Science.gov

Sample records for quantified gene expression

  1. qPCR assays to quantify genes and gene expression associated with microbial perchlorate reduction.

    PubMed

    De Long, Susan K; Kinney, Kerry A; Kirisits, Mary Jo

    2010-11-01

    Quantitative PCR (qPCR) assays targeting cld (developed in this work) and pcrA (previously described) were used to quantify these perchlorate-related genes in a perchlorate-reducing enrichment culture. Transcript copies were quantified in perchlorate-reducing Rhodocyclaceae strain JDS4. Oxygen and nitrate inhibited expression of cld and pcrA.

  2. Quantifying the Effect of DNA Packaging on Gene Expression Level

    NASA Astrophysics Data System (ADS)

    Kim, Harold

    2010-10-01

    Gene expression, the process by which the genetic code comes alive in the form of proteins, is one of the most important biological processes in living cells, and begins when transcription factors bind to specific DNA sequences in the promoter region upstream of a gene. The relationship between gene expression output and transcription factor input which is termed the gene regulation function is specific to each promoter, and predicting this gene regulation function from the locations of transcription factor binding sites is one of the challenges in biology. In eukaryotic organisms (for example, animals, plants, fungi etc), DNA is highly compacted into nucleosomes, 147-bp segments of DNA tightly wrapped around histone protein core, and therefore, the accessibility of transcription factor binding sites depends on their locations with respect to nucleosomes - sites inside nucleosomes are less accessible than those outside nucleosomes. To understand how transcription factor binding sites contribute to gene expression in a quantitative manner, we obtain gene regulation functions of promoters with various configurations of transcription factor binding sites by using fluorescent protein reporters to measure transcription factor input and gene expression output in single yeast cells. In this talk, I will show that the affinity of a transcription factor binding site inside and outside the nucleosome controls different aspects of the gene regulation function, and explain this finding based on a mass-action kinetic model that includes competition between nucleosomes and transcription factors.

  3. Quantitative set analysis for gene expression: a method to quantify gene set differential expression including gene-gene correlations.

    PubMed

    Yaari, Gur; Bolen, Christopher R; Thakar, Juilee; Kleinstein, Steven H

    2013-10-01

    Enrichment analysis of gene sets is a popular approach that provides a functional interpretation of genome-wide expression data. Existing tests are affected by inter-gene correlations, resulting in a high Type I error. The most widely used test, Gene Set Enrichment Analysis, relies on computationally intensive permutations of sample labels to generate a null distribution that preserves gene-gene correlations. A more recent approach, CAMERA, attempts to correct for these correlations by estimating a variance inflation factor directly from the data. Although these methods generate P-values for detecting gene set activity, they are unable to produce confidence intervals or allow for post hoc comparisons. We have developed a new computational framework for Quantitative Set Analysis of Gene Expression (QuSAGE). QuSAGE accounts for inter-gene correlations, improves the estimation of the variance inflation factor and, rather than evaluating the deviation from a null hypothesis with a P-value, it quantifies gene-set activity with a complete probability density function. From this probability density function, P-values and confidence intervals can be extracted and post hoc analysis can be carried out while maintaining statistical traceability. Compared with Gene Set Enrichment Analysis and CAMERA, QuSAGE exhibits better sensitivity and specificity on real data profiling the response to interferon therapy (in chronic Hepatitis C virus patients) and Influenza A virus infection. QuSAGE is available as an R package, which includes the core functions for the method as well as functions to plot and visualize the results.

  4. Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models

    PubMed Central

    Singh, Abhyudai; Soltani, Mohammad

    2013-01-01

    Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters. PMID:24391934

  5. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    PubMed

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) < PP2A < GAPDH. For local infection by TMV, the most stable genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH < PP2A < UCE. Using two of the most stable and the two least stable validated reference genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Reference genes to quantify gene expression during oogenesis in a teleost fish.

    PubMed

    Deloffre, Laurence A M; Andrade, André; Filipe, Alexandra I; Canario, Adelino V M

    2012-09-10

    Understanding the molecular events involved in the acquisition of competence during oogenesis is a key step to determine the secret of 'high quality' eggs for aquaculture. Quantitative real time polymerase chain reaction (qPCR) is the technique of election to determine changes in transcript abundance in such studies, but choosing reference genes for normalization, in particular during oogenesis, remains a challenge. In the present study, transcription of 6 functionally distinct genes, β actin (ACTB), cathepsin D (CTSD), cathepsin Z (CTSZ), elongation factor 1 α (EEF1A), TATA binding protein (TBP) and tubulin A (TUBA1A) was assessed as normalizers of bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI) gene expression in mRNA from Mozambique tilapia oocytes during oogenesis. Reverse transcription was equally efficient and varies little in all samples. Most of the genes considered for reference were stable during early stages of oogenesis but variations were observed during vitellogenesis. A single gene and up to 3 genes were shown to be insufficient for reliable normalization throughout the whole oogenesis. The combination of the genes ACTB, CTSD, EEF1A and CTSZ as reference was found to minimize variation and has the most stable expression pattern between maturation stages.

  7. A structured population modeling framework for quantifying and predicting gene expression noise in flow cytometry data.

    PubMed

    Flores, Kevin B

    2013-07-01

    We formulated a structured population model with distributed parameters to identify mechanisms that contribute to gene expression noise in time-dependent flow cytometry data. The model was validated using cell population-level gene expression data from two experiments with synthetically engineered eukaryotic cells. Our model captures the qualitative noise features of both experiments and accurately fit the data from the first experiment. Our results suggest that cellular switching between high and low expression states and transcriptional re-initiation are important factors needed to accurately describe gene expression noise with a structured population model.

  8. Partition resampling and extrapolation averaging: approximation methods for quantifying gene expression in large numbers of short oligonucleotide arrays.

    PubMed

    Goldstein, Darlene R

    2006-10-01

    Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.

  9. Shaped singular spectrum analysis for quantifying gene expression, with application to the early Drosophila embryo.

    PubMed

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns.

  10. Shaped Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Drosophila Embryo

    PubMed Central

    Holloway, David

    2015-01-01

    In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns. PMID:25945341

  11. SuperFly: a comparative database for quantified spatio-temporal gene expression patterns in early dipteran embryos

    PubMed Central

    Cicin-Sain, Damjan; Pulido, Antonio Hermoso; Crombach, Anton; Wotton, Karl R.; Jiménez-Guri, Eva; Taly, Jean-François; Roma, Guglielmo; Jaeger, Johannes

    2015-01-01

    We present SuperFly (http://superfly.crg.eu), a relational database for quantified spatio-temporal expression data of segmentation genes during early development in different species of dipteran insects (flies, midges and mosquitoes). SuperFly has a special focus on emerging non-drosophilid model systems. The database currently includes data of high spatio-temporal resolution for three species: the vinegar fly Drosophila melanogaster, the scuttle fly Megaselia abdita and the moth midge Clogmia albipunctata. At this point, SuperFly covers up to 9 genes and 16 time points per species, with a total of 1823 individual embryos. It provides an intuitive web interface, enabling the user to query and access original embryo images, quantified expression profiles, extracted positions of expression boundaries and integrated datasets, plus metadata and intermediate processing steps. SuperFly is a valuable new resource for the quantitative comparative study of gene expression patterns across dipteran species. Moreover, it provides an interesting test set for systems biologists interested in fitting mathematical gene network models to data. Both of these aspects are essential ingredients for progress toward a more quantitative and mechanistic understanding of developmental evolution. PMID:25404137

  12. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing.

    PubMed

    Deonovic, Benjamin; Wang, Yunhao; Weirather, Jason; Wang, Xiu-Jie; Au, Kin Fai

    2016-11-28

    Allele-specific expression (ASE) is a fundamental problem in studying gene regulation and diploid transcriptome profiles, with two key challenges: (i) haplotyping and (ii) estimation of ASE at the gene isoform level. Existing ASE analysis methods are limited by a dependence on haplotyping from laborious experiments or extra genome/family trio data. In addition, there is a lack of methods for gene isoform level ASE analysis. We developed a tool, IDP-ASE, for full ASE analysis. By innovative integration of Third Generation Sequencing (TGS) long reads with Second Generation Sequencing (SGS) short reads, the accuracy of haplotyping and ASE quantification at the gene and gene isoform level was greatly improved as demonstrated by the gold standard data GM12878 data and semi-simulation data. In addition to methodology development, applications of IDP-ASE to human embryonic stem cells and breast cancer cells indicate that the imbalance of ASE and non-uniformity of gene isoform ASE is widespread, including tumorigenesis relevant genes and pluripotency markers. These results show that gene isoform expression and allele-specific expression cooperate to provide high diversity and complexity of gene regulation and expression, highlighting the importance of studying ASE at the gene isoform level. Our study provides a robust bioinformatics solution to understand ASE using RNA sequencing data only.

  13. Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography

    PubMed Central

    Jernvall, Jukka; Keränen, Soile V. E.; Thesleff, Irma

    2000-01-01

    The study of mammalian evolution often relies on detailed analysis of dental morphology. For molecular patterning to play a role in dental evolution, gene expression differences should be linkable to corresponding morphological differences. Because teeth, like many other structures, are complex and evolution of new shapes usually involves subtle changes, we have developed topographic methods by using Geographic Information Systems. We investigated how genetic markers for epithelial signaling centers known as enamel knots are associated with evolutionary divergence of molar teeth in two rodent species, mouse and vole. Our analysis of expression patterns of Fgf4, Lef1, p21, and Shh genes in relation to digital elevation models of developing tooth shapes shows that molecular prepatterns predict the lateral cusp topography more than a day in advance. A heterotopic shift in the molecular prepatterns can be implicated in the evolution of mouse molar, changing locations from which historically homologous cusps form. The subtle but measurable heterotopic shifts may play a large role in the evolution of tooth cusp topographies. However, evolutionary increase in the number of longitudinal cusps in vole molar has involved accelerated longitudinal growth and iterative addition of new cusps without changes in lateral cusp topography. The iterative addition of cusps after the establishment of lateral cusp topography may limit the independence of individual morphological features used in evolutionary studies. The diversity of mammalian molar patterns may largely result from the heterotopic and iterative processes. PMID:11121045

  14. Sequencing and Validation of Reference Genes to Analyze Endogenous Gene Expression and Quantify Yellow Dwarf Viruses Using RT-qPCR in Viruliferous Rhopalosiphum padi

    PubMed Central

    Wu, Keke; Liu, Wenwen; Mar, Thithi; Liu, Yan; Wu, Yunfeng; Wang, Xifeng

    2014-01-01

    The bird cherry-oat aphid (Rhopalosiphum padi), an important pest of cereal crops, not only directly sucks sap from plants, but also transmits a number of plant viruses, collectively the yellow dwarf viruses (YDVs). For quantifying changes in gene expression in vector aphids, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a touchstone method, but the selection and validation of housekeeping genes (HKGs) as reference genes to normalize the expression level of endogenous genes of the vector and for exogenous genes of the virus in the aphids is critical to obtaining valid results. Such an assessment has not been done, however, for R. padi and YDVs. Here, we tested three algorithms (GeNorm, NormFinder and BestKeeper) to assess the suitability of candidate reference genes (EF-1α, ACT1, GAPDH, 18S rRNA) in 6 combinations of YDV and vector aphid morph. EF-1α and ACT1 together or in combination with GAPDH or with GAPDH and 18S rRNA could confidently be used to normalize virus titre and expression levels of endogenous genes in winged or wingless R. padi infected with Barley yellow dwarf virus isolates (BYDV)-PAV and BYDV-GAV. The use of only one reference gene, whether the most stably expressed (EF-1α) or the least stably expressed (18S rRNA), was not adequate for obtaining valid relative expression data from the RT-qPCR. Because of discrepancies among values for changes in relative expression obtained using 3 regions of the same gene, different regions of an endogenous aphid gene, including each terminus and the middle, should be analyzed at the same time with RT-qPCR. Our results highlight the necessity of choosing the best reference genes to obtain valid experimental data and provide several HKGs for relative quantification of virus titre in YDV-viruliferous aphids. PMID:24810421

  15. Shaped 3D Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Zebrafish Embryo

    PubMed Central

    Holloway, David

    2015-01-01

    Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field. PMID:26495320

  16. Shaped 3D singular spectrum analysis for quantifying gene expression, with application to the early zebrafish embryo.

    PubMed

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field.

  17. Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments

    PubMed Central

    Akob, Denise M.; Lee, Sang Hyon; Sheth, Mili; Küsel, Kirsten; Watson, David B.; Palumbo, Anthony V.; Kostka, Joel E.; Chin, Kuk-Jeong

    2012-01-01

    Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pathways in order to monitor these processes during in situ U(VI) remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA) and the dissimilatory (bi)sulfite reductase gene (dsrA), were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC) site at Oak Ridge, TN, USA. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III)-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation. PMID:22908009

  18. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  19. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes

    USGS Publications Warehouse

    Holmes, Dawn E.; Nevin, Kelly P.; O'Neil, Regina A.; Ward, Joy E.; Adams, Lorrie A.; Woodard, Trevor L.; Vrionis, Helen A.; Lovely, Derek R.

    2005-01-01

    The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene.

  20. Potential for Quantifying Expression of the Geobacteraceae Citrate Synthase Gene To Assess the Activity of Geobacteraceae in the Subsurface and on Current-Harvesting Electrodes

    PubMed Central

    Holmes, Dawn E.; Nevin, Kelly P.; O'Neil, Regina A.; Ward, Joy E.; Adams, Lorrie A.; Woodard, Trevor L.; Vrionis, Helen A.; Lovley, Derek R.

    2005-01-01

    The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene. PMID:16269721

  1. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  2. Differential Gene Expression in Human Cerebrovascular Malformations

    PubMed Central

    Shenkar, Robert; Elliott, J. Paul; Diener, Katrina; Gault, Judith; Hu, Ling-Jia; Cohrs, Randall J.; Phang, Tzulip; Hunter, Lawrence; Breeze, Robert E.; Awad, Issam A.

    2009-01-01

    OBJECTIVE We sought to identify genes with differential expression in cerebral cavernous malformations (CCMs), arteriovenous malformations (AVMs), and control superficial temporal arteries (STAs) and to confirm differential expression of genes previously implicated in the pathobiology of these lesions. METHODS Total ribonucleic acid was isolated from four CCM, four AVM, and three STA surgical specimens and used to quantify lesion-specific messenger ribonucleic acid expression levels on human gene arrays. Data were analyzed with the use of two separate methodologies: gene discovery and confirmation analysis. RESULTS The gene discovery method identified 42 genes that were significantly up-regulated and 36 genes that were significantly down-regulated in CCMs as compared with AVMs and STAs (P = 0.006). Similarly, 48 genes were significantly up-regulated and 59 genes were significantly down-regulated in AVMs as compared with CCMs and STAs (P = 0.006). The confirmation analysis showed significant differential expression (P < 0.05) in 11 of 15 genes (angiogenesis factors, receptors, and structural proteins) that previously had been reported to be expressed differentially in CCMs and AVMs in immunohistochemical analysis. CONCLUSION We identify numerous genes that are differentially expressed in CCMs and AVMs and correlate expression with the immunohistochemistry of genes implicated in cerebrovascular malformations. In future efforts, we will aim to confirm candidate genes specifically related to the pathobiology of cerebrovascular malformations and determine their biological systems and mechanistic relevance. PMID:12535382

  3. Protein structure protection commits gene expression patterns.

    PubMed

    Chen, Jianping; Liang, Han; Fernández, Ariel

    2008-01-01

    Gene co-expressions often determine module-defining spatial and temporal concurrences of proteins. Yet, little effort has been devoted to tracing coordinating signals for expression correlations to the three-dimensional structures of gene products. We performed a global structure-based analysis of the yeast and human proteomes and contrasted this information against their respective transcriptome organizations obtained from comprehensive microarray data. We show that protein vulnerability quantifies dosage sensitivity for metabolic adaptation phases and tissue-specific patterns of mRNA expression, determining the extent of co-expression similarity of binding partners. The role of protein intrinsic disorder in transcriptome organization is also delineated by interrelating vulnerability, disorder propensity and co-expression patterns. Extremely vulnerable human proteins are shown to be subject to severe post-transcriptional regulation of their expression through significant micro-RNA targeting, making mRNA levels poor surrogates for protein-expression levels. By contrast, in yeast the expression of extremely under-wrapped proteins is likely regulated through protein aggregation. Thus, the 85 most vulnerable proteins in yeast include the five confirmed prions, while in human, the genes encoding extremely vulnerable proteins are predicted to be targeted by microRNAs. Hence, in both vastly different organisms protein vulnerability emerges as a structure-encoded signal for post-transcriptional regulation. Vulnerability of protein structure and the concurrent need to maintain structural integrity are shown to quantify dosage sensitivity, compelling gene expression patterns across tissue types and temporal adaptation phases in a quantifiable manner. Extremely vulnerable proteins impose additional constraints on gene expression: They are subject to high levels of regulation at the post-transcriptional level.

  4. 17A-ETHYNYLESTRADIOL-INDUCED VITELLOGENIN GENE TRANSCRIPTION QUANTIFIED IN LIVERS OF ADULT MALES, LARVAE, AND GILLS OF FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    We have applied a method for quantifying relative levels of messenger RNA (mRNA) transcription to assess chemically-induced gene expression in fathead minnows (Pimephales promelas). Synthetic oligonucleotides designed for the fathead minnow vitellogenin gene transcription (Vg) p...

  5. 17A-ETHYNYLESTRADIOL-INDUCED VITELLOGENIN GENE TRANSCRIPTION QUANTIFIED IN LIVERS OF ADULT MALES, LARVAE, AND GILLS OF FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    We have applied a method for quantifying relative levels of messenger RNA (mRNA) transcription to assess chemically-induced gene expression in fathead minnows (Pimephales promelas). Synthetic oligonucleotides designed for the fathead minnow vitellogenin gene transcription (Vg) p...

  6. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine.

  7. Modeling gene expression in time and space.

    PubMed

    Rué, Pau; Garcia-Ojalvo, Jordi

    2013-01-01

    Cell populations rarely exhibit gene-expression profiles that are homogeneous in time and space. In the temporal domain, dynamical behaviors such as oscillations and pulses of protein production pervade cell biology, underlying phenomena as diverse as circadian rhythmicity, cell cycle control, stress and damage responses, and stem-cell pluripotency. In multicellular populations, spatial heterogeneities are crucial for decision making and development, among many other functions. Cells need to exquisitely coordinate this temporal and spatial variation to survive. Although the spatiotemporal character of gene expression is challenging to quantify experimentally at the level of individual cells, it is beneficial from the modeling viewpoint, because it provides strong constraints that can be probed by theoretically analyzing mathematical models of candidate gene and protein circuits. Here, we review recent examples of temporal dynamics and spatial patterning in gene expression to show how modeling such phenomenology can help us unravel the molecular mechanisms of cellular function.

  8. Nonadditive gene expression in polyploids.

    PubMed

    Yoo, Mi-Jeong; Liu, Xiaoxian; Pires, J Chris; Soltis, Pamela S; Soltis, Douglas E

    2014-01-01

    Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.

  9. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  10. Digital gene expression analysis of the zebra finch genome

    PubMed Central

    2010-01-01

    Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates

  11. Expression and mapping of anthocyanin biosynthesis genes in carrot

    USDA-ARS?s Scientific Manuscript database

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  12. Stochastic gene expression conditioned on large deviations

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Kulkarni, Rahul V.

    2017-06-01

    The intrinsic stochasticity of gene expression can give rise to large fluctuations and rare events that drive phenotypic variation in a population of genetically identical cells. Characterizing the fluctuations that give rise to such rare events motivates the analysis of large deviations in stochastic models of gene expression. Recent developments in non-equilibrium statistical mechanics have led to a framework for analyzing Markovian processes conditioned on rare events and for representing such processes by conditioning-free driven Markovian processes. We use this framework, in combination with approaches based on queueing theory, to analyze a general class of stochastic models of gene expression. Modeling gene expression as a Batch Markovian Arrival Process (BMAP), we derive exact analytical results quantifying large deviations of time-integrated random variables such as promoter activity fluctuations. We find that the conditioning-free driven process can also be represented by a BMAP that has the same form as the original process, but with renormalized parameters. The results obtained can be used to quantify the likelihood of large deviations, to characterize system fluctuations conditional on rare events and to identify combinations of model parameters that can give rise to dynamical phase transitions in system dynamics.

  13. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  14. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  15. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  16. The flow of gene expression.

    PubMed

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  17. Discovering modulators of gene expression

    PubMed Central

    Babur, Özgün; Demir, Emek; Gönen, Mithat; Sander, Chris; Dogrusoz, Ugur

    2010-01-01

    Proteins that modulate the activity of transcription factors, often called modulators, play a critical role in creating tissue- and context-specific gene expression responses to the signals cells receive. GEM (Gene Expression Modulation) is a probabilistic framework that predicts modulators, their affected targets and mode of action by combining gene expression profiles, protein–protein interactions and transcription factor–target relationships. Using GEM, we correctly predicted a significant number of androgen receptor modulators and observed that most modulators can both act as co-activators and co-repressors for different target genes. PMID:20466809

  18. Human Lacrimal Gland Gene Expression

    PubMed Central

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  19. Validation of reference genes for gene expression studies in soybean aphid, Aphis glycines Matsumura

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time PCR (qRT-PCR) is a common tool for quantifying mRNA transcripts. To normalize results, a reference gene is mandatory. Aphis glycines is a significant soybean pest, yet gene expression and functional genomics studies are hindered by a lack of stable reference genes. We evalu...

  20. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  1. Indirect genomic effects on survival from gene expression data

    PubMed Central

    Ferkingstad, Egil; Frigessi, Arnoldo; Lyng, Heidi

    2008-01-01

    In cancer, genes may have indirect effects on patient survival, mediated through interactions with other genes. Methods to study the indirect effects that contribute significantly to survival are not available. We propose a novel methodology to detect and quantify indirect effects from gene expression data. We discover indirect effects through several target genes of transcription factors in cancer microarray data, pointing to genetic interactions that play a significant role in tumor progression. PMID:18358079

  2. Quantifying circular RNA expression from RNA-seq data using model-based framework.

    PubMed

    Li, Musheng; Xie, Xueying; Zhou, Jing; Sheng, Mengying; Yin, Xiaofeng; Ko, Eun-A; Zhou, Tong; Gu, Wanjun

    2017-07-15

    Circular RNAs (circRNAs) are a class of non-coding RNAs that are widely expressed in various cell lines and tissues of many organisms. Although the exact function of many circRNAs is largely unknown, the cell type-and tissue-specific circRNA expression has implicated their crucial functions in many biological processes. Hence, the quantification of circRNA expression from high-throughput RNA-seq data is becoming important to ascertain. Although many model-based methods have been developed to quantify linear RNA expression from RNA-seq data, these methods are not applicable to circRNA quantification. Here, we proposed a novel strategy that transforms circular transcripts to pseudo-linear transcripts and estimates the expression values of both circular and linear transcripts using an existing model-based algorithm, Sailfish. The new strategy can accurately estimate transcript expression of both linear and circular transcripts from RNA-seq data. Several factors, such as gene length, amount of expression and the ratio of circular to linear transcripts, had impacts on quantification performance of circular transcripts. In comparison to count-based tools, the new computational framework had superior performance in estimating the amount of circRNA expression from both simulated and real ribosomal RNA-depleted (rRNA-depleted) RNA-seq datasets. On the other hand, the consideration of circular transcripts in expression quantification from rRNA-depleted RNA-seq data showed substantial increased accuracy of linear transcript expression. Our proposed strategy was implemented in a program named Sailfish-cir. Sailfish-cir is freely available at https://github.com/zerodel/Sailfish-cir . tongz@medicine.nevada.edu or wanjun.gu@gmail.com. Supplementary data are available at Bioinformatics online.

  3. Genomic DNA-based absolute quantification of gene expression in Vitis

    USDA-ARS?s Scientific Manuscript database

    Many studies in which gene expression is quantified by polymerase chain reaction represent the expression of a gene of interest (GOI) relative to that of a reference gene (RG). Relative expression is founded on the assumptions that RG expression is stable across samples, treatments, organs, etc., an...

  4. Tuning noise in gene expression.

    PubMed

    Tyagi, Sanjay

    2015-05-05

    The relative contribution of promoter architecture and the associated chromatin environment in regulating gene expression noise has remained elusive. In their recent work, Arkin, Schaffer and colleagues (Dey et al, 2015) show that mean expression and noise for a given promoter at different genomic loci are uncorrelated and influenced by the local chromatin environment.

  5. Monoallelic Gene Expression in Mammals.

    PubMed

    Chess, Andrew

    2016-11-23

    Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.

  6. Stochastic models of gene expression and post-transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Kulkarni, Rahul; Jia, Tao

    2011-10-01

    The intrinsic stochasticity of gene expression can give rise to phenotypic heterogeneity in a population of genetically identical cells. Correspondingly, there is considerable interest in understanding how different molecular mechanisms impact the 'noise' in gene expression. Of particular interest are post-transcriptional regulatory mechanisms involving genes called small RNAs, which control important processes such as development and cancer. We propose and analyze general stochastic models of gene expression and derive exact analytical expressions quantifying the noise in protein distributions [1]. Focusing on specific regulatory mechanisms, we analyze a general model for post-transcriptional regulation of stochastic gene expression [2]. The results obtained provide new insights into the role of post-transcriptional regulation in controlling the noise in gene expression. [4pt] [1] T. Jia and R. V. Kulkarni, Phys. Rev. Lett.,106, 058102 (2011) [0pt] [2] T. Jia and R. V. Kulkarni, Phys. Rev. Lett., 105, 018101 (2010)

  7. APG: an Active Protein-Gene network model to quantify regulatory signals in complex biological systems.

    PubMed

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information.

  8. Marker gene tethering by nucleoporins affects gene expression in plants.

    PubMed

    Smith, Sarah; Galinha, Carla; Desset, Sophie; Tolmie, Frances; Evans, David; Tatout, Christophe; Graumann, Katja

    2015-01-01

    In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.

  9. Quantified Event Automata: Towards Expressive and Efficient Runtime Monitors

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Falcone, Ylies; Havelund, Klaus; Reger, Giles; Rydeheard, David

    2012-01-01

    Runtime verification is the process of checking a property on a trace of events produced by the execution of a computational system. Runtime verification techniques have recently focused on parametric specifications where events take data values as parameters. These techniques exist on a spectrum inhabited by both efficient and expressive techniques. These characteristics are usually shown to be conflicting - in state-of-the-art solutions, efficiency is obtained at the cost of loss of expressiveness and vice-versa. To seek a solution to this conflict we explore a new point on the spectrum by defining an alternative runtime verification approach.We introduce a new formalism for concisely capturing expressive specifications with parameters. Our technique is more expressive than the currently most efficient techniques while at the same time allowing for optimizations.

  10. Predicting metastasized seminoma using gene expression.

    PubMed

    Ruf, Christian G; Linbecker, Michael; Port, Matthias; Riecke, Armin; Schmelz, Hans U; Wagner, Walter; Meineke, Victor; Abend, Michael

    2012-07-01

    Treatment options for testis cancer depend on the histological subtype as well as on the clinical stage. An accurate staging is essential for correct treatment. The 'golden standard' for staging purposes is CT, but occult metastasis cannot be detected with this method. Currently, parameters such as primary tumour size, vessel invasion or invasion of the rete testis are used for predicting occult metastasis. Last year the association of these parameters with metastasis could not be validated in a new independent cohort. Gene expression analysis in testis cancer allowed discrimination between the different histological subtypes (seminoma and non-seminoma) as well as testis cancer and normal testis tissue. In a two-stage study design we (i) screened the whole genome (using human whole genome microarrays) for candidate genes associated with the metastatic stage in seminoma and (ii) validated and quantified gene expression of our candidate genes (real-time quantitative polymerase chain reaction) on another independent group. Gene expression measurements of two of our candidate genes (dopamine receptor D1 [DRD1] and family with sequence similarity 71, member F2 [FAM71F2]) examined in primary testis cancers made it possible to discriminate the metastasis status in seminoma. The discriminative ability of the genes exceeded the predictive significance of currently used histological/pathological parameters. Based on gene expression analysis the present study provides suggestions for improved individual decision making either in favour of early adjuvant therapy or increased surveillance. To evaluate the usefulness of gene expression profiling for predicting metastatic status in testicular seminoma at the time of first diagnosis compared with established clinical and pathological parameters. Total RNA was isolated from testicular tumours of metastasized patients (12 patients, clinical stage IIa-III), non-metastasized patients (40, clinical stage I) and adjacent 'normal' tissue

  11. Differential gene expression in glaucoma.

    PubMed

    Jakobs, Tatjana C

    2014-07-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.

  12. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  13. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  14. Stochastic Mechanisms in Gene Expression

    NASA Astrophysics Data System (ADS)

    McAdams, Harley H.; Arkin, Adam

    1997-02-01

    In cellular regulatory networks, genetic activity is controlled by molecular signals that determine when and how often a given gene is transcribed. In genetically controlled pathways, the protein product encoded by one gene often regulates expression of other genes. The time delay, after activation of the first promoter, to reach an effective level to control the next promoter depends on the rate of protein accumulation. We have analyzed the chemical reactions controlling transcript initiation and translation termination in a single such ``genetically coupled'' link as a precursor to modeling networks constructed from many such links. Simulation of the processes of gene expression shows that proteins are produced from an activated promoter in short bursts of variable numbers of proteins that occur at random time intervals. As a result, there can be large differences in the time between successive events in regulatory cascades across a cell population. In addition, the random pattern of expression of competitive effectors can produce probabilistic outcomes in switching mechanisms that select between alternative regulatory paths. The result can be a partitioning of the cell population into different phenotypes as the cells follow different paths. There are numerous unexplained examples of phenotypic variations in isogenic populations of both prokaryotic and eukaryotic cells that may be the result of these stochastic gene expression mechanisms.

  15. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  16. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.

  17. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  18. Modulation of R-gene expression across environments

    PubMed Central

    MacQueen, Alice; Bergelson, Joy

    2016-01-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription–PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment—be it a change in biotic or abiotic conditions—led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  19. Modulation of R-gene expression across environments.

    PubMed

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments.

  20. Regulation of ABO gene expression.

    PubMed

    Kominato, Yoshihiko; Hata, Yukiko; Matsui, Kazuhiro; Takizawa, Hisao

    2005-07-01

    The ABO blood group system is important in blood transfusions and in identifying individuals during criminal investigations. Two carbohydrate antigens, the A and B antigens, and their antibodies constitute this system. Although biochemical and molecular genetic studies have demonstrated the molecular basis of the histo-blood group ABO system, some aspects remain to be elucidated. To explain the molecular basis of how the ABO genes are controlled in cell type-specific expression, during normal cell differentiation, and in cancer cells with invasive and metastatic potential that lack A/B antigens, it is essential to understand the regulatory mechanism of ABO gene transcription. We review the transcriptional regulation of the ABO gene, including positive and negative elements in the upstream region of the gene, and draw some inferences that help to explain the phenomena described above.

  1. Gene expression profile of pulpitis

    PubMed Central

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  2. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  3. Pathway level analysis of gene expression using singular value decomposition

    PubMed Central

    Tomfohr, John; Lu, Jun; Kepler, Thomas B

    2005-01-01

    Background A promising direction in the analysis of gene expression focuses on the changes in expression of specific predefined sets of genes that are known in advance to be related (e.g., genes coding for proteins involved in cellular pathways or complexes). Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation. In this article, we present a new method of this kind that operates by quantifying the level of 'activity' of each pathway in different samples. The activity levels, which are derived from singular value decompositions, form the basis for statistical comparisons and other applications. Results We demonstrate our approach using expression data from a study of type 2 diabetes and another of the influence of cigarette smoke on gene expression in airway epithelia. A number of interesting pathways are identified in comparisons between smokers and non-smokers including ones related to nicotine metabolism, mucus production, and glutathione metabolism. A comparison with results from the related approach, 'gene-set enrichment analysis', is also provided. Conclusion Our method offers a flexible basis for identifying differentially expressed pathways from gene expression data. The results of a pathway-based analysis can be complementary to those obtained from one more focused on individual genes. A web program PLAGE (Pathway Level Analysis of Gene Expression) for performing the kinds of analyses described here is accessible at . PMID:16156896

  4. An atlas of gene expression and gene co-regulation in the human retina

    PubMed Central

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-01-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  5. Analyzing gene expression time-courses.

    PubMed

    Schliep, Alexander; Costa, Ivan G; Steinhoff, Christine; Schönhuth, Alexander

    2005-01-01

    Measuring gene expression over time can provide important insights into basic cellular processes. Identifying groups of genes with similar expression time-courses is a crucial first step in the analysis. As biologically relevant groups frequently overlap, due to genes having several distinct roles in those cellular processes, this is a difficult problem for classical clustering methods. We use a mixture model to circumvent this principal problem, with hidden Markov models (HMMs) as effective and flexible components. We show that the ensuing estimation problem can be addressed with additional labeled data-partially supervised learning of mixtures-through a modification of the Expectation-Maximization (EM) algorithm. Good starting points for the mixture estimation are obtained through a modification to Bayesian model merging, which allows us to learn a collection of initial HMMs. We infer groups from mixtures with a simple information-theoretic decoding heuristic, which quantifies the level of ambiguity in group assignment. The effectiveness is shown with high-quality annotation data. As the HMMs we propose capture asynchronous behavior by design, the groups we find are also asynchronous. Synchronous subgroups are obtained from a novel algorithm based on Viterbi paths. We show the suitability of our HMM mixture approach on biological and simulated data and through the favorable comparison with previous approaches. A software implementing the method is freely available under the GPL from http://ghmm.org/gql.

  6. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  7. Does FACS perturb gene expression?

    PubMed

    Richardson, Graham M; Lannigan, Joanne; Macara, Ian G

    2015-02-01

    Fluorescence activated cell sorting is the technique most commonly used to separate primary mammary epithelial sub-populations. Many studies incorporate this technique before analyzing gene expression within specific cellular lineages. However, to our knowledge, no one has examined the effects of fluorescence activated cell sorting (FACS) separation on short-term transcriptional profiles. In this study, we isolated a heterogeneous mixture of cells from the mouse mammary gland. To determine the effects of the isolation and separation process on gene expression, we harvested RNA from the cells before enzymatic digestion, following enzymatic digestion, and following a mock FACS sort where the entire cohort of cells was retained. A strict protocol was followed to minimize disruption to the cells, and to ensure that no subpopulations were enriched or lost. Microarray analysis demonstrated that FACS causes minimal disruptions to gene expression patterns, but prior steps in the mammary cell isolation process are followed by upregulation of 18 miRNA's and rapid decreases in their predicted target transcripts. © 2015 International Society for Advancement of Cytometry. © 2015 International Society for Advancement of Cytometry.

  8. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/.

  9. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  10. Relating Perturbation Magnitude to Temporal Gene Expression in Biological Systems

    SciTech Connect

    Callister, Stephen J.; Parnell, John J.; Pfrender, Michael E.; Hashsham, Syed

    2009-03-19

    A method to quantitatively relate stress to response at the level of gene expression is described using Saccharomyces cerevisiae as a model organism. Stress was defined as the magnitude of perturbation and strain was defined as the magnitude of cumulative response in terms of gene expression. Expression patterns of sixty genes previously reported to be significantly impacted by osmotic shock or belonging to the high-osmotic glycerol, glycerolipid metabolism, and glycolysis pathways were determined following perturbations of increasing sodium chloride concentrations (0, 0.5, 0.7, 1.0, 1.5, and 1.4 M). Expression of these genes was quantified temporally using reverse transcriptase real time polymerase chain reaction. The magnitude of cumulative response was obtained by calculating the total moment of area of the temporal response envelope for all the 60 genes, either together or for the set of genes related to each pathway. A non-linear relationship between stress and response was observed for the range of stress studied. This study examines a quantitative approach to quantify the strain at the level of gene expression to relate stress to strain in biological systems. The approach should be generally applicable to quantitatively evaluate the response of organisms to environmental change.

  11. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  12. Noise in eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Blake, William J.; KÆrn, Mads; Cantor, Charles R.; Collins, J. J.

    2003-04-01

    Transcription in eukaryotic cells has been described as quantal, with pulses of messenger RNA produced in a probabilistic manner. This description reflects the inherently stochastic nature of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell-cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.

  13. Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

    PubMed

    Oliver, Karen L; Lukic, Vesna; Thorne, Natalie P; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.

  14. Harnessing Gene Expression Networks to Prioritize Candidate Epileptic Encephalopathy Genes

    PubMed Central

    Oliver, Karen L.; Lukic, Vesna; Thorne, Natalie P.; Berkovic, Samuel F.; Scheffer, Ingrid E.; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets. PMID:25014031

  15. Evaluating Fumonisin Gene Expression in Fusarium verticillioides.

    PubMed

    Scala, Valeria; Visentin, Ivan; Cardinale, Francesca

    2017-01-01

    Transcript levels of key genes in a biosynthetic pathway are often taken as a proxy for metabolite production. This is the case of FUM1, encoding the first dedicated enzyme in the metabolic pathway leading to the production of the mycotoxins Fumonisins by fungal species belonging to the genus Fusarium. FUM1 expression can be quantified by different methods; here, we detail a protocol based on quantitative reverse transcriptase polymerase chain reaction (RT-qPCR), by which relative or absolute transcript abundance can be estimated in Fusaria grown in vitro or in planta. As very seldom commercial kits for RNA extraction and cDNA synthesis are optimized for fungal samples, we developed a protocol tailored for these organisms, which stands alone but can be also easily integrated with specific reagents and kits commercially available.

  16. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  17. Seasonal Effects on Gene Expression

    PubMed Central

    Goldinger, Anita; Shakhbazov, Konstantin; Henders, Anjali K.; McRae, Allan F.; Montgomery, Grant W.; Powell, Joseph E.

    2015-01-01

    Many health conditions, ranging from psychiatric disorders to cardiovascular disease, display notable seasonal variation in severity and onset. In order to understand the molecular processes underlying this phenomenon, we have examined seasonal variation in the transcriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-month seasonal cycle were enriched for processes involved in DNA repair and binding. An additional 94 transcripts demonstrated significant seasonal variability that was largely influenced by blood cell count levels. These transcripts were enriched for immune function, protein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant association with a 12-month seasonal cycle. These results demonstrate that seasonal variation is an important environmental regulator of gene expression and blood cell composition. Notable changes in leukocyte counts and genes involved in immune function indicate that immune cell physiology varies throughout the year in healthy individuals. PMID:26023781

  18. [Neuronal plasticity and gene expression].

    PubMed

    Sokolova, O O; Shtark, M B; Lisachev, P D

    2010-01-01

    Neuronal plasticity--a fundamental feature of brain--provides adequate interactions with dynamic environment. One of the most deeply investigated forms of the neuronal plasticity is a long-term potentiation (LTP)--a phenomenon underlying learning and memory. Signal paths activated during LTP converge into the nuclear of the neuron, giving rise to launch of the molecular-genetic programs, which mediate structural and functional remodeling of synapses. In the review data concerning involvement of multilevel gene expression into plastic change under neuronal activation are summarized.

  19. Identification of Cancer Related Genes Using a Comprehensive Map of Human Gene Expression.

    PubMed

    Torrente, Aurora; Lukk, Margus; Xue, Vincent; Parkinson, Helen; Rung, Johan; Brazma, Alvis

    2016-01-01

    Rapid accumulation and availability of gene expression datasets in public repositories have enabled large-scale meta-analyses of combined data. The richness of cross-experiment data has provided new biological insights, including identification of new cancer genes. In this study, we compiled a human gene expression dataset from ∼40,000 publicly available Affymetrix HG-U133Plus2 arrays. After strict quality control and data normalisation the data was quantified in an expression matrix of ∼20,000 genes and ∼28,000 samples. To enable different ways of sample grouping, existing annotations where subjected to systematic ontology assisted categorisation and manual curation. Groups like normal tissues, neoplasmic tissues, cell lines, homoeotic cells and incompletely differentiated cells were created. Unsupervised analysis of the data confirmed global structure of expression consistent with earlier analysis but with more details revealed due to increased resolution. A suitable mixed-effects linear model was used to further investigate gene expression in solid tissue tumours, and to compare these with the respective healthy solid tissues. The analysis identified 1,285 genes with systematic expression change in cancer. The list is significantly enriched with known cancer genes from large, public, peer-reviewed databases, whereas the remaining ones are proposed as new cancer gene candidates. The compiled dataset is publicly available in the ArrayExpress Archive. It contains the most diverse collection of biological samples, making it the largest systematically annotated gene expression dataset of its kind in the public domain.

  20. Does inbreeding affect gene expression in birds?

    PubMed

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-09-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular.

  1. Mechanoregulation of gene expression in fibroblasts

    PubMed Central

    Wang, James H.-C.; Thampatty, Bhavani P.; Lin, Jeen-Shang; Im, Hee-Jeong

    2010-01-01

    Mechanical loads placed on connective tissues alter gene expression in fibroblasts through mechanotransduction mechanisms by which cells convert mechanical signals into cellular biological events, such as gene expression of extracellular matrix components (e.g., collagen). This mechanical regulation of ECM gene expression affords maintenance of connective tissue homeostasis. However, mechanical loads can also interfere with homeostatic cellular gene expression and consequently cause the pathogenesis of connective tissue diseases such as tendinopathy and osteoarthritis. Therefore, the regulation of gene expression by mechanical loads is closely related to connective tissue physiology and pathology. This article reviews the effects of various mechanical loading conditions on gene regulation in fibroblasts and discusses several mechanotransduction mechanisms. Future research directions in mechanoregulation of gene expression are also suggested. PMID:17331678

  2. Norovirus gene expression and replication.

    PubMed

    Thorne, Lucy G; Goodfellow, Ian G

    2014-02-01

    Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.

  3. Identification of housekeeping genes suitable for gene expression analysis in Jian carp (Cyprinus carpio var. jian).

    PubMed

    Tang, Yong-kai; Yu, Ju-hua; Xu, Pao; Li, Jian-lin; Li, Hong-xia; Ren, Hong-tao

    2012-10-01

    Jian carp (Cyprinus carpio var. jian) is an important economic fish species cultured in China. In this report, we performed a systematic analysis to identify an appropriate housekeeping (HK) gene for the study of gene expression in Jian carp. For this purpose, partial DNA sequences of four potential candidate genes (elongation factor 1 alpha (EF-1α), glyceraldehyde-3-phosphate (GAPDH), beta-actin (ACTB), and 18S ribosomal RNA (18S rRNA) were isolated, and their expression levels were studied using RNA extracted from nine tissues (forebrain, hypothalamus, liver, fore-intestine, hind-intestine, ovary, muscle, heart, kidney) in juvenile and adult Jian carp. Gene expression levels were quantified by quantitative real time RT-PCR (qRT-PCR), and expression stability was evaluated by comparing the coefficients of variation (CV) of the Ct values. The results showed that EF-1α was the most suitable HK gene in all tissues of juvenile and adult Jian carp. However, at distinct juvenile and adult developmental stages, there was not a single optimal gene for normalization of expression levels in all tissues. EF-1α was the most stable gene only in forebrain, hypothalamus, liver, heart, and kidney. These results provide data that can be expected to aid gene expression analysis in Jian carp research, but underline the importance of identifying the optimal HK gene for each new experimental paradigm.

  4. Differential gene detection incorporating common expression patterns

    NASA Astrophysics Data System (ADS)

    Oba, Shigeyuki; Ishii, Shin

    2009-12-01

    In detection of differentially expressed (DE) genes between different groups of samples based on a high-throughput expression measurement system, we often use a classical statistical testing based on a simple assumption that the expression of a certain DE gene in one group is higher or lower in average than that in the other group. Based on this simple assumption, the theory of optimal discovery procedure (ODP) (Storey, 2005) provided an optimal thresholding function for DE gene detection. However, expression patterns of DE genes over samples may have such a structure that is not exactly consistent with group labels assigned to the samples. Appropriate treatment of such a structure can increase the detection ability. Namely, genes showing similar expression patterns to other biologically meaningful genes can be regarded as statistically more significant than those showing expression patterns independent of other genes, even if differences in mean expression levels are comparable. In this study, we propose a new statistical thresholding function based on a latent variable model incorporating expression patterns together with the ODP theory. The latent variable model assumes hidden common signals behind expression patterns over samples and the ODP theory is extended to involve the latent variables. When applied to several gene expression data matrices which include cluster structures or 'cancer outlier' structures, the newly-proposed thresholding functions showed prominently better detection performance of DE genes than the original ODP thresholding function did. We also demonstrate how the proposed methods behave through analyses of real breast cancer and lymphoma datasets.

  5. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  6. Microspatial gene expression patterns in the Amazon River Plume.

    PubMed

    Satinsky, Brandon M; Crump, Byron C; Smith, Christa B; Sharma, Shalabh; Zielinski, Brian L; Doherty, Mary; Meng, Jun; Sun, Shulei; Medeiros, Patricia M; Paul, John H; Coles, Victoria J; Yager, Patricia L; Moran, Mary Ann

    2014-07-29

    We investigated expression of genes mediating elemental cycling at the microspatial scale in the ocean's largest river plume using, to our knowledge, the first fully quantitative inventory of genes and transcripts. The bacterial and archaeal communities associated with a phytoplankton bloom in Amazon River Plume waters at the outer continental shelf in June 2010 harbored ∼ 1.0 × 10(13) genes and 4.7 × 10(11) transcripts per liter that mapped to several thousand microbial genomes. Genomes from free-living cells were more abundant than those from particle-associated cells, and they generated more transcripts per liter for carbon fixation, heterotrophy, nitrogen and phosphorus uptake, and iron acquisition, although they had lower expression ratios (transcripts ⋅ gene(-1)) overall. Genomes from particle-associated cells contributed more transcripts for sulfur cycling, aromatic compound degradation, and the synthesis of biologically essential vitamins, with an overall twofold up-regulation of expression compared with free-living cells. Quantitatively, gene regulation differences were more important than genome abundance differences in explaining why microenvironment transcriptomes differed. Taxa contributing genomes to both free-living and particle-associated communities had up to 65% of their expressed genes regulated differently between the two, quantifying the extent of transcriptional plasticity in marine microbes in situ. In response to patchiness in carbon, nutrients, and light at the micrometer scale, Amazon Plume microbes regulated the expression of genes relevant to biogeochemical processes at the ecosystem scale.

  7. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  8. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  9. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  10. Gene-expression profile comparisons distinguish seven organs of maize

    PubMed Central

    Cho, Yangrae; Fernandes, John; Kim, Soo-Hwan; Walbot, Virginia

    2002-01-01

    Background A maize array was fabricated with 5,376 unique expressed sequence tag (EST) clones sequenced from 4-day-old roots, immature ears and adult organ cDNA libraries. To elucidate organ relationships, relative mRNA levels were quantified by hybridization with embryos, three maize vegetative organs (leaf blades, leaf sheaths and roots) from multiple developmental stages, husk leaves and two types of floral organs (immature ears and silks). Results Clustering analyses of the hybridization data suggest that maize utilizes both the PEPCK and NADP-ME C4 photosynthetic routes as genes in these pathways are co-regulated. Husk RNA has a gene-expression profile more similar to floral organs than to vegetative leaves. Only 7% of the genes were highly organ specific, showing over a fourfold difference in at least one of 12 comparisons and 37% showed a two- to fourfold difference. The majority of genes were expressed in diverse organs with little difference in transcript levels. Cross-hybridization among closely related genes within multigene families could obscure tissue specificity. As a first step in elucidating individual gene-expression patterns, we show that 45-nucleotide oligo probes produce signal intensities and signal ratios comparable to PCR probes on the same matrix. Conclusions Gene-expression profile studies with cDNA microarrays provide a new molecular tool for defining plant organs and their relationships and for discovering new biological processes in silico. cDNA microarrays are insufficient for differentiating recently duplicated genes. Gene-specific oligo probes printed along with cDNA probes can query individual gene-expression profiles and gene families simultaneously. PMID:12225584

  11. Amplification of kinetic oscillations in gene expression

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. P.

    2008-10-01

    Because of the feedbacks between the DNA transcription and mRNA translation, the gene expression in cells may exhibit bistability and oscillations. The deterministic and stochastic calculations presented illustrate how the bistable kinetics of expression of one gene in a cell can be influenced by the kinetic oscillations in the expression of another gene. Due to stability of the states of the bistable kinetics of gene 1 and the relatively small difference between the maximum and minimum protein amounts during the oscillations of gene 2, the induced oscillations of gene 1 are found to typically be related either to the low-or high-reactive state of this gene. The quality of the induced oscillations may be appreciably better than that of the inducing oscillations. This means that gene 1 can serve as an amplifier of the kinetic oscillations of gene 2.

  12. Gene expression inference with deep learning.

    PubMed

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Estimation and Testing of Gene Expression Heterosis

    PubMed Central

    Liu, Peng; Nettleton, Dan

    2014-01-01

    Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid off-spring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. To address these shortcomings, we develop a hierarchical model to borrow information across genes. Using our modeling framework, we derive empirical Bayes estimators and an inference strategy to identify gene expression heterosis. Simulation results show that our proposed method outperforms the more traditional strategy used to detect gene expression heterosis. This article has supplementary material online. PMID:25435758

  14. Estimation and Testing of Gene Expression Heterosis.

    PubMed

    Ji, Tieming; Liu, Peng; Nettleton, Dan

    2014-09-01

    Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid off-spring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. To address these shortcomings, we develop a hierarchical model to borrow information across genes. Using our modeling framework, we derive empirical Bayes estimators and an inference strategy to identify gene expression heterosis. Simulation results show that our proposed method outperforms the more traditional strategy used to detect gene expression heterosis. This article has supplementary material online.

  15. QUANTIFYING ATYPICALITY IN AFFECTIVE FACIAL EXPRESSIONS OF CHILDREN WITH AUTISM SPECTRUM DISORDERS.

    PubMed

    Metallinou, Angeliki; Grossman, Ruth B; Narayanan, Shrikanth

    2013-01-01

    We focus on the analysis, quantification and visualization of atypicality in affective facial expressions of children with High Functioning Autism (HFA). We examine facial Motion Capture data from typically developing (TD) children and children with HFA, using various statistical methods, including Functional Data Analysis, in order to quantify atypical expression characteristics and uncover patterns of expression evolution in the two populations. Our results show that children with HFA display higher asynchrony of motion between facial regions, more rough facial and head motion, and a larger range of facial region motion. Overall, subjects with HFA consistently display a wider variability in the expressive facial gestures that they employ. Our analysis demonstrates the utility of computational approaches for understanding behavioral data and brings new insights into the autism domain regarding the atypicality that is often associated with facial expressions of subjects with HFA.

  16. Microspatial gene expression patterns in the Amazon River Plume

    PubMed Central

    Satinsky, Brandon M.; Crump, Byron C.; Smith, Christa B.; Sharma, Shalabh; Zielinski, Brian L.; Doherty, Mary; Meng, Jun; Sun, Shulei; Medeiros, Patricia M.; Paul, John H.; Coles, Victoria J.; Yager, Patricia L.; Moran, Mary Ann

    2014-01-01

    We investigated expression of genes mediating elemental cycling at the microspatial scale in the ocean’s largest river plume using, to our knowledge, the first fully quantitative inventory of genes and transcripts. The bacterial and archaeal communities associated with a phytoplankton bloom in Amazon River Plume waters at the outer continental shelf in June 2010 harbored ∼1.0 × 1013 genes and 4.7 × 1011 transcripts per liter that mapped to several thousand microbial genomes. Genomes from free-living cells were more abundant than those from particle-associated cells, and they generated more transcripts per liter for carbon fixation, heterotrophy, nitrogen and phosphorus uptake, and iron acquisition, although they had lower expression ratios (transcripts⋅gene−1) overall. Genomes from particle-associated cells contributed more transcripts for sulfur cycling, aromatic compound degradation, and the synthesis of biologically essential vitamins, with an overall twofold up-regulation of expression compared with free-living cells. Quantitatively, gene regulation differences were more important than genome abundance differences in explaining why microenvironment transcriptomes differed. Taxa contributing genomes to both free-living and particle-associated communities had up to 65% of their expressed genes regulated differently between the two, quantifying the extent of transcriptional plasticity in marine microbes in situ. In response to patchiness in carbon, nutrients, and light at the micrometer scale, Amazon Plume microbes regulated the expression of genes relevant to biogeochemical processes at the ecosystem scale. PMID:25024226

  17. Intrinsic and extrinsic contributions to stochasticity in gene expression

    NASA Astrophysics Data System (ADS)

    Swain, Peter S.; Elowitz, Michael B.; Siggia, Eric D.

    2002-10-01

    Gene expression is a stochastic, or "noisy," process. This noise comes about in two ways. The inherent stochasticity of biochemical processes such as transcription and translation generates "intrinsic" noise. In addition, fluctuations in the amounts or states of other cellular components lead indirectly to variation in the expression of a particular gene and thus represent "extrinsic" noise. Here, we show how the total variation in the level of expression of a given gene can be decomposed into its intrinsic and extrinsic components. We demonstrate theoretically that simultaneous measurement of two identical genes per cell enables discrimination of these two types of noise. Analytic expressions for intrinsic noise are given for a model that involves all the major steps in transcription and translation. These expressions give the sensitivity to various parameters, quantify the deviation from Poisson statistics, and provide a way of fitting experiment. Transcription dominates the intrinsic noise when the average number of proteins made per mRNA transcript is greater than 2. Below this number, translational effects also become important. Gene replication and cell division, included in the model, cause protein numbers to tend to a limit cycle. We calculate a general form for the extrinsic noise and illustrate it with the particular case of a single fluctuating extrinsic variablea repressor protein, which acts on the gene of interest. All results are confirmed by stochastic simulation using plausible parameters for Escherichia coli.

  18. Antisense transcription as a tool to tune gene expression.

    PubMed

    Brophy, Jennifer A N; Voigt, Christopher A

    2016-01-14

    A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip-based oligo synthesis was applied to build a large library of 5,668 terminator-promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.

  19. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  20. Integrating phenotype and gene expression data for predicting gene function.

    PubMed

    Malone, Brandon M; Perkins, Andy D; Bridges, Susan M

    2009-10-08

    This paper presents a framework for integrating disparate data sets to predict gene function. The algorithm constructs a graph, called an integrated similarity graph, by computing similarities based upon both gene expression and textual phenotype data. This integrated graph is then used to make predictions about whether individual genes should be assigned a particular annotation from the Gene Ontology. A combined graph was generated from publicly-available gene expression data and phenotypic information from Saccharomyces cerevisiae. This graph was used to assign annotations to genes, as were graphs constructed from gene expression data and textual phenotype information alone. While the F-measure appeared similar for all three methods, annotations based upon the integrated similarity graph exhibited a better overall precision than gene expression or phenotype information alone can generate. The integrated approach was also able to assign almost as many annotations as the gene expression method alone, and generated significantly more total and correct assignments than the phenotype information could provide. These results suggest that augmenting standard gene expression data sets with publicly-available textual phenotype data can help generate more precise functional annotation predictions while mitigating the weaknesses of a standard textual phenotype approach.

  1. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  2. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  3. Expression of Sox genes in tooth development.

    PubMed

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  4. Cell cycle regulated gene expression in yeasts.

    PubMed

    McInerny, Christopher J

    2011-01-01

    The regulation of gene expression through the mitotic cell cycle, so that genes are transcribed at particular cell cycle times, is widespread among eukaryotes. In some cases, it appears to be important for control mechanisms, as deregulated expression results in uncontrolled cell divisions, which can cause cell death, disease, and malignancy. In this review, I describe the current understanding of such regulated gene expression in two established simple eukaryotic model organisms, the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In these two yeasts, the global pattern of cell cycle gene expression has been well described, and most of the transcription factors that control the various waves of gene expression, and how they are in turn themselves regulated, have been characterized. As related mechanisms occur in all other eukaryotes, including humans, yeasts offer an excellent paradigm to understand this important molecular process. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Expression of Sox genes in tooth development

    PubMed Central

    KAWASAKI, KATSUSHIGE; KAWASAKI, MAIKO; WATANABE, MOMOKO; IDRUS, ERIK; NAGAI, TAKAHIRO; OOMMEN, SHELLY; MAEDA, TAKEYASU; HAGIWARA, NOBUKO; QUE, JIANWEN; SHARPE, PAUL T.; OHAZAMA, ATSUSHI

    2017-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development. PMID:26864488

  6. Gene set analysis for longitudinal gene expression data

    PubMed Central

    2011-01-01

    Background Gene set analysis (GSA) has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information) with accession number GSE6085. PMID

  7. Gene-Ontology-based clustering of gene expression data.

    PubMed

    Adryan, Boris; Schuh, Reinhard

    2004-11-01

    The expected correlation between genetic co-regulation and affiliation to a common biological process is not necessarily the case when numerical cluster algorithms are applied to gene expression data. GO-Cluster uses the tree structure of the Gene Ontology database as a framework for numerical clustering, and thus allowing a simple visualization of gene expression data at various levels of the ontology tree. The 32-bit Windows application is freely available at http://www.mpibpc.mpg.de/go-cluster/

  8. Gene Expression Profiling during Murine Tooth Development.

    PubMed

    Landin, Maria A Dos Santos Silva; Shabestari, Maziar; Babaie, Eshrat; Reseland, Janne E; Osmundsen, Harald

    2012-01-01

    The aim of this study was to describe the expression of genes, including ameloblastin (Ambn), amelogenin X chromosome (Amelx), and enamelin (Enam) during early (pre-secretory) tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24 h intervals, starting at the 11th embryonic day (E11.5), and up to the 7th day after birth (P7). The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx, and Enam). Microarray results where validated using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), and translated proteins identified by Western-blotting. In situ localization of the Ambn, Amelx, and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially expressed (DE; p ≤ 0.05) genes. Microarray results showed a total of 4362 genes including Ambn, Amelx, and Enam to be significant DE throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5-P0) increasing after birth (P1-P7). Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. These mRNAs were expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx, and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western-blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around 35 genes were associated with 15 transcription factors.

  9. Gene Expression Profiling during Murine Tooth Development

    PubMed Central

    Landin, Maria A. dos Santos Silva; Shabestari, Maziar; Babaie, Eshrat; Reseland, Janne E.; Osmundsen, Harald

    2012-01-01

    The aim of this study was to describe the expression of genes, including ameloblastin (Ambn), amelogenin X chromosome (Amelx), and enamelin (Enam) during early (pre-secretory) tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24 h intervals, starting at the 11th embryonic day (E11.5), and up to the 7th day after birth (P7). The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx, and Enam). Microarray results where validated using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), and translated proteins identified by Western-blotting. In situ localization of the Ambn, Amelx, and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially expressed (DE; p ≤ 0.05) genes. Microarray results showed a total of 4362 genes including Ambn, Amelx, and Enam to be significant DE throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5–P0) increasing after birth (P1–P7). Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. These mRNAs were expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx, and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western-blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around 35 genes were associated with 15 transcription factors. PMID:22866057

  10. Applications of Little's Law to stochastic models of gene expression

    NASA Astrophysics Data System (ADS)

    Elgart, Vlad; Jia, Tao; Kulkarni, Rahul V.

    2010-08-01

    The intrinsic stochasticity of gene expression can lead to large variations in protein levels across a population of cells. To explain this variability, different sources of messenger RNA (mRNA) fluctuations (“Poisson” and “telegraph” processes) have been proposed in stochastic models of gene expression. Both Poisson and telegraph scenario models explain experimental observations of noise in protein levels in terms of “bursts” of protein expression. Correspondingly, there is considerable interest in establishing relations between burst and steady-state protein distributions for general stochastic models of gene expression. In this work, we address this issue by considering a mapping between stochastic models of gene expression and problems of interest in queueing theory. By applying a general theorem from queueing theory, Little’s Law, we derive exact relations which connect burst and steady-state distribution means for models with arbitrary waiting-time distributions for arrival and degradation of mRNAs and proteins. The derived relations have implications for approaches to quantify the degree of transcriptional bursting and hence to discriminate between different sources of intrinsic noise in gene expression. To illustrate this, we consider a model for regulation of protein expression bursts by small RNAs. For a broad range of parameters, we derive analytical expressions (validated by stochastic simulations) for the mean protein levels as the levels of regulatory small RNAs are varied. The results obtained show that the degree of transcriptional bursting can, in principle, be determined from changes in mean steady-state protein levels for general stochastic models of gene expression.

  11. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes.

    PubMed

    Jones, Ashley R; Troakes, Claire; King, Andrew; Sahni, Vibhu; De Jong, Simone; Bossers, Koen; Papouli, Efterpi; Mirza, Muddassar; Al-Sarraj, Safa; Shaw, Christopher E; Shaw, Pamela J; Kirby, Janine; Veldink, Jan H; Macklis, Jeffrey D; Powell, John F; Al-Chalabi, Ammar

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Photosynthetic gene expression in higher plants.

    PubMed

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  13. Aplysia californica neurons express microinjected neuropeptide genes.

    PubMed Central

    DesGroseillers, L; Cowan, D; Miles, M; Sweet, A; Scheller, R H

    1987-01-01

    Neuropeptide genes are expressed in specific subsets of large polyploid neurons in Aplysia californica. We have defined the transcription initiation sites of three of these neuropeptide genes (the R14, L11, and ELH genes) and determined the nucleotide sequence of the promoter regions. The genes contain the usual eucaryotic promoter signals as well as other structures of potential regulatory importance, including inverted and direct repeats. The L11 and ELH genes, which are otherwise unrelated, have homology in the promoter regions, while the R14 promoter was distinct. When cloned plasmids were microinjected into Aplysia neurons in organ culture, transitions between supercoiled, relaxed circular, and linear DNAs occurred along with ligation into high-molecular-weight species. About 20% of the microinjected neurons expressed the genes. The promoter region of the R14 gene functioned in expression of the microinjected DNA in all cells studied. When both additional 5' and 3' sequences were included, the gene was specifically expressed only in R14, suggesting that the specificity of expression is generated by a multicomponent repression system. Finally, the R14 peptide could be expressed in L11, demonstrating that it is possible to alter the transmitter phenotype of these neurons by introduction of cloned genes. Images PMID:3670293

  14. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  15. The functional landscape of mouse gene expression

    PubMed Central

    Zhang, Wen; Morris, Quaid D; Chang, Richard; Shai, Ofer; Bakowski, Malina A; Mitsakakis, Nicholas; Mohammad, Naveed; Robinson, Mark D; Zirngibl, Ralph; Somogyi, Eszter; Laurin, Nancy; Eftekharpour, Eftekhar; Sat, Eric; Grigull, Jörg; Pan, Qun; Peng, Wen-Tao; Krogan, Nevan; Greenblatt, Jack; Fehlings, Michael; van der Kooy, Derek; Aubin, Jane; Bruneau, Benoit G; Rossant, Janet; Blencowe, Benjamin J; Frey, Brendan J; Hughes, Timothy R

    2004-01-01

    Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics. PMID:15588312

  16. Identification of Cancer Related Genes Using a Comprehensive Map of Human Gene Expression

    PubMed Central

    Lukk, Margus; Xue, Vincent; Parkinson, Helen; Rung, Johan; Brazma, Alvis

    2016-01-01

    Rapid accumulation and availability of gene expression datasets in public repositories have enabled large-scale meta-analyses of combined data. The richness of cross-experiment data has provided new biological insights, including identification of new cancer genes. In this study, we compiled a human gene expression dataset from ∼40,000 publicly available Affymetrix HG-U133Plus2 arrays. After strict quality control and data normalisation the data was quantified in an expression matrix of ∼20,000 genes and ∼28,000 samples. To enable different ways of sample grouping, existing annotations where subjected to systematic ontology assisted categorisation and manual curation. Groups like normal tissues, neoplasmic tissues, cell lines, homoeotic cells and incompletely differentiated cells were created. Unsupervised analysis of the data confirmed global structure of expression consistent with earlier analysis but with more details revealed due to increased resolution. A suitable mixed-effects linear model was used to further investigate gene expression in solid tissue tumours, and to compare these with the respective healthy solid tissues. The analysis identified 1,285 genes with systematic expression change in cancer. The list is significantly enriched with known cancer genes from large, public, peer-reviewed databases, whereas the remaining ones are proposed as new cancer gene candidates. The compiled dataset is publicly available in the ArrayExpress Archive. It contains the most diverse collection of biological samples, making it the largest systematically annotated gene expression dataset of its kind in the public domain. PMID:27322383

  17. Gene expression in the etiology of schizophrenia.

    PubMed

    Bray, Nicholas J

    2008-05-01

    Gene expression represents a fundamental interface between genes and environment in the development and ongoing plasticity of the human brain. Individual differences in gene expression are likely to underpin much of human diversity, including psychiatric illness. In the past decade, the development of microarray and proteomic technology has enabled global description of gene expression in schizophrenia. However, it is difficult on the basis of gene expression assays alone to distinguish between those changes that constitute primary etiology and those that reflect secondary pathology, compensatory mechanisms, or confounding influences. In this respect, tests of genetic association with schizophrenia will be instructive because changes in gene expression that result from gene variants that are associated with the disorder are likely to be of primary etiological significance. However, regulatory polymorphism is extremely difficult to recognize on the basis of sequence interrogation alone. Functional assays at the messenger RNA and/or protein level will be essential in elucidating the molecular mechanisms underlying genetic association with schizophrenia and are likely to become increasingly important in the identification of regulatory variants with which to test for association with the disorder and related traits. Once established, etiologically relevant changes in gene expression can be recapitulated in model systems in order to elucidate the molecular and physiological pathways that may ultimately give rise to the condition.

  18. Noise minimisation in gene expression switches.

    PubMed

    Monteoliva, Diana; McCarthy, Christina B; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators.

  19. Noise Minimisation in Gene Expression Switches

    PubMed Central

    Monteoliva, Diana; McCarthy, Christina B.; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators. PMID:24376783

  20. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  1. Quantifying Nonspecific TEM β-Lactamase (blaTEM) Genes in a Wastewater Stream▿

    PubMed Central

    Lachmayr, Karen L.; Kerkhof, Lee J.; DiRienzo, A. Gregory; Cavanaugh, Colleen M.; Ford, Timothy E.

    2009-01-01

    To control the antibiotic resistance epidemic, it is necessary to understand the distribution of genetic material encoding antibiotic resistance in the environment and how anthropogenic inputs, such as wastewater, affect this distribution. Approximately two-thirds of antibiotics administered to humans are β-lactams, for which the predominant bacterial resistance mechanism is hydrolysis by β-lactamases. Of the β-lactamases, the TEM family is of overriding significance with regard to diversity, prevalence, and distribution. This paper describes the design of DNA probes universal for all known TEM β-lactamase genes and the application of a quantitative PCR assay (also known as Taqman) to quantify these genes in environmental samples. The primer set was used to study whether sewage, both treated and untreated, contributes to the spread of these genes in receiving waters. It was found that while modern sewage treatment technologies reduce the concentrations of these antibiotic resistance genes, the ratio of blaTEM genes to 16S rRNA genes increases with treatment, suggesting that bacteria harboring blaTEM are more likely to survive the treatment process. Thus, β-lactamase genes are being introduced into the environment in significantly higher concentrations than occur naturally, creating reservoirs of increased resistance potential. PMID:18997031

  2. Regulation of Flagellar Gene Expression in Bacteria.

    PubMed

    Osterman, I A; Dikhtyar, Yu Yu; Bogdanov, A A; Dontsova, O A; Sergiev, P V

    2015-11-01

    The flagellum of a bacterium is a supramolecular structure of extreme complexity comprising simultaneously both a unique system of protein transport and a molecular machine that enables the bacterial cell movement. The cascade of expression of genes encoding flagellar components is closely coordinated with the steps of molecular machine assembly, constituting an amazing regulatory system. Data on structure, assembly, and regulation of flagellar gene expression are summarized in this review. The regulatory mechanisms and correlation of the process of regulation of gene expression and flagellum assembly known from the literature are described.

  3. Gene Expression Patterns in Human Liver Cancers

    PubMed Central

    Chen, Xin; Cheung, Siu Tim; So, Samuel; Fan, Sheung Tat; Barry, Christopher; Higgins, John; Lai, Kin-Man; Ji, Jiafu; Dudoit, Sandrine; Ng, Irene O.L.; van de Rijn, Matt; Botstein, David; Brown, Patrick O.

    2002-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Using cDNA microarrays to characterize patterns of gene expression in HCC, we found consistent differences between the expression patterns in HCC compared with those seen in nontumor liver tissues. The expression patterns in HCC were also readily distinguished from those associated with tumors metastatic to liver. The global gene expression patterns intrinsic to each tumor were sufficiently distinctive that multiple tumor nodules from the same patient could usually be recognized and distinguished from all the others in the large sample set on the basis of their gene expression patterns alone. The distinctive gene expression patterns are characteristic of the tumors and not the patient; the expression programs seen in clonally independent tumor nodules in the same patient were no more similar than those in tumors from different patients. Moreover, clonally related tumor masses that showed distinct expression profiles were also distinguished by genotypic differences. Some features of the gene expression patterns were associated with specific phenotypic and genotypic characteristics of the tumors, including growth rate, vascular invasion, and p53 overexpression. PMID:12058060

  4. Salivary Immunoglobulin Gene Expression in Patients with Caries

    PubMed Central

    Santín, Gema Regina Guadarrama; Salgado, Angel Visoso; Bastida, Norma Margarita Montiel; Gómez, Isaías de la Rosa; Benítez, Jonnathan Guadalupe Santillán; Zerón, Hugo Mendieta

    2017-01-01

    BACKGROUND: Immunoglobulins mediate the host’s humoral immune response are expressed in saliva. AIM: To quantify the FcαR, FcγRIIB, and FcαμR gene expression in the saliva of Mexican patients with caries in mixed and permanent dentition. SUBJECTS AND METHODS: This was a comparative cross-sectional study. mRNA was isolated from 200 μL of saliva following the RNA III Tissue Fresh-frozen protocol of the MagNA Pure LC Instrument 2.0 (Roche Diagnostics GmbH, Nederland BV) and the FcαR, FcαμR and FcγRIIB were quantified through TaqMan Assays. RESULTS: One hundred individuals, 50 with mixed dentition and 50 with permanent dentition, were included in the study. Statistically, it was found a significant difference (p = 0.025) in the IgG (FcγRIIB) expression between the studied groups. CONCLUSION: Although we confirmed the existence of FcαR, FcγRIIB and FcαμR gene expression in saliva, only a significant difference in the expression of FcγRIIB between the mixed dentition and permanent dentition was found. PMID:28507635

  5. Digital gene expression signatures for maize development.

    PubMed

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  6. Sexual differences of imprinted genes' expression levels.

    PubMed

    Faisal, Mohammad; Kim, Hana; Kim, Joomyeong

    2014-01-01

    In mammals, genomic imprinting has evolved as a dosage-controlling mechanism for a subset of genes that play critical roles in their unusual reproduction scheme involving viviparity and placentation. As such, many imprinted genes are highly expressed in sex-specific reproductive organs. In the current study, we sought to test whether imprinted genes are differentially expressed between the two sexes. According to the results, the expression levels of the following genes differ between the two sexes of mice: Peg3, Zim1, Igf2, H19 and Zac1. The expression levels of these imprinted genes are usually greater in males than in females. This bias is most obvious in the developing brains of 14.5-dpc embryos, but also detected in the brains of postnatal-stage mice. However, this sexual bias is not obvious in 10.5-dpc embryos, a developmental stage before the sexual differentiation. Thus, the sexual bias observed in the imprinted genes is most likely attributable by gonadal hormones rather than by sex chromosome complement. Overall, the results indicate that several imprinted genes are sexually different in terms of their expression levels, and further suggest that the transcriptional regulation of these imprinted genes may be influenced by unknown mechanisms associated with sexual differentiation. © 2013 Elsevier B.V. All rights reserved.

  7. Gene expression studies in multiple sclerosis.

    PubMed

    Tajouri, Lotti; Fernandez, Francesca; Griffiths, Lyn R

    2007-05-01

    Multiple sclerosis (MS) is a serious neurological disorder affecting young Caucasian individuals, usually with an age of onset at 18 to 40 years old. Females account for approximately 60x of MS cases and the manifestation and course of the disease is highly variable from patient to patient. The disorder is characterised by the development of plaques within the central nervous system (CNS). Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in MS. Human tissues and experimental mice were used in these gene-profiling studies and a very valuable and interesting set of data has resulted from these various expression studies. In general, genes showing variable expression include mainly immunological and inflammatory genes, stress and antioxidant genes, as well as metabolic and central nervous system markers. Of particular interest are a number of genes localised to susceptible loci previously shown to be in linkage with MS. However due to the clinical complexity of the disease, the heterogeneity of the tissues used in expression studies, as well as the variable DNA chips/membranes used for the gene profiling, it is difficult to interpret the available information. Although this information is essential for the understanding of the pathogenesis of MS, it is difficult to decipher and define the gene pathways involved in the disorder. Experiments in gene expression profiling in MS have been numerous and lists of candidates are now available for analysis. Researchers have investigated gene expression in peripheral mononuclear white blood cells (PBMCs), in MS animal models Experimental Allergic Encephalomyelitis (EAE) and post mortem MS brain tissues. This review will focus on the results of these studies.

  8. Unmasking ultradian rhythms in gene expression

    PubMed Central

    van der Veen, Daan R.; Gerkema, Menno P.

    2017-01-01

    Biological oscillations with an ultradian time scale of 1 to several hours include cycles in behavioral arousal, episodic glucocorticoid release, and gene expression. Ultradian rhythms are thought to have an extrinsic origin because of a perceived absence of ultradian rhythmicity in vitro and a lack of known molecular ultradian oscillators. We designed a novel, non–spectral-analysis method of separating ultradian from circadian components and applied it to a published gene expression dataset with an ultradian sampling resolution. Ultradian rhythms in mouse hepatocytes in vivo have been published, and we validated our approach using this control by confirming 175 of 323 ultradian genes identified in a prior study and found 862 additional ultradian genes. For the first time, we now report ultradian expression of >900 genes in vitro. Sixty genes exhibited ultradian transcriptional rhythmicity, both in vivo and in vitro, including 5 genes involved in the cell cycle. Within these 60 genes, we identified significant enrichment of specific DNA motifs in the 1000 bp proximal promotor, some of which associate with known transcriptional factors. These findings are in strong support of instrinsically driven ultradian rhythms and expose potential molecular mechanisms and functions underlying ultradian rhythms that remain unknown.—Van der Veen, D. R., Gerkema, M. P. Unmasking ultradian rhythms in gene expression. PMID:27871062

  9. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  10. Gene expression and proliferation biomarkers for antidepressant treatment resistance.

    PubMed

    Breitfeld, J; Scholl, C; Steffens, M; Laje, G; Stingl, J C

    2017-03-14

    The neurotrophic hypothesis of depression suggests an association between effects on neuroplasticity and clinical response to antidepressant drug therapy. We studied individual variability in antidepressant drug effects on cell proliferation in lymphoblastoid cell lines (LCLs) from n=25 therapy-resistant patients versus n=25 first-line therapy responders from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. Furthermore, the variability in gene expression of genes associated with cell proliferation was analyzed for tentative candidate genes for prediction of individual LCL donor's treatment response. Cell proliferation was quantified by EdU (5-ethynyl-2'-deoxyuridine) assays after 21-day incubation of LCLs with fluoxetine (0.5 ng μl(-1)) and citalopram (0.3 ng μl(-1)) as developed and described earlier. Gene expression of a panel of candidate genes derived from genome-wide expression analyses of antidepressant effects on cell proliferation of LCLs from the Munich Antidepressant Response Signature (MARS) study was analyzed by real-time PCR. Significant differences in in vitro cell proliferation effects were detected between the group of LCLs from first-line therapy responders and LCLs from treatment-resistant patients. Gene expression analysis of the candidate gene panel revealed and confirmed influence of the candidate genes ABCB1, FZD7 and WNT2B on antidepressant drug resistance. The potential of these genes as tentative biomarkers for antidepressant drug resistance was confirmed. In vitro cell proliferation testing may serve as functional biomarker for individual neuroplasticity effects of antidepressants.

  11. Expression of polarity genes in human cancer.

    PubMed

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  12. Regulation of Gene Expression in Protozoa Parasites

    PubMed Central

    Gomez, Consuelo; Esther Ramirez, M.; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A.

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis. PMID:20204171

  13. Expression of Polarity Genes in Human Cancer

    PubMed Central

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function. PMID:25991909

  14. Dynamic modeling of gene expression data

    PubMed Central

    Holter, Neal S.; Maritan, Amos; Cieplak, Marek; Fedoroff, Nina V.; Banavar, Jayanth R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small. PMID:11172013

  15. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  16. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  17. A comparison of Affymetrix gene expression arrays.

    PubMed

    Robinson, Mark D; Speed, Terence P

    2007-11-15

    Affymetrix GeneChips are an important tool in many facets of biological research. Recently, notable design changes to the chips have been made. In this study, we use publicly available data from Affymetrix to gauge the performance of three human gene expression arrays: Human Genome U133 Plus 2.0 (U133), Human Exon 1.0 ST (HuEx) and Human Gene 1.0 ST (HuGene). We studied probe-, exon- and gene-level reproducibility of technical and biological replicates from each of the 3 platforms. The U133 array has larger feature sizes so it is no surprise that probe-level variances are smaller, however the larger number of probes per gene on the HuGene array seems to produce gene-level summaries that have similar variances. The gene-level summaries of the HuEx array are less reproducible than the other two, despite having the largest average number of probes per gene. Greater than 80% of the content on the HuEx arrays is expressed at or near background. Biological variation seems to have a smaller effect on U133 data. Comparing the overlap of differentially expressed genes, we see a high overall concordance among all 3 platforms, with HuEx and HuGene having greater overlap, as expected given their design. We performed an analysis of detection rates and area under ROC curves using an experiment made up of several mixtures of 2 human tissues. Though it appears that the HuEx array has worse performance in terms of detection rates, all arrays have similar ability to separate differentially expressed and non-differentially expressed genes. Despite noticeable differences in the probe-level reproducibility, gene-level reproducibility and differential expression detection are quite similar across the three platforms. The HuEx array, an all-encompassing array, has the flexibility of measuring all known or predicted exonic content. However, the HuEx array induces poorer reproducibility for genes with fewer exons. The HuGene measures just the well-annotated genome content and appears to

  18. Mucin gene expression in hypertrophic adenoids.

    PubMed

    Ali, Mahmoud S; Wilson, J A; Bennett, M; Pearson, Jeffrey P

    2007-10-01

    Membrane-bound mucin MUC4 represents the predominant mucin expressed in the adenoid epithelium followed by MUC5AC (gel-forming mucin). This may suggest that membrane-bound mucins could be involved in pathogen binding and immunological stimulation. The aim of this study was to investigate mucin expression in hypertrophic adenoids. Adenoidal samples were obtained from 12 children. The expression of eight mucin genes, MUC1-4, MUC5AC, 5B, 6 and 7 was studied by in situ hybridization utilizing digoxigenin-labelled oligonucleotide probes. The dominant mucin genes were MUC4, 3 and 5AC, while MUC1, 2, 5B and 7 were sparsely expressed and MUC6 was not expressed. Expression patterns were very different from those in the upper airways. Most samples expressed two membrane-bound mucins (MUC4 and 3) and one secretory mucin (MUC5AC).

  19. Mining Gene Expression Data of Multiple Sclerosis

    PubMed Central

    Zhu, Zhenli; Huang, Zhengliang; Li, Ke

    2014-01-01

    Objectives Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example. Materials and methods Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control) were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models’ performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined. Results An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score. Conclusions The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases. PMID:24932510

  20. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  1. Imputing gene expression to maximize platform compatibility.

    PubMed

    Zhou, Weizhuang; Han, Lichy; Altman, Russ B

    2017-02-15

    Microarray measurements of gene expression constitute a large fraction of publicly shared biological data, and are available in the Gene Expression Omnibus (GEO). Many studies use GEO data to shape hypotheses and improve statistical power. Within GEO, the Affymetrix HG-U133A and HG-U133 Plus 2.0 are the two most commonly used microarray platforms for human samples; the HG-U133 Plus 2.0 platform contains 54 220 probes and the HG-U133A array contains a proper subset (21 722 probes). When different platforms are involved, the subset of common genes is most easily compared. This approach results in the exclusion of substantial measured data and can limit downstream analysis. To predict the expression values for the genes unique to the HG-U133 Plus 2.0 platform, we constructed a series of gene expression inference models based on genes common to both platforms. Our model predicts gene expression values that are within the variability observed in controlled replicate studies and are highly correlated with measured data. Using six previously published studies, we also demonstrate the improved performance of the enlarged feature space generated by our model in downstream analysis.

  2. TRP genes family expression in colorectal cancer.

    PubMed

    Sozucan, Y; Kalender, M E; Sari, I; Suner, A; Oztuzcu, S; Arman, K; Yumrutas, O; Bozgeyik, I; Cengiz, B; Igci, Y Z; Balakan, O; Camci, C

    2015-09-01

    Colorectal cancer (CRC) is the most common cancer of the gastrointestinal tract. Different factors are responsible for the development of CRC. Transient Receptor Potential (TRP) which is an important component of calcium channel is associated with several pathological conditions like cancer, neurodegenerative and cardiovascular diseases. Thirty members of the family of TRP ion channel in mammals have been determined till now. The aim of this study is to investigate TRPM, TRPV and TRPC gene expression levels in tumor tissues of CRC patients and to analyze the relationship of expression in tumor tissue of CRC with other known prognostic factors. In this study, 93 CRC patients were included. The level of TRP gene expression in paraffin blocks of normal and cancerous colorectal tissue samples were studied at the level of mRNA with Real-time PCR. The mRNA expression level of TRPV3, TRPV4, TRPV5, TRPM4 and TRPC6 genes in 37 female and 56 male patients diagnosed with CRC was revealed lower in tumor tissue as compared to normal tissue (p < 0.05). No statistically significant differences of mRNA expression levels of other TRP genes were found. TRP gene family like TRPV3, TRPV4, TRPV5, TRPM4 and TRPC6 may be thought as potential genes contributing to tumorigenesis as their expression decreases in CRC as compared to normal tissues.

  3. Endogenous Reference Genes for Gene Expression Studies on Bicuspid Aortic Valve Associated Aortopathy in Humans

    PubMed Central

    Harrison, Oliver J.; Moorjani, Narain; Torrens, Christopher; Ohri, Sunil K.; Cagampang, Felino R.

    2016-01-01

    Bicuspid aortic valve (BAV) disease is the most common congenital cardiac abnormality and predisposes patients to life-threatening aortic complications including aortic aneurysm. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most commonly used methods to investigate underlying molecular mechanisms involved in aortopathy. The accuracy of the gene expression data is dependent on normalization by appropriate housekeeping (HK) genes, whose expression should remain constant regardless of aortic valve morphology, aortic diameter and other factors associated with aortopathy. Here, we identified an appropriate set of HK genes to be used as endogenous reference for quantifying gene expression in ascending aortic tissue using a spin column-based RNA extraction method. Ascending aortic biopsies were collected intra-operatively from patients undergoing aortic valve and/or ascending aortic surgery. These patients had BAV or tricuspid aortic valve (TAV), and the aortas were either dilated (≥4.5cm) or undilated. The cohort had an even distribution of gender, valve disease and hypertension. The expression stability of 12 reference genes were investigated (ATP5B, ACTB, B2M, CYC1, EIF4A2, GAPDH, SDHA, RPL13A, TOP1, UBC, YWHAZ, and 18S) using geNorm software. The most stable HK genes were found to be GAPDH, UBC and ACTB. Both GAPDH and UBC demonstrated relative stability regardless of valve morphology, aortic diameter, gender and age. The expression of B2M and SDHA were found to be the least stable HK genes. We propose the use of GAPDH, UBC and ACTB as reference genes for gene expression studies of BAV aortopathy using ascending aortic tissue. PMID:27727313

  4. Endogenous Reference Genes for Gene Expression Studies on Bicuspid Aortic Valve Associated Aortopathy in Humans.

    PubMed

    Harrison, Oliver J; Moorjani, Narain; Torrens, Christopher; Ohri, Sunil K; Cagampang, Felino R

    2016-01-01

    Bicuspid aortic valve (BAV) disease is the most common congenital cardiac abnormality and predisposes patients to life-threatening aortic complications including aortic aneurysm. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most commonly used methods to investigate underlying molecular mechanisms involved in aortopathy. The accuracy of the gene expression data is dependent on normalization by appropriate housekeeping (HK) genes, whose expression should remain constant regardless of aortic valve morphology, aortic diameter and other factors associated with aortopathy. Here, we identified an appropriate set of HK genes to be used as endogenous reference for quantifying gene expression in ascending aortic tissue using a spin column-based RNA extraction method. Ascending aortic biopsies were collected intra-operatively from patients undergoing aortic valve and/or ascending aortic surgery. These patients had BAV or tricuspid aortic valve (TAV), and the aortas were either dilated (≥4.5cm) or undilated. The cohort had an even distribution of gender, valve disease and hypertension. The expression stability of 12 reference genes were investigated (ATP5B, ACTB, B2M, CYC1, EIF4A2, GAPDH, SDHA, RPL13A, TOP1, UBC, YWHAZ, and 18S) using geNorm software. The most stable HK genes were found to be GAPDH, UBC and ACTB. Both GAPDH and UBC demonstrated relative stability regardless of valve morphology, aortic diameter, gender and age. The expression of B2M and SDHA were found to be the least stable HK genes. We propose the use of GAPDH, UBC and ACTB as reference genes for gene expression studies of BAV aortopathy using ascending aortic tissue.

  5. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  6. Bayesian modeling of differential gene expression.

    PubMed

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  7. Gene expression changes in children with autism.

    PubMed

    Gregg, Jeffrey P; Lit, Lisa; Baron, Colin A; Hertz-Picciotto, Irva; Walker, Wynn; Davis, Ryan A; Croen, Lisa A; Ozonoff, Sally; Hansen, Robin; Pessah, Isaac N; Sharp, Frank R

    2008-01-01

    The objective of this study was to identify gene expression differences in blood differences in children with autism (AU) and autism spectrum disorder (ASD) compared to general population controls. Transcriptional profiles were compared with age- and gender-matched, typically developing children from the general population (GP). The AU group was subdivided based on a history of developmental regression (A-R) or a history of early onset (A-E without regression). Total RNA from blood was processed on human Affymetrix microarrays. Thirty-five children with AU (17 with early onset autism and 18 with autism with regression) and 14 ASD children (who did not meet criteria for AU) were compared to 12 GP children. Unpaired t tests (corrected for multiple comparisons with a false discovery rate of 0.05) detected a number of genes that were regulated more than 1.5-fold for AU versus GP (n=55 genes), for A-E versus GP (n=140 genes), for A-R versus GP (n=20 genes), and for A-R versus A-E (n=494 genes). No genes were significantly regulated for ASD versus GP. There were 11 genes shared between the comparisons of all autism subgroups to GP (AU, A-E, and A-R versus GP) and these genes were all expressed in natural killer cells and many belonged to the KEGG natural killer cytotoxicity pathway (p=0.02). A subset of these genes (n=7) was tested with qRT-PCR and all genes were found to be differentially expressed (p<0.05). We conclude that the gene expression data support emerging evidence for abnormalities in peripheral blood leukocytes in autism that could represent a genetic and/or environmental predisposition to the disorder.

  8. Nuclear staining and relative distance for quantifying epidermal differentiation in biomarker expression profiling

    PubMed Central

    Pommerencke, Thora; Steinberg, Thorsten; Dickhaus, Hartmut; Tomakidi, Pascal; Grabe, Niels

    2008-01-01

    Background The epidermal physiology results from a complex regulated homeostasis of keratinocyte proliferation, differentiation and death and is tightly regulated by a specific protein expression during cellular maturation. Cellular in silico models are considered a promising and inevitable tool for the understanding of this complex system. Hence, we need to incorporate the information of the differentiation dependent protein expression in cell based systems biological models of tissue homeostasis. Such methods require measuring tissue differentiation quantitatively while correlating it with biomarker expression intensities. Results Differentiation of a keratinocyte is characterized by its continuously changing morphology concomitant with its movement from the basal layer to the surface, leading to a decreased average nuclei density throughout the tissue. Based thereon, we designed and evaluated three different mathematical measures (nuclei based, distance based, and joint approach) for quantifying differentiation in epidermal keratinocytes. We integrated them with an immunofluorescent staining and image analysis method for tissue sections, automatically quantifying epidermal differentiation and measuring the corresponding expression of biomarkers. When studying five well-known differentiation related biomarkers in an epidermal neck sample only the resulting biomarker profiles incorporating the relative distance information of cells to the tissue borders (distance based and joint approach) provided a high-resolution view on the whole process of keratinocyte differentiation. By contrast, the inverse nuclei density approach led to an increased resolution at early but heavily decreased resolution at late differentiation. This effect results from the heavy non-linear decay of DAPI intensity per area, probably caused by cytoplasmic growth and chromatin decondensation. In the joint approach this effect could be compensated again by incorporating distance information

  9. The FTO obesity gene. Genotyping and gene expression analysis in morbidly obese patients.

    PubMed

    Zabena, Carina; González-Sánchez, José L; Martínez-Larrad, María T; Torres-García, Antonio; Alvarez-Fernández-Represa, Jesús; Corbatón-Anchuelo, Arturo; Pérez-Barba, Milagros; Serrano-Ríos, Manuel

    2009-01-01

    Obesity has emerged as one of the most serious public health concerns in the twenty-first century. the fat mass and obesity associated gene (FTO) has been found to contribute to the risk of obesity in humans. Our aims in this study were to investigate the association of rs9939609 single nucleotide polymorphism (SNP) of the FTO gene with different obesity-related parameters, to assess the FTO gene expression in subcutaneous and visceral adipose tissues from morbidly obese and its correlations with other adipocytokine gene expressions. The association between the rs9939609 FTO gene variant and obesity related parameters in 75 obese/morbidly obese adult patients and 180 subjects with body mass index (BMI) < 30 kg/m(2) (control group) was examined. Gene expression analyses: subcutaneous adipose tissue samples were obtained from 52 morbidly obese and five subjects with BMI < 30 kg/m(2). Visceral adipose tissue was also obtained from 35 morbidly obese patients. Weight, height, BMI, SBP, DBP, fasting glucose, lipid profile, proinsulin, insulin, leptin, and adiponectin (RIA) of patients were also obtained. Insulin resistance by HOMA(IR). rs9939609 of FTO genotyping using allele discrimination in real-time PCR. Genomic study of RNA extraction of adipose tissue and real-time PCR (RT-PCR) of adipocytokines and a housekeeping gene were quantified using TaqMan probes. Relative quantification was calculated using the DeltaDelta Ct formula. The minor-(A) allele frequency of rs9939609 FTO gene in the whole population was 0.39. A strong association between this A allele and obesity was found, even after age-sex adjustment (p = 0.013). We found higher levels of FTO mRNA in subcutaneous adipose tissue from morbidly obese than in the control group (p = 0.021). FTO gene expression was lower in visceral than in subcutaneous adipose depot. However, this finding did not reach the level of statistical significance. A negative correlation between subcutaneous FTO gene expression and serum

  10. A cloud-based workflow to quantify transcript-expression levels in public cancer compendia

    PubMed Central

    Tatlow, PJ; Piccolo, Stephen R.

    2016-01-01

    Public compendia of sequencing data are now measured in petabytes. Accordingly, it is infeasible for researchers to transfer these data to local computers. Recently, the National Cancer Institute began exploring opportunities to work with molecular data in cloud-computing environments. With this approach, it becomes possible for scientists to take their tools to the data and thereby avoid large data transfers. It also becomes feasible to scale computing resources to the needs of a given analysis. We quantified transcript-expression levels for 12,307 RNA-Sequencing samples from the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas. We used two cloud-based configurations and examined the performance and cost profiles of each configuration. Using preemptible virtual machines, we processed the samples for as little as $0.09 (USD) per sample. As the samples were processed, we collected performance metrics, which helped us track the duration of each processing step and quantified computational resources used at different stages of sample processing. Although the computational demands of reference alignment and expression quantification have decreased considerably, there remains a critical need for researchers to optimize preprocessing steps. We have stored the software, scripts, and processed data in a publicly accessible repository (https://osf.io/gqrz9). PMID:27982081

  11. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  12. Resource Sharing Controls Gene Expression Bursting.

    PubMed

    Caveney, Patrick M; Norred, S Elizabeth; Chin, Charles W; Boreyko, Jonathan B; Razooky, Brandon S; Retterer, Scott T; Collier, C Patrick; Simpson, Michael L

    2017-02-17

    Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the size of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription and translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources.

  13. Screening Reliable Reference Genes for RT-qPCR Analysis of Gene Expression in Moringa oleifera

    PubMed Central

    Deng, Li-Ting; Wu, Yu-Ling; Li, Jun-Cheng; OuYang, Kun-Xi; Ding, Mei-Mei; Zhang, Jun-Jie; Li, Shu-Qi; Lin, Meng-Fei; Chen, Han-Bin; Hu, Xin-Sheng; Chen, Xiao-Yang

    2016-01-01

    Moringa oleifera is a promising plant species for oil and forage, but its genetic improvement is limited. Our current breeding program in this species focuses on exploiting the functional genes associated with important agronomical traits. Here, we screened reliable reference genes for accurately quantifying the expression of target genes using the technique of real-time quantitative polymerase chain reaction (RT-qPCR) in M. oleifera. Eighteen candidate reference genes were selected from a transcriptome database, and their expression stabilities were examined in 90 samples collected from the pods in different developmental stages, various tissues, and the roots and leaves under different conditions (low or high temperature, sodium chloride (NaCl)- or polyethyleneglycol (PEG)- simulated water stress). Analyses with geNorm, NormFinder and BestKeeper algorithms revealed that the reliable reference genes differed across sample designs and that ribosomal protein L1 (RPL1) and acyl carrier protein 2 (ACP2) were the most suitable reference genes in all tested samples. The experiment results demonstrated the significance of using the properly validated reference genes and suggested the use of more than one reference gene to achieve reliable expression profiles. In addition, we applied three isotypes of the superoxide dismutase (SOD) gene that are associated with plant adaptation to abiotic stress to confirm the efficacy of the validated reference genes under NaCl and PEG water stresses. Our results provide a valuable reference for future studies on identifying important functional genes from their transcriptional expressions via RT-qPCR technique in M. oleifera. PMID:27541138

  14. Screening Reliable Reference Genes for RT-qPCR Analysis of Gene Expression in Moringa oleifera.

    PubMed

    Deng, Li-Ting; Wu, Yu-Ling; Li, Jun-Cheng; OuYang, Kun-Xi; Ding, Mei-Mei; Zhang, Jun-Jie; Li, Shu-Qi; Lin, Meng-Fei; Chen, Han-Bin; Hu, Xin-Sheng; Chen, Xiao-Yang

    2016-01-01

    Moringa oleifera is a promising plant species for oil and forage, but its genetic improvement is limited. Our current breeding program in this species focuses on exploiting the functional genes associated with important agronomical traits. Here, we screened reliable reference genes for accurately quantifying the expression of target genes using the technique of real-time quantitative polymerase chain reaction (RT-qPCR) in M. oleifera. Eighteen candidate reference genes were selected from a transcriptome database, and their expression stabilities were examined in 90 samples collected from the pods in different developmental stages, various tissues, and the roots and leaves under different conditions (low or high temperature, sodium chloride (NaCl)- or polyethyleneglycol (PEG)- simulated water stress). Analyses with geNorm, NormFinder and BestKeeper algorithms revealed that the reliable reference genes differed across sample designs and that ribosomal protein L1 (RPL1) and acyl carrier protein 2 (ACP2) were the most suitable reference genes in all tested samples. The experiment results demonstrated the significance of using the properly validated reference genes and suggested the use of more than one reference gene to achieve reliable expression profiles. In addition, we applied three isotypes of the superoxide dismutase (SOD) gene that are associated with plant adaptation to abiotic stress to confirm the efficacy of the validated reference genes under NaCl and PEG water stresses. Our results provide a valuable reference for future studies on identifying important functional genes from their transcriptional expressions via RT-qPCR technique in M. oleifera.

  15. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  16. High-throughput, high-sensitivity analysis of gene expression in Arabidopsis.

    PubMed

    Kris, Richard Martin; Felder, Stephen; Deyholos, Michael; Lambert, Georgina M; Hinton, James; Botros, Ihab; Martel, Ralph; Seligmann, Bruce; Galbraith, David W

    2007-07-01

    High-throughput gene expression analysis of genes expressed during salt stress was performed using a novel multiplexed quantitative nuclease protection assay that involves customized DNA microarrays printed within the individual wells of 96-well plates. The levels of expression of the transcripts from 16 different genes were quantified within crude homogenates prepared from Arabidopsis (Arabidopsis thaliana) plants also grown in a 96-well plate format. Examples are provided of the high degree of reproducibility of quantitative dose-response data and of the sensitivity of detection of changes in gene expression within limiting amounts of tissue. The lack of requirement for RNA purification renders the assay particularly suited for high-throughput gene expression analysis and for the discovery of novel chemical compounds that specifically modulate the expression of endogenous target genes.

  17. Influence of Genetic Variations in Selenoprotein Genes on the Pattern of Gene Expression after Supplementation with Brazil Nuts

    PubMed Central

    Rogero, Marcelo M.; Hesketh, John

    2017-01-01

    Selenium (Se) is an essential micronutrient for human health. Its beneficial effects are exerted by selenoproteins, which can be quantified in blood and used as molecular biomarkers of Se status. We hypothesize that the presence of genetic polymorphisms in selenoprotein genes may: (1) influence the gene expression of specific selenoproteins and (2) influence the pattern of global gene expression after Brazil nut supplementation. The study was conducted with 130 healthy volunteers in Sao Paulo, Brazil, who consumed one Brazil nut (300 μg/Se) a day for eight weeks. Gene expression of GPX1 and SELENOP and genotyping were measured by real-time PCR using TaqMan Assays. Global gene expression was assessed by microarray using Illumina HumanHT-12 v4 BeadChips. Brazil nut supplementation significantly increased GPX1 mRNA expression only in subjects with CC genotype at rs1050450 (p < 0.05). SELENOP mRNA expression was significantly higher in A-carriers at rs7579 either before or after supplementation (p < 0.05). Genotype for rs713041 in GPX4 affected the pattern of blood cell global gene expression. Genetic variations in selenoprotein genes modulated both GPX1 and SELENOP selenoprotein gene expression and global gene expression in response to Brazil nut supplementation. PMID:28696394

  18. Influence of Genetic Variations in Selenoprotein Genes on the Pattern of Gene Expression after Supplementation with Brazil Nuts.

    PubMed

    Donadio, Janaina L S; Rogero, Marcelo M; Cockell, Simon; Hesketh, John; Cozzolino, Silvia M F

    2017-07-11

    Selenium (Se) is an essential micronutrient for human health. Its beneficial effects are exerted by selenoproteins, which can be quantified in blood and used as molecular biomarkers of Se status. We hypothesize that the presence of genetic polymorphisms in selenoprotein genes may: (1) influence the gene expression of specific selenoproteins and (2) influence the pattern of global gene expression after Brazil nut supplementation. The study was conducted with 130 healthy volunteers in Sao Paulo, Brazil, who consumed one Brazil nut (300 μg/Se) a day for eight weeks. Gene expression of GPX1 and SELENOP and genotyping were measured by real-time PCR using TaqMan Assays. Global gene expression was assessed by microarray using Illumina HumanHT-12 v4 BeadChips. Brazil nut supplementation significantly increased GPX1 mRNA expression only in subjects with CC genotype at rs1050450 (p < 0.05). SELENOP mRNA expression was significantly higher in A-carriers at rs7579 either before or after supplementation (p < 0.05). Genotype for rs713041 in GPX4 affected the pattern of blood cell global gene expression. Genetic variations in selenoprotein genes modulated both GPX1 and SELENOP selenoprotein gene expression and global gene expression in response to Brazil nut supplementation.

  19. How to analyze gene expression using RNA-sequencing data.

    PubMed

    Ramsköld, Daniel; Kavak, Ersen; Sandberg, Rickard

    2012-01-01

    RNA-Seq is arising as a powerful method for transcriptome analyses that will eventually make microarrays obsolete for gene expression analyses. Improvements in high-throughput sequencing and efficient sample barcoding are now enabling tens of samples to be run in a cost-effective manner, competing with microarrays in price, excelling in performance. Still, most studies use microarrays, partly due to the ease of data analyses using programs and modules that quickly turn raw microarray data into spreadsheets of gene expression values and significant differentially expressed genes. Instead RNA-Seq data analyses are still in its infancy and the researchers are facing new challenges and have to combine different tools to carry out an analysis. In this chapter, we provide a tutorial on RNA-Seq data analysis to enable researchers to quantify gene expression, identify splice junctions, and find novel transcripts using publicly available software. We focus on the analyses performed in organisms where a reference genome is available and discuss issues with current methodology that have to be solved before RNA-Seq data can utilize its full potential.

  20. Tonicity-regulated gene expression.

    PubMed

    Ferraris, Joan D; Burg, Maurice B

    2007-01-01

    Hypertonicity activates several different transcription factors, including TonEBP/OREBP, that in turn increase transcription of numerous genes. Hypertonicity elevates TonEBP/OREBP transcriptional activity by moving it into the nucleus, where it binds to its cognate DNA element (ORE), and by increasing its transactivational activity. This chapter presents protocols for measuring the transcriptional activity of TonEBP/OREBP and determining its subcellular localization, its binding to OREs, and activity of its transactivation domain.

  1. Modulation of imprinted gene expression following superovulation.

    PubMed

    Fortier, Amanda L; McGraw, Serge; Lopes, Flavia L; Niles, Kirsten M; Landry, Mylène; Trasler, Jacquetta M

    2014-05-05

    Although assisted reproductive technologies increase the risk of low birth weight and genomic imprinting disorders, the precise underlying causes remain unclear. Using a mouse model, we previously showed that superovulation alters the expression of imprinted genes in the placenta at 9.5days (E9.5) of gestation. Here, we investigate whether effects of superovulation on genomic imprinting persisted at later stages of development and assess the surviving fetuses for growth and morphological abnormalities. Superovulation, followed by embryo transfer at E3.5, as compared to spontaneous ovulation (controls), resulted in embryos of normal size and weight at 14.5 and 18.5days of gestation. The normal monoallelic expression of the imprinted genes H19, Snrpn and Kcnq1ot1 was unaffected in either the placentae or the embryos from the superovulated females at E14.5 or E18.5. However, for the paternally expressed imprinted gene Igf2, superovulation generated placentae with reduced production of the mature protein at E9.5 and significantly more variable mRNA levels at E14.5. We propose that superovulation results in the ovulation of abnormal oocytes with altered expression of imprinted genes, but that the coregulated genes of the imprinted gene network result in modulated expression. Copyright © 2014. Published by Elsevier Ireland Ltd.

  2. Vitamin D-mediated gene expression.

    PubMed

    Lowe, K E; Maiyar, A C; Norman, A W

    1992-01-01

    The steroid hormone 1,25(OH)2D3 modulates the expression of a wide variety of genes in a tissue- and developmentally specific manner. It is well established that 1,25(OH)2D3 can up- or downregulate the expression of genes involved in cell proliferation, differentiation, and mineral homeostasis. The hormone exerts its genomic effects via interactions with the vitamin D receptor or VDR, a member of the superfamily of hormone-activated nuclear receptors which can regulate eukaryotic gene expression. The ligand-bound receptor acts as a transcription factor that binds to specific DNA sequences, HREs, in target gene promoters. The DNA-binding domains of the steroid hormone receptors are highly conserved and contain two zinc-finger motifs that recognize the HREs. The spacing and orientation of the HRE half-sites, as well as the HRE sequence, are critical for proper discrimination by the various receptors. Other nuclear factors such as fos and jun can influence vitamin D-mediated gene expression. A wide range of experimental techniques has been used to increase our understanding of how 1,25(OH)2D3 and its receptor play a central role in gene expression.

  3. Gene Expression Analysis of Breast Cancer Progression

    DTIC Science & Technology

    2005-07-01

    representation of the retroviral vectors SFG-tdRFP-cmvFLuc, constitutively expressing tdRFP and firefly luciferase; and Cis-TGFD1-Smads- HSV1 - tk/GFP...AD Award Number: DAMD 17-02-1-0484 TITLE: Gene Expression Analysis of Breast Cancer Progression PRINCIPAL INVESTIGATOR: William L. Gerald, M.D., Ph.D...CONTRACT NUMBER Gene Expression Analysis of Breast Cancer Progression 5b. GRANT NUMBER DAMD17-02-1-0484 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 6d

  4. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage.

    PubMed

    Iantorno, Stefano A; Durrant, Caroline; Khan, Asis; Sanders, Mandy J; Beverley, Stephen M; Warren, Wesley C; Berriman, Matthew; Sacks, David L; Cotton, James A; Grigg, Michael E

    2017-09-12

    Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal "somy" (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection.IMPORTANCELeishmania is a genus of unicellular eukaryotic parasites that is responsible for a spectrum of human diseases that range from cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL) to life-threatening visceral leishmaniasis (VL). Developmental and strain-specific gene expression is largely thought to be due to mRNA message stability or posttranscriptional regulatory networks for this species, whose genome is organized into polycistronic gene clusters in the absence of promoter-mediated regulation of transcription initiation of nuclear genes. Genetic hybridization has been demonstrated to yield dramatic structural genomic variation, but whether such changes in gene

  5. Identification of housekeeping genes suitable for gene expression analysis in the pearl mussel, Hyriopsis cumingii, during biomineralization.

    PubMed

    Bai, Zhiyi; Lin, Jingyun; Ma, Keyi; Wang, Guiling; Niu, Donghong; Li, Jiale

    2014-08-01

    Quantitative real-time polymerase chain reaction is a sensitive technique for quantifying gene expression levels. One or more appropriate reference genes must be selected to accurately compare mRNA transcript levels across different samples and tissues. The freshwater pearl, Hyriopsis cumingii (Lea), is an important economic species cultured in China. To date, no reference genes for gene expression analysis in this species have been validated. This study aimed to compare the relative expression of seven housekeeping genes across different tissue types and in the mantle or pearl sac during three biomineralization processes: seasonal shell growth, shell healing and pearl-sac formation in H. cumingii. Three programs evaluated the expression stabilities of the seven genes: BestKeeper, geNorm and NormFinder. The beta actin gene (ACTB), commonly used as a housekeeping gene in many studies, was the least stable. The expressions of Ubiquitin (Ubi) and Ribosomal protein L18 (Rpl18) and Elongation factor 1-alpha (EF1α) were more stable than the remaining four genes. Therefore, we suggest that Ubi, Rpl18 and EF1α are suitable reference genes. The three selected reference genes are expected to facilitate analysis of gene expressions during shell or pearl formation in H. cumingii.

  6. Chemically regulated gene expression in plants.

    PubMed

    Padidam, Malla

    2003-04-01

    Chemically inducible systems that activate or inactivate gene expression have many potential applications in the determination of gene function and in plant biotechnology. The precise timing and control of gene expression are important aspects of chemically inducible systems. Several systems have been developed and used to analyze gene function, marker-free plant transformation, site-specific DNA excision, activation tagging, conditional genetic complementation, and restoration of male fertility. Chemicals that are used to regulate transgene expression include the antibiotic tetracycline, the steroids dexamethasone and estradiol, copper, ethanol, the inducer of pathogen-related proteins benzothiadiazol, herbicide safeners, and the insecticide methoxyfenozide. Systems that are suitable for field application are particularly useful for experimental systems and have potential applications in biotechnology.

  7. Gene expression of the endolymphatic sac.

    PubMed

    Friis, Morten; Martin-Bertelsen, Tomas; Friis-Hansen, Lennart; Winther, Ole; Henao, Ricardo; Sørensen, Mads Sølvsten; Qvortrup, Klaus

    2011-12-01

    The endolymphatic sac is part of the membranous inner ear and is thought to play a role in the fluid homeostasis and immune defense of the inner ear; however, the exact function of the endolymphatic sac is not fully known. Many of the detected mRNAs in this study suggest that the endolymphatic sac has multiple and diverse functions in the inner ear. The objective of this study was to provide a comprehensive review of the genes expressed in the endolymphatic sac in the rat and perform a functional characterization based on measured mRNA abundance. Microarray technology was used to investigate the gene expression of the endolymphatic sac with the surrounding dura. Characteristic and novel endolymphatic sac genes were determined by comparing with expressions in pure dura. In all, 463 genes were identified specific for the endolymphatic sac. Functional annotation clustering revealed 29 functional clusters.

  8. CIRCADIAN CLOCK AND CELL CYCLE GENE EXPRESSION

    PubMed Central

    Metz, Richard P.; Qu, Xiaoyu; Laffin, Brian; Earnest, David; Porter, Weston W.

    2009-01-01

    Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation and differentiation marker genes. Expression of the clock genes, Per1 and Bmal1, were elevated in differentiated HC-11 cells whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, while Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels while Per1 and Bmal1 expression changed in conjunction with ß-casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation. PMID:16261617

  9. Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates

    PubMed Central

    Palamara, Pier Francesco; Francioli, Laurent C.; Wilton, Peter R.; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K.; Sankararaman, Sriram; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Wakeley, John; Pe’er, Itsik; Price, Alkes L.

    2015-01-01

    The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902

  10. Differential gene expression during multistage carcinogenesis

    SciTech Connect

    Bowden, G.T. ); Krieg, P. )

    1991-06-01

    The use of the mouse skin multistage model of carcinogenesis has aided our understanding of critical target genes in chemical carcinogenesis. The mutagenic activation of the Harvey-ras proto-oncogene has been found to be an early event associated with the initiation of mouse skin tumors by the polycyclic aromatic hydrocarbon 7,12 dimethylbenz(a)anthracene and the pure initiator ethyl carbamate (urethane). In contrast to chemical initiation of mouse skin tumors, ionizing radiation-initiated malignant skin tumors have been shown to possess distinct non-ras transforming gene(s). Differential screening of cDNA libraries made from chemically initiated malignant skin tumors has been used to identify a number of cellular gene transcripts that are overexpressed during mouse skin tumor progression. These differentially expressed genes include {beta}-actin, ubiquitin, a hyperproliferative keratin (K6), a gene whose product is a member of a fatty acid or lipid-binding protein family, and a gene called transin or stromelysin. The overexpression of the stromelysin gene, which encodes a metalloproteinase that degrades proteins in the basement membrane, is hypothesized to play a functional role in malignant tumor cell invasion and metastasis. The authors believe that the cloning, identification, and characterization of gene sequences that are differentially expressed during tumor progression could lead to the discovery of gene products that either play functional roles in skin tumor progression or in the maintenance of various progressive tumor phenotypes.

  11. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage

    PubMed Central

    Iantorno, Stefano A.; Durrant, Caroline; Khan, Asis; Sanders, Mandy J.; Warren, Wesley C.; Berriman, Matthew; Sacks, David L.

    2017-01-01

    ABSTRACT Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal “somy” (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection. PMID:28900023

  12. Regulation of gene expression in human tendinopathy

    PubMed Central

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  13. A simulation to analyze feature selection methods utilizing gene ontology for gene expression classification.

    PubMed

    Gillies, Christopher E; Siadat, Mohammad-Reza; Patel, Nilesh V; Wilson, George D

    2013-12-01

    Gene expression profile classification is a pivotal research domain assisting in the transformation from traditional to personalized medicine. A major challenge associated with gene expression data classification is the small number of samples relative to the large number of genes. To address this problem, researchers have devised various feature selection algorithms to reduce the number of genes. Recent studies have been experimenting with the use of semantic similarity between genes in Gene Ontology (GO) as a method to improve feature selection. While there are few studies that discuss how to use GO for feature selection, there is no simulation study that addresses when to use GO-based feature selection. To investigate this, we developed a novel simulation, which generates binary class datasets, where the differentially expressed genes between two classes have some underlying relationship in GO. This allows us to investigate the effects of various factors such as the relative connectedness of the underlying genes in GO, the mean magnitude of separation between differentially expressed genes denoted by δ, and the number of training samples. Our simulation results suggest that the connectedness in GO of the differentially expressed genes for a biological condition is the primary factor for determining the efficacy of GO-based feature selection. In particular, as the connectedness of differentially expressed genes increases, the classification accuracy improvement increases. To quantify this notion of connectedness, we defined a measure called Biological Condition Annotation Level BCAL(G), where G is a graph of differentially expressed genes. Our main conclusions with respect to GO-based feature selection are the following: (1) it increases classification accuracy when BCAL(G) ≥ 0.696; (2) it decreases classification accuracy when BCAL(G) ≤ 0.389; (3) it provides marginal accuracy improvement when 0.389genes in a

  14. Paternally expressed genes predominate in the placenta.

    PubMed

    Wang, Xu; Miller, Donald C; Harman, Rebecca; Antczak, Douglas F; Clark, Andrew G

    2013-06-25

    The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.

  15. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  16. Soybean physiology and gene expression during drought.

    PubMed

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  17. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression ...

    EPA Pesticide Factsheets

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs w

  18. Reference genes for quantitative gene expression studies in multiple avian species.

    PubMed

    Olias, Philipp; Adam, Iris; Meyer, Anne; Scharff, Constance; Gruber, Achim D

    2014-01-01

    Quantitative real-time PCR (qPCR) rapidly and reliably quantifies gene expression levels across different experimental conditions. Selection of suitable reference genes is essential for meaningful normalization and thus correct interpretation of data. In recent years, an increasing number of avian species other than the chicken has been investigated molecularly, highlighting the need for an experimentally validated pan-avian primer set for reference genes. Here we report testing a set for 14 candidate reference genes (18S, ABL, GAPDH, GUSB, HMBS, HPRT, PGK1, RPL13, RPL19, RPS7, SDHA, TFRC, VIM, YWHAZ) on different tissues of the mallard (Anas platyrhynchos), domestic chicken (Gallus gallus domesticus), common crane (Grus grus), white-tailed eagle (Haliaeetus albicilla), domestic turkey (Meleagris gallopavo f. domestica), cockatiel (Nymphicus hollandicus), Humboldt penguin (Sphenicus humboldti), ostrich (Struthio camelus) and zebra finch (Taeniopygia guttata), spanning a broad range of the phylogenetic tree of birds. Primer pairs for six to 11 genes were successfully established for each of the nine species. As a proof of principle, we analyzed expression levels of 10 candidate reference genes as well as FOXP2 and the immediate early genes, EGR1 and CFOS, known to be rapidly induced by singing in the avian basal ganglia. We extracted RNA from microbiopsies of the striatal song nucleus Area X of adult male zebra finches after they had sang or remained silent. Using three different statistical algorithms, we identified five genes (18S, PGK1, RPS7, TFRC, YWHAZ) that were stably expressed within each group and also between the singing and silent conditions, establishing them as suitable reference genes. In conclusion, the newly developed pan-avian primer set allows accurate normalization and quantification of gene expression levels in multiple avian species.

  19. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering.

  20. Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions.

    PubMed

    Chen, Lei; Zhong, Hai-ying; Kuang, Jian-fei; Li, Jian-guo; Lu, Wang-jin; Chen, Jian-ye

    2011-08-01

    Reverse transcription quantitative real-time PCR (RT-qPCR) is a sensitive technique for quantifying gene expression, but its success depends on the stability of the reference gene(s) used for data normalization. Only a few studies on validation of reference genes have been conducted in fruit trees and none in banana yet. In the present work, 20 candidate reference genes were selected, and their expression stability in 144 banana samples were evaluated and analyzed using two algorithms, geNorm and NormFinder. The samples consisted of eight sample sets collected under different experimental conditions, including various tissues, developmental stages, postharvest ripening, stresses (chilling, high temperature, and pathogen), and hormone treatments. Our results showed that different suitable reference gene(s) or combination of reference genes for normalization should be selected depending on the experimental conditions. The RPS2 and UBQ2 genes were validated as the most suitable reference genes across all tested samples. More importantly, our data further showed that the widely used reference genes, ACT and GAPDH, were not the most suitable reference genes in many banana sample sets. In addition, the expression of MaEBF1, a gene of interest that plays an important role in regulating fruit ripening, under different experimental conditions was used to further confirm the validated reference genes. Taken together, our results provide guidelines for reference gene(s) selection under different experimental conditions and a foundation for more accurate and widespread use of RT-qPCR in banana.

  1. Regulatory mechanisms for floral homeotic gene expression.

    PubMed

    Liu, Zhongchi; Mara, Chloe

    2010-02-01

    Proper regulation of floral homeotic gene (or ABCE gene) expression ensures the development of floral organs in the correct number, type, and precise spatial arrangement. This review summarizes recent advances on the regulation of floral homeotic genes, highlighting the variety and the complexity of the regulatory mechanisms involved. As flower development is one of the most well characterized developmental processes in higher plants, it facilitates the discovery of novel regulatory mechanisms. To date, mechanisms for the regulation of floral homeotic genes range from transcription to post-transcription, from activators to repressors, and from microRNA- to ubiquitin-mediated post-transcriptional regulation. Region-specific activation of floral homeotic genes is dependent on the integration of a flower-specific activity provided by LEAFY (LFY) and a region- and stage-specific activating function provided by one of the LFY cofactors. Two types of regulatory loops, the feed-forward and the feedback loop, provide properly timed gene activation and subsequent maintenance and refinement in proper spatial and temporal domains of ABCE genes. Two different microRNA/target modules may have been independently recruited in different plant species to regulate C gene expression. Additionally, competition among different MADS box proteins for common interacting partners may represent a mechanism in whorl boundary demarcation. Future work using systems approaches and the development of non-model plants will provide integrated views on floral homeotic gene regulation and insights into the evolution of morphological diversity in flowering plants. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. A Whole-Transcriptome Approach to Evaluating Reference Genes for Quantitative Gene Expression Studies: A Case Study in Mimulus

    PubMed Central

    Stanton, Kimmy A.; Edger, Patrick P.; Puzey, Joshua R.; Kinser, Taliesin; Cheng, Philip; Vernon, Daniel M.; Forsthoefel, Nancy R.; Cooley, Arielle M.

    2017-01-01

    While quantitative PCR (qPCR) is widely recognized as being among the most accurate methods for quantifying gene expression, it is highly dependent on the use of reliable, stably expressed reference genes. With the increased availability of high-throughput methods for measuring gene expression, whole-transcriptome approaches may be increasingly utilized for reference gene selection and validation. In this study, RNA-seq was used to identify a set of novel qPCR reference genes and evaluate a panel of traditional “housekeeping” reference genes in two species of the evolutionary model plant genus Mimulus. More broadly, the methods proposed in this study can be used to harness the power of transcriptomes to identify appropriate reference genes for qPCR in any study organism, including emerging and nonmodel systems. We find that RNA-seq accurately estimates gene expression means in comparison to qPCR, and that expression means are robust to moderate environmental and genetic variation. However, measures of expression variability were only in agreement with qPCR for samples obtained from a shared environment. This result, along with transcriptome-wide comparisons, suggests that environmental changes have greater impacts on expression variability than on expression means. We discuss how this issue can be addressed through experimental design, and suggest that the ever-expanding pool of published transcriptomes represents a rich and low-cost resource for developing better reference genes for qPCR. PMID:28258113

  3. A Whole-Transcriptome Approach to Evaluating Reference Genes for Quantitative Gene Expression Studies: A Case Study in Mimulus.

    PubMed

    Stanton, Kimmy A; Edger, Patrick P; Puzey, Joshua R; Kinser, Taliesin; Cheng, Philip; Vernon, Daniel M; Forsthoefel, Nancy R; Cooley, Arielle M

    2017-04-03

    While quantitative PCR (qPCR) is widely recognized as being among the most accurate methods for quantifying gene expression, it is highly dependent on the use of reliable, stably expressed reference genes. With the increased availability of high-throughput methods for measuring gene expression, whole-transcriptome approaches may be increasingly utilized for reference gene selection and validation. In this study, RNA-seq was used to identify a set of novel qPCR reference genes and evaluate a panel of traditional "housekeeping" reference genes in two species of the evolutionary model plant genus Mimulus More broadly, the methods proposed in this study can be used to harness the power of transcriptomes to identify appropriate reference genes for qPCR in any study organism, including emerging and nonmodel systems. We find that RNA-seq accurately estimates gene expression means in comparison to qPCR, and that expression means are robust to moderate environmental and genetic variation. However, measures of expression variability were only in agreement with qPCR for samples obtained from a shared environment. This result, along with transcriptome-wide comparisons, suggests that environmental changes have greater impacts on expression variability than on expression means. We discuss how this issue can be addressed through experimental design, and suggest that the ever-expanding pool of published transcriptomes represents a rich and low-cost resource for developing better reference genes for qPCR. Copyright © 2017 Stanton et al.

  4. Expression of myriapod pair rule gene orthologs

    PubMed Central

    2011-01-01

    Background Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce. Results Here we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs. Conclusions Although the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor. PMID:21352542

  5. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  6. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  7. Gene expression profiling for targeted cancer treatment.

    PubMed

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  8. Gene expression analysis of flax seed development.

    PubMed

    Venglat, Prakash; Xiang, Daoquan; Qiu, Shuqing; Stone, Sandra L; Tibiche, Chabane; Cram, Dustin; Alting-Mees, Michelle; Nowak, Jacek; Cloutier, Sylvie; Deyholos, Michael; Bekkaoui, Faouzi; Sharpe, Andrew; Wang, Edwin; Rowland, Gordon; Selvaraj, Gopalan; Datla, Raju

    2011-04-29

    Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as

  9. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  10. Tools and resources for analyzing gene expression changes in glaucomatous neurodegeneration.

    PubMed

    Nickells, Robert W; Pelzel, Heather R

    2015-12-01

    Evaluating gene expression changes presents one of the most powerful interrogative approaches to study the molecular, biochemical, and cellular pathways associated with glaucomatous disease pathology. Technologies to study gene expression profiles in glaucoma are wide ranging. Qualitative techniques provide the power of localizing expression changes to individual cells, but are not robust to evaluate differences in expression changes. Alternatively, quantitative changes provide a high level of stringency to quantify changes in gene expression. Additionally, advances in high throughput analysis and bioinformatics have dramatically improved the number of individual genes that can be evaluated in a single experiment, while dramatically reducing amounts of input tissue/starting material. Together, gene expression profiling and proteomics have yielded new insights on the roles of neuroinflammation, the complement cascade, and metabolic shutdown as important players in the pathology of the optic nerve head and retina in this disease.

  11. Tools and resources for analyzing gene expression changes in glaucomatous neurodegeneration

    PubMed Central

    Nickells, Robert W.; Pelzel, Heather R.

    2015-01-01

    Evaluating gene expression changes presents one of the most powerful interrogative approaches to study the molecular, biochemical, and cellular pathways associated with glaucomatous disease pathology. Technologies to study gene expression profiles in glaucoma are wide ranging. Qualitative techniques provide the power of localizing expression changes to individual cells, but are not robust to evaluate differences in expression changes. Alternatively, quantitative changes provide a high level of stringency to quantify changes in gene expression. Additionally, advances in high throughput analysis and bioinformatics have dramatically improved the number of individual genes that can be evaluated in a single experiment, while dramatically reducing amounts of input tissue/starting material. Together, gene expression profiling and proteomics have yielded new insights on the roles of neuroinflammation, the complement cascade, and metabolic shutdown as important players in the pathology of the optic nerve head and retina in this disease. PMID:25999234

  12. Polyandry and sex-specific gene expression.

    PubMed

    Mank, Judith E; Wedell, Nina; Hosken, David J

    2013-03-05

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype-phenotype chain, and although in its early stages, understanding the sexual selection-transcription relationship will provide significant insights into this critical association.

  13. Polyandry and sex-specific gene expression

    PubMed Central

    Mank, Judith E.; Wedell, Nina; Hosken, David J.

    2013-01-01

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype–phenotype chain, and although in its early stages, understanding the sexual selection–transcription relationship will provide significant insights into this critical association. PMID:23339238

  14. Evolutionary approach for relative gene expression algorithms.

    PubMed

    Czajkowski, Marcin; Kretowski, Marek

    2014-01-01

    A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA) for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify the major variants of relative expression algorithms through EA and introduce weights to the top-scoring pairs. Experimental validation of EvoTSP on public available microarray datasets showed that the proposed solution significantly outperforms in terms of accuracy other relative expression algorithms and allows exploring much larger solution space.

  15. Evolutionary Approach for Relative Gene Expression Algorithms

    PubMed Central

    Czajkowski, Marcin

    2014-01-01

    A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA) for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify the major variants of relative expression algorithms through EA and introduce weights to the top-scoring pairs. Experimental validation of EvoTSP on public available microarray datasets showed that the proposed solution significantly outperforms in terms of accuracy other relative expression algorithms and allows exploring much larger solution space. PMID:24790574

  16. Genomic positions of co-expressed genes: echoes of chromosome organisation in gene expression data.

    PubMed

    Szczepińska, Teresa; Pawłowski, Krzysztof

    2013-06-13

    The relationships between gene expression and nuclear structure, chromosome territories in particular, are currently being elucidated experimentally. Each chromosome occupies an individual, spatially-limited space with a preferential position relative to the nuclear centre that may be specific to the cell and tissue type. We sought to discover whether patterns in gene expression databases might exist that would mirror prevailing or recurring nuclear structure patterns, chromosome territory interactions in particular. We used human gene expression datasets, both from a tissue expression atlas and from a large set including diverse types of perturbations. We identified groups of positional gene clusters over-represented in gene expression clusters. We show that some pairs of chromosomes and pairs of 10 Mbp long chromosome regions are significantly enriched in the expression clusters. The functions of genes involved in inter-chromosome co-expression relationships are non-random and predominantly related to cell-cell communication and reaction to external stimuli. We suggest that inter-chromosomal gene co-expression can be interpreted in the context of nuclear structure, and that even expression datasets that include very diverse conditions and cell types show consistent relationships.

  17. Mitochondrial respiratory gene expression is suppressed in many cancers

    PubMed Central

    Reznik, Ed; Wang, Qingguo; La, Konnor; Schultz, Nikolaus; Sander, Chris

    2017-01-01

    The fundamental metabolic decision of a cell, the balance between respiration and fermentation, rests in part on expression of the mitochondrial genome (mtDNA) and coordination with expression of the nuclear genome (nuDNA). Previously we described mtDNA copy number depletion across many solid tumor types (Reznik et al., 2016). Here, we use orthogonal RNA-sequencing data to quantify mtDNA expression (mtRNA), and report analogously lower expression of mtRNA in tumors (relative to normal tissue) across a majority of cancer types. Several cancers exhibit a trio of mutually consistent evidence suggesting a drop in respiratory activity: depletion of mtDNA copy number, decreases in mtRNA levels, and decreases in expression of nuDNA-encoded respiratory proteins. Intriguingly, a minority of cancer types exhibit a drop in mtDNA expression but an increase in nuDNA expression of respiratory proteins, with unknown implications for respiratory activity. Our results indicate suppression of respiratory gene expression across many cancer types. DOI: http://dx.doi.org/10.7554/eLife.21592.001 PMID:28099114

  18. Visualizing gene expression in situ

    NASA Astrophysics Data System (ADS)

    Burlage, Robert S.

    1999-02-01

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  19. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  20. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  1. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  2. DNA replication timing influences gene expression level

    PubMed Central

    2017-01-01

    Eukaryotic genomes are replicated in a reproducible temporal order; however, the physiological significance is poorly understood. We compared replication timing in divergent yeast species and identified genomic features with conserved replication times. Histone genes were among the earliest replicating loci in all species. We specifically delayed the replication of HTA1-HTB1 and discovered that this halved the expression of these histone genes. Finally, we showed that histone and cell cycle genes in general are exempt from Rtt109-dependent dosage compensation, suggesting the existence of pathways excluding specific loci from dosage compensation mechanisms. Thus, we have uncovered one of the first physiological requirements for regulated replication time and demonstrated a direct link between replication timing and gene expression. PMID:28539386

  3. Information theory, gene expression, and combinatorial regulation: a quantitative analysis.

    PubMed

    Jost, Jürgen; Scherrer, Klaus

    2014-03-01

    According to a functional definition of the term "gene", a protein-coding gene corresponds to a polypeptide and, hence, a coding sequence. It is therefore as such not yet present at the DNA level, but assembled from possibly heterogeneous pieces in the course of RNA processing. Assembly and regulation of genes require, thus, information about when and in which quantity specific polypeptides are to be produced. To assess this, we draw upon precise biochemical data. On the basis of our conceptual framework, we also develop formal models for the coordinated expression of specific sets of genes through the interaction of transcripts and mRNAs and with proteins via a precise putative regulatory code. Thus, the nucleotides in transcripts and mRNA are not only arranged into amino acid-coding triplets, but at the same time may participate in regulatory oligomotifs that provide binding sites for specific proteins. We can then quantify and compare product and regulatory information involved in gene expression and regulation.

  4. Gene expression profile in pelvic organ prolapse†

    PubMed Central

    Brizzolara, S.S.; Killeen, J.; Urschitz, J.

    2009-01-01

    It was hypothesized that the processes contributing to pelvic organ prolapse (POP) may be identified by transcriptional profiling of pelvic connective tissue in conjunction with light microscopy. In order to test this, we performed a frequency-matched case–control study of women undergoing hysterectomy for POP and controls. Total RNA, extracted from uterosacral and round ligament samples used to generate labeled cRNA, was hybridized to microarrays and analyzed for the expression of 32 878 genes. Significance Analysis of Microarrays (Stanford University, CA, USA) identified differentially expressed genes used for ontoanalysis. Quantitative PCR (qPCR) confirmed results. Light microscopy confirmed the tissue type and assessed inflammatory infiltration. The analysis of 34 arrays revealed 249 differentially expressed genes with fold changes (FC) larger than 1.5 and false discovery rates ≤5.2%. Immunity and defense was the most significant biological process differentially expressed in POP. qPCR confirmed the elevated steady-state mRNA levels for four genes: interleukin-6 (FC 9.8), thrombospondin 1 (FC 3.5) and prostaglandin-endoperoxide synthase 2 (FC 2.4) and activating transcription factor 3 (FC 2.6). Light microscopy showed all the samples were composed of fibromuscular connective tissue with no inflammatory infiltrates. In conclusion, genes enriched for ‘immunity and defense’ contribute to POP independent of inflammatory infiltrates. PMID:19056808

  5. Facilitated diffusion buffers noise in gene expression.

    PubMed

    Schoech, Armin P; Zabet, Nicolae Radu

    2014-09-01

    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

  6. Facilitated diffusion buffers noise in gene expression

    NASA Astrophysics Data System (ADS)

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-09-01

    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

  7. Facilitated diffusion buffers noise in gene expression

    PubMed Central

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-01-01

    Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise. PMID:25314467

  8. Objective and subjective probability in gene expression.

    PubMed

    Velasco, Joel D

    2012-09-01

    In this paper I address the question of whether the probabilities that appear in models of stochastic gene expression are objective or subjective. I argue that while our best models of the phenomena in question are stochastic models, this fact should not lead us to automatically assume that the processes are inherently stochastic. After distinguishing between models and reality, I give a brief introduction to the philosophical problem of the interpretation of probability statements. I argue that the objective vs. subjective distinction is a false dichotomy and is an unhelpful distinction in this case. Instead, the probabilities in our models of gene expression exhibit standard features of both objectivity and subjectivity.

  9. Mechanical Feedback and Arrest in Gene Expression

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart; Levine, Herbert

    The ability to watch biochemical events at the single-molecule level has increasingly revealed that stochasticity plays a leading role in many biological phenomena. One important and well know example is the noisy, ``bursty'' manner of transcription. Recent experiments have revealed relationships between the level and noise in gene expression hinting at deeper stochastic connections. In this talk we will discuss how the mechanical nature of transcription can explain this relationship and examine the limits that the physical aspects of transcription place on gene expression.

  10. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  11. Control of gene expression by proteolysis.

    PubMed

    Pahl, H L; Baeuerle, P A

    1996-06-01

    The proteasome and the small protein ubiquitin are key elements in the intracellular pathway of general protein degradation. Recent evidence shows that the proteasome and other less well defined cytoplasmic proteases can participate in specific events which control inducible gene expression. A number of eukaryotic transcriptional regulators, including NF-kappa B/l kappa B, p53, c-Jun, Notch, sterol regulated element binding proteins and MAT2 alpha, have recently been shown to be regulated by proteolytic events, a regulation which results in the activation or inactivation of gene expression.

  12. GENIS: gene expression of sodium iodide symporter for noninvasive imaging of gene therapy vectors and quantification of gene expression in vivo.

    PubMed

    Barton, Kenneth N; Tyson, Donald; Stricker, Hans; Lew, Young S; Heisey, Gregory; Koul, Sweaty; de la Zerda, Alberto; Yin, Fang-Fang; Yan, Hui; Nagaraja, Tavarekere N; Randall, Kelly Ann; Jin, Guk Kim; Fenstermacher, Joseph D; Jhiang, Sissy; Ho Kim, Jae; Freytag, Svend O; Brown, Stephen L

    2003-09-01

    With the goal of optimizing adenovirus-mediated suicide gene therapy for prostate cancer, we have developed a method based on the human sodium iodide symporter (hNIS) that allows for noninvasive monitoring of adenoviral vectors and quantification of gene expression magnitude and volume within the prostate. A replication-competent adenovirus (Ad5-yCD/mutTK(SR39)rep-hNIS) coexpressing a therapeutic yeast cytosine deaminase (yCD)/mutant herpes simplex virus thymidine kinase (mutTK(SR39)) fusion gene and the hNIS gene was developed. Ad5-yCD/mutTK(SR39)rep-hNIS and a replication-defective hNIS adenovirus (rAd-CMV-FLhNIS) were injected into contralateral lobes of the dog prostate and hNIS activity was monitored in live animals following administration of Na(99m)TcO(4) using gamma camera scintigraphy. Despite the close proximity of the urinary bladder, (99m)TcO(4)(-) uptake was readily detected in the prostate using viral dose levels (10(10) to 10(12) viral particles) that have been safely administered to humans. Due to its rapid clearance and short physical half-life (6 h), it was possible to obtain daily measurements of (99m)TcO(4)(-) uptake in vivo, allowing for dynamic monitoring of reporter gene expression within the prostate as well as biodistribution throughout the body. High-resolution autoradiography of prostate sections coupled with 3D reconstruction of gene expression demonstrated that the magnitude and volume of gene expression could be quantified with submillimeter resolution. Implementation of the GENIS (gene expression of Na/I symporter) technology in the clinic will facilitate optimization of future human gene therapy trials.

  13. Genes Expressed in Human Tumor Endothelium

    NASA Astrophysics Data System (ADS)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  14. Genomic signatures of germline gene expression.

    PubMed

    McVicker, Graham; Green, Phil

    2010-11-01

    Transcribed regions in the human genome differ from adjacent intergenic regions in transposable element density, crossover rates, and asymmetric substitution and sequence composition patterns. We tested whether these differences reflect selection or are instead a byproduct of germline transcription, using publicly available gene expression data from a variety of germline and somatic tissues. Crossover rate shows a strong negative correlation with gene expression in meiotic tissues, suggesting that crossover is inhibited by transcription. Strand-biased composition (G+T content) and A → G versus T → C substitution asymmetry are both positively correlated with germline gene expression. We find no evidence for a strand bias in allele frequency data, implying that the substitution asymmetry reflects a mutation rather than a fixation bias. The density of transposable elements is positively correlated with germline expression, suggesting that such elements preferentially insert into regions that are actively transcribed. For each of the features examined, our analyses favor a nonselective explanation for the observed trends and point to the role of germline gene expression in shaping the mammalian genome.

  15. [Imprinting genes and it's expression in Arabidopsis].

    PubMed

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  16. Genes of periodontopathogens expressed during human disease.

    PubMed

    Song, Yo-Han; Kozarov, Emil V; Walters, Sheila M; Cao, Sam Linsen; Handfield, Martin; Hillman, Jeffrey D; Progulske-Fox, Ann

    2002-12-01

    Since many bacterial genes are environmentally regulated, the screening for virulence-associated factors using classical genetic and molecular biology approaches can be biased under laboratory growth conditions of a given pathogen, because the required conditions for expression of many virulence factors may not occur during in vitro growth. Thus, technologies have been developed during the past several years to identify genes that are expressed during disease using animal models of human disease. However, animal models are not always truly representative of human disease, and with many pathogens, there is no appropriate animal model. A new technology, in vivo-induced antigen technology (IVIAT) was thus engineered and tested in our laboratory to screen for genes of pathogenic organisms induced specifically in humans, without the use of animal or artificial models of infection. This technology uses pooled sera from patients to probe for genes expressed exclusively in vivo (or ivi, in vivo-induced genes). IVIAT was originally designed for the study of Actinobacillus actinomycetemcomitans pathogenesis, but we have now extended it to other oral pathogens including Porphyromonas gingivalis. One hundred seventy-one thousand (171,000) clones from P. gingivalis strain W83 were screened and 144 were confirmed positive. Over 300,000 A. actinomycetemcomitans clones were probed, and 116 were confirmed positive using a quantitative blot assay. MAT has proven useful in identifying previously unknown in vivo-induced genes that are likely involved in virulence and are thus excellent candidates for use in diagnostic : and therapeutic strategies, including vaccine design.

  17. Leveraging global gene expression patterns to predict expression of unmeasured genes.

    PubMed

    Rudd, James; Zelaya, René A; Demidenko, Eugene; Goode, Ellen L; Greene, Casey S; Doherty, Jennifer A

    2015-12-15

    Large collections of paraffin-embedded tissue represent a rich resource to test hypotheses based on gene expression patterns; however, measurement of genome-wide expression is cost-prohibitive on a large scale. Using the known expression correlation structure within a given disease type (in this case, high grade serous ovarian cancer; HGSC), we sought to identify reduced sets of directly measured (DM) genes which could accurately predict the expression of a maximized number of unmeasured genes. We developed a greedy gene set selection (GGS) algorithm which returns a DM set of user specified size based on a specific correlation threshold (|rP|) and minimum number of DM genes that must be correlated to an unmeasured gene in order to infer the value of the unmeasured gene (redundancy). We evaluated GGS in the Cancer Genome Atlas (TCGA) HGSC data across 144 combinations of DM size, redundancy (1-3), and |rP| (0.60, 0.65, 0.70). Across the parameter sweep, GGS allows on average 9 times more gene expression information to be captured compared to the DM set alone. GGS successfully augments prognostic HGSC gene sets; the addition of 20 GGS selected genes more than doubles the number of genes whose expression is predictable. Moreover, the expression prediction is highly accurate. After training regression models for the predictable gene set using 2/3 of the TCGA data, the average accuracy (ranked correlation of true and predicted values) in the 1/3 testing partition and four independent populations is above 0.65 and approaches 0.8 for conservative parameter sets. We observe similar accuracies in the TCGA HGSC RNA-sequencing data. Specifically, the prediction accuracy increases with increasing redundancy and increasing |rP|. GGS-selected genes, which maximize expression information about unmeasured genes, can be combined with candidate gene sets as a cost effective way to increase the amount of gene expression information obtained in large studies. This method can be applied

  18. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  19. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  20. Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri

    PubMed Central

    Nematollahi, Ghazaleh; Kianianmomeni, Arash; Hallmann, Armin

    2006-01-01

    Background The multicellular alga Volvox carteri possesses only two cell types: mortal, motile somatic cells and potentially immortal, immotile reproductive cells. It is therefore an attractive model system for studying how cell-autonomous cytodifferentiation is programmed within a genome. Moreover, there are ongoing genome projects both in Volvox carteri and in the closely related unicellular alga Chlamydomonas reinhardtii. However, gene sequencing is only the beginning. To identify cell-type specific expression and to determine relative expression rates, we evaluate the potential of real-time RT-PCR for quantifying gene transcript levels. Results Here we analyze a diversified pool of 39 target genes by real-time RT-PCR for each cell type. This gene pool contains previously known genes with unknown localization of cellular expression, 28 novel genes which are described in this study for the first time, and a few known, cell-type specific genes as a control. The respective gene products are, for instance, part of photosynthesis, cellular regulation, stress response, or transport processes. We provide expression data for all these genes. Conclusion The results show that quantitative real-time RT-PCR is a favorable approach to analyze cell-type specific gene expression in Volvox, which can be extended to a much larger number of genes or to developmental or metabolic mutants. Our expression data also provide a basis for a detailed analysis of individual, previously unknown, cell-type specifically expressed genes. PMID:17184518

  1. The TRANSFAC system on gene expression regulation.

    PubMed

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  2. Transgenic control of perforin gene expression

    SciTech Connect

    Lichtenheld, M.G.; Podack, E.R.; Levy, R.B.

    1995-03-01

    Perforin is a pore-forming effector molecule of CTL and NK cells. To characterize perforin gene expression and its transcriptional control mechanisms in vivo, expression of a cell surface tag, i.e., human CD4, was driven by 5.1 kb of the murin perforin 5{prime} flanking and promoter region in transgenic mice. Six out of seven transgenic lines expressed the perforin-tag hybrid gene at low to intermediate levels, depending on the integration site. Transgene expression occurred in all cells that physiologically are able to express perforin. At the whole organ level, significant amounts of transgenic mRNA and endogenous perforin mRNA were co-expressed in the lymphoid organs, as well as in the lung, the ileum, the oviduct/uterus, and the bone marrow. At the single cell level, the perforin tag was present on NK cells and on CD8{sup +}, as well as on CD4{sup +} cells. Also targeted were Thy-1.2{sup +} {gamma}{delta} T cells, but not Thy-1.2{sup -} {gamma}{delta} T cells, B cells, nor monocytes. During thymic T cell development, transgene expression occurred in double negative (CD4{sup -}CD8{sup -}) thymocytes and was detected at all subsequent stages, but exceeded the expression levels of the endogenous gene in the thymus. In conclusion, the analyzed perforin 5{prime} flanking and promoter region contains important cis-acting sequences that restrict perforin expression to T cells and NK cells, and therefore provides a unique tool for manipulating T cell and/or Nk cell-mediated immune responses in transgenic mice. On the other hand, the normal control of perforin gene expression involves at least one additional negative control mechanism that was not mediated by the transgenic promoter and upstream region. This control restricts perforin gene expression in thymically developing T cells and in most resting peripheral T cells, but can be released upon T cell activation. 43 refs., 7 figs., 1 tab.

  3. Organization and expression of hair follicle genes.

    PubMed

    Rogers, G E; Powell, B C

    1993-07-01

    Several families of proteins are expressed in the growth of hair and an estimated 50-100 proteins constitute the final hair fiber. The cumbersome nomenclature for naming these different proteins has led to a proposal to modify that which is currently used for epidermal keratins. Investigations of the organization of hair genes indicate that the members of each family are clustered in the genome and their expression could be under some general control. Interestingly, the protein called trichohyalin, markedly distinct from the hair proteins, is produced in the inner root sheath cells and the gene for it has been found to be located at the same human chromosome locus as the genes for profilaggrin, involucrin, and loricrin. A mainstream objective is to identify controls responsible for the production in the hair cortex of keratin intermediate filaments (IFs) and two large groups of keratin-associated proteins (KAPs) rich in the amino acids cysteine or glycine/tyrosine. A specific family of cysteine-rich proteins is expressed in the hair cuticle. Comparisons of promoter regions of IF genes and KAP genes, including a recently characterized gene for a glycine/tyrosine-rich protein, have revealed putative hair-specific motifs in addition to known elements that regulate gene expression. In the sheep, the patterns of expression in hair differentiation are particularly interesting insofar as there are distinct segments of para- and orthocortical type cells that have significantly different pathways of expression. The testing of candidate hair-specific regulatory sequences by mouse transgenesis has produced several interesting hair phenotypes. Transgenic sheep over-expressing keratin genes but showing no hair growth change have been obtained and compared with the equivalent transgenic hair-loss mice. Studies of the effects of amino acid supply on the rate of hair growth have demonstrated that with cysteine supplementation of sheep a perturbation occurs in which there is a

  4. Regulation of Calreticulin Gene Expression by Calcium

    PubMed Central

    Waser, Mathilde; Mesaeli, Nasrin; Spencer, Charlotte; Michalak, Marek

    1997-01-01

    We have isolated and characterized a 12-kb mouse genomic DNA fragment containing the entire calreticulin gene and 2.14 kb of the promoter region. The mouse calreticulin gene consists of nine exons and eight introns, and it spans 4.2 kb of genomic DNA. A 1.8-kb fragment of the calreticulin promoter was subcloned into a reporter gene plasmid containing chloramphenicol acetyltransferase. This construct was then used in transient and stable transfection of NIH/ 3T3 cells. Treatment of transfected cells either with the Ca2+ ionophore A23187, or with the ER Ca2+-ATPase inhibitor thapsigargin, resulted in a five- to sevenfold increase of the expression of chloramphenicol acetyltransferase protein. Transactivation of the calreticulin promoter was also increased by fourfold in NIH/3T3 cells treated with bradykinin, a hormone that induces Ca2+ release from the intracellular Ca2+ stores. Analysis of the promoter deletion constructs revealed that A23187- and thapsigargin-responsive regions are confined to two regions (−115 to −260 and −685 to −1,763) in the calreticulin promoter that contain the CCAAT nucleotide sequences. Northern blot analysis of cells treated with A23187, or with thapsigargin, revealed a fivefold increase in calreticulin mRNA levels. Thapsigargin also induced a fourfold increase in calreticulun protein levels. Importantly, we show by nuclear run-on transcription analysis that calreticulin gene transcription is increased in NIH/3T3 cells treated with A23187 and thapsigargin in vivo. This increase in gene expression required over 4 h of continuous incubation with the drugs and was also sensitive to treatment with cycloheximide, suggesting that it is dependent on protein synthesis. Changes in the concentration of extracellular and cytoplasmic Ca2+ did not affect the increased expression of the calreticulin gene. These studies suggest that stress response to the depletion of intracellular Ca2+ stores induces expression of the calreticulin gene in vitro

  5. The frustrated gene: origins of eukaryotic gene expression

    PubMed Central

    Madhani, Hiten D.

    2014-01-01

    Eukarytotic gene expression is frustrated by a series of steps that are generally not observed in prokaryotes and are therefore not essential for the basic chemistry of transcription and translation. Their evolution may have been driven by the need to defend against parasitic nucleic acids. PMID:24209615

  6. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  7. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  8. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  9. Analysis of baseline gene expression levels from ...

    EPA Pesticide Factsheets

    The use of gene expression profiling to predict chemical mode of action would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in gene expression. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques. The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selectiv

  10. Digital gene expression signatures for maize development

    USDA-ARS?s Scientific Manuscript database

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  11. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  12. Trigger finger, tendinosis, and intratendinous gene expression.

    PubMed

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Coordination of plastid and nuclear gene expression.

    PubMed Central

    Gray, John C; Sullivan, James A; Wang, Jun-Hui; Jerome, Cheryl A; MacLean, Daniel

    2003-01-01

    The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre-eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis-related proteins is regulated by signals from plastids. Perturbation of several plastid-located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesis-related genes. Characterization of arabidopsis gun (genomes uncoupled) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis-related proteins. PMID:12594922

  14. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  15. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  16. Annotation of gene function in citrus using gene expression information and co-expression networks.

    PubMed

    Wong, Darren C J; Sweetman, Crystal; Ford, Christopher M

    2014-07-15

    The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world's most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a "guilt-by-association" principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Integration of citrus gene co-expression networks, functional enrichment analysis and gene

  17. Gene Expression Variability Underlies Adaptive Resistance in Phenotypically Heterogeneous Bacterial Populations.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2015-11-13

    The root cause of the antibiotic resistance crisis is the ability of bacteria to evolve resistance to a multitude of antibiotics and other environmental toxins. The regulation of adaptation is difficult to pinpoint due to extensive phenotypic heterogeneity arising during evolution. Here, we investigate the mechanisms underlying general bacterial adaptation by evolving wild-type Escherichia coli populations to dissimilar chemical toxins. We demonstrate the presence of extensive inter- and intrapopulation phenotypic heterogeneity across adapted populations in multiple traits, including minimum inhibitory concentration, growth rate, and lag time. To search for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed, clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of the pervasive phenotypic heterogeneity underlying adaptation.

  18. Stochastic Gene Expression in a Single Cell

    NASA Astrophysics Data System (ADS)

    Elowitz, Michael B.; Levine, Arnold J.; Siggia, Eric D.; Swain, Peter S.

    2002-08-01

    Clonal populations of cells exhibit substantial phenotypic variation. Such heterogeneity can be essential for many biological processes and is conjectured to arise from stochasticity, or noise, in gene expression. We constructed strains of Escherichia coli that enable detection of noise and discrimination between the two mechanisms by which it is generated. Both stochasticity inherent in the biochemical process of gene expression (intrinsic noise) and fluctuations in other cellular components (extrinsic noise) contribute substantially to overall variation. Transcription rate, regulatory dynamics, and genetic factors control the amplitude of noise. These results establish a quantitative foundation for modeling noise in genetic networks and reveal how low intracellular copy numbers of molecules can fundamentally limit the precision of gene regulation.

  19. Gene-expression profiling in pancreatic cancer.

    PubMed

    López-Casas, Pedro P; López-Fernández, Luís A

    2010-07-01

    Pancreatic cancer has one of the worst prognoses, owing principally to a late diagnosis and the absence of good treatments. In the last 5 years, up to 12 molecular pathways involved in pancreatic cancer have been described. Global gene-expression profiling and the use of microarray databases have allowed the identification of hundreds of genes that are differentially expressed in pancreatic cancer. However, validation of these genes as biomarkers for early diagnosis, prognosis or treatment efficacy is still incomplete. Additionally, microRNAs have emerged as a potential source of variation between cancer and normal samples, and several of them have been identified as being deregulated in pancreatic tumors. An integrative point of view in the study of pancreatic cancer that makes use of all the whole-genome technologies has revealed several molecular mechanisms that affect pancreatic cancer development. These results should encourage the use of more personalized medicine in this pathology. Recent developments and future perspectives are discussed.

  20. Fluid Mechanics, Arterial Disease, and Gene Expression.

    PubMed

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  1. Fluid Mechanics, Arterial Disease, and Gene Expression

    PubMed Central

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

  2. Fluid Mechanics, Arterial Disease, and Gene Expression

    NASA Astrophysics Data System (ADS)

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid mechanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  3. Validation of housekeeping genes as an internal control for gene expression studies in Giardia lamblia using quantitative real-time PCR.

    PubMed

    Marcial-Quino, Jaime; Fierro, Francisco; De la Mora-De la Mora, Ignacio; Enríquez-Flores, Sergio; Gómez-Manzo, Saúl; Vanoye-Carlo, America; Garcia-Torres, Itzhel; Sierra-Palacios, Edgar; Reyes-Vivas, Horacio

    2016-04-25

    The analysis of transcript levels of specific genes is important for understanding transcriptional regulation and for the characterization of gene function. Real-time quantitative reverse transcriptase PCR (RT-qPCR) has become a powerful tool to quantify gene expression. The objective of this study was to identify reliable housekeeping genes in Giardia lamblia. Twelve genes were selected for this purpose, and their expression was analyzed in the wild type WB strain and in two strains with resistance to nitazoxanide (NTZ) and metronidazole (MTZ), respectively. RefFinder software analysis showed that the expression of the genes is different in the three strains. The integrated data from the four analyses showed that the NADH oxidase (NADH) and aldolase (ALD) genes were the most steadily expressed genes, whereas the glyceraldehyde-3-phosphate dehydrogenase gene was the most unstable. Additionally, the relative expression of seven genes were quantified in the NTZ- and MTZ-resistant strains by RT-qPCR, using the aldolase gene as the internal control, and the results showed a consistent differential pattern of expression in both strains. The housekeeping genes found in this work will facilitate the analysis of mRNA expression levels of other genes of interest in G. lamblia.

  4. Selection of reliable reference genes for gene expression studies in Clonostachys rosea 67-1 under sclerotial induction.

    PubMed

    Sun, Zhan-Bin; Li, Shi-Dong; Sun, Man-Hong

    2015-07-01

    Reference genes are important to precisely quantify gene expression by real-time PCR. In order to identify stable and reliable expressed genes in mycoparasite Clonostachys rosea in different modes of nutrition, seven commonly used housekeeping genes, 18S rRNA, actin, β-tubulin, elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme and glyceraldehyde-3-phosphate dehydrogenase, from the effective biocontrol isolate C. rosea 67-1 were tested for their expression under sclerotial induction and during vegetative growth on PDA medium. Analysis by three software programs showed that differences existed among the candidates. Elongation factor 1 was most stable; the M value in geNorm, SD value in Bestkeeper and stability value in Normfinder analysis were 0.405, 0.450 and 0.442, respectively, indicating that the gene elongation factor 1 could be used to normalize gene expression in C. rosea in both vegetative growth and parasitic process. By using elongation factor 1, the expression of a serine protease gene, sep, in different conditions was assessed, which was consistent with the transcriptomic data. This research provides an effective method to quantitate expression changes of target genes in C. rosea, and will assist in further investigation of parasitism-related genes of this fungus.

  5. Gene expression profiling of human ovarian tumours

    PubMed Central

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; LiVolsi, V A; Johnson, S W

    2006-01-01

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT–PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers. PMID:16969345

  6. Gene expression profiling of human ovarian tumours.

    PubMed

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; Livolsi, V A; Johnson, S W

    2006-10-23

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT-PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers.

  7. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  8. Using interpolation to estimate system uncertainty in gene expression experiments.

    PubMed

    Falin, Lee J; Tyler, Brett M

    2011-01-01

    The widespread use of high-throughput experimental assays designed to measure the entire complement of a cell's genes or gene products has led to vast stores of data that are extremely plentiful in terms of the number of items they can measure in a single sample, yet often sparse in the number of samples per experiment due to their high cost. This often leads to datasets where the number of treatment levels or time points sampled is limited, or where there are very small numbers of technical and/or biological replicates. Here we introduce a novel algorithm to quantify the uncertainty in the unmeasured intervals between biological measurements taken across a set of quantitative treatments. The algorithm provides a probabilistic distribution of possible gene expression values within unmeasured intervals, based on a plausible biological constraint. We show how quantification of this uncertainty can be used to guide researchers in further data collection by identifying which samples would likely add the most information to the system under study. Although the context for developing the algorithm was gene expression measurements taken over a time series, the approach can be readily applied to any set of quantitative systems biology measurements taken following quantitative (i.e. non-categorical) treatments. In principle, the method could also be applied to combinations of treatments, in which case it could greatly simplify the task of exploring the large combinatorial space of future possible measurements.

  9. Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes.

    PubMed

    Michalopoulos, Ioannis; Pavlopoulos, Georgios A; Malatras, Apostolos; Karelas, Alexandros; Kostadima, Myrto-Areti; Schneider, Reinhard; Kossida, Sophia

    2012-06-06

    Bioinformatics and high-throughput technologies such as microarray studies allow the measure of the expression levels of large numbers of genes simultaneously, thus helping us to understand the molecular mechanisms of various biological processes in a cell. We calculate the Pearson Correlation Coefficient (r-value) between probe set signal values from Affymetrix Human Genome Microarray samples and cluster the human genes according to the r-value correlation matrix using the Neighbour Joining (NJ) clustering method. A hyper-geometric distribution is applied on the text annotations of the probe sets to quantify the term overrepresentations. The aim of the tool is the identification of closely correlated genes for a given gene of interest and/or the prediction of its biological function, which is based on the annotations of the respective gene cluster. Human Gene Correlation Analysis (HGCA) is a tool to classify human genes according to their coexpression levels and to identify overrepresented annotation terms in correlated gene groups. It is available at: http://biobank-informatics.bioacademy.gr/coexpression/.

  10. From gene expressions to genetic networks

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  11. [Structure and expression of thyroglobulin gene].

    PubMed

    Vassart, G; Brocas, H; Christophe, D; de Martynoff, G; Leriche, A; Mercken, L; Pohl, V; Van Heuverswyn, B

    1982-01-01

    Thyroglobulin is composed of two 300000 dalton polypeptide chains, translated from an 8000 base mRNA. Preparation of a full length cDNA and its cloning in E. coli have lead to the demonstration that the polypeptides of thyroglobulin protomers were identical. Used as molecular probes, the cloned cDNA allowed the isolation of a fragment of thyroglobulin gene. Electron microscopic studies have demonstrated that this gene contains more than 90% intronic material separating small size exons (less than 200 bp). Sequencing of bovine thyroglobulin structural gene is in progress. Preliminary results show evidence for the existence of repetitive segments. Availability of cloned DNA complementary to bovine and human thyroglobulin mRNA allows the study of genetic defects of thyroglobulin gene expression in the human and in various animal models.

  12. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  13. Computational codon optimization of synthetic gene for protein expression

    PubMed Central

    2012-01-01

    Background The construction of customized nucleic acid sequences allows us to have greater flexibility in gene design for recombinant protein expression. Among the various parameters considered for such DNA sequence design, individual codon usage (ICU) has been implicated as one of the most crucial factors affecting mRNA translational efficiency. However, previous works have also reported the significant influence of codon pair usage, also known as codon context (CC), on the level of protein expression. Results In this study, we have developed novel computational procedures for evaluating the relative importance of optimizing ICU and CC for enhancing protein expression. By formulating appropriate mathematical expressions to quantify the ICU and CC fitness of a coding sequence, optimization procedures based on genetic algorithm were employed to maximize its ICU and/or CC fitness. Surprisingly, the in silico validation of the resultant optimized DNA sequences for Escherichia coli, Lactococcus lactis, Pichia pastoris and Saccharomyces cerevisiae suggests that CC is a more relevant design criterion than the commonly considered ICU. Conclusions The proposed CC optimization framework can complement and enhance the capabilities of current gene design tools, with potential applications to heterologous protein production and even vaccine development in synthetic biotechnology. PMID:23083100

  14. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics.

  15. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    PubMed Central

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  16. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    PubMed

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  17. Differential var gene expression in children with malaria and antidromic effects on host gene expression.

    PubMed

    Kalmbach, Yvonne; Rottmann, Matthias; Kombila, Maryvonne; Kremsner, Peter G; Beck, Hans-Peter; Kun, Jürgen F J

    2010-07-15

    Among 62 children with mild malaria, cerebral malaria, or severe malarial anemia, we analyzed the transcription of different var gene types. There was no difference in parasitemia level or body temperature between groups. However, a significantly different expression pattern was observed in children with cerebral malaria, compared with that in patients in the other 2 groups: children with cerebral malaria had lower expression of the upsA subtype but higher expression of the upsB and upsC subtypes. Furthermore, expression of human genes responsive to tumor necrosis factor and hypoxia correlated with distinct ups types.

  18. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution

    PubMed Central

    Erickson, Keesha E.; Otoupal, Peter B.

    2017-01-01

    ABSTRACT Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment

  19. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2017-01-01

    Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress

  20. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  1. Salt induced gene expression in Prosopis farcta

    SciTech Connect

    Heimer, I.M.; Golan, A.; Lips, H.

    1987-04-01

    The authors hypothesize that in facultative halophytes, the genes which impart salt tolerance are expressed when the plants are exposed to salt. As a first step towards possible identification of these genes, they examined salt induced changes of gene expression in the facultative halophyte Prosopis farcta at the protein level, by SDS-PAGE. Exposure to salt of aseptically grown, two-week old seedlings, was carried out in one of two ways: (1) a one step transfer of seedlings from medium without salt to that with the indicated concentrations followed by 5 hr or 24 hr incubation periods. During the last 2 hrs of each incubation period the seedlings were pulse-labelled with /sup 35/S Sulfate or L-Methionine; (2) a gradual increase of the salt concentration at 50 mM increments at 2-4 day intervals. Two days after reaching the desired salt concentration, the seedlings were pulse-labelled for 2 hrs with /sup 35/S sulfate or L-methionine. Protein from roots were extracted and analyzed. Polypeptides were visualized by staining with coomassie blue or by fluorography. Qualitative as well as quantitative changes of gene expression as induced by salt could be observed. Their significance regarding salt tolerance will be discussed.

  2. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  3. Quantifying the dynamics of emotional expressions in family therapy of patients with anorexia nervosa.

    PubMed

    Pezard, Laurent; Doba, Karyn; Lesne, Annick; Nandrino, Jean-Louis

    2017-07-01

    Emotional interactions have been considered dynamical processes involved in the affective life of humans and their disturbances may induce mental disorders. Most studies of emotional interactions have focused on dyadic behaviors or self-reports of emotional states but neglected the dynamical processes involved in family therapy. The main objective of this study is to quantify the dynamics of emotional expressions and their changes using the family therapy of patients with anorexia nervosa as an example. Nonlinear methods characterize the variability of the dynamics at the level of the whole therapeutic system and reciprocal influence between the participants during family therapy. Results show that the variability of the dynamics is higher at the end of the therapy than at the beginning. The reciprocal influences between therapist and each member of the family and between mother and patient decrease with the course of family therapy. Our results support the development of new interpersonal strategies of emotion regulation during family therapy. The quantification of emotional dynamics can help understanding the emotional processes underlying psychopathology and evaluating quantitatively the changes achieved by the therapeutic intervention. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Transient gene expression in electroporated Solanum protoplasts.

    PubMed

    Jones, H; Ooms, G; Jones, M G

    1989-11-01

    Electroporation was used to evaluate parameters important in transient gene expression in potato protoplasts. The protoplasts were from leaves of wild potato Solanum brevidens, and from leaves, tubers and suspension cells of cultivated Solanum tuberosum cv. Désirée. Reporter enzyme activity, chloramphenicol acetyl transferase (CAT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter, depended on the field strength and the pulse duration used for electroporation. Using field pulses of 85 ms duration, the optimum field strengths for maximum CAT activity were: S. brevidens mesophyll protoplasts--250 V/cm; Désirée mesophyll protoplasts--225 V/cm; Désirée suspension culture protoplasts--225 V/cm; and Désirée tuber protoplasts--150 V/cm. The optimum field strengths correlated inversely with the size of the protoplasts electroporated; this is consistent with biophysical theory. In time courses, maximum CAT activity (in Désirée mesophyll protoplasts) occurred 36-48 h after electroporation. Examination at optimised conditions of a chimaeric gene consisting of a class II patatin promoter linked to the beta-glucuronidase (gus) gene, showed expression (at DNA concentrations between 0-10 pmol/ml) comparable to the CaMV 35S promoter in both tuber and mesophyll protoplasts. At higher DNA concentrations (20-30 pmol/ml) the patatin promoter directed 4-5 times higher levels of gus expression. Implications and potential contributions towards studying gene expression, in particular of homologous genes in potato, are discussed.

  5. The Relationship between Gene Network Structure and Expression Variation among Individuals and Species

    PubMed Central

    Sears, Karen E.; Maier, Jennifer A.; Rivas-Astroza, Marcelo; Poe, Rachel; Zhong, Sheng; Kosog, Kari; Marcot, Jonathan D.; Behringer, Richard R.; Rasweiler, John J.; Rapti, Zoi

    2015-01-01

    Abstract Variation among individuals is a prerequisite of evolution by natural selection. As such, identifying the origins of variation is a fundamental goal of biology. We investigated the link between gene interactions and variation in gene expression among individuals and species using the mammalian limb as a model system. We first built interaction networks for key genes regulating early (outgrowth; E9.5–11) and late (expansion and elongation; E11-13) limb development in mouse. This resulted in an Early (ESN) and Late (LSN) Stage Network. Computational perturbations of these networks suggest that the ESN is more robust. We then quantified levels of the same key genes among mouse individuals and found that they vary less at earlier limb stages and that variation in gene expression is heritable. Finally, we quantified variation in gene expression levels among four mammals with divergent limbs (bat, opossum, mouse and pig) and found that levels vary less among species at earlier limb stages. We also found that variation in gene expression levels among individuals and species are correlated for earlier and later limb development. In conclusion, results are consistent with the robustness of the ESN buffering among-individual variation in gene expression levels early in mammalian limb development, and constraining the evolution of early limb development among mammalian species. PMID:26317994

  6. High-resolution, three-dimensional mapping of gene expression using GeneExpressMap (GEM).

    PubMed

    Flynn, C J; Sharma, T; Ruffins, S W; Guerra, S L; Crowley, J C; Ettensohn, C A

    2011-09-15

    The analysis of temporal and spatial patterns of gene expression is critically important for many kinds of developmental studies, including the construction of gene regulatory networks. Recently, multiplex, fluorescent, whole mount in situ hybridization (multiplex F-WMISH), applied in combination with confocal microscopy, has emerged as the method of choice for high-resolution, three-dimensional (3D) mapping of gene expression patterns in developing tissues. We have developed an image analysis tool, GeneExpressMap (GEM), that facilitates the rapid, 3D analysis of multiplex F-WMISH data at single-cell resolution. GEM assigns F-WMISH signal to individual cells based upon the proximity of cytoplasmic hybridization signal to cell nuclei. Here, we describe the features of GEM and, as a test of its utility, we use GEM to analyze patterns of regulatory gene expression in the non-skeletogenic mesoderm of the early sea urchin embryo. GEM greatly extends the power of multiplex F-WMISH for analyzing patterns of gene expression and is a valuable tool for gene network analysis and many other kinds of developmental studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Toward stable gene expression in CHO cells

    PubMed Central

    Mariati; Koh, Esther YC; Yeo, Jessna HM; Ho, Steven CL; Yang, Yuansheng

    2014-01-01

    Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific. PMID:25482237

  8. Engineering Genes for Predictable Protein Expression

    PubMed Central

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2013-01-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering. PMID:22425659

  9. Collagen gene expression in radiation interstitial pneumonitis

    SciTech Connect

    Bai Yun-hong; Wang, De-wen; Cui Cai-bin

    1994-12-31

    By using type I and type III collagen cDNA probe and cDNA-mRNA in situ hybridization, we observed the changes of rat lung {alpha} 1(I) and {alpha} 1(III) collagen gene expression in radiation interstitial pneumonitis. The results showed that the expressed cell of type I and type III collagen were scattered within the fibroblasts in the thickened interalveolar walls. The type I and type III collagen mRNA content in irradiated animals were higher than those in the controls at 0.5, 1, 2, 3, 6, and 12 months. 10 refs., 4 figs., 1 tab.

  10. Engineering genes for predictable protein expression.

    PubMed

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2012-05-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering.

  11. Combinatorial engineering for heterologous gene expression.

    PubMed

    Zwick, Friederike; Lale, Rahmi; Valla, Svein

    2013-01-01

    Tools for strain engineering with predictable outcome are of crucial importance for the nascent field of synthetic biology. The success of combining different DNA biological parts is often restricted by poorly understood factors deriving from the complexity of the systems. We have previously identified variants for different regulatory elements of the expression cassette XylS/Pm. When such elements are combined they act in a manner consistent with their individual behavior, as long as they affect different functions, such as transcription and translation. Interestingly, sequence context does not seem to influence the final outcome significantly. Expression of reporter gene bla could be increased up to 75 times at the protein level by combining three variants in one cassette. For other tested reporter genes similar results were obtained, except that the stimulatory effect was quantitatively less. Combination of individually characterized DNA parts thus stands as suitable method to achieve a desired phenotype.

  12. Cancer outlier differential gene expression detection.

    PubMed

    Wu, Baolin

    2007-07-01

    We study statistical methods to detect cancer genes that are over- or down-expressed in some but not all samples in a disease group. This has proven useful in cancer studies where oncogenes are activated only in a small subset of samples. We propose the outlier robust t-statistic (ORT), which is intuitively motivated from the t-statistic, the most commonly used differential gene expression detection method. Using real and simulation studies, we compare the ORT to the recently proposed cancer outlier profile analysis (Tomlins and others, 2005) and the outlier sum statistic of Tibshirani and Hastie (2006). The proposed method often has more detection power and smaller false discovery rates. Supplementary information can be found at http://www.biostat.umn.edu/~baolin/research/ort.html.

  13. Combinatorial engineering for heterologous gene expression

    PubMed Central

    Zwick, Friederike; Lale, Rahmi; Valla, Svein

    2013-01-01

    Tools for strain engineering with predictable outcome are of crucial importance for the nascent field of synthetic biology. The success of combining different DNA biological parts is often restricted by poorly understood factors deriving from the complexity of the systems. We have previously identified variants for different regulatory elements of the expression cassette XylS/Pm. When such elements are combined they act in a manner consistent with their individual behavior, as long as they affect different functions, such as transcription and translation. Interestingly, sequence context does not seem to influence the final outcome significantly. Expression of reporter gene bla could be increased up to 75 times at the protein level by combining three variants in one cassette. For other tested reporter genes similar results were obtained, except that the stimulatory effect was quantitatively less. Combination of individually characterized DNA parts thus stands as suitable method to achieve a desired phenotype. PMID:23644416

  14. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.

  15. Expression of genes of the aflatoxin biosynthetic pathway in Aspergillus flavus isolates from keratitis.

    PubMed

    Leema, George; Chou, Duen-Suey; Jesudasan, Christadoss A Nelson; Geraldine, Pitchairaj; Thomas, Philip A

    2011-01-01

    To document transcriptional activation (expression) of key aflatoxin biosynthetic pathway genes in corneal isolates of Aspergillus flavus. The expression of certain regulatory (aflatoxin regulatory [aflR] and aflatoxin J [aflJ]) and structural (polyketide synthase acetate [pksA] and norsolonic acid-1 [nor-1]) genes in four corneal A. flavus isolates was evaluated by reverse transcription PCR. The aflatoxin-producing potential of each strain was determined by thin-layer chromatography and quantified by spectrophotometry. Four environmental isolates were used for comparison. The mean expression levels of these genes were compared in the corneal and environmental A. flavus isolates. In addition, the mean expression levels were also correlated with the aflatoxin production levels. All isolates expressed aflJ, nor-1, and pksA, while all but one expressed aflR. Overall, significantly higher mean expression levels occurred in aflatoxigenic than in non-aflatoxigenic corneal isolates. A significant positive correlation was noted between the mean expression level of aflR and the quantum of aflatoxin production by the corneal isolates. Essentially similar patterns of expression of these genes were noted in four environmental A. flavus isolates used for comparison. For the first time, isolates of A. flavus from human keratitis patients have been shown to express regulatory and structural aflatoxin biosynthetic pathway genes. Further studies are needed to clarify the precise influence of the corneal microenvironment on expression of these genes and aflatoxin production by A. flavus infecting the cornea.

  16. Gene expression during normal and malignant differentiation

    SciTech Connect

    Andersson, L.C.; Gahmberg, C.G.; Ekblom, P.

    1985-01-01

    This book contains 18 selections. Some of the titles are: Exploring Carcinogenesis with Retroviral and Cellular Oncogenes; Retroviruses, Oncogenes and Evolution; HTLV and Human Neoplasi; Modes of Activation of cMyc Oncogene in B and T Lymphoid Tumors; The Structure and Function of the Epidermal Growth Factor Receptor: Its Relationship to the Protein Product of the V-ERB-B Oncogene; and Expression of Human Retrovirus Genes in Normal and Neoplastic Epithelial Cells.

  17. Expression profiling the human septin gene family.

    PubMed

    Hall, Peter A; Jung, Kenneth; Hillan, Kenneth J; Russell, S E Hilary

    2005-07-01

    The septins are an evolutionarily conserved family of GTP-binding proteins involved in diverse processes including vesicle trafficking, apoptosis, remodelling of the cytoskeleton, infection, neurodegeneration, and neoplasia. The present paper reports a comprehensive study of septin gene expression by DNA microarray methods in 10 360 samples of normal, diseased, and tumour tissues. A novel septin, SEPT13, has been identified and is shown to be related to SEPT7. It is shown that SEPT13 and the other known human septins are expressed in all tissue types but some show high expression in lymphoid (SEPT1, 6, 9, and 12) or brain tissues (SEPT2, 3, 4, 5, 7, 8, and 11). For a given septin, some isoforms are highly expressed in the brain and others are not. For example, SEPT8_v2 and v1, 1* and 3 are highly expressed in the brain and cluster with SEPT2, 3, 4, 5, 7, and 11. However, a probe set specific for SEPT8_v1 with low brain expression clusters away from this set. Similarly, SEPT4 has lymphoid and non-lymphoid forms; SEPT2 has lymphoid and central nervous system (CNS) forms; and SEPT6 and SEPT9 are elevated in lymphoid tissues but both have forms that cluster away from the lymphoid forms. Perturbation of septin expression was widespread in disease and tumours of the various tissues examined, particularly for conditions of the CNS, where alterations in all 13 septin genes were identified. This analysis provides a comprehensive catalogue of the septin family in health and disease. It is a key step in understanding the role of septins in physiological and pathological states and provides insight into the complexity of septin biology. Copyright 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Identifying driver genes in cancer by triangulating gene expression, gene location, and survival data.

    PubMed

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates - or integrates - three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics.

  19. Reshaping of global gene expression networks and sex-biased gene expression by integration of a young gene

    PubMed Central

    Chen, Sidi; Ni, Xiaochun; Krinsky, Benjamin H; Zhang, Yong E; Vibranovski, Maria D; White, Kevin P; Long, Manyuan

    2012-01-01

    New genes originate frequently across diverse taxa. Given that genetic networks are typically comprised of robust, co-evolved interactions, the emergence of new genes raises an intriguing question: how do new genes interact with pre-existing genes? Here, we show that a recently originated gene rapidly evolved new gene networks and impacted sex-biased gene expression in Drosophila. This 4–6 million-year-old factor, named Zeus for its role in male fecundity, originated through retroposition of a highly conserved housekeeping gene, Caf40. Zeus acquired male reproductive organ expression patterns and phenotypes. Comparative expression profiling of mutants and closely related species revealed that Zeus has recruited a new set of downstream genes, and shaped the evolution of gene expression in germline. Comparative ChIP-chip revealed that the genomic binding profile of Zeus diverged rapidly from Caf40. These data demonstrate, for the first time, how a new gene quickly evolved novel networks governing essential biological processes at the genomic level. PMID:22543869

  20. Expression of foreign genes in filamentous cyanobacteria

    SciTech Connect

    Kuritz, T.; Wolk, C.P. )

    1993-06-01

    Several advantages make cyanobacteria attractive hosts for biodegradative genes and possibly for other exogenous genes that have practical uses. The authors have obtained expression in Anabaena sp. strain PCC 7120 and Nostoc ellipsosporum of a dechlorination operon, fcbAB, from Arthrobacter globiformis, and have also developed a simple method for qualitative assessment of dechlorination by microorganisms, such as cyanobacteria, whose metabolism is dependent on the presence of chloride in the medium. Transcription of fcbAB under the control of a variety of promoters was monitored by placing luxAB (encoding luciferase) downstream from fcbAB, and by measuring light emission from luciferase. They believe that the system that they have described has value as a means to screen for factors influencing transcription of foreign genes in cyanobacteria.

  1. Nonreplicating vaccinia vector efficiently expresses recombinant genes.

    PubMed

    Sutter, G; Moss, B

    1992-11-15

    Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.

  2. A gene expression biomarker accurately predicts estrogen ...

    EPA Pesticide Factsheets

    The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c

  3. Moving Toward Integrating Gene Expression Profiling into ...

    EPA Pesticide Factsheets

    Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally-diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through ChIP-Seq analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including “very weak” agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals,

  4. Predicting Gene Expression Level from Relative Codon Usage Bias: An Application to Escherichia coli Genome

    PubMed Central

    Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata

    2009-01-01

    We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380

  5. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli.

    PubMed

    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd

    2005-06-20

    The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  6. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli

    PubMed Central

    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd

    2005-01-01

    Background The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. Results We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. Conclusion According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms. PMID:15967027

  7. Quantifying Ostreid herpesvirus (OsHV-1) genome copies and expression during transmission.

    PubMed

    Burge, Colleen A; Friedman, Carolyn S

    2012-04-01

    Understanding the pathogenic potential of a new pathogen strain or a known pathogen in a new locale is crucial for management of disease in both wild and farmed animals. The Ostreid herpesvirus-1 (OsHV-1), a known pathogen of early-life-stage Pacific oysters, Crassostrea gigas, has been associated with mortalities of juvenile oysters in many locations around the world including Tomales Bay, California. In two trials, the California OsHV-1 strain was transmitted from infected juvenile C. gigas to naïve C. gigas larvae. Survival of control larvae was high throughout both trials (97-100%) and low among those exposed to OsHV-1. No OsHV-1-exposed larvae survived to day 9 in trial 1, while trial 2 was terminated at day 7 when survival was 36.90 ± 8.66%. To assess the amount of OsHV-1 DNA present, we employed quantitative polymerase chain reaction (qPCR) assays based on the A fragment and OsHV-1 catalytic subunit of a DNA polymerase δ (DNA pol) gene. Viral genome copy numbers based on qPCR assays peaked between 3 and 5 days. To measure the presence of viable and actively transcribing virus, the DNA pol gene qPCR assay was optimized for RNA analysis after being reverse transcribed (RT-qPCR). A decline in virus gene expression was measured using RT-qPCR: relative to earlier experimental time points copy numbers were significantly lower on day 9, trial 1 (p < 0.05) and day 7, trial 2 (p < 0.05). Peaks in copies of active virus per genome occurred during two periods in trial 1 (days 1 and 5/7, p < 0.05) and one period in trial 2 (day 1, p < 0.05). Transmission electron microscopy confirmed OsHV-1 infection; herpesvirus-like nucleocapsids, capsids, and extracellular particles were visualized. We demonstrated the ability to transmit OsHV-1 from infected juvenile oysters to naïve larvae, which indicates the spread of OsHV-1 between infected hosts in the field and between commercial farms is possible. We also developed an important tool (OsHV-1-specific RT-qPCR for an active

  8. GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles.

    PubMed

    Antanaviciute, Agne; Daly, Catherine; Crinnion, Laura A; Markham, Alexander F; Watson, Christopher M; Bonthron, David T; Carr, Ian M

    2015-08-15

    In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. umaan@leeds.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  9. GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles

    PubMed Central

    Antanaviciute, Agne; Daly, Catherine; Crinnion, Laura A.; Markham, Alexander F.; Watson, Christopher M.; Bonthron, David T.; Carr, Ian M.

    2015-01-01

    Motivation: In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Results: Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Availability and Implementation: Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. Contact: umaan@leeds.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25861967

  10. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  11. Gene expression and IG-DMR hypomethylation of maternally expressed gene 3 in developing corticospinal neurons.

    PubMed

    Qu, Chunsheng; Jiang, Tian; Li, Yong; Wang, Xiongwei; Cao, Huateng; Xu, Hongping; Qu, Jia; Chen, Jie-Guang

    2013-01-01

    The mammalian cerebral cortex plays a central role in higher cognitive functions and in the complex task of motor control. Maternally expressed gene 3 (Meg3) appears to play a role in cortical development and neurodegeneration, but the expression and regulation of Meg3 in the cortex is not clear. In this study, we examined the expression of transcript variants of Meg3 in the developing mouse cerebral cortex. By in situ hybridization, we found that a novel transcript variant of Meg3 with 8 small exons was expressed in the developing cortex, whereas the long isoforms of Meg3 (~11 kb) were enriched in corticospinal neurons (CSNs) in layer V of the cortex. No transcript variants of Meg3 were found in the neural progenitors at E12.5, when the intergenic differential methylation region (IG-DMR) near Meg3 was highly methylated. IG-DMR became demethylated at E15.5 and remained hypomethylated in early CSNs isolated from Fezf2-EGFP transgenic mice. The expression of Meg3 transcript variant 1 was inversely correlated with the IG-DMR methylation level during development. Moreover, expression of paternally expressed gene Peg11 was limited to the upper layers, consistent with the idea that the maternally expressed gene may be preferentially transcribed in the lower layers of the cortex. The spatiotemporal expression pattern of Meg3 suggests that it may participate in the early development of CSNs and contribute to cortical malfunctions related to aberrant imprinting in Meg3.

  12. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies

    PubMed Central

    2010-01-01

    Background Quantitative real-time RT-PCR (RT-qPCR) is a highly sensitive method for mRNA quantification, but requires invariant expression of the chosen reference gene(s). In pathological myocardium, there is limited information on suitable reference genes other than the commonly used Gapdh mRNA and 18S ribosomal RNA. Our aim was to evaluate and identify suitable reference genes in human failing myocardium, in rat and mouse post-myocardial infarction (post-MI) heart failure and across developmental stages in fetal and neonatal rat myocardium. Results The abundance of Arbp, Rpl32, Rpl4, Tbp, Polr2a, Hprt1, Pgk1, Ppia and Gapdh mRNA and 18S ribosomal RNA in myocardial samples was quantified by RT-qPCR. The expression variability of these transcripts was evaluated by the geNorm and Normfinder algorithms and by a variance component analysis method. Biological variability was a greater contributor to sample variability than either repeated reverse transcription or PCR reactions. Conclusions The most stable reference genes were Rpl32, Gapdh and Polr2a in mouse post-infarction heart failure, Polr2a, Rpl32 and Tbp in rat post-infarction heart failure and Rpl32 and Pgk1 in human heart failure (ischemic disease and cardiomyopathy). The overall most stable reference genes across all three species was Rpl32 and Polr2a. In rat myocardium, all reference genes tested showed substantial variation with developmental stage, with Rpl4 as was most stable among the tested genes. PMID:20331858

  13. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-09-09

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  14. X chromosome regulation of autosomal gene expression in bovine blastocysts

    PubMed Central

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male to female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient. PMID:24817096

  15. X chromosome regulation of autosomal gene expression in bovine blastocysts.

    PubMed

    Itoh, Yuichiro; Arnold, Arthur P

    2014-10-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.

  16. Differential expression of the ras gene family in mice.

    PubMed Central

    Leon, J; Guerrero, I; Pellicer, A

    1987-01-01

    We compared the expression of the ras gene family (H-ras, K-ras, and N-ras) in adult mouse tissues and during development. We found substantial variations in expression among different organs and in the amounts of the different transcripts originating from each gene, especially for the N-ras gene. The expression patterns were consistent with the reported preferential tissue activation of ras genes and suggested different cellular functions for each of the ras genes. Images PMID:3600635

  17. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

    PubMed

    Edgar, Ron; Domrachev, Michael; Lash, Alex E

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  18. Gene expression in developing watermelon fruit

    PubMed Central

    Wechter, W Patrick; Levi, Amnon; Harris, Karen R; Davis, Angela R; Fei, Zhangjun; Katzir, Nurit; Giovannoni, James J; Salman-Minkov, Ayelet; Hernandez, Alvaro; Thimmapuram, Jyothi; Tadmor, Yaakov; Portnoy, Vitaly; Trebitsh, Tova

    2008-01-01

    Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar

  19. Consistently altered expression of gene sets in postmortem brains of individuals with major psychiatric disorders

    PubMed Central

    Darby, M M; Yolken, R H; Sabunciyan, S

    2016-01-01

    The measurement of gene expression in postmortem brain is an important tool for understanding the pathogenesis of serious psychiatric disorders. We hypothesized that major molecular deficits associated with psychiatric disease would affect the entire brain, and such deficits may be shared across disorders. We performed RNA sequencing and quantified gene expression in the hippocampus of 100 brains in the Stanley Array Collection followed by replication in the orbitofrontal cortex of 57 brains in the Stanley Neuropathology Consortium. We then identified genes and canonical pathway gene sets with significantly altered expression in schizophrenia and bipolar disorder in the hippocampus and in schizophrenia, bipolar disorder and major depression in the orbitofrontal cortex. Although expression of individual genes varied, gene sets were significantly enriched in both of the brain regions, and many of these were consistent across diagnostic groups. Further examination of core gene sets with consistently increased or decreased expression in both of the brain regions and across target disorders revealed that ribosomal genes are overexpressed while genes involved in neuronal processes, GABAergic signaling, endocytosis and antigen processing have predominantly decreased expression in affected individuals compared to controls without a psychiatric disorder. Our results highlight pathways of central importance to psychiatric health and emphasize messenger RNA processing and protein synthesis as potential therapeutic targets for all three of the disorders. PMID:27622934

  20. Novel recombinant papillomavirus genomes expressing selectable genes

    PubMed Central

    Van Doorslaer, Koenraad; Porter, Samuel; McKinney, Caleb; Stepp, Wesley H.; McBride, Alison A.

    2016-01-01

    Papillomaviruses infect and replicate in keratinocytes, but viral proteins are initially expressed at low levels and there is no effective and quantitative method to determine the efficiency of infection on a cell-to-cell basis. Here we describe human papillomavirus (HPV) genomes that express marker proteins (antibiotic resistance genes and Green Fluorescent Protein), and can be used to elucidate early stages in HPV infection of primary keratinocytes. To generate these recombinant genomes, the late region of the oncogenic HPV18 genome was replaced by CpG free marker genes. Insertion of these exogenous genes did not affect early replication, and had only minimal effects on early viral transcription. When introduced into primary keratinocytes, the recombinant marker genomes gave rise to drug-resistant keratinocyte colonies and cell lines, which maintained the extrachromosomal recombinant genome long-term. Furthermore, the HPV18 “marker” genomes could be packaged into viral particles (quasivirions) and used to infect primary human keratinocytes in culture. This resulted in the outgrowth of drug-resistant keratinocyte colonies containing replicating HPV18 genomes. In summary, we describe HPV18 marker genomes that can be used to quantitatively investigate many aspects of the viral life cycle. PMID:27892937

  1. Studying the complex expression dependences between sets of coexpressed genes.

    PubMed

    Huerta, Mario; Casanova, Oriol; Barchino, Roberto; Flores, Jose; Querol, Enrique; Cedano, Juan

    2014-01-01

    Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  2. Nuclear AXIN2 represses MYC gene expression

    SciTech Connect

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  3. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  4. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  5. Specialization of Gene Expression during Mouse Brain Development

    PubMed Central

    Liscovitch, Noa; Chechik, Gal

    2013-01-01

    The transcriptome of the brain changes during development, reflecting processes that determine functional specialization of brain regions. We analyzed gene expression, measured using in situ hybridization across the full developing mouse brain, to quantify functional specialization of brain regions. Surprisingly, we found that during the time that the brain becomes anatomically regionalized in early development, transcription specialization actually decreases reaching a low, “neurotypic”, point around birth. This decrease of specialization is brain-wide, and mainly due to biological processes involved in constructing brain circuitry. Regional specialization rises again during post-natal development. This effect is largely due to specialization of plasticity and neural activity processes. Post-natal specialization is particularly significant in the cerebellum, whose expression signature becomes increasingly different from other brain regions. When comparing mouse and human expression patterns, the cerebellar post-natal specialization is also observed in human, but the regionalization of expression in the human Thalamus and Cortex follows a strikingly different profile than in mouse. PMID:24068900

  6. puma 3.0: improved uncertainty propagation methods for gene and transcript expression analysis

    PubMed Central

    2013-01-01

    Background Microarrays have been a popular tool for gene expression profiling at genome-scale for over a decade due to the low cost, short turn-around time, excellent quantitative accuracy and ease of data generation. The Bioconductor package puma incorporates a suite of analysis methods for determining uncertainties from Affymetrix GeneChip data and propagating these uncertainties to downstream analysis. As isoform level expression profiling receives more and more interest within genomics in recent years, exon microarray technology offers an important tool to quantify expression level of the majority of exons and enables the possibility of measuring isoform level expression. However, puma does not include methods for the analysis of exon array data. Moreover, the current expression summarisation method for Affymetrix 3’ GeneChip data suffers from instability for low expression genes. For the downstream analysis, the method for differential expression detection is computationally intensive and the original expression clustering method does not consider the variance across the replicated technical and biological measurements. It is therefore necessary to develop improved uncertainty propagation methods for gene and transcript expression analysis. Results We extend the previously developed Bioconductor package puma with a new method especially designed for GeneChip Exon arrays and a set of improved downstream approaches. The improvements include: (i) a new gamma model for exon arrays which calculates isoform and gene expression measurements and a level of uncertainty associated with the estimates, using the multi-mappings between probes, isoforms and genes, (ii) a variant of the existing approach for the probe-level analysis of Affymetrix 3’ GeneChip data to produce more stable gene expression estimates, (iii) an improved method for detecting differential expression which is computationally more efficient than the existing approach in the package and (iv) an

  7. Inducible gene expression systems and plant biotechnology.

    PubMed

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology.

  8. Integrating constitutive gene expression and chemoactivity: mining the NCI60 anticancer screen.

    PubMed

    Covell, David G

    2012-01-01

    Studies into the genetic origins of tumor cell chemoactivity pose significant challenges to bioinformatic mining efforts. Connections between measures of gene expression and chemoactivity have the potential to identify clinical biomarkers of compound response, cellular pathways important to efficacy and potential toxicities; all vital to anticancer drug development. An investigation has been conducted that jointly explores tumor-cell constitutive NCI60 gene expression profiles and small-molecule NCI60 growth inhibition chemoactivity profiles, viewed from novel applications of self-organizing maps (SOMs) and pathway-centric analyses of gene expressions, to identify subsets of over- and under-expressed pathway genes that discriminate chemo-sensitive and chemo-insensitive tumor cell types. Linear Discriminant Analysis (LDA) is used to quantify the accuracy of discriminating genes to predict tumor cell chemoactivity. LDA results find 15% higher prediction accuracies, using ∼30% fewer genes, for pathway-derived discriminating genes when compared to genes derived using conventional gene expression-chemoactivity correlations. The proposed pathway-centric data mining procedure was used to derive discriminating genes for ten well-known compounds. Discriminating genes were further evaluated using gene set enrichment analysis (GSEA) to reveal a cellular genetic landscape, comprised of small numbers of key over and under expressed on- and off-target pathway genes, as important for a compound's tumor cell chemoactivity. Literature-based validations are provided as support for chemo-important pathways derived from this procedure. Qualitatively similar results are found when using gene expression measurements derived from different microarray platforms. The data used in this analysis is available at http://pubchem.ncbi.nlm.nih.gov/andhttp://www.ncbi.nlm.nih.gov/projects/geo (GPL96, GSE32474).

  9. Combined clustering models for the analysis of gene expression

    SciTech Connect

    Angelova, M. Ellman, J.

    2010-02-15

    Clustering has become one of the fundamental tools for analyzing gene expression and producing gene classifications. Clustering models enable finding patterns of similarity in order to understand gene function, gene regulation, cellular processes and sub-types of cells. The clustering results however have to be combined with sequence data or knowledge about gene functionality in order to make biologically meaningful conclusions. In this work, we explore a new model that integrates gene expression with sequence or text information.

  10. Gene expression changes during Giardia-host cell interactions in serum-free medium.

    PubMed

    Ferella, Marcela; Davids, Barbara J; Cipriano, Michael J; Birkeland, Shanda R; Palm, Daniel; Gillin, Frances D; McArthur, Andrew G; Svärd, Staffan

    2014-10-01

    Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs.

  11. Detection of proneural/mesenchymal marker expression in glioblastoma: temporospatial dynamics and association with chromatin-modifying gene expression.

    PubMed

    Murata, Hideki; Yoshimoto, Koji; Hatae, Ryusuke; Akagi, Yojiro; Mizoguchi, Masahiro; Hata, Nobuhiro; Kuga, Daisuke; Nakamizo, Akira; Amano, Toshiyuki; Sayama, Tetsuro; Iihara, Koji

    2015-10-01

    Proneural and mesenchymal are two subtypes of glioblastoma identified by gene expression profiling. In this study, the primary aim was to detect markers to develop a clinically applicable method for distinguishing proneural and mesenchymal glioblastoma. The secondary aims were to investigate the temporospatial dynamics of these markers and to explore the association between these markers and the expression of chromatin-modifying genes. One hundred thirty-three glioma samples (grade II: 14 samples, grade III: 18, grade IV: 101) were analyzed. We quantified the expression of 6 signature genes associated with proneural and mesenchymal glioblastoma by quantitative reverse transcription-polymerase chain reaction. We assigned proneural (PN) and mesenchymal (MES) scores based on the average of the 6 markers and calculated a predominant metagene (P-M) score by subtracting the MES from the PN score. We used these scores to analyze correlations with malignant transformation, tumor recurrence, tumor heterogeneity, chromatin-modifying gene expression, and HDAC7 expression. The MES score positively correlated with tumor grade, whereas the PN score did not. The P-M score was able to distinguish the proneural and mesenchymal subtypes. It was decreased in cases of tumor recurrence and malignant transformation and showed variability within a tumor, suggesting intratumoral heterogeneity. The PN score correlated with the expression of multiple histone-modifying genes, whereas the MES score was associated only with HDAC7 expression. Thus, we demonstrated a simple and straightforward method of quantifying proneural/mesenchymal markers in glioblastoma. Of note, HDAC7 expression might be a novel therapeutic target in glioblastoma treatment.

  12. Pomelo II: finding differentially expressed genes.

    PubMed

    Morrissey, Edward R; Diaz-Uriarte, Ramón

    2009-07-01

    Pomelo II (http://pomelo2.bioinfo.cnio.es) is an open-source, web-based, freely available tool for the analysis of gene (and protein) expression and tissue array data. Pomelo II implements: permutation-based tests for class comparisons (t-test, ANOVA) and regression; survival analysis using Cox model; contingency table analysis with Fisher's exact test; linear models (of which t-test and ANOVA are especial cases) that allow additional covariates for complex experimental designs and use empirical Bayes moderated statistics. Permutation-based and Cox model analysis use parallel computing, which permits taking advantage of multicore CPUs and computing clusters. Access to, and further analysis of, additional biological information and annotations (PubMed references, Gene Ontology terms, KEGG and Reactome pathways) are available either for individual genes (from clickable links in tables and figures) or sets of genes. The source code is available, allowing for extending and reusing the software. A comprehensive test suite is also available, and covers both the user interface and the numerical results. The possibility of including additional covariates, parallelization of computation, open-source availability of the code and comprehensive testing suite make Pomelo II a unique tool.

  13. Pomelo II: finding differentially expressed genes

    PubMed Central

    Morrissey, Edward R.; Diaz-Uriarte, Ramón

    2009-01-01

    Pomelo II (http://pomelo2.bioinfo.cnio.es) is an open-source, web-based, freely available tool for the analysis of gene (and protein) expression and tissue array data. Pomelo II implements: permutation-based tests for class comparisons (t-test, ANOVA) and regression; survival analysis using Cox model; contingency table analysis with Fisher's exact test; linear models (of which t-test and ANOVA are especial cases) that allow additional covariates for complex experimental designs and use empirical Bayes moderated statistics. Permutation-based and Cox model analysis use parallel computing, which permits taking advantage of multicore CPUs and computing clusters. Access to, and further analysis of, additional biological information and annotations (PubMed references, Gene Ontology terms, KEGG and Reactome pathways) are available either for individual genes (from clickable links in tables and figures) or sets of genes. The source code is available, allowing for extending and reusing the software. A comprehensive test suite is also available, and covers both the user interface and the numerical results. The possibility of including additional covariates, parallelization of computation, open-source availability of the code and comprehensive testing suite make Pomelo II a unique tool. PMID:19435879

  14. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  15. Expressing exogenous genes in newts by transgenesis.

    PubMed

    Casco-Robles, Martin Miguel; Yamada, Shouta; Miura, Tomoya; Nakamura, Kenta; Haynes, Tracy; Maki, Nobuyasu; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A; Chiba, Chikafumi

    2011-05-01

    The great regenerative abilities of newts provide the impetus for studies at the molecular level. However, efficient methods for gene regulation have historically been quite limited. Here we describe a protocol for transgenically expressing exogenous genes in the newt Cynops pyrrhogaster. This method is simple: a reaction mixture of I-SceI meganuclease and a plasmid DNA carrying a transgene cassette flanked by the enzyme recognition sites is directly injected into fertilized eggs. The protocol achieves a high efficiency of transgenesis, comparable to protocols used in other animal systems, and it provides a practical number of transgenic newts (∼20% of injected embryos) that survive beyond metamorphosis and that can be applied to regenerative studies. The entire protocol for obtaining transgenic adult newts takes 4-5 months.

  16. Hyperbaric oxygen treatment induces antioxidant gene expression.

    PubMed

    Godman, Cassandra A; Joshi, Rashmi; Giardina, Charles; Perdrizet, George; Hightower, Lawrence E

    2010-06-01

    Although the underlying molecular causes of aging are not entirely clear, hormetic agents like exercise, heat, and calorie restriction may generate a mild pro-oxidant stress that induces cell protective responses to promote healthy aging. As an individual ages, many cellular and physiological processes decline, including wound healing and reparative angiogenesis. This is particularly critical in patients with chronic non-healing wounds who tend to be older. We are interested in the potential beneficial effects of hyperbaric oxygen as a mild hormetic stress on human microvascular endothelial cells. We analyzed global gene expression changes in human endothelial cells following a hyperbaric exposure comparable to a clinical treatment. Our analysis revealed an upregulation of antioxidant, cytoprotective, and immediate early genes. This increase coincided with an increased resistance to a lethal oxidative stress. Our data indicate that hyperbaric oxygen can induce protection against oxidative insults in endothelial cells and may provide an easily administered hormetic treatment to help promote healthy aging.

  17. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. Copyright © 2016, American Association for the Advancement of Science.

  18. Retrotransposons as regulators of gene expression

    PubMed Central

    Elbarbary, Reyad A.; Lucas, Bronwyn A.; Maquat, Lynne E.

    2016-01-01

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body’s defense mechanisms. PMID:26912865

  19. Gene expression-targeted isoflavone therapy.

    PubMed

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  20. Oxygen-dependent gene expression in fishes.

    PubMed

    Nikinmaa, Mikko; Rees, Bernard B

    2005-05-01

    The role of oxygen in regulating patterns of gene expression in mammalian development, physiology, and pathology has received increasing attention, especially after the discovery of the hypoxia-inducible factor (HIF), a transcription factor that has been likened to a "master switch" in the transcriptional response of mammalian cells and tissues to low oxygen. At present, considerably less is known about the molecular responses of nonmammalian vertebrates and invertebrates to hypoxic exposure. Because many animals live in aquatic habitats that are variable in oxygen tension, it is relevant to study oxygen-dependent gene expression in these animals. The purpose of this review is to discuss hypoxia-induced gene expression in fishes from an evolutionary and ecological context. Recent studies have described homologs of HIF in fish and have begun to evaluate their function. A number of physiological processes are known to be altered by hypoxic exposure of fish, although the evidence linking them to HIF is less well developed. The diversity of fish presents many opportunities to evaluate if inter- and intraspecific variation in HIF structure and function correlate with hypoxia tolerance. Furthermore, as an aquatic group, fish offer the opportunity to examine the interactions between hypoxia and other stressors, including pollutants, common in aquatic environments. It is possible, if not likely, that results obtained by studying the molecular responses of fish to hypoxia will find parallels in the oxygen-dependent responses of mammals, including humans. Moreover, novel responses to hypoxia could be discovered through studies of this diverse and species-rich group.

  1. Maternal diet programs embryonic kidney gene expression.

    PubMed

    Welham, Simon J M; Riley, Paul R; Wade, Angie; Hubank, Mike; Woolf, Adrian S

    2005-06-16

    Human epidemiological data associating birth weight with adult disease suggest that organogenesis is "programmed" by maternal diet. In rats, protein restriction in pregnancy produces offspring with fewer renal glomeruli and higher systemic blood pressures than controls. We tested the hypothesis that maternal diet alters gene expression in the metanephros, the precursor of the definitive mammalian kidney. We demonstrated that maternal low-protein diet initiated when pregnancy starts and maintained to embryonic day 13, when the metanephros consists of mesenchyme surrounding a once-branched ureteric bud, is sufficient to significantly reduce glomerular numbers in offspring by about 20%. As assessed by representational difference analyses and real-time quantitative polymerase chain reactions, low-protein diet modulated gene expression in embryonic day 13 metanephroi. In particular, levels of prox-1, the ortholog of Drosophila transcription factor prospero, and cofilin-1, a regulator of the actin cytoskeleton, were reduced. During normal metanephrogenesis, prox-1 protein was first detected in mesenchymal cells around the ureteric tree and thereafter in nascent nephron epithelia, whereas cofilin-1 immunolocalized to bud derivatives and condensing mesenchyme. Previously, we reported that low-protein diets increased mesenchymal apoptosis cells when metanephrogenesis began and thereafter reduced numbers of precursor cells. Collectively, these studies prove that the maternal diet programs the embryonic kidney, altering cell turnover and gene expression at a time when nephrons and glomeruli have yet to form. The human implication is that the maternal diet ingested between conception and 5- 6-wk gestation contributes to the variation in glomerular numbers that are known to occur between healthy and hypertensive populations.

  2. Using PCR to Target Misconceptions about Gene Expression

    PubMed Central

    Wright, Leslie K.; Newman, Dina L.

    2013-01-01

    We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA) and gene expression (mRNA/protein) and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect) predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression. PMID:23858358

  3. Altered gene expression correlates with DNA structure.

    PubMed

    Kohwi, Y; Kohwi-Shigematsu, T

    1991-12-01

    We examined the participation of triplex DNA structure in gene regulation using a poly(dG)-poly(dC) sequence as a model. We show that a poly(dG)-poly(dC) sequence, which can adopt an intramolecular dG.dG.dC triplex under superhelical strain, strongly augments gene expression when placed 5' to a promoter. The activity of this sequence exhibits a striking length dependency: dG tracts of 27-30 bp augment the expression of a reporter gene to a level comparable to that observed with the polyoma enhancer in mouse LTK- cells, whereas tracts of 35 bp and longer have virtually no effect. A supercoiled plasmid containing a dG tract of 30 bp competes in vivo for a trans-acting factor as revealed by reduction in the reporter gene transcription driven by the (dG)29/promoter of the test plasmid, while dGs of 35 bp and longer in the competition plasmid failed to compete. In purified supercoiled plasmid DNA at a superhelical density of -0.05, dG tracts of 32 bp and longer form a triplex, whereas those of 30 bp and shorter remain double-stranded under a PBS solution. These results suggest that a localized superhelical strain can exist, at least transiently, in mouse LTK- cells, and before being relaxed by topoisomerases this rapidly induces dG tracts of 35 bp and longer to adopt a triplex preventing the factor from binding. Thus, these data suggest that a poly(dG)-poly(dC) sequence can function as a negative regulator by adopting an intramolecular triple helix structure in vivo.

  4. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  5. Pathway network inference from gene expression data.

    PubMed

    Ponzoni, Ignacio; Nueda, María; Tarazona, Sonia; Götz, Stefan; Montaner, David; Dussaut, Julieta; Dopazo, Joaquín; Conesa, Ana

    2014-01-01

    The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data.

  6. Dynamics of single-cell gene expression

    PubMed Central

    Longo, Diane; Hasty, Jeff

    2006-01-01

    Cellular behavior has traditionally been investigated by utilizing bulk-scale methods that measure average values for a population of cells. Such population-wide studies mask the behavior of individual cells and are often insufficient for characterizing biological processes in which cellular heterogeneity plays a key role. A unifying theme of many recent studies has been a focus on the development and utilization of single-cell experimental techniques that are capable of probing key biological phenomena in individual living cells. Recently, novel information about gene expression dynamics has been obtained from single-cell experiments that draw upon the unique capabilities of fluorescent reporter proteins. PMID:17130866

  7. Clinical diagnostic gene expression thyroid testing.

    PubMed

    Steward, David L; Kloos, Richard T

    2014-08-01

    Thyroid fine-needle aspiration biopsies are cytologically indeterminate in 15% to 30% of cases. When cytologically indeterminate thyroid nodules undergo diagnostic surgery, approximately three-quarters prove to be histologically benign. A negative predictive value of more than or equal to 94% for the Afirma Gene Expression Classifier (GEC) is achieved for indeterminate nodules. Most Afirma GEC benign nodules can be clinically observed, as suggested by the National Comprehensive Cancer Network Thyroid Carcinoma Guideline. More than half of the benign nodules with indeterminate cytology (Bethesda categories III/IV) can be identified as GEC benign and removed from the surgical pool to prevent unnecessary diagnostic surgery.

  8. Clustering gene expression data using graph separators.

    PubMed

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process.

  9. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes.

    PubMed

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-12-23

    Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression evolution of changed-tissues DE

  10. Gene expression during the life cycle of Drosophila melanogaster.

    PubMed

    Arbeitman, Michelle N; Furlong, Eileen E M; Imam, Farhad; Johnson, Eric; Null, Brian H; Baker, Bruce S; Krasnow, Mark A; Scott, Matthew P; Davis, Ronald W; White, Kevin P

    2002-09-27

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  11. Gene Expression During the Life Cycle of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Arbeitman, Michelle N.; Furlong, Eileen E. M.; Imam, Farhad; Johnson, Eric; Null, Brian H.; Baker, Bruce S.; Krasnow, Mark A.; Scott, Matthew P.; Davis, Ronald W.; White, Kevin P.

    2002-09-01

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  12. An extensive network of coupling among gene expression machines.

    PubMed

    Maniatis, Tom; Reed, Robin

    2002-04-04

    Gene expression in eukaryotes requires several multi-component cellular machines. Each machine carries out a separate step in the gene expression pathway, which includes transcription, several pre-messenger RNA processing steps and the export of mature mRNA to the cytoplasm. Recent studies lead to the view that, in contrast to a simple linear assembly line, a complex and extensively coupled network has evolved to coordinate the activities of the gene expression machines. The extensive coupling is consistent with a model in which the machines are tethered to each other to form 'gene expression factories' that maximize the efficiency and specificity of each step in gene expression.

  13. Regulatory Divergence between Parental Alleles Determines Gene Expression Patterns in Hybrids

    PubMed Central

    Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe

    2015-01-01

    Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. PMID:25819221

  14. Regulatory divergence between parental alleles determines gene expression patterns in hybrids.

    PubMed

    Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe

    2015-03-29

    Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Differential gene expression in anatomical compartments of the human eye

    PubMed Central

    Diehn, Jennifer J; Diehn, Maximilian; Marmor, Michael F; Brown, Patrick O

    2005-01-01

    Background The human eye is composed of multiple compartments, diverse in form, function, and embryologic origin, that work in concert to provide us with our sense of sight. We set out to systematically characterize the global gene expression patterns that specify the distinctive characteristics of the various eye compartments. Results We used DNA microarrays representing approximately 30,000 human genes to analyze gene expression in the cornea, lens, iris, ciliary body, retina, and optic nerve. The distinctive patterns of expression in each compartment could be interpreted in relation to the physiology and cellular composition of each tissue. Notably, the sets of genes selectively expressed in the retina and in the lens were particularly large and diverse. Genes with roles in immune defense, particularly complement components, were expressed at especially high levels in the anterior segment tissues. We also found consistent differences between the gene expression patterns of the macula and peripheral retina, paralleling the differences in cell layer densities between these regions. Based on the hypothesis that genes responsible for diseases that affect a particular eye compartment are likely to be selectively expressed in that compartment, we compared our gene expression signatures with genetic mapping studies to identify candidate genes for diseases affecting the cornea, lens, and retina. Conclusion Through genome-scale gene expression profiling, we were able to discover distinct gene expression 'signatures' for each eye compartment and identified candidate disease genes that can serve as a reference database for investigating the physiology and pathophysiology of the eye. PMID:16168081

  16. Effects of spaceflight on murine skeletal muscle gene expression.

    PubMed

    Allen, David L; Bandstra, Eric R; Harrison, Brooke C; Thorng, Seiha; Stodieck, Louis S; Kostenuik, Paul J; Morony, Sean; Lacey, David L; Hammond, Timothy G; Leinwand, Leslie L; Argraves, W Scott; Bateman, Ted A; Barth, Jeremy L

    2009-02-01

    Spaceflight results in a number of adaptations to skeletal muscle, including atrophy and shifts toward faster muscle fiber types. To identify changes in gene expression that may underlie these adaptations, we used both microarray expression analysis and real-time polymerase chain reaction to quantify shifts in mRNA levels in the gastrocnemius from mice flown on the 11-day, 19-h STS-108 shuttle flight and from normal gravity controls. Spaceflight data also were compared with the ground-based unloading model of hindlimb suspension, with one group of pure suspension and one of suspension followed by 3.5 h of reloading to mimic the time between landing and euthanization of the spaceflight mice. Analysis of microarray data revealed that 272 mRNAs were significantly altered by spaceflight, the majority of which displayed similar responses to hindlimb suspension, whereas reloading tended to counteract these responses. Several mRNAs altered by spaceflight were associated with muscle growth, including the phosphatidylinositol 3-kinase regulatory subunit p85alpha, insulin response substrate-1, the forkhead box O1 transcription factor, and MAFbx/atrogin1. Moreover, myostatin mRNA expression tended to increase, whereas mRNA levels of the myostatin inhibitor FSTL3 tended to decrease, in response to spaceflight. In addition, mRNA levels of the slow oxidative fiber-associated transcriptional coactivator peroxisome proliferator-associated receptor (PPAR)-gamma coactivator-1alpha and the transcription factor PPAR-alpha were significantly decreased in spaceflight gastrocnemius. Finally, spaceflight resulted in a significant decrease in levels of the microRNA miR-206. Together these data demonstrate that spaceflight induces significant changes in mRNA expression of genes associated with muscle growth and fiber type.

  17. Electric pulses augment reporter gene expression in the beating heart.

    PubMed

    Eigeldinger-Berthou, Sylvie; Buntschu, Patrick; Flück, Martin; Frobert, Aurélien; Ferrié, Céline; Carrel, Thierry P; Tevaearai, Hendrik T; Kadner, Alexander

    2012-03-01

    Gene therapy of the heart has been attempted in a number of clinical trials with the injection of naked DNA, although quantitative information on myocellular transfection rates is not available. The present study aimed to quantify the efficacy of electropulsing protocols that differ in pulse duration and number to stimulate transfection of cardiomyocytes and to determine the impact on myocardial integrity. Reporter plasmid for constitutive expression of green fluorescent protein (GFP) was injected into the left ventricle of beating hearts of adult, male Lewis rats. Four electrotransfer protocols consisting of repeated long pulses (8 × 20 ms), trains of short pulses (eight trains of either 60 or 80 × 100 µs) or their combination were compared with control procedures concerning the degree of GFP expression and the effect on infiltration, fibrosis and apoptosis. All tested protocols produced GFP expression at the site of plasmid injection. Continuous pulses were most effective and increased the number of GFP-positive cardiomyocytes by more than 300-fold compared to plasmid injection alone (p < 0.05). Concomitantly, the incidence of macrophage infiltration, fibrosis and cell death was increased. Trains of short pulses reduced macrophage infiltration and fibrosis by four- and two-fold, respectively, although they were 20-fold less efficient in stimulating cardiomyocyte transfection. GFP expression co-related to delivered electric energy, infiltration and fibrosis, although not apoptosis. The data imply that electropulsing of the myocardium promotes the overexpression of exogenous protein in mature cardiomyocytes in relation to an injury component. Fractionation of pulses is indicated as a option for sophisticated gene therapeutic approaches to the heart. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Imaging gene expression in real-time using aptamers

    SciTech Connect

    Shin, Il Chung

    2011-01-01

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging

  19. Imaging gene expression in real-time using aptamers

    SciTech Connect

    Shin, Ilchung

    2012-01-01

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging

  20. Live-Cell, Temporal Gene Expression Analysis of Osteogenic Differentiation in Adipose-Derived Stem Cells

    PubMed Central

    Desai, Hetal V.; Voruganti, Indu S.; Jayasuriya, Chathuraka; Chen, Qian

    2014-01-01

    Adipose-derived stem cells (ASCs) are a widely investigated type of mesenchymal stem cells with great potential for musculoskeletal regeneration. However, the use of ASCs is complicated by their cellular heterogeneity, which exists at both the population and single-cell levels. This study demonstrates a live-cell assay to investigate gene expression in ASCs undergoing osteogenesis using fluorescently tagged DNA hybridization probes called molecular beacons. A molecular beacon was designed to target the mRNA sequence for alkaline phosphatase (ALPL), a gene characteristically expressed during early osteogenesis. The percentage of cells expressing this gene in a population was monitored daily to quantify the uniformity of the differentiation process. Differentiating ASC populations were repeatedly measured in a nondestructive fashion over a 10-day period to obtain temporal gene expression data. Results showed consistent expression patterns for the investigated osteogenic genes in response to induction medium. Peak signal level, indicating when the most cells expressed ALPL at once, was observed on days 3–5. The differentiation response of sample populations was generally uniform when assessed on a well-by-well basis over time. The expression of alkaline phosphatase is consistent with previous studies of osteogenic differentiation, suggesting that molecular beacons are a viable means of monitoring the spatiotemporal gene expression of live, differentiating ASCs. PMID:24367991

  1. Gut microbiota, host gene expression, and aging.

    PubMed

    Patrignani, Paola; Tacconelli, Stefania; Bruno, Annalisa

    2014-01-01

    Novel concepts of disease susceptibility and development suggest an important role of gastrointestinal microbiota and microbial pathogens. They can contribute to physiological systems and disease processes, even outside of the gastrointestinal tract. There is increasing evidence that genetics of the host influence and interact with gut microbiota. Moreover, aging-associated oxidative stress may cause morphologic alterations of bacterial cells, thus influencing the aggressive potential and virulence markers of an anaerobic bacterium and finally the type of interaction with the host. At the same time, microbiota may influence host gene expression and it is becoming apparent that it may occur through the regulation of microRNAs. They are short single-stranded noncoding RNAs that regulate posttranscriptional gene expression by affecting mRNA stability and/or translational repression of their target mRNAs. The introduction of -omics approaches (such as metagenomics, metaproteomics, and metatranscriptomics) in microbiota research will certainly advance our knowledge of this area. This will lead to greatly deepen our understanding of the molecular targets in the homeostatic interaction between the gut microbiota and the host and, thereby, promises to reveal new ways to treat diseases and maintain health.

  2. The Effects of Hallucinogens on Gene Expression.

    PubMed

    Martin, David A; Nichols, Charles D

    2017-07-05

    The classic serotonergic hallucinogens, or psychedelics, have the ability to profoundly alter perception and behavior. These can include visual distortions, hallucinations, detachment from reality, and mystical experiences. Some psychedelics, like LSD, are able to produce these effects with remarkably low doses of drug. Others, like psilocybin, have recently been demonstrated to have significant clinical efficacy in the treatment of depression, anxiety, and addiction that persist for at least several months after only a single therapeutic session. How does this occur? Much work has recently been published from imaging studies showing that psychedelics alter brain network connectivity. They facilitate a disintegration of the default mode network, producing a hyperconnectivity between brain regions that allow centers that do not normally communicate with each other to do so. The immediate and acute effects on both behaviors and network connectivity are likely mediated by effector pathways downstream of serotonin 5-HT2A receptor activation. These acute molecular processes also influence gene expression changes, which likely influence synaptic plasticity and facilitate more long-term changes in brain neurochemistry ultimately underlying the therapeutic efficacy of a single administration to achieve long-lasting effects. In this review, we summarize what is currently known about the molecular genetic responses to psychedelics within the brain and discuss how gene expression changes may contribute to altered cellular physiology and behaviors.

  3. Identification of human HK genes and gene expression regulation study in cancer from transcriptomics data analysis.

    PubMed

    Chen, Meili; Xiao, Jingfa; Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer.

  4. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    PubMed Central

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  5. Laboratory intercomparison of gene expression assays.

    PubMed

    Badie, C; Kabacik, S; Balagurunathan, Y; Bernard, N; Brengues, M; Faggioni, G; Greither, R; Lista, F; Peinnequin, A; Poyot, T; Herodin, F; Missel, A; Terbrueggen, B; Zenhausern, F; Rothkamm, K; Meineke, V; Braselmann, H; Beinke, C; Abend, M

    2013-08-01

    The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide rapid individual dose estimates with high sample throughput. The focus of the study was an intercomparison of laboratories' dose-assessment performances using gene expression assays. Lithium-heparinized whole blood from one healthy donor was irradiated (240 kVp, 1 Gy/min) immediately after venipuncture at approximately 37°C using single X-ray doses. Blood samples to establish calibration curves (0.25-4 Gy) as well as 10 blinded test samples (0.1-6.4 Gy) were incubated for 24 h at 37°C supplemented with an equal volume of medium and 10% fetal calf serum. For quantitative reverse transcription polymerase chain reaction (qRT-PCR), samples were lysed, stored at -20°C and shipped on ice. For the Chemical Ligation Dependent Probe Amplification methodology (CLPA), aliquots were incubated in 2 ml CLPA reaction buffer (DxTerity), mixed and shipped at room temperature. Assays were run in each laboratory according to locally established protocols. The mean absolute difference (MAD) of estimated doses relative to the true doses (in Gy) was calculated. We also merged doses into binary categories reflecting aspects of clinical/diagnostic relevance and examined accuracy, sensitivity and specificity. The earliest reported time on dose estimates was <8 h. The standard deviation of technical replicate measurements in 75% of all measurements was below 11%. MAD values of 0.3-0.5 Gy and 0.8-1.3 Gy divided the laboratories contributions into two groups. These fourfold differences in accuracy could be primarily explained by unexpected variances of the housekeeping gene (P = 0.0008) and performance differences in processing of calibration and blinded test samples by half of the contributing laboratories. Reported gene expression dose estimates aggregated into binary categories in general showed an accuracies and sensitivities of 93-100% and 76-100% for the groups

  6. Correcting false gene expression measurements from degraded RNA using RTQ-PCR.

    PubMed

    Port, Matthias; Schmelz, Hans Ulrich; Stassen, Tanja; Müeller, Kerstin; Stockinger, Marcus; Obermair, Richard; Abend, Michael

    2007-03-01

    This paper describes a method allowing correcting false gene expression measured on highly degraded RNA using real-time quantitative reverse transcription-polymerase chain reaction (RTQ-PCR). RNA was isolated from different models (in vitro cell lines, in vivo models of human and dog) and different tissue types. In vitro RNA degradation and modeling of in vivo degradation were applied on intact and degraded total RNA. Gene expression (eg, Bcl-2, GAPDH, PGK, PSME3, RAB2, BAX) was measured using RTQ-PCR. 18S rRNA proved to be the most constant house-keeping gene. Less than 10-fold degraded RNA can be quantified correctly when using 18S rRNA for normalization purposes. Higher-fold degraded RNA can be quantified correctly up to a precision that is comparable to RTQ-PCR measurements on intact RNA when simulating the RNA-species and tissue-specific degradation kinetic.

  7. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling

  8. Quantifying penetrance in a dominant disease gene using large population control cohorts

    PubMed Central

    Minikel, Eric Vallabh; Vallabh, Sonia M.; Lek, Monkol; Estrada, Karol; Samocha, Kaitlin E.; Sathirapongsasuti, J. Fah; McLean, Cory Y.; Tung, Joyce Y.; Yu, Linda P.C.; Gambetti, Pierluigi; Blevins, Janis; Zhang, Shulin; Cohen, Yvonne; Chen, Wei; Yamada, Masahito; Hamaguchi, Tsuyoshi; Sanjo, Nobuo; Mizusawa, Hidehiro; Nakamura, Yosikazu; Kitamoto, Tetsuyuki; Collins, Steven J.; Boyd, Alison; Will, Robert G.; Knight, Richard; Ponto, Claudia; Zerr, Inga; Kraus, Theo F.J.; Eigenbrod, Sabina; Giese, Armin; Calero, Miguel; de Pedro-Cuesta, Jesús; Haïk, Stéphane; Laplanche, Jean-Louis; Bouaziz-Amar, Elodie; Brandel, Jean-Philippe; Capellari, Sabina; Parchi, Piero; Poleggi, Anna; Ladogana, Anna; O'Donnell-Luria, Anne H.; Karczewski, Konrad J.; Marshall, Jamie L.; Boehnke, Michael; Laakso, Markku; Mohlke, Karen L.; Kähler, Anna; Chambert, Kimberly; McCarroll, Steven; Sullivan, Patrick F.; Hultman, Christina M.; Purcell, Shaun M.; Sklar, Pamela; van der Lee, Sven J.; Rozemuller, Annemieke; Jansen, Casper; Hofman, Albert; Kraaij, Robert; van Rooij, Jeroen G.J.; Ikram, M. Arfan; Uitterlinden, André G.; van Duijn, Cornelia M.; Daly, Mark J.; MacArthur, Daniel G.

    2016-01-01

    More than 100,000 genetic variants are reported to cause Mendelian disease in humans, but the penetrance - the probability that a carrier of the purported disease-causing genotype will indeed develop the disease - is generally unknown. Here we assess the impact of variants in the prion protein gene (PRNP) on the risk of prion disease by analyzing 16,025 prion disease cases, 60,706 population control exomes, and 531,575 individuals genotyped by 23andMe, Inc. We show that missense variants in PRNP previously reported to be pathogenic are at least 30× more common in the population than expected based on genetic prion disease prevalence. While some of this excess can be attributed to benign variants falsely assigned as pathogenic, other variants have genuine effects on disease susceptibility but confer lifetime risks ranging from <0.1% to ~100%. We also show that truncating variants in PRNP have position-dependent effects, with true loss-of-function alleles found in healthy older individuals, supporting the safety of therapeutic suppression of prion protein expression. PMID:26791950

  9. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  10. Quantitative PCR for glucose transporter and tristetraprolin family gene expression in cultured mouse adipocytes and macrophages.

    PubMed

    Cao, Heping; Cao, Fangping; Roussel, Anne-Marie; Anderson, Richard A

    2013-12-01

    Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate false-positive signals and that the length of the amplicon affects the intensity of the amplification. Previous results demonstrate that TaqMan assay is more sensitive but generates lower calculated expression levels than SYBR Green assay in quantifying seven mRNAs in tung tree tissues. The objective of this study is to expand the analysis using animal cells. We compared both qPCR assays for quantifying 24 mRNAs including those coding for glucose transporter (Glut) and mRNA-binding protein tristetraprolin (TTP) in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. The results showed that SYBR Green and TaqMan qPCR were reliable for quantitative gene expression in animal cells. This result was supported by validation analysis of Glut and TTP family gene expression. However, SYBR Green qPCR overestimated the expression levels in most of the genes tested. Finally, both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) generated similar gene expression profiles in the mouse cells. These results support the conclusion that both qPCR assays (TaqMan and SYBR Green qPCR) and both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) are reliable for quantitative gene expression analyses in animal cells but SYBR Green qPCR generally overestimates gene expression levels than TaqMan qPCR.

  11. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon.

    PubMed

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Shuang; Jiang, Wei; Huang, Yuan; Bie, Zhilong

    2014-01-01

    Watermelon is one of the major Cucurbitaceae crops and the recent availability of genome sequence greatly facilitates the fundamental researches on it. Quantitative real-time reverse transcriptase PCR (qRT-PCR) is the preferred method for gene expression analyses, and using validated reference genes for normalization is crucial to ensure the accuracy of this method. However, a systematic validation of reference genes has not been conducted on watermelon. In this study, transcripts of 15 candidate reference genes were quantified in watermelon using qRT-PCR, and the stability of these genes was compared using geNorm and NormFinder. geNorm identified ClTUA and ClACT, ClEF1α and ClACT, and ClCAC and ClTUA as the best pairs of reference genes in watermelon organs and tissues under normal growth conditions, abiotic stress, and biotic stress, respectively. NormFinder identified ClYLS8, ClUBCP, and ClCAC as the best single reference genes under the above experimental conditions, respectively. ClYLS8 and ClPP2A were identified as the best reference genes across all samples. Two to nine reference genes were required for more reliable normalization depending on the experimental conditions. The widely used watermelon reference gene 18SrRNA was less stable than the other reference genes under the experimental conditions. Catalase family genes were identified in watermelon genome, and used to validate the reliability of the identified reference genes. ClCAT1and ClCAT2 were induced and upregulated in the first 24 h, whereas ClCAT3 was downregulated in the leaves under low temperature stress. However, the expression levels of these genes were significantly overestimated and misinterpreted when 18SrRNA was used as a reference gene. These results provide a good starting point for reference gene selection in qRT-PCR analyses involving watermelon.

  12. Identification of Suitable Reference Genes for Gene Expression Normalization in qRT-PCR Analysis in Watermelon

    PubMed Central

    Gao, Lingyun; Zhao, Shuang; Jiang, Wei; Huang, Yuan; Bie, Zhilong

    2014-01-01

    Watermelon is one of the major Cucurbitaceae crops and the recent availability of genome sequence greatly facilitates the fundamental researches on it. Quantitative real-time reverse transcriptase PCR (qRT–PCR) is the preferred method for gene expression analyses, and using validated reference genes for normalization is crucial to ensure the accuracy of this method. However, a systematic validation of reference genes has not been conducted on watermelon. In this study, transcripts of 15 candidate reference genes were quantified in watermelon using qRT–PCR, and the stability of these genes was compared using geNorm and NormFinder. geNorm identified ClTUA and ClACT, ClEF1α and ClACT, and ClCAC and ClTUA as the best pairs of reference genes in watermelon organs and tissues under normal growth conditions, abiotic stress, and biotic stress, respectively. NormFinder identified ClYLS8, ClUBCP, and ClCAC as the best single reference genes under the above experimental conditions, respectively. ClYLS8 and ClPP2A were identified as the best reference genes across all samples. Two to nine reference genes were required for more reliable normalization depending on the experimental conditions. The widely used watermelon reference gene 18SrRNA was less stable than the other reference genes under the experimental conditions. Catalase family genes were identified in watermelon genome, and used to validate the reliability of the identified reference genes. ClCAT1and ClCAT2 were induced and upregulated in the first 24 h, whereas ClCAT3 was downregulated in the leaves under low temperature stress. However, the expression levels of these genes were significantly overestimated and misinterpreted when 18SrRNA was used as a reference gene. These results provide a good starting point for reference gene selection in qRT–PCR analyses involving watermelon. PMID:24587403

  13. Expressing genes do not forget their LINEs: transposable elements and gene expression

    PubMed Central

    Kines, Kristine J.; Belancio, Victoria P.

    2012-01-01

    1. ABSTRACT Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue-or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored. PMID:22201807

  14. Expressing genes do not forget their LINEs: transposable elements and gene expression.

    PubMed

    Kines, Kristine J; Belancio, Victoria P

    2012-01-01

    Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue- or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored.

  15. [Mechanism on differential gene expression and heterosis formation].

    PubMed

    Xu, Chen-Lu; Sun, Xiao-Mei; Zhang, Shou-Gong

    2013-06-01

    Despite the rediscovery of heterosis about a century ago and the suggestion of various genetic models to explain this phenomenon, little consensus has yet been reached about the genetic basis of heterosis. Following the genome organization variation and gene effects, an understanding of gene differential expression in hybrids and its parents provides a new opportunity to speculate on mechanisms that might lead to heterosis. Investigation on allele-specific gene expression in hybrid and gene differential expression between hybrids and its parents might contribute to improve our understanding of the molecular basis of heterosis and eventually guide breeding practices. In this review, we discussed the recent researches on allelic-specific expression in hybrid which was frequently observed in recent studies and analyzed its regulatory mechanism. All possible modes of gene action, including additivity, high- and low-parent dominance, underdominance, and over-dominance, were observed when investigating gene differential expression between hybrids and its parents. Data from transcriptomic studies screened several heterosis-associated genes and highlighted the importance of certain key biochemical pathways that may prove to be quintessential for the manifestation of heterosis. So far, no uniform global expression pat-terns were observed in these gene expression studies. Most heterosis-associated gene expression analyses have not revealed a predominant functional category to which differentially expressed genes belong. However, these gene expression profiling studies represent a first step towards the definition of the complex gene expression networks that might be relevant in the context of heterosis. New technique on gene expression profile and advancements in bioinformatics will facilitate our understanding of the genetic basis of heterosis at the gene-expression level.

  16. Modeling of Gap Gene Expression in Drosophila Kruppel Mutants

    PubMed Central

    Kozlov, Konstantin; Surkova, Svetlana; Myasnikova, Ekaterina; Reinitz, John; Samsonova, Maria

    2012-01-01

    The segmentation gene network in Drosophila embryo solves the fundamental problem of embryonic patterning: how to establish a periodic pattern of gene expression, which determines both the positions and the identities of body segments. The gap gene network constitutes the first zygotic regulatory tier in this process. Here we have applied the systems-level approach to investigate the regulatory effect of gap gene Kruppel (Kr) on segmentation gene expression. We acquired a large dataset on the expression of gap genes in Kr null mutants and demonstrated that the expression levels of these genes are significantly reduced in the second half of cycle 14A. To explain this novel biological result we applied the gene circuit method which extracts regulatory information from spatial gene expression data. Previous attempts to use this formalism to correctly and quantitatively reproduce gap gene expression in mutants for a trunk gap gene failed, therefore here we constructed a revised model and showed that it correctly reproduces the expression patterns of gap genes in Kr null mutants. We found that the remarkable alteration of gap gene expression patterns in Kr mutants can be explained by the dynamic decrease of activating effect of Cad on a target gene and exclusion of Kr gene from the complex network of gap gene interactions, that makes it possible for other interactions, in particular, between hb and gt, to come into effect. The successful modeling of the quantitative aspects of gap gene expression in mutant for the trunk gap gene Kr is a significant achievement of this work. This result also clearly indicates that the oversimplified representation of transcriptional regulation in the previous models is one of the reasons for unsuccessful attempts of mutant simulations. PMID:22927803

  17. Modeling of gap gene expression in Drosophila Kruppel mutants.

    PubMed

    Kozlov, Konstantin; Surkova, Svetlana; Myasnikova, Ekaterina; Reinitz, John; Samsonova, Maria

    2012-01-01

    The segmentation gene network in Drosophila embryo solves the fundamental problem of embryonic patterning: how to establish a periodic pattern of gene expression, which determines both the positions and the identities of body segments. The gap gene network constitutes the first zygotic regulatory tier in this process. Here we have applied the systems-level approach to investigate the regulatory effect of gap gene Kruppel (Kr) on segmentation gene expression. We acquired a large dataset on the expression of gap genes in Kr null mutants and demonstrated that the expression levels of these genes are significantly reduced in the second half of cycle 14A. To explain this novel biological result we applied the gene circuit method which extracts regulatory information from spatial gene expression data. Previous attempts to use this formalism to correctly and quantitatively reproduce gap gene expression in mutants for a trunk gap gene failed, therefore here we constructed a revised model and showed that it correctly reproduces the expression patterns of gap genes in Kr null mutants. We found that the remarkable alteration of gap gene expression patterns in Kr mutants can be explained by the dynamic decrease of activating effect of Cad on a target gene and exclusion of Kr gene from the complex network of gap gene interactions, that makes it possible for other interactions, in particular, between hb and gt, to come into effect. The successful modeling of the quantitative aspects of gap gene expression in mutant for the trunk gap gene Kr is a significant achievement of this work. This result also clearly indicates that the oversimplified representation of transcriptional regulation in the previous models is one of the reasons for unsuccessful attempts of mutant simulations.

  18. Correspondence between resting state activity and brain gene expression

    PubMed Central

    Wang, Guang-Zhong; Belgard, T. Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M.; Lu, Hanzhang; Geschwind, Daniel H.; Konopka, Genevieve

    2015-01-01

    SUMMARY The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional Amplitude of Low Frequency Fluctuations (fALFF) from two independent human fMRI resting state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance, and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady state brain gene expression and resting state brain activity. PMID:26590343

  19. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    PubMed

    Leach, Lindsey J; Belfield, Eric J; Jiang, Caifu; Brown, Carly; Mithani, Aziz; Harberd, Nicholas P

    2014-04-11

    Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  20. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat

    PubMed Central

    2014-01-01

    Background Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution ‘nullisomic-tetrasomic’ lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. Results We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. Conclusions We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution. PMID:24726045

  1. Homologous versus heterologous gene expression in the yeast, Saccharomyces cerevisiae.

    PubMed Central

    Chen, C Y; Oppermann, H; Hitzeman, R A

    1984-01-01

    DNA sequences normally flanking the highly expressed yeast 3-phosphoglycerate kinase (PGK) gene have been placed adjacent to heterologous mammalian genes on high copy number plasmid vectors and used for expression experiments in yeast. For many genes thus far expressed with this system, expression has been 15-50 times lower than the expression of the natural homologous PGK gene on the same plasmid. We have extensively investigated this dramatic difference and have found that in most cases it is directly proportional to the steady-state levels of mRNAs. We demonstrate this phenomenon and suggest possible causes for this effect on mRNA levels. Images PMID:6096814

  2. Sequence determinants of prokaryotic gene expression level under heat stress.

    PubMed

    Xiong, Heng; Yang, Yi; Hu, Xiao-Pan; He, Yi-Ming; Ma, Bin-Guang

    2014-11-01

    Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Gene Expression patterns in cryogenically stored Arabidopsis thaliana shoot tips

    USDA-ARS?s Scientific Manuscript database

    The genes expressed in response to cryostress in plant shoot tips are not known. In this project we compared the gene expression patterns in untreated, cryoprotectant-treated, and recovering shoot tips using differential display methods. This project identified two genes that appeared to be differ...

  4. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts

    SciTech Connect

    Tucker, James D.; Joiner, Michael C.; Thomas, Robert A.; Grever, William E.; Bakhmutsky, Marina V.; Chinkhota, Chantelle N.; Smolinski, Joseph M.; Divine, George W.; Auner, Gregory W.

    2014-03-15

    Purpose: Rapid and reliable methods for conducting biological dosimetry are a necessity in the event of a large-scale nuclear event. Conventional biodosimetry methods lack the speed, portability, ease of use, and low cost required for triaging numerous victims. Here we address this need by showing that polymerase chain reaction (PCR) on a small number of gene transcripts can provide accurate and rapid dosimetry. The low cost and relative ease of PCR compared with existing dosimetry methods suggest that this approach may be useful in mass-casualty triage situations. Methods and Materials: Human peripheral blood from 60 adult donors was acutely exposed to cobalt-60 gamma rays at doses of 0 (control) to 10 Gy. mRNA expression levels of 121 selected genes were obtained 0.5, 1, and 2 days after exposure by reverse-transcriptase real-time PCR. Optimal dosimetry at each time point was obtained by stepwise regression of dose received against individual gene transcript expression levels. Results: Only 3 to 4 different gene transcripts, ASTN2, CDKN1A, GDF15, and ATM, are needed to explain ≥0.87 of the variance (R{sup 2}). Receiver-operator characteristics, a measure of sensitivity and specificity, of 0.98 for these statistical models were achieved at each time point. Conclusions: The actual and predicted radiation doses agree very closely up to 6 Gy. Dosimetry at 8 and 10 Gy shows some effect of saturation, thereby slightly diminishing the ability to quantify higher exposures. Analyses of these gene transcripts may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations or in clinical radiation emergencies.

  5. Gene expression profiling in male genital lichen sclerosus

    PubMed Central

    Edmonds, Emma; Barton, Geraint; Buisson, Sandrine; Francis, Nick; Gotch, Frances; Game, Laurence; Haddad, Munther; Dinneen, Michael; Bunker, Chris

    2011-01-01

    Male genital lichen sclerosus (MGLSc) has a bimodal distribution in boys and men. It is associated with squamous cell carcinoma (SCC). The pathogenesis of MGLSc is unknown. HPV and autoimmune mechanisms have been mooted. Anti extracellular matrix protein (ECM)1 antibodies have been identified in women with GLSc. The gene expression pattern of LSc is unknown. Using DNA microarrays we studied differences in gene expression in healthy and diseased prepuces obtained at circumcision in adult males with MGLSc (n = 4), paediatric LSc (n = 2) and normal healthy paediatric foreskin (n = 4). In adult samples 51 genes with significantly increased expression and 87 genes with significantly reduced expression were identified; paediatric samples revealed 190 genes with significantly increased expression and 148 genes with significantly reduced expression. Concordance of expression profiles between adult and paediatric samples indicates the same disease process. Functional analysis revealed increased expression in the adult and child MGSLc samples in the immune response/cellular defence gene ontology (GO) category and reduced expression in other categories including genes related to squamous cancer. No specific HPV, autoimmune or squamous carcinogenesis-associated gene expression patterns were found. ECM1 and CABLES1 expression were significantly reduced in paediatric and adult samples respectively. PMID:21718371

  6. Temporal patterns of odorant receptor gene expression in adult and aged mice.

    PubMed

    Khan, Mona; Vaes, Evelien; Mombaerts, Peter

    2013-11-01

    In the mouse, the sense of smell relies predominantly on the expression of ~1200 odorant receptor (OR) genes in the main olfactory epithelium (MOE). Each mature olfactory sensory neuron (OSN) in the MOE is thought to express just one of these OR genes; conversely, an OR gene is expressed in thousands to tens of thousands of OSNs per mouse. Here, we have characterized temporal patterns of OR gene expression in a cohort of inbred C57BL6/N mice from the Aged Rodent Colonies of the National Institute on Aging. We applied the NanoString multiplex platform to quantify RNA abundance for 531 OR genes in whole olfactory mucosa (WOM) tissue samples. The five study groups were females aged 2, 6, 12, 18, and 31 months (mo). We classified the 531 temporal patterns using a step-down quadratic regression method for time course analysis. The majority of OR genes (58.4%) are classified as flat: there is no significant difference from a horizontal line within this time window. There are 32.8% of OR genes with a downward profile, 7.2% with an upward profile, and 1.7% with a convex or concave profile. But the magnitude of these decreases and increases tends to be small: only 4.3% of OR genes are differentially expressed (DE) at 31 mo compared to 2 mo. Interestingly, the variances of NanoString counts for individual OR genes are homogeneous among the age groups. Our analyses of these 15,930 OR gene expression data of C57BL6/N mice that were raised and housed under well-controlled conditions indicate that OR gene expression at the MOE level is intrinsically stable. © 2013.

  7. Expression Quantitative Trait Loci Analysis Identifies Associations Between Genotype and Gene Expression in Human Intestine

    PubMed Central

    KABAKCHIEV, BOYKO; SILVERBERG, MARK S.

    2013-01-01

    BACKGROUND & AIMS Genome-wide association studies have greatly increased our understanding of intestinal disease. However, little is known about how genetic variations result in phenotypic changes. Some polymorphisms have been shown to modulate quantifiable phenotypic traits; these are called quantitative trait loci. Quantitative trait loci that affect levels of gene expression are called expression quantitative trait loci (eQTL), which can provide insight into the biological relevance of data from genome-wide association studies. We performed a comprehensive eQTL scan of intestinal tissue. METHODS Total RNA was extracted from ileal biopsy specimens and genomic DNA was obtained from whole-blood samples from the same cohort of individuals. Cis- and trans-eQTL analyses were performed using a custom software pipeline for samples from 173 subjects. The analyses determined the expression levels of 19,047 unique autosomal genes listed in the US National Center for Biotechnology Information database and more than 580,000 variants from the Single Nucleotide Polymorphism database. RESULTS The presence of more than 15,000 cis- and trans-eQTL was detected with statistical significance. eQTL associated with the same expression trait were in high linkage disequilibrium. Comparative analysis with previous eQTL studies showed that 30% to 40% of genes identified as eQTL in monocytes, liver tissue, lymphoblastoid cell lines, T cells, and fibroblasts are also eQTL in ileal tissue. Conversely, most of the significant eQTL have not been previously identified and could be tissue specific. These are involved in many cell functions, including division and antigen processing and presentation. Our analysis confirmed that previously published cis-eQTL are single nucleotide polymorphisms associated with inflammatory bowel disease: rs2298428/UBE2L3, rs1050152/SLC22A4, and SLC22A5. We identified many new associations between inflammatory bowel disease susceptibility loci and gene expression

  8. Circadian rhythms in cardiac gene expression.

    PubMed

    Young, Martin E

    2003-12-01

    Circadian rhythms in blood pressure, heart rate, and cardiac output have been intensely studied, largely due to the well-documented phenomenon of increased cardiovascular death in the early hours of the morning. Circadian rhythmicity in both cardiovascular physiology and pathophysiology has been attributed primarily to diurnal variations in neurohumoral factors, such as sympathetic activity. It has become increasingly apparent that the intrinsic properties of the heart (seen at the level of gene and protein expression, energy metabolism, and contractile function) show significant fluctuations during the course of the day. These changes might be due to extracardiac (eg, neurohumoral factors) and/or intracardiac (eg, circadian clocks) influences. Circadian clocks are transcriptionally based, molecular mechanisms that enable the cell to anticipate diurnal variations in environmental stimuli. The cardiac circadian clock synchronizes responsiveness of the heart to diurnal variations in its environment, and impairment of this mechanism might contribute to the pathogenesis of cardiovascular disease.

  9. DIAGNOSTIC UTILITY OF DIFFERENT BLOOD COMPONENTS IN GENE EXPRESSION ANALYSIS OF SEPSIS.

    PubMed

    Maslove, David M; Marshall, John C

    2016-03-01

    Most gene expression studies of sepsis have used either whole blood or specific leukocyte fractions as source tissues for RNA. Data regarding the relative utility of these different tissue sources are lacking. To evaluate the utility of different source tissues in studying gene expression in sepsis. We undertook a systematic analysis of sepsis gene expression studies, including both adult and pediatric cohorts. We used clustering methods to partition samples according to gene expression levels, and compared expression cluster labels to clinical diagnoses. We also quantified the strength of cluster formation based on expression data from different tissue sources using average silhouette widths as a measure of cluster cohesiveness. We included 22 separate expression datasets. Whole blood was used as the source tissue in 15 studies, while leukocyte isolates were used in seven studies. Whole blood samples yielded greater specificity for the diagnosis of sepsis than data from leukocyte isolates (94% vs 78%, P = 0.03). Whole blood-derived data also yielded more cohesive clusters (median silhouette widths 0.28 and 0.19 for whole blood and leukocyte isolates respectively, P < 0.01). Our results support the use of whole blood to derive gene expression data in sepsis studies investigating novel diagnostics and subtype discovery. This strategy has a number of practical advantages, and the resulting data also have potential utility in developing molecular classifications of sepsis syndromes.

  10. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids

    PubMed Central

    Mutti, Jasdeep S.; Bhullar, Ramanjot K.; Gill, Kulvinder S.

    2017-01-01

    Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76–87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14%) in the anthers and the smallest (7%) in the pistils. The highest number (1.72/3) of homeologs/gene expression was in the roots and the lowest (1.03/3) in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions. PMID:28193629

  11. Profiling and Quantifying Differential Gene Transcription Provide Insights into Ganoderic Acid Biosynthesis in Ganoderma lucidum in Response to Methyl Jasmonate

    PubMed Central

    Shi, Liang; Mu, Da-Shuai; Jiang, Ai-Liang; Han, Qin; Zhao, Ming-Wen

    2013-01-01

    Ganoderma lucidum is a mushroom with traditional medicinal properties that has been widely used in China and other countries in Eastern Asia. Ganoderic acids (GA) produced by G. lucidum exhibit important pharmacological activities. Previous studies have demonstrated that methyl jasmonate (MeJA) is a potent inducer of GA biosynthesis and the expression of genes involved in the GA biosynthesis pathway in G. lucidum. To further explore the mechanism of GA biosynthesis, cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) was used to identify genes that are differentially expressed in response to MeJA. Using 64 primer combinations, over 3910 transcriptionally derived fragments (TDFs) were obtained. Reliable sequence data were obtained for 390 of 458 selected TDFs. Ninety of these TDFs were annotated with known functions through BLASTX searching the GenBank database, and 12 annotated TDFs were assigned into secondary metabolic pathways by searching the KEGGPATHWAY database. Twenty-five TDFs were selected for qRT-PCR analysis to confirm the expression patterns observed with cDNA-AFLP. The qRT-PCR results were consistent with the altered patterns of gene expression revealed by the cDNA-AFLP technique. Additionally, the transcript levels of 10 genes were measured at the mycelium, primordia, and fruiting body developmental stages of G. lucidum. The greatest expression levels were reached during primordia for all of the genes except cytochrome b2 reached its highest expression level in the mycelium stage. This study not only identifies new candidate genes involved in the regulation of GA biosynthesis but also provides further insight into MeJA-induced gene expression and secondary metabolic response in G. lucidum. PMID:23762280

  12. Application of qRT-PCR and RNA-Seq analysis for the identification of housekeeping genes useful for normalization of gene expression values during Striga hermonthica development.

    PubMed

    Fernández-Aparicio, M; Huang, K; Wafula, E K; Honaas, L A; Wickett, N J; Timko, M P; Depamphilis, C W; Yoder, J I; Westwood, J H

    2013-04-01

    Striga is a root parasitic weed that attacks many of the staple crops in Africa, India and Southeast Asia, inflicting tremendous losses in yield and for which there are few effective control measures. Studies of parasitic plant virulence and host resistance will be greatly facilitated by the recent emergence of genomic resources that include extensive transcriptome sequence datasets spanning all life stages of S. hermonthica. Functional characterization of Striga genes will require detailed analyses of gene expression patterns. Quantitative real-time PCR is a powerful tool for quantifying gene expression, but correct normalization of expression levels requires identification of control genes that have stable expression across tissues and life stages. Since no S. hermonthica housekeeping genes have been established for this purpose, we evaluated the suitability of six candidate housekeeping genes across key life stages of S. hermonthica from seed conditioning to flower initiation using qRT-PCR and high-throughput cDNA sequencing. Based on gene expression analysis by qRT-PCR and RNA-Seq across heterogeneous Striga life stages, we determined that using the combination of three genes, UBQ1, PP2A and TUB1 provides the best normalization for gene expression throughout the parasitic life cycle. The housekeeping genes characterized here provide robust standards that will facilitate powerful descriptions of parasite gene expression patterns.

  13. Silencing of toxic gene expression by Fis

    PubMed Central

    Karambelkar, Shweta; Swapna, Ganduri; Nagaraja, Valakunja

    2012-01-01

    Bacteria and bacteriophages have evolved DNA modification as a strategy to protect their genomes. Mom protein of bacteriophage Mu modifies the phage DNA, rendering it refractile to numerous restriction enzymes and in turn enabling the phage to successfully invade a variety of hosts. A strong fortification, a combined activity of the phage and host factors, prevents untimely expression of mom and associated toxic effects. Here, we identify the bacterial chromatin architectural protein Fis as an additional player in this crowded regulatory cascade. Both in vivo and in vitro studies described here indicate that Fis acts as a transcriptional repressor of mom promoter. Further, our data shows that Fis mediates its repressive effect by denying access to RNA polymerase at mom promoter. We propose that a combined repressive effect of Fis and previously characterized negative regulatory factors could be responsible to keep the gene silenced most of the time. We thus present a new facet of Fis function in Mu biology. In addition to bringing about overall downregulation of Mu genome, it also ensures silencing of the advantageous but potentially lethal mom gene. PMID:22287621

  14. Preferential DNA repair in expressed genes

    SciTech Connect

    Hanawalt, P.C.

    1987-12-01

    Potentially deleterious alterations to DNA occur nonrandomly within the mammalian genome. These alterations include the adducts produced by many chemical carcinogens, but not the UV-induced cyclobutane pyrimidine dimer, which may be an exception. Recent studies in our laboratory have shown that the excision repair of pyrimidine dimers and certain other lesions is nonrandom in the mammalian genome, exhibiting a distinct preference for actively transcribed DNA sequences. An important consequence of this fact is that mutagenesis and carcinogenesis may be determined in part by the activities of the relevant genes. Repair may also be processive, and a model is proposed in which excision repair is coupled to transcription at the nuclear matrix. Similar but freely diffusing repair complexes may account for the lower overall repair efficiencies in the silent domains of the genome. Risk assessment in relations to chemical carcinogenesis requires assays that determine effective levels of DNA damage for producing malignancy. The existence of nonrandom repair in the genome casts into doubt the reliability of overall indicators of DNA binding and lesion repair for such determinations. Furthermore, some apparent differences between the intragenomic repair heterogeneity in rodent cells and that in human cells mandate a reevaluation of rodent test systems for human risk assessment. Tissue-specific and cell-specific differences in the coordinate regulation of gene expression and DNA repair may account for corresponding differences in the carcinogenic response.

  15. Collagen gene expression during limb cartilage differentiation

    PubMed Central

    1986-01-01

    As limb mesenchymal cells differentiate into chondrocytes, they initiate the synthesis of type II collagen and cease synthesizing type I collagen. Changes in the cytoplasmic levels of type I and type II collagen mRNAs during the course of limb chondrogenesis in vivo and in vitro were examined using cloned cDNA probes. A striking increase in cytoplasmic type II collagen mRNA occurs coincident with the crucial condensation stage of chondrogenesis in vitro, in which prechondrogenic mesenchymal cells become closely juxtaposed before depositing a cartilage matrix. Thereafter, a continuous and progressive increase in the accumulation of cytoplasmic type II collagen mRNA occurs which parallels the progressive accumulation of cartilage matrix by cells. The onset of overt chondrogenesis, however, does not involve activation of the transcription of the type II collagen gene. Low levels of type II collagen mRNA are present in the cytoplasm of prechondrogenic mesenchymal cells at the earliest stages of limb development, well before the accumulation of detectable levels of type II collagen. Type I collagen gene expression during chondrogenesis is regulated, at least in part, at the translational level. Type I collagen mRNAs are present in the cytoplasm of differentiated chondrocytes, which have ceased synthesizing detectable amounts of type I collagen. PMID:3754261

  16. Monoallelic expression of the human FOXP2 speech gene.

    PubMed

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  17. Monoallelic expression of the human FOXP2 speech gene

    PubMed Central

    Adegbola, Abidemi A.; Cox, Gerald F.; Bradshaw, Elizabeth M.; Hafler, David A.; Gimelbrant, Alexander; Chess, Andrew

    2015-01-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations. PMID:25422445

  18. Developmental gene expression profiling of mammalian, fetal orofacial tissue.

    PubMed

    Mukhopadhyay, Partha; Greene, Robert M; Zacharias, Wolfgang; Weinrich, Martin C; Singh, Saurabh; Young, William W; Pisano, M Michele

    2004-12-01

    The embryonic orofacial region is an excellent developmental paradigm that has revealed the centrality of numerous genes encoding proteins with diverse and important biological functions in embryonic growth and morphogenesis. DNA microarray technology presents an efficient means of acquiring novel and valuable information regarding the expression, regulation, and function of a panoply of genes involved in mammalian orofacial development. To identify differentially expressed genes during mammalian orofacial ontogenesis, the transcript profiles of GD-12, GD-13, and GD-14 murine orofacial tissue were compared utilizing GeneChip arrays from Affymetrix. Changes in gene expression were verified by TaqMan quantitative real-time PCR. Cluster analysis of the microarray data was done with the GeneCluster 2.0 Data Mining Tool and the GeneSpring software. Expression of >50% of the approximately 12,000 genes and expressed sequence tags examined in this study was detected in GD-12, GD-13, and GD-14 murine orofacial tissues and the expression of several hundred genes was up- and downregulated in the developing orofacial tissue from GD-12 to GD-13, as well as from GD-13 to GD-14. Such differential gene expression represents changes in the expression of genes encoding growth factors and signaling molecules; transcription factors; and proteins involved in epithelial-mesenchymal interactions, extracellular matrix synthesis, cell adhesion, proliferation, differentiation, and apoptosis. Following cluster analysis of the microarray data, eight distinct patterns of gene expression during murine orofacial ontogenesis were selected for graphic presentation of gene expression patterns. This gene expression profiling study identifies a number of potentially unique developmental participants and serves as a valuable aid in deciphering the complex molecular mechanisms crucial for mammalian orofacial development.

  19. Expression profiling and gene discovery in the mouse lens.

    PubMed

    Wride, Michael A; Mansergh, Fiona C; Adams, Steffan; Everitt, Rebecca; Minnema, Stephanie E; Rancourt, Derrick E; Evans, Martin J

    2003-08-22

    Defects in the development and physiology of the lens can result in cataracts (opacification of the lens), which are currently treatable only by surgical removal. The lens is also an excellent system for understanding fundamental biological processes such as cellular differentiation and ageing. Here, microarrays have been used to gain insights into global patterns of gene expression in the mouse lens. Lens gene expression compared to non-lens tissues has been investigated in order to identify genes preferentially expressed in the lens and lenses of different ages have been compared to identify differentially regulated genes. Genes expressed in the lens were identified using mouse GeneFilters microarrays (GF400; ResGen). Each array comprises 5,184 mouse cDNAs representing sequence-verified known genes and uncharacterized ESTs spotted onto a nylon membrane. Target RNA (33P labeled) from lens and non-lens samples was hybridized to the arrays. The proportion of genes involved in various biological processes was investigated using Onto-Express to search for GeneOntology terms associated with them. Differential gene expression was investigated using K-means clustering analysis. Expression of known and uncharacterized genes selected from the arrays was investigated further using semi-quantitative RT-PCR. 1,668 genes were expressed in one or more of newborn, 7 day old, and adult mouse lenses at levels significantly above background. Raw data and bioinformatics data relating to these genes have been published herein. There were 543 (33%) known genes, 124 (7%) had some similarity to known genes, 400 (24%) were functionally uncharacterized, and the remaining 601 (36%) genes were novel (matching only existing ESTs). Onto-Express identified genes involved in various biological processes including several categories containing greater numbers of genes than would be expected by chance, such as transcription regulation and G-protein coupled receptor signaling genes. Semi

  20. Selection of reference genes for expression analyses of red-fleshed sweet orange (Citrus sinensis).

    PubMed

    Pinheiro, T T; Nishimura, D S; De Nadai, F B; Figueira, A; Latado, R R

    2015-12-28

    Red-fleshed oranges (Citrus sinensis) contain high levels of carotenoids and lycopene. The growing consumer demand for products with health benefits has increased interest in these types of Citrus cultivars as a potential source of nutraceuticals. However, little is known about the physiology of these cultivars under Brazilian conditions. Transcriptome and gene expression analyses are important tools in the breeding and management of red-fleshed sweet orange cultivars. Reverse transcription quantitative polymerase chain reaction is a method of quantifying gene expression, but various standardizations are required to obtain precise, accurate, and specific results. Among the standardizations required, the choice of suitable stable reference genes is fundamental. The objective of this study was to evaluate the stability of 11 candidate genes using various tissue and organ samples from healthy plants or leaves from citrus greening disease (Huanglongbing)-symptomatic plants of a Brazilian red-fleshed cultivar ('Sanguínea de Mombuca'), in order to select the most suitable reference gene for investigating gene expression under these conditions. geNorm and NormFinder identified genes that encoded translation initiation factor 3, ribosomal protein L35, and translation initiation factor 5A as the most stable genes under the biological conditions tested, and genes coding actin (ACT) and the subunit of the PSI reaction center subunit III were the least stable. Phosphatase, malate dehydrogenase, and ACT were the most stable genes in the leaf samples of infected plants.

  1. [Autoradiography reporter gene (Ad5-tk carrying HSV1-tk gene) expression imaging in rat myocardium].

    PubMed

    Liu, Ying; Lan, Xiao-li; Wu, Tao; Yin, Xiao-hua; Zhang, Yong-xue

    2009-10-01

    Radionuclide imaging of reporter gene expression holds promise for noninvasive monitoring of gene therapy. Herpes simplex virus 1-thymidine kinase (HSV1-tk) has been successfully applied to the tumor tissue.We explored the feasibility of the expression imaging of HSV1-tk reporter gene in rat myocardium by using SPECT reporter probe (131)I-2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil ((131)I-FIAU) and autoradiography (ARG). The recombinant Ad5-tk carrying HSV1-tk gene and adenovirus (Ad5-null) as vector were constructed and intramyocardially injected into SD rats. Experiment was grouped for different aims as follows: (1) Influence of time on the imaging after transfection reporter gene: rats were injected with (131)I-FIAU at day 1, 2, 3, 5 and 7 after transfection of 1 x 10(8)pfu Ad5-tk; (2) Influence of various titers on the imaging: rats underwent intramyocardial injection with various titers of Ad5-tk (5 x 10(8), 1 x 10(8), 5 x 10(7), 1 x 10(7)pfu). After 2 days, rats were injected with (131)I-FIAU in tail vein. Equal volume Ad-nulls was intramyocardially injected to control rats. Rats were killed 24 h after injection of (131)I-FIAU and the hearts were rapidly dissected for gamma counts measurement. The total myocardial (131)I-FIAU accumulation was quantified in percent of injected dose per gram myocardium (%ID/g). The myocardial reporter gene expression was semi-quantitatively determined by ARG and RT-PCR. ARG and RT-PCR showed that the local expression of reporter gene increased in proportion with increasing titer and decreased in proportion with time post injection. The semi-quantitative assay showed there were significant correlations among %ID/g, RT-PCR and ARG: r(2) = 0.963, P < 0.05 for RT-PCR and ARG; r(2) = 0.996, P < 0.01 for %ID/g and ARG in rats received various reporter gene titers at identical time point post injection; r(2) = 0.950, P < 0.05 for RT-PCR and ARG; r(2) = 0.980, P < 0.01 for %ID/g and ARG for rats received identical

  2. Contrasting Frequencies and Effects of cis- and trans-Regulatory Mutations Affecting Gene Expression

    PubMed Central

    Metzger, Brian P. H.; Duveau, Fabien; Yuan, David C.; Tryban, Stephen; Yang, Bing; Wittkopp, Patricia J.

    2016-01-01

    Heritable differences in gene expression are caused by mutations in DNA sequences encoding cis-regulatory elements and trans-regulatory factors. These two classes of regulatory change differ in their relative contributions to expression differences in natural populations because of the combined effects of mutation and natural selection. Here, we investigate how new mutations create the regulatory variation upon which natural selection acts by quantifying the frequencies and effects of hundreds of new cis- and trans-acting mutations altering activity of the TDH3 promoter in the yeast Saccharomyces cerevisiae in the absence of natural selection. We find that cis-regulatory mutations have larger effects on expression than trans-regulatory mutations and that while trans-regulatory mutations are more common overall, cis- and trans-regulatory changes in expression are equally abundant when only the largest changes in expression are considered. In addition, we find that cis-regulatory mutations are skewed toward decreased expression while trans-regulatory mutations are skewed toward increased expression. We also measure the effects of cis- and trans-regulatory mutations on the variability in gene expression among genetically identical cells, a property of gene expression known as expression noise, finding that trans-regulatory mutations are much more likely to decrease expression noise than cis-regulatory mutations. Because new mutations are the raw material upon which natural selection acts, these differences in the frequencies and effects of cis- and trans-regulatory mutations should be considered in models of regulatory evolution. PMID:26782996

  3. Acute physical activity effects on cardiac gene expression.

    PubMed

    Simonsen, Michelle L; Alessio, Helaine M; White, Peter; Newsom, David L; Hagerman, Ann E

    2010-11-01

    Regular bouts of physical activity may cause changes in gene expression that accumulate over time and ultimately affect phenotypes, such as body weight, blood lipid profile and tumour development. Furthermore, acute activity may affect gene expression and phenotypes differently depending on whether the individual is regularly inactive or active. One-month-old male Sprague-Dawley rats (n = 72) were equally divided into SED (standard laboratory cage, n = 24), PA (large activity box, n = 24) and EX groups (exercise wheel inside standard cage, n = 24). At 3 months of age, half the animals from each group were killed at rest and the other half following 30 min of physical activity. The RNA was extracted from cardiac tissue, and microarray analysis was performed on 27,000 genes. Select gene results were validated using quantitative PCR. No gene expression differences occurred when comparing all 3-month-old groups at rest. A relatively small percentage of genes (1.9%) were differentially expressed (P < 0.05) following acute swimming activity in all groups, but only 37 unique and identifiable genes reached or exceeded twofold differences in expression. The genes Atf3, Fos, Apold1 and Pxdn were expressed differently among SED, PA and EX following acute activity, with a clear separation of the magnitude in gene expression with SED > PA > EX. Differences in gene expression levels in young physically inactive and active animals following acute activity have different regulatory roles in gene networks that affect health-related phenotypes.

  4. Integrated analysis of gene expression by association rules discovery

    PubMed Central

    Carmona-Saez, Pedro; Chagoyen, Monica; Rodriguez, Andres; Trelles, Oswaldo; Carazo, Jose M; Pascual-Montano, Alberto

    2006-01-01

    Background Microarray technology is generating huge amounts of data about the expression level of thousands of genes, or even whole genomes, across different experimental conditions. To extract biological knowledge, and to fully understand such datasets, it is essential to include external biological information about genes and gene products to the analysis of expression data. However, most of the current approaches to analyze microarray datasets are mainly focused on the analysis of experimental data, and external biological information is incorporated as a posterior process. Results In this study we present a method for the integrative analysis of microarray data based on the Association Rules Discovery data mining technique. The approach integrates gene annotations and expression data to discover intrinsic associations among both data sources based on co-occurrence patterns. We applied the proposed methodology to the analysis of gene expression datasets in which genes were annotated with metabolic pathways, transcriptional regulators and Gene Ontology categories. Automatically extracted associations revealed significant relationships among these gene attributes and expression patterns, where many of them are clearly supported by recently reported work. Conclusion The integration of external biological information and gene expression data can provide insights about the biological processes associated to gene expression programs. In this paper we show that the proposed methodology is able to integrate multiple gene annotations and expression data in the same analytic framework and extract meaningful associations among heterogeneous sources of data. An implementation of the method is included in the Engene software package. PMID:16464256

  5. Using RNA-Seq data to select refence genes for normalizing gene expression in apple roots

    USDA-ARS?s Scientific Manuscript database

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for t...

  6. Human enteric defensins. Gene structure and developmental expression.

    PubMed

    Mallow, E B; Harris, A; Salzman, N; Russell, J P; DeBerardinis, R J; Ruchelli, E; Bevins, C L

    1996-02-23

    Paneth cells, secretory epithelial cells of the small intestinal crypts, are proposed to contribute to local host defense. Both mouse and human Paneth cells express a collection of antimicrobial proteins, including members of a family of antimicrobial peptides named defensins. In this study, data from an anchored polymerase chain reaction (PCR) strategy suggest that only two defensin mRNA isoforms are expressed in the human small intestine, far fewer than the number expressed in the mouse. The two isoforms detected by this PCR approach were human defensin family members, HD-5 and HD-6. The gene encoding HD-6 was cloned and characterized. HD-6 has a genomic organization similar to HD-5, and the two genes have a striking pattern of sequence similarity localized chiefly in their proximal 5'-flanking regions. Analysis of human fetal RNA by reverse transcriptase-PCR detected enteric defensin HD-5 mRNA at 13.5 weeks of gestation in the small intestine and the colon, but by 17 weeks HD-5 was restricted to the small intestine. HD-6 mRNA was detectable at 13.5-17 weeks of gestation in the small intestine but not in the colon. This pattern of expression coincides with the previously described appearance of Paneth cells as determined by ultrastructural approaches. Northern analysis of total RNA from small intestine revealed quantifiable enteric defensin mRNA in five samples from 19 24 weeks of gestation at levels approximately 40-250-fold less than those observed in the adult, with HD-5 mRNA levels greater than those of HD-6 in all samples. In situ hybridization analysis localized expression of enteric defensin mRNA to Paneth cells at 24 weeks of gestation, as is seen in the newborn term infant and the adult. Consistent with earlier morphological studies, the ratio of Paneth cell number per crypt was reduced in samples at 24 weeks of gestation compared with the adult, and this lower cell number partially accounts for the lower defensin mRNA levels as determined by Northern

  7. Random Monoallelic Gene Expression Increases upon Embryonic Stem Cell Differentiation

    PubMed Central

    Eckersley-Maslin, Mélanie A.; Thybert, David; Bergmann, Jan H.; Marioni, John C.; Flicek, Paul; Spector, David L.

    2014-01-01

    Summary Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs respectively, a 5.6-fold increase upon differentiation. While DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation, and for some genes is compensated for by the cell to maintain the required transcriptional output of these genes. PMID:24576421

  8. Gene expression variability in clonal populations: Causes and consequences.

    PubMed

    Roberfroid, Stefanie; Vanderleyden, Jos; Steenackers, Hans

    2016-11-01

    During the last decade it has been shown that among cell variation in gene expression plays an important role within clonal populations. Here, we provide an overview of the different mechanisms contributing to gene expression variability in clonal populations. These are ranging from inherent variations in the biochemical process of gene expression itself, such as intrinsic noise, extrinsic noise and bistability to individual responses to variations in the local micro-environment, a phenomenon called phenotypic plasticity. Also genotypic variations caused by clonal evolution and phase variation can contribute to gene expression variability. Consequently, gene expression studies need to take these fluctuations in expression into account. However, frequently used techniques for expression quantification, such as microarrays, RNA sequencing, quantitative PCR and gene reporter fusions classically determine the population average of gene expression. Here, we discuss how these techniques can be adapted towards single cell analysis by integration with single cell isolation, RNA amplification and microscopy. Alternatively more qualitative selection-based techniques, such as mutant screenings, in vivo expression technology (IVET) and recombination-based IVET (RIVET) can be applied for detection of genes expressed only within a subpopulation. Finally, differential fluorescence induction (DFI), a protocol specially designed for single cell expression is discussed.

  9. Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain.

    PubMed

    Lowes, Damon A; Galley, Helen F; Moura, Alessandro P S; Webster, Nigel R

    2017-01-15

    Much is still unknown about the mechanisms of effects of even brief anaesthesia on the brain and previous studies have simply compared differential expression profiles with and without anaesthesia. We hypothesised that network analysis, in addition to the traditional differential gene expression and ontology analysis, would enable identification of the effects of anaesthesia on interactions between genes. Rats (n=10 per group) were randomised to anaesthesia with isoflurane in oxygen or oxygen only for 15min, and 6h later brains were removed. Differential gene expression and gene ontology analysis of microarray data was performed. Standard clustering techniques and principal component analysis with Bayesian rules were used along with social network analysis methods, to quantitatively model and describe the gene networks. Anaesthesia had marked effects on genes in the brain with differential regulation of 416 probe sets by at least 2 fold. Gene ontology analysis showed 23 genes were functionally related to the anaesthesia and of these, 12 were involved with neurotransmitter release, transport and secretion. Gene network analysis revealed much greater connectivity in genes from brains from anaesthetised rats compared to controls. Other importance measures were also altered after anaesthesia; median [range] closeness centrality (shortest path) was lower in anaesthetized animals (0.07 [0-0.30]) than controls (0.39 [0.30-0.53], p<0.0001) and betweenness centrality was higher (53.85 [32.56-70.00]% compared to 5.93 [0-30.65]%, p<0.0001). Simply studying the actions of individual components does not fully describe dynamic and complex systems. Network analysis allows insight into the interactions between genes after anaesthesia and suggests future targets for investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Intracellular and Interstitial Expression of Helicobacter pylori Virulence Genes in Gastric Precancerous Intestinal Metaplasia and Adenocarcinoma

    PubMed Central

    Semino-Mora, Cristina; Doi, Sonia Q.; Marty, Aileen; Simko, Vlado; Carlstedt, Ingemar; Dubois, Andre

    2008-01-01

    Gastric intestinal metaplasia (IM) and gastric cancer are associated with Helicobacter pylori, but the bacterium often is undetectable in these lesions. To unravel this apparent paradox, IM, H. pylori presence, and the expression of H. pylori virulence genes were quantified concurrently using histologic testing, in situ hybridization, and immunohistochemistry. H. pylori was detected inside metaplastic, dysplastic, and neoplastic epithelial cells, and cagA and babA2 expression was colocalized. Importantly, expression of cagA was significantly higher in patients with IM and adenocarcinoma than in control subjects. The preneoplastic “acidic” MUC2 mucin was detected only in the presence of H. pylori, and MUC2 expression was higher in patients with IM, dysplasia, and cancer. These novel findings are compatible with the hypothesis that all stages of gastric carcinogenesis are fostered by persistent intracellular expression of H. pylori virulence genes, especially cagA inside MUC2-producing precancerous gastric cells and pleomorphic cancer cells. PMID:12695995

  11. Evaluation of Reference Genes for Normalization of Gene Expression Using Quantitative RT-PCR under Aluminum, Cadmium, and Heat Stresses in Soybean.

    PubMed

    Gao, Mengmeng; Liu, Yaping; Ma, Xiao; Shuai, Qin; Gai, Junyi; Li, Yan

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used to analyze the relative gene expression level, however, the accuracy of qRT-PCR is greatly affected by the stability of reference genes, which is tissue- and environment- dependent. Therefore, choosing the most stable reference gene in a specific tissue and environment is critical to interpret gene expression patterns. Aluminum (Al), cadmium (Cd), and heat stresses are three important abiotic factors limiting soybean (Glycine max) production in southern China. To identify the suitable reference genes for normalizing the expression levels of target genes by qRT-PCR in soybean response to Al, Cd and heat stresses, we studied the expression stability of ten commonly used housekeeping genes in soybean roots and leaves under these three abiotic stresses, using five approaches, BestKeeper, Delta Ct, geNorm, NormFinder and RefFinder. We found TUA4 is the most stable reference gene in soybean root tips under Al stress. Under Cd stress, Fbox and UKN2 are the most stable reference genes in roots and leaves, respectively, while 60S is the most suitable reference gene when analyzing both roots and leaves together. For heat stress, TUA4 and UKN2 are the most stable housekeeping genes in roots and leaves, respectively, and UKN2 is the best reference gene for analysis of roots and leaves together. To validate the reference genes, we quantified the relative expression levels of six target genes that were involved in soybean response to Al, Cd or heat stresses, respectively. The expression patterns of these target genes differed between using the most and least stable reference genes, suggesting the selection of a suitable reference gene is critical for gene expression studies.

  12. Evaluation of Reference Genes for Normalization of Gene Expression Using Quantitative RT-PCR under Aluminum, Cadmium, and Heat Stresses in Soybean

    PubMed Central

    Ma, Xiao; Shuai, Qin; Gai, Junyi; Li, Yan

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used to analyze the relative gene expression level, however, the accuracy of qRT-PCR is greatly affected by the stability of reference genes, which is tissue- and environment- dependent. Therefore, choosing the most stable reference gene in a specific tissue and environment is critical to interpret gene expression patterns. Aluminum (Al), cadmium (Cd), and heat stresses are three important abiotic factors limiting soybean (Glycine max) production in southern China. To identify the suitable reference genes for normalizing the expression levels of target genes by qRT-PCR in soybean response to Al, Cd and heat stresses, we studied the expression stability of ten commonly used housekeeping genes in soybean roots and leaves under these three abiotic stresses, using five approaches, BestKeeper, Delta Ct, geNorm, NormFinder and RefFinder. We found TUA4 is the most stable reference gene in soybean root tips under Al stress. Under Cd stress, Fbox and UKN2 are the most stable reference genes in roots and leaves, respectively, while 60S is the most suitable reference gene when analyzing both roots and leaves together. For heat stress, TUA4 and UKN2 are the most stable housekeeping genes in roots and leaves, respectively, and UKN2 is the best reference gene for analysis of roots and leaves together. To validate the reference genes, we quantified the relative expression levels of six target genes that were involved in soybean response to Al, Cd or heat stresses, respectively. The expression patterns of these target genes differed between using the most and least stable reference genes, suggesting the selection of a suitable reference gene is critical for gene expression studies. PMID:28046130

  13. Comprehensive set of integrative plasmid vectors for copper-inducible gene expression in Myxococcus xanthus.

    PubMed

    Gómez-Santos, Nuria; Treuner-Lange, Anke; Moraleda-Muñoz, Aurelio; García-Bravo, Elena; García-Hernández, Raquel; Martínez-Cayuela, Marina; Pérez, Juana; Søgaard-Andersen, Lotte; Muñoz-Dorado, José

    2012-04-01

    Myxococcus xanthus is widely used as a model system for studying gliding motility, multicellular development, and cellular differentiation. Moreover, M. xanthus is a rich source of novel secondary metabolites. The analysis of these processes has been hampered by the limited set of tools for inducible gene expression. Here we report the construction of a set of plasmid vectors to allow copper-inducible gene expression in M. xanthus. Analysis of the effect of copper on strain DK1622 revealed that copper concentrations of up to 500 μM during growth and 60 μM during development do not affect physiological processes such as cell viability, motility, or aggregation into fruiting bodies. Of the copper-responsive promoters in M. xanthus reported so far, the multicopper oxidase cuoA promoter was used to construct expression vectors, because no basal expression is observed in the absence of copper and induction linearly depends on the copper concentration in the culture medium. Four different plasmid vectors have been constructed, with different marker selection genes and sites of integration in the M. xanthus chromosome. The vectors have been tested and gene expression quantified using the lacZ gene. Moreover, we demonstrate the functional complementation of the motility defect caused by lack of PilB by the copper-induced expression of the pilB gene. These versatile vectors are likely to deepen our understanding of the biology of M. xanthus and may also have biotechnological applications.

  14. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect.

    PubMed

    Teets, Nicholas M; Peyton, Justin T; Colinet, Herve; Renault, David; Kelley, Joanna L; Kawarasaki, Yuta; Lee, Richard E; Denlinger, David L

    2012-12-11

    Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects remain largely undefined. In this study, we used RNA sequencing to quantify transcriptional mechanisms of extreme dehydration tolerance in the Antarctic midge, Belgica antarctica, the world's southernmost insect and only insect endemic to Antarctica. Larvae of B. antarctica are remarkably tolerant of dehydration, surviving losses up to 70% of their body water. Gene expression changes in response to dehydration indicated up-regulation of cellular recycling pathways including the ubiquitin-mediated proteasome and autophagy, with concurrent down-regulation of genes involved in general metabolism and ATP production. Metabolomics results revealed shifts in metabolite pools that correlated closely with changes in gene expression, indicating that coordinated changes in gene expression and metabolism are a critical component of the dehydration response. Finally, using comparative genomics, we compared our gene expression results with a transcriptomic dataset for the Arctic collembolan, Megaphorura arctica. Although B. antarctica and M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods. Whereas several orthologous genes showed similar expression patterns, transcriptional changes were largely species specific, indicating these polar arthropods have developed distinct transcriptional mechanisms to cope with similar desiccating conditions.

  15. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect

    PubMed Central

    Teets, Nicholas M.; Peyton, Justin T.; Colinet, Herve; Renault, David; Kelley, Joanna L.; Kawarasaki, Yuta; Lee, Richard E.; Denlinger, David L.

    2012-01-01

    Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects remain largely undefined. In this study, we used RNA sequencing to quantify transcriptional mechanisms of extreme dehydration tolerance in the Antarctic midge, Belgica antarctica, the world’s southernmost insect and only insect endemic to Antarctica. Larvae of B. antarctica are remarkably tolerant of dehydration, surviving losses up to 70% of their body water. Gene expression changes in response to dehydration indicated up-regulation of cellular recycling pathways including the ubiquitin-mediated proteasome and autophagy, with concurrent down-regulation of genes involved in general metabolism and ATP production. Metabolomics results revealed shifts in metabolite pools that correlated closely with changes in gene expression, indicating that coordinated changes in gene expression and metabolism are a critical component of the dehydration response. Finally, using comparative genomics, we compared our gene expression results with a transcriptomic dataset for the Arctic collembolan, Megaphorura arctica. Although B. antarctica and M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods. Whereas several orthologous genes showed similar expression patterns, transcriptional changes were largely species specific, indicating these polar arthropods have developed distinct transcriptional mechanisms to cope with similar desiccating conditions. PMID:23197828

  16. Quantifying the Relative Importance of Phylogeny and Environmental Preferences As Drivers of Gene Content in Prokaryotic Microorganisms

    PubMed Central

    Tamames, Javier; Sánchez, Pablo D.; Nikel, Pablo I.; Pedrós-Alió, Carlos

    2016-01-01

    Two complementary forces shape microbial genomes: vertical inheritance of genes by phylogenetic descent, and acquisition of new genes related to adaptation to particular habitats and lifestyles. Quantification of the relative importance of each driving force proved difficult. We determined the contribution of each factor, and identified particular genes or biochemical/cellular processes linked to environmental preferences (i.e., propensity of a taxon to live in particular habitats). Three types of data were confronted: (i) complete genomes, which provide gene content of different taxa; (ii) phylogenetic information, via alignment of 16S rRNA sequences, which allowed determination of the distance between taxa, and (iii) distribution of species in environments via 16S rRNA sampling experiments, reflecting environmental preferences of different taxa. The combination of these three datasets made it possible to describe and quantify the relationships among them. We found that, although phylogenetic descent was responsible for shaping most genomes, a discernible part of the latter was correlated to environmental adaptations. Particular families of genes were identified as environmental markers, as supported by direct studies such as metagenomic sequencing. These genes are likely important for adaptation of bacteria to particular conditions or habitats, such as carbohydrate or glycan metabolism genes being linked to host-associated environments. PMID:27065987

  17. Carcinogen-induced trans activation of gene expression

    SciTech Connect

    Kleinberger, T.; Flint, Y.B.; Blank, M.; Etkin, S.; Lavi, S.

    1988-03-01

    The authors report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later.

  18. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  19. Noise in gene expression: origins, consequences, and control.

    PubMed

    Raser, Jonathan M; O'Shea, Erin K

    2005-09-23

    Genetically identical cells and organisms exhibit remarkable diversity even when they have identical histories of environmental exposure. Noise, or variation, in the process of gene expression may contribute to this phenotypic variability. Recent studies suggest that this noise has multiple sources, including the stochastic or inherently random nature of the biochemical reactions of gene expression. In this review, we summarize noise terminology and comment on recent investigations into the sources, consequences, and control of noise in gene expression.

  20. cell type–specific gene expression differences in complex tissues

    PubMed Central

    Shen-Orr, Shai S; Tibshirani, Robert; Khatri, Purvesh; Bodian, Dale L; Staedtler, Frank; Perry, Nicholas M; Hastie, Trevor; Sarwal, Minnie M; Davis, Mark M; Butte, Atul J

    2013-01-01

    We describe cell type–specific significance analysis of microarrays (cssam) for analyzing differential gene expression for each cell type in a biological sample from microarray data and relative cell-type frequencies. first, we validated cssam with predesigned mixtures and then applied it to whole-blood gene expression datasets from stable post-transplant kidney transplant recipients and those experiencing acute transplant rejection, which revealed hundreds of differentially expressed genes that were otherwise undetectable. PMID:20208531

  1. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae).

    PubMed

    Passow, Courtney N; Brown, Anthony P; Arias-Rodriguez, Lenin; Yee, Muh-Ching; Sockell, Alexandra; Schartl, Manfred; Warren, Wesley C; Bustamante, Carlos; Kelley, Joanna L; Tobler, Michael

    2017-08-01

    Variation in gene expression can provide insights into organismal responses to environmental stress and physiological mechanisms mediating adaptation to habitats with contrasting environmental conditions. We performed an RNA-sequencing experiment to quantify gene expression patterns in fish adapted to habitats with different combinations of environmental stressors, including the presence of toxic hydrogen sulphide (H2 S) and the absence of light in caves. We specifically asked how gene expression varies among populations living in different habitats, whether population differences were consistent among organs, and whether there is evidence for shared expression responses in populations exposed to the same stressors. We analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana (nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of variation in gene expression was correlated with organ type, and the presence of specific environmental stressors elicited unique expression differences among organs. Shared patterns of gene expression between populations exposed to the same environmental stressors increased with levels of organismal organization (from transcript to gene to physiological pathway). In addition, shared patterns of gene expression were more common between populations from sulphidic than populations from cave habitats, potentially indicating that physiochemical stressors with clear biochemical consequences can constrain the diversity of adaptive solutions that mitigate their adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique system, in which adaptation to H2 S and darkness coincide. Functional annotations of differentially expressed genes provide a springboard for investigating physiological mechanisms putatively underlying adaptation to extreme environments. © 2017 John Wiley & Sons Ltd.

  2. [Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction: the study on gene construction, identification and function].

    PubMed

    Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo

    2008-06-18

    To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.

  3. Differential expression of stress candidate genes for thermal tolerance in the sea urchin Loxechinus albus.

    PubMed

    Vergara-Amado, Jonathan; Silva, Andrea X; Manzi, Catalina; Nespolo, Roberto F; Cárdenas, Leyla

    2017-08-01

    Marine ectotherms inhabiting intertidal and shallow subtidal environments are continuously exposed to diurnal tidal cycles and seasonal variability in temperature. These organisms have adaptive mechanisms to maintain cellular homeostasis, irrespective of thermal environmental variation. In this study, we describe the molecular responses to thermal stress in the edible sea urchin Loxechinus albus. In particular, we determined the differential expression of a set of molecular markers that have been identified as targets of stress-related responses. These include the heat shock proteins (hsp70 and hsp90), cell detoxification proteins (cytochrome P450), and osmorregulatory proteins (α and ß - Na(+)/K(+)ATPase). We exposed individuals to different temperatures; a warm treatment (18±1.0°C), a cold treatment (10±1.0°C), and a control treatment (average local temperature of 14±1.0°C) and differential expression was quantified after 2, 6, 12 and 48h of exposure. Levels of mRNA were quantified by reverse transcription-quantitative polymerase chain reaction, and the relative expression of each gene was calculated using the 18S rRNA gene as a reference, and the control treatment as a calibrator. We found that the expression levels of all studied genes increased during exposure to warmth. The largest increase in expression was observed in cytochrome p450 genes (ca. sixteen-fold); this was followed by increases in the expression of the Na(+)/K(+)ATPase (ca. eight-fold) and by the hsp (ca. six fold) genes. These results indicate that sea urchin thermal stress responses depend on differential gene-regulation, involving heat-shock, membrane potential, and detoxification genes that generate an integrated adaptive response to acute environmental changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sexually dimorphic gene expression in the brains of mature zebrafish.

    PubMed

    Santos, Eduarda M; Kille, Peter; Workman, Victoria L; Paull, Gregory C; Tyler, Charles R

    2008-03-01

    The molecular signalling pathways mediating sexual dimorphism have principally been investigated in the gonads, and to a lesser extent in other organs. The brain plays a central role in coordinating sexual function, including the regulation of reproductive development, maturation and sexual behaviour in both sexes. In this study, we investigated sex-related differences in gene expression in the brains of breeding zebrafish (Danio rerio) to establish a greater understanding of the sex-specific physiology of the brain in lower vertebrates. The brain transcriptomic profiles of males and females were interrogated to identify the genes showing sexually dimorphic gene expression. 42 genes were differentially expressed between the sexes, from which 18 genes were over-expressed in males and 24 genes were over-expressed in females. In males, these included deiodinase, iodothyronine, type II and ribosomal protein S8, and in females, superoxide dismutase [Cu-Zn], sprouty-4, frizzled 10 and testis enhanced gene transcript. Estrogen responsive elements were found in the regulatory regions for 3 genes over-expressed in males and 7 genes over-expressed in females. We have demonstrated the existence of dimorphic patterns of gene expression in the brain of a sexually mature, non-mammalian, vertebrate model, with implications for studies into reproduction and chemical disruption of brain function.

  5. Clustering cancer gene expression data by projective clustering ensemble

    PubMed Central

    Yu, Xianxue; Yu, Guoxian

    2017-01-01

    Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920

  6. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    PubMed Central

    2010-01-01

    Background Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. Results We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. Conclusion The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes. PMID:21172044

  7. Sex-specific gene expression in the BXD mouse liver.

    PubMed

    Gatti, Daniel M; Zhao, Ni; Chesler, Elissa J; Bradford, Blair U; Shabalin, Andrey A; Yordanova, Roumyana; Lu, Lu; Rusyn, Ivan

    2010-08-01

    Differences in clinical phenotypes between the sexes are well documented and have their roots in differential gene expression. While sex has a major effect on gene expression, transcription is also influenced by complex interactions between individual genetic variation and environmental stimuli. In this study, we sought to understand how genetic variation affects sex-related differences in liver gene expression by performing genetic mapping of genomewide liver mRNA expression data in a genetically defined population of naive male and female mice from C57BL/6J, DBA/2J, B6D2F1, and 37 C57BL/6J x DBA/2J (BXD) recombinant inbred strains. As expected, we found that many genes important to xenobiotic metabolism and other important pathways exhibit sexually dimorphic expression. We also performed gene expression quantitative trait locus mapping in this panel and report that the most significant loci that appear to regulate a larger number of genes than expected by chance are largely sex independent. Importantly, we found that the degree of correlation within gene expression networks differs substantially between the sexes. Finally, we compare our results to a recently released human liver gene expression data set and report on important similarities in sexually dimorphic liver gene expression between mouse and human. This study enhances our understanding of sex differences at the genome level and between species, as well as increasing our knowledge of the molecular underpinnings of sex differences in responses to xenobiotics.

  8. Analysis of HOX gene expression patterns in human breast cancer.

    PubMed

    Hur, Ho; Lee, Ji-Yeon; Yun, Hyo Jung; Park, Byeong Woo; Kim, Myoung Hee

    2014-01-01

    HOX genes are highly conserved transcription factors that determine the identity of cells and tissues along the anterior-posterior body axis in developing embryos. Aberrations in HOX gene expression have been shown in various tumors. However, the correlation of HOX gene expression patterns with tumorigenesis and cancer progression has not been fully characterized. Here, to analyze putative candidate HOX genes involved in breast cancer tumorigenesis and progression, the expression patterns of 39 HOX genes were analyzed using breast cancer cell lines and patient-derived breast tissues. In vitro analysis revealed that HOXA and HOXB gene expression occurred in a subtype-specific manner in breast cancer cell lines, whereas most HOXC genes were strongly expressed in most cell lines. Among the 39 HOX genes analyzed, 25 were chosen for further analysis in malignant and non-malignant tissues. Fourteen genes, encoding HOXA6, A13, B2, B4, B5, B6, B7, B8, B9, C5, C9, C13, D1, and D8, out of 25 showed statistically significant differential expression patterns between non-malignant and malignant breast tissues and are putative candidates associated with the development and malignant progression of breast cancer. Our data provide a valuable resource for furthering our understanding of HOX gene expression in breast cancer and the possible involvement of HOX genes in tumor progression.

  9. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  10. Thymidine Phosphorylase Gene Expression in Stage III Colorectal Cancer

    PubMed Central

    Lindskog, Elinor B.; Wettergren, Yvonne; Odin, Elisabeth; Gustavsson, Bengt; Derwinger, Kristoffer

    2012-01-01

    Background The thymidine phosphorylase (TP) enzyme has several tumor-promoting functions. The aim of this study was to explore TP gene expression in relation to clinical and histopathological data obtained from patients with stage III colorectal cancer. Methods and results TP gene expression was analyzed by real-time quantitative PCR in tumor and mucosa samples from 254 patients. TP gene expression in tumors correlated with lymph node staging, with higher expression relating to a higher number of positive nodes and a worse N-stage. Higher TP expression was also associated with a worse histological tumor grade. Patients with rectal cancer had significantly higher TP expression in mucosa and tumors compared with patients having colon cancer. Conclusion Higher intratumoral TP expression appears to be related to a worse N stage, and thus, with a worse prognosis. TP gene expression measured in a preoperative biopsy could be of interest in preoperative staging. PMID:23115484

  11. Transposable element influences on gene expression in plants.

    PubMed

    Hirsch, Cory D; Springer, Nathan M

    2017-01-01

    Transposable elements (TEs) comprise a major portion of many plant genomes and bursts of TE movements cause novel genomic variation within species. In order to maintain proper gene function, plant genomes have evolved a variety of mechanisms to tolerate the presence of TEs within or near genes. Here, we review our understanding of the interactions between TEs and gene expression in plants by assessing three ways that transposons can influence gene expression. First, there is growing evidence that TE insertions within introns or untranslated regions of genes are often tolerated and have minimal impact on expression level or splicing. However, there are examples in which TE insertions within genes can result in aberrant or novel transcripts. Second, TEs can provide novel alternative promoters, which can lead to new expression patterns or original coding potential of an alternate transcript. Third, TE insertions near genes can influence regulation of gene expression through a variety of mechanisms. For example, TEs may provide novel cis-acting regulatory sites behaving as enhancers or insert within existing enhancers to influence transcript production. Alternatively, TEs may change chromatin modifications in regions near genes, which in turn can influence gene expression levels. Together, the interactions of genes and TEs provide abundant evidence for the role of TEs in changing basic functions within plant genomes beyond acting as latent genomic elements or as simple insertional mutagens. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

  12. Distinguishing the time course of lexical and discourse processes through context, coreference, and quantified expressions.

    PubMed

    Huang, Yi Ting; Gordon, Peter C

    2011-07-01

    How does prior context influence lexical and discourse-level processing during real-time language comprehension? Experiment 1 examined whether the referential ambiguity introduced by a repeated, anaphoric expression had an immediate or delayed effect on lexical and discourse processing, using an eye-tracking-while-reading task. Eye movements indicated facilitated recognition of repeated expressions, suggesting that prior context can rapidly influence lexical processing. However, context effects at the discourse level affected later processing, appearing in longer regression-path durations 2 words after the anaphor and in greater rereading times of the antecedent expression. Experiments 2 and 3 explored the nature of this delay by examining the role of the preceding context in activating relevant representations. Offline and online interpretations confirmed that relevant referents were activated following the critical context. Nevertheless, their initial unavailability during comprehension suggests a robust temporal division between lexical and discourse-level processing.

  13. Heterologous gene expression in filamentous fungi.

    PubMed

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Changes in Gene Expression with Sleep

    PubMed Central

    Thimgan, Matthew S.; Duntley, Stephen P.; Shaw, Paul J.

    2011-01-01

    There is general agreement within the sleep community and among public health officials of the need for an accessible biomarker of sleepiness. As the foregoing discussions emphasize, however, it may be more difficult to reach consensus on how to define such a biomarker than to identify candidate molecules that can be then evaluated to determine if they might be useful to solve a variety of real-world problems related to insufficient sleep. With that in mind, a goal of our laboratories has been to develop a rational strategy to expedite the identification of candidate biomarkers. 1 We began with the assumption that since both the genetic and environmental context of a gene can influence its behavior, an effective test of sleep loss will likely be composed of a panel of multiple biomarkers. That is, we believe that it is premature to exclude a candidate analyte simply because it might also be modulated in response to other conditions (e.g., illness, metabolism, sympathetic tone, etc.). Our next assumption was that an easily accessible biomarker would be more useful in real-world settings. Thus, we have focused on saliva, as opposed to urine or blood, as a rich source of biological analytes that can be mined to optimize the chances of bringing a biomarker out into the field. Finally, we recognize that conducting validation studies in humans can be expensive and time consuming. Thus, we have exploited genetic and pharmacological tools in the model organism Drosophila melanogaster to more fully characterize the behavior of the most exciting candidate biomarkers. Citation: Thimgan MS; Duntley SP; Shaw PJ. Changes in gene expression with sleep. J Clin Sleep Med 2011;7(5):Supplement S26-S27. PMID:22003326

  15. Clustering gene expression data using a diffraction‐inspired framework

    PubMed Central

    2012-01-01

    Background The recent developments in microarray technology has allowed for the simultaneous measurement of gene expression levels. The large amount of captured data challenges conventional statistical tools for analysing and finding inherent correlations between genes and samples. The unsupervised clustering approach is often used, resulting in the development of a wide variety of algorithms. Typical clustering algorithms require selecting certain parameters to operate, for instance the number of expected clusters, as well as defining a similarity measure to quantify the distance between data points. The diffraction‐based clustering algorithm however is designed to overcome this necessity for user‐defined parameters, as it is able to automatically search the data for any underlying structure. Methods The diffraction‐based clustering algorithm presented in this paper is tested using five well‐known expression datasets pertaining to cancerous tissue samples. The clustering results are then compared to those results obtained from conventional algorithms such as the k‐means, fuzzy c‐means, self‐organising map, hierarchical clustering algorithm, Gaussian mixture model and density‐based spatial clustering of applications with noise (DBSCAN). The performance of each algorithm is measured using an average external criterion and an average validity index. Results The diffraction‐based clustering algorithm is shown to be independent of the number of clusters as the algorithm searches the feature space and requires no form of parameter selection. The results show that the diffraction‐based clustering algorithm performs significantly better on the real biological datasets compared to the other existing algorithms. Conclusion The results of the diffraction‐based clustering algorithm presented in this paper suggest that the method can provide researchers with a new tool for successfully analysing microarray data. PMID:23164195

  16. Influence of Sex on Basal and Dickkopf-1 Regulated Gene Expression in the Bovine Morula.

    PubMed

    Denicol, Anna C; Leão, Beatriz C S; Dobbs, Kyle B; Mingoti, Gisele Z; Hansen, Peter J

    2015-01-01

    Sex affects function of the developing mammalian embryo as early as the preimplantation period. There were two goals of the current objective. The first was to determine the degree and nature of differences in gene expression between female and male embryos in the cow at the morula stage of development. The second objective was to determine whether DKK1, a molecule known to alter differentiation of the blastocyst, would affect gene expression differently for female and male morulae. In Experiment 1, female and male embryos were treated with DKK1 at Day 5 after insemination. Morulae were harvested 24 h after treatment, pooled in groups of 20 for microarray analysis and RNA subjected to analysis of gene expression by microarray hybridization. There were 662 differentially expressed genes between females and males and 128 of these genes had a fold change ≥ 1.5 between the two sexes. Of the genes upregulated in females, 49.5% were located in the X chromosome. Functional analysis predicted that cell survival was greater in female embryos. Experiment 2 involved a similar design except that transcripts for 12 genes previously reported to be affected by sex, DKK1 or the interaction were quantified by quantitative polymerase chain reaction. Expression of all genes tested that were affected by sex in experiment 1 was affected in a similar manner in Experiment 2. In contrast, effects of DKK1 on gene expression were largely not repeatable in Experiment 2. The exception was for the Hippo signaling gene AMOT, which was inhibited by DKK1. In Experiment 3, embryos produced by fertilization with unsorted sperm were treated with DKK1 at Day 5 and abundance of transcripts for CDX2, GATA6, and NANOG determined at Days 5, 6 and 7 after insemination. There was no effect of DKK1 on expression of any of the three genes. In conclusion, female and male bovine embryos have a different pattern of gene expression as early as the morula stage, and this is due to a large extent to expression

  17. Influence of Sex on Basal and Dickkopf-1 Regulated Gene Expression in the Bovine Morula

    PubMed Central

    Denicol, Anna C.; Leão, Beatriz C. S.; Dobbs, Kyle B.; Mingoti, Gisele Z.; Hansen, Peter J.

    2015-01-01

    Sex affects function of the developing mammalian embryo as early as the preimplantation period. There were two goals of the current objective. The first was to determine the degree and nature of differences in gene expression between female and male embryos in the cow at the morula stage of development. The second objective was to determine whether DKK1, a molecule known to alter differentiation of the blastocyst, would affect gene expression differently for female and male morulae. In Experiment 1, female and male embryos were treated with DKK1 at Day 5 after insemination. Morulae were harvested 24 h after treatment, pooled in groups of 20 for microarray analysis and RNA subjected to analysis of gene expression by microarray hybridization. There were 662 differentially expressed genes between females and males and 128 of these genes had a fold change ≥ 1.5 between the two sexes. Of the genes upregulated in females, 49.5% were located in the X chromosome. Functional analysis predicted that cell survival was greater in female embryos. Experiment 2 involved a similar design except that transcripts for 12 genes previously reported to be affected by sex, DKK1 or the interaction were quantified by quantitative polymerase chain reaction. Expression of all genes tested that were affected by sex in experiment 1 was affected in a similar manner in Experiment 2. In contrast, effects of DKK1 on gene expression were largely not repeatable in Experiment 2. The exception was for the Hippo signaling gene AMOT, which was inhibited by DKK1. In Experiment 3, embryos produced by fertilization with unsorted sperm were treated with DKK1 at Day 5 and abundance of transcripts for CDX2, GATA6, and NANOG determined at Days 5, 6 and 7 after insemination. There was no effect of DKK1 on expression of any of the three genes. In conclusion, female and male bovine embryos have a different pattern of gene expression as early as the morula stage, and this is due to a large extent to expression

  18. Faster-X Evolution of Gene Expression in Drosophila

    PubMed Central

    Meisel, Richard P.; Malone, John H.; Clark, Andrew G.

    2012-01-01

    DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459

  19. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees

    Treesearch

    Andrew Groover; Joseph R. Fontana; Gayle Dupper; Caiping Ma; Robert Martienssen; Steven Strauss; Richard Meilan

    2004-01-01

    We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the β-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS...

  20. Aromatase gene expression in the stallion.

    PubMed

    Lemazurier, E; Sourdaine, P; Nativelle, C; Plainfossé, B; Séralini, G

    2001-06-10

    Adult stallion secretes very high estrogen levels in its testicular vein and semen, and the responsible enzyme cytochrome P450 aromatase (P450 arom) is known to be present mainly in Leydig cells. We studied in further details the distribution of equine aromatase in various adult tissues including the brain (hypothalamic area), liver, kidney, small intestine, muscle, bulbourethral gland and testes. The aromatase mRNA was essentially detected by RT-PCR in testis (169+/-14 amol of aromatase mRNA per microg of total RNA) and was barely detectable in brain, or below 0.1 amol/microg RNA in other tissues. This range of expression was confirmed by ELISA (50+/-7 pg/microg total protein) in the testis, and by immunoblot, evidencing a 53 kDA specific protein band in testis and brain only. The corresponding aromatase activity was well detected, by 3H(2)O release from 1beta, 2beta(3)H-androstenedione, in testis and brain (200+/-23 and 25+/-6 pmol/min per mg, respectively) and below 3 pmol product formed/min per mg in other tissues. This study indicates that the testis, among the tissues analyzed, is the major source of aromatase in the adult stallion, and that the aromatase gene expression is specifically enhanced at this level, and is responsible for the high estrogen synthesis observed. Moreover, the study of aromatase in one colt testis has shown lower levels of transcripts, protein and enzyme activity, evidencing that aromatase is regulated during the development and may serve as a useful marker of testicular function. As the second organ where aromatase mRNA and activity are both well detected is brain, this study also underlines the possible role of neurosteroids in stallion on behaviour, brain function or central endocrine control.

  1. Employing a composite gene-flow index to numerically quantify a crop's potential for gene flow: an Irish perspective.

    PubMed

    Flannery, Marie-Louise; Meade, Conor; Mullins, Ewen

    2005-01-01

    Guidelines to ensure the efficient coexistence of genetically modified (GM) and conventional crops are currently being considered across the European Union. The purpose of this strategy is to describe the measures a farmer must adopt to minimize the admixture of GM and non-GM crops. Minimizing pollen/seed-mediated gene flow between GM and non-GM crops is central to successful coexistence. However no system is currently available to permit the numeric quantification of a crop's propensity for pollen/seed-mediated gene flow. The provision of such a system could permit a background level of gene flow, specific for a particular conventional crop, to be calculated. Here we present a gene flow index model implemented using the principal arable crops in Ireland as a model dataset. The objective of this research was to establish a baseline gene flow data set for Ireland's primary conventional crops through the provision of a simple numerical index. This Gene Flow Index (GFI) incorporates four strands of crop-mediated gene flow (crop pollen-to-crop, crop pollen-to-wild, crop seed-to-volunteer and crop seed-to-feral) into a format that permits the calculation of a crop's gene flow potential. Responsive to regional parameters, we have applied the model to sugar beet, oilseed rape, potato, ryegrass, maize, wheat and barley. We propose that the attained indices will highlight those crops that require additional measures in order to minimize gene flow in accordance with anticipated coexistence guidelines.

  2. Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas - A biodiesel plant.

    PubMed

    Karuppaiya, Palaniyandi; Yan, Xiao-Xue; Liao, Wang; Wu, Jun; Chen, Fang; Tang, Lin

    2017-01-01

    Physic nut (Jatropha curcas L) seed oil is a natural resource for the alternative production of fossil fuel. Seed oil production is mainly depended on seed yield, which was restricted by the low ratio of staminate flowers to pistillate flowers. Further, the mechanism of physic nut flower sex differentiation has not been fully understood yet. Quantitative Real Time-Polymerase Chain Reaction is a reliable and widely used technique to quantify the gene expression pattern in biological samples. However, for accuracy of qRT-PCR, appropriate reference gene is highly desirable to quantify the target gene level. Hence, the present study was aimed to identify the stable reference genes in staminate and pistillate flowers of J. curcas. In this study, 10 candidate reference genes were selected and evaluated for their expression stability in staminate and pistillate flowers, and their stability was validated by five different algorithms (ΔCt, BestKeeper, NormFinder, GeNorm and RefFinder). Resulting, TUB and EF found to be the two most stably expressed reference for staminate flower; while GAPDH1 and EF found to be the most stably expressed reference gene for pistillate flowers. Finally, RT-qPCR assays of target gene AGAMOUS using the identified most stable reference genes confirmed the reliability of selected reference genes in different stages of flower development. AGAMOUS gene expression levels at different stages were further proved by gene copy number analysis. Therefore, the present study provides guidance for selecting appropriate reference genes for analyzing the expression pattern of floral developmental genes in staminate and pistillate flowers of J. curcas.

  3. Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas – A biodiesel plant

    PubMed Central

    Karuppaiya, Palaniyandi; Yan, Xiao-Xue; Liao, Wang; Chen, Fang; Tang, Lin

    2017-01-01

    Physic nut (Jatropha curcas L) seed oil is a natural resource for the alternative production of fossil fuel. Seed oil production is mainly depended on seed yield, which was restricted by the low ratio of staminate flowers to pistillate flowers. Further, the mechanism of physic nut flower sex differentiation has not been fully understood yet. Quantitative Real Time—Polymerase Chain Reaction is a reliable and widely used technique to quantify the gene expression pattern in biological samples. However, for accuracy of qRT-PCR, appropriate reference gene is highly desirable to quantify the target gene level. Hence, the present study was aimed to identify the stable reference genes in staminate and pistillate flowers of J. curcas. In this study, 10 candidate reference genes were selected and evaluated for their expression stability in staminate and pistillate flowers, and their stability was validated by five different algorithms (ΔCt, BestKeeper, NormFinder, GeNorm and RefFinder). Resulting, TUB and EF found to be the two most stably expressed reference for staminate flower; while GAPDH1 and EF found to be the most stably expressed reference gene for pistillate flowers. Finally, RT-qPCR assays of target gene AGAMOUS using the identified most stable reference genes confirmed the reliability of selected reference genes in different stages of flower development. AGAMOUS gene