strong correlation with histology (r=0.850; CI: 0.791–0.894) and triglyceride extraction (r=0.871; CI: 0.818–0.909). Intra-observer agreement, inter-observer agreement and repeatability showed a significantly smaller variance for MRI-PDFF than for histologic steatosis grading (all p<0.001). Conclusion MRI-PDFF is an accurate, precise and reader-independent non-invasive imaging biomarker of liver triglyceride content, capable of steatosis quantification over the entire liver. PMID:26224591

  20. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine.

    PubMed

    Joyce, Richard; Kuziene, Viktorija; Zou, Xin; Wang, Xueting; Pullen, Frank; Loo, Ruey Leng

    2016-01-01

    An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (<15 %) and precision (<15 %) were observed using three quality control samples at a concentration of low, medium and high range of the calibration curve. The limits of detection (LOD) and lower limit of quantification of our method were ranging from approximately 1-300 nM and 0.01-0.5 µM, respectively. The stability of amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.

  1. [Quantification of Wood Flour and Polypropylene in Chinese Fir/Polypropylene Composites by FTIR].

    PubMed

    Lao, Wan-li; Li, Gai-yun; Zhou, Qun; Qin, Te-fu

    2015-06-01

    The ratio of wood and plastic in Wood Plastic Composites (WPCss) influences quality and price, but traditional thermochemical methods cannot rapidly and accurately quantify the ratio of wood/PP in WPCss. This paper was addressed to investigate the feasibility of quantifying the wood flour content and plastic content in WPCss by Fourier Transform Infrared (FTIR) spectroscopy. With Chinese fir, polypropylene (PP) and other additives as raw materials, 13 WPCs samples with different wood flour contents, ranging from 9.8% to 61.5%, were prepared by modifying wood flour, mixing materials and extrusion pelletizing. The samples were analyzed by FTIR with the KBr pellets technique. The absorption peaks of WPCss at 1059, 1 033 and 1 740 cm(-1) are considered as characteristic of Chinese fir, and the absorption peaks at 1 377, 2 839 and 841 cm(-1) are typical of PP by comparing the spectra of WPCss with that of Chinese fir, PP and other additives. The relationship between the wood flour content, PP content in WPCss and their characteristic IR peaks height ratio was established. The results show that there is a strong linear correlation between the wood flour content in WPCss and I1 059/l 1 377/I1 033, /I1377, R2 are 0.992 and 0.993 respectively; there is a high linear correlation between the PP content in WPCss and I1 377/I1 740, I2 839 /I1 740 R2 are 0.985 and 0.981, respectively. Quantitative methods of the wood flour content and PP content in WPCss by FTIR were developed, the predictive equations of the wood flour content in WPCss are y = 53.297x-9. 107 and y = 55.922x-10.238, the predictive equations of the PP content in WPCss are y = 6.828 5x+5.403 6 and y = 8.719 7x+3.295 8. The results of the accuracy test and precision test show that the method has strong repeatability and high accuracy. The average prediction relative deviations of the wood flour content and PP content in WPCss are about 5%. The prediction accuracy has been improved remarkably, compared to thermochemical methods. More importantly, FTIR is more easy-handing. This experiment may provide a simple, rapid and accurate method for quantification of wood flour and PP in Chinese fir/PP composites.

  2. Nonalcoholic Fatty Liver Disease: Diagnostic and Fat-Grading Accuracy of Low-Flip-Angle Multiecho Gradient-Recalled-Echo MR Imaging at 1.5 T

    PubMed Central

    Yokoo, Takeshi; Bydder, Mark; Hamilton, Gavin; Middleton, Michael S.; Gamst, Anthony C.; Wolfson, Tanya; Hassanein, Tarek; Patton, Heather M.; Lavine, Joel E.; Schwimmer, Jeffrey B.; Sirlin, Claude B.

    2009-01-01

    Purpose: To assess the accuracy of four fat quantification methods at low-flip-angle multiecho gradient-recalled-echo (GRE) magnetic resonance (MR) imaging in nonalcoholic fatty liver disease (NAFLD) by using MR spectroscopy as the reference standard. Materials and Methods: In this institutional review board–approved, HIPAA-compliant prospective study, 110 subjects (29 with biopsy-confirmed NAFLD, 50 overweight and at risk for NAFLD, and 31 healthy volunteers) (mean age, 32.6 years ± 15.6 [standard deviation]; range, 8–66 years) gave informed consent and underwent MR spectroscopy and GRE MR imaging of the liver. Spectroscopy involved a long repetition time (to suppress T1 effects) and multiple echo times (to estimate T2 effects); the reference fat fraction (FF) was calculated from T2-corrected fat and water spectral peak areas. Imaging involved a low flip angle (to suppress T1 effects) and multiple echo times (to estimate T2* effects); imaging FF was calculated by using four analysis methods of progressive complexity: dual echo, triple echo, multiecho, and multiinterference. All methods except dual echo corrected for T2* effects. The multiinterference method corrected for multiple spectral interference effects of fat. For each method, the accuracy for diagnosis of fatty liver, as defined with a spectroscopic threshold, was assessed by estimating sensitivity and specificity; fat-grading accuracy was assessed by comparing imaging and spectroscopic FF values by using linear regression. Results: Dual-echo, triple-echo, multiecho, and multiinterference methods had a sensitivity of 0.817, 0.967, 0.950, and 0.983 and a specificity of 1.000, 0.880, 1.000, and 0.880, respectively. On the basis of regression slope and intercept, the multiinterference (slope, 0.98; intercept, 0.91%) method had high fat-grading accuracy without statistically significant error (P > .05). Dual-echo (slope, 0.98; intercept, −2.90%), triple-echo (slope, 0.94; intercept, 1.42%), and multiecho (slope, 0.85; intercept, −0.15%) methods had statistically significant error (P < .05). Conclusion: Relaxation- and interference-corrected fat quantification at low-flip-angle multiecho GRE MR imaging provides high diagnostic and fat-grading accuracy in NAFLD. © RSNA, 2009 PMID:19221054

  3. Adaptive polynomial chaos techniques for uncertainty quantification of a gas cooled fast reactor transient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perko, Z.; Gilli, L.; Lathouwers, D.

    2013-07-01

    Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used techniquemore » proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)« less

  4. Target analyte quantification by isotope dilution LC-MS/MS directly referring to internal standard concentrations--validation for serum cortisol measurement.

    PubMed

    Maier, Barbara; Vogeser, Michael

    2013-04-01

    Isotope dilution LC-MS/MS methods used in the clinical laboratory typically involve multi-point external calibration in each analytical series. Our aim was to test the hypothesis that determination of target analyte concentrations directly derived from the relation of the target analyte peak area to the peak area of a corresponding stable isotope labelled internal standard compound [direct isotope dilution analysis (DIDA)] may be not inferior to conventional external calibration with respect to accuracy and reproducibility. Quality control samples and human serum pools were analysed in a comparative validation protocol for cortisol as an exemplary analyte by LC-MS/MS. Accuracy and reproducibility were compared between quantification either involving a six-point external calibration function, or a result calculation merely based on peak area ratios of unlabelled and labelled analyte. Both quantification approaches resulted in similar accuracy and reproducibility. For specified analytes, reliable analyte quantification directly derived from the ratio of peak areas of labelled and unlabelled analyte without the need for a time consuming multi-point calibration series is possible. This DIDA approach is of considerable practical importance for the application of LC-MS/MS in the clinical laboratory where short turnaround times often have high priority.

  5. Rapid screening of drugs of abuse in human urine by high-performance liquid chromatography coupled with high resolution and high mass accuracy hybrid linear ion trap-Orbitrap mass spectrometry.

    PubMed

    Li, Xiaowen; Shen, Baohua; Jiang, Zheng; Huang, Yi; Zhuo, Xianyi

    2013-08-09

    A novel analytical toxicology method has been developed for the analysis of drugs of abuse in human urine by using a high resolution and high mass accuracy hybrid linear ion trap-Orbitrap mass spectrometer (LTQ-Orbitrap-MS). This method allows for the detection of different drugs of abuse, including amphetamines, cocaine, opiate alkaloids, cannabinoids, hallucinogens and their metabolites. After solid-phase extraction with Oasis HLB cartridges, spiked urine samples were analysed by HPLC/LTQ-Orbitrap-MS using an electrospray interface in positive ionisation mode, with resolving power of 30,000 full width at half maximum (FWHM). Gradient elution off of a Hypersil Gold PFP column (50mm×2.1mm) allowed to resolve 65 target compounds and 3 internal standards in a total chromatographic run time of 20min. Validation of this method consisted of confirmation of identity, selectivity, linearity, limit of detection (LOD), lowest limits of quantification (LLOQ), accuracy, precision, extraction recovery and matrix effect. The regression coefficients (r(2)) for the calibration curves (LLOQ - 100ng/mL) in the study were ≥0.99. The LODs for 65 validated compounds were better than 5ng/ml except for 4 compounds. The relative standard deviation (RSD), which was used to estimate repeatability at three concentrations, was always less than 15%. The recovery of extraction and matrix effects were above 50 and 70%, respectively. Mass accuracy was always better than 2ppm, corresponding to a maximum mass error of 0.8 millimass units (mmu). The accurate masses of characteristic fragments were obtained by collisional experiments for a more reliable identification of the analytes. Automated data analysis and reporting were performed using ToxID software with an exact mass database. This procedure was then successfully applied to analyse drugs of abuse in a real urine sample from subject who was assumed to be drug addict. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. Improving the analysis of near-spectroscopy data with multivariate classification of hemodynamic patterns: a theoretical formulation and validation.

    PubMed

    Gemignani, Jessica; Middell, Eike; Barbour, Randall L; Graber, Harry L; Blankertz, Benjamin

    2018-04-04

    The statistical analysis of functional near infrared spectroscopy (fNIRS) data based on the general linear model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of hemodynamic activations without using any a priori model for the data, by classifying the channels as 'active' or 'not active' with a multivariate classifier based on linear discriminant analysis (LDA). This work is developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations between classification accuracy and demographic characteristics were investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis. The results of the simulation study show that the LDA-based method achieves higher classification accuracies than the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results. The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of theoretical assumptions, and that therefore a data-driven approach such as that provided by the proposed LDA-based method is to be favored.

  7. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD

    NASA Astrophysics Data System (ADS)

    Kim, H. S.

    2015-02-01

    The main objective of this study was to assess the predictive uncertainty from the rainfall-runoff model structure coupling a conceptual module (non-linear module) with a metric transfer function module (linear module). The methodology was primarily based on the comparison between the outputs of the rainfall-runoff model and those from an alternative model approach. An alternative model approach was used to minimise uncertainties arising from data and the model structure. A baseflow filter was adopted to better understand deficiencies in the forms of the rainfall-runoff model by avoiding the uncertainties related to data and the model structure. The predictive uncertainty from the model structure was investigated for representative groups of catchments having similar hydrological response characteristics in the upper Murrumbidgee Catchment. In the assessment of model structure suitability, the consistency (or variability) of catchment response over time and space in model performance and parameter values has been investigated to detect problems related to the temporal and spatial variability of the model accuracy. The predictive error caused by model uncertainty was evaluated through analysis of the variability of the model performance and parameters. A graphical comparison of model residuals, effective rainfall estimates and hydrographs was used to determine a model's ability related to systematic model deviation between simulated and observed behaviours and general behavioural differences in the timing and magnitude of peak flows. The model's predictability was very sensitive to catchment response characteristics. The linear module performs reasonably well in the wetter catchments but has considerable difficulties when applied to the drier catchments where a hydrologic response is dominated by quick flow. The non-linear module has a potential limitation in its capacity to capture non-linear processes for converting observed rainfall into effective rainfall in both the wetter and drier catchments. The comparative study based on a better quantification of the accuracy and precision of hydrological modelling predictions yields a better understanding for the potential improvement of model deficiencies.

  8. The PAC-MAN model: Benchmark case for linear acoustics in computational physics

    NASA Astrophysics Data System (ADS)

    Ziegelwanger, Harald; Reiter, Paul

    2017-10-01

    Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.

  9. Simultaneous determination of atenolol, chlorthalidone and amiloride in pharmaceutical preparations by capillary zone electrophoresis with ultraviolet detection.

    PubMed

    Al Azzam, Khaldun M; Saad, Bahruddin; Aboul-Enein, Hassan Y

    2010-09-01

    Capillary zone electrophoresis methods for the simultaneous determination of the beta-blocker drugs, atenolol, chlorthalidone and amiloride, in pharmaceutical formulations have been developed. The influences of several factors (buffer pH, concentration, applied voltage, capillary temperature and injection time) were studied. Using phenobarbital as internal standard, the analytes were all separated in less than 4 min. The separation was carried out in normal polarity mode at 25 degrees C, 25 kV and using hydrodynamic injection (10 s). The separation was effected in an uncoated fused-silica capillary (75 mum i.d. x 52 cm) and a background electrolyte of 25 mm H(3)PO(4) adjusted with 1 m NaOH solution (pH 9.0) and detection at 198 nm. The method was validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. Calibration curves were linear over the range 1-250 microg/mL for atenolol and chlorthalidone and from 2.5-250 microg/mL for amiloride. The relative standard deviations of intra- and inter-day migration times and corrected peak areas were less than 6.0%. The method showed good precision and accuracy and was successfully applied to the simultaneous determination of atenolol, chlorthalidone and amiloride in various pharmaceutical tablets formulations. 2010 John Wiley & Sons, Ltd.

  10. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2015-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  11. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  12. Simultaneous Determination of Crypto-Chlorogenic Acid, Isoquercetin, and Astragalin Contents in Moringa oleifera Leaf Extracts by TLC-Densitometric Method

    PubMed Central

    Vongsak, Boonyadist; Sithisarn, Pongtip; Gritsanapan, Wandee

    2013-01-01

    Moringa oleifera Lamarck (Moringaceae) is used as a multipurpose medicinal plant for the treatment of various diseases. Isoquercetin, astragalin, and crypto-chlorogenic acid have been previously found to be major active components in the leaves of this plant. In this study, a thin-layer-chromatography (TLC-)densitometric method was developed and validated for simultaneous quantification of these major components in the 70% ethanolic extracts of M. oleifera leaves collected from 12 locations. The average amounts of crypto-chlorogenic acid, isoquercetin, and astragalin were found to be 0.0473, 0.0427, and 0.0534% dry weight, respectively. The method was validated for linearity, precision, accuracy, limit of detection, limit of quantitation, and robustness. The linearity was obtained in the range of 100–500 ng/spot with a correlation coefficient (r) over 0.9961. Intraday and interday precisions demonstrated relative standard deviations of less than 5%. The accuracy of the method was confirmed by determining the recovery. The average recoveries of each component from the extracts were in the range of 98.28 to 99.65%. Additionally, the leaves from Chiang Mai province contained the highest amounts of all active components. The proposed TLC-densitometric method was simple, accurate, precise, and cost-effective for routine quality controlling of M. oleifera leaf extracts. PMID:23533530

  13. Stability of suxamethonium in pharmaceutical solution for injection by validated stability-indicating chromatographic method.

    PubMed

    Beck, William; Kabiche, Sofiane; Balde, Issa-Bella; Carret, Sandra; Fontan, Jean-Eudes; Cisternino, Salvatore; Schlatter, Joël

    2016-12-01

    To assess the stability of pharmaceutical suxamethonium (succinylcholine) solution for injection by validated stability-indicating chromatographic method in vials stored at room temperature. The chromatographic assay was achieved by using a detector wavelength set at 218 nm, a C18 column, and an isocratic mobile phase (100% of water) at a flow rate of 0.6 mL/min for 5 minutes. The method was validated according to the International Conference on Harmonization guidelines with respect to the stability-indicating capacity of the method including linearity, limits of detection and quantitation, precision, accuracy, system suitability, robustness, and forced degradations. Linearity was achieved in the concentration range of 5 to 40 mg/mL with a correlation coefficient higher than 0.999. The limits of detection and quantification were 0.8 and 0.9 mg/mL, respectively. The percentage relative standard deviation for intraday (1.3-1.7) and interday (0.1-2.0) precision was found to be less than 2.1%. Accuracy was assessed by the recovery test of suxamethonium from solution for injection (99.5%-101.2%). Storage of suxamethonium solution for injection vials at ambient temperature (22°C-26°C) for 17 days demonstrated that at least 95% of original suxamethonium concentration remained stable. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Development of a Stability-Indicating Stereoselective Method for Quantification of the Enantiomer in the Drug Substance and Pharmaceutical Dosage Form of Rosuvastatin Calcium by an Enhanced Approach

    PubMed Central

    Rajendra Reddy, Gangireddy; Ravindra Reddy, Papammagari; Siva Jyothi, Polisetty

    2015-01-01

    A novel, simple, precise, and stability-indicating stereoselective method was developed and validated for the accurate quantification of the enantiomer in the drug substance and pharmaceutical dosage forms of Rosuvastatin Calcium. The method is capable of quantifying the enantiomer in the presence of other related substances. The chromatographic separation was achieved with an immobilized cellulose stationary phase (Chiralpak IB) 250 mm x 4.6 mm x 5.0 μm particle size column with a mobile phase containing a mixture of n-hexane, dichloromethane, 2-propanol, and trifluoroacetic acid in the ratio 82:10:8:0.2 (v/v/v/v). The eluted compounds were monitored at 243 nm and the run time was 18 min. Multivariate analysis and statistical tools were used to develop this highly robust method in a short span of time. The stability-indicating power of the method was established by subjecting Rosuvastatin Calcium to the stress conditions (forced degradation) of acid, base, oxidative, thermal, humidity, and photolytic degradation. Major degradation products were identified and found to be well-resolved from the enantiomer peak, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection and limit of quantification, precision, linearity, accuracy, and robustness. The method exhibited consistent, high-quality recoveries (100 ± 10%) with a high precision for the enantiomer. Linear regression analysis revealed an excellent correlation between the peak responses and concentrations (r2 value of 0.9977) for the enantiomer. The method is sensitive enough to quantify the enantiomer above 0.04% and detect the enantiomer above 0.015% in Rosuvastatin Calcium. The stability tests were also performed on the drug substances as per ICH norms. PMID:26839815

  15. Development, Validation and Application of a Stability Indicating HPLC Method to Quantify Lidocaine from Polyethylene-co-Vinyl Acetate (EVA) Matrices and Biological Fluids.

    PubMed

    Bhusal, Prabhat; Sharma, Manisha; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren

    2017-09-01

    An efficient and cost-effective quantification procedure for lidocaine by HPLC has been developed to estimate lidocaine from an EVA matrix, plasma, peritoneal fluid and intra-articular fluid (IAF). This method guarantees the resolution of lidocaine from the degradation products obtained from alkaline and oxidative stress. Chromatographic separation of lidocaine was achieved with a retention time of 7 min using a C18 column with a mobile phase comprising acetonitrile and potassium dihydrogen phosphate buffer (pH 5.5; 0.02 M) in the ratio of 26:74 at a flow rate of 1 mL min-1 with detection at 230 nm. Instability of lidocaine was observed to an oxidizing (0.02% H2O2) and alkaline environments (0.1 M NaOH). The calibration curve was found to be linear within the concentration range of 0.40-50.0 μg/mL. Intra-day and inter-day accuracy ranged between 95.9% and 99.1%, with precision (% RSD) below 6.70%. The limit of quantification and limit of detection were 0.40 μg/mL and 0.025 μg/mL, respectively. The simple extraction method described enabled the quantification of lidocaine from an EVA matrix using dichloromethane as a solvent. The assay and content uniformity of lidocaine within an EVA matrix were 103 ± 3.60% and 100 ± 2.60%, respectively. The ability of this method to quantify lidocaine release from EVA films was also demonstrated. Extraction of lidocaine from plasma, peritoneal fluid and IAF followed by HPLC analysis confirmed the utility of this method for ex vivo and in vivo studies where the calibration plot was found to be linear from 1.60 to 50.0 μg/mL. © Crown copyright 2017.

  16. Simultaneous analysis of mono-, di-, and tri-ethanolamine in cosmetic products using liquid chromatography coupled tandem mass spectrometry.

    PubMed

    Shin, Kyong-Oh; Lee, Yong-Moon

    2016-01-01

    Alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) are used as wetting agents in shampoos, lotions, creams, and other cosmetics. DEA is widely used to provide lather in shampoos and maintain a favorable consistency in lotions and creams. Although DEA is not harmful, it may react with other ingredients in the cosmetic formula after extended storage periods to form an extremely potent carcinogen called nitrosodiethanolamine (NDEA), which is readily absorbed through the skin and has been linked to the development of stomach, esophagus, liver, and bladder cancers. The purpose of this study was to develop a simultaneous quantification method for measurement of MEA, DEA, and TEA in cosmetic products. Liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was performed using a hydrophilic interaction liquid chromatography (HILIC) column with isocratic elution containing acetonitrile and 5 mM ammonium formate in water (88:12, v/v). Identification and quantification of alkanolamines were performed using MS/MS monitoring to assess the transition from precursor to product ion of MEA (m/z, 61.1 → 44.0), DEA (m/z, 106.1 → 88.0), TEA (m/z, 150.1 → 130.0), and the internal standard triethylamine (m/z, 102.2 → 58.0). Alkanolamines extractions were simplified using a single extraction with acetonitrile in the cosmetic matrix. Performance of the method was evaluated with quality parameters such as specificity, carry-over, linearity and calibration, correlation of determination (R(2)), detection limit, precision, accuracy, and recovery. Calibration curves of MEA (2.9-1000 ppb), DEA (1-1000 ppb), and TEA (1-1000 ppb) were constructed by plotting concentration versus peak-area ratio (analyte/internal standard with a correlation coefficient greater than 0.99). The intra- and inter-assay accuracy ranged from 92.92 to 101.15 % for all analytes. The intra- and inter-assay precision for MEA, DEA, and TEA showed all coefficients of variance were less than 9.38 % for QC samples. Limits of detection and limits of quantification were 2.00 and 15.63 ppb for MEA, 0.49 and 1.96 ppb for DEA, and 0.49 and 1.96 ppb for TEA, respectively. This novel quantification method simplified sample preparation and allowed accurate and reproducible quantification of alkanolamines in the ng/g cosmetic weight (ppb) range for several cosmetic products.

  17. New techniques for the quantification and modeling of remotely sensed alteration and linear features in mineral resource assessment studies

    USGS Publications Warehouse

    Trautwein, C.M.; Rowan, L.C.

    1987-01-01

    Linear structural features and hydrothermally altered rocks that were interpreted from Landsat data have been used by the U.S. Geological Survey (USGS) in regional mineral resource appraisals for more than a decade. In the past, linear features and alterations have been incorporated into models for assessing mineral resources potential by manually overlaying these and other data sets. Recently, USGS research into computer-based geographic information systems (GIS) for mineral resources assessment programs has produced several new techniques for data analysis, quantification, and integration to meet assessment objectives.

  18. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation.

    PubMed

    De, Amit Kumar; Chowdhury, Partha Pratim; Chattapadhyay, Shyamaprasad

    2016-01-01

    The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL(-1) and 82.69 μg·mL(-1) (r (2) = 0.999) for resorcinol and 10.44 μg·mL(-1) and 83.50 μg·mL(-1) (r (2) = 0.998) for dexpanthenol. The method has been validated as per ICH Q2(R1) guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday) study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients.

  19. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation

    PubMed Central

    De, Amit Kumar; Chowdhury, Partha Pratim; Chattapadhyay, Shyamaprasad

    2016-01-01

    The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL−1 and 82.69 μg·mL−1 (r 2 = 0.999) for resorcinol and 10.44 μg·mL−1 and 83.50 μg·mL−1 (r 2 = 0.998) for dexpanthenol. The method has been validated as per ICH Q2(R1) guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday) study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients. PMID:27042377

  20. Simultaneous Quantification of Seven Bioactive Flavonoids in Citri Reticulatae Pericarpium by Ultra-Fast Liquid Chromatography Coupled with Tandem Mass Spectrometry.

    PubMed

    Zhao, Lian-Hua; Zhao, Hong-Zheng; Zhao, Xue; Kong, Wei-Jun; Hu, Yi-Chen; Yang, Shi-Hai; Yang, Mei-Hua

    2016-05-01

    Citri Reticulatae Pericarpium (CRP) is a commonly-used traditional Chinese medicine with flavonoids as the major bioactive components. Nevertheless, the contents of the flavonoids in CRP of different sources may significantly vary affecting their therapeutic effects. Thus, the setting up of a reliable and comprehensive quality assessment method for flavonoids in CRP is necessary. To set up a rapid and sensitive ultra-fast liquid chromatography coupled with tandem mass spectrometry (UFLC-MS/MS) method for simultaneous quantification of seven bioactive flavonoids in CRP. A UFLC-MS/MS method coupled to ultrasound-assisted extraction was developed for simultaneous separation and quantification of seven flavonoids including hesperidin, neohesperidin, naringin, narirutin, tangeretin, nobiletin and sinensetin in 16 batches of CRP samples from different sources in China. The established method showed good linearity for all analytes with correlation coefficient (R) over 0.9980, together with satisfactory accuracy, precision and reproducibility. Furthermore, the recoveries at the three spiked levels were higher than 89.71% with relative standard deviations (RSDs) lower than 5.19%. The results indicated that the contents of seven bioactive flavonoids in CRP varied significantly among different sources. Among the samples under study, hesperidin showed the highest contents in 16 samples ranged from 27.50 to 86.30 mg/g, the contents of hesperidin in CRP-15 and CRP-9 were 27.50 and 86.30 mg/g, respectively, while, the amount of narirutin was too low to be measured in some samples. This study revealed that the developed UFLC-MS/MS method was simple, sensitive and reliable for simultaneous quantification of multi-components in CRP with potential perspective for quality control of complex matrices. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Quantification of 4'-geranyloxyferulic acid, a new natural colon cancer chemopreventive agent, by HPLC-DAD in grapefruit skin extract.

    PubMed

    Genovese, S; Epifano, F; Carlucci, G; Marcotullio, M C; Curini, M; Locatelli, M

    2010-10-10

    Oxyprenylated natural products (isopentenyloxy-, geranyloxy- and the less spread farnesyloxy-compounds and their biosynthetic derivatives) represent a family of secondary metabolites that have been consider for years merely as biosynthetic intermediates of the most abundant C-prenylated derivatives. Many of the isolated oxyprenylated natural products were shown to exert in vitro and in vivo remarkable anti-cancer and anti-inflammatory effects. 4'-Geranyloxyferulic acid [3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic] has been discovered as a valuable chemopreventive agent of several types of cancer. After development of a high yield and "eco-friendly" synthetic scheme of this secondary metabolite, starting from cheap and non-toxic reagents and substrates, we developed a new HPLC-DAD method for its quantification in grapefruit skin extract. A preliminary study on C18 column showed the separation between GOFA and boropinic acid (having the same core but with an isopentenyloxy side chain), used as internal standard. The tested column were thermostated at 28+/-1 degrees C and the separation was achieved in gradient condition at a flow rate of 1 mL/min with a starting mobile phase of H(2)O:methanol (40:60, v/v, 1% formic acid). The limit of detection (LOD, S/N=3) was 0.5 microg/mL and the limit of quantification (LOQ, S/N=10) was 1 microg/mL. Matrix-matched standard curves showed linearity up to 75 microg/mL. In the analytical range the precision (RSD%) values were

  2. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain.

    PubMed

    Schou-Pedersen, Anne Marie V; Hansen, Stine N; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2016-08-15

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical detection provided limits of quantifications (LOQs) between 3.6 and 12nM. Within the linear range, obtained recoveries were from 90.9±9.9 to 120±14% and intra-day and inter-day precisions found to be less than 5.5% and 12%, respectively. The analytical method was applicable for quantification of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7pmol per 2 million cells intracellularly, but only the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid in frontal cortex, as compared to cerebellum. The chemical turnover in frontal cortex tissue of guinea pig was for serotonin successfully predicted from the turnover observed in the frontal cortex cell culture. In conclusion, the present analytical method shows high precision, accuracy and sensitivity and is broadly applicable to monoamine measurements in cell cultures as well as brain biopsies from animal models used in preclinical neurochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sensitive and rapid liquid chromatography/tandem mass spectrometric assay for the quantification of piperaquine in human plasma.

    PubMed

    Singhal, Puran; Gaur, Ashwani; Gautam, Anirudh; Varshney, Brijesh; Paliwal, Jyoti; Batra, Vijay

    2007-11-01

    A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of piperaquine, an antimalarial drug, in human plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method involved a simple protein precipitation with methanol followed by rapid isocratic elution of analytes with 10mM ammonium acetate buffer/methanol/formic acid/ammonia solution (25/75/0.2/0.15, v/v) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and quantification by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 535.3-->288.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 1.0-250.2 ng/mL for piperaquine in plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) in plasma were 0.2 and 1.0 ng/mL, respectively. Acceptable precision and accuracy (+/-20% deviation for LLOQ standard and +/-15% deviation for other standards from the respective nominal concentration) were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully applied to analyze human plasma samples from phase-1 clinical studies. The mean pharmacokinetic parameters of piperaquine following 1000 mg oral dose: observed maximum plasma concentration (Cmax), time to maximum plasma concentration (Tmax) and elimination half-life (T1/2) were 46.1 ng/mL, 3.8h and 13 days, respectively.

  4. Development of an analytical method for the targeted screening and multi-residue quantification of environmental contaminants in urine by liquid chromatography coupled to high resolution mass spectrometry for evaluation of human exposures.

    PubMed

    Cortéjade, A; Kiss, A; Cren, C; Vulliet, E; Buleté, A

    2016-01-01

    The aim of this study was to develop an analytical method and contribute to the assessment of the Exposome. Thus, a targeted analysis of a wide range of contaminants in contact with humans on daily routines in urine was developed. The method focused on a list of 38 contaminants, including 12 pesticides, one metabolite of pesticide, seven veterinary drugs, five parabens, one UV filter, one plastic additive, two surfactants and nine substances found in different products present in the everyday human environment. These contaminants were analyzed by high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS) with a quadrupole-time-of-flight (QqToF) instrument from a raw urinary matrix. A validation according to the FDA guidelines was employed to evaluate the specificity, linear or quadratic curve fitting, inter- and intra-day precision, accuracy and limits of detection and quantification (LOQ). The developed analysis allows for the quantification of 23 contaminants in the urine samples, with the LOQs ranging between 4.3 ng.mL(-1) and 113.2 ng.mL(-1). This method was applied to 17 urine samples. Among the targeted contaminants, four compounds were detected in samples. One of the contaminants (tributyl phosphate) was detected below the LOQ. The three others (4-hydroxybenzoic acid, sodium dodecylbenzenesulfonate and O,O-diethyl thiophosphate potassium) were detected but did not fulfill the validation criteria for quantification. Among these four compounds, two of them were found in all samples: tributyl phosphate and the surfactant sodium dodecylbenzenesulfonate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Accuracy Profiles for Analyzing Residual Solvents in Textiles by GC-MS.

    PubMed

    Bao, Qibei; Fu, Kejie; Ren, Qingqing; Zhong, Yingying; Qian, Dan

    2017-10-01

    Excess residual solvents (RSs) in clothes or other textiles could be toxic and pose risks to both humans and the environment. N,N-Dimethylformamide (DMF), N,N-dimethylacetamide (DMAc) and 1-methyl-2-pyrrolidinone (NMP) are important chemicals frequently used as solvents in the textile industry. Several organizations have proposed limiting DMF, DMAc and NMP in textiles, but an appropriate detection method has not been proposed. A sensitive GC-MS method for the quantification of DMF, DMAc and NMP in textiles was developed. After extraction with ethyl acetate, these RSs were separated on a DB-5MS capillary column. The oven temperature was increased from 50°C (held for 0.5 min) at 10°C/min to 120°C (held for 1 min). The method was fully validated according to the accuracy profile procedure, which is based on β-expectation tolerance intervals for the total measurement bias. Linearity was observed in the range of 0.5-10 mg/L for the solvents with limit of quantification values of 4.2, 3.5 and 2.5 mg/kg for DMF, DMAc and NMP, respectively. The repeatability and intermediate precision were <5.34% and 7.95% for DMF, 5.37% and 9.68% for DMAc, and 2.68% and 5.85% for NMP. The recoveries of DMF, DMAc and NMP were 91.2-106.3%, 89.5-97.7% and 85.6-101.3%, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Simultaneous quantification of preactivated ifosfamide derivatives and of 4-hydroxyifosfamide by high performance liquid chromatography-tandem mass spectrometry in mouse plasma and its application to a pharmacokinetic study.

    PubMed

    Deroussent, Alain; Skarbek, Charles; Maury, Adeline; Chapuis, Hubert; Daudigeos-Dubus, Estelle; Le Dret, Ludivine; Durand, Sylvère; Couvreur, Patrick; Desmaële, Didier; Paci, Angelo

    2015-06-15

    The antitumor drug, ifosfamide (IFO), requires activation by cytochrome P450 (CYP) to form the active metabolite, 4-hydroxyisfosfamide (4-OHIFO), leading to toxic by-products at high dose. In order to overcome these drawbacks, preactivated ifosfamide derivatives (RXIFO) were designed to release 4-OHIFO without CYP involvement. A high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous quantification of 4-OHIFO, IFO and four derivatives RXIFO in mouse plasma using multiple reaction monitoring. Because of its instability in plasma, 4-OHIFO was immediately converted to the semi-carbazone derivative, 4-OHIFO-SCZ. For the six analytes, the calibration curves were linear from 20 to 5000ng/mL in 50μL plasma and the lower limit of quantitation was determined at 20ng/mL with accuracies within ±10% of nominal and precisions less than 12%. Their recoveries ranged from 62 to 96% by using liquid-liquid extraction. With an improved assay sensitivity compared to analogues, the derivative 4-OHIFO-SCZ was stable in plasma at 4°C for 24h and at -20°C for three months. For all compounds, the assay was validated with accuracies within ±13% and precisions less than 15%. This method was applied to a comparative pharmacokinetic study of 4-OHIFO from IFO and three derivatives RXIFO in mice. This active metabolite was produced by some of the novel conjugates with good pharmacokinetic properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Development of a high-throughput method for the determination of ethosuximide in human plasma by liquid chromatography mass spectrometry.

    PubMed

    Bhatt, Mitesh; Shah, Sanjay; Shivprakash

    2010-06-01

    A simple, rapid, sensitive and specific ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of ethosuximide in human plasma is described. Analyte was chromatographed on a Hypersil Gold C18 column (100 mm x 2.1 mm, i.d., 1.9 microm) with isocratic elution at a flow rate of 0.250 mL/min and pravastatin was used as the internal standard. The assay involves a simple solid-phase extraction procedure of 0.25 mL human plasma and the analysis was performed on a triple-quadrupole tandem mass spectrometer by MRM mode via electrospray ionization (ESI). The method was linear in the concentration range of 0.25-60.0 microg/mL. The lower limit of quantification (LLOQ) was 0.25 microg/mL. The within- and between-day precision and accuracy of the quality control samples were within 10.0%. The recovery was 95.1% and 94.4% for ethosuximide and pravastatin, respectively. The analysis time for each sample was 1.8 min. The method was highly reproducible and gave peaks with excellent chromatography properties. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Simultaneous determination of ezetimibe and simvastatin in pharmaceutical preparations by MEKC.

    PubMed

    Yardimci, Ceren; Ozaltin, Nuran

    2010-02-01

    A micellar electrokinetic capillary chromatography method was developed and validated for the simultaneous determination of ezetimibe and simvastatin in pharmaceutical preparations. The influence of buffer concentration, buffer pH, sodium dodecyl sulphate (SDS) concentration, organic modifier, capillary temperature, applied voltage, and injection time was investigated, and the method validation studies were performed. The optimum separation for these analytes was achieved in less than 10 min at 30 degrees C with a fused-silica capillary column (56 cm x 50 microm i.d.) and a 25mM borate buffer at pH 9.0 containing 25mM SDS and 10% (v/v) acetonitrile. The samples were injected hydrodynamically for 3 s at 50 mbar, and the applied voltage was +30.0 kV. Detection wavelength was set at 238 nm. Diflunisal was used as internal standard. The method was suitably validated with respect to stability, specificity, linearity, limits of detection and quantification, accuracy, precision, and robustness. The limits of detection and quantification were 1.0 and 2.0 microg/mL for both ezetimibe and simvastatin, respectively. The method developed was successfully applied to the simultaneous determination of ezetimibe and simvastatin in pharmaceutical preparations.

  9. A fast and validated method for the determination of malondialdehyde in fish liver using high-performance liquid chromatography with a photodiode array detector.

    PubMed

    Faizan, Mohammad; Esatbeyoglu, Tuba; Bayram, Banu; Rimbach, Gerald

    2014-04-01

    Malondialdehyde (MDA) is a biomarker of lipid peroxidation and is present in foods and biological samples such as plasma. A high-performance liquid chromatography (HPLC) method was applied to determine MDA in fish liver samples after derivatization with 2,4-dinitrophenylhydrazine (DNPH) using a ODS2 column (10 cm × 4.6 mm, 3 μm) and a photodiode array detector. The mobile phase consisted of 0.2% acetic acid (v/v) in distilled water and acetonitrile (42:58, v/v). The present method was validated in terms of linearity, lower limit of quantification, lower limit of detection, precision, accuracy, recovery, and stability of MDA according to U.S. Food and Drug Administration (FDA) guidelines. The limit of quantification of MDA was 0.39 μmol/L, which is comparable to other methods. The recovery of the spiked MDA liver samples was in the range of 92.4% to 104.2%. This newly modified HPLC method is specific, sensitive, and accurate and allows the analysis of MDA within 4 min in fish liver but also in other tissues and plasma. © 2014 Institute of Food Technologists®

  10. Quantification of seven β-lactam antibiotics and two β-lactamase inhibitors in human plasma using a validated UPLC-MS/MS method.

    PubMed

    Carlier, Mieke; Stove, Veronique; Roberts, Jason A; Van de Velde, Eric; De Waele, Jan J; Verstraete, Alain G

    2012-11-01

    There is an increasing interest in monitoring plasma concentrations of β-lactam antibiotics. The objective of this work was to develop and validate a rapid ultra-performance liquid chromatographic method with tandem mass spectrometric detection (UPLC-MS/MS) for simultaneous quantification of amoxicillin, ampicillin, cefuroxime, cefazolin, ceftazidime, meropenem, piperacillin, clavulanic acid and tazobactam. Sample clean-up included protein precipitation with acetonitrile and back-extraction of acetonitrile with dichloromethane. Six deuterated β-lactam antibiotics were used as internal standards. Chromatographic separation was performed on a Waters ACQUITY UPLC system using a BEH C(18) column (1.7 μm, 100 mm×2.1 mm) applying a binary gradient elution of water and acetonitrile both containing 0.1% formic acid. The total run time was 5.5 min. The developed method was validated in terms of precision, accuracy, linearity, matrix effect and recovery. The assay has now been successfully used to determine concentrations of amoxicillin/clavulanic acid, cefuroxime and meropenem in plasma samples from intensive care patients. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  11. Quantification of paracetamol and 5-oxoproline in serum by capillary electrophoresis: Implication for clinical toxicology.

    PubMed

    Hložek, Tomáš; Křížek, Tomáš; Tůma, Petr; Bursová, Miroslava; Coufal, Pavel; Čabala, Radomír

    2017-10-25

    High anion gap metabolic acidosis frequently complicates acute paracetamol overdose and is generally attributed to lactic acidosis or compromised hepatic function. However, metabolic acidosis can also be caused by organic acid 5-oxoproline (pyroglutamic acid). Paracetamol's toxic intermediate, N-acetyl-p-benzoquinoneimine irreversibly binds to glutathione and its depletion leads to subsequent disruption of the gamma glutamyl cycle and an excessive 5-oxoproline generation. This is undoubtedly an underdiagnosed condition because measurement of serum 5-oxoproline level is not readily available. A simple, cost effective, and fast capillary electrophoresis method with diode array detection (DAD) for simultaneous measurement of both paracetamol (acetaminophen) and 5-oxoproline in serum was developed and validated. This method is highly suitable for clinical toxicology laboratory diagnostic, allowing rapid quantification of acidosis inducing organic acid 5-oxoproline present in cases of paracetamol overdose. The calibration dependence of the method was proved to be linear in the range of 1.3-250μgmL -1 , with adequate accuracy (96.4-107.8%) and precision (12.3%). LOQ equaled 1.3μgmL -1 for paracetamol and 4.9μgmL -1 for 5-oxoproline. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Capillary gel electrophoresis for the quantification and purity determination of recombinant proteins in inclusion bodies.

    PubMed

    Espinosa-de la Garza, Carlos E; Perdomo-Abúndez, Francisco C; Campos-García, Víctor R; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2013-09-01

    In this work, a high-resolution CGE method for quantification and purity determination of recombinant proteins was developed, involving a single-component inclusion bodies (IBs) solubilization solution. Different recombinant proteins expressed as IBs were used to show method capabilities, using recombinant interferon-β 1b as the model protein for method validation. Method linearity was verified in the range from 0.05 to 0.40 mg/mL and a determination coefficient (r(2) ) of 0.99 was obtained. The LOQs and LODs were 0.018 and 0.006 mg/mL, respectively. RSD for protein content repeatability test was 2.29%. In addition, RSD for protein purity repeatability test was 4.24%. Method accuracy was higher than 90%. Specificity was confirmed, as the method was able to separate recombinant interferon-β 1b monomer from other aggregates and impurities. Sample content and purity was demonstrated to be stable for up to 48 h. Overall, this method is suitable for the analysis of recombinant proteins in IBs according to the attributes established on the International Conference for Harmonization guidelines. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Validation of a fast and accurate chromatographic method for detailed quantification of vitamin E in green leafy vegetables.

    PubMed

    Cruz, Rebeca; Casal, Susana

    2013-11-15

    Vitamin E analysis in green vegetables is performed by an array of different methods, making it difficult to compare published data or choosing the adequate one for a particular sample. Aiming to achieve a consistent method with wide applicability, the current study reports the development and validation of a fast micro-method for quantification of vitamin E in green leafy vegetables. The methodology uses solid-liquid extraction based on the Folch method, with tocol as internal standard, and normal-phase HPLC with fluorescence detection. A large linear working range was confirmed, being highly reproducible, with inter-day precisions below 5% (RSD). Method sensitivity was established (below 0.02 μg/g fresh weight), and accuracy was assessed by recovery tests (>96%). The method was tested in different green leafy vegetables, evidencing diverse tocochromanol profiles, with variable ratios and amounts of α- and γ-tocopherol, and other minor compounds. The methodology is adequate for routine analyses, with a reduced chromatographic run (<7 min) and organic solvent consumption, and requires only standard chromatographic equipment available in most laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Densitometric HPTLC analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams.

    PubMed

    Alam, Prawez

    2013-08-01

    To develop and validate a simple, accurate HPTLC method for the analysis of 8-gingerol and to determine the quantity of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams. The analysis was performed on 10×20 cm aluminium-backed plates coated with 0.2 mm layers of silica gel 60 F254 (E-Merck, Germany) with n-hexane: ethyl acetate 60: 40 (v/v) as mobile phase. Camag TLC Scanner III was used for the UV densitometric scanning at 569. This system was found to give a compact spot of 8-gingerol at retention factor (Rf) value of (0.39±0.04) and linearity was found in the ranges 50-500 ng/spot (r (2)=0.9987). Limit of detection (12.76 ng/spot), limit of quantification (26.32 ng/spot), accuracy (less than 2 %) and recovery (ranging from 98.22-99.20) were found satisfactory. The HPTLC method developed for quantification of 8-gingerol was found to be simple, accurate, reproducible, sensitive and is applicable to the analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams.

  15. Quantitative determination of rocuronium in human plasma by liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Farenc, C; Enjalbal, C; Sanchez, P; Bressolle, F; Audran, M; Martinez, J; Aubagnac, J L

    2001-02-23

    Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) was used for the quantification of the neuromuscular blocking agent rocuronium in human plasma. Verapamil was used as internal standard. The samples were subjected to a dichloromethane liquid-liquid extraction after ion pairing of the positively charged ammonium compound with iodide prior to LC-MS. Optimized conditions involved separation on a Symmetry Shield RP-18 column (50 x 2.1 mm, 3.5 microm) using a 15-min gradient from 10 to 90% acetonitrile in water containing 0.1% trifluoroacetic acid at 250 microl/min. Linear detector responses for standards were observed from 25 to 2,000 ng/ml. The extraction recovery averaged 59% for rocuronium and 83% for the internal standard. The limit of quantification (LOQ), using 500 microl of plasma, was 25 ng/ml. Precision ranged from 1.3 to 19% (LOQ), and accuracy was between 92 and 112%. In plasma samples, at 20 and 4 degrees C, rocuronium was stable at physiological pH for 4 h; frozen at -30 degrees C it was stable for at least 75 days. The method was found suitable for the analysis of samples collected during pharmacokinetic investigations in humans.

  16. Determination of Total Selenium in Infant Formulas: Comparison of the Performance of FIA and MCFA Flow Systems

    PubMed Central

    Pistón, Mariela; Knochen, Moisés

    2012-01-01

    Two flow methods, based, respectively, on flow-injection analysis (FIA) and on multicommutated flow analysis (MCFA), were compared with regard to their use for the determination of total selenium in infant formulas by hydride-generation atomic absorption spectrometry. The method based on multicommutation provided lower detection and quantification limits (0.08 and 0.27 μg L−1 compared to 0.59 and 1.95 μ L−1, resp.), higher sampling frequency (160 versus. 70 samples per hour), and reduced reagent consumption. Linearity, precision, and accuracy were similar for the two methods compared. It was concluded that, while both methods proved to be appropriate for the purpose, the MCFA-based method exhibited a better performance. PMID:22505923

  17. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia

    2017-09-01

    Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.

  18. Flow Cytometry: Evolution of Microbiological Methods for Probiotics Enumeration.

    PubMed

    Pane, Marco; Allesina, Serena; Amoruso, Angela; Nicola, Stefania; Deidda, Francesca; Mogna, Luca

    2018-05-14

    The purpose of this trial was to verify that the analytical method ISO 19344:2015 (E)-IDF 232:2015 (E) is valid and reliable for quantifying the concentration of the probiotic Lactobacillus rhamnosus GG (ATCC 53103) in a finished product formulation. Flow cytometry assay is emerging as an alternative rapid method for microbial detection, enumeration, and population profiling. The use of flow cytometry not only permits the determination of viable cell counts but also allows for enumeration of damaged and dead cell subpopulations. Results are expressed as TFU (Total Fluorescent Units) and AFU (Active Fluorescent Units). In December 2015, the International Standard ISO 19344-IDF 232 "Milk and milk products-Starter cultures, probiotics and fermented products-Quantification of lactic acid bacteria by flow cytometry" was published. This particular ISO can be applied universally and regardless of the species of interest. Analytical method validation was conducted on 3 different industrial batches of L. rhamnosus GG according to USP39<1225>/ICH Q2R1 in term of: accuracy, precision (repeatability), intermediate precision (ruggedness), specificity, limit of quantification, linearity, range, robustness. The data obtained on the 3 batches of finished product have significantly demonstrated the validity and robustness of the cytofluorimetric analysis. On the basis of the results obtained, the ISO 19344:2015 (E)-IDF 232:2015 (E) "Quantification of lactic acid bacteria by flow cytometry" can be used for the enumeration of L. rhamnosus GG in a finished product formulation.

  19. A validated LC-MS/MS assay for simultaneous quantification of methotrexate and tofacitinib in rat plasma: application to a pharmacokinetic study.

    PubMed

    Sharma, Kuldeep; Giri, Kalpeshkumar; Dhiman, Vinay; Dixit, Abhishek; Zainuddin, Mohd; Mullangi, Ramesh

    2015-05-01

    A highly sensitive, specific and rapid LC-ESI-MS/MS method has been developed and validated for simultaneous quantification of methotrexate (MTX) and tofacitinib (TFB) in rat plasma (50 μL) using phenacetin as an internal standard (IS), as per the US Food and Drug Administration guidelines. After a solid-phase extraction procedure, the separation of the analytes and IS was performed on a Chromolith RP₁₈e column using an isocratic mobile phase of 5 m m ammonium acetate (pH 5.0) and acetonitrile at a ratio of 25:75 (v/v) using flow-gradient with a total run time of 3.5 min. The detection was performed in multiple reaction monitoring mode, using the transitions of m/z 455.2 → 308.3, m/z 313.2 → 149.2 and m/z 180.3 → 110.2 for MTX, TFB and IS, respectively. The calibration curves were linear over the range of 0.49-91.0 and 0.40-74.4 ng/mL for MTX and TFB, respectively. The intra- and interday accuracy and precision values for MTX and TFB were <15% at low quality control (QC), medium QC and high QC and <20% at lower limit of quantification. The validated assay was applied to derive the pharmacokinetic parameters for MTX and TFB post-dosing of MTX and TFB orally and intravenously to rats. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Simultaneous quantification of paeoniflorin, nobiletin, tangeretin, liquiritigenin, isoliquiritigenin, liquiritin and formononetin from Si-Ni-San extract in rat plasma and tissues by liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Tianxue; Yan, Zhixiang; Zhou, Chen; Sun, Jian; Jiang, Chuan; Yang, Xinghao

    2013-08-01

    In this study, a sensitive and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of seven bioactive components including paeoniflorin, nobiletin, tangeretin, liquiritigenin, isoliquiritigenin, liquiritin and formononetin in rat plasma and tissues after oral administration of Si-Ni-San extract using astragaloside IV as internal standard (IS). The plasma and tissue samples were extracted by solid-phase extraction. Chromatographic separation was accomplished on a C18 column with a multiple-step gradient elution. The quantification was obtained by scanning with multiple reaction monitoring via an electrospray ionization source that was operated by switching between the positive and negative modes in two MS/MS scan segments. Full validation of the assay was implemented. In conclusion, this method demonstrated good linearity and specificity. The lower limits of quantification for the analytes were <7.5 ng/mL. Intra- and inter-day precisions (RSD) were <12.5% and accuracy (RE) ranged from -10.2 to 7.3%. The average recoveries of the analytes from rat plasma and tissues were >65.2% and 58.6%, respectively. The validated method was further applied to the determination of actual rat plasma and tissues after oral administration of Si-Ni-San extract. The results provided a meaningful basis for the clinical application of this prescription. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Ultrapressure liquid chromatography-tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for quantification of 4-methoxydiphenylmethane in pharmacokinetic evaluation.

    PubMed

    Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian

    2016-09-05

    4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Magnetic resonance cell-tracking studies: spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles.

    PubMed

    Böhm, Ingrid

    2011-08-01

    The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r  =  .9958; p  =  2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).

  3. HPLC-ELSD Quantification and Centrifugal Partition Chromatography Isolation of 8-O-Acetylharpagide from Oxera coronata (Lamiaceae).

    PubMed

    Remeur, Camille; Le Borgne, Erell; Gauthier, Léa; Grougnet, Raphaël; Deguin, Brigitte; Poullain, Cyril; Litaudon, Marc

    2017-05-01

    Iridoid glycosides possess highly functionalised monoterpenoid aglycon with several contiguous stereocentres. For the most common, they are often present in quantities reaching several percentage of the fresh plant weight, and thus they may be regarded as starting material for the synthesis of a number of new chiral and bioactive molecules. To quantify and to isolate 8-O-acetylharpagide (AH) from several extracts of Oxera coronata R.P.J. de Kok, a Lamiaceae species endemic to New Caledonia, using HPLC-ELSD (evaporative light scattering detector) and centrifugal partition chromatography (CPC). Oxera coronata produces high amounts of AH in leaves, twigs and fruits. Water and methanol extracts of these plant parts were prepared. The content of AH in each extract was quantified by HPLC-ELSD, using acetonitrile-water (+0.1% formic acid) gradient elution. The HPLC method was validated for precision, linearity, limit of detection (LOD), limit of quantification (LOQ) and accuracy. A ternary solvent system ethyl acetate/n-propanol/water (3:2:5, v/v/v) was selected and applied to recover the target compound using Spot CPC from the leaves aqueous extract. HPLC-ELSD analysis followed by CPC purification led to the efficient isolation of AH from O. coronata leaves aqueous extract. HPLC-ELSD has proven to be a well-adapted detection and quantification method for iridoid glycosides, while CPC confirmed to be an efficient technique for the isolation of polar compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Parallel ultra high pressure liquid chromatography-mass spectrometry for the quantification of HIV protease inhibitors using dried spot sample collection format.

    PubMed

    Watanabe, Kyoko; Varesio, Emmanuel; Hopfgartner, Gérard

    2014-08-15

    An assay was developed and validated for the quantification of eight protease inhibitors (indinavir (IDV), ritonavir (RTV), lopinavir (LPV), saquinavir (SQV), amprenavir (APV), nelfinavir (NFV), atazanavir (AZV) and darunavir (DRV)) in dried plasma spots using parallel ultra-high performance liquid chromatography and mass spectrometry detection in the multiple reaction monitoring mode. For each analyte an isotopically labeled internal standard was used and the assay based on liquid-solid extraction the area response ratio (analyte/IS) was found to be linear; from 0.025 μg/ml to 20 μg/ml for IDV, SQV, DRV, AZV, LPV, from 0.025 μg/ml to 10 μg/ml for NFV, APV and from 0.025 μg/ml to 5 μg/ml for RTV using 15 μl of plasma spotted on filter paper placed in a sample tube. The total analysis time was of 4 min and inter-assay accuracies and precisions were in the range of 87.7-109% and 2.5-11.8%, respectively. On dried plasma spots all analytes were found to be stable for at least 7 days. Practicability of the assay to blood was also demonstrated. The sample drying process could be reduced to 5 min using a commercial microwave system without any analyte degradation. Together with quantification, confirmatory analysis was performed on representative clinical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Easy-Assessment of Levofloxacin and Minocycline in Relevant Biomimetic Media by HPLC-UV Analysis.

    PubMed

    Matos, Ana C; Pinto, Rosana V; Bettencourt, Ana F

    2017-08-01

    Simple, economic and environmental friendly high-performance liquid chromatography methods for levofloxacin and minocycline quantification in biomimetic media were developed and validate including their stability at body temperature, an often neglected evaluation parameter. Both methods are similar only differing in the wavelength setting, i.e., for levofloxacin and minocycline quantification the UV detection was set at 284 and at 273 nm, respectively. The separation of both antibiotics was achieved using a reversed-phase column and a mobile phase consisting of acetonitrile and water (15:85) with 0.6% triethylamine, adjusted to pH 3. As an internal standard for levofloxacin quantification, minocycline was used and vice versa. The calibration curves for both methods were linear (r = 0.99) over a concentration range of 0.3-16 μg/mL and 0.5-16 μg/mL for levofloxacin and minocycline, respectively, with precision, accuracy and recovery in agreement with international guidelines requirement. Levofloxacin revealed stability in all media and conditions, including at 37°C, with exception to freeze-thaw cycle conditions. Minocycline presented a more accentuated degradation profile over prolonged time courses, when compared to levofloxacin. Reported data is of utmost interest for pharma and biomaterials fields regarding the research and development of new local drug-delivery-systems containing either of these two antibiotics, namely when monitoring the in vitro release studies of those systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR).

    PubMed

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan

    2013-11-01

    Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables. Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision. Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A. The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of accuracy on reconstruction algorithms, such that volumes quantified from scans of different reconstruction algorithms can be compared. The little difference found between the precision of FBP and iterative reconstructions could be a result of both iterative reconstruction's diminished noise reduction at the edge of the nodules as well as the loss of resolution at high noise levels with iterative reconstruction. The findings do not rule out potential advantage of IR that might be evident in a study that uses a larger number of nodules or repeated scans.

  7. Leveraging transcript quantification for fast computation of alternative splicing profiles.

    PubMed

    Alamancos, Gael P; Pagès, Amadís; Trincado, Juan L; Bellora, Nicolás; Eyras, Eduardo

    2015-09-01

    Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa. © 2015 Alamancos et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Resolution and quantification accuracy enhancement of functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays

    NASA Astrophysics Data System (ADS)

    Chu, Zhigang; Yang, Yang; Shen, Linbang

    2017-05-01

    Functional delay and sum (FDAS) is a novel beamforming algorithm introduced for the three-dimensional (3D) acoustic source identification with solid spherical microphone arrays. Being capable of offering significantly attenuated sidelobes with a fast speed, the algorithm promises to play an important role in interior acoustic source identification. However, it presents some intrinsic imperfections, specifically poor spatial resolution and low quantification accuracy. This paper focuses on conquering these imperfections by ridge detection (RD) and deconvolution approach for the mapping of acoustic sources (DAMAS). The suggested methods are referred to as FDAS+RD and FDAS+RD+DAMAS. Both computer simulations and experiments are utilized to validate their effects. Several interesting conclusions have emerged: (1) FDAS+RD and FDAS+RD+DAMAS both can dramatically ameliorate FDAS's spatial resolution and at the same time inherit its advantages. (2) Compared to the conventional DAMAS, FDAS+RD+DAMAS enjoys the same super spatial resolution, stronger sidelobe attenuation capability and more than two hundred times faster speed. (3) FDAS+RD+DAMAS can effectively conquer FDAS's low quantification accuracy. Whether the focus distance is equal to the distance from the source to the array center or not, it can quantify the source average pressure contribution accurately. This study will be of great significance to the accurate and quick localization and quantification of acoustic sources in cabin environments.

  9. Deleterious effects of net clogging on the quantification of stream drift

    USGS Publications Warehouse

    Muehlbauer, Jeffrey D.; Kennedy, Theodore A.; Copp, Adam J.; Sabol, Thomas

    2017-01-01

    Drift studies are central to stream and river ecological research. However, a fundamental aspect of quantifying drift — how net clogging affects the accuracy of results — has been widely ignored. Utilizing approaches from plankton and suspended sediment studies in oceanography and hydrology, we examined the rate and dynamics of net clogging across a range of conditions. We found that nets clog nonlinearly over time and that suspended solid concentrations and net mesh size exerted a strong effect on clogging rates. Critically, net clogging introduced unpredictable biases in resultant data due to the inaccuracies in water volume estimates introduced by progressive clogging. This renders the widespread approach to linearly “correct” for clogging inadequate. Using a meta-analysis of 77 drift studies spanning 25 years, we demonstrate that the detrimental effects of net clogging are routinely unappreciated, even though the results of most of these studies were likely affected by clogging. We close by describing an approach for avoiding net clogging, which will increase the accuracy and reproducibility of results in future freshwater, lotic drift studies.

  10. Performances of CN-columns for the analysis of γ-oryzanol and its p-coumarate and caffeate derivatives by normal phase HPLC and a validated method of quantitation.

    PubMed

    D'Ambrosio, Michele

    2013-06-15

    γ-Oryzanol is an important phytochemical used in pharmaceutical, alimentary and cosmetic preparations. The present article, for the first time, discloses the performances of NP-HPLC in separating γ-oryzanol components and develops a validated method for its routine quantification. The analysis is performed on a cyanopropyl bonded column using the hexane/MTBE gradient elution and UV detection at 325 nm. The method allows: the separation of steryl ferulate, p-coumarate and caffeate esters, the separation of cis- from trans-ferulate isomers, the splitting of steroid moieties into saturated and unsaturated at the side chain. The optimised method provides excellent linear response (R(2)=0.99997), high precision (RSD<1.0%) and satisfactory accuracy (R(∗)=70-86%). In conclusion, the established method presents the details of the procedure and the experimental conditions in order to achieve the required precision and instrumental accuracy. The method is fast and sensitive and it could be a suitable tool for quality assurance and determination of origin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. SU-E-I-25: Quantification of Coronary Artery Cross-Sectional Area in CT Angiography Using Integrated Density: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, T; Ding, H; Lipinski, J

    2015-06-15

    Purpose: To develop a physics-based model for accurate quantification of the cross-sectional area (CSA) of coronary arteries in CT angiography by measuring the integrated density to account for the partial volume effect. Methods: In this technique the integrated density of the object as compared with its local background is measured to account for the partial volume effect. Normal vessels were simulated as circles with diameters in the range of 0.1–3mm. Diseased vessels were simulated as 2, 3, and 4mm diameter vessels with 10–90% area stenosis, created by inserting circular plaques. A simplified two material model was used with the lumenmore » as 8mg/ml Iodine and background as lipid. The contrast-to-noise ratio between lumen and background was approximately 26. Linear fits to the known CSA were calculated. The precision and accuracy of the measurement were quantified using the root-mean-square fit deviations (RMSD) and errors to the known CSA (RMSE). Results compared to manual segmentation of the vessel lumen. To assess the impact of random variations, coefficients of variation (CV) from 10 simulations for each vessel were computed to determine reliability. Measurements with CVs less than 10% were considered reliable. Results: For normal vessels, the precision and accuracy of the integrated density technique were 0.12mm{sup 2} and 0.28mm{sup 2}, respectively. The corresponding results for manual segmentation were 0.27mm{sup 2} and 0.43mm{sup 2}. For diseased vessels, the precision and accuracy of the integrated density technique were 0.14mm{sup 2} and 0.19mm{sup 2}. Corresponding results for manual segmentation were 0.42mm{sup 2} and 0.71mm{sup 2}. Reliable CSAs were obtained for normal vessels with diameters larger than 1 mm and for diseased vessels with area as low as 1.26mm2. Conclusion: The CSA based on integrated density showed improved precision and accuracy as compared with manual segmentation in simulation. These results indicate the potential of using integrated density to quantify CSA of coronary arteries in CT angiography.« less

  12. A sensitive and selective liquid chromatography/tandem mass spectrometry method for quantitative analysis of efavirenz in human plasma.

    PubMed

    Srivastava, Praveen; Moorthy, Ganesh S; Gross, Robert; Barrett, Jeffrey S

    2013-01-01

    A selective and a highly sensitive method for the determination of the non-nucleoside reverse transcriptase inhibitor (NNRTI), efavirenz, in human plasma has been developed and fully validated based on high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Sample preparation involved protein precipitation followed by one to one dilution with water. The analyte, efavirenz was separated by high performance liquid chromatography and detected with tandem mass spectrometry in negative ionization mode with multiple reaction monitoring. Efavirenz and ¹³C₆-efavirenz (Internal Standard), respectively, were detected via the following MRM transitions: m/z 314.20243.90 and m/z 320.20249.90. A gradient program was used to elute the analytes using 0.1% formic acid in water and 0.1% formic acid in acetonitrile as mobile phase solvents, at a flow-rate of 0.3 mL/min. The total run time was 5 min and the retention times for the internal standard (¹³C₆-efavirenz) and efavirenz was approximately 2.6 min. The calibration curves showed linearity (coefficient of regression, r>0.99) over the concentration range of 1.0-2,500 ng/mL. The intraday precision based on the standard deviation of replicates of lower limit of quantification (LLOQ) was 9.24% and for quality control (QC) samples ranged from 2.41% to 6.42% and with accuracy from 112% and 100-111% for LLOQ and QC samples. The inter day precision was 12.3% and 3.03-9.18% for LLOQ and quality controls samples, and the accuracy was 108% and 95.2-108% for LLOQ and QC samples. Stability studies showed that efavirenz was stable during the expected conditions for sample preparation and storage. The lower limit of quantification for efavirenz was 1 ng/mL. The analytical method showed excellent sensitivity, precision, and accuracy. This method is robust and is being successfully applied for therapeutic drug monitoring and pharmacokinetic studies in HIV-infected patients.

  13. Optimization and validation of a rapid method to determine citrate and inorganic phosphate in milk by capillary electrophoresis.

    PubMed

    Izco, J M; Tormo, M; Harris, A; Tong, P S; Jimenez-Flores, R

    2003-01-01

    Quantification of phosphate and citrate compounds is very important because their distribution between soluble and colloidal phases of milk and their interactions with milk proteins influence the stability and some functional properties of dairy products. The aim of this work was to optimize and validate a capillary electrophoresis method for the rapid determination of these compounds in milk. Various parameters affecting analysis have been optimized, including type, composition, and pH of the electrolyte, and sample extraction. Ethanol, acetonitrile, sulfuric acid, water at 50 degrees C or at room temperature were tested as sample buffers (SB). Water at room temperature yielded the best overall results and was chosen for further validation. The extraction time was checked and could be shortened to less than 1 min. Also, sample preparation was simplified to pipet 12 microl of milk into 1 ml of water containing 20 ppm of tartaric acid as an internal standard. The linearity of the method was excellent (R2 > 0.999) with CV values of response factors <3%. The detection limits for phosphate and citrate were 5.1 and 2.4 nM, respectively. The accuracy of the method was calculated for each compound (103.2 and 100.3%). In addition, citrate and phosphate content of several commercial milk samples were analyzed by this method, and the results deviated less than 5% from values obtained when analyzing the samples by official methods. To study the versatility of the technique, other dairy productssuch as cream cheese, yogurt, or Cheddar cheese were analyzed and accuracy was similar to milk in all products tested. The procedure is rapid and offers a very fast and simple sample preparation. Once the sample has arrived at the laboratory, less than 5 min (including handling, preparation, running, integration, and quantification) are necessary to determine the concentration of citric acid and inorganic phosphate. Because of the speed and accuracy of this method, it is promising as an analytical quantitative testing technique.

  14. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.

    PubMed

    Kwon, Young-Hoo; Casebolt, Jeffrey B

    2006-01-01

    One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a through review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.

  15. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.

    PubMed

    Kwon, Young-Hoo; Casebolt, Jeffrey B

    2006-07-01

    One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a thorough review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.

  16. Spectrophotometric determination of ofloxacin in pharmaceuticals by redox reaction

    NASA Astrophysics Data System (ADS)

    Ramesh, P. J.; Basavaiah, K.; Rajendraprasad, N.; Devi, O. Zenita; Vinay, K. B.

    2011-07-01

    Two simple spectrophotometric methods have been developed to analyze ofloxacin (OFX) in pharmaceuticals. The methods are based on the oxidation of OFX by a measured excess of cerium(IV) sulfate in H2SO4 medium. This was followed by the determination of the unreacted oxidant by reacting it with either p-toluidine ( p-TD) and measuring the absorbance at 525 nm (method A) or o-dianisidine ( o-DA) and measuring the absorbance at 470 nm (method B). In both methods, the amount of cerium(IV) sulfate reacted corresponds to the amount of OFX. Calibration graphs were linear over the ranges of 0-120 and 0-4 g/ml OFX for methods A and B, respectively. The calculated molar absorptivity (2.34ṡ103 and 5.99ṡ104), Sandell sensitivity, and limit of quantification for the methods are reported. The intra-day precision (%RSD) and accuracy (%RE) were < 8.0 and ≤ 4.0%, respectively, and the inter-day RSD and RE values were within 5 and 4.0%, respectively. The applicability of the methods was demonstrated by determining OFX in tablets with an accuracy (%RE) of < 3% and precision (%RSD) of ≤2.65%. The accuracy of the methods was further ascertained by recovery experiments via a standard-addition procedure.

  17. Characterising non-linear dynamics in nocturnal breathing patterns of healthy infants using recurrence quantification analysis.

    PubMed

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2013-05-01

    Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Reverse phase HPLC method for detection and quantification of lupin seed γ-conglutin.

    PubMed

    Mane, Sharmilee; Bringans, Scott; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet

    2017-09-15

    A simple, selective and accurate reverse phase HPLC method was developed for detection and quantitation of γ-conglutin from lupin seed extract. A linear gradient of water and acetonitrile containing trifluoroacetic acid (TFA) on a reverse phase column (Agilent Zorbax 300SB C-18), with a flow rate of 0.8ml/min was able to produce a sharp and symmetric peak of γ-conglutin with a retention time at 29.16min. The identity of γ-conglutin in the peak was confirmed by mass spectrometry (MS/MS identification) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The data obtained from MS/MS analysis was matched against the specified database to obtain the exact match for the protein of interest. The proposed method was validated in terms of specificity, linearity, sensitivity, precision, recovery and accuracy. The analytical parameters revealed that the validated method was capable of selectively performing a good chromatographic separation of γ-conglutin from the lupin seed extract with no interference of the matrix. The detection and quantitation limit of γ-conglutin were found to be 2.68μg/ml and 8.12μg/ml respectively. The accuracy (precision and recovery) analysis of the method was conducted under repeatable conditions on different days. Intra-day and inter-day precision values less than 0.5% and recovery greater than 97% indicated high precision and accuracy of the method for analysis of γ-conglutin. The method validation findings were reproducible and can be successfully applied for routine analysis of γ-conglutin from lupin seed extract. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Quantitative determination of acidic hydrolysis products of Chemical Weapons Convention related chemicals from aqueous and soil samples using ion-pair solid-phase extraction and in situ butylation.

    PubMed

    Pal Anagoni, Suresh; Kauser, Asma; Maity, Gopal; Upadhyayula, Vijayasarathi V R

    2018-02-01

    Chemical warfare agents such as organophosphorus nerve agents, mustard agents, and psychotomimetic agent like 3-quinuclidinylbenzilate degrade in the environment and form acidic degradation products, the analysis of which is difficult under normal analytical conditions. In the present work, a simultaneous extraction and derivatization method in which the analytes are butylated followed by gas chromatography and mass spectrometric identification of the analytes from aqueous and soil samples was carried out. The extraction was carried out using ion-pair solid-phase extraction with tetrabutylammonium hydroxide followed by gas chromatography with mass spectrometry in the electron ionization mode. Various parameters such as optimum concentration of the ion-pair reagent, pH of the sample, extraction solvent, and type of ion-pair reagent were optimized. The method was validated for various parameters such as linearity, accuracy, precision, and limit of detection and quantification. The method was observed to be linear from 1 to 1000 ng/mL range in selected ion monitoring mode. The extraction recoveries were in the range of 85-110% from the matrixes with the limit of quantification for alkyl phosphonic acids at 1 ng/mL, thiodiglycolic acid at 20 ng/mL, and benzilic acid at 50 ng/mL with intra- and interday precisions below 15%. The developed method was applied for the samples prepared in the scenario of challenging inspection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A new simple and rapid LC-ESI-MS/MS method for quantification of plasma oxysterols as dimethylaminobutyrate esters. Its successful use for the diagnosis of Niemann-Pick type C disease.

    PubMed

    Boenzi, Sara; Deodato, Federica; Taurisano, Roberta; Martinelli, Diego; Verrigni, Daniela; Carrozzo, Rosalba; Bertini, Enrico; Pastore, Anna; Dionisi-Vici, Carlo; Johnson, David W

    2014-11-01

    Two oxysterols, cholestan-3β,5α,6β-triol (C-triol) and 7-ketocholesterol (7-KC), have been recently proposed as diagnostic markers of Niemann-Pick type C (NP-C) disease, representing a potential alternative diagnostic tool to the more invasive and time consuming filipin test in cultured fibroblasts. Usually, the oxysterols are detected and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using atmospheric pressure chemical ionization (APCI) or electro-spray-ionization (ESI) sources, after a variety of derivatization procedures to enhance sensitivity. We developed a sensitive LC-MS/MS method to quantify the oxysterols in plasma as dimethylaminobutyrate ester, suitable for ESI analysis. This method, with an easy liquid-phase extraction and a short derivatization procedure, has been validated to demonstrate specificity, linearity, recovery, lowest limit of quantification, accuracy and precision. The assay was linear over a concentration range of 0.5-200ng/mL for C-triol and 1.0-200ng/mL for 7-KC. Intra-day and inter-day coefficients of variation (CV%) were <15% for both metabolites. Receiver operating characteristic analysis estimates that the area under curve was 0.998 for C-triol, and 0.972 for 7-KC, implying a significant discriminatory power for the method in this patient population of both oxysterols. In summary, our method provides a simple, rapid and non-invasive diagnostic tool for the biochemical diagnosis of NP-C disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fang; Liu, Tao; Qian, Weijun

    2011-07-22

    Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.

  2. Two-stream Convolutional Neural Network for Methane Emissions Quantification

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ravikumar, A. P.; McGuire, M.; Bell, C.; Tchapmi, L. P.; Brandt, A. R.

    2017-12-01

    Methane, a key component of natural gas, has a 25x higher global warming potential than carbon dioxide on a 100-year basis. Accurately monitoring and mitigating methane emissions require cost-effective detection and quantification technologies. Optical gas imaging, one of the most commonly used leak detection technology, adopted by Environmental Protection Agency, cannot estimate leak-sizes. In this work, we harness advances in computer science to allow for rapid and automatic leak quantification. Particularly, we utilize two-stream deep Convolutional Networks (ConvNets) to estimate leak-size by capturing complementary spatial information from still plume frames, and temporal information from plume motion between frames. We build large leak datasets for training and evaluating purposes by collecting about 20 videos (i.e. 397,400 frames) of leaks. The videos were recorded at six distances from the source, covering 10 -60 ft. Leak sources included natural gas well-heads, separators, and tanks. All frames were labeled with a true leak size, which has eight levels ranging from 0 to 140 MCFH. Preliminary analysis shows that two-stream ConvNets provides significant accuracy advantage over single steam ConvNets. Spatial stream ConvNet can achieve an accuracy of 65.2%, by extracting important features, including texture, plume area, and pattern. Temporal stream, fed by the results of optical flow analysis, results in an accuracy of 58.3%. The integration of the two-stream ConvNets gives a combined accuracy of 77.6%. For future work, we will split the training and testing datasets in distinct ways in order to test the generalization of the algorithm for different leak sources. Several analytic metrics, including confusion matrix and visualization of key features, will be used to understand accuracy rates and occurrences of false positives. The quantification algorithm can help to find and fix super-emitters, and improve the cost-effectiveness of leak detection and repair programs.

  3. Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard.

    PubMed

    Kang, Bo-Kyeong; Yu, Eun Sil; Lee, Seung Soo; Lee, Youngjoo; Kim, Namkug; Sirlin, Claude B; Cho, Eun Yoon; Yeom, Suk Keu; Byun, Jae Ho; Park, Seong Ho; Lee, Moon-Gyu

    2012-06-01

    The aims of this study were to assess the confounding effects of hepatic iron deposition, inflammation, and fibrosis on hepatic steatosis (HS) evaluation by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) and to assess the accuracies of MRI and MRS for HS evaluation, using histology as the reference standard. In this institutional review board-approved prospective study, 56 patients gave informed consents and underwent chemical-shift MRI and MRS of the liver on a 1.5-T magnetic resonance scanner. To estimate MRI fat fraction (FF), 4 analysis methods were used (dual-echo, triple-echo, multiecho, and multi-interference), and MRS FF was calculated with T2 correction. Degrees of HS, iron deposition, inflammation, and fibrosis were analyzed in liver resection (n = 37) and biopsy (n = 19) specimens. The confounding effects of histology on fat quantification were assessed by multiple linear regression analysis. Using the histologic degree of HS as the reference standard, the accuracies of each method in estimating HS and diagnosing an HS of 5% or greater were determined by linear regression and receiver operating characteristic analyses. Iron deposition significantly confounded estimations of FF by the dual-echo (P < 0.001) and triple-echo (P = 0.033) methods, whereas no histologic feature confounded the multiecho and multi-interference methods or MRS. The MRS (r = 0.95) showed the strongest correlation with histologic degree of HS, followed by the multiecho (r = 0.92), multi-interference (r = 0.91), triple-echo (r = 0.90), and dual-echo (r = 0.85) methods. For diagnosing HS, the areas under the curve tended to be higher for MRS (0.96) and the multiecho (0.95), multi-interference (0.95), and triple-echo (0.95) methods than for the dual-echo method (0.88) (P ≥ 0.13). The multiecho and multi-interference MRI methods and MRS can accurately quantify hepatic fat, with coexisting histologic abnormalities having no confounding effects.

  4. Current position of high-resolution MS for drug quantification in clinical & forensic toxicology.

    PubMed

    Meyer, Markus R; Helfer, Andreas G; Maurer, Hans H

    2014-08-01

    This paper reviews high-resolution MS approaches published from January 2011 until March 2014 for the quantification of drugs (of abuse) and/or their metabolites in biosamples using LC-MS with time-of-flight or Orbitrap™ mass analyzers. Corresponding approaches are discussed including sample preparation and mass spectral settings. The advantages and limitations of high-resolution MS for drug quantification, as well as the demand for a certain resolution or a specific mass accuracy are also explored.

  5. Performance evaluation of the Aptima® HCV Quant Dx assay for hepatitis C virus (HCV) RNA detection and quantification in comparison to the Abbott RealTime HCV assay.

    PubMed

    Garbuglia, Anna Rosa; Bibbò, Angela; Sciamanna, Roberta; Pisciotta, Marina; Capobianchi, Maria Rosaria

    2017-07-01

    The Aptima HCV Quant Dx assay (Aptima) is a real-time transcription-mediated amplification assay CE-approved for the diagnosis and monitoring of hepatitis C virus (HCV) infection. Aptima's analytical performance was compared to the Abbott RealTime HCV assay (RealTime) in a clinical routine setting. Overall 295 clinical plasma samples (117 prospective/fresh; 178 retrospective/frozen) from HCV-infected patients were tested in Aptima and RealTime to determine concordance on qualitative and quantitative results. Linearity and precision at low viral loads (VLs; 0.8-3.3LogIU/mL) was tested using dilutions of the 5th WHO standard, in 10 and 20 replicates in the two assays, respectively. The ability to measure different HCV genotypes and accuracy were analyzed using the Seracare EQA panel. Inter-assay agreement for qualitative results (prospective samples) was 88% (kappa=0.78). For the 127 samples with quantitative results in both assays, Aptima yielded on average slightly higher values (by 0.24LogIU/mL; Bland-Altman method) than RealTime. Concordance between assay results was excellent (R=0.98). At low VLs (0.8-3.3LogIU/mL), Aptima demonstrated good linearity and precision, similar to RealTime. Aptima detected and accurately quantified all main HCV genotypes. Aptima demonstrated excellent precision, linearity, and accuracy in all genotypes tested. Good concordance was observed between Aptima and RealTime assays in clinical samples. The performance of the Aptima assay, on the fully automated Panther platform, makes it an excellent candidate for the detection and monitoring of HCV RNA in plasma and serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Simultaneous Determination of Withanolide A and Bacoside A in Spansules by High-Performance Thin-Layer Chromatography

    PubMed Central

    Shinde, P B; Aragade, P D; Agrawal, M R; Deokate, U A; Khadabadi, S S

    2011-01-01

    The objective of this work was to develop and validate a simple, rapid, precise, and accurate high performance thin layer chromatography method for simultaneous determination of withanolide A and bacoside A in combined dosage form. The stationary phase used was silica gel G60F254. The mobile phase used was mixture of ethyl acetate: methanol: toluene: water (4:1:1:0.5 v/v/v/v). The detection of spots was carried out at 320 nm using absorbance reflectance mode. The method was validated in terms of linearity, accuracy, precision and specificity. The calibration curve was found to be linear between 200 to 800 ng/spot for withanolide A and 50 to 350 ng/spot for bacoside A. The limit of detection and limit of quantification for the withanolide A were found to be 3.05 and 10.06 ng/spot, respectively and for bacoside A 8.3 and 27.39 ng/spot, respectively. The proposed method can be successfully used to determine the drug content of marketed formulation. PMID:22303073

  7. Simultaneous determination of withanolide a and bacoside a in spansules by high-performance thin-layer chromatography.

    PubMed

    Shinde, P B; Aragade, P D; Agrawal, M R; Deokate, U A; Khadabadi, S S

    2011-03-01

    The objective of this work was to develop and validate a simple, rapid, precise, and accurate high performance thin layer chromatography method for simultaneous determination of withanolide A and bacoside A in combined dosage form. The stationary phase used was silica gel G60F(254). The mobile phase used was mixture of ethyl acetate: methanol: toluene: water (4:1:1:0.5 v/v/v/v). The detection of spots was carried out at 320 nm using absorbance reflectance mode. The method was validated in terms of linearity, accuracy, precision and specificity. The calibration curve was found to be linear between 200 to 800 ng/spot for withanolide A and 50 to 350 ng/spot for bacoside A. The limit of detection and limit of quantification for the withanolide A were found to be 3.05 and 10.06 ng/spot, respectively and for bacoside A 8.3 and 27.39 ng/spot, respectively. The proposed method can be successfully used to determine the drug content of marketed formulation.

  8. Development and validation of a HPTLC method for simultaneous estimation of lornoxicam and thiocolchicoside in combined dosage form.

    PubMed

    Sahoo, Madhusmita; Syal, Pratima; Hable, Asawaree A; Raut, Rahul P; Choudhari, Vishnu P; Kuchekar, Bhanudas S

    2011-07-01

    To develop a simple, precise, rapid and accurate HPTLC method for the simultaneous estimation of Lornoxicam (LOR) and Thiocolchicoside (THIO) in bulk and pharmaceutical dosage forms. The separation of the active compounds from pharmaceutical dosage form was carried out using methanol:chloroform:water (9.6:0.2:0.2 v/v/v) as the mobile phase and no immiscibility issues were found. The densitometric scanning was carried out at 377 nm. The method was validated for linearity, accuracy, precision, LOD (Limit of Detection), LOQ (Limit of Quantification), robustness and specificity. The Rf values (±SD) were found to be 0.84 ± 0.05 for LOR and 0.58 ± 0.05 for THIO. Linearity was obtained in the range of 60-360 ng/band for LOR and 30-180 ng/band for THIO with correlation coefficients r(2) = 0.998 and 0.999, respectively. The percentage recovery for both the analytes was in the range of 98.7-101.2 %. The proposed method was optimized and validated as per the ICH guidelines.

  9. On-line sample cleanup and enrichment chromatographic technique for the determination of ambroxol in human serum.

    PubMed

    Emara, Samy; Kamal, Maha; Abdel Kawi, Mohamed

    2012-02-01

    A sensitive and efficient on-line clean up and pre-concentration method has been developed using column-switching technique and protein-coated µ-Bondapak CN silica pre-column for quantification of ambroxol (AM) in human serum. The method is performed by direct injection of serum sample onto a protein-coated µ-Bondapak CN silica pre-column, where AM is pre-concentrated and retained, while proteins and very polar constituents are washed to waste using a phosphate buffer saline (pH 7.4). The retained analyte on the pre-column is directed onto a C(18) analytical column for separation, with a mobile phase consisting of a mixture of methanol and distilled deionized water (containing 1% triethylamine adjusted to pH 3.5 with ortho-phosphoric acid) in the ratio of 50:50 (v/v). Detection is performed at 254 nm. The calibration curve is linear over the concentration range of 12-120 ng/mL (r(2) = 0.9995). The recovery, selectivity, linearity, precision, and accuracy of the method are convenient for pharmacokinetic studies or routine assays.

  10. High-performance Thin-layer Chromatographic-densitometric Quantification and Recovery of Bioactive Compounds for Identification of Elite Chemotypes of Gloriosa superba L. Collected from Sikkim Himalayas (India)

    PubMed Central

    Misra, Ankita; Shukla, Pushpendra Kumar; Kumar, Bhanu; Chand, Jai; Kushwaha, Poonam; Khalid, Md.; Singh Rawat, Ajay Kumar; Srivastava, Sharad

    2017-01-01

    Background: Gloriosa superba L. (Colchicaceae) is used as adjuvant therapy in gout for its potential antimitotic activity due to high colchicine(s) alkaloids. Objective: This study aimed to develop an easy, cheap, precise, and accurate high-performance thin-layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L. and to identify its elite chemotype(s) from Sikkim Himalayas (India). Methods: The HPTLC chromatographic method was developed using mobile phase of chloroform: acetone: diethyl amine (5:4:1) at λmax of 350 nm. Results: Five germplasms were collected from targeted region, and on morpho-anatomical inspection, no significant variation was observed among them. Quantification data reveal that content of colchicine (Rf: 0.72) and gloriosine (Rf: 0.61) varies from 0.035%–0.150% to 0.006%–0.032% (dry wt. basis). Linearity of method was obtained in the concentration range of 100–400 ng/spot of marker(s), exhibiting regression coefficient of 0.9987 (colchicine) and 0.9983 (gloriosine) with optimum recovery of 97.79 ± 3.86 and 100.023% ± 0.01%, respectively. Limit of detection and limit of quantification were analyzed, respectively, as 6.245, 18.926 and 8.024, 24.316 (ng). Two germplasms, namely NBG-27 and NBG-26, were found to be elite chemotype of both the markers. Conclusion: The developed method is validated in terms of accuracy, recovery, and precision studies as per the ICH guidelines (2005) and can be adopted for the simultaneous quantification of colchicine and gloriosine in phytopharmaceuticals. In addition, this study is relevant to explore the chemotypic variability in metabolite content for commercial and medicinal purposes. SUMMARY An easy, cheap, precise, and accurate high performance thin layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L.Five germplasms were collected from targeted region, and on morpho anatomical inspection, no significant variation was observed among themQuantification data reveal that content of colchicine (Rf: 0.72) and gloriosine (Rf: 0.61) varies from 0.035%–0.150% to 0.006%–0.032% (dry wt. basis)Two germplasms, namely NBG 27 and NBG 26, were found to be elite chemotype of both the markers. PMID:29142436

  11. High-performance Thin-layer Chromatographic-densitometric Quantification and Recovery of Bioactive Compounds for Identification of Elite Chemotypes of Gloriosa superba L. Collected from Sikkim Himalayas (India).

    PubMed

    Misra, Ankita; Shukla, Pushpendra Kumar; Kumar, Bhanu; Chand, Jai; Kushwaha, Poonam; Khalid, Md; Singh Rawat, Ajay Kumar; Srivastava, Sharad

    2017-10-01

    Gloriosa superba L. (Colchicaceae) is used as adjuvant therapy in gout for its potential antimitotic activity due to high colchicine(s) alkaloids. This study aimed to develop an easy, cheap, precise, and accurate high-performance thin-layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L. and to identify its elite chemotype(s) from Sikkim Himalayas (India). The HPTLC chromatographic method was developed using mobile phase of chloroform: acetone: diethyl amine (5:4:1) at λ max of 350 nm. Five germplasms were collected from targeted region, and on morpho-anatomical inspection, no significant variation was observed among them. Quantification data reveal that content of colchicine ( R f : 0.72) and gloriosine ( R f : 0.61) varies from 0.035%-0.150% to 0.006%-0.032% (dry wt. basis). Linearity of method was obtained in the concentration range of 100-400 ng/spot of marker(s), exhibiting regression coefficient of 0.9987 (colchicine) and 0.9983 (gloriosine) with optimum recovery of 97.79 ± 3.86 and 100.023% ± 0.01%, respectively. Limit of detection and limit of quantification were analyzed, respectively, as 6.245, 18.926 and 8.024, 24.316 (ng). Two germplasms, namely NBG-27 and NBG-26, were found to be elite chemotype of both the markers. The developed method is validated in terms of accuracy, recovery, and precision studies as per the ICH guidelines (2005) and can be adopted for the simultaneous quantification of colchicine and gloriosine in phytopharmaceuticals. In addition, this study is relevant to explore the chemotypic variability in metabolite content for commercial and medicinal purposes. An easy, cheap, precise, and accurate high performance thin layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L.Five germplasms were collected from targeted region, and on morpho anatomical inspection, no significant variation was observed among themQuantification data reveal that content of colchicine (Rf: 0.72) and gloriosine (Rf: 0.61) varies from 0.035%-0.150% to 0.006%-0.032% (dry wt. basis)Two germplasms, namely NBG 27 and NBG 26, were found to be elite chemotype of both the markers.

  12. Prediction of response factors for gas chromatography with flame ionization detection: Algorithm improvement, extension to silylated compounds, and application to the quantification of metabolites

    PubMed Central

    de Saint Laumer, Jean‐Yves; Leocata, Sabine; Tissot, Emeline; Baroux, Lucie; Kampf, David M.; Merle, Philippe; Boschung, Alain; Seyfried, Markus

    2015-01-01

    We previously showed that the relative response factors of volatile compounds were predictable from either combustion enthalpies or their molecular formulae only 1. We now extend this prediction to silylated derivatives by adding an increment in the ab initio calculation of combustion enthalpies. The accuracy of the experimental relative response factors database was also improved and its population increased to 490 values. In particular, more brominated compounds were measured, and their prediction accuracy was improved by adding a correction factor in the algorithm. The correlation coefficient between predicted and measured values increased from 0.936 to 0.972, leading to a mean prediction accuracy of ± 6%. Thus, 93% of the relative response factors values were predicted with an accuracy of better than ± 10%. The capabilities of the extended algorithm are exemplified by (i) the quick and accurate quantification of hydroxylated metabolites resulting from a biodegradation test after silylation and prediction of their relative response factors, without having the reference substances available; and (ii) the rapid purity determinations of volatile compounds. This study confirms that Gas chromatography with a flame ionization detector and using predicted relative response factors is one of the few techniques that enables quantification of volatile compounds without calibrating the instrument with the pure reference substance. PMID:26179324

  13. Confidence estimation for quantitative photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Gröhl, Janek; Kirchner, Thomas; Maier-Hein, Lena

    2018-02-01

    Quantification of photoacoustic (PA) images is one of the major challenges currently being addressed in PA research. Tissue properties can be quantified by correcting the recorded PA signal with an estimation of the corresponding fluence. Fluence estimation itself, however, is an ill-posed inverse problem which usually needs simplifying assumptions to be solved with state-of-the-art methods. These simplifications, as well as noise and artifacts in PA images reduce the accuracy of quantitative PA imaging (PAI). This reduction in accuracy is often localized to image regions where the assumptions do not hold true. This impedes the reconstruction of functional parameters when averaging over entire regions of interest (ROI). Averaging over a subset of voxels with a high accuracy would lead to an improved estimation of such parameters. To achieve this, we propose a novel approach to the local estimation of confidence in quantitative reconstructions of PA images. It makes use of conditional probability densities to estimate confidence intervals alongside the actual quantification. It encapsulates an estimation of the errors introduced by fluence estimation as well as signal noise. We validate the approach using Monte Carlo generated data in combination with a recently introduced machine learning-based approach to quantitative PAI. Our experiments show at least a two-fold improvement in quantification accuracy when evaluating on voxels with high confidence instead of thresholding signal intensity.

  14. A critical evaluation of liquid chromatography with hybrid linear ion trap-Orbitrap mass spectrometry for the determination of acidic contaminants in wastewater effluents.

    PubMed

    Cahill, Michael G; Dineen, Brian A; Stack, Mary A; James, Kevin J

    2012-12-28

    Acidic pesticide and pharmaceutical contaminants were pre-concentrated and extracted from wastewater samples (500 mL) using solid-phase extraction. Analyte recoveries were 79-96%, with % RSD values in the range, 1.7-7.4%. Analyte identification and quantification were carried out using liquid chromatography-mass spectrometry (LC-MS) with hybrid linear ion trap (LIT) Orbitrap instrumentation. Using a resolution setting of 30,000 FWHM, full-scan MS analysis was performed using heated electrospray ionization (HESI) in negative mode. The high mass resolution capabilities of the Orbitrap MS were exploited for the determination of trace contaminants allowing facile discrimination between analytes and matrix. The dependant scan functions of the Orbitrap MS using higher collisional dissociation (HCD) and LIT MS were evaluated for the confirmation of analytes at trace concentration levels. Mass accuracy for target contaminants using this method was less than 2 ppm. The limits of quantitation (LOQs) were in the range, 2.1-27 ng/L. The inter-day accuracy and precision were measured over a five-day period at two concentrations. The % relative errors were in the range, 0.30-7.7%, and the % RSD values were in the range, 1.5-5.5%. Using this method, 2,4-D, mecoprop, ibuprofen, naproxene and gemfibrozil were identified in several wastewater treatment plants in Ireland. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Validated spectrofluorimetric methods for the determination of apixaban and tirofiban hydrochloride in pharmaceutical formulations.

    PubMed

    El-Bagary, Ramzia I; Elkady, Ehab F; Farid, Naira A; Youssef, Nadia F

    2017-03-05

    Apixaban and Tirofiban Hydrochloride are low molecular weight anticoagulants. The two drugs exhibit native fluorescence that allow the development of simple and valid spectrofluorimetric methods for the determination of Apixaban at λ ex/λ em=284/450nm and tirofiban HCl at λ ex/λ em=227/300nm in aqueous media. Different experimental parameters affecting fluorescence intensities were carefully studied and optimized. The fluorescence intensity-concentration plots were linear over the ranges of 0.2-6μgml -1 for apixaban and 0.2-5μgml -1 for tirofiban HCl. The limits of detection were 0.017 and 0.019μgml -1 and quantification limits were 0.057 and 0.066μgml -1 for apixaban and tirofiban HCl, respectively. The fluorescence quantum yield of apixaban and tirofiban were calculated with values of 0.43 and 0.49. Method validation was evaluated for linearity, specificity, accuracy, precision and robustness as per ICH guidelines. The proposed spectrofluorimetric methods were successfully applied for the determination of apixaban in Eliquis tablets and tirofiban HCl in Aggrastat intravenous infusion. Tolerance ratio was tested to study the effect of foreign interferences from dosage forms excipients. Using Student's t and F tests, revealed no statistically difference between the developed spectrofluorimetric methods and the comparison methods regarding the accuracy and precision, so can be contributed to the analysis of apixaban and tirofiban HCl in QC laboratories as an alternative method. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A UPLC-MS/MS method for simultaneous determination of five flavonoids from Stellera chamaejasme L. in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Li, Yun-Qing; Li, Cheng-Jian; Lv, Lei; Cao, Qing-Qing; Qian, Xian; Li, Si Wei; Wang, Hui; Zhao, Liang

    2018-06-01

    Stellera chamaejasme L. has been used as a traditional Chinese medicine for the treatment of scabies, tinea, stubborn skin ulcers, chronic tracheitis, cancer and tuberculosis. A sensitive and selective ultra-high liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of five flavonoids (stelleranol, chamaechromone, neochamaejasmin A, chamaejasmine and isochamaejasmin) of S. chamaejasme L. in rat plasma. Chromatographic separation was accomplished on an Agilent Poroshell 120 EC-C 18 column (2.1 × 100 mm, 2.7 μm) with gradient elution at a flow rate of 0.4 mL/min and the total analysis time was 7 min. The analytes were detected using multiple reaction monitoring in positive ionization mode. The samples were prepared by liquid-liquid extraction with ethyl acetate. The UPLC-MS/MS method was validated for specificity, linearity, sensitivity, accuracy and precision, recovery, matrix effect and stability. The validated method exhibited good linearity (r ≥ 0.9956), and the lower limits of quantification ranged from 0.51 to 0.64 ng/mL for five flavonoids. The intra- and inter-day precision were both <10.2%, and the accuracy ranged from -11.79 to 9.21%. This method was successfully applied to a pharmacokinetic study of five flavonoids in rats after oral administration of ethyl acetate extract of S. chamaejasme L. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Systematic assessment of survey scan and MS2-based abundance strategies for label-free quantitative proteomics using high-resolution MS data.

    PubMed

    Tu, Chengjian; Li, Jun; Sheng, Quanhu; Zhang, Ming; Qu, Jun

    2014-04-04

    Survey-scan-based label-free method have shown no compelling benefit over fragment ion (MS2)-based approaches when low-resolution mass spectrometry (MS) was used, the growing prevalence of high-resolution analyzers may have changed the game. This necessitates an updated, comparative investigation of these approaches for data acquired by high-resolution MS. Here, we compared survey scan-based (ion current, IC) and MS2-based abundance features including spectral-count (SpC) and MS2 total-ion-current (MS2-TIC), for quantitative analysis using various high-resolution LC/MS data sets. Key discoveries include: (i) study with seven different biological data sets revealed only IC achieved high reproducibility for lower-abundance proteins; (ii) evaluation with 5-replicate analyses of a yeast sample showed IC provided much higher quantitative precision and lower missing data; (iii) IC, SpC, and MS2-TIC all showed good quantitative linearity (R(2) > 0.99) over a >1000-fold concentration range; (iv) both MS2-TIC and IC showed good linear response to various protein loading amounts but not SpC; (v) quantification using a well-characterized CPTAC data set showed that IC exhibited markedly higher quantitative accuracy, higher sensitivity, and lower false-positives/false-negatives than both SpC and MS2-TIC. Therefore, IC achieved an overall superior performance than the MS2-based strategies in terms of reproducibility, missing data, quantitative dynamic range, quantitative accuracy, and biomarker discovery.

  18. Systematic Assessment of Survey Scan and MS2-Based Abundance Strategies for Label-Free Quantitative Proteomics Using High-Resolution MS Data

    PubMed Central

    2015-01-01

    Survey-scan-based label-free method have shown no compelling benefit over fragment ion (MS2)-based approaches when low-resolution mass spectrometry (MS) was used, the growing prevalence of high-resolution analyzers may have changed the game. This necessitates an updated, comparative investigation of these approaches for data acquired by high-resolution MS. Here, we compared survey scan-based (ion current, IC) and MS2-based abundance features including spectral-count (SpC) and MS2 total-ion-current (MS2-TIC), for quantitative analysis using various high-resolution LC/MS data sets. Key discoveries include: (i) study with seven different biological data sets revealed only IC achieved high reproducibility for lower-abundance proteins; (ii) evaluation with 5-replicate analyses of a yeast sample showed IC provided much higher quantitative precision and lower missing data; (iii) IC, SpC, and MS2-TIC all showed good quantitative linearity (R2 > 0.99) over a >1000-fold concentration range; (iv) both MS2-TIC and IC showed good linear response to various protein loading amounts but not SpC; (v) quantification using a well-characterized CPTAC data set showed that IC exhibited markedly higher quantitative accuracy, higher sensitivity, and lower false-positives/false-negatives than both SpC and MS2-TIC. Therefore, IC achieved an overall superior performance than the MS2-based strategies in terms of reproducibility, missing data, quantitative dynamic range, quantitative accuracy, and biomarker discovery. PMID:24635752

  19. Application of ultra-high pressure liquid chromatography linear ion-trap orbitrap to qualitative and quantitative assessment of pesticide residues.

    PubMed

    Farré, M; Picó, Y; Barceló, D

    2014-02-07

    The analysis of pesticides residues using a last generation high resolution and high mass accuracy hybrid linear ion trap-Orbitrap mass spectrometer (LTQ-Orbitrap-MS) was explored. Pesticides were extracted from fruits, fish, bees and sediments by QuEChERS and from water by solid-phase with Oasis HLB cartridges. Ultra-high pressure liquid chromatography (UHPLC)-LTQ-Orbitrap mass spectrometer acquired full scan MS data for quantification, and data dependent (dd) MS(2) and MS(3) product ion spectra for identification and/or confirmation. The regression coefficients (r(2)) for the calibration curves (two order of magnitude up to the lowest calibration level) in the study were ≥0.99. The LODs for 54 validated compounds were ≤2ngmL(-1) (analytical standards). The relative standard deviation (RSD), which was used to estimate precision, was always lower than 22%. The recovery of extraction and matrix effects ranged from 58 to 120% and from -92 to 52%, respectively. Mass accuracy was always ≤4ppm, corresponding to a maximum mass error of 1.6millimass units (mmu). This procedure was then successfully applied to pesticide residues in a set of the above-mentioned food and environmental samples. In addition to target analytes, this method enables the simultaneous detection/identification of non-target pesticides, pharmaceuticals, drugs of abuse, mycotoxins, and their metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Standardisation of DNA quantitation by image analysis: quality control of instrumentation.

    PubMed

    Puech, M; Giroud, F

    1999-05-01

    DNA image analysis is frequently performed in clinical practice as a prognostic tool and to improve diagnosis. The precision of prognosis and diagnosis depends on the accuracy of analysis and particularly on the quality of image analysis systems. It has been reported that image analysis systems used for DNA quantification differ widely in their characteristics (Thunissen et al.: Cytometry 27: 21-25, 1997). This induces inter-laboratory variations when the same sample is analysed in different laboratories. In microscopic image analysis, the principal instrumentation errors arise from the optical and electronic parts of systems. They bring about problems of instability, non-linearity, and shading and glare phenomena. The aim of this study is to establish tools and standardised quality control procedures for microscopic image analysis systems. Specific reference standard slides have been developed to control instability, non-linearity, shading and glare phenomena and segmentation efficiency. Some systems have been controlled with these tools and these quality control procedures. Interpretation criteria and accuracy limits of these quality control procedures are proposed according to the conclusions of a European project called PRESS project (Prototype Reference Standard Slide). Beyond these limits, tested image analysis systems are not qualified to realise precise DNA analysis. The different procedures presented in this work determine if an image analysis system is qualified to deliver sufficiently precise DNA measurements for cancer case analysis. If the controlled systems are beyond the defined limits, some recommendations are given to find a solution to the problem.

  1. Concurrent determination of olanzapine, risperidone and 9-hydroxyrisperidone in human plasma by ultra performance liquid chromatography with diode array detection method: application to pharmacokinetic study.

    PubMed

    Siva Selva Kumar, M; Ramanathan, M

    2016-02-01

    A simple and sensitive ultra-performance liquid chromatography (UPLC) method has been developed and validated for simultaneous estimation of olanzapine (OLZ), risperidone (RIS) and 9-hydroxyrisperidone (9-OHRIS) in human plasma in vitro. The sample preparation was performed by simple liquid-liquid extraction technique. The analytes were chromatographed on a Waters Acquity H class UPLC system using isocratic mobile phase conditions at a flow rate of 0.3 mL/min and Acquity UPLC BEH shield RP18 column maintained at 40°C. Quantification was performed on a photodiode array detector set at 277 nm and clozapine was used as internal standard (IS). OLZ, RIS, 9-OHRIS and IS retention times were found to be 0.9, 1.4, .1.8 and 3.1 min, respectively, and the total run time was 4 min. The method was validated for selectivity, specificity, recovery, linearity, accuracy, precision and sample stability. The calibration curve was linear over the concentration range 1-100 ng/mL for OLZ, RIS and 9-OHRIS. Intra- and inter-day precisions for OLZ, RIS and 9-OHRIS were found to be good with the coefficient of variation <6.96%, and the accuracy ranging from 97.55 to 105.41%, in human plasma. The validated UPLC method was successfully applied to the pharmacokinetic study of RIS and 9-OHRIS in human plasma. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Fast and parallel determination of PCB 77 and PCB 180 in plasma using ultra performance liquid chromatography with diode array detection: A pharmacokinetic study in Swiss albino mouse.

    PubMed

    Ramanujam, N; Sivaselvakumar, M; Ramalingam, S

    2017-11-01

    A simple, sensitive and reproducible ultra-performance liquid chromatography (UPLC) method has been developed and validated for simultaneous estimation of polychlorinated biphenyl (PCB) 77 and PCB 180 in mouse plasma. The sample preparation was performed by simple liquid-liquid extraction technique. The analytes were chromatographed on a Waters Acquity H class UPLC system using isocratic mobile phase conditions at a flow rate of 0.3 mL/min and Acquity UPLC BEH shield RP 18 column maintained at 35°C. Quantification was performed on a photodiode array detector set at 215 nm and PCB 101 was used as internal standard (IS). PCB 77, PCB 180, and IS retention times were 2.6, 4.7 and 2.8 min, respectively, and the total run time was 6 min. The method was validated for specificity, selectivity, recovery, linearity, accuracy, precision and sample stability. The calibration curve was linear over the concentration range 10-3000 ng/mL for PCB 77 and PCB 180. Intra- and inter-day precisions for PCBs 77 and 180 were found to be good with CV <4.64%, and the accuracy ranged from 98.90 to 102.33% in mouse plasma. The validated UPLC method was successfully applied to the pharmacokinetic study of PCBs 77 and 180 in mouse plasma. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. II. Methods of detection and quantification and overall long-term performance.

    PubMed

    Mengerink, Y; Peters, R; Kerkhoff, M; Hellenbrand, J; Omloo, H; Andrien, J; Vestjens, M; van der Wal, S

    2000-05-05

    By separating the first six linear and cyclic oligomers of polyamide-6 on a reversed-phase high-performance liquid chromatographic system after sandwich injection, quantitative determination of these oligomers becomes feasible. Low-wavelength UV detection of the different oligomers and selective post-column reaction detection of the linear oligomers with o-phthalic dicarboxaldehyde (OPA) and 3-mercaptopropionic acid (3-MPA) are discussed. A general methodology for quantification of oligomers in polymers was developed. It is demonstrated that the empirically determined group-equivalent absorption coefficients and quench factors are a convenient way of quantifying linear and cyclic oligomers of nylon-6. The overall long-term performance of the method was studied by monitoring a reference sample and the calibration factors of the linear and cyclic oligomers.

  4. Highly Sensitive Detection of Urinary Cadmium to Assess Personal Exposure

    PubMed Central

    Argun, Avni A.; Banks, Ashley; Merlen, Gwendolynne; Tempelman, Linda A.; Becker, Michael F.; Schuelke, Thomas; Dweik, Badawi

    2013-01-01

    A series of Boron-Doped Diamond (BDD) ultramicroelectrode arrays were fabricated and investigated for their performance as electrochemical sensors to detect trace level metals such as cadmium. The steady-state diffusion behavior of these sensors was validated using cyclic voltammetry followed by electrochemical detection of cadmium in water and in human urine to demonstrate high sensitivity (>200 μA/ppb/cm2) and low background current (<4 nA). When an array of ultramicroelectrodes was positioned with optimal spacing, these BDD sensors showed a sigmoidal diffusion behavior. They also demonstrated high accuracy with linear dose dependence for quantification of cadmium in a certified reference river water sample from the National Institute of Standards and Technology (NIST) as well as in a human urine sample spiked with 0.25–1 ppb cadmium. PMID:23561905

  5. High performance liquid chromatography: Tandem mass spectrometric determination of cisplatin levels in different visceral pleura layers of rats.

    PubMed

    Xia, Hui; Zhang, Wen; Li, Yingjie; Yu, Changhai

    2015-05-01

    The aim of the present study was to investigate the concentration of cisplatin in different layers of the visceral pleura in rats, following drug administration. In this study, a sensitive and specific liquid chromatography method coupled with electrospray ionization-tandem mass spectrometry was established to investigate the disposition of cisplatin in different layers of the visceral pleura in rats. Methodological data, including specificity, linearity, accuracy, recovery, precision and lower limits of quantification, confirmed that this novel method may be used to efficiently quantify the cisplatin concentrations in visceral pleura of rats following administration of the drug. Furthermore, the results demonstrated that the desired drug concentration was not achieved in the outer or inner elastic layers of the visceral pleura following injection with cisplatin through various administration methods.

  6. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques.

    PubMed

    Douglas, R K; Nawar, S; Alamar, M C; Mouazen, A M; Coulon, F

    2018-03-01

    Visible and near infrared spectrometry (vis-NIRS) coupled with data mining techniques can offer fast and cost-effective quantitative measurement of total petroleum hydrocarbons (TPH) in contaminated soils. Literature showed however significant differences in the performance on the vis-NIRS between linear and non-linear calibration methods. This study compared the performance of linear partial least squares regression (PLSR) with a nonlinear random forest (RF) regression for the calibration of vis-NIRS when analysing TPH in soils. 88 soil samples (3 uncontaminated and 85 contaminated) collected from three sites located in the Niger Delta were scanned using an analytical spectral device (ASD) spectrophotometer (350-2500nm) in diffuse reflectance mode. Sequential ultrasonic solvent extraction-gas chromatography (SUSE-GC) was used as reference quantification method for TPH which equal to the sum of aliphatic and aromatic fractions ranging between C 10 and C 35 . Prior to model development, spectra were subjected to pre-processing including noise cut, maximum normalization, first derivative and smoothing. Then 65 samples were selected as calibration set and the remaining 20 samples as validation set. Both vis-NIR spectrometry and gas chromatography profiles of the 85 soil samples were subjected to RF and PLSR with leave-one-out cross-validation (LOOCV) for the calibration models. Results showed that RF calibration model with a coefficient of determination (R 2 ) of 0.85, a root means square error of prediction (RMSEP) 68.43mgkg -1 , and a residual prediction deviation (RPD) of 2.61 outperformed PLSR (R 2 =0.63, RMSEP=107.54mgkg -1 and RDP=2.55) in cross-validation. These results indicate that RF modelling approach is accounting for the nonlinearity of the soil spectral responses hence, providing significantly higher prediction accuracy compared to the linear PLSR. It is recommended to adopt the vis-NIRS coupled with RF modelling approach as a portable and cost effective method for the rapid quantification of TPH in soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. LC-MS/MS method for the quantification of almotriptan in dialysates: application to rat brain and blood microdialysis study.

    PubMed

    Nirogi, Ramakrishna; Ajjala, Devender Reddy; Kandikere, Vishwottam; Aleti, Raghupathi; Pantangi, Hanumanth Rao; Srikakolapu, Surya Rao; Benade, Vijay; Bhyrapuneni, Gopinadh; Vurimindi, Himabindu

    2013-01-01

    A sensitive LC-MS/MS method was developed and validated for the quantification of almotriptan in rat brain and blood dialysates. Almotriptan is a 5HT1B/1D receptor agonist used for the treatment of migraine pain. Method consists of rapid gradient elution program with 10mM ammonium formate (pH 3) and acetonitrile on a Xbridge column. The MRM transitions monitored were m/z 336.2-58.1 for almotriptan and m/z 448.2-285.3 for the IS. The assay was linear in the range of 0.1-20 ng/ml, with acceptable precision and accuracy along with adequate sensitivity. The between batch accuracy was in the range of 99.0-104.3% with precision in between 0.6% and 5.8%. Microdialysis is an important sampling technique, with the capability of capturing the concentrations of various analytes in different bio fluids, at a single time point. This method was applied to quantify brain and blood dialysate samples obtained from a microdialysis study of rats treated with almotriptan (10mg/kg, p.o.). In vivo recovery experiments were performed to correct the dialysate concentrations into extracellular concentrations. Mean peak dialysate concentrations of almotriptan were found to be 152 ± 78 and 7.4 ± 1.0 ng/ml in blood and prefrontal cortex, respectively. The brain penetration of almotriptan is characterized by the AUCbrain/AUCblood found to be 0.07 ± 0.05. The results revealed the importance of measuring the unbound almotriptan concentrations in the brain over the blood for understanding its PK/PD relationship. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Terbinafine quantification in human plasma by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry: application to a bioequivalence study.

    PubMed

    de Oliveira, C H; Barrientos-Astigarraga, R E; de Moraes, M O; Bezerra, F A; de Moraes, M E; de Nucci, G

    2001-12-01

    A method based on liquid chromatography with positive ion electrospray ionization and tandem mass spectrometry is described for the determination of terbinafine in human plasma using naftifine as internal standard. The method has a chromatographic run time of 5 minutes and was linear in the range 1.0 to 2000 ng/mL. The limit of quantification was 1.0 ng/mL; the intraday precision was 3.6%, 3.8%, 3.5%, and 4.1%; and the intraday accuracy was -2.7%, 7.7%, 4.8%, and -2.7% for 5.0, 80.0, 250.0, and 1500.0 ng/mL, respectively. The interday precision was 4.9%, 1.7%, 2.4%, and 4.6% and the interday accuracy was 0.3%, 5.8%, 6.5%, and -1.4% for the same concentrations. This method was used in a bioequivalence study of two tablet formulations of terbinafine. Twenty-four healthy volunteers (both sexes) received a single oral dose of terbinafine (250 mg) in an open, randomized, two-period crossover study. The 90% CI of geometric mean ratios between Terbinafina (Medley S/A Indústria Farmacêutica, Campinas, Brazil) and Lamisil (Novartis Biociências S/A, São Paulo, Brazil) were 90.5% to 110.0% for C max, 92.2% to 108.1% for AUC last, and 91.3% to 107.5% for AUC 0-inf. Because the 90% CI for the above-mentioned parameters were included in the 80% to 125% interval proposed by the US FDA, the two formulations were considered bioequivalent in terms of rate and extent of absorption.

  9. Quantification of mevalonate-5-phosphate using UPLC-MS/MS for determination of mevalonate kinase activity.

    PubMed

    Reitzle, Lukas; Maier, Barbara; Stojanov, Silvia; Teupser, Daniel; Muntau, Ania C; Vogeser, Michael; Gersting, Søren W

    2015-08-01

    Mevalonate kinase deficiency, a rare autosomal recessive autoinflammatory disease, is caused by mutations in the MVK gene encoding mevalonate kinase (MK). MK catalyzes the phosphorylation of mevalonic acid to mevalonate-5-phosphate (MVAP) in the pathway of isoprenoid and sterol synthesis. The disease phenotype correlates with residual activity ranging from <0.5% for mevalonic aciduria to 1-7% for the milder hyperimmunoglobulinemia D and periodic fever syndrome (HIDS). Hence, assessment of loss-of-function requires high accuracy measurements. We describe a method using isotope dilution UPLC-MS/MS for precise and sensitive determination of MK activity. Wild-type MK and the variant V261A, which is associated with HIDS, were recombinantly expressed in Escherichia coli. Enzyme activity was determined by formation of MVAP over time quantified by isotope dilution UPLC-MS/MS. The method was validated according to the FDA Guidance for Bioanalytical Method Validation. Sensitivity for detection of MAVP by UPLC-MS/MS was improved by derivatization with butanol-HCl (LLOQ, 5.0 fmol) and the method was linear from 0.5 to 250 μmol/L (R(2) > 0.99) with a precision of ≥ 89% and an accuracy of ± 2.7%. The imprecision of the activity assay, including the enzymatic reaction and the UPLC-MS/MS quantification, was 8.3%. The variant V261A showed a significantly decreased activity of 53.1%. Accurate determination of MK activity was enabled by sensitive and reproducible detection of MVAP using UPLC-MS/MS. The novel method may improve molecular characterization of MVK mutations, provide robust genotype-phenotype correlations, and accelerate compound screening for drug candidates restoring variant MK activity. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Quantification of cortisol in human eccrine sweat by liquid chromatography - tandem mass spectrometry.

    PubMed

    Jia, Min; Chew, Wade M; Feinstein, Yelena; Skeath, Perry; Sternberg, Esther M

    2016-03-21

    Cortisol has long been recognized as the "stress biomarker" in evaluating stress related disorders. Plasma, urine or saliva are the current source for cortisol analysis. The sampling of these biofluids is either invasive or has reliability problems that could lead to inaccurate results. Sweat has drawn increasing attention as a promising source for non-invasive stress analysis. A sensitive HPLC-MS/MS method was developed for the quantitation of cortisol ((11β)-11,17,21-trihydroxypregn-4-ene-3,20-dione) in human eccrine sweat. At least one unknown isomer that has previously not been reported and could potentially interfere with quantification was separated from cortisol with mixed mode RP HPLC. Detection of cortisol was carried out using atmospheric pressure chemical ionization (APCI) and selected reaction monitoring (SRM) in positive ion mode, using cortisol-9,11,12,12-D4 as internal standard. LOD and LOQ were estimated to be 0.04 ng ml(-1) and 0.1 ng ml(-1), respectively. Linear range of 0.10-25.00 ng ml(-1) was obtained. Intraday precision (2.5%-9.7%) and accuracy (0.5%-2.1%), interday precision (12.3%-18.7%) and accuracy (7.1%-15.1%) were achieved. This method has been successfully applied to the cortisol analysis of human eccrine sweat samples. This is the first demonstration that HPLC-MS/MS can be used for the sensitive and highly specific determination of cortisol in human eccrine sweat in the presence of at least one isomer that has similar hydrophobicity as cortisol. This study demonstrated that human eccrine sweat could be used as a promising source for non-invasive assessment of stress biomarkers such as cortisol and other steroid hormones.

  11. Simultaneous determination of seven phthalic acid esters in beverages using ultrasound and vortex-assisted dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    PubMed

    Yılmaz, Pelin Köseoğlu; Ertaş, Abdulselam; Kolak, Ufuk

    2014-08-01

    A sensitive, rapid, and simple high-performance liquid chromatography with UV detection method was developed for the simultaneous determination of seven phthalic acid esters (dimethyl phthalate, dipropyl phthalate, di-n-butyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di-(2-ethylhexyl) phthalate, and di-n-octyl phthalate) in several kinds of beverage samples. Ultrasound and vortex-assisted dispersive liquid-liquid microextraction method was used. The separation was performed using an Intersil ODS-3 column (C18 , 250 × 4.6 mm, 5.0 μm) and a gradient elution with a mobile phase consisting of MeOH/ACN (50:50) and 0.2 M KH2 PO4 buffer. Analytes were detected by a UV detector at 230 nm. The developed method was validated in terms of linearity, limit of detection, limit of quantification, repeatability, accuracy, and recovery. Calibration equations and correlation coefficients (> 0.99) were calculated by least squares method with weighting factor. The limit of detection and quantification were in the range of 0.019-0.208 and 0.072-0.483 μg/L. The repeatability and intermediate precision were determined in terms of relative standard deviation to be within 0.03-3.93 and 0.02-4.74%, respectively. The accuracy was found to be in the range of -14.55 to 15.57% in terms of relative error. Seventeen different beverage samples in plastic bottles were successfully analyzed, and ten of them were found to be contaminated by different phthalic acid esters. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determination of N,N-dimethyltryptamine and beta-carboline alkaloids in human plasma following oral administration of Ayahuasca.

    PubMed

    Yritia, Mercedes; Riba, Jordi; Ortuño, Jordi; Ramirez, Ariel; Castillo, Araceli; Alfaro, Yolanda; de la Torre, Rafael; Barbanoj, Manel J

    2002-11-05

    Ayahuasca is a South American psychotropic beverage prepared from plants native to the Amazon River Basin. It combines the hallucinogenic agent and 5-HT(2A/2C) agonist N,N-dimethyltryptamine (DMT) with beta-carboline alkaloids showing monoamine oxidase-inhibiting properties. In the present paper, an analytical methodology for the plasma quantification of the four main alkaloids present in ayahuasca plus two major metabolites is described. DMT was extracted by liquid-liquid extraction with n-pentane and quantified by gas chromatography with nitrogen-phosphorus detection. Recovery was 74%, and precision and accuracy were better than 9.9%. The limit of quantification (LOQ) was 1.6 ng/ml. Harmine, harmaline, and tetrahydroharmine (THH), the three main beta-carbolines present in ayahuasca, and harmol and harmalol (O-demethylation metabolites of harmine and harmaline, respectively) were measured in plasma by means of high-performance liquid chromatography (HPLC) with fluorescence detection. Sample preparation was accomplished by solid-phase extraction, which facilitated the automation of the process. All five beta-carbolines were measured using a single detector by switching wavelengths. Separation of harmol and harmalol required only slight changes in the chromatographic conditions. Method validation demonstrated good recoveries, above 87%, and accuracy and precision better than 13.4%. The LOQ was 0.5 ng/ml for harmine, 0.3 ng/ml for harmaline, 1.0 ng/ml for THH, and 0.3 ng/ml for harmol and harmalol. Good linearity was observed in the concentration ranges evaluated for DMT (2.5-50 ng/ml) and the beta-carbolines (0.3-100 ng/ml). The gas chromatography and HPLC methods described allowed adequate characterization of the pharmacokinetics of the four main alkaloids present in ayahuasca, and also of two major beta-carboline metabolites not previously described in the literature.

  13. A novel reverse phase high-performance liquid chromatography method for standardization of Orthosiphon stamineus leaf extracts.

    PubMed

    Saidan, Noor Hafizoh; Aisha, Abdalrahim F A; Hamil, Mohd Shahrul Ridzuan; Majid, Amin Malik Shah Abdul; Ismail, Zhari

    2015-01-01

    Orthosiphon stamineus Benth. (Lamiaceae) is a traditional medicinal plant which has been used in treating various ailments such as kidney diseases, bladder inflammation, arthritis and diabetes. The leaves contain high concentration of phenolic compounds, thus, rosmarinic acid (RA), 3'-hydroxy-5, 6, 7, 4'-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) were chosen as a marker compounds for standardization of various O. stamineus leaf extracts. The aim was to develop and validate a new high-performance liquid chromatography (HPLC) method for quantification of 4 marker compounds (RA, TMF, SIN, EUP) in various O. stamineus leaf extracts. The method was developed and validated using RP-HPLC-diode-array detection at 320 nm for accuracy, precision and limits of detection and was applied for quantification of it markers in five different extracts prepared in solvents with increasing polarity, using a gradient mobile phase 0.1% formic acid: Acetonitrile at a flow rate of 1 ml/min on reverse phase acclaim polar advantage II C18 column (3 μm, 3 × 150 mm) with 18 min separation time. The developed method provided satisfactory precision, and the accuracy of this method was in the range of 90.2% to 105.5%. All of 4 compounds showed good linearity at R2 > 0.999. The developed method is a simple, cost effective with shorter run time (18 min) in comparison to previous methods (30 min) and utilization of environmental-friendly solvents system. Therefore, this method has the potential to replace currently used methods in the routine standardization work of O. stamineus extracts, raw materials and its commercial products.

  14. A novel reverse phase high-performance liquid chromatography method for standardization of Orthosiphon stamineus leaf extracts

    PubMed Central

    Saidan, Noor Hafizoh; Aisha, Abdalrahim F.A.; Hamil, Mohd Shahrul Ridzuan; Majid, Amin Malik Shah Abdul; Ismail, Zhari

    2015-01-01

    Background: Orthosiphon stamineus Benth. (Lamiaceae) is a traditional medicinal plant which has been used in treating various ailments such as kidney diseases, bladder inflammation, arthritis and diabetes. The leaves contain high concentration of phenolic compounds, thus, rosmarinic acid (RA), 3’-hydroxy-5, 6, 7, 4’-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) were chosen as a marker compounds for standardization of various O. stamineus leaf extracts. Objective: The aim was to develop and validate a new high-performance liquid chromatography (HPLC) method for quantification of 4 marker compounds (RA, TMF, SIN, EUP) in various O. stamineus leaf extracts. Materials and Methods: The method was developed and validated using RP-HPLC-diode-array detection at 320 nm for accuracy, precision and limits of detection and was applied for quantification of it markers in five different extracts prepared in solvents with increasing polarity, using a gradient mobile phase 0.1% formic acid: Acetonitrile at a flow rate of 1 ml/min on reverse phase acclaim polar advantage II C18 column (3 μm, 3 × 150 mm) with 18 min separation time. Results: The developed method provided satisfactory precision, and the accuracy of this method was in the range of 90.2% to 105.5%. All of 4 compounds showed good linearity at R2 > 0.999. Conclusion: The developed method is a simple, cost effective with shorter run time (18 min) in comparison to previous methods (30 min) and utilization of environmental-friendly solvents system. Therefore, this method has the potential to replace currently used methods in the routine standardization work of O. stamineus extracts, raw materials and its commercial products. PMID:25598631

  15. A fit-for-purpose LC-MS/MS method for the simultaneous quantitation of ATP and 2,3-DPG in human K2EDTA whole blood.

    PubMed

    Kim, Hyeryun; Kosinski, Penelope; Kung, Charles; Dang, Lenny; Chen, Yue; Yang, Hua; Chen, Yuan-Shek; Kramer, Jordyn; Liu, Guowen

    2017-09-01

    Many hemolytic anemias results in major metabolic abnormalities: two common metabolite abnormalities include increased levels of 2,3-diphosphoglycerate (2,3-DPG) and decreased levels of adenosine triphosphate (ATP). To better monitor the concentration changes of these metabolites, the development of a reliable LC-MS/MS method to quantitatively profile the concentrations of 2, 3-DPG and ATP in whole blood is essential to understand the effects of investigational therapeutics. Accurate quantification of both compounds imposes great challenges to bioanalytical scientists due to their polar, ionic and endogenous nature. Here we present an LC-MS/MS method for the reliable quantification of 2,3-DPG and ATP from K 2 EDTA human whole blood (WB) simultaneously. Whole blood samples were spiked with stable isotope labeled internal standards, processed by protein precipitation extraction, and analyzed using zwitterionic ion chromatography-hydrophilic interaction chromatography (ZIC-HILIC) coupled with tandem mass spectrometry. The linear analytical range of the assay was 50-3000μg/mL. The fit-for-purpose method demonstrated excellent accuracy and precision. The overall accuracy was within ±10.5% (%RE) for both analytes and the intra- and inter-assay precision (%CV) were less than 6.7% and 6.2% for both analytes, respectively. ATP and 2,3-DPG were found to be stable in human K 2 EDTA blood for at least 8h at 4°C, 96days when stored at -70°C and after three freeze/thaw cycles. The assay has been successfully applied to K 2 EDTA human whole blood samples to support clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics.

    PubMed

    Gröer, C; Busch, D; Patrzyk, M; Beyer, K; Busemann, A; Heidecke, C D; Drozdzik, M; Siegmund, W; Oswald, S

    2014-11-01

    Cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGT) are major determinants in the pharmacokinetics of most drugs on the market. To investigate their impact on intestinal and hepatic drug metabolism, we developed and validated quantification methods for nine CYP (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) and four UGT enzymes (UGT1A1, UGT1A3, UGT2B7 and UGT2B15) that have been shown to be of clinical relevance in human drug metabolism. Protein quantification was performed by targeted proteomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based determination of enzyme specific peptides after tryptic digestion using in each case stable isotope labelled peptides as internal standard. The chromatography of the respective peptides was performed with gradient elution using a reversed phase (C18) column (Ascentis(®) Express Peptide ES-C18, 100mm×2.1mm, 2.7μm) and 0.1% formic acid (FA) as well as acetonitrile with 0.1% FA as mobile phases at a flow rate of 300μl/min. The MS/MS detection of all peptides was done simultaneously with a scheduled multiple reaction monitoring (MRM) method in the positive mode by monitoring in each case three mass transitions per proteospecific peptide and the internal standard. The assays were validated according to current bioanalytical guidelines with respect to specificity, linearity (0.25-50nM), within-day and between-day accuracy and precision, digestion efficiency as well as stability. Finally, the developed method was successfully applied to determine the CYP and UGT protein amount in human liver and intestinal microsomes. The method was shown to possess sufficient specificity, sensitivity, accuracy, precision and stability to quantify clinically relevant human CYP and UGT enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Remote quantification of phycocyanin in potable water sources through an adaptive model

    NASA Astrophysics Data System (ADS)

    Song, Kaishan; Li, Lin; Tedesco, Lenore P.; Li, Shuai; Hall, Bob E.; Du, Jia

    2014-09-01

    Cyanobacterial blooms in water supply sources in both central Indiana USA (CIN) and South Australia (SA) are a cause of great concerns for toxin production and water quality deterioration. Remote sensing provides an effective approach for quick assessment of cyanobacteria through quantification of phycocyanin (PC) concentration. In total, 363 samples spanning a large variation of optically active constituents (OACs) in CIN and SA waters were collected during 24 field surveys. Concurrently, remote sensing reflectance spectra (Rrs) were measured. A partial least squares-artificial neural network (PLS-ANN) model, artificial neural network (ANN) and three-band model (TBM) were developed or tuned by relating the Rrs with PC concentration. Our results indicate that the PLS-ANN model outperformed the ANN and TBM with both the original spectra and simulated ESA/Sentinel-3/Ocean and Land Color Instrument (OLCI) and EO-1/Hyperion spectra. The PLS-ANN model resulted in a high coefficient of determination (R2) for CIN dataset (R2 = 0.92, R: 0.3-220.7 μg/L) and SA (R2 = 0.98, R: 0.2-13.2 μg/L). In comparison, the TBM model yielded an R2 = 0.77 and 0.94 for the CIN and SA datasets, respectively; while the ANN obtained an intermediate modeling accuracy (CIN: R2 = 0.86; SA: R2 = 0.95). Applying the simulated OLCI and Hyperion aggregated datasets, the PLS-ANN model still achieved good performance (OLCI: R2 = 0.84; Hyperion: R2 = 0.90); the TBM also presented acceptable performance for PC estimations (OLCI: R2 = 0.65, Hyperion: R2 = 0.70). Based on the results, the PLS-ANN is an effective modeling approach for the quantification of PC in productive water supplies based on its effectiveness in solving the non-linearity of PC with other OACs. Furthermore, our investigation indicates that the ratio of inorganic suspended matter (ISM) to PC concentration has close relationship to modeling relative errors (CIN: R2 = 0.81; SA: R2 = 0.92), indicating that ISM concentration exert significant impact on PC estimation accuracy.

  18. CPTAC Evaluates Long-Term Reproducibility of Quantitative Proteomics Using Breast Cancer Xenografts | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Liquid chromatography tandem-mass spectrometry (LC-MS/MS)- based methods such as isobaric tags for relative and absolute quantification (iTRAQ) and tandem mass tags (TMT) have been shown to provide overall better quantification accuracy and reproducibility over other LC-MS/MS techniques. However, large scale projects like the Clinical Proteomic Tumor Analysis Consortium (CPTAC) require comparisons across many genomically characterized clinical specimens in a single study and often exceed the capability of traditional iTRAQ-based quantification.

  19. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR.

    PubMed

    Cai, Yicun; He, Yuping; Lv, Rong; Chen, Hongchao; Wang, Qiang; Pan, Liangwen

    2017-01-01

    Meat products often consist of meat from multiple animal species, and inaccurate food product adulteration and mislabeling can negatively affect consumers. Therefore, a cost-effective and reliable method for identification and quantification of animal species in meat products is required. In this study, we developed a duplex droplet digital PCR (dddPCR) detection and quantification system to simultaneously identify and quantify the source of meat in samples containing a mixture of beef (Bos taurus) and pork (Sus scrofa) in a single digital PCR reaction tube. Mixed meat samples of known composition were used to test the accuracy and applicability of this method. The limit of detection (LOD) and the limit of quantification (LOQ) of this detection and quantification system were also identified. We conclude that our dddPCR detection and quantification system is suitable for quality control and routine analyses of meat products.

  20. Supercritical fluid extraction (SFE) of ketamine metabolites from dried urine and on-line quantification by supercritical fluid chromatography and single mass detection (on-line SFE-SFC-MS).

    PubMed

    Hofstetter, Robert; Fassauer, Georg M; Link, Andreas

    2018-02-15

    On-line solid-phase supercritical fluid extraction (SFE) and chromatography (SFC) coupled to mass spectrometry (MS) has been evaluated for its usefulness with respect to metabolic profiling and pharmacological investigations of ketamine in humans. The aim of this study was to develop and validate a rapid, highly selective and sensitive SFE-SFC-MS method for the quantification of ketamine and its metabolites in miniature amounts in human urine excluding liquid-liquid extraction (LLE). Several conditions were optimized systematically following the requirements of the European Medicines Agency: selectivity, carry-over, calibration curve parameters (LLOQ, range and linearity), within- and between-run accuracy and precision, dilution integrity, matrix effect, and stability. The method, which required a relatively small volume of human urine (20 μL per sample), was validated for pharmacologically and toxicologically relevant concentrations ranging from 25.0 to 1000 ng/mL (r 2  > 0.995). The lower limit of quantification (LLOQ) for all compounds was found to be as low as 0.5 ng. In addition, stability of analytes during removal of water from the urine samples using different conditions (filter paper or ISOLUTE® HM-N) was studied. In conclusion, the method developed in this study can be successfully applied to studies of ketamine metabolites in humans, and may pave the way for routine application of on-line SFE-SFC-MS in clinical investigations. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. GC-MS/MS detects potential pregabalin abuse in susceptible subjects' hair.

    PubMed

    Ianni, Federica; Aroni, Kyriaki; Gili, Alessio; Sardella, Roccaldo; Bacci, Mauro; Lancia, Massimo; Natalini, Benedetto; Gambelunghe, Cristiana

    2018-06-01

    Pregabalin, a GABA analogue, binds to the alpha 2 delta subunit of voltage-dependent calcium channels. It is recognised as efficacious in pathologies such as epilepsy, neuropathic pain, and anxiety disorders. Since pregabalin prescriptions have increased worldwide, reports of its abuse have been accumulating, mainly in patients with opioid abuse disorders. The present study investigated potential pregabalin abuse by means of hair analysis, a matrix that provides valuable retrospective information. Half of the pool of 280 susceptible patients had been occasional drug users and were being monitored for driving licence renewals. The other 140 patients had a history of opiate dependency and were monitored to assess compliance with methadone therapy. In view of determining pregabalin in hair samples, it was extracted in methanol, successfully derivatised to give the ethyl chloroformate derivative, and finally pregabalin was analysed by gas chromatography-tandem mass spectrometry. Selectivity, linearity, limit of detection, limit of quantification, recovery, intra- and inter-day precision, and accuracy of the quantification procedure were appraised. Pregabalin limits of detection and quantification were 30 pg/mg and 50 pg/mg, respectively. We found 10.7% of hair samples from methadone patients and 4.29% from occasional drug users were positive to pregabalin without medical prescription. The mean pregabalin concentration in hair was higher than in consumers with medical indications (1.45 ng/mg vs 0.74 ng/mg). These results suggest that pregabalin possesses a significant abuse potential particularly among individuals attending opiate dependence services and that pregabalin abuse is a serious emerging issue, which should be carefully monitored. Copyright © 2017 John Wiley & Sons, Ltd.

  2. A Sensitive Branched DNA HIV-1 Signal Amplification Viral Load Assay with Single Day Turnaround

    PubMed Central

    Baumeister, Mark A.; Zhang, Nan; Beas, Hilda; Brooks, Jesse R.; Canchola, Jesse A.; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R.

    2012-01-01

    Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) (“Versant Assay”) currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16–18 h to 2.5 h, composition of only the “Lysis Diluent” solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements. PMID:22479381

  3. A sensitive branched DNA HIV-1 signal amplification viral load assay with single day turnaround.

    PubMed

    Baumeister, Mark A; Zhang, Nan; Beas, Hilda; Brooks, Jesse R; Canchola, Jesse A; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R

    2012-01-01

    Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) ("Versant Assay") currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16-18 h to 2.5 h, composition of only the "Lysis Diluent" solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements.

  4. Liquid chromatography-mass spectrometry-based quantification of steroidal glycoalkaloids from Solanum xanthocarpum and effect of different extraction methods on their content.

    PubMed

    Paul, Atish T; Vir, Sanjay; Bhutani, K K

    2008-10-24

    A new liquid chromatography-mass spectrometry (LC-MS)-based method coupled with pressurized liquid extraction (PLE) as an efficient sample preparation technique has been developed for the quantification and fingerprint analysis of Solanum xanthocarpum. Optimum separations of the samples were achieved on a Waters MSC-18 XTerra column, using 0.5% (v/v) formic acid in water (A) and acetonitrile (ACN):2-propanol:formic acid (94.5:5:0.5, v/v/v) (B) as mobile phase. The separation was carried out using linear gradient elution with a flow rate of 1.0mL/min. The gradient was: 0min, 20% B; 14min, 30% B; 20min, 30% B; 27min, 60% B and the column was re-equilibrated to the initial condition (20% B) for 10min prior to next injection. The steroidal glycoalkaloids (SGAs) which are the major active constituents were isolated as pure compounds from the crude methanolic extract of S. xanthocarpum by preparative LC-MS and after characterization were used as external standards for the development and validation of the method. Extracts prepared by conventional Soxhlet extraction, PLE and ultrasonication were used for analysis. The method was validated for repeatability, precision (intra- and inter-day variation), accuracy (recovery) and sensitivity (limit of detection and limit of quantitation). The purpose of the work was to develop a validated method, which can be used for the quantification of SGAs in commercialized S. xanthocarpum products and the fingerprint analysis for their routine quality control.

  5. Screening for and validated quantification of amphetamines and of amphetamine- and piperazine-derived designer drugs in human blood plasma by gas chromatography/mass spectrometry.

    PubMed

    Peters, Frank T; Schaefer, Simone; Staack, Roland F; Kraemer, Thomas; Maurer, Hans H

    2003-06-01

    The classical stimulants amphetamine, methamphetamine, ethylamphetamine and the amphetamine-derived designer drugs MDA, MDMA ('ecstasy'), MDEA, BDB and MBDB have been widely abused for a relatively long time. In recent years, a number of newer designer drugs have entered the illicit drug market. 4-Methylthioamphetamine (MTA), p-methoxyamphetamine (PMA) and p-methoxymethamphetamine (PMMA) are also derived from amphetamine. Other designer drugs are derived from piperazine, such as benzylpiperazine (BZP), methylenedioxybenzylpiperazine (MDBP), trifluoromethylphenylpiperazine (TFMPP), m-chlorophenylpiperazine (mCPP) and p-methoxyphenylpiperazine (MeOPP). A number of severe or even fatal intoxications involving these newer substances, especially PMA, have been reported. This paper describes a method for screening for and simultaneous quantification of the above-mentioned compounds and the metabolites p-hydroxyamphetamine and p-hydroxymethamphetamine (pholedrine) in human blood plasma. The analytes were analyzed by gas chromatography/mass spectrometry in the selected-ion monitoring mode after mixed-mode solid-phase extraction (HCX) and derivatization with heptafluorobutyric anhydride. The method was fully validated according to international guidelines. It was linear from 5 to 1000 micro g l(-1) for all analytes. Data for accuracy and precision were within required limits with the exception of those for MDBP. The limit of quantification was 5 micro g l(-1) for all analytes. The applicability of the assay was proven by analysis of authentic plasma samples and of a certified reference sample. This procedure should also be suitable for confirmation of immunoassay results positive for amphetamines and/or designer drugs of the ecstasy type. Copyright 2003 John Wiley & Sons, Ltd.

  6. Correlation of X-ray computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical measurement of adipose and lean tissues in living mice.

    PubMed

    Metzinger, Matthew N; Miramontes, Bernadette; Zhou, Peng; Liu, Yueying; Chapman, Sarah; Sun, Lucy; Sasser, Todd A; Duffield, Giles E; Stack, M Sharon; Leevy, W Matthew

    2014-10-08

    Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.

  7. Quantification of angiotensin-converting-enzyme-mediated degradation of human chemerin 145-154 in plasma by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

    PubMed

    John, Harald; Hierer, Jessica; Haas, Olga; Forssmann, Wolf-Georg

    2007-03-01

    Chemerin is a chemoattractive protein acting as a ligand for the G-protein-coupled receptor ChemR23/CMKLR1 and plays an important role in the innate and adaptive immunity. Proteolytic processing of its C terminus is essential for receptor binding and physiological activity. Therefore, we investigated the plasma stability of the decapeptide chemerin 145-154 (P(145)-F(154)) corresponding to the C terminus of the physiologically active chemerin variant E(21)-F(154) from human hemofiltrate. For monitoring concentration-time profiles and degradation products we developed a novel matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry procedure using an internal peptide standard (hemorphin LVV-H7) for quantification. The linear range covers 2.5 orders of magnitude in the lower micromolar concentration range (lower limit of quantification 0.312 microg/ml, 0.25 microM) characterized by satisfactory reproducibility (CV < or =9%), accuracy (< or =10%), ruggedness, and recovery (98%). We found that chemerin 145-154 is C-terminally truncated in human citrate plasma by the cleavage of the penultimate dipeptidyl residue. N-terminal truncation was not observed. In contrast to citrate plasma, no degradation was detected in ethylenediammetetraacetate (EDTA) plasma. We identified angiotensin-converting-enzyme (ACE) to be responsible for C-terminal truncation, which could be completely inhibited by EDTA and captopril. These results are relevant to clarify the natural processing of chemerin and the potential involvement of ACE in mediating the immune response.

  8. Online restricted-access material combined with high-performance liquid chromatography and tandem mass spectrometry for the simultaneous determination of vanillin and its vanillic acid metabolite in human plasma.

    PubMed

    Li, De-Qiang; Zhang, Zhi-Qing; Yang, Xiu-Ling; Zhou, Chun-Hua; Qi, Jin-Long

    2016-09-01

    An automated online solid-phase extraction with restricted-access material combined with high-performance liquid chromatography and tandem mass spectrometry was developed and validated for the simultaneous quantification of vanillin and its vanillic acid metabolite in human plasma. After protein precipitation by methanol, which contained the internal standards, the supernatant of plasma samples was injected to the system, the endogenous large molecules were flushed out, and target analytes were trapped and enriched on the adsorbent, resulting in a minimization of sample complexity and ion suppression effects. Calibration curves were linear over the concentrations of 5-1000 ng/mL for vanillin and 10-5000 ng/mL for vanillic acid with a coefficient of determination >0.999 for the determined compounds. The lower limits of quantification of vanillin and vanillic acid were 5.0 and 10.0 ng/mL, respectively. The intra- and inter-run precisions expressed as the relative standard deviation were 2.6-8.6 and 3.2-10.2%, respectively, and the accuracies expressed as the relative error were in the range of -6.1 to 7.3%. Extraction recoveries of analytes were between 89.5 and 97.4%. There was no notable matrix effect for any analyte concentration. The developed method was proved to be sensitive, repeatable, and accurate for the quantification of vanillin and its vanillic acid metabolite in human plasma. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Sarafian, Magali H; Lewis, Matthew R; Pechlivanis, Alexandros; Ralphs, Simon; McPhail, Mark J W; Patel, Vishal C; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy K

    2015-10-06

    Bile acids are important end products of cholesterol metabolism. While they have been identified as key factors in lipid emulsification and absorption due to their detergent properties, bile acids have also been shown to act as signaling molecules and intermediates between the host and the gut microbiota. To further the investigation of bile acid functions in humans, an advanced platform for high throughput analysis is essential. Herein, we describe the development and application of a 15 min UPLC procedure for the separation of bile acid species from human biofluid samples requiring minimal sample preparation. High resolution time-of-flight mass spectrometry was applied for profiling applications, elucidating rich bile acid profiles in both normal and disease state plasma. In parallel, a second mode of detection was developed utilizing tandem mass spectrometry for sensitive and quantitative targeted analysis of 145 bile acid (BA) species including primary, secondary, and tertiary bile acids. The latter system was validated by testing the linearity (lower limit of quantification, LLOQ, 0.25-10 nM and upper limit of quantification, ULOQ, 2.5-5 μM), precision (≈6.5%), and accuracy (81.2-118.9%) on inter- and intraday analysis achieving good recovery of bile acids (serum/plasma 88% and urine 93%). The ultra performance liquid chromatography-mass spectrometry (UPLC-MS)/MS targeted method was successfully applied to plasma, serum, and urine samples in order to compare the bile acid pool compositional difference between preprandial and postprandial states, demonstrating the utility of such analysis on human biofluids.

  10. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective.

    PubMed

    Moody, Jonathan B; Lee, Benjamin C; Corbett, James R; Ficaro, Edward P; Murthy, Venkatesh L

    2015-10-01

    A number of exciting advances in PET/CT technology and improvements in methodology have recently converged to enhance the feasibility of routine clinical quantification of myocardial blood flow and flow reserve. Recent promising clinical results are pointing toward an important role for myocardial blood flow in the care of patients. Absolute blood flow quantification can be a powerful clinical tool, but its utility will depend on maintaining precision and accuracy in the face of numerous potential sources of methodological errors. Here we review recent data and highlight the impact of PET instrumentation, image reconstruction, and quantification methods, and we emphasize (82)Rb cardiac PET which currently has the widest clinical application. It will be apparent that more data are needed, particularly in relation to newer PET technologies, as well as clinical standardization of PET protocols and methods. We provide recommendations for the methodological factors considered here. At present, myocardial flow reserve appears to be remarkably robust to various methodological errors; however, with greater attention to and more detailed understanding of these sources of error, the clinical benefits of stress-only blood flow measurement may eventually be more fully realized.

  11. Simultaneous quantification of polymethoxylated flavones and coumarins in Fructus aurantii and Fructus aurantii immaturus using HPLC-ESI-MS/MS.

    PubMed

    Chen, Hai-Fang; Zhang, Wu-Gang; Yuan, Jin-Bin; Li, Yan-Gang; Yang, Shi-Lin; Yang, Wu-Liang

    2012-02-05

    The major lipid-soluble constituents in Fructus aurantii (zhiqiao) and Fructus aurantii immaturus (zhishi) are polymethoxylated flavones (PMFs) and coumarins. In the present study, a high-performance liquid chromatography with electrospray ionization tandem mass spectrometry method was developed to quantify PMFs (nobiletin, tangeretin, 5-hydroxy-6,7,8,4'-tetramethoxyflavone, and natsudaidai) and coumarins (marmin, meranzin hydrate, and auraptene) simultaneously. PMFs and coumarins were detected by electrospray ionization tandem mass spectrometry in positive ion mode and quantified with multiple reaction monitor. Samples were separated on a Diamonsil C₁₈ (150 mm × 4.6 mm, 5 μm) column using acetonitrile and formic acid-water solution as a mobile phase in gradient mode with a flow rate at 0.5 mL/min. All calibration curves showed good linearity (r² > 0.9977) within the test ranges. Variations of the intraday and interday precisions were less than 4.07%. The recoveries of the components were within the range of 95.79%-105.04% and the relative standard deviations were less than 3.82%. The method developed was validated with acceptable accuracy, precision, and extraction recoveries and can be applied for the identification and quantification of four PMFs and three coumarins in citrus herbs. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Simultaneous quantification of multiple components in rat plasma by UPLC-MS/MS and pharmacokinetic study after oral administration of Huangqi decoction.

    PubMed

    Zeng, Jia-Kai; Li, Yuan-Yuan; Wang, Tian-Ming; Zhong, Jie; Wu, Jia-Sheng; Liu, Ping; Zhang, Hua; Ma, Yue-Ming

    2018-05-01

    A rapid, sensitive and accurate UPLC-MS/MS method was developed for the simultaneous quantification of components of Huangqi decoction (HQD), such as calycosin-7-O-β-d-glucoside, calycosin-glucuronide, liquiritin, formononetin-glucuronide, isoliquiritin, liquiritigenin, ononin, calycosin, isoliquiritigenin, formononetin, glycyrrhizic acid, astragaloside IV, cycloastragenol, and glycyrrhetinic acid, in rat plasma. After plasma samples were extracted by protein precipitation, chromatographic separation was performed with a C 18 column, using a gradient of methanol and 0.05% acetic acid containing 4mm ammonium acetate as the mobile phase. Multiple reaction monitoring scanning was performed to quantify the analytes, and the electrospray ion source polarity was switched between positive and negative modes in a single run of 10 min. Method validation showed that specificity, linearity, accuracy, precision, extraction recovery, matrix effect and stability for 14 components met the requirements for their quantitation in biological samples. The established method was successfully applied to the pharmacokinetic study of multiple components in rats after intragastric administration of HQD. The results clarified the pharmacokinetic characteristics of multiple components found in HQD. This research provides useful information for understanding the relation between the chemical components of HQD and their therapeutic effects. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Linear Array Ultrasonic Test Results from Alkali-Silica Reaction (ASR) Specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Dwight A; Khazanovich, Dr. Lev; Salles, Lucio

    2016-04-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the variousmore » nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.This report presents results of the ultrasound evaluation of four concrete slabs with varying levels of ASR damage present. This included an investigation of the experimental results, as well as a supplemental simulation considering the effect of ASR damage by elasto-dynamic wave propagation using a finite integration technique method. It was found that the Hilbert Transform Indicator (HTI), developed for quantification of freeze/thaw damage in concrete structures, could also be successfully utilized for quantification of ASR damage. internal microstructure flaws, and reinforcement locations.« less

  14. Development, validation and clinical application of a LC-MS/MS method for the simultaneous quantification of hydroxychloroquine and its active metabolites in human whole blood.

    PubMed

    Soichot, Marion; Mégarbane, Bruno; Houzé, Pascal; Chevillard, Lucie; Fonsart, Julien; Baud, Frédéric J; Laprévote, Olivier; Bourgogne, Emmanuel

    2014-11-01

    A rapid, sensitive and specific method using liquid chromatography coupled to tandem mass spectrometry was developed for the simultaneous quantification of hydroxychloroquine (HCQ) and its three major metabolites in human whole blood. The assay, using a sample volume of 100μL, was linear in a dynamic 25-2000ng/mL range (R(2)>0.99) for all four compounds and suitable for the determination of elevated HCQ concentrations up to 20,000ng/mL, after appropriate sample dilution. Inter- and intra-assay precisions were <18.2% and accuracies were between 84% and 113% for any analyte. No matrix effects were observed. The assay was successfully applied to a blood sample obtained from one poisoned patient following a massive HCQ self-ingestion resulting in an estimated concentration of 19,500ng/mL on hospital admission. In this patient, HCQ metabolites were identified and quantified at 1123, 465 and 91ng/mL for monodesethylhydroxychloroquine, desethylchloroquine and bisdesethylchloroquine, respectively. Further investigations are still required to assess the usefulness of the simultaneous measurement of blood concentrations of HCQ and its three active metabolites for monitoring HCQ treatment and managing HCQ poisoning. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Development and validation of an UHPLC-MS/MS method for β2-agonists quantification in human urine and application to clinical samples.

    PubMed

    Bozzolino, Cristina; Leporati, Marta; Gani, Federica; Ferrero, Cinzia; Vincenti, Marco

    2018-02-20

    A fast analytical method for the simultaneous detection of 24 β 2 -agonists in human urine was developed and validated. The method covers the therapeutic drugs most commonly administered, but also potentially abused β 2 -agonists. The procedure is based on enzymatic deconjugation with β-glucuronidase followed by SPE clean up using mixed-phase cartridges with both ion-exchange and lipophilic properties. Instrumental analysis conducted by UHPLC-MS/MS allowed high peak resolution and rapid chromatographic separation, with reduced time and costs. The method was fully validated according ISO 17025:2005 principles. The following parameters were determined for each analyte: specificity, selectivity, linearity, limit of detection, limit of quantification, precision, accuracy, matrix effect, recovery and carry-over. The method was tested on real samples obtained from patients subjected to clinical treatment under chronic or acute therapy with either formoterol, indacaterol, salbutamol, or salmeterol. The drugs were administered using pressurized metered dose inhalers. All β 2 -agonists administered to the patients were detected in the real samples. The method proved adequate to accurately measure the concentration of these analytes in the real samples. The observed analytical data are discussed with reference to the administered dose and the duration of the therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Derivatization of beta-dicarbonyl compound with 2,4-dinitrophenylhydrazine to enhance mass spectrometric detection: application in quantitative analysis of houttuynin in human plasma.

    PubMed

    Duan, Xiaotao; Zhong, Dafang; Chen, Xiaoyan

    2008-06-01

    Houttuynin (decanoyl acetaldehyde), a beta-dicarbonyl compound, is the major antibacterial constituent in the volatile oil of Houttuynina cordata Thunb. In the present work, detection of houttuynin in human plasma based on the chemical derivatization with 2,4-dinitrophenylhydrazine (DNPH) coupled with liquid chromatography/tandem mass spectrometry was described. The primary reaction products between the beta-dicarbonyl compound and DNPH in aqueous phase were identified as heterocyclic structures, of which the mass spectrometric ionization and fragmentation behavior were characterized with the aid of high-resolution multistage mass spectral analysis. For quantification, houttuynin and internal standard (IS, benzophenone) in plasma were firstly converted to their DNPH derivatives without sample purification, then extracted from human plasma with n-hexane and detected by liquid chromatography tandem mass spectrometry performed in selected reaction monitoring (SRM) mode. This method allowed for a lower limit of quantification (LLOQ) of 1.0 ng/ml using 100-microl plasma. The validation results showed high accuracy (%bias < 2.1) and precision (%CV < 7.2) at broad linear dynamic range (1.0-5000 ng/ml). The simple and quantitative derivatization coupled with tandem mass spectrometric analysis facilitates a sensitive and robust method for the determination of plasma houttuynin in pharmacokinetic studies.

  17. Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair.

    PubMed

    Zhu, Kevin Y; Leung, K Wing; Ting, Annie K L; Wong, Zack C F; Ng, Winki Y Y; Choi, Roy C Y; Dong, Tina T X; Wang, Tiejie; Lau, David T W; Tsim, Karl W K

    2012-03-01

    A microfluidic chip based nano-HPLC coupled to tandem mass spectrometry (nano-HPLC-Chip-MS/MS) has been developed for simultaneous measurement of abused drugs and metabolites: cocaine, benzoylecgonine, cocaethylene, norcocaine, morphine, codeine, 6-acetylmorphine, phencyclidine, amphetamine, methamphetamine, MDMA, MDA, MDEA, and methadone in the hair of drug abusers. The microfluidic chip was fabricated by laminating polyimide films and it integrated an enrichment column, an analytical column and a nanospray tip. Drugs were extracted from hairs by sonication, and the chromatographic separation was achieved in 15 min. The drug identification and quantification criteria were fulfilled by the triple quardropule tandem mass spectrometry. The linear regression analysis was calibrated by deuterated internal standards with all of the R(2) at least over 0.993. The limit of detection (LOD) and the limit of quantification (LOQ) were from 0.1 to 0.75 and 0.2 to 1.25 pg/mg, respectively. The validation parameters including selectivity, accuracy, precision, stability, and matrix effect were also evaluated here. In conclusion, the developed sample preparation method coupled with the nano-HPLC-Chip-MS/MS method was able to reveal the presence of drugs in hairs from the drug abusers, with the enhanced sensitivity, compared with the conventional HPLC-MS/MS.

  18. Ultrafast quantification of β-lactam antibiotics in human plasma using UPLC-MS/MS.

    PubMed

    Carlier, Mieke; Stove, Veronique; De Waele, Jan J; Verstraete, Alain G

    2015-01-26

    There is an increasing interest in monitoring plasma concentrations of β-lactam antibiotics. The objective of this work was to develop and validate a fast ultra-performance liquid chromatographic method with tandem mass spectrometric detection (UPLC-MS/MS) for simultaneous quantification of amoxicillin, cefuroxime, ceftazidime, meropenem and piperacillin with minimal turn around time. Sample clean-up included protein precipitation with acetonitrile containing 5 deuterated internal standards, and subsequent dilution of the supernatant with water after centrifugation. Runtime was only 2.5 min. Chromatographic separation was performed on a Waters Acquity UPLC system using a BEH C18 column (1.7 μm, 100 mm × 2.1 mm) applying a binary gradient elution of water and methanol both containing 0.1% formic acid and 2 mmol/L ammonium acetate on a Water TQD instrument in MRM mode. All compounds were detected in electrospray positive ion mode and could be quantified between 1 and 100 mg/L for amoxicillin and cefuroxime, between 0.5 and 80 mg/L for meropenem and ceftazidime, and between 1 and 150 mg/L for piperacillin. The method was validated in terms of precision, accuracy, linearity, matrix effect and recovery and has been compared to a previously published UPLC-MS/MS method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Validation of an assay for quantification of alpha-amylase in saliva of sheep

    PubMed Central

    Fuentes-Rubio, Maria; Fuentes, Francisco; Otal, Julio; Quiles, Alberto; Hevia, María Luisa

    2016-01-01

    The objective of this study was to develop a time-resolved immunofluorometric assay (TR-IFMA) for quantification of salivary alpha-amylase in sheep. For that purpose, after the design of the assay, an analytical and a clinical validation were carried out. The analytical validation of the assay showed intra- and inter-assay coefficients of variation (CVs) of 6.1% and 10.57%, respectively and an analytical limit of detection of 0.09 ng/mL. The assay also demonstrated a high level of accuracy, as determined by linearity under dilution. For clinical validation, a model of acute stress testing was conducted to determine whether expected significant changes in alpha-amylase were picked up in the newly developed assay. In that model, 11 sheep were immobilized and confronted with a sheepdog to induce stress. Saliva samples were obtained before stress induction and 15, 30, and 60 min afterwards. Salivary cortisol was measured as a reference of stress level. The results of TR-IFMA showed a significant increase (P < 0.01) in the concentration of alpha-amylase in saliva after stress induction. The assay developed in this study could be used to measure salivary alpha-amylase in the saliva of sheep and this enzyme could be a possible noninvasive biomarker of stress in sheep. PMID:27408332

  20. Microbes a Tool for the Remediation of Organotin Pollution Determined by Static Headspace Gas Chromatography-Mass Spectrometry.

    PubMed

    Finnegan, Christopher; Ryan, David; Enright, Anne-Marie; Garcia-Cabellos, Guiomar

    2018-03-10

    Tributyltin (TBT) is one of the most toxic anthropogenic compounds introduced into the marine environment. Despite its global ban in 2008, TBT is still a problem of great concern due to its high affinity for particulate matter, providing a direct and potentially persistent route of entry into benthic sediments. Bioremediation strategies may constitute an alternative approach to conventional physicochemical methods, benefiting from the microorganism's potential to metabolize anthropogenic compounds. In this work, a simple, precise and accurate static headspace gas chromatography method was developed to investigate the ability of TBT degrading microbes in sedimentary microcosms over a period of 120 days. The proposed method was validated for linearity, repeatability, accuracy, specificity, limit of detection and limit of quantification. The method was subsequently successfully applied for the detection and quantification of TBT and degradation compounds in sediment samples on day 0, 30, 60, 90 and 120 of the experiment employing the principles of green chemistry. On day 120 the concentration of TBT remaining in the microcosms ranged between 91.91 ng/g wet wt for the least effective microbial inoculant to 52.73 ng/g wet wt for the most effective microbial inoculant from a starting concentration of 100 ng/g wet wt.

  1. A validated Ultra High Pressure Liquid Chromatographic method for the characterisation of confiscated illegal slimming products containing anorexics.

    PubMed

    Deconinck, E; Verlinde, K; Courselle, P; Beer, J O De

    2012-02-05

    A fully validated UHPLC-DAD method for the identification and quantification of pharmaceutical preparations, containing molecules frequently found in illegal slimming products (sibutramine, modafinil, ephedrine, nor-ephedrine, metformin, theophyllin, caffeine, diethylpropion and orlistat) was developed. The proposed method uses a Vision HT C18-B column (2 mm × 100 mm, 1.5 μm) with a gradient using an ammonium acetate buffer pH 5.0 as aqueous phase and acetonitrile as organic modifier. The obtained method was fully validated based on its measurement uncertainty (accuracy profile). Calibration lines for all components were linear within the studied ranges. The relative bias and the relative standard deviations for all components were respectively smaller than 3.0% and 1.5%, the β-expectation tolerance limits did not exceed the acceptance limits of 10% and the relative expanded uncertainties were smaller than 3% for all of the considered components. A UHPLC-DAD method was obtained for the identification and quantification of these kind of pharmaceutical preparations, which will significantly reduce analysis times and workload for the laboratories charged with the quality control of these preparations and which can, if necessary, be coupled to a MS-detector for a more thorough characterisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Development of an Ion-Pairing Reagent and HPLC-UV Method for the Detection and Quantification of Six Water-Soluble Vitamins in Animal Feed.

    PubMed

    Kim, Ho Jin

    2016-01-01

    A novel and simple method for detecting six water-soluble vitamins in animal feed using high performance liquid chromatography equipped with a photodiode array detector (HPLC/PDA) and ion-pairing reagent was developed. The chromatographic peaks of the six water-soluble vitamins were successfully identified by comparing their retention times and UV spectra with reference standards. The mobile phase was composed of buffers A (5 mM PICB-6 in 0.1% CH3COOH) and B (5 mM PICB-6 in 65% methanol). All peaks were detected using a wavelength of 270 nm. Method validation was performed in terms of linearity, sensitivity, selectivity, accuracy, and precision. The limits of detection (LODs) for the instrument employed in these experiments ranged from 25 to 197 μg/kg, and the limits of quantification (LOQs) ranged from 84 to 658 μg/kg. Average recoveries of the six water-soluble vitamins ranged from 82.3% to 98.9%. Method replication resulted in intraday and interday peak area variation of <5.6%. The developed method was specific and reliable and is therefore suitable for the routine analysis of water-soluble vitamins in animal feed.

  3. Non-enzymatic glucose sensing on copper-nickel thin film alloy

    NASA Astrophysics Data System (ADS)

    Pötzelberger, Isabella; Mardare, Andrei Ionut; Hassel, Achim Walter

    2017-09-01

    A simple and cost efficient glucose sensor was constructed using 3D printing having as active material a copper-15 at.% nickel thin film thermally co-evaporated on copper plated circuit boards. The glucose detection in alkaline solution was studied in detail by cyclic voltammetric and chronoamperometric measurements. The sensor suitability for being used in both quantitative and qualitative glucose detection was demonstrated and calibration of its response to various amounts of glucose revealed two linear regimes with different sensitivities. Glucose levels between 0 and 10 mM are most efficiently quantified as indicated by an amperometric signal increase of 240 μA cm-2 for each 1 mM increase of glucose concentration. The potentiostatic stability of the sensor was evaluated and its complete insensitivity after 7 h was solely attributed to the irreversible transformation of glucose into gluconolactone. A sensor life time of 20 cycles was demonstrated during potentiodynamic cycling when the sensor response remains constant at its maximum level. The magnitude of possible glucose quantification errors were evaluated as interferences induced by additions of ascorbic and uric acids. A worst case scenario of 96 % accuracy of glucose levels quantification was demonstrated using 25 times higher concentrations of interfering substances as compared to the glucose level.

  4. Quantification of lipoic acid in plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Chen, Jun; Jiang, Wenming; Cai, Jia; Tao, Weixing; Gao, Xiaoling; Jiang, Xinguo

    2005-09-25

    A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of lipoic acid (LA) in human plasma. LA and the internal standard, naproxen, were extracted from a 500 microl plasma sample by one-step deproteination using acetonitrile. Chromatographic separation was performed on a Zorbax SB-C(18) Column (100 mmx3.0mm i.d. with 3.5 microm particle size) with the mobile phase consisting of acetonitrile and 0.1% acetic acid (pH 4, adjusted with ammonia solution) (65:35, v/v), and the flow rate was set at 0.3 ml/min. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was linear over the concentration range of 5-10,000 ng/ml for LA. The intra- and inter-day precisions were less than 7% and accuracy ranged from -7.87 to 9.74% at the LA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of LA in 10 healthy subjects.

  5. Densitometric HPTLC analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams

    PubMed Central

    Alam, Prawez

    2013-01-01

    Objective To develop and validate a simple, accurate HPTLC method for the analysis of 8-gingerol and to determine the quantity of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams. Methods The analysis was performed on 10×20 cm aluminium-backed plates coated with 0.2 mm layers of silica gel 60 F254 (E-Merck, Germany) with n-hexane: ethyl acetate 60: 40 (v/v) as mobile phase. Camag TLC Scanner III was used for the UV densitometric scanning at 569. Results This system was found to give a compact spot of 8-gingerol at retention factor (Rf) value of (0.39±0.04) and linearity was found in the ranges 50-500 ng/spot (r2=0.9987). Limit of detection (12.76 ng/spot), limit of quantification (26.32 ng/spot), accuracy (less than 2 %) and recovery (ranging from 98.22-99.20) were found satisfactory. Conclusions The HPTLC method developed for quantification of 8-gingerol was found to be simple, accurate, reproducible, sensitive and is applicable to the analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams. PMID:23905021

  6. The use of experimental design in the development of an HPLC-ECD method for the analysis of captopril.

    PubMed

    Khamanga, Sandile M; Walker, Roderick B

    2011-01-15

    An accurate, sensitive and specific high performance liquid chromatography-electrochemical detection (HPLC-ECD) method that was developed and validated for captopril (CPT) is presented. Separation was achieved using a Phenomenex(®) Luna 5 μm (C(18)) column and a mobile phase comprised of phosphate buffer (adjusted to pH 3.0): acetonitrile in a ratio of 70:30 (v/v). Detection was accomplished using a full scan multi channel ESA Coulometric detector in the "oxidative-screen" mode with the upstream electrode (E(1)) set at +600 mV and the downstream (analytical) electrode (E(2)) set at +950 mV, while the potential of the guard cell was maintained at +1050 mV. The detector gain was set at 300. Experimental design using central composite design (CCD) was used to facilitate method development. Mobile phase pH, molarity and concentration of acetonitrile (ACN) were considered the critical factors to be studied to establish the retention time of CPT and cyclizine (CYC) that was used as the internal standard. Twenty experiments including centre points were undertaken and a quadratic model was derived for the retention time for CPT using the experimental data. The method was validated for linearity, accuracy, precision, limits of quantitation and detection, as per the ICH guidelines. The system was found to produce sharp and well-resolved peaks for CPT and CYC with retention times of 3.08 and 7.56 min, respectively. Linear regression analysis for the calibration curve showed a good linear relationship with a regression coefficient of 0.978 in the concentration range of 2-70 μg/mL. The linear regression equation was y=0.0131x+0.0275. The limits of detection (LOQ) and quantitation (LOD) were found to be 2.27 and 0.6 μg/mL, respectively. The method was used to analyze CPT in tablets. The wide range for linearity, accuracy, sensitivity, short retention time and composition of the mobile phase indicated that this method is better for the quantification of CPT than the pharmacopoeial methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Accurate frequency domain measurement of the best linear time-invariant approximation of linear time-periodic systems including the quantification of the time-periodic distortions

    NASA Astrophysics Data System (ADS)

    Louarroudi, E.; Pintelon, R.; Lataire, J.

    2014-10-01

    Time-periodic (TP) phenomena occurring, for instance, in wind turbines, helicopters, anisotropic shaft-bearing systems, and cardiovascular/respiratory systems, are often not addressed when classical frequency response function (FRF) measurements are performed. As the traditional FRF concept is based on the linear time-invariant (LTI) system theory, it is only approximately valid for systems with varying dynamics. Accordingly, the quantification of any deviation from this ideal LTI framework is more than welcome. The “measure of deviation” allows us to define the notion of the best LTI (BLTI) approximation, which yields the best - in mean square sense - LTI description of a linear time-periodic LTP system. By taking into consideration the TP effects, it is shown in this paper that the variability of the BLTI measurement can be reduced significantly compared with that of classical FRF estimators. From a single experiment, the proposed identification methods can handle (non-)linear time-periodic [(N)LTP] systems in open-loop with a quantification of (i) the noise and/or the NL distortions, (ii) the TP distortions and (iii) the transient (leakage) errors. Besides, a geometrical interpretation of the BLTI approximation is provided, leading to a framework called vector FRF analysis. The theory presented is supported by numerical simulations as well as real measurements mimicking the well-known mechanical Mathieu oscillator.

  8. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.

    PubMed

    Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A

    2010-01-10

    As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.

  9. Measurement of neosaxitoxin in human plasma using liquid-chromatography tandem mass spectrometry: Proof of concept for a pharmacokinetic application.

    PubMed

    Peake, Roy W A; Zhang, Victoria Y; Azcue, Nina; Hartigan, Christina E; Shkreta, Aida; Prabhakara, Jasmina; Berde, Charles B; Kellogg, Mark D

    2016-11-15

    Neosaxitoxin, a member of the saxitoxin family of paralytic shellfish poisoning toxins, has shown potential as an effective, long-acting, anesthetic. We describe the development and validation of a highly sensitive method for measurement of neosaxitoxin in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS) and provide evidence for its use in a human pharmacokinetic study. Samples were prepared using cation exchange solid phase extraction followed by hydrophilic interaction liquid chromatography and MS/MS detection in positive electrospray ionization mode. Multiple reaction monitoring was used to monitor neosaxitoxin (m/z 316.17>220.07) and the internal standard analogue decarbamoylneosaxitoxin (m/z 273.12>180.00). The method was validated for lower limit of quantification, precision, accuracy, linearity and matrix effect. The stability of neosaxitoxin in plasma matrix at various storage conditions was also investigated. Standard curves for calibration were linear (r>0.995) across the assay calibration range, 10 to 1000pg/mL. The analytical measurable range of the assay was 10-10,000pg/mL in plasma matrix. This method has demonstrated excellent sensitivity demonstrating a lower limit of quantification in human plasma of 10pg/mL. The mean, inter-batch variation was <5.2% across the concentration range 30 to 800pg/mL. This method was successfully used in a phase 1 trial to investigate the pharmacokinetic profile of neosaxitoxin in humans following the intravenous administration of the drug at a range of doses up to 40μg. We conclude that our high-sensitivity method for measurement of neosaxitoxin in human plasma is capable of supporting future clinical trials. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Analysis of amide compounds in different parts of Piper ovatum Vahl by high-performance liquid chromatographic

    PubMed Central

    Silva, Daniel R.; Brenzan, Mislaine A.; Kambara, Lauro M.; Cortez, Lucia E. R.; Cortez, Diógenes A. G.

    2013-01-01

    Background: Piper ovatum (Piperaceae) has been used in traditional medicine for the treatment of inflammations and as an analgesic. Previous studies have showed important biological activities of the extracts and amides from P. ovatum leaves. Objective: In this study, a high-performance liquid chromatographic (HPLC) method was developed and validated for quantitative determination of the amides in different parts of Piper ovatum. Materials and Methods: The analysis was carried out on a Metasil ODS column (150 × 4.6 mm, 5μm) at room temperature. HPLC conditions were as follows: acetonitrile (A), and water (B), 1.0% acetic acid. The gradient elution used was 0–30 min, 0-60% A; 30–40 min, 60% A. Flow rate used was 1.0mL/min, and detection at 280nm. Results: The validation using piperlonguminine, as the standard, demonstrated that the method shows linearity (linear correlation coefficient = 0.998), precision (relative standard deviation <5%) and accuracy (mean recovery = 103.78%) in the concentration range 31.25 – 500μg/mL. The limit of detection and quantification were 1.21 and 4.03μg/mL, respectively. This method allowed the identification and quantification of piperlonguminine and piperovatine in the hydroethanolic extracts of P. ovatum obtained from the leaves, stems and roots. All the extracts showed the same chromatographic profile. The leaves and roots contained the highest concentrations of piperlonguminine and the stems and leaves showed the most concentrations of piperovatine. Conclusion: This HPLC method is suitable for routine quantitative analysis of amides in extracts of Piper ovatum and phytopharmaceuticals containing this herb. PMID:24174818

  11. Analysis of 2-oxothiazolidine-4-carboxylic acid by hydrophilic interaction liquid chromatography: application for ocular delivery using chitosan nanoparticles.

    PubMed

    Al-Kinani, Ali Athab; Naughton, Declan P; Calabrese, Gianpiero; Vangala, Anil; Smith, James R; Pierscionek, Barbara K; Alany, Raid G

    2015-03-01

    Oxidative damage due to low levels of glutathione (GSH) is one of the main causes of cataract formation. It has been reported that 2-oxothiazolidine-4-carboxylic acid (OTZ), a cysteine prodrug, can increase the cellular level of GSH. Currently, there is no analytical method to separate and quantify OTZ from aqueous humour samples for cataract research. The present study aims to develop and validate a hydrophilic interaction liquid chromatography (HILIC) method for the quantification of OTZ in simulated aqueous humour (SAH). The developed method was validated according to FDA guidelines. Accuracy, precision, selectivity, sensitivity, linearity, lower limit of quantification (LLOQ), lower limit of detection (LLOD) and stability were the parameters assessed in the method validation. The developed method was found to be accurate and precise with LLOQ and LLOD of 200 and 100 ng/mL, respectively; method selectivity was confirmed by the absence of any matrix interference with the analyte peak. The constructed calibration curve was linear in the range of 0.2-10 μg/mL, with a regression coefficient of 0.999. In addition, the OTZ was found to be stable in SAH after three freeze/thaw cycles. Chitosan nanoparticles loaded with OTZ were formulated by the ionic gelation method. The nanoparticles were found to be uniform in shape and well dispersed with average size of 153 nm. The in vitro release of OTZ from the nanoparticles was quantified using the developed analytical method over 96 h. Permeation of OTZ through excised bovine cornea was measured using HILIC. The lag time and the flux were 0.2 h and 3.05 μg/cm(2) h, respectively.

  12. Quantification of creatinine in biological samples based on the pseudoenzyme activity of copper-creatinine complex

    NASA Astrophysics Data System (ADS)

    Nagaraja, Padmarajaiah; Avinash, Krishnegowda; Shivakumar, Anantharaman; Krishna, Honnur

    Glomerular filtration rate (GFR), the marker of chronic kidney disease can be analyzed by the concentration of cystatin C or creatinine and its clearance in human urine and serum samples. The determination of cystatin C alone as an indicator of GFR does not provide high accuracy, and is more expensive, thus measurement of creatinine has an important role in estimating GFR. We have made an attempt to quantify creatinine based on its pseudoenzyme activity of creatinine in the presence of copper. Creatinine in the presence of copper oxidizes paraphenylenediamine dihydrochloride (PPDD) which couples with dimethylamino benzoicacid (DMAB) giving green colored chromogenic product with maximum absorbance at 710 nm. Kinetic parameters relating this reaction were evaluated. Analytical curves of creatinine by fixed time and rate methods were linear at 8.8-530 μmol L-1 and 0.221-2.65 mmol L-1, respectively. Recovery of creatinine varied from 97.8 to 107.8%. Limit of detection and limit of quantification were 2.55 and 8.52 μmol L-1 respectively whereas Sandell's sensitivity and molar absorption coefficient values were 0.0407 μg cm-2 and 0.1427 × 104 L mol-1 cm-1 respectively. Precision studies showed that within day imprecision was 0.745-1.26% and day-to-day imprecision was 1.55-3.65%. The proposed method was applied to human urine and serum samples and results were validated in accordance with modified Jaffe's procedure. Wide linearity ranges with good recovery, less tolerance from excipients and application of the method to serum and urine samples are the claims which ascertain much advantage to this method.

  13. Application of statistical experimental design to the optimisation of microextraction by packed sorbent for the analysis of nonsteroidal anti-inflammatory drugs in human urine by ultra-high pressure liquid chromatography.

    PubMed

    Magiera, Sylwia; Gülmez, Şefika; Michalik, Aleksandra; Baranowska, Irena

    2013-08-23

    A new approach based on microextraction by packed sorbent (MEPS) and a reversed-phase ultra-high pressure liquid chromatography (UHPLC) method was developed and validated for the determination and quantification of nonsteroidal anti-inflammatory drugs (NSAIDs) (acetylsalicylic acid, ketoprofen, diclofenac, naproxen and ibuprofen) in human urine. The important factors that could influence the extraction were previously screened using the Plackett-Burman design approach. The optimal MEPS extraction conditions were obtained using C18 phase as a sorbent, small sample volume (20μL) and a short time period (approximately 5min) for the entire sample preparation step. The analytes were separated on a core-shell column (Poroshell 120 EC-C18; 100mm×3.0mm; 2.7μm) using a binary mobile phase composed of aqueous 0.1% trifluoroacetic acid and acetonitrile in the gradient elution mode (4.5min of analysis time). The analytical method was fully validated based on linearity, limits of detection (LOD), limits of quantification (LOQ), inter- and intra-day precision and accuracy, and extraction yield. Under optimised conditions, excellent linearity (R(2)>0.9991), limits of detection (1.07-16.2ngmL(-1)) and precision (0.503-9.15% RSD) were observed for the target drugs. The average absolute recoveries of the analysed compounds extracted from the urine samples were 89.4-107%. The proposed method was also applied to the analysis of NSAIDs in human urine. The new approach offers an attractive alternative for the analysis of selected drugs from urine samples, providing several advantages including fewer sample preparation steps, faster sample throughput and ease of performance compared to traditional methodologies. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Cama-Moncunill, Raquel; Casado-Gavalda, Maria P.; Cama-Moncunill, Xavier; Markiewicz-Keszycka, Maria; Dixit, Yash; Cullen, Patrick J.; Sullivan, Carl

    2017-09-01

    Infant formula is a human milk substitute generally based upon fortified cow milk components. In order to mimic the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single operation using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses. This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS quantitative analysis. All calibration models were first developed using a training set and then validated with an independent test set. PLS yielded the best results. For instance, the PLS model for copper provided a coefficient of determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14 mg/kg. Furthermore, LIBS was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS spectra can be obtained as a function of sample layers. This information was used to explore whether measuring deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.

  15. Statistical modeling and MAP estimation for body fat quantification with MRI ratio imaging

    NASA Astrophysics Data System (ADS)

    Wong, Wilbur C. K.; Johnson, David H.; Wilson, David L.

    2008-03-01

    We are developing small animal imaging techniques to characterize the kinetics of lipid accumulation/reduction of fat depots in response to genetic/dietary factors associated with obesity and metabolic syndromes. Recently, we developed an MR ratio imaging technique that approximately yields lipid/{lipid + water}. In this work, we develop a statistical model for the ratio distribution that explicitly includes a partial volume (PV) fraction of fat and a mixture of a Rician and multiple Gaussians. Monte Carlo hypothesis testing showed that our model was valid over a wide range of coefficient of variation of the denominator distribution (c.v.: 0-0:20) and correlation coefficient among the numerator and denominator (ρ 0-0.95), which cover the typical values that we found in MRI data sets (c.v.: 0:027-0:063, ρ: 0:50-0:75). Then a maximum a posteriori (MAP) estimate for the fat percentage per voxel is proposed. Using a digital phantom with many PV voxels, we found that ratio values were not linearly related to PV fat content and that our method accurately described the histogram. In addition, the new method estimated the ground truth within +1.6% vs. +43% for an approach using an uncorrected ratio image, when we simply threshold the ratio image. On the six genetically obese rat data sets, the MAP estimate gave total fat volumes of 279 +/- 45mL, values 21% smaller than those from the uncorrected ratio images, principally due to the non-linear PV effect. We conclude that our algorithm can increase the accuracy of fat volume quantification even in regions having many PV voxels, e.g. ectopic fat depots.

  16. How genome complexity can explain the difficulty of aligning reads to genomes.

    PubMed

    Phan, Vinhthuy; Gao, Shanshan; Tran, Quang; Vo, Nam S

    2015-01-01

    Although it is frequently observed that aligning short reads to genomes becomes harder if they contain complex repeat patterns, there has not been much effort to quantify the relationship between complexity of genomes and difficulty of short-read alignment. Existing measures of sequence complexity seem unsuitable for the understanding and quantification of this relationship. We investigated several measures of complexity and found that length-sensitive measures of complexity had the highest correlation to accuracy of alignment. In particular, the rate of distinct substrings of length k, where k is similar to the read length, correlated very highly to alignment performance in terms of precision and recall. We showed how to compute this measure efficiently in linear time, making it useful in practice to estimate quickly the difficulty of alignment for new genomes without having to align reads to them first. We showed how the length-sensitive measures could provide additional information for choosing aligners that would align consistently accurately on new genomes. We formally established a connection between genome complexity and the accuracy of short-read aligners. The relationship between genome complexity and alignment accuracy provides additional useful information for selecting suitable aligners for new genomes. Further, this work suggests that the complexity of genomes sometimes should be thought of in terms of specific computational problems, such as the alignment of short reads to genomes.

  17. Parsing and Quantification of Raw Orbitrap Mass Spectrometer Data Using RawQuant.

    PubMed

    Kovalchik, Kevin A; Moggridge, Sophie; Chen, David D Y; Morin, Gregg B; Hughes, Christopher S

    2018-06-01

    Effective analysis of protein samples by mass spectrometry (MS) requires careful selection and optimization of a range of experimental parameters. As the output from the primary detection device, the "raw" MS data file can be used to gauge the success of a given sample analysis. However, the closed-source nature of the standard raw MS file can complicate effective parsing of the data contained within. To ease and increase the range of analyses possible, the RawQuant tool was developed to enable parsing of raw MS files derived from Thermo Orbitrap instruments to yield meta and scan data in an openly readable text format. RawQuant can be commanded to export user-friendly files containing MS 1 , MS 2 , and MS 3 metadata as well as matrices of quantification values based on isobaric tagging approaches. In this study, the utility of RawQuant is demonstrated in several scenarios: (1) reanalysis of shotgun proteomics data for the identification of the human proteome, (2) reanalysis of experiments utilizing isobaric tagging for whole-proteome quantification, and (3) analysis of a novel bacterial proteome and synthetic peptide mixture for assessing quantification accuracy when using isobaric tags. Together, these analyses successfully demonstrate RawQuant for the efficient parsing and quantification of data from raw Thermo Orbitrap MS files acquired in a range of common proteomics experiments. In addition, the individual analyses using RawQuant highlights parametric considerations in the different experimental sets and suggests targetable areas to improve depth of coverage in identification-focused studies and quantification accuracy when using isobaric tags.

  18. Implementation of a smartphone as a wireless gyroscope application for the quantification of reflex response.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2014-01-01

    The patellar tendon reflex constitutes a fundamental aspect of the conventional neurological evaluation. Dysfunctional characteristics of the reflex response can augment the diagnostic acuity of a clinician for subsequent referral to more advanced medical resources. The capacity to quantify the reflex response while alleviating the growing strain on specialized medical resources is a topic of interest. The quantification of the tendon reflex response has been successfully demonstrated with considerable accuracy and consistency through using a potential energy impact pendulum attached to a reflex hammer for evoking the tendon reflex with a smartphone, such as an iPhone, application representing a wireless accelerometer platform to quantify reflex response. Another sensor integrated into the smartphone, such as an iPhone, is the gyroscope, which measures rate of angular rotation. A smartphone application enables wireless transmission through Internet connectivity of the gyroscope signal recording of the reflex response as an email attachment. The smartphone wireless gyroscope application demonstrates considerable accuracy and consistency for the quantification of the tendon reflex response.

  19. Quantification of the progression of CMV infection as observed from retinal angiograms in patients with AIDS

    NASA Astrophysics Data System (ADS)

    Brahmi, Djamel; Cassoux, Nathalie; Serruys, Camille; Giron, Alain; Lehoang, Phuc; Fertil, Bernard

    1999-05-01

    To support ophthalmologists in their daily routine and enable the quantitative assessment of progression of Cytomegalovirus infection as observed on series of retinal angiograms, a methodology allowing an accurate comparison of retinal borders has been developed. In order to evaluate accuracy of borders, ophthalmologists have been asked to repeatedly outline boundaries between infected and noninfected areas. As a matter of fact, accuracy of drawing relies on local features such as contrast, quality of image, background..., all factors which make the boundaries more or less perceptible from one part of an image to another. In order to directly estimate accuracy of retinal border from image analysis, an artificial neural network (a succession of unsupervised and supervised neural networks) has been designed to correlate accuracy of drawing (as calculated form ophthalmologists' hand-outlines) with local features of the underlying image. Our method has been applied to the quantification of CMV retinitis. It is shown that accuracy of border is properly predicted and characterized by a confident envelope that allows, after a registration phase based on fixed landmarks such as vessel forks, to accurately assess the evolution of CMV infection.

  20. Joint correction of respiratory motion artifact and partial volume effect in lung/thoracic PET/CT imaging.

    PubMed

    Chang, Guoping; Chang, Tingting; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2010-12-01

    Respiratory motion artifacts and partial volume effects (PVEs) are two degrading factors that affect the accuracy of image quantification in PET/CT imaging. In this article, the authors propose a joint motion and PVE correction approach (JMPC) to improve PET quantification by simultaneously correcting for respiratory motion artifacts and PVE in patients with lung/thoracic cancer. The objective of this article is to describe this approach and evaluate its performance using phantom and patient studies. The proposed joint correction approach incorporates a model of motion blurring, PVE, and object size/shape. A motion blurring kernel (MBK) is then estimated from the deconvolution of the joint model, while the activity concentration (AC) of the tumor is estimated from the normalization of the derived MBK. To evaluate the performance of this approach, two phantom studies and eight patient studies were performed. In the phantom studies, two motion waveforms-a linear sinusoidal and a circular motion-were used to control the motion of a sphere, while in the patient studies, all participants were instructed to breathe regularly. For the phantom studies, the resultant MBK was compared to the true MBK by measuring a correlation coefficient between the two kernels. The measured sphere AC derived from the proposed method was compared to the true AC as well as the ACs in images exhibiting PVE only and images exhibiting both PVE and motion blurring. For the patient studies, the resultant MBK was compared to the motion extent derived from a 4D-CT study, while the measured tumor AC was compared to the AC in images exhibiting both PVE and motion blurring. For the phantom studies, the estimated MBK approximated the true MBK with an average correlation coefficient of 0.91. The tumor ACs following the joint correction technique were similar to the true AC with an average difference of 2%. Furthermore, the tumor ACs on the PVE only images and images with both motion blur and PVE effects were, on average, 75% and 47.5% (10%) of the true AC, respectively, for the linear (circular) motion phantom study. For the patient studies, the maximum and mean AC/SUV on the PET images following the joint correction are, on average, increased by 125.9% and 371.6%, respectively, when compared to the PET images with both PVE and motion. The motion extents measured from the derived MBK and 4D-CT exhibited an average difference of 1.9 mm. The proposed joint correction approach can improve the accuracy of PET quantification by simultaneously compensating for the respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging.

  1. Improved sample preparation to determine acrylamide in difficult matrixes such as chocolate powder, cocoa, and coffee by liquid chromatography tandem mass spectroscopy.

    PubMed

    Delatour, Thierry; Périsset, Adrienne; Goldmann, Till; Riediker, Sonja; Stadler, Richard H

    2004-07-28

    An improved sample preparation (extraction and cleanup) is presented that enables the quantification of low levels of acrylamide in difficult matrixes, including soluble chocolate powder, cocoa, coffee, and coffee surrogate. Final analysis is done by isotope-dilution liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) using d3-acrylamide as internal standard. Sample pretreatment essentially encompasses (a) protein precipitation with Carrez I and II solutions, (b) extraction of the analyte into ethyl acetate, and (c) solid-phase extraction on a Multimode cartridge. The stability of acrylamide in final extracts and in certain commercial foods and beverages is also reported. This approach provided good performance in terms of linearity, accuracy and precision. Full validation was conducted in soluble chocolate powder, achieving a decision limit (CCalpha) and detection capability (CCbeta) of 9.2 and 12.5 microg/kg, respectively. The method was extended to the analysis of acrylamide in various foodstuffs such as mashed potatoes, crisp bread, and butter biscuit and cookies. Furthermore, the accuracy of the method is demonstrated by the results obtained in three inter-laboratory proficiency tests. Copyright 2004 American Chemical Society

  2. Determination of vitamin C in foods: current state of method validation.

    PubMed

    Spínola, Vítor; Llorent-Martínez, Eulogio J; Castilho, Paula C

    2014-11-21

    Vitamin C is one of the most important vitamins, so reliable information about its content in foodstuffs is a concern to both consumers and quality control agencies. However, the heterogeneity of food matrixes and the potential degradation of this vitamin during its analysis create enormous challenges. This review addresses the development and validation of high-performance liquid chromatography methods for vitamin C analysis in food commodities, during the period 2000-2014. The main characteristics of vitamin C are mentioned, along with the strategies adopted by most authors during sample preparation (freezing and acidification) to avoid vitamin oxidation. After that, the advantages and handicaps of different analytical methods are discussed. Finally, the main aspects concerning method validation for vitamin C analysis are critically discussed. Parameters such as selectivity, linearity, limit of quantification, and accuracy were studied by most authors. Recovery experiments during accuracy evaluation were in general satisfactory, with usual values between 81 and 109%. However, few methods considered vitamin C stability during the analytical process, and the study of the precision was not always clear or complete. Potential future improvements regarding proper method validation are indicated to conclude this review. Copyright © 2014. Published by Elsevier B.V.

  3. Development and validation of a high throughput assay for the quantification of multiple green tea-derived catechins in human plasma.

    PubMed

    Mawson, Deborah H; Jeffrey, Keon L; Teale, Philip; Grace, Philip B

    2018-06-19

    A rapid, accurate and robust method for the determination of catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), catechin gallate (Cg), epicatechin gallate (ECg), gallocatechin gallate (GCg) and epigallocatechin gallate (EGCg) concentrations in human plasma has been developed. The method utilises protein precipitation following enzyme hydrolysis, with chromatographic separation and detection using reversed-phase liquid chromatography - tandem mass spectrometry (LC-MS/MS). Traditional issues such as lengthy chromatographic run times, sample and extract stability, and lack of suitable internal standards have been addressed. The method has been evaluated using a comprehensive validation procedure, confirming linearity over appropriate concentration ranges, and inter/intra batch precision and accuracies within suitable thresholds (precisions within 13.8% and accuracies within 12.4%). Recoveries of analytes were found to be consistent between different matrix samples, compensated for using suitable internal markers and within the performance of the instrumentation used. Similarly, chromatographic interferences have been corrected using the internal markers selected. Stability of all analytes in matrix is demonstrated over 32 days and throughout extraction conditions. This method is suitable for high throughput sample analysis studies. This article is protected by copyright. All rights reserved.

  4. Estimation of suspended-sediment rating curves and mean suspended-sediment loads

    USGS Publications Warehouse

    Crawford, Charles G.

    1991-01-01

    A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.

  5. A Wide Linearity Range Method for the Determination of Lenalidomide in Plasma by High-Performance Liquid Chromatography: Application to Pharmacokinetic Studies.

    PubMed

    Guglieri-López, Beatriz; Pérez-Pitarch, Alejandro; Martinez-Gómez, Maria Amparo; Porta-Oltra, Begoña; Climente-Martí, Mónica; Merino-Sanjuán, Matilde

    2016-12-01

    A wide linearity range analytical method for the determination of lenalidomide in patients with multiple myeloma for pharmacokinetic studies is required. Plasma samples were ultrasonicated for protein precipitation. A solid-phase extraction was performed. The eluted samples were evaporated to dryness under vacuum, and the solid obtained was diluted and injected into the high-performance liquid chromatography (HPLC) system. Separation of lenalidomide was performed on an Xterra RP C18 (250 mm length × 4.6 mm i.d., 5 µm) using a mobile phase consisting of phosphate buffer/acetonitrile (85:15, v/v, pH 3.2) at a flow rate of 0.5 mL · min -1 The samples were monitored at a wavelength of 311 nm. A linear relationship with good correlation coefficient (r = 0.997, n = 9) was found between the peak area and lenalidomide concentrations in the range of 100 to 950 ng · mL -1 The limits of detection and quantitation were 28 and 100 ng · mL -1 , respectively. The intra- and interassay precisions were satisfactory, and the accuracy of the method was proved. In conclusion, the proposed method is suitable for the accurate quantification of lenalidomide in human plasma with a wide linear range, from 100 to 950 ng · mL -1 This is a valuable method for pharmacokinetic studies of lenalidomide in human subjects. © 2016 Society for Laboratory Automation and Screening.

  6. Fully Automated Quantification of Cytomegalovirus (CMV) in Whole Blood with the New Sensitive Abbott RealTime CMV Assay in the Era of the CMV International Standard

    PubMed Central

    Schnepf, Nathalie; Scieux, Catherine; Resche-Riggon, Matthieu; Feghoul, Linda; Xhaard, Alienor; Gallien, Sébastien; Molina, Jean-Michel; Socié, Gérard; Viglietti, Denis; Simon, François; Mazeron, Marie-Christine

    2013-01-01

    Fully standardized reproducible and sensitive quantification assays for cytomegalovirus (CMV) are needed to better define thresholds for antiviral therapy initiation and interruption. We evaluated the newly released Abbott RealTime CMV assay for CMV quantification in whole blood (WB) that includes automated extraction and amplification (m2000 RealTime system). Sensitivity, accuracy, linearity, and intra- and interassay variability were validated in a WB matrix using Quality Control for Molecular Diagnostics (QCMD) panels and the WHO international standard (IS). The intra- and interassay coefficients of variation were 1.37% and 2.09% at 5 log10 copies/ml and 2.41% and 3.80% at 3 log10 copies/ml, respectively. According to expected values for the QCMD and Abbott RealTime CMV methods, the lower limits of quantification were 104 and <50 copies/ml, respectively. The conversion factor between international units and copies (2.18), determined from serial dilutions of the WHO IS in WB, was significantly different from the factor provided by the manufacturer (1.56) (P = 0.001). Results from 302 clinical samples were compared with those from the Qiagen artus CMV assay on the same m2000 RealTime system. The two assays provided highly concordant results (concordance correlation coefficient, 0.92), but the Abbott RealTime CMV assay detected and quantified, respectively, 20.6% and 47.8% more samples than the Qiagen/artus CMV assay. The sensitivity and reproducibility of the results, along with the automation, fulfilled the quality requirements for implementation of the Abbott RealTime CMV assay in clinical settings. Our results highlight the need for careful validation of conversion factors provided by the manufacturers for the WHO IS in WB to allow future comparison of results obtained with different assays. PMID:23616450

  7. Monitoring and evaluating the quality consistency of Compound Bismuth Aluminate tablets by a simple quantified ratio fingerprint method combined with simultaneous determination of five compounds and correlated with antioxidant activities.

    PubMed

    Liu, Yingchun; Liu, Zhongbo; Sun, Guoxiang; Wang, Yan; Ling, Junhong; Gao, Jiayue; Huang, Jiahao

    2015-01-01

    A combination method of multi-wavelength fingerprinting and multi-component quantification by high performance liquid chromatography (HPLC) coupled with diode array detector (DAD) was developed and validated to monitor and evaluate the quality consistency of herbal medicines (HM) in the classical preparation Compound Bismuth Aluminate tablets (CBAT). The validation results demonstrated that our method met the requirements of fingerprint analysis and quantification analysis with suitable linearity, precision, accuracy, limits of detection (LOD) and limits of quantification (LOQ). In the fingerprint assessments, rather than using conventional qualitative "Similarity" as a criterion, the simple quantified ratio fingerprint method (SQRFM) was recommended, which has an important quantified fingerprint advantage over the "Similarity" approach. SQRFM qualitatively and quantitatively offers the scientific criteria for traditional Chinese medicines (TCM)/HM quality pyramid and warning gate in terms of three parameters. In order to combine the comprehensive characterization of multi-wavelength fingerprints, an integrated fingerprint assessment strategy based on information entropy was set up involving a super-information characteristic digitized parameter of fingerprints, which reveals the total entropy value and absolute information amount about the fingerprints and, thus, offers an excellent method for fingerprint integration. The correlation results between quantified fingerprints and quantitative determination of 5 marker compounds, including glycyrrhizic acid (GLY), liquiritin (LQ), isoliquiritigenin (ILG), isoliquiritin (ILQ) and isoliquiritin apioside (ILA), indicated that multi-component quantification could be replaced by quantified fingerprints. The Fenton reaction was employed to determine the antioxidant activities of CBAT samples in vitro, and they were correlated with HPLC fingerprint components using the partial least squares regression (PLSR) method. In summary, the method of multi-wavelength fingerprints combined with antioxidant activities has been proved to be a feasible and scientific procedure for monitoring and evaluating the quality consistency of CBAT.

  8. High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization

    DTIC Science & Technology

    1992-05-01

    High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization A Thesis Presented by Louis Joseph PoehIman, Captain, USAF B.S., U.S. Air...High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization by Louis Joseph Poehlman, Captain, USAF Submitted to the Department of...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback

  9. Determination of dimethyltryptamine and β-carbolines (ayahuasca alkaloids) in plasma samples by LC-MS/MS.

    PubMed

    Oliveira, Carolina Dizioli Rodrigues; Okai, Guilherme Gonçalves; da Costa, José Luiz; de Almeida, Rafael Menck; Oliveira-Silva, Diogo; Yonamine, Mauricio

    2012-07-01

    Ayahuasca is a psychoactive plant beverage originally used by indigenous people throughout the Amazon Basin, long before its modern use by syncretic religious groups established in Brazil, the USA and European countries. The objective of this study was to develop a method for quantification of dimethyltryptamine and β-carbolines in human plasma samples. The analytes were extracted by means of C18 cartridges and injected into LC-MS/MS, operated in positive ion mode and multiple reaction monitoring. The LOQs obtained for all analytes were below 0.5 ng/ml. By using the weighted least squares linear regression, the accuracy of the analytical method was improved at the lower end of the calibration curve (from 0.5 to 100 ng/ml; r(2)> 0.98). The method proved to be simple, rapid and useful to estimate administered doses for further pharmacological and toxicological investigations of ayahuasca exposure.

  10. Fast and sensitive analysis of beta blockers by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry.

    PubMed

    Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan

    2017-07-01

    This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Smart phone: a popular device supports amylase activity assay in fisheries research.

    PubMed

    Thongprajukaew, Karun; Choodum, Aree; Sa-E, Barunee; Hayee, Ummah

    2014-11-15

    Colourimetric determinations of amylase activity were developed based on a standard dinitrosalicylic acid (DNS) staining method, using maltose as the analyte. Intensities and absorbances of red, green and blue (RGB) were obtained with iPhone imaging and Adobe Photoshop image analysis. Correlation of green and analyte concentrations was highly significant, and the accuracy of the developed method was excellent in analytical performance. The common iPhone has sufficient imaging ability for accurate quantification of maltose concentrations. Detection limits, sensitivity and linearity were comparable to a spectrophotometric method, but provided better inter-day precision. In quantifying amylase specific activity from a commercial source (P>0.02) and fish samples (P>0.05), differences compared with spectrophotometric measurements were not significant. We have demonstrated that iPhone imaging with image analysis in Adobe Photoshop has potential for field and laboratory studies of amylase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Simple high-performance liquid chromatography method for formaldehyde determination in human tissue through derivatization with 2,4-dinitrophenylhydrazine.

    PubMed

    Yilmaz, Bilal; Asci, Ali; Kucukoglu, Kaan; Albayrak, Mevlut

    2016-08-01

    A simple high-performance liquid chromatography method has been developed for the determination of formaldehyde in human tissue. FA Formaldehyde was derivatized with 2,4-dinitrophenylhydrazine. It was extracted from human tissue with ethyl acetate by liquid-liquid extraction and analyzed by high-performance liquid chromatography. The calibration curve was linear in the concentration range of 5.0-200 μg/mL. Intra- and interday precision values for formaldehyde in tissue were <6.9%, and accuracy (relative error) was better than 6.5%. The extraction recoveries of formaldehyde from human tissue were between 88 and 98%. The limits of detection and quantification of formaldehyde were 1.5 and 5.0 μg/mL, respectively. Also, this assay was applied to liver samples taken from a biopsy material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-performance liquid chromatography-electrospray ionization mass spectrometry determination of sodium ferulate in human plasma.

    PubMed

    Yang, Cheng; Tian, Yuan; Zhang, Zunjian; Xu, Fengguo; Chen, Yun

    2007-02-19

    A selective and sensitive high-performance liquid chromatography-electrospray ionization mass spectrometry method has been developed for the determination of sodium ferulate in human plasma. The sample preparation was a liquid-liquid extraction and chromatographic separation was achieved with an Agilent ZORBAX SB-C(18) (3.5 microm, 100 mm x 3.0 mm) column, using a mobile phase of methanol-0.05% acetic acid 40:60 (v/v). Standard curves were linear (r(2)=0.9982) over the concentration range of 0.007-4.63 nM/ml and had acceptable accuracy and precision. The within- and between-batch precisions were within 12% relative standard deviation. The lower limit of quantification (LLOQ) was 0.007 nM/ml. The validated HPLC-ESI-MS method has been used successfully to study sodium ferulate pharmacokinetics, bioavailability and bioequivalence in 20 healthy volunteers.

  14. Simultaneous determination of five marker constituents in Ssanghwa tang by HPLC/DAD

    PubMed Central

    Won, Jin Bae; Ma, Jin Yeul; Um, Young Ran; Ma, Choong Je

    2010-01-01

    A HPLC-DAD method was established for the simultaneous evaluation of five bioactive compounds in Ssanghwa tang (SHT) including glycyrrhizin, paeoniflorin, cinnamic acid, decursin and 6-gingerol. These compounds were separated in less than 40 min using a Dionex C18 column with a gradient elution system of water and methanol at a flow rate of 1 ml/min. Calibration curve of standard components presented excellent linear regression (R2 > 0.9903) within the test range. Limit of detection and limit of quantification varied from 0.07 to 0.46 μg/ml and 0.13 to 1.11 μg/ml, respectively. The relative standard deviations (RSDs) of data of the intraday and interday experiments were less than 3.67 and 5.73%, respectively. The accuracy of recovery test ranged from 95.98 to 105.88% with RSD values 0.10– 4.82%. PMID:20668576

  15. Development of validated high-temperature reverse-phase UHPLC-PDA analytical method for simultaneous analysis of five natural isothiocyanates in cruciferous vegetables.

    PubMed

    Robin; Arora, Rohit; Arora, Saroj; Vig, Adarsh Pal

    2018-01-15

    In the present study reverse-phase UHPLC-PDA technique was developed at 60°C for simultaneous quantification of allyl, 3-butenyl, 4-(methylthio)butyl, benzyl and phenethyl isothiocyanates. The validation parameter showed a very good linearity, with a correlation coefficient of 1.00 for all detected standard analytes. Also, high precision and accuracy were observed with lowest obtained values of 1.39% and 99.1%, respectively. Different varieties of three plants, viz. Brassica rapa var. rapa L., Raphanus sativus L. var. oleiformis Pers. and Eruca sativa Mill., were analyzed with this method. After analysis, 4-(methylthio)butyl isothiocyanate was observed to be the major component in the varieties of arugula. Allyl, benzyl and phenethyl isothiocyanates were detected in turnip varieties and, in addition, 3-butenyl isothiocyanate was detected in radish varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High-performance liquid chromatographic assay for the determination of Aloe Emodin in mouse plasma.

    PubMed

    Zaffaroni, M; Mucignat, C; Pecere, T; Zagotto, G; Frapolli, R; D'Incalci, M; Zucchetti, M

    2003-10-25

    An isocratic high-performance liquid chromatography (HPLC) method was developed and validated to determine Aloe Emodin (AE) in mouse plasma. The analysis required 0.3 ml of plasma and involves extraction with dichloromethane. The HPLC separation was carried out on Symmetry Shield RP18, a mobile phase of methanol-water-acetic acid (65:35:0.2) and fluorescence detection at lambda(ex)=410 nm and lambda(em)=510 nm. The retention time of AE was 11.7 min. The assay was linear from 10 to 1,000 ng/ml (r2 > or = 0.999), showed intra- and inter-day precision within 7.8 and 4.7%, and accuracy of 87.3-105.7%. Detection limit (LOD) and quantification limit (LOQ) were 4.5 and 5 ng/ml, respectively. The method was applied to determine for the first time the pharmacokinetic of AE in mice.

  17. Accurate proteome-wide protein quantification from high-resolution 15N mass spectra

    PubMed Central

    2011-01-01

    In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods. PMID:22182234

  18. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level

    PubMed Central

    Zhang, Zhaojun; Wang, Wei

    2014-01-01

    Motivation: RNA-Seq technique has been demonstrated as a revolutionary means for exploring transcriptome because it provides deep coverage and base pair-level resolution. RNA-Seq quantification is proven to be an efficient alternative to Microarray technique in gene expression study, and it is a critical component in RNA-Seq differential expression analysis. Most existing RNA-Seq quantification tools require the alignments of fragments to either a genome or a transcriptome, entailing a time-consuming and intricate alignment step. To improve the performance of RNA-Seq quantification, an alignment-free method, Sailfish, has been recently proposed to quantify transcript abundances using all k-mers in the transcriptome, demonstrating the feasibility of designing an efficient alignment-free method for transcriptome quantification. Even though Sailfish is substantially faster than alternative alignment-dependent methods such as Cufflinks, using all k-mers in the transcriptome quantification impedes the scalability of the method. Results: We propose a novel RNA-Seq quantification method, RNA-Skim, which partitions the transcriptome into disjoint transcript clusters based on sequence similarity, and introduces the notion of sig-mers, which are a special type of k-mers uniquely associated with each cluster. We demonstrate that the sig-mer counts within a cluster are sufficient for estimating transcript abundances with accuracy comparable with any state-of-the-art method. This enables RNA-Skim to perform transcript quantification on each cluster independently, reducing a complex optimization problem into smaller optimization tasks that can be run in parallel. As a result, RNA-Skim uses <4% of the k-mers and <10% of the CPU time required by Sailfish. It is able to finish transcriptome quantification in <10 min per sample by using just a single thread on a commodity computer, which represents >100 speedup over the state-of-the-art alignment-based methods, while delivering comparable or higher accuracy. Availability and implementation: The software is available at http://www.csbio.unc.edu/rs. Contact: weiwang@cs.ucla.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931995

  19. LC/MS/MS quantitation assay for pharmacokinetics of naringenin and double peaks phenomenon in rats plasma.

    PubMed

    Ma, Yan; Li, Peibo; Chen, Dawei; Fang, Tiezheng; Li, Haitian; Su, Weiwei

    2006-01-13

    A highly sensitive and specific electrospray ionization (ESI) liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for quantitation of naringenin (NAR) and an explanation for the double peaks phenomenon was developed and validated. NAR was extracted from rat plasma and tissues along with the internal standard (IS), hesperidin, with ethyl acetate. The analytes were analyzed in the multiple-reaction-monitoring (MRM) mode as the precursor/product ion pair of m/z 273.4/151.3 for NAR and m/z 611.5/303.3 for the IS. The assay was linear over the concentration range of 5-2500 ng/mL. The lower limit quantification was 5 ng/mL, available for plasma pharmacokinetics of NAR in rats. Accuracy in within- and between-run precisions showed good reproducibility. When NAR was administered orally, only little and predominantly its glucuronidation were into circulation in the plasma. There existed double peaks phenomenon in plasma concentration-time curve leading to the relatively slow elimination of NAR in plasma. The results showed that there was a linear relationship between the AUC of total NAR and dosages. And the double peaks are mainly due to enterohepatic circulation.

  20. Development and Validation of GC-ECD Method for the Determination of Metamitron in Soil

    PubMed Central

    Tandon, Shishir; Kumar, Satyendra; Sand, N. K.

    2015-01-01

    This paper aims at developing and validating a convenient, rapid, and sensitive method for estimation of metamitron from soil samples.Determination andquantification was carried out by Gas Chromatography on microcapillary column with an Electron Capture Detector source. The compound was extracted from soil using methanol and cleanup by C-18 SPE. After optimization, the method was validated by evaluating the analytical curves, linearity, limits of detection, and quantification, precision (repeatability and intermediate precision), and accuracy (recovery). Recovery values ranged from 89 to 93.5% within 0.05- 2.0 µg L−1 with average RSD 1.80%. The precision (repeatability) ranged from 1.7034 to 1.9144% and intermediate precision from 1.5685 to 2.1323%. Retention time was 6.3 minutes, and minimum detectable and quantifiable limits were 0.02 ng mL−1 and 0.05 ng g−1, respectively. Good linearity (R 2 = 0.998) of the calibration curves was obtained over the range from 0.05 to 2.0 µg L−1. Results indicated that the developed method is rapid and easy to perform, making it applicable for analysis in large pesticide monitoring programmes. PMID:25733978

  1. Comprehensive determination of flavouring additives and nicotine in e-cigarette refill solutions. Part I: Liquid chromatography-tandem mass spectrometry analysis.

    PubMed

    Aszyk, Justyna; Kubica, Paweł; Kot-Wasik, Agata; Namieśnik, Jacek; Wasik, Andrzej

    2017-10-13

    Liquid chromatography-tandem mass spectrometry with electrospray ionization (HPLC-ESI-MS/MS) methods were developed for the simultaneous determination of 42 flavouring compounds and nicotine in liquids for e-cigarettes. The chromatographic separation was performed using an Ace ® Ultracore™ SuperC18™ (100×2.1mm, 2.5μm) column in both acidic and alkaline pH conditions to separate all the compounds. A simple "dilute & shoot" approach was used for the sample preparation. The method validation was performed by evaluating key analytical parameters such as linearity, accuracy, selectivity, precision, limit of detection (LOD) and limit of quantification (LOQ). The calibration curves showed good linearity within the specific ranges for the investigated compounds with correlation coefficients greater than 0.990 in each case. The recovery for all the investigated compounds varied from 89% to 110%. The intra- and inter-day precision were within the acceptable limits (±15%) at all tested concentrations. The applicability of the methods was examined by analysing 25 liquid samples from e-cigarettes commercially available on the Polish market. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development and validation of a HPTLC method for simultaneous estimation of lornoxicam and thiocolchicoside in combined dosage form

    PubMed Central

    Sahoo, Madhusmita; Syal, Pratima; Hable, Asawaree A.; Raut, Rahul P.; Choudhari, Vishnu P.; Kuchekar, Bhanudas S.

    2011-01-01

    Aim: To develop a simple, precise, rapid and accurate HPTLC method for the simultaneous estimation of Lornoxicam (LOR) and Thiocolchicoside (THIO) in bulk and pharmaceutical dosage forms. Materials and Methods: The separation of the active compounds from pharmaceutical dosage form was carried out using methanol:chloroform:water (9.6:0.2:0.2 v/v/v) as the mobile phase and no immiscibility issues were found. The densitometric scanning was carried out at 377 nm. The method was validated for linearity, accuracy, precision, LOD (Limit of Detection), LOQ (Limit of Quantification), robustness and specificity. Results: The Rf values (±SD) were found to be 0.84 ± 0.05 for LOR and 0.58 ± 0.05 for THIO. Linearity was obtained in the range of 60–360 ng/band for LOR and 30–180 ng/band for THIO with correlation coefficients r2 = 0.998 and 0.999, respectively. The percentage recovery for both the analytes was in the range of 98.7–101.2 %. Conclusion: The proposed method was optimized and validated as per the ICH guidelines. PMID:23781452

  3. Development and Validation of Different Ultraviolet-Spectrophotometric Methods for the Estimation of Besifloxacin in Different Simulated Body Fluids.

    PubMed

    Singh, C L; Singh, A; Kumar, S; Kumar, M; Sharma, P K; Majumdar, D K

    2015-01-01

    In the present study a simple, accurate, precise, economical and specific UV-spectrophotometric method for estimation of besifloxacin in bulk and in different pharmaceutical formulation has been developed. The drug shows maximum λmax289 nm in distilled water, simulated tears and phosphate buffer saline. The linearity range of developed methods were in the range of 3-30 μg/ml of drug with a correlation coefficient (r(2)) 0.9992, 0.9989 and 0.9984 with respect to distilled water, simulated tears and phosphate buffer saline, respectively. Reproducibility by repeating methods as %RSD were found to be less than 2%. The limit of detection in different media was found to be 0.62, 0.72 and 0.88 μg/ml, respectively. The limit of quantification was found to be 1.88, 2.10, 2.60 μg/ml, respectively. The proposed method was validated statically according to International Conference on Harmonization guidelines with respect to specificity, linearity, range, accuracy, precision and robustness. The proposed methods of validation were found to be accurate and highly specific for the estimation of besifloxacin in different pharmaceutical formulations.

  4. A New Green Method for the Quantitative Analysis of Enrofloxacin by Fourier-Transform Infrared Spectroscopy.

    PubMed

    Rebouças, Camila Tavares; Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes

    2018-05-18

    Background: A green analytical chemistry method was developed for quantification of enrofloxacin in tablets. The drug, a second-generation fluoroquinolone, was first introduced in veterinary medicine for the treatment of various bacterial species. Objective: This study proposed to develop, validate, and apply a reliable, low-cost, fast, and simple IR spectroscopy method for quantitative routine determination of enrofloxacin in tablets. Methods: The method was completely validated according to the International Conference on Harmonisation guidelines, showing accuracy, precision, selectivity, robustness, and linearity. Results: It was linear over the concentration range of 1.0-3.0 mg with correlation coefficients >0.9999 and LOD and LOQ of 0.12 and 0.36 mg, respectively. Conclusions: Now that this IR method has met performance qualifications, it can be adopted and applied for the analysis of enrofloxacin tablets for production process control. The validated method can also be utilized to quantify enrofloxacin in tablets and thus is an environmentally friendly alternative for the routine analysis of enrofloxacin in quality control. Highlights: A new green method for the quantitative analysis of enrofloxacin by Fourier-Transform Infrared spectroscopy was validated. It is a fast, clean and low-cost alternative for the evaluation of enrofloxacin tablets.

  5. An ultra-high performance liquid chromatography method to determine the skin penetration of an octyl methoxycinnamate-loaded liquid crystalline system.

    PubMed

    Prado, A H; Borges, M C; Eloy, J O; Peccinini, R G; Chorilli, M

    2017-10-01

    Cutaneous penetration is a critical factor in the use of sunscreen, as the compounds should not reach systemic circulation in order to avoid the induction of toxicity. The evaluation of the skin penetration and permeation of the UVB filter octyl methoxycinnamate (OMC) is essential for the development of a successful sunscreen formulation. Liquid-crystalline systems are innovative and potential carriers of OMC, which possess several advantages, including controlled release and protection of the filter from degradation. In this study, a new and effective method was developed using ultra-high performance liquid chromatography (UPLC) with ultraviolet detection (UV) for the quantitative analysis of penetration of OMC-loaded liquid crystalline systems into the skin. The following parameters were assessed in the method: selectivity, linearity, precision, accuracy, robustness, limit of detection (LOD), and limit of quantification (LOQ). The analytical curve was linear in the range from 0.25 to 250 μg.m-1, precise, with a standard deviation of 0.05-1.24%, with an accuracy in the range from 96.72 to 105.52%, and robust, with adequate values for the LOD and LOQ of 0.1 and 0.25 μg.mL -1, respectively. The method was successfully used to determine the in vitro skin permeation of OMC-loaded liquid crystalline systems. The results of the in vitro tests on Franz cells showed low cutaneous permeation and high retention of the OMC, particularly in the stratum corneum, owing to its high lipophilicity, which is desirable for a sunscreen formulation.

  6. A validated high-performance liquid chromatographic method for the determination of moclobemide and its two metabolites in human plasma and application to pharmacokinetic studies.

    PubMed

    Plenis, Alina; Chmielewska, Aleksandra; Konieczna, Lucyna; Lamparczyk, Henryk

    2007-09-01

    A rapid and sensitive reversed-phase high-performance liquid chromatographic method (RP-HPLC) with ultraviolet detection has been developed for the determination of moclobemide and its metabolites, p-chloro-N-(-2-morpholinoethyl)benzamide N'-oxide (Ro 12-5637) and p-chloro-N-[2-(3-oxomorpholino)ethyl]-benzamide (Ro 12-8095), in human plasma. The assay was performed after single liquid-liquid extraction with dichloromethane at alkaline pH using phenacetin as the internal standard. Chromatographic separation was performed on a C(18) column using a mixture of acetonitrile and water (25:75, v/v), adjusted to pH 2.7 with ortho-phosphoric acid, as mobile phase. Spectrophotometric detection was performed at 239 nm. The method has been validated for accuracy, precision, selectivity, linearity, recovery and stability. The quantification limit for moclobemide and Ro 12-8095 was 10 ng/mL, and for Ro 12-5637 was 30 ng/mL. Linearity of the method was confirmed for the range 20-2500 ng/mL for moclobemide (r = 0.9998), 20-1750 ng/mL for Ro 12-8095 (r = 0.9996) and 30-350 ng/mL for Ro 12-5637 (r = 0.9991). Moreover, within-day and between-day precisions and accuracies of the method were established. The described method was successfully applied in pharmacokinetic studies of parent drug and its two metabolites after a single oral administration of 150 mg of moclobemide to 20 healthy volunteers. Copyright (c) 2007 John Wiley & Sons, Ltd.

  7. Validation of high throughput screening of human sera for detection of anti-PA IgG by Enzyme-Linked Immunosorbent Assay (ELISA) as an emergency response to an anthrax incident

    PubMed Central

    Semenova, Vera A.; Steward-Clark, Evelene; Maniatis, Panagiotis; Epperson, Monica; Sabnis, Amit; Schiffer, Jarad

    2017-01-01

    To improve surge testing capability for a response to a release of Bacillus anthracis, the CDC anti-Protective Antigen (PA) IgG Enzyme-Linked Immunosorbent Assay (ELISA) was re-designed into a high throughput screening format. The following assay performance parameters were evaluated: goodness of fit (measured as the mean reference standard r2), accuracy (measured as percent error), precision (measured as coefficient of variance (CV)), lower limit of detection (LLOD), lower limit of quantification (LLOQ), dilutional linearity, diagnostic sensitivity (DSN) and diagnostic specificity (DSP). The paired sets of data for each sample were evaluated by Concordance Correlation Coefficient (CCC) analysis. The goodness of fit was 0.999; percent error between the expected and observed concentration for each sample ranged from −4.6% to 14.4%. The coefficient of variance ranged from 9.0% to 21.2%. The assay LLOQ was 2.6 μg/mL. The regression analysis results for dilutional linearity data were r2 = 0.952, slope = 1.02 and intercept = −0.03. CCC between assays was 0.974 for the median concentration of serum samples. The accuracy and precision components of CCC were 0.997 and 0.977, respectively. This high throughput screening assay is precise, accurate, sensitive and specific. Anti-PA IgG concentrations determined using two different assays proved high levels of agreement. The method will improve surge testing capability 18-fold from 4 to 72 sera per assay plate. PMID:27814939

  8. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions.

    PubMed

    Belal, Tarek S; El-Kafrawy, Dina S; Mahrous, Mohamed S; Abdel-Khalek, Magdi M; Abo-Gharam, Amira H

    2016-02-15

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415nm. The fourth method involves the formation of a yellow complex peaking at 361nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions

    NASA Astrophysics Data System (ADS)

    Belal, Tarek S.; El-Kafrawy, Dina S.; Mahrous, Mohamed S.; Abdel-Khalek, Magdi M.; Abo-Gharam, Amira H.

    2016-02-01

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524 nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490 nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415 nm. The fourth method involves the formation of a yellow complex peaking at 361 nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8 μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method.

  10. Development and validation of a rapid LC-MS/MS method for simultaneous determination of netupitant and palonosetron in human plasma and its application to a pharmacokinetic study.

    PubMed

    Xu, Mingzhen; Ni, Yang; Li, Shihong; Du, Juan; Li, Huqun; Zhou, Ying; Li, Weiyong; Chen, Hui

    2016-08-01

    A simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was firstly developed and validated for simultaneous determination of netupitant and palonosetron in human plasma using ibrutinib as the internal standard (IS). Following liquid-liquid extraction, the compounds were eluted isocratically on a Phenomenex C18 column (50mm×2.0mm, 3μm) with the mobile phase consisting of acetonitrile and 10mM ammonium acetate buffer (pH 9.0) (89:11, v/v) at the flow rate of 0.3mL/min. The monitored ion transitions were m/z 579.5→522.4 for netupitant, m/z 297.3→110.2 for palonosetron and m/z 441.2→138.1 for IS. Chromatographic run time was 2.5min per injection, which made it possible to analyze more than 300 of samples per day. The assay exhibited a linear dynamic range of 5-1000ng/mL for netupitant and 0.02-10ng/mL for palonosetron in plasma. The values for both within- and between-day precision and accuracy were well within the generally accepted criteria for analytical methods (<15%). Selectivity, linearity, lower limit of quantification (LLOQ), accuracy, precision, stability, matrix effect, recovery and carry-over effect were evaluated for all analytes. The method is simple, rapid, and has been applied successfully to a pharmacokinetic study of netupitant and palonosetron in healthy volunteers. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Validation of high throughput screening of human sera for detection of anti-PA IgG by Enzyme-Linked Immunosorbent Assay (ELISA) as an emergency response to an anthrax incident.

    PubMed

    Semenova, Vera A; Steward-Clark, Evelene; Maniatis, Panagiotis; Epperson, Monica; Sabnis, Amit; Schiffer, Jarad

    2017-01-01

    To improve surge testing capability for a response to a release of Bacillus anthracis, the CDC anti-Protective Antigen (PA) IgG Enzyme-Linked Immunosorbent Assay (ELISA) was re-designed into a high throughput screening format. The following assay performance parameters were evaluated: goodness of fit (measured as the mean reference standard r 2 ), accuracy (measured as percent error), precision (measured as coefficient of variance (CV)), lower limit of detection (LLOD), lower limit of quantification (LLOQ), dilutional linearity, diagnostic sensitivity (DSN) and diagnostic specificity (DSP). The paired sets of data for each sample were evaluated by Concordance Correlation Coefficient (CCC) analysis. The goodness of fit was 0.999; percent error between the expected and observed concentration for each sample ranged from -4.6% to 14.4%. The coefficient of variance ranged from 9.0% to 21.2%. The assay LLOQ was 2.6 μg/mL. The regression analysis results for dilutional linearity data were r 2  = 0.952, slope = 1.02 and intercept = -0.03. CCC between assays was 0.974 for the median concentration of serum samples. The accuracy and precision components of CCC were 0.997 and 0.977, respectively. This high throughput screening assay is precise, accurate, sensitive and specific. Anti-PA IgG concentrations determined using two different assays proved high levels of agreement. The method will improve surge testing capability 18-fold from 4 to 72 sera per assay plate. Published by Elsevier Ltd.

  12. A modified TEW approach to scatter correction for In-111 and Tc-99m dual-isotope small-animal SPECT.

    PubMed

    Prior, Paul; Timmins, Rachel; Petryk, Julia; Strydhorst, Jared; Duan, Yin; Wei, Lihui; Glenn Wells, R

    2016-10-01

    In dual-isotope (Tc-99m/In-111) small-animal single-photon emission computed tomography (SPECT), quantitative accuracy of Tc-99m activity measurements is degraded due to the detection of Compton-scattered photons in the Tc-99m photopeak window, which originate from the In-111 emissions (cross talk) and from the Tc-99m emission (self-scatter). The standard triple-energy window (TEW) estimates the total scatter (self-scatter and cross talk) using one scatter window on either side of the Tc-99m photopeak window, but the estimate is biased due to the presence of unscattered photons in the scatter windows. The authors present a modified TEW method to correct for total scatter that compensates for this bias and evaluate the method in phantoms and in vivo. The number of unscattered Tc-99m and In-111 photons present in each scatter-window projection is estimated based on the number of photons detected in the photopeak of each isotope, using the isotope-dependent energy resolution of the detector. The camera-head-specific energy resolutions for the 140 keV Tc-99m and 171 keV In-111 emissions were determined experimentally by separately sampling the energy spectra of each isotope. Each sampled spectrum was fit with a Linear + Gaussian function. The fitted Gaussian functions were integrated across each energy window to determine the proportion of unscattered photons from each emission detected in the scatter windows. The method was first tested and compared to the standard TEW in phantoms containing Tc-99m:In-111 activity ratios between 0.15 and 6.90. True activities were determined using a dose calibrator, and SPECT activities were estimated from CT-attenuation-corrected images with and without scatter-correction. The method was then tested in vivo in six rats using In-111-liposome and Tc-99m-tetrofosmin to generate cross talk in the area of the myocardium. The myocardium was manually segmented using the SPECT and CT images, and partial-volume correction was performed using a template-based approach. The rat heart was counted in a well-counter to determine the true activity. In the phantoms without correction for Compton-scatter, Tc-99m activity quantification errors as high as 85% were observed. The standard TEW method quantified Tc-99m activity with an average accuracy of -9.0% ± 0.7%, while the modified TEW was accurate within 5% of truth in phantoms with Tc-99m:In-111 activity ratios ≥0.52. Without scatter-correction, In-111 activity was quantified with an average accuracy of 4.1%, and there was no dependence of accuracy on the activity ratio. In rat myocardia, uncorrected images were overestimated by an average of 23% ± 5%, and the standard TEW had an accuracy of -13.8% ± 1.6%, while the modified TEW yielded an accuracy of -4.0% ± 1.6%. Cross talk and self-scatter were shown to produce quantification errors in phantoms as well as in vivo. The standard TEW provided inaccurate results due to the inclusion of unscattered photons in the scatter windows. The modified TEW improved the scatter estimate and reduced the quantification errors in phantoms and in vivo.

  13. QUESP and QUEST revisited - fast and accurate quantitative CEST experiments.

    PubMed

    Zaiss, Moritz; Angelovski, Goran; Demetriou, Eleni; McMahon, Michael T; Golay, Xavier; Scheffler, Klaus

    2018-03-01

    Chemical exchange saturation transfer (CEST) NMR or MRI experiments allow detection of low concentrated molecules with enhanced sensitivity via their proton exchange with the abundant water pool. Be it endogenous metabolites or exogenous contrast agents, an exact quantification of the actual exchange rate is required to design optimal pulse sequences and/or specific sensitive agents. Refined analytical expressions allow deeper insight and improvement of accuracy for common quantification techniques. The accuracy of standard quantification methodologies, such as quantification of exchange rate using varying saturation power or varying saturation time, is improved especially for the case of nonequilibrium initial conditions and weak labeling conditions, meaning the saturation amplitude is smaller than the exchange rate (γB 1  < k). The improved analytical 'quantification of exchange rate using varying saturation power/time' (QUESP/QUEST) equations allow for more accurate exchange rate determination, and provide clear insights on the general principles to execute the experiments and to perform numerical evaluation. The proposed methodology was evaluated on the large-shift regime of paramagnetic chemical-exchange-saturation-transfer agents using simulated data and data of the paramagnetic Eu(III) complex of DOTA-tetraglycineamide. The refined formulas yield improved exchange rate estimation. General convergence intervals of the methods that would apply for smaller shift agents are also discussed. Magn Reson Med 79:1708-1721, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Adams, Rachel M; Chourey, Karuna

    2012-01-01

    A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less

  15. Quantification of genetically modified soybeans using a combination of a capillary-type real-time PCR system and a plasmid reference standard.

    PubMed

    Toyota, Akie; Akiyama, Hiroshi; Sugimura, Mitsunori; Watanabe, Takahiro; Kikuchi, Hiroyuki; Kanamori, Hisayuki; Hino, Akihiro; Esaka, Muneharu; Maitani, Tamio

    2006-04-01

    Because the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved genetically modified varieties in many countries, there is a need for a rapid and useful method of GMO quantification in food samples. In this study, a rapid detection system was developed for Roundup Ready Soybean (RRS) quantification using a combination of a capillary-type real-time PCR system, a LightCycler real-time PCR system, and plasmid DNA as the reference standard. In addition, we showed for the first time that the plasmid and genomic DNA should be similar in the established detection system because the PCR efficiencies of using plasmid DNA and using genomic DNA were not significantly different. The conversion factor (Cf) to calculate RRS content (%) was further determined from the average value analyzed in three laboratories. The accuracy and reproducibility of this system for RRS quantification at a level of 5.0% were within a range from 4.46 to 5.07% for RRS content and within a range from 2.0% to 7.0% for the relative standard deviation (RSD) value, respectively. This system rapidly monitored the labeling system and had allowable levels of accuracy and precision.

  16. Stability-indicating UPLC method for determining related substances and degradants in dronedarone.

    PubMed

    Pydimarry, Surya Prakash Rao; Cholleti, Vijay Kumar; Vangala, Ranga Reddy

    2014-08-01

    A simple, sensitive and reproducible method was developed on ultra-performance liquid chromatography coupled with photodiode array detection for the quantitative determination of dronedarone hydrochloride (DRO) in drug substance and pharmaceutical dosage forms. The method is applicable for the quantification of related substances and assays of drug substances. Chromatographic separation was achieved on Acquity UPLC BEH C8 100 mm, 2.1 mm and 1.7 µm columns, using gradient elution within a short run time of 10.0 min. The eluted compounds were monitored at 288 nm, the flow rate was 0.5 mL/min and the column oven temperature was maintained at 40°C. The resolution of DRO and 11 impurities (potentials and by-products) was greater than 2.0 for all pairs of components. The high correlation coefficient value (>0.9995) indicates the clear correlations between the concentrations of investigated compound and their peak areas within the test ranges. The repeatability and intermediate precision, expressed by the relative standard deviation, were less than 2.5%. The accuracy and validity of the method were further ascertained by performing recovery studies via a spike method. The accuracy of the method, expressed as relative error, was satisfactory. No interference was observed from concomitant substances normally added to the tablets. DRO was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. DRO was found to degrade significantly in acid and base stress conditions and to remain stable in thermal, photolytic degradation, oxidative and hydrolytic conditions. The degradation products were well resolved from primary peak and its impurities, proving that the method is stability indicating. The developed method was validated as per International Conference on Harmonization guidelines with respect to specificity, limit of detection, limit of quantification, linearity, accuracy, precision, solution stability and robustness. This method is also suitable for the determination of DRO drug substance and pharmaceutical dosage forms. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A Sensitive and Selective Liquid Chromatography/Tandem Mass Spectrometry Method for Quantitative Analysis of Efavirenz in Human Plasma

    PubMed Central

    Srivastava, Praveen; Moorthy, Ganesh S.; Gross, Robert; Barrett, Jeffrey S.

    2013-01-01

    A selective and a highly sensitive method for the determination of the non-nucleoside reverse transcriptase inhibitor (NNRTI), efavirenz, in human plasma has been developed and fully validated based on high performance liquid chromatography tandem mass spectrometry (LC–MS/MS). Sample preparation involved protein precipitation followed by one to one dilution with water. The analyte, efavirenz was separated by high performance liquid chromatography and detected with tandem mass spectrometry in negative ionization mode with multiple reaction monitoring. Efavirenz and 13C6-efavirenz (Internal Standard), respectively, were detected via the following MRM transitions: m/z 314.20243.90 and m/z 320.20249.90. A gradient program was used to elute the analytes using 0.1% formic acid in water and 0.1% formic acid in acetonitrile as mobile phase solvents, at a flow-rate of 0.3 mL/min. The total run time was 5 min and the retention times for the internal standard (13C6-efavirenz) and efavirenz was approximately 2.6 min. The calibration curves showed linearity (coefficient of regression, r>0.99) over the concentration range of 1.0–2,500 ng/mL. The intraday precision based on the standard deviation of replicates of lower limit of quantification (LLOQ) was 9.24% and for quality control (QC) samples ranged from 2.41% to 6.42% and with accuracy from 112% and 100–111% for LLOQ and QC samples. The inter day precision was 12.3% and 3.03–9.18% for LLOQ and quality controls samples, and the accuracy was 108% and 95.2–108% for LLOQ and QC samples. Stability studies showed that efavirenz was stable during the expected conditions for sample preparation and storage. The lower limit of quantification for efavirenz was 1 ng/mL. The analytical method showed excellent sensitivity, precision, and accuracy. This method is robust and is being successfully applied for therapeutic drug monitoring and pharmacokinetic studies in HIV-infected patients. PMID:23755102

  18. Application of miniaturized near-infrared spectroscopy for quality control of extemporaneous orodispersible films.

    PubMed

    Foo, Wen Chin; Widjaja, Effendi; Khong, Yuet Mei; Gokhale, Rajeev; Chan, Sui Yung

    2018-02-20

    Extemporaneous oral preparations are routinely compounded in the pharmacy due to a lack of suitable formulations for special populations. Such small-scale pharmacy preparations also present an avenue for individualized pharmacotherapy. Orodispersible films (ODF) have increasingly been evaluated as a suitable dosage form for extemporaneous oral preparations. Nevertheless, as with all other extemporaneous preparations, safety and quality remain a concern. Although the United States Pharmacopeia (USP) recommends analytical testing of compounded preparations for quality assurance, pharmaceutical assays are typically not routinely performed for such non-sterile pharmacy preparations, due to the complexity and high cost of conventional assay methods such as high performance liquid chromatography (HPLC). Spectroscopic methods including Raman, infrared and near-infrared spectroscopy have been successfully applied as quality control tools in the industry. The state-of-art benchtop spectrometers used in those studies have the advantage of superior resolution and performance, but are not suitable for use in a small-scale pharmacy setting. In this study, we investigated the application of a miniaturized near infrared (NIR) spectrometer as a quality control tool for identification and quantification of drug content in extemporaneous ODFs. Miniaturized near infrared (NIR) spectroscopy is suitable for small-scale pharmacy applications in view of its small size, portability, simple user interface, rapid measurement and real-time prediction results. Nevertheless, the challenge with miniaturized NIR spectroscopy is its lower resolution compared to state-of-art benchtop equipment. We have successfully developed NIR spectroscopy calibration models for identification of ODFs containing five different drugs, and quantification of drug content in ODFs containing 2-10mg ondansetron (OND). The qualitative model for drug identification produced 100% prediction accuracy. The quantitative model to predict OND drug content in ODFs was divided into two calibrations for improved accuracy: Calibration I and II covered the 2-4mg and 4-10mg ranges respectively. Validation was performed for method accuracy, linearity and precision. In conclusion, this study demonstrates the feasibility of miniaturized NIR spectroscopy as a quality control tool for small-scale, pharmacy preparations. Due to its non-destructive nature, every dosage unit can be tested thus affording positive impact on patient safety. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    PubMed

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  20. Surface smoothness: cartilage biomarkers for knee OA beyond the radiologist

    NASA Astrophysics Data System (ADS)

    Tummala, Sudhakar; Dam, Erik B.

    2010-03-01

    Fully automatic imaging biomarkers may allow quantification of patho-physiological processes that a radiologist would not be able to assess reliably. This can introduce new insight but is problematic to validate due to lack of meaningful ground truth expert measurements. Rather than quantification accuracy, such novel markers must therefore be validated against clinically meaningful end-goals such as the ability to allow correct diagnosis. We present a method for automatic cartilage surface smoothness quantification in the knee joint. The quantification is based on a curvature flow method used on tibial and femoral cartilage compartments resulting from an automatic segmentation scheme. These smoothness estimates are validated for their ability to diagnose osteoarthritis and compared to smoothness estimates based on manual expert segmentations and to conventional cartilage volume quantification. We demonstrate that the fully automatic markers eliminate the time required for radiologist annotations, and in addition provide a diagnostic marker superior to the evaluated semi-manual markers.

  1. pyQms enables universal and accurate quantification of mass spectrometry data.

    PubMed

    Leufken, Johannes; Niehues, Anna; Sarin, L Peter; Wessel, Florian; Hippler, Michael; Leidel, Sebastian A; Fufezan, Christian

    2017-10-01

    Quantitative mass spectrometry (MS) is a key technique in many research areas (1), including proteomics, metabolomics, glycomics, and lipidomics. Because all of the corresponding molecules can be described by chemical formulas, universal quantification tools are highly desirable. Here, we present pyQms, an open-source software for accurate quantification of all types of molecules measurable by MS. pyQms uses isotope pattern matching that offers an accurate quality assessment of all quantifications and the ability to directly incorporate mass spectrometer accuracy. pyQms is, due to its universal design, applicable to every research field, labeling strategy, and acquisition technique. This opens ultimate flexibility for researchers to design experiments employing innovative and hitherto unexplored labeling strategies. Importantly, pyQms performs very well to accurately quantify partially labeled proteomes in large scale and high throughput, the most challenging task for a quantification algorithm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Automatic computational labeling of glomerular textural boundaries

    NASA Astrophysics Data System (ADS)

    Ginley, Brandon; Tomaszewski, John E.; Sarder, Pinaki

    2017-03-01

    The glomerulus, a specialized bundle of capillaries, is the blood filtering unit of the kidney. Each human kidney contains about 1 million glomeruli. Structural damages in the glomerular micro-compartments give rise to several renal conditions; most severe of which is proteinuria, where excessive blood proteins flow freely to the urine. The sole way to confirm glomerular structural damage in renal pathology is by examining histopathological or immunofluorescence stained needle biopsies under a light microscope. However, this method is extremely tedious and time consuming, and requires manual scoring on the number and volume of structures. Computational quantification of equivalent features promises to greatly ease this manual burden. The largest obstacle to computational quantification of renal tissue is the ability to recognize complex glomerular textural boundaries automatically. Here we present a computational pipeline to accurately identify glomerular boundaries with high precision and accuracy. The computational pipeline employs an integrated approach composed of Gabor filtering, Gaussian blurring, statistical F-testing, and distance transform, and performs significantly better than standard Gabor based textural segmentation method. Our integrated approach provides mean accuracy/precision of 0.89/0.97 on n = 200Hematoxylin and Eosin (HE) glomerulus images, and mean 0.88/0.94 accuracy/precision on n = 200 Periodic Acid Schiff (PAS) glomerulus images. Respective accuracy/precision of the Gabor filter bank based method is 0.83/0.84 for HE and 0.78/0.8 for PAS. Our method will simplify computational partitioning of glomerular micro-compartments hidden within dense textural boundaries. Automatic quantification of glomeruli will streamline structural analysis in clinic, and can help realize real time diagnoses and interventions.

  3. Quick, sensitive and specific detection and evaluation of quantification of minor variants by high-throughput sequencing.

    PubMed

    Leung, Ross Ka-Kit; Dong, Zhi Qiang; Sa, Fei; Chong, Cheong Meng; Lei, Si Wan; Tsui, Stephen Kwok-Wing; Lee, Simon Ming-Yuen

    2014-02-01

    Minor variants have significant implications in quasispecies evolution, early cancer detection and non-invasive fetal genotyping but their accurate detection by next-generation sequencing (NGS) is hampered by sequencing errors. We generated sequencing data from mixtures at predetermined ratios in order to provide insight into sequencing errors and variations that can arise for which simulation cannot be performed. The information also enables better parameterization in depth of coverage, read quality and heterogeneity, library preparation techniques, technical repeatability for mathematical modeling, theory development and simulation experimental design. We devised minor variant authentication rules that achieved 100% accuracy in both testing and validation experiments. The rules are free from tedious inspection of alignment accuracy, sequencing read quality or errors introduced by homopolymers. The authentication processes only require minor variants to: (1) have minimum depth of coverage larger than 30; (2) be reported by (a) four or more variant callers, or (b) DiBayes or LoFreq, plus SNVer (or BWA when no results are returned by SNVer), and with the interassay coefficient of variation (CV) no larger than 0.1. Quantification accuracy undermined by sequencing errors could neither be overcome by ultra-deep sequencing, nor recruiting more variant callers to reach a consensus, such that consistent underestimation and overestimation (i.e. low CV) were observed. To accommodate stochastic error and adjust the observed ratio within a specified accuracy, we presented a proof of concept for the use of a double calibration curve for quantification, which provides an important reference towards potential industrial-scale fabrication of calibrants for NGS.

  4. Quantification of Acetaminophen and Its Metabolites in Plasma Using UPLC-MS: Doors Open to Therapeutic Drug Monitoring in Special Patient Populations.

    PubMed

    Flint, Robert B; Mian, Paola; van der Nagel, Bart; Slijkhuis, Nuria; Koch, Birgit C P

    2017-04-01

    Acetaminophen (APAP, paracetamol) is the most commonly used drug for pain and fever in both the United States and Europe and is considered safe when used at registered dosages. Nevertheless, differences between specific populations lead to remarkable changes in exposure to potentially toxic metabolites. Furthermore, extended knowledge is required on metabolite formation after intoxication, to optimize antidote treatment. Therefore, the authors aimed to develop and validate a quick and easy analytical method for simultaneous quantification of APAP, APAP-glucuronide, APAP-sulfate, APAP-cysteine, APAP-glutathione, APAP-mercapturate, and protein-derived APAP-cysteine in human plasma by ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry. The internal standard was APAP-D4 for all analytes. Chromatographic separation was achieved with a reversed-phase Acquity ultraperformance liquid chromatography HSS T3 column with a runtime of only 4.5 minutes per injected sample. Gradient elution was performed with a mobile phase consisting of ammonium acetate, formic acid in Milli-Q ultrapure water or in methanol at flow rate of 0.4 mL/minute. A plasma volume of only 10 μL was required to achieve both adequate accuracy and precision. Calibration curves of all 6 analytes were linear. All analytes were stable for at least 48 hours in the autosampler; the high quality control of APAP-glutathione was stable for 24 hours. The method was validated according to the U.S. Food and Drug Administration guidelines. This method allows quantification of APAP and 6 metabolites, which serves purposes for research, as well as therapeutic drug monitoring. The advantage of this method is the combination of minimal injection volume, a short runtime, an easy sample preparation method, and the ability to quantify APAP and all 6 metabolites.

  5. Simultaneous quantification of endogenous and exogenous plasma glucose by isotope dilution LC-MS/MS with indirect MRM of the derivative tag.

    PubMed

    Yu, Lingling; Wen, Chao; Li, Xing; Fang, Shiqi; Yang, Lichuan; Wang, Tony; Hu, Kaifeng

    2018-03-01

    Quantification of endogenous and exogenous plasma glucose can help more comprehensively evaluate the glucose metabolic status. A ratio-based approach using isotope dilution liquid chromatography tandem mass spectrometry (ID LC-MS/MS) with indirect multiple reaction monitoring (MRM) of the derivative tag was developed to simultaneously quantify endo-/exogenous plasma glucose. Using diluted D-[ 13 C 6 ] glucose as tracer of exogenous glucose, 12 C 6 / 13 C 6 glucoses were first derivatized and then data were acquired in MRM mode. The metabolism of exogenous glucose can be tracked and the concentration ratio of endo/exo-genous glucose can be measured by calculating the endo-/exo-genous glucose concentrations from peak area ratio of specific daughter ions. Joint application of selective derivatization and MRM analysis not only improves the sensitivity but also minimizes the interference from the background of plasma, which warrants the accuracy and reproducibility. Good agreement between the theoretical and calculated concentration ratios was obtained with a linear correlation coefficient (R) of 0.9969 in the range of D-glucose from 0.5 to 20.0 mM, which covers the healthy and diabetic physiological scenarios. Satisfactory reproducibility was obtained by evaluation of the intra- and inter-day precisions with relative standard deviations (RSDs) less than 5.16%, and relative recoveries of 85.96 to 95.92% were obtained at low, medium, and high concentration, respectively. The method was successfully applied to simultaneous determination of the endo-/exogenous glucose concentration in plasma of non-diabetic and type II diabetic cynomolgus monkeys. Graphical Abstract The scheme of the proposed ratio-based approach using isotope dilution LC-MS/MS with indirect MRM of the derivative tag for simultaneous quantification of endogenous and exogenous plasma glucose.

  6. Quantitative Imaging with a Mobile Phone Microscope

    PubMed Central

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  7. Qualitative and quantitative analysis of poly(amidoamine) dendrimers in an aqueous matrix by liquid chromatography-electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS).

    PubMed

    Uclés, A; Ulaszewska, M M; Hernando, M D; Ramos, M J; Herrera, S; García, E; Fernández-Alba, A R

    2013-07-01

    This work introduces a liquid chromatography-electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)-based method for qualitative and quantitative analysis of poly(amidoamine) (PAMAM) dendrimers of generations 0 to 3 in an aqueous matrix. The multiple charging of PAMAM dendrimers generated by means of ESI has provided key advantages in dendrimer identification by assignation of charge state through high resolution of isotopic clusters. Isotopic distribution in function of abundance of isotopes (12)C and (13)C yielded valuable and complementarity data for confident characterization. A mass accuracy below 3.8 ppm for the most abundant isotopes (diagnostic ions) provided unambiguous identification of PAMAM dendrimers. Validation of the LC-ESI-QTOF-MS method and matrix effect evaluation enabled reliable and reproducible quantification. The validation parameters, limits of quantification in the range of 0.012 to 1.73 μM, depending on the generation, good linear range (R > 0.996), repeatability (RSD < 13.4%), and reproducibility (RSD < 10.9%) demonstrated the suitability of the method for the quantification of dendrimers in aqueous matrices (water and wastewater). The added selectivity, achieved by multicharge phenomena, represents a clear advantage in screening aqueous mixtures due to the fact that the matrix had no significant effect on ionization, with what is evidenced by an absence of sensitivity loss in most generations of PAMAM dendrimers. Fig Liquid chromatography-electrospray ionization-hybrid quadrupole/time of flight mass spectrometry (LC-ESI-QTOF-MS) based method for qualitative and quantitative analysis of PAMAM dendrimers in aqueous matrix.

  8. A simple and sensitive liquid chromatography-tandem mass spectrometry method for trans-ε-viniferin quantification in mouse plasma and its application to a pharmacokinetic study in mice.

    PubMed

    Kim, Jiseon; Min, Jee Sun; Kim, Doyun; Zheng, Yu Fen; Mailar, Karabasappa; Choi, Won Jun; Lee, Choongho; Bae, Soo Kyung

    2017-02-05

    In this study, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of trans-ε-viniferin in small volumes (10μl) of mouse plasma using chlorpropamide as an internal standard was developed and validated. Plasma samples were precipitated with acetonitrile and separated using an Eclipse Plus C 18 column (100×4.6mm, 1.8-μm) with a mobile phase consisting of 0.1% formic acid in acetonitrile and 0.1% formic acid in water (60:40v/v) at a flow rate of 0.5ml/min. A triple quadrupole mass spectrometer operating in positive ion mode with selected reaction-monitoring mode was used to determine trans-ε-viniferin and chlorpropamide transitions of 455.10→215.05 and 277.00→111.00, respectively. The lower limit of quantification was 5ng/ml with a linear range of 5-2500ng/ml (r≥0.9949). All validation data, including the selectivity, precision, accuracy, recovery, dilution integrity, and stability, conformed to the acceptance requirements. No matrix effects were observed. The developed method was successfully applied to pharmacokinetic studies of trans-ε-viniferin following intravenous (2.5mg/kg), intraperitoneal (2.5, 5 and 10mg/kg), and oral (40mg/kg) administration in mice. This is the first report on the pharmacokinetic properties of trans-ε-viniferin. The results provide a meaningful basis for evaluating the pre-clinical or clinical applications of trans-ε-viniferin. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Direct analysis of ethylene glycol in human serum on the basis of analyte adduct formation and liquid chromatography-tandem mass spectrometry.

    PubMed

    Dziadosz, Marek

    2018-01-01

    The aim of this work was to develop a fast, cost-effective and time-saving liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytical method for the analysis of ethylene glycol (EG) in human serum. For these purposes, the formation/fragmentation of an EG adduct ion with sodium and sodium acetate was applied in the positive electrospray mode for signal detection. Adduct identification was performed with appropriate infusion experiments based on analyte solutions prepared in different concentrations. Corresponding analyte adduct ions and adduct ion fragments could be identified both for EG and the deuterated internal standard (EG-D4). Protein precipitation was used as sample preparation. The analysis of the supernatant was performed with a Luna 5μm C18 (2) 100A, 150mm×2mm analytical column and a mobile phase consisting of 95% A (H 2 O/methanol=95/5, v/v) and 5% B (H 2 O/methanol=3/97, v/v), both with 10mmolL -1 ammonium acetate and 0.1% acetic acid. Method linearity was examined in the range of 100-4000μg/mL and the calculated limit of detection/quantification was 35/98μg/mL. However, on the basis of the signal to noise ratio, quantification was recommended at a limit of 300μg/mL. Additionally, the examined precision, accuracy, stability, selectivity and matrix effect demonstrated that the method is a practicable alternative for EG quantification in human serum. In comparison to other methods based on liquid chromatography, the strategy presented made for the first time the EG analysis without analyte derivatisation possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A novel screening method for 64 new psychoactive substances and 5 amphetamines in blood by LC-MS/MS and application to real cases.

    PubMed

    Vaiano, Fabio; Busardò, Francesco P; Palumbo, Diego; Kyriakou, Chrystalla; Fioravanti, Alessia; Catalani, Valeria; Mari, Francesco; Bertol, Elisabetta

    2016-09-10

    Identification and quantification of new psychoactive substances (NPS), both in biological and non-biological samples, represent a hard challenge for forensic toxicologists. NPS are increasingly emerging on illegal drug market. Many cases of co-consumption of NPS and other substances have also been reported. Hence, the development of analytical methods aiming at the detection of a broad-spectrum of compounds (NPS and "traditional" drugs) could be helpful. In this paper, a fully validated screening method in blood for the simultaneous detection of 69 substances, including 64 NPS (28 synthetic cannabinoids, 19 synthetic cathinones, 5 phenethylamines, 3 indanes, 2 piperazines, 2 tryptamines, 2 phencyclidine, methoxetamine, ketamine and its metabolite) and 5 amphetamines (amphetamine, methamphetamine, MDMA, MDA, 3,4-methylenedioxy-N-ethylamphetamine - MDEA-) by a dynamic multiple reaction monitoring analysis through liquid chromatography - tandem mass spectrometry (LC-MS/MS) is described. This method is very fast, easy to perform and cheap as it only requires the deproteinization of 200μL of blood sample with acetonitrile. The chromatographic separation is achieved with a C18 column. The analysis is very sensitive, with limits of quantification ranging from 0.1 to 0.5ng/mL. The method is linear from 1 to 100ng/mL and the coefficient of determination (R(2)) was always above 0.9900. Precision and accuracy were acceptable at any quality control level and recovery efficiency range was 72-110%. Matrix effects did not negatively affect the analytical sensitivity. This method was successfully applied to three real cases, allowing identification and quantification of: mephedrone and methamphetamine (post-mortem); ketamine, MDMA and MDA (post-mortem); AB-FUBINACA (ante-mortem). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. WE-DE-207B-04: Quantitative Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, H; Zhou, B; Beidokhti, D

    Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodinemore » signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.« less

  12. Development and validation of a high-performance liquid chromatography-tandem mass spectrometry assay quantifying vemurafenib in human plasma.

    PubMed

    Nijenhuis, C M; Rosing, H; Schellens, J H M; Beijnen, J H

    2014-01-01

    Vemurafenib is an inhibitor of mutated serine/threonine-protein kinase B-Raf (BRAF) and is registered as Zelboraf(®) for the treatment of adult patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. To support Therapeutic Drug Monitoring (TDM) and clinical trials, we developed and validated a method for the quantification of vemurafenib in human plasma. Additionally two LC-MS systems with different detectors were tested: the TSQ Quantum Ultra and the API3000. Human plasma samples were collected in the clinic and stored at nominally -20°C. Vemurafenib was isolated from plasma by liquid-liquid extraction, separated on a C18 column with gradient elution, and analysed with triple quadrupole mass spectrometry in positive-ion mode. A stable isotope was used as internal standard for the quantification. Ranging from 1 to 100μg/ml the assay was linear with correlation coefficients (r(2)) of 0.9985 or better. Inter-assay and intra-assay accuracies were within ±7.6% of the nominal concentration; inter-assay and intra-assay precision were within ≤9.3% of the nominal concentration. In addition all results were within the acceptance criteria of the US FDA and the latest EMA guidelines for method validation for both MS detectors. In conclusion, the presented analytical method for vemurafenib in human plasma was successfully validated and the performance of the two LC-MS systems for this assay was comparable. In addition the method was successfully applied to evaluate the pharmacokinetic quantification of vemurafenib in cancer patients treated with vemurafenib. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Development of a fully automated on-line solid phase extraction and high-performance liquid chromatography with diode array detection method for the pharmacokinetic evaluation of bavachinin: a study on absolute bioavailability and dose proportionality.

    PubMed

    Liu, Lei; Liu, Kang-Ning; Wen, Ya-Bin; Zhang, Han-Wen; Lu, Ya-Xin; Yin, Zheng

    2012-04-15

    A fully automated on-line solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with diode array detection (DAD) method was developed for determination of bavachinin in mouse plasma. Analytical process was performed on two reversed-phase columns (SPE cartridge and analytical column) connected via a Valco 6-port switching valve. Plasma samples (10 μL) were injected directly onto a C18 SPE cartridge (MF Ph-1 C18, 10 mm × 4 mm, 5 μm) and the biological matrix was washed out for 2 min with the loading solvent (5 mM NaH(2)PO(4) buffer, pH 3.5) at a flow rate of 1 mL/min. By rotation of the switching valve, bavachinin was eluted from the SPE cartridge in the back-flush mode and transferred to the analytical column (Venusil MP C18, 4.6 mm × 150 mm, 5 μm) by the chromatographic mobile phase consisted of acetonitrile-5mM NaH(2)PO(4) buffer 65/35 (v/v, pH 3.5) at a flow rate of 1 mL/min. The complete cycle of the on-line SPE purification and chromatographic separation of the analyte was 13 min with UV detection performed at 236 nm. Calibration curve with good linearity (r=0.9997) was obtained in the range of 20-4000 ng/mL in mouse plasma. The intra-day and inter-day precisions (RSD) of bavachinin were in the range of 0.20-2.32% and the accuracies were between 98.47% and 102.95%. The lower limit of quantification (LLOQ) of the assay was 20 ng/mL. In conclusion, the established automated on-line SPE-HPLC-DAD method demonstrated good performance in terms of linearity, specificity, detection and quantification limits, precision and accuracy, and was successfully utilized to quantify bavachinin in mouse plasma to support the pharmacokinetic (PK) studies. The PK properties of bavachinin were characterized as rapid oral absorption, high clearance, and poor absolute bioavailability. Copyright © 2012. Published by Elsevier B.V.

  14. Simultaneous Determination of Eight Bioactive Compounds in Dianthus superbus by High-performance Liquid Chromatography

    PubMed Central

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Background: Dianthus superbus, one of traditional herbal medicine, is widely used to treat urethritis, carbuncles and carcinoma. Objective: A simultaneous determination method was established for controlling the quality of D. superbus using the eight compounds, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1), diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), vanillic acid (3), 4-hydroxyphenyl acetic acid (4), 4-methoxyphenyl acetic acid (5), (E)-4-methoxycinnamic acid (6), 3-methoxy-4-hydroxyphenylethanol (7), and methyl hydroferulate (8) isolated from D. superbus. Materials and Methods: This analysis method was developed using high performance liquid chromatography coupled with diode array detector with a Shishedo C18 column at a column temperature of 3°C. The mobile phase was composed of 0.1% trifluoroacetic acid in water and acetonitrile. The flow rate was 1 ml/min and detection wavelength was set at 205 nm and 280 nm. Validation was performed in order to demonstrate selectivity, accuracy and precision of the method. Results: The calibration curves showed good linearity (R2 > 0.99). The limits of detection and limits of quantification were within the ranges 0.0159–0.6205 μg/ml and 0.3210–1.8802 μg/ml, respectively. Moreover, the relative standard deviations of intra- and inter-day precision were both <2.98%. The overall recoveries were in the range of 96.23–109.87%. Quantitative analysis of eight compounds in 12 D. superbus samples (D-1–D-12) from various regions were analyzed and compared by developed method. Conclusion: As a result, this established method was accurate and sensitive for the quality evaluation of eight compounds isolated from D. superbus and may provide a new basis for quality control of D. superbus. SUMMARY A simultaneous determination method of eight compounds in Dianthus superbus was established by high performance liquid chromatography-diode array detectorDeveloped analysis method is validated with linearity, precious and accuracyThe newly established method was successfully evaluated contents of eight compounds in 12 D. superbus samples (D.1.D.12) from various regions and compared. Abbreviations used: HPLC: High performance liquid chromatography, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation. PMID:27279718

  15. Simultaneous Determination of Eight Bioactive Compounds in Dianthus superbus by High-performance Liquid Chromatography.

    PubMed

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-05-01

    Dianthus superbus, one of traditional herbal medicine, is widely used to treat urethritis, carbuncles and carcinoma. A simultaneous determination method was established for controlling the quality of D. superbus using the eight compounds, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1), diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), vanillic acid (3), 4-hydroxyphenyl acetic acid (4), 4-methoxyphenyl acetic acid (5), (E)-4-methoxycinnamic acid (6), 3-methoxy-4-hydroxyphenylethanol (7), and methyl hydroferulate (8) isolated from D. superbus. This analysis method was developed using high performance liquid chromatography coupled with diode array detector with a Shishedo C18 column at a column temperature of 3°C. The mobile phase was composed of 0.1% trifluoroacetic acid in water and acetonitrile. The flow rate was 1 ml/min and detection wavelength was set at 205 nm and 280 nm. Validation was performed in order to demonstrate selectivity, accuracy and precision of the method. The calibration curves showed good linearity (R (2) > 0.99). The limits of detection and limits of quantification were within the ranges 0.0159-0.6205 μg/ml and 0.3210-1.8802 μg/ml, respectively. Moreover, the relative standard deviations of intra- and inter-day precision were both <2.98%. The overall recoveries were in the range of 96.23-109.87%. Quantitative analysis of eight compounds in 12 D. superbus samples (D-1-D-12) from various regions were analyzed and compared by developed method. As a result, this established method was accurate and sensitive for the quality evaluation of eight compounds isolated from D. superbus and may provide a new basis for quality control of D. superbus. A simultaneous determination method of eight compounds in Dianthus superbus was established by high performance liquid chromatography-diode array detectorDeveloped analysis method is validated with linearity, precious and accuracyThe newly established method was successfully evaluated contents of eight compounds in 12 D. superbus samples (D.1.D.12) from various regions and compared. Abbreviations used: HPLC: High performance liquid chromatography, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation.

  16. Rapid determination of benzodiazepines, zolpidem and their metabolites in urine using direct injection liquid chromatography-tandem mass spectrometry.

    PubMed

    Jeong, Yu-Dong; Kim, Min Kyung; Suh, Sung Ill; In, Moon Kyo; Kim, Jin Young; Paeng, Ki-Jung

    2015-12-01

    Benzodiazepines and zolpidem are generally prescribed as sedative, hypnotics, anxiolytics or anticonvulsants. These drugs, however, are frequently misused in drug-facilitated crime. Therefore, a rapid and simple liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for identification and quantification of benzodiazepines, zolpidem and their metabolites in urine using deuterium labeled internal standards (IS). Urine samples (120 μL) mixed with 80 μL of the IS solution were centrifuged. An aliquot (5 μL) of the sample solution was directly injected into the LC-MS/MS system for analysis. The mobile phases consisted of water and acetonitrile containing 2mM ammonium trifluoroacetate and 0.2% acetic acid. The analytical column was a Zorbax SB-C18 (100 mm × 2.1 mm i.d., 3.5 μm, Agilent). The separation and detection of 18 analytes were achieved within 10 min. Calibration curves were linear over the concentration ranges of 0.5-20 ng/mL (zolpidem), 1.0-40 ng/mL (flurazepam and temazepam), 2.5-100 ng/mL (7-aminoclonazepam, 1-hydroxymidazolam, midazolam, flunitrazepam and alprazolam), 5.0-200 ng/mL (zolpidem phenyl-4-carboxylic acid, α-hydroxyalprazolam, oxazepam, nordiazepam, triazolam, diazepam and α-hydroxytriazolam), 10-400 ng/mL (lorazepam and desalkylflurazepam) and 10-100 ng/mL (N-desmethylflunitrazepam) with the coefficients of determination (r(2)) above 0.9971. The dilution integrity of the analytes was examined for supplementation of short linear range. Dilution precision and accuracy were tested using two, four and ten-folds dilutions and they ranged from 3.7 to 14.4% and -12.8 to 12.5%, respectively. The process efficiency for this method was 63.0-104.6%. Intra- and inter-day precisions were less than 11.8% and 9.1%, while intra- and inter-day accuracies were less than -10.0 to 8.2%, respectively. The lower limits of quantification were lower than 10 ng/mL for each analyte. The applicability of the developed method was successfully verified with human urine samples from drug users (n=21). Direct urine sample injection and optimized mobile phases were introduced for simple sample preparation and high-sensitivity with the desired separation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Imaging evaluation of non-alcoholic fatty liver disease: focused on quantification.

    PubMed

    Lee, Dong Ho

    2017-12-01

    Non-alcoholic fatty liver disease (NAFLD) has been an emerging major health problem, and the most common cause of chronic liver disease in Western countries. Traditionally, liver biopsy has been gold standard method for quantification of hepatic steatosis. However, its invasive nature with potential complication as well as measurement variability are major problem. Thus, various imaging studies have been used for evaluation of hepatic steatosis. Ultrasonography provides fairly good accuracy to detect moderate-to-severe degree hepatic steatosis, but limited accuracy for mild steatosis. Operator-dependency and subjective/qualitative nature of examination are another major drawbacks of ultrasonography. Computed tomography can be considered as an unsuitable imaging modality for evaluation of NAFLD due to potential risk of radiation exposure and limited accuracy in detecting mild steatosis. Both magnetic resonance spectroscopy and magnetic resonance imaging using chemical shift technique provide highly accurate and reproducible diagnostic performance for evaluating NAFLD, and therefore, have been used in many clinical trials as a non-invasive reference of standard method.

  18. Imaging evaluation of non-alcoholic fatty liver disease: focused on quantification

    PubMed Central

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) has been an emerging major health problem, and the most common cause of chronic liver disease in Western countries. Traditionally, liver biopsy has been gold standard method for quantification of hepatic steatosis. However, its invasive nature with potential complication as well as measurement variability are major problem. Thus, various imaging studies have been used for evaluation of hepatic steatosis. Ultrasonography provides fairly good accuracy to detect moderate-to-severe degree hepatic steatosis, but limited accuracy for mild steatosis. Operator-dependency and subjective/qualitative nature of examination are another major drawbacks of ultrasonography. Computed tomography can be considered as an unsuitable imaging modality for evaluation of NAFLD due to potential risk of radiation exposure and limited accuracy in detecting mild steatosis. Both magnetic resonance spectroscopy and magnetic resonance imaging using chemical shift technique provide highly accurate and reproducible diagnostic performance for evaluating NAFLD, and therefore, have been used in many clinical trials as a non-invasive reference of standard method. PMID:28994271

  19. [Detection of recombinant-DNA in foods from stacked genetically modified plants].

    PubMed

    Sorokina, E Iu; Chernyshova, O N

    2012-01-01

    A quantitative real-time multiplex polymerase chain reaction method was applied to the detection and quantification of MON863 and MON810 in stacked genetically modified maize MON 810xMON 863. The limit of detection was approximately 0,1%. The accuracy of the quantification, measured as bias from the accepted value and the relative repeatability standard deviation, which measures the intra-laboratory variability, were within 25% at each GM-level. A method verification has demonstrated that the MON 863 and the MON810 methods can be equally applied in quantification of the respective events in stacked MON810xMON 863.

  20. Determination of Oversulphated Chondroitin Sulphate and Dermatan Sulphate in unfractionated heparin by (1)H-NMR - Collaborative study for quantification and analytical determination of LoD.

    PubMed

    McEwen, I; Mulloy, B; Hellwig, E; Kozerski, L; Beyer, T; Holzgrabe, U; Wanko, R; Spieser, J-M; Rodomonte, A

    2008-12-01

    Oversulphated Chondroitin Sulphate (OSCS) and Dermatan Sulphate (DS) in unfractionated heparins can be identified by nuclear magnetic resonance spectrometry (NMR). The limit of detection (LoD) of OSCS is 0.1% relative to the heparin content. This LoD is obtained at a signal-to-noise ratio (S/N) of 2000:1 of the heparin methyl signal. Quantification is best obtained by comparing peak heights of the OSCS and heparin methyl signals. Reproducibility of less than 10% relative standard deviation (RSD) has been obtained. The accuracy of quantification was good.

  1. Practical quantification of necrosis in histological whole-slide images.

    PubMed

    Homeyer, André; Schenk, Andrea; Arlt, Janine; Dahmen, Uta; Dirsch, Olaf; Hahn, Horst K

    2013-06-01

    Since the histological quantification of necrosis is a common task in medical research and practice, we evaluate different image analysis methods for quantifying necrosis in whole-slide images. In a practical usage scenario, we assess the impact of different classification algorithms and feature sets on both accuracy and computation time. We show how a well-chosen combination of multiresolution features and an efficient postprocessing step enables the accurate quantification necrosis in gigapixel images in less than a minute. The results are general enough to be applied to other areas of histological image analysis as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Simultaneous quantification of five steroid saponins from Dioscorea zingiberensis C.H.Wright in rat plasma by HPLC-MS/MS and its application to the pharmacokinetic studies

    PubMed Central

    Zhang, Xinxin; Li, Jing; Ito, Yoichiro; Sun, Wenji

    2014-01-01

    A simple, reliable and sensitive high-performance liquid chromatography tandem mass spectrometry method (HPLC-MS/MS) was established for simultaneous analyses of the following 5 steroid saponins in rat plasma after the single dose administration of total steroid saponins extracted from the rhizome of Dioscorea zingiberensis C.H.Wright for the first time. Protodioscin, huangjiangsu A, zingiberensis new saponin, dioscin, and gracillin were quantified using ginsenoside Rb1 as the internal standard (IS). The plasma samples were pretreated by a single step acetonitrile-mediated protein precipitation. The chromatographic separation was performed on an Inersil ODS-3 C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase composed of acetonitrile and water containing 0.1% formic acid under a gradient elution mode at 0.2 mL min−1 using a microsplit after the eluent from the HPLC apparatus. The quantification was accomplished on a triple quadrupole tandem mass spectrometer using the multiple reaction monitoring (MRM) in the positive ionization mode. The above five analytes were stable under sample storage and preparation conditions applied in the present study. The linearity, precision, accuracy, and recoveries of the analysis confirmed the requirements for quality-control purposes. After validation, this proposed method was successfully adopted to investigate the pharmacokinetic parameters of these five analytes. PMID:25201262

  3. A validated method for the quantification of fosfomycin on dried plasma spots by HPLC-MS/MS: application to a pilot pharmacokinetic study in humans.

    PubMed

    Parker, Suzanne L; Lipman, Jeffrey; Dimopoulos, George; Roberts, Jason A; Wallis, Steven C

    2015-11-10

    Quantification of fosfomycin in the plasma samples of patients is the basis of clinical pharmacokinetic studies from which evidence based dosing regimens can be devised to maximise antibiotic effectiveness against a pathogen. We have developed and validated a LC-MS/MS method to quantify fosfomycin using dried plasma spot sampling. Following HILIC chromatography, fosfomycin and ethylphosphonic acid, used as internal standard, were measured using negative-ion multiple reaction monitoring. The method was linear over the calibration range of 5-2000mg/L of fosfomycin. Intra-day assay results for dried plasma spot quality control samples at 15.6, 79.9 and 1581mg/L of fosfomycin had precision of ±4.2, 8.2, and 2.0%, respectively, and accuracy of +3.9, -0.1, and -1.2%, respectively. Recovery of fosfomycin from dried plasma spots was calculated as 83.6% and the dried plasma spot samples were found to be stable stored at room temperature for three months and when stored for four hours at 50°C. A Bland-Altman plot comparing DPS to plasma sampling found a negative bias of 16.6%, with all but one sample within the mean limits of agreement (-2.6 to 30.6%). Dried plasma spot sampling provides a useful tool for pharmacokinetic research of fosfomycin. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Multianalyte, high-throughput liquid chromatography tandem mass spectrometry method for the sensitive determination of fungicides and insecticides in wine.

    PubMed

    Castro, Gabriela; Pérez-Mayán, Leticia; Rodríguez-Cabo, Tamara; Rodríguez, Isaac; Ramil, Maria; Cela, Rafael

    2018-01-01

    Evidence of pesticide transfer from grapes to wine, added to differences in the national regulations regarding the number and the maximum concentration of these species in wine, demands analytical procedures suitable for their routine control in this foodstuff. In this research, solid-phase extraction (SPE) and ultra-performance liquid chromatography (UPLC), with tandem mass spectrometry (MS/MS) detection, are combined to obtain a sensitive and rapid procedure to determine 50 pesticides in red and white wines. Efficiency and selectivity of sample preparation are correlated with the type of sorbent, the elution solvent, and the physicochemical properties of pesticides. SPE of 2-mL wine samples followed by direct injection of the extract in the UPLC-MS/MS system provides quantification limits (LOQs) below 1 ng mL -1 for 48 out of 50 compounds, linear responses up to 200 ng mL -1 , and acceptable accuracy, employing quantification against solvent-based standards, for 45 species. A total analysis time of 10 min, including compounds separation and re-equilibration of the UPLC column, was achieved. The developed methodology was applied to 25 wines (20 conventional and 5 ecological), produced in 7 different countries. Out of 27 pesticides quantified in these wines, 12 displayed occurrence frequencies above 24%; moreover, all wines, except one of the ecological ones, contained residues from at least one pesticide.

  5. A simple and robust high-performance liquid chromatography coupled to a diode-array detector method for the analysis of genistein in mouse tissues.

    PubMed

    Tamames-Tabar, C; Imbuluzqueta, E; Campanero, M A; Horcajada, P; Blanco-Prieto, M J

    2013-09-15

    A simple liquid-liquid extraction procedure and quantification by high-performance liquid chromatography (HPLC) method coupled to a diode-array detector (DAD) of genistein (GEN) was developed in various mouse biological matrices. 7-ethoxycoumarin was used as internal standard (IS) and peaks were optimally separated using a Kinetex C18 column (2.6μm, 150mm×2.10mm I.D.) at 40°C with an isocratic elution of mobile phase with sodium dihydrogen phosphate 0.01M in water at pH 2.5 and methanol (55:45, v/v), at a flow rate of 0.25mL/min. The injection volume was 10μL. In all cases, the range of GEN recovery was higher than 61%. The low limit of quantification (LLOQ) was 25ng/mL. The linearity of the calibration curves was satisfactory in all cases as shown by correlation coefficients >0.996. The within-day and between-day precisions were <15% and the accuracy ranged in all cases between 90.14% and 106.05%. This method was successfully applied to quantify GEN in liver, spleen, kidney and plasma after intravenous administration of a single dose (30mg/kg) in female BALB/C mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Simultaneous quantitative analysis of dextromethorphan, dextrorphan and chlorphenamine in human plasma by liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Ding, Ying; Huang, Kai; Chen, Lan; Yang, Jie; Xu, Wen-Yan; Xu, Xue-Jiao; Duan, Ru; Zhang, Jing; He, Qing

    2014-03-01

    A sensitive and accurate HPLC-MS/MS method was developed for the simultaneous determination of dextromethorphan, dextrorphan and chlorphenamine in human plasma. Three analytes were extracted from plasma by liquid-liquid extraction using ethyl acetate and separated on a Kromasil 60-5CN column (3 µm, 2.1 × 150 mm) with mobile phase of acetonitrile-water (containing 0.1% formic acid; 50:50, v/v) at a flow rate of 0.2 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The calibration curve was linear over the range of 0.01-5 ng/mL for dextromethorphan, 0.02-5 ng/mL for dextrorphan and 0.025-20 ng/mL for chlorphenamine. The lower limits of quantification for dextromethorphan, dextrorphan and chlorphenamine were 0.01, 0.02 and 0.025 ng/mL, respectively. The intra- and inter-day precisions were within 11% and accuracies were in the range of 92.9-102.5%. All analytes were proved to be stable during sample storage, preparation and analytic procedures. This method was first applied to the pharmacokinetic study in healthy Chinese volunteers after a single oral dose of the formulation containing dextromethorphan hydrobromide (18 mg) and chlorpheniramine malaeate (8 mg). Copyright © 2013 John Wiley & Sons, Ltd.

  7. A sensitive liquid chromatography-electrospray ionization-mass spectrometry method for the simultaneous determination of pentoxyverine citrate and guaifenesin in human plasma---application to pharmacokinetic and bioequivalence studies.

    PubMed

    Wen, Jinhua; Zhang, Hong; Xia, Chunhua; Hu, Xiao; Xu, Wenwei; Cheng, Xiaohua; Gao, Jun; Xiong, Yuqing

    2010-04-01

    A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry method for the identification and quantification of pentoxyverine citrate and guaifenesin in human plasma has been developed. After extraction from plasma samples by ethyl acetate, the internal standard and analytes were separated by high-performance liquid chromatographic on a Shim-pack VP-ODS C(18) column (150 x 2.0 mm) using a mobile phase consisting of A (methanol) and B (0.4% glacial acetic acid and 4 mmol/L ammonium acetate) (A:B, 43 : 57). Analysis was performed on a Shimadzu LC/MS-2010A in selected ion monitoring mode with a positive electrospray ionization interface. The method was linear in the concentration range of 1.0-640.0 ng/mL for pentoxyverine citrate and 0.025-6.4 microg/mL for guaifenesin. The inter- and intra- precision were all within 12% and accuracy ranged from 85 to 115%.The lower limits of quantification were 1.0 ng/mL for pentoxyverine citrate and 25.0 ng/mL for guaifenesin. The extraction recovery was on average 81.95% for pentoxyverine citrate and 89.03% for guaifenesin. This is the first assay method reported for the simultaneous determination of pentoxyverine citrate and guaifenesin in plasma using one chromatographic run. Copyright (c) 2009 John Wiley & Sons, Ltd.

  8. Quantification and characterization of alkaloids from roots of Rauwolfia serpentina using ultra-high performance liquid chromatography-photo diode array-mass spectrometry.

    PubMed

    Sagi, Satyanarayanaraju; Avula, Bharathi; Wang, Yan-Hong; Khan, Ikhlas A

    2016-01-01

    A new UHPLC-UV method has been developed for the simultaneous analysis of seven alkaloids [ajmaline (1), yohimbine (2), corynanthine (3), ajmalicine (4), serpentine (5), serpentinine (6), and reserpine (7)] from the root samples of Rauwolfia serpentina (L.) Benth. ex Kurz. The chromatographic separation was achieved using a reversed phase C18 column with a mobile phase of water and acetonitrile, both containing 0.05% formic acid. The seven compounds were completely separated within 8 min at a flow rate of 0.2 mL/min with a 2-μL injection volume. The method is validated for linearity, accuracy, repeatability, limits of detection (LOD), and limits of quantification (LOQ). Seven plant samples and 21 dietary supplements claiming to contain Rauwolfia roots were analyzed and content of total alkaloids (1-7) varied, namely, 1.57-12.1 mg/g dry plant material and 0.0-4.5 mg/day, respectively. The results indicated that commercial products are of variable quality. The developed analytical method is simple, economic, fast, and suitable for quality control analysis of Rauwolfia samples and commercial products. The UHPLC-QToF-mass spectrometry with electrospray ionization (ESI) interface method is described for the confirmation and characterization of alkaloids from plant samples. This method involved the detection of [M + H](+) or M(+) ions in the positive mode.

  9. Interferon-alpha 2b quantification in inclusion bodies using reversed phase-ultra performance liquid chromatography (RP-UPLC).

    PubMed

    Cueto-Rojas, H F; Pérez, N O; Pérez-Sánchez, G; Ocampo-Juárez, I; Medina-Rivero, E

    2010-04-15

    Interferon-alpha 2b (IFN-alpha 2b) is a recombinant therapeutic cytokine produced as inclusion bodies using a strain of Escherichia coli as expression system. After fermentation and recovery, it is necessary to know the amount of recombinant IFN-alpha 2b, in order to determine the yield and the load for solubilization, and chromatographic protein purification steps. The present work details the validation of a new short run-time and fast sample-preparation method to quantify IFN-alpha 2b in inclusion bodies using Reversed Phase-Ultra Performance Liquid Chromatography (RP-UPLC). The developed method demonstrated an accuracy of 100.28%; the relative standard deviations for method precision, repeatability and inter-day precision tests were found to be 0.57%, 1.54% and 1.83%, respectively. Linearity of the method was assessed in the range of concentrations from 0.05 mg/mL to 0.5 mg/mL, the curve obtained had a determination coefficient (r(2)) of 0.9989. Detection and quantification limits were found to be 0.008 mg/mL and 0.025 mg/mL, respectively. The method also demonstrated robustness for changes in column temperature, and specificity against host proteins and other recombinant protein expressed in the same E. coli strain. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Development and validation of stability indicating method for the quantitative determination of venlafaxine hydrochloride in extended release formulation using high performance liquid chromatography

    PubMed Central

    Kaur, Jaspreet; Srinivasan, K. K.; Joseph, Alex; Gupta, Abhishek; Singh, Yogendra; Srinivas, Kona S.; Jain, Garima

    2010-01-01

    Objective: Venlafaxine,hydrochloride is a structurally novel phenethyl bicyclic antidepressant, and is usually categorized as a serotonin–norepinephrine reuptake inhibitor (SNRI) but it has been referred to as a serotonin–norepinephrine–dopamine reuptake inhibitor. It inhibits the reuptake of dopamine. Venlafaxine HCL is widely prescribed in the form of sustained release formulations. In the current article we are reporting the development and validation of a fast and simple stability indicating, isocratic high performance liquid chromatographic (HPLC) method for the determination of venlafaxine hydrochloride in sustained release formulations. Materials and Methods: The quantitative determination of venlafaxine hydrochloride was performed on a Kromasil C18 analytical column (250 × 4.6 mm i.d., 5 μm particle size) with 0.01 M phosphate buffer (pH 4.5): methanol (40: 60) as a mobile phase, at a flow rate of 1.0 ml/min. For HPLC methods, UV detection was made at 225 nm. Results: During method validation, parameters such as precision, linearity, accuracy, stability, limit of quantification and detection and specificity were evaluated, which remained within acceptable limits. Conclusions: The method has been successfully applied for the quantification and dissolution profiling of Venlafaxine HCL in sustained release formulation. The method presents a simple and reliable solution for the routine quantitative analysis of Venlafaxine HCL. PMID:21814426

  11. Liquid chromatography-tandem mass spectrometry for the quantification of moxifloxacin, ciprofloxacin, daptomycin, caspofungin, and isavuconazole in human plasma.

    PubMed

    Hösl, Julian; Gessner, André; El-Najjar, Nahed

    2018-05-12

    A simple and precise ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous analysis of five anti-infective agents used to treat severe infections [three antibiotics (daptomycin, moxifloxacin, ciprofloxacin) and two antifungals (isavuconazole, caspofungin)] in human plasma. Sample preparation was based on protein precipitation with ice cold methanol. All five agents were analyzed with the corresponding isotopically labeled internal standards. All analytes were detected in multiple reactions monitoring (MRM) using API 4000 triple-quadrupole mass spectrometer with electrospray (ESI) source operating in positive mode. The calibration curves were linear over the selected ranges (r > 0.99). The method is precise and accurate with a total run time of 5.5 min. Accuracy of all target analytes ranged between 95.9-116.6%, measured with an imprecision of less than 10.8%. The lower limit of quantification was 1.25 mg/L for caspofungin, 0.3125 mg/L for isavuconazole, 3.125 mg/L for daptomycin, 0.075 mg/L for ciprofloxacin, and 0.1875 mg/L for moxifloxacin. The successful application of the method in patient samples proved its suitability for the medical surveillance of antimicrobial therapy in intensive care units as well as to other pharmacokinetic studies. Copyright © 2018. Published by Elsevier B.V.

  12. Quantitative Determination of L-DOPA in Seeds of Mucuna Pruriens Germplasm by High Performance Thin Layer Chromatography

    PubMed Central

    Raina, Archana P.; Khatri, Renu

    2011-01-01

    Mucuna pruriens Linn. is an important medicinal plant used for treatment of Parkinson's disease and many others in ancient Indian medical system. L-DOPA extracted from seeds of Mucuna is a constituent of more than 200 indigenous drug formulations and is more effective as drug than the synthetic counterpart. A densitometric high performance thin-layer chromatographic (HPTLC) method was developed for quantification of L-DOPA content present in the seeds extract. The method involves separation of L-DOPA on precoated silica gel 60 GF254 HPTLC plates using a solvent system of n-butanol-acetic-acid-water (4:1:1, v/v) as the mobile phase. Quantification was done at 280 nm using absorbance reflectance mode. Linearity was found in the concentration range of 100 to 1000 ng/spot with the correlation coefficient value of 0.9980. The method was validated for accuracy, precision and repeatability. Mean recovery was 100.89%. The LOD and LOQ for L-DOPA determination were found to be 3.41 ng/spot and 10.35 ng/spot respectively. The proposed HPTLC method was found to be precise, specific and accurate for quantitative determination of L-DOPA. It can be used for rapid screening of large germplasm collections of Mucuna pruriens for L-DOPA content. The method was used to study variation in fifteen accessions of Mucuna germplasm collected from different geographical regions. PMID:22707835

  13. Quantitative Determination of L-DOPA in Seeds of Mucuna Pruriens Germplasm by High Performance Thin Layer Chromatography.

    PubMed

    Raina, Archana P; Khatri, Renu

    2011-07-01

    Mucuna pruriens Linn. is an important medicinal plant used for treatment of Parkinson's disease and many others in ancient Indian medical system. L-DOPA extracted from seeds of Mucuna is a constituent of more than 200 indigenous drug formulations and is more effective as drug than the synthetic counterpart. A densitometric high performance thin-layer chromatographic (HPTLC) method was developed for quantification of L-DOPA content present in the seeds extract. The method involves separation of L-DOPA on precoated silica gel 60 GF(254) HPTLC plates using a solvent system of n-butanol-acetic-acid-water (4:1:1, v/v) as the mobile phase. Quantification was done at 280 nm using absorbance reflectance mode. Linearity was found in the concentration range of 100 to 1000 ng/spot with the correlation coefficient value of 0.9980. The method was validated for accuracy, precision and repeatability. Mean recovery was 100.89%. The LOD and LOQ for L-DOPA determination were found to be 3.41 ng/spot and 10.35 ng/spot respectively. The proposed HPTLC method was found to be precise, specific and accurate for quantitative determination of L-DOPA. It can be used for rapid screening of large germplasm collections of Mucuna pruriens for L-DOPA content. The method was used to study variation in fifteen accessions of Mucuna germplasm collected from different geographical regions.

  14. Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector.

    PubMed

    Ferreira, I M P L V O; Silva, S

    2008-02-15

    Nitrite and nitrate are used as additives in ham industry to provide colour, taste and protect against clostridia. The classical colorimetric methods widely used to determine nitrite and nitrate are laborious, suffer from matrix interferences and involve the use of toxic cadmium. The use of chromatography is potentially attractive since it is more rapid, sensitive, selective and provides reliable and accurate results. A rapid and cost-effective RP-HPLC method with diode array detector was optimized and validated for quantification of nitrites and nitrates in ham. The chromatographic separation was achieved using a HyPurity C18, 5 microm chromatographic column and gradient elution with 0.01 M n-octylamine and 5mM tetrabutylammonium hydrogenosulphate to pH 6.5. The determinations were performed in the linear range of 0.0125-10.0mg/L for nitrite and 0.0300-12.5 g/L for nitrate. The detection limits were 0.019 and 0.050 mg/kg, respectively. The reliability of the method in terms of precision and accuracy was evaluated. Coefficients of variation lower than 2.89% and 5.47% were obtained for nitrite and nitrate, respectively (n=6). Recoveries of residual nitrite/nitrate ranged between 93.6% and 104.3%. Analysis of cooked and dried ham samples was performed, and the results obtained were in agreement with reference procedures.

  15. Validation of a Reversed-Phase High Performance Liquid Chromatography Method for the Simultaneous Analysis of Cysteine and Reduced Glutathione in Mouse Organs

    PubMed Central

    Brundu, Serena; Nencioni, Lucia; Celestino, Ignacio; Coluccio, Paolo; Palamara, Anna Teresa; Fraternale, Alessandra

    2016-01-01

    A depletion of reduced glutathione (GSH) has been observed in pathological conditions and in aging. Measuring GSH in tissues using mouse models is an excellent way to assess GSH depletion and the potential therapeutic efficacy of drugs used to maintain and/or restore cellular redox potential. A high performance liquid chromatography (HPLC) method for the simultaneous determination of GSH and cysteine (Cys) in mouse organs was validated according to USA and European standards. The method was based on separation coupled with ultraviolet detection and precolumn derivatization with 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB). The required validation parameters, that are, selectivity, linearity, lower limit of quantification, precision, accuracy, recovery, and stability, were studied for spleen, lymph nodes, pancreas, and brain. The results showed that the lower limits of quantification were 0.313 μM and 1.25 μM for Cys and GSH, respectively. Intraday and interday precisions were less than 11% and 14%, respectively, for both compounds. The mean extraction recoveries of Cys and GSH from all organs were more than 93% and 86%, respectively. Moreover, the stability of both analytes during sample preparation and storage was demonstrated. The method was accurate, reliable, consistent, and reproducible and it was useful to determine Cys and GSH in the organs of different mouse strains. PMID:26885246

  16. Ultrasensitive liquid chromatography-tandem mass spectrometric methodologies for quantification of five HIV-1 integrase inhibitors in plasma for a microdose clinical trial.

    PubMed

    Sun, Li; Li, Hankun; Willson, Kenneth; Breidinger, Sheila; Rizk, Matthew L; Wenning, Larissa; Woolf, Eric J

    2012-10-16

    HIV-1 integrase strand transfer inhibitors are an important class of compounds targeted for the treatment of HIV-1 infection. Microdosing has emerged as an attractive tool to assist in drug candidate screening for clinical development, but necessitates extremely sensitive bioanalytical assays, typically in the pg/mL concentration range. Currently, accelerator mass spectrometry is the predominant tool for microdosing support, which requires a specialized facility and synthesis of radiolabeled compounds. There have been few studies attempted to comprehensively assess a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach in the context of microdosing applications. Herein, we describe the development of automated LC-MS/MS methods to quantify five integrase inhibitors in plasma with the limits of quantification at 1 pg/mL for raltegravir and 2 pg/mL for four proprietary compounds. The assays involved double extractions followed by UPLC coupled with negative ion electrospray MS/MS analysis. All methods were fully validated to the rigor of regulated bioanalysis requirements, with intraday precision between 1.20 and 14.1% and accuracy between 93.8 and 107% at the standard curve concentration range. These methods were successfully applied to a human microdose study and demonstrated to be accurate, reproducible, and cost-effective. Results of the study indicate that raltegravir displayed linear pharmacokinetics between a microdose and a pharmacologically active dose.

  17. Simultaneous accelerated solvent extraction and hydrolysis of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid glucuronide in meconium samples for gas chromatography-mass spectrometry analysis.

    PubMed

    Mantovani, Cinthia de Carvalho; Silva, Jefferson Pereira E; Forster, Guilherme; Almeida, Rafael Menck de; Diniz, Edna Maria de Albuquerque; Yonamine, Mauricio

    2018-02-01

    Cannabis misuse during pregnancy is associated with severe impacts on the mother and baby health, such as newborn low birth weight, growth restriction, pre-term birth, neurobehavioral and developmental deficits. In most of the cases, drug abuse is omitted or denied by the mothers. Thus, toxicological analyzes using maternal-fetal matrices takes place as a suitable tool to assess drug use. Herein, meconium was the chosen matrix to evaluate cannabis exposure through identification and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic (THCCOOH). Accelerated solvent extraction (ASE) was applied for sample preparation technique to simultaneously extract and hydrolyze conjugated THCCOOH from meconium, followed by a solid-phase extraction (SPE) procedure. The method was developed and validated for gas chromatography-mass spectrometry (GC-MS), reaching hydrolysis efficiency of 98%. Limits of detection (LOD) and quantification (LOQ) were, respectively, 5 and 10 ng/g. The range of linearity was LOQ to 500 ng/g. Inter and intra-batch coefficients of variation were <8.4% for all concentration levels. Accuracy was in 101.7-108.9% range. Recovery was on average 60.3%. Carryover effect was not observed. The procedure was applied in six meconium samples from babies whose mothers were drug users and showed satisfactory performance to confirm fetal cannabis exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Quantifying glenoid bone loss in anterior shoulder instability: reliability and accuracy of 2-dimensional and 3-dimensional computed tomography measurement techniques.

    PubMed

    Bois, Aaron J; Fening, Stephen D; Polster, Josh; Jones, Morgan H; Miniaci, Anthony

    2012-11-01

    Glenoid support is critical for stability of the glenohumeral joint. An accepted noninvasive method of quantifying glenoid bone loss does not exist. To perform independent evaluations of the reliability and accuracy of standard 2-dimensional (2-D) and 3-dimensional (3-D) computed tomography (CT) measurements of glenoid bone deficiency. Descriptive laboratory study. Two sawbone models were used; one served as a model for 2 anterior glenoid defects and the other for 2 anteroinferior defects. For each scapular model, predefect and defect data were collected for a total of 6 data sets. Each sample underwent 3-D laser scanning followed by CT scanning. Six physicians measured linear indicators of bone loss (defect length and width-to-length ratio) on both 2-D and 3-D CT and quantified bone loss using the glenoid index method on 2-D CT and using the glenoid index, ratio, and Pico methods on 3-D CT. The intraclass correlation coefficient (ICC) was used to assess agreement, and percentage error was used to compare radiographic and true measurements. With use of 2-D CT, the glenoid index and defect length measurements had the least percentage error (-4.13% and 7.68%, respectively); agreement was very good (ICC, .81) for defect length only. With use of 3-D CT, defect length (0.29%) and the Pico(1) method (4.93%) had the least percentage error. Agreement was very good for all linear indicators of bone loss (range, .85-.90) and for the ratio linear and Pico surface area methods used to quantify bone loss (range, .84-.98). Overall, 3-D CT results demonstrated better agreement and accuracy compared to 2-D CT. None of the methods assessed in this study using 2-D CT was found to be valid, and therefore, 2-D CT is not recommended for these methods. However, the length of glenoid defects can be reliably and accurately measured on 3-D CT. The Pico and ratio techniques are most reliable; however, the Pico(1) method accurately quantifies glenoid bone loss in both the anterior and anteroinferior locations. Future work is required to implement valid imaging techniques of glenoid bone loss into clinical practice. This is one of the only studies to date that has investigated both the reliability and accuracy of multiple indicators and quantification methods that evaluate glenoid bone loss in anterior glenohumeral instability. These data are critical to ensure valid methods are used for preoperative assessment and to determine when a glenoid bone augmentation procedure is indicated.

  19. Electrophoresis Gel Quantification with a Flatbed Scanner and Versatile Lighting from a Screen Scavenged from a Liquid Crystal Display (LCD) Monitor

    ERIC Educational Resources Information Center

    Yeung, Brendan; Ng, Tuck Wah; Tan, Han Yen; Liew, Oi Wah

    2012-01-01

    The use of different types of stains in the quantification of proteins separated on gels using electrophoresis offers the capability of deriving good outcomes in terms of linear dynamic range, sensitivity, and compatibility with specific proteins. An inexpensive, simple, and versatile lighting system based on liquid crystal display backlighting is…

  20. In-line UV spectroscopy for the quantification of low-dose active ingredients during the manufacturing of pharmaceutical semi-solid and liquid formulations.

    PubMed

    Bostijn, N; Hellings, M; Van Der Veen, M; Vervaet, C; De Beer, T

    2018-07-12

    UltraViolet (UV) spectroscopy was evaluated as an innovative Process Analytical Technology (PAT) - tool for the in-line and real-time quantitative determination of low-dosed active pharmaceutical ingredients (APIs) in a semi-solid (gel) and a liquid (suspension) pharmaceutical formulation during their batch production process. The performance of this new PAT-tool (i.e., UV spectroscopy) was compared with an already more established PAT-method based on Raman spectroscopy. In-line UV measurements were carried out with an immersion probe while for the Raman measurements a non-contact PhAT probe was used. For both studied formulations, an in-line API quantification model was developed and validated per spectroscopic technique. The known API concentrations (Y) were correlated with the corresponding in-line collected preprocessed spectra (X) through a Partial Least Squares (PLS) regression. Each developed quantification method was validated by calculating the accuracy profile on the basis of the validation experiments. Furthermore, the measurement uncertainty was determined based on the data generated for the determination of the accuracy profiles. From the accuracy profile of the UV- and Raman-based quantification method for the gel, it was concluded that at the target API concentration of 2% (w/w), 95 out of 100 future routine measurements given by the Raman method will not deviate more than 10% (relative error) from the true API concentration, whereas for the UV method the acceptance limits of 10% were exceeded. For the liquid formulation, the Raman method was not able to quantify the API in the low-dosed suspension (0.09% (w/w) API). In contrast, the in-line UV method was able to adequately quantify the API in the suspension. This study demonstrated that UV spectroscopy can be adopted as a novel in-line PAT-technique for low-dose quantification purposes in pharmaceutical processes. Important is that none of the two spectroscopic techniques was superior to the other for both formulations: the Raman method was more accurate in quantifying the API in the gel (2% (w/w) API), while the UV method performed better for API quantification in the suspension (0.09% (w/w) API). Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Improving the Efficiency of Abdominal Aortic Aneurysm Wall Stress Computations

    PubMed Central

    Zelaya, Jaime E.; Goenezen, Sevan; Dargon, Phong T.; Azarbal, Amir-Farzin; Rugonyi, Sandra

    2014-01-01

    An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance, from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses. PMID:25007052

  2. Quantitative contrast-enhanced spectral mammography based on photon-counting detectors: A feasibility study.

    PubMed

    Ding, Huanjun; Molloi, Sabee

    2017-08-01

    To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. A computer simulation model was developed to evaluate the performance of a photon-counting spectral mammography system in the application of contrast-enhanced spectral mammography. A figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and prefiltrations for breasts of various thicknesses and densities. Experimental phantom studies were also performed using a beam energy of 40 kVp and a splitting energy of 34 keV with 3 mm Al prefiltration. A two-step calibration method was investigated to quantify the iodine mass thickness, and was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy log-weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known value to characterize the quantification accuracy and precision. The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy between 42 and 46 kVp with a splitting energy at 34 keV. The optimal tube voltage decreased as the breast thickness or the Al prefiltration increased. The proposed quantification method was able to measure iodine mass thickness on phantoms of various thicknesses and densities with high accuracy. The root-mean-square (RMS) error for cm-scale lesion phantoms was estimated to be 0.20 mg/cm 2 . The precision of the technique, characterized by the standard deviation of the measurements, was estimated to be 0.18 mg/cm 2 . The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. The results of this study suggest that iodine mass thickness for cm-scale lesions can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differential power for malignancy. © 2017 American Association of Physicists in Medicine.

  3. Automated quantification of renal interstitial fibrosis for computer-aided diagnosis: A comprehensive tissue structure segmentation method.

    PubMed

    Tey, Wei Keat; Kuang, Ye Chow; Ooi, Melanie Po-Leen; Khoo, Joon Joon

    2018-03-01

    Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses. This study proposes an automated quantification system for measuring the amount of interstitial fibrosis in renal biopsy images as a consistent basis of comparison among pathologists. The system extracts and segments the renal tissue structures based on colour information and structural assumptions of the tissue structures. The regions in the biopsy representing the interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area and quantified as a percentage of the total area of the biopsy sample. A ground truth image dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated a good correlation in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification. Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses due to the uncertainties in human judgement. An automated quantification system for accurately measuring the amount of interstitial fibrosis in renal biopsy images is presented as a consistent basis of comparison among pathologists. The system identifies the renal tissue structures through knowledge-based rules employing colour space transformations and structural features extraction from the images. In particular, the renal glomerulus identification is based on a multiscale textural feature analysis and a support vector machine. The regions in the biopsy representing interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area. The experiments conducted evaluate the system in terms of quantification accuracy, intra- and inter-observer variability in visual quantification by pathologists, and the effect introduced by the automated quantification system on the pathologists' diagnosis. A 40-image ground truth dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated an average error of 9 percentage points in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists involving samples from 70 kidney patients also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification. The accuracy of the proposed quantification system has been validated with the ground truth dataset and compared against the pathologists' quantification results. It has been shown that the correlation between different pathologists' estimation of interstitial fibrosis area has significantly improved, demonstrating the effectiveness of the quantification system as a diagnostic aide. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Statistical image quantification toward optimal scan fusion and change quantification

    NASA Astrophysics Data System (ADS)

    Potesil, Vaclav; Zhou, Xiang Sean

    2007-03-01

    Recent advance of imaging technology has brought new challenges and opportunities for automatic and quantitative analysis of medical images. With broader accessibility of more imaging modalities for more patients, fusion of modalities/scans from one time point and longitudinal analysis of changes across time points have become the two most critical differentiators to support more informed, more reliable and more reproducible diagnosis and therapy decisions. Unfortunately, scan fusion and longitudinal analysis are both inherently plagued with increased levels of statistical errors. A lack of comprehensive analysis by imaging scientists and a lack of full awareness by physicians pose potential risks in clinical practice. In this paper, we discuss several key error factors affecting imaging quantification, studying their interactions, and introducing a simulation strategy to establish general error bounds for change quantification across time. We quantitatively show that image resolution, voxel anisotropy, lesion size, eccentricity, and orientation are all contributing factors to quantification error; and there is an intricate relationship between voxel anisotropy and lesion shape in affecting quantification error. Specifically, when two or more scans are to be fused at feature level, optimal linear fusion analysis reveals that scans with voxel anisotropy aligned with lesion elongation should receive a higher weight than other scans. As a result of such optimal linear fusion, we will achieve a lower variance than naïve averaging. Simulated experiments are used to validate theoretical predictions. Future work based on the proposed simulation methods may lead to general guidelines and error lower bounds for quantitative image analysis and change detection.

  5. Supercritical fluid chromatography coupled with tandem mass spectrometry: A high-efficiency detection technique to quantify Taxane drugs in whole-blood samples.

    PubMed

    Jin, Chan; Guan, Jibin; Zhang, Dong; Li, Bing; Liu, Hongzhuo; He, Zhonggui

    2017-10-01

    We present a technique to rapid determine taxane in blood samples by supercritical fluid chromatography together with mass spectrometry. The aim of this study was to develop a supercritical fluid chromatography with mass spectrometry method for the analysis of paclitaxel, cabazitaxel, and docetaxel in whole-blood samples of rats. Liquid-dry matrix spot extraction was selected in sample preparation procedure. Supercritical fluid chromatography separation of paclitaxel, cabazitaxel, docetaxel, and glyburide (internal standard) was accomplished within 3 min by using the gradient mobile phase consisted of methanol as the compensation solvent and carbon dioxide at a flow rate of 1.0 mL/min. The method was validated regarding specificity, the lower limit of quantification, repeatability, and reproducibility of quantification, extraction recovery, and matrix effects. The lower limit of quantification was found to be 10 ng/mL since it exhibited acceptable precision and accuracy at the corresponding level. All interday accuracies and precisions were within the accepted criteria of ±15% of the nominal value and within ±20% at the lower limit of quantification, implying that the method was reliable and reproducible. In conclusion, this method is a promising tool to support and improve preclinical or clinical pharmacokinetic studies with the taxanes anticancer drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. miR-MaGiC improves quantification accuracy for small RNA-seq.

    PubMed

    Russell, Pamela H; Vestal, Brian; Shi, Wen; Rudra, Pratyaydipta D; Dowell, Robin; Radcliffe, Richard; Saba, Laura; Kechris, Katerina

    2018-05-15

    Many tools have been developed to profile microRNA (miRNA) expression from small RNA-seq data. These tools must contend with several issues: the small size of miRNAs, the small number of unique miRNAs, the fact that similar miRNAs can be transcribed from multiple loci, and the presence of miRNA isoforms known as isomiRs. Methods failing to address these issues can return misleading information. We propose a novel quantification method designed to address these concerns. We present miR-MaGiC, a novel miRNA quantification method, implemented as a cross-platform tool in Java. miR-MaGiC performs stringent mapping to a core region of each miRNA and defines a meaningful set of target miRNA sequences by collapsing the miRNA space to "functional groups". We hypothesize that these two features, mapping stringency and collapsing, provide more optimal quantification to a more meaningful unit (i.e., miRNA family). We test miR-MaGiC and several published methods on 210 small RNA-seq libraries, evaluating each method's ability to accurately reflect global miRNA expression profiles. We define accuracy as total counts close to the total number of input reads originating from miRNAs. We find that miR-MaGiC, which incorporates both stringency and collapsing, provides the most accurate counts.

  7. Differential diagnosis of neurodegenerative diseases using structural MRI data

    PubMed Central

    Koikkalainen, Juha; Rhodius-Meester, Hanneke; Tolonen, Antti; Barkhof, Frederik; Tijms, Betty; Lemstra, Afina W.; Tong, Tong; Guerrero, Ricardo; Schuh, Andreas; Ledig, Christian; Rueckert, Daniel; Soininen, Hilkka; Remes, Anne M.; Waldemar, Gunhild; Hasselbalch, Steen; Mecocci, Patrizia; van der Flier, Wiesje; Lötjönen, Jyrki

    2016-01-01

    Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. PMID:27104138

  8. Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations

    PubMed Central

    Higgs, Richard E.; Butler, Jon P.; Han, Bomie; Knierman, Michael D.

    2013-01-01

    Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct advantages for hypothesis generating experiments relative to immunoassay detection methods or prespecified peptide ions measured by multiple reaction monitoring (MRM) approaches. Here we describe an evaluation of different methods to post-process peptide level quantification information to support protein level inference. We characterize the methods by examining their ability to recover a known dilution of a standard protein in background matrices of varying complexity. Additionally, the MS1 quantification results are compared to a standard, targeted, MRM approach on the same samples under equivalent instrument conditions. We show the existence of multiple peptides with MS1 quantification sensitivity similar to the best MRM peptides for each of the background matrices studied. Based on these results we provide recommendations on preferred approaches to leveraging quantitative measurements of multiple peptides to improve protein level inference. PMID:23710359

  9. Quantification of trans-1,4-polyisoprene in Eucommia ulmoides by fourier transform infrared spectroscopy and pyrolysis-gas chromatography/mass spectrometry.

    PubMed

    Takeno, Shinya; Bamba, Takeshi; Nakazawa, Yoshihisa; Fukusaki, Eiichiro; Okazawa, Atsushi; Kobayashi, Akio

    2008-04-01

    Commercial development of trans-1,4-polyisoprene from Eucommia ulmoides Oliver (EU-rubber) requires specific knowledge on selection of high-rubber-content lines and establishment of agronomic cultivation methods for achieving maximum EU-rubber yield. The development can be facilitated by high-throughput and highly sensitive analytical techniques for EU-rubber extraction and quantification. In this paper, we described an efficient EU-rubber extraction method, and validated that the accuracy was equivalent to that of the conventional Soxhlet extraction method. We also described a highly sensitive quantification method for EU-rubber by Fourier transform infrared spectroscopy (FT-IR) and pyrolysis-gas chromatography/mass spectrometry (PyGC/MS). We successfully applied the extraction/quantification method for study of seasonal changes in EU-rubber content and molecular weight distribution.

  10. A digital image method of spot tests for determination of copper in sugar cane spirits

    NASA Astrophysics Data System (ADS)

    Pessoa, Kenia Dias; Suarez, Willian Toito; dos Reis, Marina Ferreira; de Oliveira Krambeck Franco, Mathews; Moreira, Renata Pereira Lopes; dos Santos, Vagner Bezerra

    2017-10-01

    In this work the development and validation of analytical methodology for determination of copper in sugarcane spirit samples is carried out. The digital image based (DIB) method was applied along with spot test from the colorimetric reaction employing the RGB color model. For the determination of copper concentration, it was used the cuprizone - a bidentate organic reagent - which forms with copper a blue chelate in an alkaline medium. A linear calibration curve over the concentration range from 0.75 to 5.00 mg L- 1 (r2 = 0.9988) was obtained and limits of detection and quantification of 0.078 mg L- 1 and 0.26 mg L- 1 were acquired, respectively. For the accuracy studies, recovery percentages ranged from 98 to 104% were obtained. The comparison of cooper concentration results in sugar cane spirits using the DIB method and Flame Atomic Absorption Spectrometry as reference method showed no significant differences between both methods, which were performed using the paired t-test in 95% of confidence level. Thus, the spot test method associated with DIB allows the use of devices as digital cameras and smartphones to evaluate colorimetric reaction with low waste generation, practicality, quickness, accuracy, precision, high portability and low-cost.

  11. Simultaneous determination of main reaction components in the reaction mixture during biodiesel production.

    PubMed

    Sánek, Lubomír; Pecha, Jiří; Kolomazník, Karel

    2013-03-01

    The proposed analytical method allows for simultaneous determination by GC using a programed temperature vaporization injector and a flame ionization detector of the main reaction components (i.e. glycerol, methyl esters, mono-, di-, and triacylglycerols) in the reaction mixture during biodiesel production. The suggested method is convenient for the rapid and simple evaluation of the kinetic data gained during the transesterification reaction and, also partially serves as an indicator of the quality of biodiesel and mainly, as the indicator of the efficiency of the whole production process (i.e. the conversion of triacylglycerols to biodiesel and its time progress). The optimization of chromatographic conditions (e.g. the oven temperature program, injector setting, amount of derivatization reagent, and the derivatization reaction time) was performed. The method has been validated with crude samples of biodiesel made from waste-cooking oils in terms of linearity, precision, accuracy, sensitivity, and limits of detection and quantification. The results confirmed a satisfactory degree of accuracy and repeatability (the mean RSDs were usually below 2%) necessary for the reliable quantitative determination of all components in the considerable concentration range (e.g. 10-1100 μg/mL in case of methyl esters). Compound recoveries ranging from 96 to 104% were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fast and Simple Analytical Method for Direct Determination of Total Chlorine Content in Polyglycerol by ICP-MS.

    PubMed

    Jakóbik-Kolon, Agata; Milewski, Andrzej; Dydo, Piotr; Witczak, Magdalena; Bok-Badura, Joanna

    2018-02-23

    The fast and simple method for total chlorine determination in polyglycerols using low resolution inductively coupled plasma mass spectrometry (ICP-MS) without the need for additional equipment and time-consuming sample decomposition was evaluated. Linear calibration curve for 35 Cl isotope in the concentration range 20-800 µg/L was observed. Limits of detection and quantification equaled to 15 µg/L and 44 µg/L, respectively. This corresponds to possibility of detection 3 µg/g and determination 9 µg/g of chlorine in polyglycerol using studied conditions (0.5% matrix-polyglycerol samples diluted or dissolved with water to an overall concentration of 0.5%). Matrix effects as well as the effect of chlorine origin have been evaluated. The presence of 0.5% (m/m) of matrix species similar to polyglycerol (polyethylene glycol-PEG) did not influence the chlorine determination for PEGs with average molecular weights (MW) up to 2000 Da. Good precision and accuracy of the chlorine content determination was achieved regardless on its origin (inorganic/organic). High analyte recovery level and low relative standard deviation values were observed for real polyglycerol samples spiked with chloride. Additionally, the Combustion Ion Chromatography System was used as a reference method. The results confirmed high accuracy and precision of the tested method.

  13. Quantitative isomer-specific N-glycan fingerprinting using isotope coded labeling and high performance liquid chromatography-electrospray ionization-mass spectrometry with graphitic carbon stationary phase.

    PubMed

    Michael, Claudia; Rizzi, Andreas M

    2015-02-27

    Glycan reductive isotope labeling (GRIL) using (12)C6-/(13)C6-aniline as labeling reagent is reported with the aim of quantitative N-glycan fingerprinting. Porous graphitized carbon (PGC) as stationary phase in capillary scale HPLC coupled to electrospray mass spectrometry with time of flight analyzer was applied for the determination of labeled N-glycans released from glycoproteins. The main benefit of using stable isotope-coding in the context of comparative glycomics lies in the improved accuracy and precision of the quantitative analysis in combined samples and in the potential of correcting for structure-dependent incomplete enzymatic release of oligosaccharides when comparing identical target proteins. The method was validated with respect to mobile phase parameters, reproducibility, accuracy, linearity and limit of detection/quantification (LOD/LOQ) using test glycoproteins. It is shown that the developed method is capable of determining relative amounts of N-glycans (including isomers) comparing two samples in one single HPLC-MS run. The analytical potential and usefulness of GRIL in combination with PGC-ESI-TOF-MS is demonstrated comparing glycosylation in human monoclonal antibodies produced in Chinese hamster ovary cells (CHO) and hybridoma cell lines. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Paroxysmal atrial fibrillation prediction method with shorter HRV sequences.

    PubMed

    Boon, K H; Khalil-Hani, M; Malarvili, M B; Sia, C W

    2016-10-01

    This paper proposes a method that predicts the onset of paroxysmal atrial fibrillation (PAF), using heart rate variability (HRV) segments that are shorter than those applied in existing methods, while maintaining good prediction accuracy. PAF is a common cardiac arrhythmia that increases the health risk of a patient, and the development of an accurate predictor of the onset of PAF is clinical important because it increases the possibility to stabilize (electrically) and prevent the onset of atrial arrhythmias with different pacing techniques. We investigate the effect of HRV features extracted from different lengths of HRV segments prior to PAF onset with the proposed PAF prediction method. The pre-processing stage of the predictor includes QRS detection, HRV quantification and ectopic beat correction. Time-domain, frequency-domain, non-linear and bispectrum features are then extracted from the quantified HRV. In the feature selection, the HRV feature set and classifier parameters are optimized simultaneously using an optimization procedure based on genetic algorithm (GA). Both full feature set and statistically significant feature subset are optimized by GA respectively. For the statistically significant feature subset, Mann-Whitney U test is used to filter non-statistical significance features that cannot pass the statistical test at 20% significant level. The final stage of our predictor is the classifier that is based on support vector machine (SVM). A 10-fold cross-validation is applied in performance evaluation, and the proposed method achieves 79.3% prediction accuracy using 15-minutes HRV segment. This accuracy is comparable to that achieved by existing methods that use 30-minutes HRV segments, most of which achieves accuracy of around 80%. More importantly, our method significantly outperforms those that applied segments shorter than 30 minutes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Diagnostic accuracy of MRI in the measurement of glenoid bone loss.

    PubMed

    Gyftopoulos, Soterios; Hasan, Saqib; Bencardino, Jenny; Mayo, Jason; Nayyar, Samir; Babb, James; Jazrawi, Laith

    2012-10-01

    The purpose of this study is to assess the accuracy of MRI quantification of glenoid bone loss and to compare the diagnostic accuracy of MRI to CT in the measurement of glenoid bone loss. MRI, CT, and 3D CT examinations of 18 cadaveric glenoids were obtained after the creation of defects along the anterior and anteroinferior glenoid. The defects were measured by three readers separately and blindly using the circle method. These measurements were compared with measurements made on digital photographic images of the cadaveric glenoids. Paired sample Student t tests were used to compare the imaging modalities. Concordance correlation coefficients were also calculated to measure interobserver agreement. Our data show that MRI could be used to accurately measure glenoid bone loss with a small margin of error (mean, 3.44%; range, 2.06-5.94%) in estimated percentage loss. MRI accuracy was similar to that of both CT and 3D CT for glenoid loss measurements in our study for the readers familiar with the circle method, with 1.3% as the maximum expected difference in accuracy of the percentage bone loss between the different modalities (95% confidence). Glenoid bone loss can be accurately measured on MRI using the circle method. The MRI quantification of glenoid bone loss compares favorably to measurements obtained using 3D CT and CT. The accuracy of the measurements correlates with the level of training, and a learning curve is expected before mastering this technique.

  16. Good quantification practices of flavours and fragrances by mass spectrometry.

    PubMed

    Begnaud, Frédéric; Chaintreau, Alain

    2016-10-28

    Over the past 15 years, chromatographic techniques with mass spectrometric detection have been increasingly used to monitor the rapidly expanded list of regulated flavour and fragrance ingredients. This trend entails a need for good quantification practices suitable for complex media, especially for multi-analytes. In this article, we present experimental precautions needed to perform the analyses and ways to process the data according to the most recent approaches. This notably includes the identification of analytes during their quantification and method validation, when applied to real matrices, based on accuracy profiles. A brief survey of application studies based on such practices is given.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.

  17. Development and practical application of accelerated solvent extraction for the isolation of cocaine/crack biomarkers in meconium samples.

    PubMed

    Mantovani, Cínthia de Carvalho; Lima, Marcela Bittar; Oliveira, Carolina Dizioli Rodrigues de; Menck, Rafael de Almeida; Diniz, Edna Maria de Albuquerque; Yonamine, Mauricio

    2014-04-15

    A method using accelerated solvent extraction (ASE) for the isolation of cocaine/crack biomarkers in meconium samples, followed by solid phase extraction (SPE) and the simultaneous quantification by gas chromatography-mass spectrometry (GC-MS) was developed and validated. Initially, meconium samples were submitted to an ASE procedure, which was followed by SPE with Bond Elut Certify I cartridges. The analytes were derivatizated with PFP/PFPA and analyzed by GC-MS. The limits of detection (LOD) were between 11 and 17ng/g for all analytes. The limits of quantification (LOQ) were 30ng/g for anhydroecgonine methyl ester, and 20ng/g for cocaine, benzoylecgonine, ecgonine methyl ester and cocaethylene. Linearity ranged from the LOQ to 1500ng/g for all analytes, with a coefficients of determination greater than 0.991, except for m-hydroxybenzoylecgonine, which was only qualitatively detected. Precision and accuracy were evaluated at three concentration levels. For all analytes, inter-assay precision ranged from 3.2 to 18.1%, and intra-assay precision did not exceed 12.7%. The accuracy results were between 84.5 and 114.2% and the average recovery ranged from 17 to 84%. The method was applied to 342 meconium samples randomly collected in the University Hospital-University of São Paulo (HU-USP), Brazil. Cocaine biomarkers were detected in 19 samples, which represent 5.6% of exposure prevalence. Significantly lower birth weight, length and head circumference were found for the exposed newborns compared with the non-exposed group. This is the first report in which ASE was used as a sample preparation technique to extract cocaine biomarkers from a complex biological matrix such as meconium samples. The advantages of the developed method are the smaller demand for organic solvents and the minor sample handling, which allows a faster and accurate procedure, appropriate to confirm fetal exposure to cocaine/crack. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Quantification of nimesulide in human plasma by high-performance liquid chromatography/tandem mass spectrometry. Application to bioequivalence studies.

    PubMed

    Barrientos-Astigarraga, R E; Vannuchi, Y B; Sucupira, M; Moreno, R A; Muscará, M N; De Nucci, G

    2001-12-01

    A method based on liquid chromatography with negative ion electrospray ionization and tandem mass spectrometry is described for the determination of nimesulide in human plasma. Liquid-liquid extraction using a mixture of diethyl ether and dichloromethane was employed and celecoxib was used as an internal standard. The chromatographic run time was 4.5 min and the weighted (1/x) calibration curve was linear in the range 10.0-2000 ng x ml(-1). The limit of quantification was 10 ng x ml(-1), the intra-batch precision was 6.3, 2.1 and 2.1% and the intra-batch accuracy was 3.2, 0.3 and 0.1% for 30, 300 and 1200 ng x ml(-1) respectively. The inter-batch precision was 2.3, 2.8 and 2.7% and the accuracy was 3.3, 0.3 and 0.1% for 30, 300 and 1200 ng x ml(-1) respectively. This method was employed in a bioequivalence study of one nimesulide drop formulation (nimesulide 50 mg x ml(-1) drop, Medley S/A Indústria Farmacêutica, Brazil) against one standard nimesulide drop formulation (Nisulid, 50 mg x ml(-1) drop, Astra Médica, Brazil). Twenty-four healthy volunteers (both sexes) took part in the study and received a single oral dose of nimesulide (100 mg, equivalent to 2 ml of either formulation) in an open, randomized, two-period crossover way, with a 2-week washout interval between periods. The 90% confidence interval (CI) for geometric mean ratios between nimesulide and Nisulid were 93.1-109.6% for C(max), 87.7-99.8% for AUC(last) and 88.1-99.7% for AUC(0-infinity). Since the 90% CI for the above-mentioned parameters were included in the 80-125% interval proposed by the US Food and Drug Administration, the two formulations were considered bioequivalent in terms of both rate and extent of absorption. Copyright 2001 John Wiley & Sons, Ltd.

  19. Validated UPLC/MS/MS assay for quantitative bioanalysis of elbasvir in rat plasma and application to pharmacokinetic study.

    PubMed

    Liu, Haiyan; Xu, Hongjiang; Song, Wei; Zhang, Yinsheng; Yu, Sen; Huang, Xin

    2016-03-15

    Rapid, sensitive, selective and accurate ultra performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of elbasvir (ELB) in rat plasma with deuterated elbasvir (ELB-D6) as internal standard (IS).Sample preparation was done by protein precipitation using acetonitrile containing 50 ng/mL IS. Chromatographic separation was achieved by an UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) column with a gradient mobile phase consisting of acetonitrile-water (containing 5.0mM ammonium acetate with 0.01% acetic acid, pH 4.5) as mobile phase at a flow rate of 0.3 mL/min for 3 min. ELB was monitored using positive electrospray triple quadrupole mass spectrometer (Waters Xevo TQ-S) via multiple reaction monitoring (MRM) mode. The monitored transitions were set at m/z 882.51→656.42 and m/z 888.49→662.43 for ELB and ELB-D6, respectively. The achieved lower limit of quantification was 1.0 ng/mL. The validated method had an excellent linearity in the range of 1.0-2000 ng/mL (r(2)>0.996). Recovery efficiency at three levels QC concentrations of 2.0 (low), 160 (medium) and 1600 (high) ng/mLwas in the range of 98.29-106.40% for ELB. Matrix effect was found to be minimal. The intra- and inter-day precisions were less than 7.01%. The intra- and inter-day accuracies were determined to be within ±6.23% for all accuracy measurements. The validated simple and rapid UPLC-MS/MS method was successfully used to the pharmacokinetics study of ELB in rats, providing its applicability in relevant preclinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Improving the understanding of sleep apnea characterization using Recurrence Quantification Analysis by defining overall acceptable values for the dimensionality of the system, the delay, and the distance threshold

    PubMed Central

    Navarro-Mesa, Juan L.; Juliá-Serdá, Gabriel; Ramírez-Ávila, G. Marcelo; Ravelo-García, Antonio G.

    2018-01-01

    Our contribution focuses on the characterization of sleep apnea from a cardiac rate point of view, using Recurrence Quantification Analysis (RQA), based on a Heart Rate Variability (HRV) feature selection process. Three parameters are crucial in RQA: those related to the embedding process (dimension and delay) and the threshold distance. There are no overall accepted parameters for the study of HRV using RQA in sleep apnea. We focus on finding an overall acceptable combination, sweeping a range of values for each of them simultaneously. Together with the commonly used RQA measures, we include features related to recurrence times, and features originating in the complex network theory. To the best of our knowledge, no author has used them all for sleep apnea previously. The best performing feature subset is entered into a Linear Discriminant classifier. The best results in the “Apnea-ECG Physionet database” and the “HuGCDN2014 database” are, according to the area under the receiver operating characteristic curve, 0.93 (Accuracy: 86.33%) and 0.86 (Accuracy: 84.18%), respectively. Our system outperforms, using a relatively small set of features, previously existing studies in the context of sleep apnea. We conclude that working with dimensions around 7–8 and delays about 4–5, and using for the threshold distance the Fixed Amount of Nearest Neighbours (FAN) method with 5% of neighbours, yield the best results. Therefore, we would recommend these reference values for future work when applying RQA to the analysis of HRV in sleep apnea. We also conclude that, together with the commonly used vertical and diagonal RQA measures, there are newly used features that contribute valuable information for apnea minutes discrimination. Therefore, they are especially interesting for characterization purposes. Using two different databases supports that the conclusions reached are potentially generalizable, and are not limited by database variability. PMID:29621264

  1. HPLC-MS/MS methods for the quantitative analysis of 5-oxoproline (pyroglutamate) in rat plasma and hepatic cell line culture medium.

    PubMed

    Geenen, Suzanne; Guallar-Hoyas, Cristina; Michopoulos, Filippos; Kenna, J Gerry; Kolaja, Kyle L; Westerhoff, Hans V; Thomas, Paul; Wilson, Ian D

    2011-11-01

    5-Oxoproline (5-OP; pyroglutamate) is an intermediate in the biosynthesis of the endogenous tripeptide glutathione and has been seen to be elevated in the biofluids and tissues of rats following the administration of glutathione-depleting hepatotoxic xenobiotics such as acetaminophen (paracetamol), bromobenzene and ethionine. As 5-OP is a potential biomarker for hepatotoxicity HPLC-MS/MS methods have been developed for its quantification in in vitro cell culture media and rat plasma. For the cell culture media the lower limit of quantification (LLOQ), defined as the lowest concentration on the calibration curve, was 10 ng/ml. Minimal carry over was observed for cell culture media between injections (less than 5% at all concentrations examined), precision and accuracy were generally better than 20% for within and between day analyses. For rat plasma a LLOQ of 50 ng/ml was obtained. Carry over for plasma was less than 5% for all concentrations, within and between batch accuracy and precision were generally better than 20%. The methods were linear for both sample types from the LLOQ up to 1 μg/ml. For samples obtained from rats subjected to chronic administration of the hepatotoxin methapyrilene, concentrations of 5-OP were not observed to increase significantly at any time point compared to controls. 5-OP was also determined in the culture media of human liver epithelial (THLE) cells transfected with cytochrome P450 2E1 (THLE-2E1). Following exposure of THLE-2E1 cells to acetaminophen, large increases in the concentrations of 5-OP were observed, which correlated with reduced cellular glutathione content and with cell toxicity. These results show that LC-MS/MS can be used to perform rapid, sensitive, and quantitative determination of 5-OP in vivo and in vitro and will enable additional investigations into the utility of 5-OP as a biomarker of liver drug-induced liver injury. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Improving the understanding of sleep apnea characterization using Recurrence Quantification Analysis by defining overall acceptable values for the dimensionality of the system, the delay, and the distance threshold.

    PubMed

    Martín-González, Sofía; Navarro-Mesa, Juan L; Juliá-Serdá, Gabriel; Ramírez-Ávila, G Marcelo; Ravelo-García, Antonio G

    2018-01-01

    Our contribution focuses on the characterization of sleep apnea from a cardiac rate point of view, using Recurrence Quantification Analysis (RQA), based on a Heart Rate Variability (HRV) feature selection process. Three parameters are crucial in RQA: those related to the embedding process (dimension and delay) and the threshold distance. There are no overall accepted parameters for the study of HRV using RQA in sleep apnea. We focus on finding an overall acceptable combination, sweeping a range of values for each of them simultaneously. Together with the commonly used RQA measures, we include features related to recurrence times, and features originating in the complex network theory. To the best of our knowledge, no author has used them all for sleep apnea previously. The best performing feature subset is entered into a Linear Discriminant classifier. The best results in the "Apnea-ECG Physionet database" and the "HuGCDN2014 database" are, according to the area under the receiver operating characteristic curve, 0.93 (Accuracy: 86.33%) and 0.86 (Accuracy: 84.18%), respectively. Our system outperforms, using a relatively small set of features, previously existing studies in the context of sleep apnea. We conclude that working with dimensions around 7-8 and delays about 4-5, and using for the threshold distance the Fixed Amount of Nearest Neighbours (FAN) method with 5% of neighbours, yield the best results. Therefore, we would recommend these reference values for future work when applying RQA to the analysis of HRV in sleep apnea. We also conclude that, together with the commonly used vertical and diagonal RQA measures, there are newly used features that contribute valuable information for apnea minutes discrimination. Therefore, they are especially interesting for characterization purposes. Using two different databases supports that the conclusions reached are potentially generalizable, and are not limited by database variability.

  3. Reverse-phase liquid chromatography with electrospray ionization/mass spectrometry for the quantification of pseudoephedrine in human plasma and application to a bioequivalence study.

    PubMed

    Kim, Jin-Ki; Jee, Jun-Pil; Park, Jeong-Sook; Kim, Hyung Tae; Kim, Chong-Kook

    2011-01-01

    A sensitive and selective reverse-phase liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated to quantify pseudoephedrine (CAS 90-82-4) in human plasma. Phenacetin was used as the internal standard (I.S.). Sample preparation was performed with a deproteinization step using acetonitrile. Pseudoephedrine and I.S. were successfully separated using gradient elution with 0.5% trifluoroacetic acid (TFA) in water and 0.5% TFA in methanol at a flow-rate of 0.2 mL/min. Detection was performed on a single quadrupole mass spectrometer by a selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The ESI source was set at positive ionization mode. The ion signals of m/z 166.3 and 180.2 were measured for the protonated molecular ions of pseudoephedrine and I.S., respectively. The lower limit of quantification (LLOQ) of pseudoephedrine in human plasma was 10 ng/mL and good linearity was observed in the range of concentrations 10-500 ng/mL (R2 = 1). The intra-day accuracy of the drug containing plasma samples was more than 97.60% with a precision of 3.99-11.82%. The inter-day accuracy was 99.36% or more, with a precision of 7.65-18.42%. By using this analytical method, the bioequivalence study of the pseudoephedrine preparation was performed and evaluated by statistical analysis of the log transformed mean ratios of pharmacokinetic parameters. All the results fulfilled the standard criteria of bioequivalence, being within the 80-125% range which is required by the Korea FDA, US FDA, and EMEA to conclude bioequivalence. Consequently, the developed reverse-phase LC-ESI-MS method was successfully applied to bioequivalence studies of pseudoephedrine in healthy male volunteers.

  4. Predicting Statistical Response and Extreme Events in Uncertainty Quantification through Reduced-Order Models

    NASA Astrophysics Data System (ADS)

    Qi, D.; Majda, A.

    2017-12-01

    A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty in statistical sensitivity and intermittency in principal model directions with largest variability in high-dimensional turbulent system and turbulent transport models. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model performance. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. A statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. Stringent models of barotropic and baroclinic turbulence are used to display the feasibility of the reduced-order methods. Principal statistical responses in mean and variance can be captured by the reduced-order models with accuracy and efficiency. Besides, the reduced-order models are also used to capture crucial passive tracer field that is advected by the baroclinic turbulent flow. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with distinct statistical structures.

  5. Quality Analysis of Chlorogenic Acid and Hyperoside in Crataegi fructus

    PubMed Central

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-01-01

    Background: Crataegi fructus is a herbal medicine for strong stomach, sterilization, and alcohol detoxification. Chlorogenic acid and hyperoside are the major compounds in Crataegi fructus. Objective: In this study, we established novel high-performance liquid chromatography (HPLC)-diode array detection analysis method of chlorogenic acid and hyperoside for quality control of Crataegi fructus. Materials and Methods: HPLC analysis was achieved on a reverse-phase C18 column (5 μm, 4.6 mm × 250 mm) using water and acetonitrile as mobile phase with gradient system. The method was validated for linearity, precision, and accuracy. About 31 batches of Crataegi fructus samples collected from Korea and China were analyzed by using HPLC fingerprint of developed HPLC method. Then, the contents of chlorogenic acid and hyperoside were compared for quality evaluation of Crataegi fructus. Results: The results have shown that the average contents (w/w %) of chlorogenic acid and hyperoside in Crataegi fructus collected from Korea were 0.0438% and 0.0416%, respectively, and the average contents (w/w %) of 0.0399% and 0.0325%, respectively. Conclusion: In conclusion, established HPLC analysis method was stable and could provide efficient quality evaluation for monitoring of commercial Crataegi fructus. SUMMARY Quantitative analysis method of chlorogenic acid and hyperoside in Crataegi fructus is developed by high.performance liquid chromatography.(HPLC).diode array detectionEstablished HPLC analysis method is validated with linearity, precision, and accuracyThe developed method was successfully applied for quantitative analysis of Crataegi fructus sample collected from Korea and China. Abbreviations used: HPLC: High-performance liquid chromatography, GC: Gas chromatography, MS: Mass spectrometer, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation, RRT: Relative retention time, RPA: Relation peak area. PMID:27076744

  6. A fast liquid chromatography-tandem mass spectrometry method for determining benzodiazepines and analogues in urine. Validation and application to real cases of forensic interest.

    PubMed

    Salomone, Alberto; Gerace, Enrico; Brizio, Paola; Gennaro, M Carla; Vincenti, Marco

    2011-11-01

    A fast liquid chromatographic/tandem mass spectrometric method was developed for the simultaneous determination in human urine of seventeen benzodiazepines, four relevant metabolites together plus zolpidem and zopiclone. The sample preparation, optimized to take into account the matrix effect, was based on enzymatic hydrolysis and liquid-liquid extraction. The separation of the twenty-three analytes was achieved in less than eight minutes. The whole methodology was fully validated according to UNI EN ISO/IEC 17025:2005 rules and 2006 SOFT/AAFS guidelines. Selectivity, linearity range, identification (LOD) and quantitation (LOQ) limits, precision, accuracy and recovery were evaluated. For all the species the signal/concentration linearity was satisfactory in the 50-1000 ng/mL concentration range. The limits of detection ranged from 0.5 to 30 ng/mL and LOQs from 1.7 to 100.0 ng/mL. Precisions were in the ranges 5.0-11.8%, 1.5-11.0% and 1.1-4.4% for low (100 ng/mL), medium (300 ng/mL) and high (1000 ng/mL) concentration, respectively. The accuracy, expressed as bias% was within ± 25 % for all the analytes. The recovery values, evaluated at 300 ng/mL concentration, ranged from 56.2% to 98.8%. The present method for the determination of several benzodiazepines, zolpidem and zopiclone in human urine proved to be simple, fast, specific and sensitive. The quantification by LC-MS/MS was successfully applied to 329 forensic cases among driving re-licensing, car accidents and alleged sexual violence cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Enantioselective determination of 3-n-butylphthalide (NBP) in human plasma by liquid chromatography on a teicoplanin-based chiral column coupled with tandem mass spectrometry.

    PubMed

    Diao, Xingxing; Ma, Zhiyu; Lei, Peng; Zhong, Dafang; Zhang, Yifan; Chen, Xiaoyan

    2013-11-15

    A novel and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine the exposure of 3-n-butylphthalide (NBP) enantiomers in human plasma. The NBP enantiomers were extracted from human plasma using methyl tert-butyl ether. The baseline separation of R-(+)-NBP and S-(-)-NBP was achieved within 11.0min using a teicoplanin-based Astec Chirobiotic T column (250mm×4.6mm i.d., 5μm) under isocratic conditions at a flow rate of 0.6mL/min. The selection of the chiral stationary phase and the effect of the mobile phase composition on the resolution of the enantiomers were discussed. The selectivity, linearity, precision, accuracy, matrix effect, recovery, and stability were evaluated under optimized conditions. The LC-MS/MS method using 200μL of human plasma was linear over the concentration range of 5.00-400ng/mL for each enantiomer. The lower limit of quantification (LLOQ) for both enantiomers was 5.00ng/mL. The intra- and inter-assay precision values of the replicated quality control samples were within 8.0% for each enantiomer. The mean accuracy values for the quality control samples were within ±6.1% of the nominal values for R-(+)-NBP and S-(-)-NBP. No chiral inversion was observed during sample storage, preparation, and analysis. The method proved suitable for enantioselective pharmacokinetic studies of NBP after an oral administration of a therapeutic dose of racemic NBP. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Simplifying sample pretreatment: application of dried blood spot (DBS) method to blood samples, including postmortem, for UHPLC-MS/MS analysis of drugs of abuse.

    PubMed

    Odoardi, Sara; Anzillotti, Luca; Strano-Rossi, Sabina

    2014-10-01

    The complexity of biological matrices, such as blood, requires the development of suitably selective and reliable sample pretreatment procedures prior to their instrumental analysis. A method has been developed for the analysis of drugs of abuse and their metabolites from different chemical classes (opiates, methadone, fentanyl and analogues, cocaine, amphetamines and amphetamine-like substances, ketamine, LSD) in human blood using dried blood spot (DBS) and subsequent UHPLC-MS/MS analysis. DBS extraction required only 100μL of sample, added with the internal standards and then three droplets (30μL each) of this solution were spotted on the card, let dry for 1h, punched and extracted with methanol with 0.1% of formic acid. The supernatant was evaporated and the residue was then reconstituted in 100μL of water with 0.1% of formic acid and injected in the UHPLC-MS/MS system. The method was validated considering the following parameters: LOD and LOQ, linearity, precision, accuracy, matrix effect and dilution integrity. LODs were 0.05-1ng/mL and LOQs were 0.2-2ng/mL. The method showed satisfactory linearity for all substances, with determination coefficients always higher than 0.99. Intra and inter day precision, accuracy, matrix effect and dilution integrity were acceptable for all the studied substances. The addition of internal standards before DBS extraction and the deposition of a fixed volume of blood on the filter cards ensured the accurate quantification of the analytes. The validated method was then applied to authentic postmortem blood samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Liquid chromatography/tandem mass spectrometry method for simultaneous determination of cocaine and its metabolite (-)ecgonine methyl ester in human acidified stabilized plasma samples.

    PubMed

    Liu, Yongzhen; Zheng, Bo; Strafford, Stephanie; Orugunty, Ravi; Sullivan, Michael; Gus, Jeffrey; Heidbreder, Christian; Fudala, Paul J; Nasser, Azmi

    2014-06-15

    Two simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods (low range and high range) were developed and validated for the quantification of cocaine and its metabolite (-)ecgonine methyl ester (EME) in human acidified stabilized plasma samples. In the low range assay, cocaine and the internal standard, cocaine-D3, were extracted using a single step liquid-liquid extraction from human acidified stabilized plasma. For the high range assay, human acidified stabilized plasma containing cocaine, EME, and the internal standards, cocaine-D3 and EME-D3, was mixed with acetonitrile, and the protein precipitate was separated by centrifugation. Both cocaine and EME extracted from both assays were separated on a HILIC column and detected in positive ion mode using multiple reaction monitoring (MRM). Both methods were validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. The linear range for the low range assay was 0.01-5ng/mL for cocaine; in the high range assay values were 5-1000ng/mL for cocaine and 1-200ng/mL for EME. The correlation coefficient (R(2)) values for both assays were 0.993 or greater. The precision and accuracy for intra-day and inter-day were better than 13.0%. The recovery was above 85% and matrix effects were low with the matrix factor ranging from 0.817 to 1.10 for both analytes in both assays. The validated methods were successfully used to quantify the plasma concentrations of cocaine and EME in clinical pharmacokinetic and pharmacodynamic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Simple, Fast, and Sensitive Method for Quantification of Tellurite in Culture Media▿

    PubMed Central

    Molina, Roberto C.; Burra, Radhika; Pérez-Donoso, José M.; Elías, Alex O.; Muñoz, Claudia; Montes, Rebecca A.; Chasteen, Thomas G.; Vásquez, Claudio C.

    2010-01-01

    A fast, simple, and reliable chemical method for tellurite quantification is described. The procedure is based on the NaBH4-mediated reduction of TeO32− followed by the spectrophotometric determination of elemental tellurium in solution. The method is highly reproducible, is stable at different pH values, and exhibits linearity over a broad range of tellurite concentrations. PMID:20525868

  11. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.

    PubMed

    Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun

    2014-12-05

    As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.

  12. Development and validation of an UHPLC-ESI-QTOF-MS method for quantification of the highly hydrophilic amyloid-β oligomer eliminating all-D-enantiomeric peptide RD2 in mouse plasma.

    PubMed

    Hupert, Michelle; Elfgen, Anne; Schartmann, Elena; Schemmert, Sarah; Buscher, Brigitte; Kutzsche, Janine; Willbold, Dieter; Santiago-Schübel, Beatrix

    2018-01-15

    During preclinical drug development, a method for quantification of unlabeled compounds in blood plasma samples from treatment or pharmacokinetic studies in mice is required. In the current work, a rapid, specific, sensitive and validated liquid chromatography mass-spectrometric UHPLC-ESI-QTOF-MS method was developed for the quantification of the therapeutic compound RD2 in mouse plasma. RD2 is an all-D-enantiomeric peptide developed for the treatment of Alzheimer's disease, a progressive neurodegenerative disease finally leading to dementia. Due to RD2's highly hydrophilic properties, the sample preparation and the chromatographic separation and quantification were very challenging. The chromatographic separation of RD2 and its internal standard were accomplished on an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm particle size) within 6.5 min at 50 °C with a flow rate of 0.5 mL/min. Mobile phases consisted of water and acetonitrile with 1% formic acid and 0.025% heptafluorobutyric acid, respectively. Ions were generated by electrospray ionization (ESI) in the positive mode and the peptide was quantified by QTOF-MS. The developed extraction method for RD2 from mouse plasma revealed complete recovery. The linearity of the calibration curve was in the range of 5.3 ng/mL to 265 ng/mL (r 2  > 0.999) with a lower limit of detection (LLOD) of 2.65 ng/mL and a lower limit of quantification (LLOQ) of 5.3 ng/mL. The intra-day and inter-day accuracy and precision of RD2 in plasma ranged from -0.54% to 2.21% and from 1.97% to 8.18%, respectively. Moreover, no matrix effects were observed and RD2 remained stable in extracted mouse plasma at different conditions. Using this validated bioanalytical method, plasma samples of unlabeled RD2 or placebo treated mice were analyzed. The herein developed UHPLC-ESI-QTOF-MS method is a suitable tool for the quantitative analysis of unlabeled RD2 in plasma samples of treated mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification - A multi-vendor study

    PubMed Central

    2011-01-01

    Purpose Eddy current induced velocity offsets are of concern for accuracy in cardiovascular magnetic resonance (CMR) volume flow quantification. However, currently known theoretical aspects of eddy current behavior have not led to effective guidelines for the optimization of flow quantification sequences. This study is aimed at identifying correlations between protocol parameters and the resulting velocity error in clinical CMR flow measurements in a multi-vendor study. Methods Nine 1.5T scanners of three different types/vendors were studied. Measurements were performed on a large stationary phantom. Starting from a clinical breath-hold flow protocol, several protocol parameters were varied. Acquisitions were made in three clinically relevant orientations. Additionally, a time delay between the bipolar gradient and read-out, asymmetric versus symmetric velocity encoding, and gradient amplitude and slew rate were studied in adapted sequences as exploratory measurements beyond the protocol. Image analysis determined the worst-case offset for a typical great-vessel flow measurement. Results The results showed a great variation in offset behavior among scanners (standard deviation among samples of 0.3, 0.4, and 0.9 cm/s for the three different scanner types), even for small changes in the protocol. Considering the absolute values, none of the tested protocol settings consistently reduced the velocity offsets below the critical level of 0.6 cm/s neither for all three orientations nor for all three scanner types. Using multilevel linear model analysis, oblique aortic and pulmonary slices showed systematic higher offsets than the transverse aortic slices (oblique aortic 0.6 cm/s, and pulmonary 1.8 cm/s higher than transverse aortic). The exploratory measurements beyond the protocol yielded some new leads for further sequence development towards reduction of velocity offsets; however those protocols were not always compatible with the time-constraints of breath-hold imaging and flow-related artefacts. Conclusions This study showed that with current systems there was no generic protocol which resulted into acceptable flow offset values. Protocol optimization would have to be performed on a per scanner and per protocol basis. Proper optimization might make accurate (transverse) aortic flow quantification possible for most scanners. Pulmonary flow quantification would still need further (offline) correction. PMID:21388521

  14. Validation of Non-Invasive Tracer Kinetic Analysis of 18F-Florbetaben PET Using a Dual Time-Window Acquisition Protocol.

    PubMed

    Bullich, Santiago; Barthel, Henryk; Koglin, Norman; Becker, Georg A; De Santi, Susan; Jovalekic, Aleksandar; Stephens, Andrew W; Sabri, Osama

    2017-11-24

    Accurate amyloid PET quantification is necessary for monitoring amyloid-beta accumulation and response to therapy. Currently, most of the studies are analyzed using the static standardized uptake value ratio (SUVR) approach because of its simplicity. However, this approach may be influenced by changes in cerebral blood flow (CBF) or radiotracer clearance. Full tracer kinetic models require arterial blood sampling and dynamic image acquisition. The objectives of this work were: (1) to validate a non-invasive kinetic modeling approach for 18 F-florbetaben PET using an acquisition protocol with the best compromise between quantification accuracy and simplicity and (2) to assess the impact of CBF changes and radiotracer clearance on SUVRs and non-invasive kinetic modeling data in 18 F-florbetaben PET. Methods: Data from twenty subjects (10 patients with probable Alzheimer's dementia/ 10 healthy volunteers) were used to compare the binding potential (BP ND ) obtained from the full kinetic analysis to the SUVR and to non-invasive tracer kinetic methods (simplified reference tissue model (SRTM), and multilinear reference tissue model 2 (MRTM2)). Different approaches using shortened or interrupted acquisitions were compared to the results of the full acquisition (0-140 min). Simulations were carried out to assess the effect of CBF and radiotracer clearance changes on SUVRs and non-invasive kinetic modeling outputs. Results: A 0-30 and 120-140 min dual time-window acquisition protocol using appropriate interpolation of the missing time points provided the best compromise between patient comfort and quantification accuracy. Excellent agreement was found between BP ND obtained using full and dual time-window (2TW) acquisition protocols (BP ND,2TW =0.01+ 1.00 BP ND,FULL , R2=0.97 (MRTM2); BP ND,2TW = 0.05+ 0.92·BP ND,FULL , R2=0.93 (SRTM)). Simulations showed a limited impact of CBF and radiotracer clearance changes on MRTM parameters and SUVRs. Conclusion: This study demonstrates accurate non-invasive kinetic modeling of 18 F-florbetaben PET data using a dual time-window acquisition protocol, thus providing a good compromise between quantification accuracy, scan duration and patient burden. The influence of CBF and radiotracer clearance changes on amyloid-beta load estimates was small. For most clinical research applications, the SUVR approach is appropriate. However, for longitudinal studies in which a maximum quantification accuracy is desired, this non-invasive dual time-window acquisition protocol and kinetic analysis is recommended. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  16. Simultaneous quantification of paracetamol, acetylsalicylic acid and papaverine with a validated HPLC method.

    PubMed

    Kalmár, Eva; Gyuricza, Anett; Kunos-Tóth, Erika; Szakonyi, Gerda; Dombi, György

    2014-01-01

    Combined drug products have the advantages of better patient compliance and possible synergic effects. The simultaneous application of several active ingredients at a time is therefore frequently chosen. However, the quantitative analysis of such medicines can be challenging. The aim of this study is to provide a validated method for the investigation of a multidose packed oral powder that contained acetylsalicylic acid, paracetamol and papaverine-HCl. Reversed-phase high-pressure liquid chromatography was used. The Agilent Zorbax SB-C18 column was found to be the most suitable of the three different stationary phases tested for the separation of the components of this sample. The key parameters in the method development (apart from the nature of the column) were the pH of the aqueous phase (set to 3.4) and the ratio of the organic (acetonitrile) and the aqueous (25 mM phosphate buffer) phases, which was varied from 7:93 (v/v) to 25:75 (v/v) in a linear gradient, preceded by an initial hold. The method was validated: linearity, precision (repeatability and intermediate precision), accuracy, specificity and robustness were all tested, and the results met the ICH guidelines. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. HPLC-MS/MS method for dexmedetomidine quantification with Design of Experiments approach: application to pediatric pharmacokinetic study.

    PubMed

    Szerkus, Oliwia; Struck-Lewicka, Wiktoria; Kordalewska, Marta; Bartosińska, Ewa; Bujak, Renata; Borsuk, Agnieszka; Bienert, Agnieszka; Bartkowska-Śniatkowska, Alicja; Warzybok, Justyna; Wiczling, Paweł; Nasal, Antoni; Kaliszan, Roman; Markuszewski, Michał Jan; Siluk, Danuta

    2017-02-01

    The purpose of this work was to develop and validate a rapid and robust LC-MS/MS method for the determination of dexmedetomidine (DEX) in plasma, suitable for analysis of a large number of samples. Systematic approach, Design of Experiments, was applied to optimize ESI source parameters and to evaluate method robustness, therefore, a rapid, stable and cost-effective assay was developed. The method was validated according to US FDA guidelines. LLOQ was determined at 5 pg/ml. The assay was linear over the examined concentration range (5-2500 pg/ml), Results: Experimental design approach was applied for optimization of ESI source parameters and evaluation of method robustness. The method was validated according to the US FDA guidelines. LLOQ was determined at 5 pg/ml. The assay was linear over the examined concentration range (R 2 > 0.98). The accuracies, intra- and interday precisions were less than 15%. The stability data confirmed reliable behavior of DEX under tested conditions. Application of Design of Experiments approach allowed for fast and efficient analytical method development and validation as well as for reduced usage of chemicals necessary for regular method optimization. The proposed technique was applied to determination of DEX pharmacokinetics in pediatric patients undergoing long-term sedation in the intensive care unit.

  18. Microbiological assay for the analysis of certain macrolides in pharmaceutical dosage forms.

    PubMed

    Mahmoudi, A; Fourar, R E-A; Boukhechem, M S; Zarkout, S

    2015-08-01

    Clarithromycin (CLA) and roxithromycin (ROX) are macrolide antibiotics with an expanded spectrum of activity that are commercially available as tablets. A microbiological assay, applying the cylinder-plate method and using a strain of Micrococcus luteus ATCC 9341 as test organism, has been used and validated for the quantification of two macrolide drugs; CLA and ROX in pure and pharmaceutical formulations. The validation of the proposed method was carried out for linearity, precision, accuracy and specificity. The linear dynamic ranges were from 0.1 to 0.5μg/mL for both compounds. Logarithmic calibration curve was obtained for each macrolide (r>0.989) with statistically equal slopes varying from 3.275 to 4.038, and a percentage relative standard deviation in the range of 0.24-0.92%. Moreover, the method was applied successfully for the assay of the studied drugs in pharmaceutical tablet dosage forms. Recovery from standard addition experiments in commercial products was 94.71-96.91% regarding clarithromycin and 93.94-98.12% regarding roxithromycin, with a precision (%RSD) 1.32-2.11%. Accordingly, this microbiological assay can be used for routine quality control analysis of titled drugs in tablet formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An isotope dilution ultra high performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of sugars and humectants in tobacco products.

    PubMed

    Wang, Liqun; Cardenas, Roberto Bravo; Watson, Clifford

    2017-09-08

    CDC's Division of Laboratory Sciences developed and validated a new method for the simultaneous detection and measurement of 11 sugars, alditols and humectants in tobacco products. The method uses isotope dilution ultra high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) and has demonstrated high sensitivity, selectivity, throughput and accuracy, with recoveries ranging from 90% to 113%, limits of detection ranging from 0.0002 to 0.0045μg/mL and coefficients of variation (CV%) ranging from 1.4 to 14%. Calibration curves for all analytes were linear with linearity R 2 values greater than 0.995. Quantification of tobacco components is necessary to characterize tobacco product components and their potential effects on consumer appeal, smoke chemistry and toxicology, and to potentially help distinguish tobacco product categories. The researchers analyzed a variety of tobacco products (e.g., cigarettes, little cigars, cigarillos) using the new method and documented differences in the abundance of selected analytes among product categories. Specifically, differences were detected in levels of selected sugars found in little cigars and cigarettes, which could help address appeal potential and have utility when product category is unknown, unclear, or miscategorized. Copyright © 2017. Published by Elsevier B.V.

  20. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food.

    PubMed

    Omar, Mei Musa Ali; Elbashir, Abdalla Ahmed; Schmitz, Oliver J

    2017-01-01

    Simple and inexpensive capillary electrophoresis with UV-detection method (CE-UV) was optimized and validated for determination of six amino acids namely (alanine, asparagine, glutamine, proline, serine and valine) for Sudanese food. Amino acids in the samples were derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) prior to CE-UV analysis. Labeling reaction conditions (100mM borate buffer at pH 8.5, labeling reaction time 60min, temperature 70°C and NBD-Cl concentration 40mM) were systematically investigated. The optimal conditions for the separation were 100mM borate buffer at pH 9.7 and detected at 475nm. The method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision (repeatability) (RSD%) and accuracy (recovery). Good linearity was achieved for all amino acids (r(2)>0.9981) in the concentration range of 2.5-40mg/L. The LODs in the range of 0.32-0.56mg/L were obtained. Recoveries of amino acids ranging from 85% to 108%, (n=3) were obtained. The validated method was successfully applied for the determination of amino acids for Sudanese food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Development and validation of a reversed-phase HPLC method for simultaneous estimation of ambroxol hydrochloride and azithromycin in tablet dosage form.

    PubMed

    Shaikh, K A; Patil, S D; Devkhile, A B

    2008-12-15

    A simple, precise and accurate reversed-phase liquid chromatographic method has been developed for the simultaneous estimation of ambroxol hydrochloride and azithromycin in tablet formulations. The chromatographic separation was achieved on a Xterra RP18 (250 mm x 4.6 mm, 5 microm) analytical column. A Mixture of acetonitrile-dipotassium phosphate (30 mM) (50:50, v/v) (pH 9.0) was used as the mobile phase, at a flow rate of 1.7 ml/min and detector wavelength at 215 nm. The retention time of ambroxol and azithromycin was found to be 5.0 and 11.5 min, respectively. The validation of the proposed method was carried out for specificity, linearity, accuracy, precision, limit of detection, limit of quantitation and robustness. The linear dynamic ranges were from 30-180 to 250-1500 microg/ml for ambroxol hydrochloride and azithromycin, respectively. The percentage recovery obtained for ambroxol hydrochloride and azithromycin were 99.40 and 99.90%, respectively. Limit of detection and quantification for azithromycin were 0.8 and 2.3 microg/ml, for ambroxol hydrochloride 0.004 and 0.01 microg/ml, respectively. The developed method can be used for routine quality control analysis of titled drugs in combination in tablet formulation.

  2. A sensitive and rapid determination of ranitidine in human plasma by HPLC with fluorescence detection and its application for a pharmacokinetic study.

    PubMed

    Ulu, Sevgi Tatar; Tuncel, Muzaffer

    2012-04-01

    A novel precolumn derivatization reversed-phase high-performance liquid chromatography method with fluorescence detection is described for the determination of ranitidine in human plasma. The method was based on the reaction of ranitidine with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole forming yellow colored fluorescent product. The separation was achieved on a C(18) column using methanol-water (60:40, v/v) mobile phase. Fluorescence detection was used at the excitation and emission of 458 and 521 nm, respectively. Lisinopril was utilized as an internal standard. The flow rate was 1.2 mL/min. Ranitidine and lisinopril appeared at 3.24 and 2.25 min, respectively. The method was validated for system suitability, precision, accuracy, linearity, limit of detection, limit of quantification, recovery and robustness. Intra- and inter-day precisions of the assays were in the range of 0.01-0.44%. The assay was linear over the concentration range of 50-2000 ng/mL. The mean recovery was determined to be 96.40 ± 0.02%. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (150 mg) of ranitidine. © The Author [2012]. Published by Oxford University Press. All rights reserved.

  3. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers

    PubMed Central

    Thompson, Clarissa A.; Opfer, John E.

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy. PMID:26834688

  4. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers.

    PubMed

    Thompson, Clarissa A; Opfer, John E

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children's representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.

  5. Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study.

    PubMed

    van Hamersvelt, Robbert W; Willemink, Martin J; de Jong, Pim A; Milles, Julien; Vlassenbroek, Alain; Schilham, Arnold M R; Leiner, Tim

    2017-09-01

    The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P < 0.001; ICCs > 0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. • Gadolinium quantification may be useful in patients with contraindication to iodine. • Dual-layer spectral detector CT allows for overall accurate quantification of gadolinium. • Interscan variability of gadolinium quantification using SDCT material decomposition is excellent.

  6. [Performance evaluation of Abbott RealTime HBV Quantification Kit for HBV viral load by real-time PCR].

    PubMed

    Kim, Myeong Hee; Cha, Choong Hwan; An, Dongheui; Choi, Sung Eun; Oh, Heung Bum

    2008-04-01

    Hepatitis B virus (HBV) DNA quantification is necessary for starting and monitoring of antiviral therapy in patients with chronic hepatitis B. This study was intended to assess the clinical performance of Abbott RealTime HBV Quantification kit (Abbott Laboratories, USA). The performance was evaluated in terms of precision, linearity, detection sensitivity, cross-reactivity, and carry-over. A correlation with the Real-Q HBV Quantification kit (BioSewoom Inc., Korea) was also examined using serum samples from 64 patients diagnosed with chronic hepatitis B and underwent lamivudine therapy in Asan Medical Center. We verified the trueness of the system by comparing the outputs with the assigned values of the BBI panel (BBI Diagnostics, USA). Within-run and between-run coefficients of variation (CV) were 3.56-4.71% and 3.03-4.98%, respectively. Linearity was manifested ranging from 53 to 10(9)copies/mL and the detection sensitivity was verified to be 51 copies/mL. None of hepatitis C virus showed cross-reactivity. No cross-contamination occurred when negative and positive samples were alternatively placed in a row. It showed a good correlation with the Real-Q HBV (r(2)=0.9609) and the test results for the BBI panel were also well agreed to the assigned values (r(2)=0.9933). The performance of Abbott RealTime HBV Quantification kit was excellent; thus, it should be widely used in starting and monitoring of antiviral therapy in Korean patients with chronic hepatitis B.

  7. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography.

    PubMed

    Croft, Daniel E; van Hemert, Jano; Wykoff, Charles C; Clifton, David; Verhoek, Michael; Fleming, Alan; Brown, David M

    2014-01-01

    Accurate quantification of retinal surface area from ultra-widefield (UWF) images is challenging due to warping produced when the retina is projected onto a two-dimensional plane for analysis. By accounting for this, the authors sought to precisely montage and accurately quantify retinal surface area in square millimeters. Montages were created using Optos 200Tx (Optos, Dunfermline, U.K.) images taken at different gaze angles. A transformation projected the images to their correct location on a three-dimensional model. Area was quantified with spherical trigonometry. Warping, precision, and accuracy were assessed. Uncorrected, posterior pixels represented up to 79% greater surface area than peripheral pixels. Assessing precision, a standard region was quantified across 10 montages of the same eye (RSD: 0.7%; mean: 408.97 mm(2); range: 405.34-413.87 mm(2)). Assessing accuracy, 50 patients' disc areas were quantified (mean: 2.21 mm(2); SE: 0.06 mm(2)), and the results fell within the normative range. By accounting for warping inherent in UWF images, precise montaging and accurate quantification of retinal surface area in square millimeters were achieved. Copyright 2014, SLACK Incorporated.

  8. Fast microwave-assisted extraction of rotenone for its quantification in seeds of yam bean (Pachyrhizus sp.).

    PubMed

    Lautié, Emmanuelle; Rasse, Catherine; Rozet, Eric; Mourgues, Claire; Vanhelleputte, Jean-Paul; Quetin-Leclercq, Joëlle

    2013-02-01

    The aim of this study was to find if fast microwave-assisted extraction could be an alternative to the conventional Soxhlet extraction for the quantification of rotenone in yam bean seeds by SPE and HPLC-UV. For this purpose, an experimental design was used to determine the optimal conditions of the microwave extraction. Then the values of the quantification on three accessions from two different species of yam bean seeds were compared using the two different kinds of extraction. A microwave extraction of 11 min at 55°C using methanol/dichloromethane (50:50) allowed rotenone extraction either equivalently or more efficiently than the 8-h-Soxhlet extraction method and was less sensitive to moisture content. The selectivity, precision, trueness, accuracy, and limit of quantification of the method with microwave extraction were also demonstrated. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simultaneous digital quantification and fluorescence-based size characterization of massively parallel sequencing libraries.

    PubMed

    Laurie, Matthew T; Bertout, Jessica A; Taylor, Sean D; Burton, Joshua N; Shendure, Jay A; Bielas, Jason H

    2013-08-01

    Due to the high cost of failed runs and suboptimal data yields, quantification and determination of fragment size range are crucial steps in the library preparation process for massively parallel sequencing (or next-generation sequencing). Current library quality control methods commonly involve quantification using real-time quantitative PCR and size determination using gel or capillary electrophoresis. These methods are laborious and subject to a number of significant limitations that can make library calibration unreliable. Herein, we propose and test an alternative method for quality control of sequencing libraries using droplet digital PCR (ddPCR). By exploiting a correlation we have discovered between droplet fluorescence and amplicon size, we achieve the joint quantification and size determination of target DNA with a single ddPCR assay. We demonstrate the accuracy and precision of applying this method to the preparation of sequencing libraries.

  10. An improved method for retrospective quantification of sulfur mustard exposure by detection of its albumin adduct using ultra-high pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, ChangCai; Liang, LongHui; Xiang, Yu; Yu, HuiLan; Zhou, ShiKun; Xi, HaiLing; Liu, ShiLei; Liu, JingQuan

    2015-09-01

    Sulfur mustard (HD) adduct to human serum albumin (ALB) at Cys-34 residue has become an important and long-term retrospective biomarker of HD exposure. Here, a novel, sensitive, and convenient approach for retrospective quantification of HD concentration exposed to plasma was established by detection of the HD-ALB adduct using ultra-high pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with a novel non-isotope internal standard (IS). The HD-ALB adduct was isolated from HD-exposed plasma with blue Sepharose. The adduct was digested with proteinase K to form sulfur-hydroxyethylthioethyl ([S-HETE])-Cys-Pro-Phe tripeptide biomarker. The tripeptide adduct could be directly analyzed by UHPLC-MS/MS without an additional solid phase extraction (SPE), which was considered as a critical procedure in previous methods. The easily available 2-chloroethyl ethylsulfide (2-CEES) as HD surrogate was first reported to be used as IS in place of traditional d8-HD for quantification of HD exposure. Furthermore, 2-CEES was also confirmed to be a good IS alternative for quantification of HD exposure by investigation of product ion spectra for their corresponding tripeptide adducts which exhibited identical MS/MS fragmentation behaviors. The method was found to be linear between 1.00 and 250 ng•mL(-1) HD exposure (R(2)>0.9989) with precision of <4.50% relative standard deviation (%RSD), accuracy range between 96.5% and 114%, and a calculated limit of detection (LOD) of 0.532 ng•mL(-1). The lowest reportable limit (LRL) is 1.00 ng•mL(-1), over seven times lower than that of the previous method. The entire method required only 0.1 mL of plasma sample and took under 7 h without special sample preparation equipment. It is proven to be a sensitive, simple, and rugged method, which is easily applied in international laboratories to improve the capabilities for the analysis of biomedical samples related to verification of the Chemical Weapon Convention (CWC).

  11. Dual quantification of dapivirine and maraviroc in cervicovaginal secretions from ophthalmic tear strips and polyester-based swabs via liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis.

    PubMed

    Parsons, Teresa L; Emory, Joshua F; Seserko, Lauren A; Aung, Wutyi S; Marzinke, Mark A

    2014-09-01

    Topical microbicidal agents are being actively pursued as a modality to prevent HIV viral transmission during sexual intercourse. Quantification of antiretroviral agents in specimen sources where antiviral activity is elicited is critical, and drug measurements in cervicovaginal fluid can provide key information on local drug concentrations. Two antiretroviral drugs, dapivirine and maraviroc, have gained interest as vaginal microbicidal agents, and rugged methods are required for their quantification in cervicovaginal secretions. Cervicovaginal fluid spiked with dapivirine and maraviroc were applied to ophthalmic tear strips or polyester-based swabs to mimic collection procedures used in clinical studies. Following sample extraction and the addition of isotopically labeled internal standards, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis using a Waters BEH C8, 50mm×2.1mm, 1.7μm particle size column, on an API 4000 mass analyzer operated in selective reaction monitoring mode. The method was validated according to FDA Bioanalytical Method Validation guidelines. Due to the disparate saturation capacity of the tested collection devices, the analytical measuring ranges for dapivirine and maravirocin cervicovaginal fluid on the ophthalmic tear strip were 0.05-25ng/tear strip, and 0.025-25ng/tear strip, respectively. As for the polyester-based swab, the analytical measuring ranges were 0.25-125ng/swab for dapivirine and 0.125-125ng/swab for maraviroc. Dilutional studies were performed for both analytes to extended ranges of 25,000ng/tear strip and 11,250ng/swab. Standard curves were generated via weighted (1/x(2)) linear or quadratic regression of calibrators. Precision, accuracy, stability and matrix effects studies were all performed and deemed acceptable according to the recommendations of the FDA Bioanalytical Method Validation guidelines. A rugged LC-MS/MS method for the dual quantification of dapivirine and maraviroc in cervicovaginal fluid using two unique collection devices has been developed and validated. The described method meets the criteria to support large research trials. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dual Quantification of Dapivirine and Maraviroc in Cervicovaginal Secretions from Ophthalmic Tear Strips and Polyester-Based Swabs via Liquid Chromatographic-Tandem Mass Spectrometric (LC-MS/MS) Analysis

    PubMed Central

    Parsons, Teresa L.; Emory, Joshua F.; Seserko, Lauren A.; Aung, Wutyi S.; Marzinke, Mark A.

    2014-01-01

    Background Topical microbicidal agents are being actively pursued as a modality to prevent HIV viral transmission during sexual intercourse. Quantification of antiretroviral agents in specimen sources where antiviral activity is elicited is critical, and drug measurements in cervicovaginal fluid can provide key information on local drug concentrations. Two antiretroviral drugs, dapivirine and maraviroc, have gained interest as vaginal microbicidal agents, and rugged methods are required for their quantification in cervicovaginal secretions. Methods Cervicovaginal fluid spiked with dapivirine and maraviroc were applied to ophthalmic tear strips or polyester-based swabs to mimic collection procedures used in clinical studies. Following sample extraction and the addition of isotopically-labeled internal standards, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis using a Waters BEH C8, 50 × 2.1 mm, 1.7 µm particle size column, on an API 4000 mass analyzer operated in selective reaction monitoring mode. The method was validated according to FDA Bioanalytical Method Validation guidelines. Results Due to the disparate saturation capacity of the tested collection devices, the analytical measuring ranges for dapivirine and maravirocin cervicovaginal fluid on the ophthalmic tear strip were 0.05 to 25 ng/tear strip, and 0.025 to 25 ng/tear strip, respectively. As for the polyester-based swab, the analytical measuring ranges were 0.25 to 125 ng/swab for dapivirine and 0.125 to 125 ng/swab for maraviroc. Dilutional studies were performed for both analytes to extended ranges of 25,000 ng/tear strip and 11,250 ng/swab. Standard curves were generated via weighted (1/x2) linear or quadratic regression of calibrators. Precision, accuracy, stability and matrix effects studies were all performed and deemed acceptable according to the recommendations of the FDA Bioanalytical Method Validation guidelines. Conclusions A rugged LC-MS/MS method for the dual quantification of dapivirine and maraviroc in cervicovaginal fluid using two unique collection devices has been developed and validated. The described method meets the criteria to support large research trials. PMID:25005891

  13. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET.

    PubMed

    Karakatsanis, Nicolas A; Zhou, Yun; Lodge, Martin A; Casey, Michael E; Wahl, Richard L; Zaidi, Habib; Rahmim, Arman

    2015-11-21

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16-18% and 20-40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV values.

  14. Quantification of glutathione in the human brain by MR spectroscopy at 3 Tesla: Comparison of PRESS and MEGA‐PRESS

    PubMed Central

    Sanaei Nezhad, Faezeh; Anton, Adriana; Parkes, Laura M.; Deakin, Bill

    2016-01-01

    Purpose Glutathione (GSH) is an important intracellular antioxidant in the brain. A number of studies report its measurement by localized 1H spectroscopy using PRESS and STEAM. This study evaluates the reliability and accuracy of GSH measurements from PRESS at 3 Tesla (T) and compares the results to those obtained with MEGA‐PRESS. Methods Phantoms containing brain metabolites, identical except for variable GSH concentration between 0 and 24 mM, were scanned using PRESS (echo time (TE) = 35 ms) and MEGA‐PRESS (optimized TE = 130 ms) at 3 T. Spectra of the anterior cingulate cortex and occipital cortex in seven healthy volunteers were also acquired. Results Phantom GSH concentrations from 0 to 3mM were unreliably quantified using PRESS, although at 4 mM and above there was a linear relationship between measured and true concentrations (R2 = 0.99). Using MEGA‐PRESS, there was no signal detected at 0 mM GSH, plus a linear relationship (R2 = 0.99) over the full range from 0–24 mM. In brain, concentrations calculated from MEGA‐PRESS and PRESS were significantly different in occipital cortex (P < 0.001). Moreover, only MEGA‐PRESS reported significant differences in GSH between the two brain regions (P = 0.003). Conclusion Due to uncertainties in GSH quantification raised by the study, the authors conclude that physiological concentrations (<4 mM) of GSH cannot be reliably quantified from PRESS (TE = 35 ms) spectra at 3 T. Magn Reson Med 78:1257–1266, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27797108

  15. Dynamic monitoring of blood-brain barrier integrity using water exchange index (WEI) during mannitol and CO2 challenges in mouse brain.

    PubMed

    Huang, Shuning; Farrar, Christian T; Dai, Guangping; Kwon, Seon Joo; Bogdanov, Alexei A; Rosen, Bruce R; Kim, Young R

    2013-04-01

    The integrity of the blood-brain barrier (BBB) is critical to normal brain function. Traditional techniques for the assessment of BBB disruption rely heavily on the spatiotemporal analysis of extravasating contrast agents. However, such methods based on the leakage of relatively large molecules are not suitable for the detection of subtle BBB impairment or for the performance of repeated measurements in a short time frame. Quantification of the water exchange rate constant (WER) across the BBB using strictly intravascular contrast agents could provide a much more sensitive method for the quantification of the BBB integrity. To estimate WER, we have recently devised a powerful new method using a water exchange index (WEI) biomarker and demonstrated BBB disruption in an acute stroke model. Here, we confirm that WEI is sensitive to even very subtle changes in the integrity of the BBB caused by: (i) systemic hypercapnia and (ii) low doses of a hyperosmolar solution. In addition, we have examined the sensitivity and accuracy of WEI as a biomarker of WER using computer simulation. In particular, the dependence of the WEI-WER relation on changes in vascular blood volume, T1 relaxation of cellular magnetization and transcytolemmal water exchange was explored. Simulated WEI was found to vary linearly with WER for typically encountered exchange rate constants (1-4 Hz), regardless of the blood volume. However, for very high WER (>5 Hz), WEI became progressively more insensitive to increasing WER. The incorporation of transcytolemmal water exchange, using a three-compartment tissue model, helped to extend the linear WEI regime to slightly higher WER, but had no significant effect for most physiologically important WERs (WER < 4 Hz). Variation in cellular T1 had no effect on WEI. Using both theoretical and experimental approaches, our study validates the utility of the WEI biomarker for the monitoring of BBB integrity. Copyright © 2012 John Wiley & Sons, Ltd.

  16. A Study of Method Development, Validation, and Forced Degradation for Simultaneous Quantification of Paracetamol and Ibuprofen in Pharmaceutical Dosage Form by RP-HPLC Method

    PubMed Central

    Jahan, Md. Sarowar; Islam, Md. Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma

    2014-01-01

    A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R2) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R2 > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0–103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5–20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition. PMID:25452691

  17. A Study of Method Development, Validation, and Forced Degradation for Simultaneous Quantification of Paracetamol and Ibuprofen in Pharmaceutical Dosage Form by RP-HPLC Method.

    PubMed

    Jahan, Md Sarowar; Islam, Md Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma

    2014-01-01

    A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R (2)) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R (2) > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0-103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5-20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition.

  18. Determination of oxycodone and its major metabolites noroxycodone and oxymorphone by ultra-high-performance liquid chromatography tandem mass spectrometry in plasma and urine: application to real cases.

    PubMed

    Pantano, Flaminia; Brauneis, Stefano; Forneris, Alexandre; Pacifici, Roberta; Marinelli, Enrico; Kyriakou, Chrystalla; Pichini, Simona; Busardò, Francesco Paolo

    2017-08-28

    Oxycodone is a narcotic drug widely used to alleviate moderate and severe acute and chronic pain. Variability in analgesic efficacy could be explained by inter-subject variations in plasma concentrations of parent drug and its active metabolite, oxymorphone. To evaluate patient compliance and to set up therapeutic drug monitoring (TDM), an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay was developed and validated for the parent drug and its major metabolites noroxycodone and oxymorphone. Extraction of analytes from plasma and urine samples was obtained by simple liquid-liquid extraction. The chromatographic separation was achieved with a reversed phase column using a linear gradient elution with two solvents: acetic acid 1% in water and methanol. The separated analytes were detected with a triple quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode via positive electrospray ionization (ESI). Separation of analytes was obtained in less than 5 min. Linear calibration curves for all the analytes under investigation in urine and plasma samples showed determination coefficients (r2) equal or higher than 0.990. Mean absolute analytical recoveries were always above 86%. Intra- and inter-assay precision (measured as coefficient of variation, CV%) and accuracy (measured as % error) values were always better than 13%. Limit of detection at 0.06 and 0.15 ng/mL and limit of quantification at 0.2 and 0.5 ng/mL for plasma and urine samples, respectively, were adequate for the purpose of the present study. Rapid extraction, identification and quantification of oxycodone and its metabolites both in urine and plasma by UHPLC-MS/MS assay was tested for its feasibility in clinical samples and provided excellent results for rapid and effective drug testing in patients under oxycodone treatment.

  19. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    PubMed

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; P<0.0001), with an average bias of -0.24 log 10 copies/ml. The in-house developed HHV-6 qPCR method is a sensitive and reliable assay with lower cost for the detection and quantification of HHV-6 DNA when compared to the RealStar ® HHV-6 PCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Determination of picloram in natural waters employing sequential injection square wave voltammetry using the hanging mercury drop electrode.

    PubMed

    Dos Santos, Luciana B O; Masini, Jorge C

    2007-05-15

    This paper describes the development of a sequential injection analysis method to automate the determination of picloram by square wave voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. To perform these tasks, an 800muL monosegment is formed, composed by 400muL of sample and 400muL of conditioning/standard solution, in medium of 0.10molL(-1) H(2)SO(4). Homogenization of the monosegment is achieved by three flow reversals. After homogenization the mixture zone is injected toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode, at a flow rate of 50muLs(-1). After a suitable delay time, the potential is scanned from -0.5 to -1.0V versus Ag/AgCl at frequency of 300Hz and pulse height of 25mV. The linear dynamic range is observed for picloram concentrations between 0.10 and 2.50mgL(-1) fitting to the linear equation I(p)=(-2.19+/-0.03)C(picloram)+(0.096+/-0.039), with R(2)=0.9996, for which the slope is given in muALmg(-1). The detection and quantification limits are 0.036 and 0.12mgL(-1), respectively. The sampling frequency is 37h(-1) when the standard addition protocol is followed, but can be increased to 41h(-1) if the protocol to obtain in-line external calibration curve is used for quantification. The method was applied for determination of picloram in spiked water samples and the accuracy was evaluated by comparison with high performance liquid chromatography using molecular absorption at 220nm for detection. No evidences of statistically significant differences between the two methods were observed.

  1. Complexity in estimation of esomeprazole and its related impurities' stability in various stress conditions in low-dose aspirin and esomeprazole magnesium capsules.

    PubMed

    Reddy, Palavai Sripal; Hotha, Kishore Kumar; Sait, Shakil

    2013-01-01

    A complex, sensitive, and precise high-performance liquid chromatographic method for the profiling of impurities of esomeprazole in low-dose aspirin and esomeprazole capsules has been developed, validated, and used for the determination of impurities in pharmaceutical products. Esomeprazole and its related impurities' development in the presence of aspirin was traditionally difficult due to aspirin's sensitivity to basic conditions and esomeprazole's sensitivity to acidic conditions. When aspirin is under basic, humid, and extreme temperature conditions, it produces salicylic acid and acetic acid moieties. These two byproducts create an acidic environment for the esomeprazole. Due to the volatility and migration phenomenon of the produced acetic acid and salicylic acid from aspirin in the capsule dosage form, esomeprazole's purity, stability, and quantification are affected. The objective of the present research work was to develop a gradient reversed-phase liquid chromatographic method to separate all the degradation products and process-related impurities from the main peak. The impurities were well-separated on a RP8 column (150 mm × 4.6mm, X-terra, RP8, 3.5μm) by the gradient program using a glycine buffer (0.08 M, pH adjusted to 9.0 with 50% NaOH), acetonitrile, and methanol at a flow rate of 1.0 mL min(-1) with detection wavelength at 305 nm and column temperature at 30°C. The developed method was found to be specific, precise, linear, accurate, rugged, and robust. LOQ values for all of the known impurities were below reporting thresholds. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation in the presence of aspirin. The developed RP-HPLC method was validated according to the present ICH guidelines for specificity, linearity, accuracy, precision, limit of detection, limit of quantification, ruggedness, and robustness.

  2. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Zhou, Yun; Lodge, Martin A.; Casey, Michael E.; Wahl, Richard L.; Zaidi, Habib; Rahmim, Arman

    2015-11-01

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16-18% and 20-40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV values.

  3. Determination of ochratoxin A in fruit juice by high-performance liquid chromatography after vortex-assisted emulsification microextraction based on solidification of floating organic drop.

    PubMed

    Asadi, Mohammad

    2018-03-01

    A rapid, simple, and green vortex-assisted emulsification microextraction method based on solidification of floating organic drop was developed for the extraction and determination of ochratoxin A (OTA) with high-performance liquid chromatography. Some factors influencing the extraction efficiency of OTA such as the type and volume of extraction solvent, sample pH, salt concentration, vortex time, and sample volume were optimized. Under optimized conditions, the calibration curve exhibited linearity in the range of 50.0-500 ng L -1 with a coefficient of determination higher than 0.999. The limit of detection was 15.0 ng L -1 . The inter- and intra-assays relative standard deviations were in a range of 4.7-8.7%. The accuracy of the developed method was investigated through recovery experiments, and it was successfully used for the quantification of OTA in 40 samples of fruit juice.

  4. Rapid determination of tartaric acid in wines.

    PubMed

    Bastos, Sandra S T; Tafulo, Paula A R; Queirós, Raquel B; Matos, Cristina D; Sales, M Goreti F

    2009-08-01

    A flow-spectrophotometric method is proposed for the routine determination of tartaric acid in wines. The reaction between tartaric acid and vanadate in acetic media is carried out in flowing conditions and the subsequent colored complex is monitored at 475 nm. The stability of the complex and the corresponding formation constant are presented. The effect of wavelength and pH was evaluated by batch experiments. The selected conditions were transposed to a flow-injection analytical system. Optimization of several flow parameters such as reactor lengths, flow-rate and injection volume was carried out. Using optimized conditions, a linear behavior was observed up to 1000 microg mL(-1) tartaric acid, with a molar extinction coefficient of 450 L mg(-1) cm(-1) and +/- 1 % repeatability. Sample throughput was 25 samples per hour. The flow-spectrophotometric method was satisfactorily applied to the quantification of TA in wines from different sources. Its accuracy was confirmed by statistical comparison to the conventional Rebelein procedure and to a certified analytical method carried out in a routine laboratory.

  5. Validation Thin Layer Chromatography for the Determination of Acetaminophen in Tablets and Comparison with a Pharmacopeial Method

    PubMed Central

    Pyka, Alina; Budzisz, Marika; Dołowy, Małgorzata

    2013-01-01

    Adsorption thin layer chromatography (NP-TLC) with densitometry has been established for the identification and the quantification of acetaminophen in three leading commercial products of pharmaceutical tablets coded as brand: P1 (Product no. 1), P2 (Product no. 2), and P3 (Product no. 3). Applied chromatographic conditions have separated acetaminophen from its related substances, namely, 4-aminophenol and and 4′-chloroacetanilide. UV densitometry was performed in absorbance mode at 248 nm. The presented method was validated by specificity, range, linearity, accuracy, precision, detection limit, quantitative limit, and robustness. The TLC-densitometric method was also compared with a pharmacopeial UV-spectrophotometric method for the assay of acetaminophen, and the results confirmed statistically that the NP-TLC-densitometric method can be used as a substitute method. It could be said that the validated NP-TLC-densitometric method is suitable for the routine analysis of acetaminophen in quantity control laboratories. PMID:24063006

  6. Development and validation of an MEKC method for determination of nitrogen-containing drugs in pharmaceutical preparations.

    PubMed

    Buiarelli, Francesca; Coccioli, Franco; Jasionowska, Renata; Terracciano, Alessandro

    2008-09-01

    A fast and accurate micellar electrokinetic capillary chromatography method was developed for quality control of pharmaceutical preparations containing cold remedies as acetaminophen, salicylamide, caffeine, phenylephrine, pseudoephedrine, norephedrine and chlorpheniramine. The method optimization was realized on a Beckman P/ACE System MDQ instrument. The baseline separation of seven analytes was performed in an uncoated fused silica capillary internal diameter (ID)=50 microm using tris-borate (20 mM, pH=8.5) containing sodium dodecyl sulphate 30 mM BGE. On line-UV detection at 214 nm was performed and the applied voltage was 10 kV. The operating temperature was 25 degrees C. After experimental conditions optimization, the proposed method was validated. The evaluated parameters were: precision of migration time and of corrected peak area ratio, linearity range, limit of detection, limit of quantification, accuracy (recovery), ruggedness and applicability. The method was then successfully applied for the analysis of three pharmaceutical preparations containing some of the analytes listed before.

  7. Determination of proline in honey: comparison between official methods, optimization and validation of the analytical methodology.

    PubMed

    Truzzi, Cristina; Annibaldi, Anna; Illuminati, Silvia; Finale, Carolina; Scarponi, Giuseppe

    2014-05-01

    The study compares official spectrophotometric methods for the determination of proline content in honey - those of the International Honey Commission (IHC) and the Association of Official Analytical Chemists (AOAC) - with the original Ough method. Results show that the extra time-consuming treatment stages added by the IHC method with respect to the Ough method are pointless. We demonstrate that the AOACs method proves to be the best in terms of accuracy and time saving. The optimized waiting time for the absorbance recording is set at 35min from the removal of reaction tubes from the boiling bath used in the sample treatment. The optimized method was validated in the matrix: linearity up to 1800mgL(-1), limit of detection 20mgL(-1), limit of quantification 61mgL(-1). The method was applied to 43 unifloral honey samples from the Marche region, Italy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Simultaneous Determination of Potassium Sorbate, Sodium Benzoate, Quinoline Yellow and Sunset Yellow in Lemonades and Lemon Sauces by HPLC Using Experimental Design.

    PubMed

    Dinç Zor, Şule; Aşçı, Bürge; Aksu Dönmez, Özlem; Yıldırım Küçükkaraca, Dilek

    2016-07-01

    In this study, development and validation of a HPLC method was described for simultaneous determination of potassium sorbate, sodium benzoate, quinoline yellow and sunset yellow. A Box-Behnken design using three variables at three levels was employed to determine the optimum conditions of chromatographic separation: pH of mobile phase, 6.0-7.0; flow rate, 0.8-1.2 mL min(-1) and the ratio of mobile phase composed of a 0.025 M sodium acetate/acetic acid buffer, 80-90%. Resolution was chosen as a response. The optimized method was validated for linearity, the limits of detection and quantification, accuracy, precision and stability. All the validation parameters were within the acceptance range. The applicability of the developed method to the determination of these food additives in commercial lemonade and lemon sauce samples was successfully demonstrated. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Application of dietary fiber method AOAC 2011.25 in fruit and comparison with AOAC 991.43 method.

    PubMed

    Tobaruela, Eric de C; Santos, Aline de O; Almeida-Muradian, Ligia B de; Araujo, Elias da S; Lajolo, Franco M; Menezes, Elizabete W

    2018-01-01

    AOAC 2011.25 method enables the quantification of most of the dietary fiber (DF) components according to the definition proposed by Codex Alimentarius. This study aimed to compare the DF content in fruits analyzed by the AOAC 2011.25 and AOAC 991.43 methods. Plums (Prunus salicina), atemoyas (Annona x atemoya), jackfruits (Artocarpus heterophyllus), and mature coconuts (Cocos nucifera) from different Brazilian regions (3 lots/fruit) were analyzed for DF, resistant starch, and fructans contents. The AOAC 2011.25 method was evaluated for precision, accuracy, and linearity in different food matrices and carbohydrate standards. The DF contents of plums, atemoyas, and jackfruits obtained by AOAC 2011.25 was higher than those obtained by AOAC 991.43 due to the presence of fructans. The DF content of mature coconuts obtained by the same methods did not present a significant difference. The AOAC 2011.25 method is recommended for fruits with considerable fructans content because it achieves more accurate values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Simultaneous quantification of fluoxetine and norfluoxetine in colostrum and mature human milk using a 2-dimensional liquid chromatography-tandem mass spectrometry system.

    PubMed

    Lopes, Bianca Rebelo; Cassiano, Neila Maria; Carvalho, Daniela Miarelli; Moisés, Elaine Christine Dantas; Cass, Quezia Bezerra

    2018-02-20

    A two-dimensional liquid chromatography system coupled to triple quadrupole tandem mass spectrometer (2D LC-MS/MS) was employed for the determination of fluoxetine (FLU) and norfluoxetine (N-FLU) in colostrum and mature milk by direct sample injection. With a run time of 12 min representing a gain in throughput analysis, the validated methods furnished selectivity, extraction efficiency, accuracy, and precision in accordance with the criteria preconized by the European Medicines Agency guidelines. With a linear range of 3.00-150 ng/mL for FLU and 4.00-200 ng/mL for N-FLU they were applied to the analysis of colostrum and mature milk samples from nursing mothers. The paper discusses the differences and similarity of sample preparation for this two sample matrices. The herein reported methods are an advance in sample preparation procedures providing waste reduction and a sustainable approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Determination of patulin in commercial apple juice by micellar electrokinetic chromatography.

    PubMed

    Murillo, M; González-Peñas, E; Amézqueta, S

    2008-01-01

    A novel and validated micellar electrokinetic capillary chromatography (MEKC) method using ultraviolet detection (UV) has been applied to the quantitative analysis of patulin (PAT) in commercial apple juice. Patulin was extracted from samples with an ethylacetate solution. The micellar electrokinetic capillary chromatography (MECK) parameters studied for method optimization were buffer composition, voltage, temperature, and a separation between PAT and 5-hydroxymethylfurfural (HMF) (main interference in apple juice PAT analysis) peaks until reaching baseline. The method passes a series of validation tests including selectivity, linearity, limit of detection and quantification (0.7 and 2.5 microgL(-1), respectively), precision (within and between-day variability) and recovery (80.2% RSD=4%), accuracy, and robustness. This method was successfully applied to the measurement of 20 apple juice samples obtained from different supermarkets. One hundred percent of the samples were contaminated with a level greater than the limit of detection, with mean and median values of 41.3 and 35.7 microgL(-1), respectively.

  12. Cadmium and lead in chocolates commercialized in Brazil.

    PubMed

    Villa, Javier E L; Peixoto, Rafaella R A; Cadore, Solange

    2014-08-27

    Cadmium (Cd) and lead (Pb) concentrations and their relationship to the cocoa content of chocolates commercialized in Brazil were evaluated by graphite furnace atomic absorption spectrometry (GF AAS) after microwave-assisted acid digestion. Several chemical modifiers were tested during method development, and analytical parameters, including the limits of detection and quantification as well as the accuracy and precision of the overall procedure, were assessed. The study examined 30 chocolate samples, and the concentrations of Cd and Pb were in the range of <1.7-107.6 and <21-138.4 ng/g, respectively. The results indicated that dark chocolates have higher concentrations of Cd and Pb than milk and white chocolates. Furthermore, samples with five different cocoa contents (ranging from 34 to 85%) from the same brand were analyzed, and linear correlations between the cocoa content and the concentrations of Cd (R(2) = 0.907) and Pb (R(2) = 0.955) were observed. The results showed that chocolate might be a significant source of Cd and Pb ingestion, particularly for children.

  13. Development and Validation of a Stability-Indicating Assay of Etofenamate by RP-HPLC and Characterization of Degradation Products

    PubMed Central

    Peraman, Ramalingam; Nayakanti, Devanna; Dugga, Hari Hara Theja; Kodikonda, Sudhakara

    2013-01-01

    A validated stability-indicating RP-HPLC method for etofenamate (ETF) was developed by separating its degradation products on a C18 (250 mm × 4.6 mm 5 μm) Qualisil BDS column using a phosphate buffer (pH-adjusted to 6.0 with orthophosphoric acid) and methanol in the ratio of 20:80 % v/v as the mobile phase at a flow rate of 1.0 mL/min. The column effluents were monitored by a photodiode array detector set at 286 nm. The method was validated in terms of specificity, linearity, accuracy, precision, detection limit, quantification limit, and robustness. Forced degradation of etofenamate was carried out under acidic, basic, thermal, photo, and peroxide conditions and the major degradation products of acidic and basic degradation were isolated and characterized by 1H-NMR, 13C-NMR, and mass spectral studies. The mass balance of the method varied between 92–99%. PMID:24482770

  14. Quantification of urinary zwitterionic organic acids using weak-anion exchange chromatography with tandem MS detection.

    PubMed

    Bishop, Michael Jason; Crow, Brian S; Kovalcik, Kasey D; George, Joe; Bralley, James A

    2007-04-01

    A rapid and accurate quantitative method was developed and validated for the analysis of four urinary organic acids with nitrogen containing functional groups, formiminoglutamic acid (FIGLU), pyroglutamic acid (PYRGLU), 5-hydroxyindoleacetic acid (5-HIAA), and 2-methylhippuric acid (2-METHIP) by liquid chromatography tandem mass spectrometry (LC/MS/MS). The chromatography was developed using a weak anion-exchange amino column that provided mixed-mode retention of the analytes. The elution gradient relied on changes in mobile phase pH over a concave gradient, without the use of counter-ions or concentrated salt buffers. A simple sample preparation was used, only requiring the dilution of urine prior to instrumental analysis. The method was validated based on linearity (r2>or=0.995), accuracy (85-115%), precision (C.V.<12%), sample preparation stability (

  15. Standardization of HPTLC method for the estimation of oxytocin in edibles.

    PubMed

    Rani, Roopa; Medhe, Sharad; Raj, Kumar Rohit; Srivastava, Manmohan

    2013-12-01

    Adulteration in food stuff has been regarded as a major social evil and is a mind-boggling problem in society. In this study, a rapid, reliable and cost effective High Performance thin layer Chromatography (HPTLC) has been established for the estimation of oxytocin (adulterant) in vegetables, fruits and milk samples. Oxytocin is one of the most frequently used adulterant added in vegetables and fruits for increasing the growth rate and also to enhance milk production from lactating animals. The standardization of the method was based on simulation parameters of mobile phase, stationary phase and saturation time. The mobile phase used was MeOH: Ammonia (pH 6.8), optimized stationary phase was silica gel and saturation time of 5 min. The method was validated by testing its linearity, accuracy, precision, repeatability and limits of detection and quantification. Thus, the proposed method is simple, rapid and specific and was successfully employed for quality and quantity monitoring of oxytocin content in edible products.

  16. Structural elucidation of potential impurities in Azilsartan bulk drug by HPLC.

    PubMed

    Zhou, Wentao; Zhou, Yuxia; Sun, Lili; Zou, Qiaogen; Wei, Ping; Ouyang, Pingkai

    2014-01-01

    During the synthesis of Azilsartan (AZS), it was speculated that 15 potential impurities would arise. This study investigated the possible mechanism for the formation of 14 of them, and their structures were characterized and confirmed by IR, NMR, and MS techniques. In addition, an efficient chromatographic method was developed to separate and quantify these impurities, using an Inertsil ODS-3 column (250 x 4.6 mm, 5 pm) in gradient mode with a mixture of acetonitrile and the potassium dihydrogen orthophosphate buffer (10 mM, pH adjusted to 3.0 with phosphoric acid). The HPLC method was validated for specificity, precision, accuracy, and sensitivity. LOQ of impurities were in the range of 1.04-2.20 ng. Correlation coefficient values of linearity were >0.9996 for AZS and its impurities. The mean recoveries of all impurities in AZS were between 93.0 and 109.7%. Thus, the validated HPLC method is suitable for the separation and quantification of all potential impurities in AZS.

  17. Simultaneous UHPLC-UV analysis of hydroxychloroquine, minocycline and doxycycline from serum samples for the therapeutic drug monitoring of Q fever and Whipple's disease.

    PubMed

    Armstrong, Nicholas; Richez, Magali; Raoult, Didier; Chabriere, Eric

    2017-08-15

    A fast UHPLC-UV method was developed for the simultaneous analysis of Hydroxychloroquine, Minocycline and Doxycycline drugs from 100μL of human serum samples. Serum samples were extracted by liquid-liquid extraction and injected into a phenyl hexyl reverse phase column. Compounds were separated using a mobile phase linear gradient and monitored by UV detection at 343nm. Chloroquine and Oxytetracycline were used as internal standards. Lower and upper limits of quantifications, as well as the other levels of calibration, were validated with acceptable accuracy (<15% deviation) and precision (<15% coefficient of variation) according to the European Medicines Agency guidelines. This new method enables cost and time reduction and was considered suitable for the clinical laboratory. It is the first published assay for the therapeutic drug monitoring of patients diagnosed with Q fever or Whipple's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A sensitive liquid chromatography-mass spectrometry method for the simultaneous determination in plasma of pentacyclic triterpenes of Olea europaea L.

    PubMed

    Giménez, Estela; Juan, M Emília; Calvo-Melià, Sara; Planas, Joana M

    2017-08-15

    Table olives are especially rich in pentacyclic triterpenic compounds, which exert several biological activities. A crucial step in order to know if these compounds could contribute to the beneficial and healthy properties of this food is their measurement in blood. Therefore, the present study describes a simple and accurate liquid-liquid extraction followed by LC-QqQ-MS analysis for the simultaneous determination of the main pentacyclic triterpenes from Olea europaea L. in rat plasma. The method was validated by the analysis of blank plasma samples spiked with pure compounds, obtaining a linear correlation, adequate sensitivity with a limit of quantification ranging from 1nM for maslinic acid to 10nM for uvaol. Precision and accuracy were lower than 10% in all cases and recoveries were between 95 and 104%. The oral administration of olives to rats and its determination in plasma verified that the established methodology is appropriate for bioavailability studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat.

    PubMed

    Colovic, Milena; Caccia, Silvio

    2003-07-05

    An isocratic reversed-phase high-performance liquid chromatographic procedure was developed for the determination of minocycline in rat plasma and brain and applied to brain-to-blood (plasma) distribution studies. The procedure is based on isolation of the compound and the internal standard (either demeclocycline or tetracycline may be used) from plasma and brain constituents using the Oasis HLB cartridge, with satisfactory recovery and specificity, and separation on a Symmetry Shield RP8 (15 cm x 4.6 mm, 3.5 microm) column coupled with a UV detector set at 350 nm. The assay was linear over a wide range, with a lower limit of quantification of 50 ng ml(-1) or g(-1), using 0.2 ml of plasma and about 200 mg of brain tissue. Precision and accuracy were acceptable. In the rat minocycline crossed the blood-brain barrier slowly, achieving mean brain concentrations between 30 and 40% of the equivalent systemic exposure, regardless of the dose and route of administration.

  20. Quantification of transformation products of rocket fuel unsymmetrical dimethylhydrazine in soils using SPME and GC-MS.

    PubMed

    Bakaikina, Nadezhda V; Kenessov, Bulat; Ul'yanovskii, Nikolay V; Kosyakov, Dmitry S

    2018-07-01

    Determination of transformation products (TPs) of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in soil is highly important for environmental impact assessment of the launches of heavy space rockets from Kazakhstan, Russia, China and India. The method based on headspace solid-phase microextraction (HS SPME) and gas chromatography-mass spectrometry is advantageous over other known methods due to greater simplicity and cost efficiency. However, accurate quantification of these analytes using HS SPME is limited by the matrix effect. In this research, we proposed using internal standard and standard addition calibrations to achieve proper combination of accuracies of the quantification of key TPs of UDMH and cost efficiency. 1-Trideuteromethyl-1H-1,2,4-triazole (MTA-d3) was used as the internal standard. Internal standard calibration allowed controlling matrix effects during quantification of 1-methyl-1H-1,2,4-triazole (MTA), N,N-dimethylformamide (DMF), and N-nitrosodimethylamine (NDMA) in soils with humus content < 1%. Using SPME at 60 °C for 15 min by 65 µm Carboxen/polydimethylsiloxane fiber, recoveries of MTA, DMF and NDMA for sandy and loamy soil samples were 91-117, 85-123 and 64-132%, respectively. For improving the method accuracy and widening the range of analytes, standard addition and its combination with internal standard calibration were tested and compared on real soil samples. The combined calibration approach provided greatest accuracies for NDMA, DMF, N-methylformamide, formamide, 1H-pyrazole, 3-methyl-1H-pyrazole and 1H-pyrazole. For determination of 1-formyl-2,2-dimethylhydrazine, 3,5-dimethylpyrazole, 2-ethyl-1H-imidazole, 1H-imidazole, 1H-1,2,4-triazole, pyrazines and pyridines, standard addition calibration is more suitable. However, the proposed approach and collected data allow using both approaches simultaneously. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Development and validation of an LC-MS/MS method for quantification of cyclic guanosine 3',5'-monophosphate (cGMP) in clinical applications: a comparison with a EIA method.

    PubMed

    Zhang, Yanhua; Dufield, Dawn; Klover, Jon; Li, Wenlin; Szekely-Klepser, Gabriella; Lepsy, Christopher; Sadagopan, Nalini

    2009-02-15

    An LC-MS/MS method was developed and validated to quantify endogenous cyclic guanosine 3',5'-monophosphate (cGMP) in human plasma. The LC-MS/MS and competitive enzyme immunoassay (EIA) assays were compared. cGMP concentrations of 20 human plasma samples were measured by both methods. For the MS-based assay, plasma samples were subjected to a simple protein precipitation procedure by acetonitrile prior to analysis by electrospray ionization LC-MS/MS. De-protonated analytes generated in negative ionization mode were monitored through multiple reaction monitoring (MRM). A stable isotope-labeled internal standard, (13)C(10),(15)N(5)-cGMP, which was biosynthesized in-house, was used in the LC-MS/MS method. The competitive EIA was validated using a commercially available cGMP fluorescence assay kit. The intra-assay accuracy and precision for MS-based assay for cGMP were 6-10.1% CV and -3.6% to 7.3% relative error (RE), respectively, while inter-assay precision and accuracy were 5.6-8.1% CV and -2.1% to 6.3% RE, respectively. The intra-assay accuracy and precision for EIA were 17.9-27.1% CV and -4.9% to 24.5% RE, respectively, while inter-assay precision and accuracy were 15.1-39.5% CV and -30.8% to 4.37% RE, respectively. Near the lower limits of detection, there was little correlation between the cGMP concentration values in human plasma generated by these two methods (R(2)=0.197, P=0.05). Overall, the MS-based assay offered better selectivity, recovery, precision and accuracy over a linear range of 0.5-20ng/mL. The LC-MS/MS method provides an effective tool for the quantitation of cGMP to support clinical mechanistic studies of curative pharmaceuticals.

  2. HPLC-MRM relative quantification analysis of fatty acids based on a novel derivatization strategy.

    PubMed

    Cai, Tie; Ting, Hu; Xin-Xiang, Zhang; Jiang, Zhou; Jin-Lan, Zhang

    2014-12-07

    Fatty acids (FAs) are associated with a series of diseases including tumors, diabetes, and heart diseases. As potential biomarkers, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. However, poor ionization efficiency, extreme diversity, strict dependence on internal standards and complicated multiple reaction monitoring (MRM) optimization protocols have challenged efforts to quantify FAs. In this work, a novel derivatization strategy based on 2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine was developed to enable quantification of FAs. The sensitivity of FA detection was significantly enhanced as a result of the derivatization procedure. FA quantities as low as 10 fg could be detected by high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. General MRM conditions were developed for any FA, which facilitated the quantification and extended the application of the method. The FA quantification strategy based on HPLC-MRM was carried out using deuterated derivatization reagents. "Heavy" derivatization reagents were used as internal standards (ISs) to minimize matrix effects. Prior to statistical analysis, amounts of each FA species were normalized by their corresponding IS, which guaranteed the accuracy and reliability of the method. FA changes in plasma induced by ageing were studied using this strategy. Several FA species were identified as potential ageing biomarkers. The sensitivity, accuracy, reliability, and full coverage of the method ensure that this strategy has strong potential for both biomarker discovery and lipidomic research.

  3. Toward computer-aided emphysema quantification on ultralow-dose CT: reproducibility of ventrodorsal gravity effect measurement and correction

    NASA Astrophysics Data System (ADS)

    Wiemker, Rafael; Opfer, Roland; Bülow, Thomas; Rogalla, Patrik; Steinberg, Amnon; Dharaiya, Ekta; Subramanyan, Krishna

    2007-03-01

    Computer aided quantification of emphysema in high resolution CT data is based on identifying low attenuation areas below clinically determined Hounsfield thresholds. However, the emphysema quantification is prone to error since a gravity effect can influence the mean attenuation of healthy lung parenchyma up to +/- 50 HU between ventral and dorsal lung areas. Comparing ultra-low-dose (7 mAs) and standard-dose (70 mAs) CT scans of each patient we show that measurement of the ventrodorsal gravity effect is patient specific but reproducible. It can be measured and corrected in an unsupervised way using robust fitting of a linear function.

  4. Quantification of doping compounds in faecal samples from racing pigeons, by liquid chromatography-tandem mass spectrometry.

    PubMed

    Moreira, Fernando X; Silva, Renata; André, Maria B; de Pinho, Paula G; Bastos, Maria L; Ruivo, João; Ruivo, Patrícia; Carmo, Helena

    2018-07-01

    The use of performance enhancing drugs is not only common in humans, but also in animal sports, including racing of horses, greyhounds and pigeons. The development of accurate analytical procedures to detect doping agents in sports is crucial in order to protect the fair-play of the game, avoid financial fraud in the attribution of eventual awards and, even more important, to protect the animals from harmful drugs and/or dangerous dosage regimens. The present study aimed to develop and validate, a method that enabled the screening and confirmation of the presence of a beta-agonist (clenbuterol) and three corticosteroids (betamethasone, prednisolone and budesonide) in faeces from pigeons. The extraction procedure entailed the combination of liquid-liquid extraction with solid-phase extraction and the analysis was performed by liquid- chromatography coupled to tandem mass spectrometry, with a single 15 minute chromatographic run-time. The method was validated concerning selectivity, linearity (with coefficients of determination always >0.99), accuracy (87.5-114.9%), inter-day and intra-day precisions, limits of detection (0.14-1.81 ng/g) and limits of quantification (0.49-6.08 ng/g), stability and extraction recovery (71.0%-99.3%). The method was successfully applied for the analysis of samples from two pigeons that had been orally administered betamethasone, demonstrating its suitability for doping control purposes. Copyright © 2018. Published by Elsevier B.V.

  5. Simultaneous determination of four 5-hydroxy polymethoxyflavones by reversed-phase high performance liquid chromatography with electrochemical detection.

    PubMed

    Dong, Ping; Qiu, Peiju; Zhu, Yi; Li, Shiming; Ho, Chi-Tang; McClements, David Julian; Xiao, Hang

    2010-01-29

    Accumulating evidence has suggested the potential health-promoting effects of 5-hydroxy polymethoxyflavones (5-OH-PMFs) naturally existing in citrus genus. However, research efforts are hampered by the lack of reliable and sensitive methods for their determination in plant materials and biological samples. Using reversed-phase high performance liquid chromatography (HPLC) equipped with electrochemical (EC) detection, we have developed a fast and highly sensitive method for quantification of four 5-OH-PMFs, namely 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone, 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone, 5-hydroxy-6,7,4'-trimethoxyflavone, and 5-hydroxy-6,7,8,4'-tetramethoxyflavone. The method was fully validated in terms of linearity, accuracy and precision. The limit of detection (LOD) was determined as being between 0.65 and 1.8ng/mL (ppb), demonstrating an over 160 times higher sensitivity in comparison with the previously reported method using UV detection. The recovery rate of the method was between 96.17% and 110.82%, and the precision for the retention times and peak areas was all below 13%. The method was successfully used to quantify 5-OH-PMFs with a wide range of abundance in the citrus products and preparations, such as orange juice, citrus peel, and dried tangerine peel. The quantification method for 5-OH-PMFs developed herein could be useful for the nutritional and pharmacological studies of these compounds in future. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Quantification of melamine in drinking water and wastewater by micellar liquid chromatography.

    PubMed

    Beltrán-Martinavarro, Beatriz; Peris-Vicente, Juan; Rambla-Alegre, Maria; Marco-Peiró, Sergio; Esteve-Romero, Josep; Carda-Broch, Samuel

    2013-01-01

    Because of the large potential health impact caused by deliberate contamination with the synthetic chemical melamine of different products for human and animal consumption, the World Health Organization and the Food and Agriculture Organization of the United Nations provided a range of recommendations in order to facilitate obtaining needed data, among which was the determination of the background levels of melamine in drinking water and wastewater (December 4, 2008). A chromatographic procedure using a C18 column, a micellar mobile phase consisting of sodium dodecyl sulfate (0.1 M), and 1-propanol (7.5%) buffered at pH 3, and detection by absorbance at 210 nm is reported in this paper for the quantification of melamine in drinking water and wastewater. Samples were filtered and directly injected into the chromatographic system, thus avoiding an extraction procedure. The optimal mobile phase composition was obtained by a chemometrics approach that considered the retention factor, efficiency, and peak shape. Melamine was eluted in about 6.2 min without interferences. Validation was performed following U.S. Food and Drug Administration guidelines. The analytical parameters studied were linearity (0.03-5 microg/mL, R2 = 0.998), LOD (13 nglmL), intraday and interday accuracy (between 4.1 and 12.2%), intraday and interday precision (less than 14.8%), and robustness (RSD < 5.1% for retention time and <9.0% for area). The proposed methodology was successfully applied for analysis of local wastewater and drinking water, in which no melamine was found.

  7. A novel UPLC-MS/MS method for sensitive quantitation of boldine in plasma, a potential anti-inflammatory agent: application to a pharmacokinetic study in rats.

    PubMed

    Zeng, Rong-Jie; Li, Yu; Chen, Jian-Zhong; Chou, Gui-Xin; Gao, Yu; Shao, Jing-Wei; Jia, Lee; Wu, Sheng-Dong; Wu, Shui-Sheng

    2015-03-01

    Boldine is a potential anti-inflammatory agent found in several different plants. Published bioanalytical methods using HPLC with ultraviolet and fluorescent detection lacked enough sensitivity and required tedious sample preparation procedures. Herein, we describe the development of a novel ultra-high performance LC with MS/MS for determination of boldine in plasma. Boldine in plasma was recovered by liquid-liquid extraction using 1 mL of methyl tert-butyl ether. Chromatographic separation was performed on a C18 column at 45°C, with a gradient elution consisting of acetonitrile and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. The detection was performed on an electrospray triple-quadrupole MS/MS by positive ion multiple reaction monitoring mode. Good linearity (r(2) > 0.9926) was achieved in a concentration range of 2.555-2555 ng/mL with a lower limit of quantification of 2.555 ng/mL for boldine. The intra- and inter-day precisions of the assay were 1.2-6.0 and 1.8-7.4% relative standard deviation with an accuracy of -6.0-8.0% relative error. This newly developed method was successfully applied to a single low-dose pharmacokinetic study in rats and was demonstrated to be simpler and more sensitive than the published methods, allowing boldine quantification in reduced plasma volume. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Quantification of citalopram or escitalopram and their demethylated metabolites in neonatal hair samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    Frison, Giampietro; Favretto, Donata; Vogliardi, Susanna; Terranova, Claudio; Ferrara, Santo Davide

    2008-08-01

    Citalopram and escitalopram are highly selective serotonin reuptake inhibitors widely used in the treatment of depression. They exhibit adverse drug reactions and side effects, however, and the development of specific methods for their determination is of great interest in clinical and forensic toxicology. A liquid chromatography-tandem mass spectrometry method has been developed and validated for the assay of citalopram, escitalopram, and their demethylated metabolites in 10-mg hair samples. The analytes were extracted by incubation in methanol and liquid/liquid extraction with diethyl ether/dichloromethane. Gradient elution on a narrow bore C18 column was realized using clomipramine-d3 as an internal standard. Positive ion electrospray ionization and tandem mass spectrometry determination by collision-induced dissociation were performed in an ion trap mass spectrometer. The method exhibited a linear range of 25 to 2000 pg/mg, a quantification limit of 25 pg/mg for all analytes, relative standard deviations in the range of 12.10 to 9.80 (intraassay), and 13.80 to 11.78 (interassay), and accuracies (as percent recovery of the spiked standards) in the range of 90% to 110%; it was applied to the determination of citalopram and escitalopram and their metabolites in hair samples of two newborns to document their in utero exposure to the drugs. The method proved suitable for neonatal hair analysis of citalopram or escitalopram and was applied to two real cases of gestational exposure.

  9. High-performance liquid chromatography assay using ultraviolet detection for urinary quantification of milrinone concentrations in cardiac surgery patients undergoing cardiopulmonary bypass.

    PubMed

    Gavra, Paul; Nguyen, Anne Q N; Beauregard, Natasha; Denault, André Y; Varin, France

    2014-08-01

    An analytical assay using liquid-liquid extraction and high-performance liquid chromatography with ultraviolet detection was developed for the quantification of total (conjugated and unconjugated) urinary concentrations of milrinone after the inhalation of a 5 mg dose in 15 cardiac patients undergoing cardiopulmonary bypass. Urine samples (700 μL) were extracted with ethyl-acetate and subsequently underwent acid back-extraction before and after deconjugation by mild acid hydrolysis. Milrinone was separated on a strong cation exchange analytical column. The mobile phase consisted of a constant mixture of acetonitrile:tetrahydrofurane-NaH2 PO4 buffer (40:60 v/v, pH 3.0). Thirteen calibration curves were linear in the concentration range of 31.25-4000 ng/mL, using olprinone as the internal standard (r(2) range 0.9911-0.9999, n = 13). Mean milrinone recovery and accuracy were respectively 85.2 ± 3.1% and ≥93%. Intra- and inter-day precisions (coefficients of variation) were ≤5% and ≤8%, respectively. Over a 24 h collection period, the cumulative urinary milrinone recovered from 15 patients was 26.1 ± 7.7% of the nominal 5 mg dose administered. The relative amount of milrinone glucuronic acid conjugate was negligible in the urine of patients undergoing cardiopulmonary bypass This method proved to be reliable, specific and accurate to determine the cumulative amount of total milrinone recovered in urine after inhalation. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Determination of diethanolamine or N-methyldiethanolamine in high ammonium concentration matrices by capillary electrophoresis with indirect UV detection: application to the analysis of refinery process waters.

    PubMed

    Bord, N; Crétier, G; Rocca, J-L; Bailly, C; Souchez, J-P

    2004-09-01

    Alkanolamines such as diethanolamine (DEA) and N-methyldiethanolamine (MDEA) are used in desulfurization processes in crude oil refineries. These compounds may be found in process waters following an accidental contamination. The analysis of alkanolamines in refinery process waters is very difficult due to the high ammonium concentration of the samples. This paper describes a method for the determination of DEA in high ammonium concentration refinery process waters by using capillary electrophoresis (CE) with indirect UV detection. The same method can be used for the determination of MDEA. Best results were achieved with a background electrolyte (BGE) comprising 10 mM histidine adjusted to pH 5.0 with acetic acid. The development of this electrolyte and the analytical performances are discussed. The quantification was performed by using internal standardization, by which triethanolamine (TEA) was used as internal standard. A matrix effect due to the high ammonium content has been highlighted and standard addition was therefore used. The developed method was characterized in terms of repeatability of migration times and corrected peak areas, linearity, and accuracy. Limits of detection (LODs) and quantification (LOQs) obtained were 0.2 and 0.7 ppm, respectively. The CE method was applied to the determination of DEA or MDEA in refinery process waters spiked with known amounts of analytes and it gave excellent results, since uncertainties obtained were 8 and 5%, respectively.

  11. Simultaneous determination of triptolide, tripdiolide and tripterine in human urine by high-performance liquid chromatography coupled with ion trap atmospheric-pressure chemical ionization mass spectrometry.

    PubMed

    Jin, Mi-cong; Chen, Xiao-hong; OuYang, Xiao-kun

    2009-03-01

    An accurate and selective method for the simultaneous determination of triptolide, tripdiolide and tripterine in human urine using hydrocortisone as an internal standard (IS) by high-performance liquid chromatography coupled with atmospheric-pressure chemical ionization mass spectrometry in negative ion mode has been developed. After triptolide, tripdiolide and tripterine in human urine were extracted with ethyl acetate and cleaned by solid-phase extraction with C(18) cartridges, a satisfactory separation was achieved on an XDB C(18) short column (30 x 2.1 mm i.d., 3 microm) using the mobile phase of acetic acid-ammonium acetate (5 mmol/L, pH = 4.5)-acetonitrile-methanol in gradient elution. Detection was operated by APCI in selected ion monitoring mode. The target ions m/z 359, m/z 375, m/z 449 and m/z 419 were selected for the quantification of triptolide, tripdiolide, tripterine and IS, respectively. The linear range was 1.0-100.0 ng mL(-1), and the limits of quantification in human urine were found to be 0.1-0.5 ng mL(-1) for the three compounds. The precisions (CV%) and accuracies were 6.6-12.9 and 85.1-97.0%, respectively. The developed method could be applied to the determination of triptolide, tripdiolide and tripterine in human urine for diagnosis of the intoxication and for forensic purposes. 2008 John Wiley & Sons, Ltd.

  12. Simultaneous determination of sibutramine and its active metabolites in human plasma by LC-MS/MS and its application to a pharmacokinetic study.

    PubMed

    Bae, Jung-Woo; Choi, Chang-Ik; Jang, Choon-Gon; Lee, Seok-Yong

    2011-11-01

    A simple and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) technique was developed and validated for the determination of sibutramine and its N-desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t-butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse-phase Luna C18 column with a mobile phase of acetonitrile-10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI-MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05-20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra- and inter-day validation for sibutramine, M1 and M2 were acceptable. This LC-MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Detection and quantification of α-keto-δ-(N(G),N(G)-dimethylguanidino)valeric acid: a metabolite of asymmetric dimethylarginine.

    PubMed

    Martens-Lobenhoffer, Jens; Rodionov, Roman N; Drust, Andreas; Bode-Böger, Stefanie M

    2011-12-15

    Nitric oxide is an ubiquitary cell signaling substance. Its enzymatic production rate by nitric oxide synthase is regulated by the concentrations of the substrate L-arginine and the competitive inhibitor asymmetric dimethylarginine (ADMA). A newly recognized elimination pathway for ADMA is the transamination to α-keto-δ-(N(G),N(G)-dimethylguanidino)valeric acid (DMGV) by the enzyme alanine-glyoxylate aminotransferase 2 (AGXT2). This pathway has been proven to be relevant for nitric oxide regulation, but up to now no method exists for the determination of DMGV in biological fluids. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of DMGV. D(6)-DMGV was used as internal standard. Samples were purified online by column switching, and separation was achieved on a porous graphitic carbon column. The calibration was linear over ranges of 10 to 200 nmol/L for plasma and 0.1 to 20 μmol/L for urine. The intra- and interday accuracies and precisions in plasma and urine were better than 10%. In plasma samples, DMGV was present in concentrations between 19.1 and 77.5 nmol/L. In urine samples, concentrations between 0.0114 and 1.03 μmol/mmol creatinine were found. This method can be used as a tool for the scientific investigation of the ADMA conversion to DMGV via the enzyme AGXT2. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Simultaneous quantification of Aroclor mixtures in soil samples by gas chromatography/mass spectrometry with solid phase microextraction using partial least-squares regression.

    PubMed

    Zhang, Mengliang; Harrington, Peter de B

    2015-01-01

    Multivariate partial least-squares (PLS) method was applied to the quantification of two complex polychlorinated biphenyls (PCBs) commercial mixtures, Aroclor 1254 and 1260, in a soil matrix. PCBs in soil samples were extracted by headspace solid phase microextraction (SPME) and determined by gas chromatography/mass spectrometry (GC/MS). Decachlorinated biphenyl (deca-CB) was used as internal standard. After the baseline correction was applied, four data representations including extracted ion chromatograms (EIC) for Aroclor 1254, EIC for Aroclor 1260, EIC for both Aroclors and two-way data sets were constructed for PLS-1 and PLS-2 calibrations and evaluated with respect to quantitative prediction accuracy. The PLS model was optimized with respect to the number of latent variables using cross validation of the calibration data set. The validation of the method was performed with certified soil samples and real field soil samples and the predicted concentrations for both Aroclors using EIC data sets agreed with the certified values. The linear range of the method was from 10μgkg(-1) to 1000μgkg(-1) for both Aroclor 1254 and 1260 in soil matrices and the detection limit was 4μgkg(-1) for Aroclor 1254 and 6μgkg(-1) for Aroclor 1260. This holistic approach for the determination of mixtures of complex samples has broad application to environmental forensics and modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Determination of ketamine and its major metabolite, norketamine, in urine and plasma samples using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry.

    PubMed

    Moreno, Ivo; Barroso, Mário; Martinho, Ana; Cruz, Angelines; Gallardo, Eugenia

    2015-11-01

    Ketamine is a club drug widely abused for its hallucinogenic effects, being also used as a "date-rape" drug in recent years. We have developed an analytical method using gas chromatography-tandem mass spectrometry (GC-MS/MS) for the identification and quantification of ketamine and its major metabolite in urine and plasma. No derivatization step is needed to accomplish analysis. The compounds were extracted from 0.25mL of sample using microextraction by packed sorbent on mixed mode (M1) cartridges. Calibration curves were linear in the range of 10-250ng/mL for urine and 10-500ng/mL for plasma, with determination coefficients higher than 0.99. The limit of detection (LOD) was 5ng/mL for both compounds in both specimens. Recoveries ranged from 63 to 101%, while precision and accuracy were below 14% and 15%, respectively. These low limits of detection and the quite high recoveries obtained, in very low sample amounts, allow detecting small quantities of the compounds, making this procedure suitable for those laboratories performing routine analysis in the field of forensic toxicology. Compared with existing methods, the herein described procedure is fast, since no derivatization step is required, and cost effective for the quantification of ketamine and norketamine in biological specimens by gas chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A sensitive and specific liquid chromatography mass spectrometry method for simultaneous determination of berberine, palmatine, coptisine, epiberberine and jatrorrhizine from Coptidis Rhizoma in rat plasma

    NASA Astrophysics Data System (ADS)

    Yu, Sen; Pang, Xiaoyan; Deng, Yuanxiong; Liu, Li; Liang, Yan; Liu, Xiaodong; Xie, Lin; Wang, Guangji; Wang, Xinting

    2007-11-01

    A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of five protoberberine alkaloids, which are berberine, palmatine, coptisine, epiberberine and jatrorrhizine, in rat plasma using tetrahydroberberine as an internal standard. Following solid-phase extraction, the analytes were separated by linear gradient elution on a Shim-pack ODS (4.6 [mu]m, 150 mm × 2.0 mm i.d.) column and analyzed in selected ion monitoring (SIM) mode with a positive electrospray ionization (ESI) interface using the respective [M]+ and [M + H]+ ions, [M]+ = 336 for berberine; 320 for coptisine; 336 for epiberberine; 338 for jatrorrhizine; 352 for palmatine and [M + H]+ = 340 for the internal standard. The method was validated over the concentration range of 0.31-20 ng mL-1 for all the five protoberberine alkaloids. Within-batch and between-batch precisions (R.S.D.%) were all within 15% and accuracy (%Er) ranged from -5 to 5%. The lower limits of quantification were 0.31 ng mL-1 for all analytes. The extraction recoveries were on average 80.8% for berberine, 67E0% for coptisine, 66.2% for epiberberine, 71.8% for jatrorrhizine and 73E2% for palmatine. The validated method was used to study the pharmacokinetic profile of the five protoberberine alkaloids in rat plasma after oral administration of Coptidis Rhizoma extract.

  17. LC-MS/MS quantification of free and Fab-bound colchicine in plasma, urine and organs following colchicine administration and colchicine-specific Fab fragments treatment in Göttingen minipigs.

    PubMed

    Fabresse, Nicolas; Allard, Julien; Sardaby, Marine; Thompson, Adrian; Clutton, R Eddie; Eddleston, Michael; Alvarez, Jean-Claude

    2017-08-15

    Clinical evaluation of a colchicine specific antigen-binding fragment (Fab) in order to treat colchicine poisoning required the development of an accurate method allowing quantification of free and Fab-bound colchicine in plasma and urine, and free colchicine in tissues, to measure colchicine redistribution after Fab administration. Three methods have been developed for this purpose, and validated in plasma, urine and liver: total colchicine was determined after denaturation of Fab by dilution in water and heating; free colchicine was separated from Fab-bound colchicine by filtration with 30KDa micro-filters; tissues were homogenized in a tissue mixer. Deuterated colchicine was used as internal standard. Samples were extracted by liquid-liquid extraction and analyzed with a LC-MS/MS. LOQ were 0.5ng/mL in plasma and urine for free and total colchicine and 5pg/mg in tissues. The methods were linear in the 0.5-100ng/mL range in plasma and urine, and 5-300pg/mg in tissues with determination coefficients>0.99. Precision and accuracy of QC samples presented a CV<9.4%. The methods require only 200μL of sample and allow a high throughput due to short analytical run (2min). These methods were successfully applied to a pig intoxicated with colchicine and treated with colchicine specific Fab fragments. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A novel fluorescence-based assay for the rapid detection and quantification of cellular deoxyribonucleoside triphosphates

    PubMed Central

    Wilson, Peter M.; LaBonte, Melissa J.; Russell, Jared; Louie, Stan; Ghobrial, Andrew A.; Ladner, Robert D.

    2011-01-01

    Current methods for measuring deoxyribonucleoside triphosphates (dNTPs) employ reagent and labor-intensive assays utilizing radioisotopes in DNA polymerase-based assays and/or chromatography-based approaches. We have developed a rapid and sensitive 96-well fluorescence-based assay to quantify cellular dNTPs utilizing a standard real-time PCR thermocycler. This assay relies on the principle that incorporation of a limiting dNTP is required for primer-extension and Taq polymerase-mediated 5–3′ exonuclease hydrolysis of a dual-quenched fluorophore-labeled probe resulting in fluorescence. The concentration of limiting dNTP is directly proportional to the fluorescence generated. The assay demonstrated excellent linearity (R2 > 0.99) and can be modified to detect between ∼0.5 and 100 pmol of dNTP. The limits of detection (LOD) and quantification (LOQ) for all dNTPs were defined as <0.77 and <1.3 pmol, respectively. The intra-assay and inter-assay variation coefficients were determined to be <4.6% and <10%, respectively with an accuracy of 100 ± 15% for all dNTPs. The assay quantified intracellular dNTPs with similar results obtained from a validated LC–MS/MS approach and successfully measured quantitative differences in dNTP pools in human cancer cells treated with inhibitors of thymidylate metabolism. This assay has important application in research that investigates the influence of pathological conditions or pharmacological agents on dNTP biosynthesis and regulation. PMID:21576234

  19. Quantitative analysis of the immunosuppressant CP-690,550 in whole blood by column-switching high-performance liquid chromatography and mass spectrometry detection.

    PubMed

    Paniagua, Ricardo; Campbell, Andrew; Changelian, Paul S; Reitz, Bruce A; Prakash, Chandra; Borie, Dominic C

    2005-10-01

    A fast and accurate method to quantify the new immunosuppressive JAK3 inhibitor CP-690,550 in whole blood using a dual-pump liquid chromatography-liquid chromatography-mass spectrometry (LC/LC-MS) system was developed and validated in nonhuman primate blood. Before injection, blood samples were prepared by precipitation with a reagent that included methanol and acetonitrile (30:70, vol/vol) along with the internal standard (CP-istd). Column-switching LC/LC-MS analysis used online extraction followed by separation on a C8 analytic column and MS detection of the [M + H] CP-690,550 (m/z = 313.1) and CP internal standard (m/z = 288.1). Linearity was always better than r = 0.99 (n = 7) for CP-690,550 (range 2.5-750 ng/mL), with a lower limit of quantification (LLOQ) of 2.5 ng/mL. The intrarun accuracy and precision ranged from 103.0% to 105.4% and 2.7% to 4.3%, respectively (n = 5), and the interday precision ranged from 8.7% to 11.1%, and the interday accuracy ranged from 98.1% to 103.8% of nominal values (n = 14). The injection repeatability for the method was 1.3% (n = 7). Except for the LLOQ, the intraday accuracy and precision in human blood were also within 15% (n = 5). The combination of simple sample preparation and short analytic run time of this sensitive procedure makes it effective for monitoring the concentration of CP-690,550 in whole blood in organ-transplant recipients.

  20. Automated posterior cranial fossa volumetry by MRI: applications to Chiari malformation type I.

    PubMed

    Bagci, A M; Lee, S H; Nagornaya, N; Green, B A; Alperin, N

    2013-09-01

    Quantification of PCF volume and the degree of PCF crowdedness were found beneficial for differential diagnosis of tonsillar herniation and prediction of surgical outcome in CMI. However, lack of automated methods limits the clinical use of PCF volumetry. An atlas-based method for automated PCF segmentation tailored for CMI is presented. The method performance is assessed in terms of accuracy and spatial overlap with manual segmentation. The degree of association between PCF volumes and the lengths of previously proposed linear landmarks is reported. T1-weighted volumetric MR imaging data with 1-mm isotropic resolution obtained with the use of a 3T scanner from 14 patients with CMI and 3 healthy subjects were used for the study. Manually delineated PCF from 9 patients was used to establish a CMI-specific reference for an atlas-based automated PCF parcellation approach. Agreement between manual and automated segmentation of 5 different CMI datasets was verified by means of the t test. Measurement reproducibility was established through the use of 2 repeated scans from 3 healthy subjects. Degree of linear association between PCF volume and 6 linear landmarks was determined by means of Pearson correlation. PCF volumes measured by use of the automated method and with manual delineation were similar, 196.2 ± 8.7 mL versus 196.9 ± 11.0 mL, respectively. The mean relative difference of -0.3 ± 1.9% was not statistically significant. Low measurement variability, with a mean absolute percentage value of 0.6 ± 0.2%, was achieved. None of the PCF linear landmarks were significantly associated with PCF volume. PCF and tissue content volumes can be reliably measured in patients with CMI by use of an atlas-based automated segmentation method.

Top