Sample records for quantify energy performance

  1. Shoulder-Fired Weapons with High Recoil Energy: Quantifying Injury and Shooting Performance

    DTIC Science & Technology

    2004-05-01

    USARIEM TECHNICAL REPORT T04-05 SHOULDER-FIRED WEAPONS WITH HIGH RECOIL ENERGY: QUANTIFYING INJURY AND SHOOTING PERFORMANCE...ACKNOWLEDGMENTS The authors would like to thank the following individuals for their assistance in preparing this technical report: Robert Mello... myofascial and other musculoskeletal pain is considered abnormal if the anatomical site is 2 kg/cm2 lower relative to a normal control point, such as

  2. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, Rebecca; Carpenter Petri, Alberta C; Riddle, Matt

    Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristicmore » is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified

  3. Quantifying Ballistic Armor Performance: A Minimally Invasive Approach

    NASA Astrophysics Data System (ADS)

    Holmes, Gale; Kim, Jaehyun; Blair, William; McDonough, Walter; Snyder, Chad

    2006-03-01

    Theoretical and non-dimensional analyses suggest a critical link between the performance of ballistic resistant armor and the fundamental mechanical properties of the polymeric materials that comprise them. Therefore, a test methodology that quantifies these properties without compromising an armored vest that is exposed to the industry standard V-50 ballistic performance test is needed. Currently, there is considerable speculation about the impact that competing degradation mechanisms (e.g., mechanical, humidity, ultraviolet) may have on ballistic resistant armor. We report on the use of a new test methodology that quantifies the mechanical properties of ballistic fibers and how each proposed degradation mechanism may impact a vest's ballistic performance.

  4. Quantifying and Monetizing Renewable Energy Resiliency

    DOE PAGES

    Anderson, Kate H.; Laws, Nicholas D.; Marr, Spencer; ...

    2018-03-23

    Energy resiliency has been thrust to the forefront by recent severe weather events and natural disasters. Billions of dollars are lost each year due to power outages. This article highlights the unique value renewable energy hybrid systems (REHS), comprised of solar, energy storage, and generators, provide in increasing resiliency. We present a methodology to quantify the amount and value of resiliency provided by REHS, and ways to monetize this resiliency value through insurance premium discounts. A case study of buildings in New York City demonstrates how implementing REHS in place of traditional backup diesel generators can double the amount ofmore » outage survivability, with an added value of $781,200. For a Superstorm Sandy type event, results indicate that insurance premium reductions could support up to 4% of the capital cost of REHS, and the potential exists to prevent up to $2.5 billion in business interruption losses with increased REHS deployment.« less

  5. Quantifying and Monetizing Renewable Energy Resiliency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Kate H.; Laws, Nicholas D.; Marr, Spencer

    Energy resiliency has been thrust to the forefront by recent severe weather events and natural disasters. Billions of dollars are lost each year due to power outages. This article highlights the unique value renewable energy hybrid systems (REHS), comprised of solar, energy storage, and generators, provide in increasing resiliency. We present a methodology to quantify the amount and value of resiliency provided by REHS, and ways to monetize this resiliency value through insurance premium discounts. A case study of buildings in New York City demonstrates how implementing REHS in place of traditional backup diesel generators can double the amount ofmore » outage survivability, with an added value of $781,200. For a Superstorm Sandy type event, results indicate that insurance premium reductions could support up to 4% of the capital cost of REHS, and the potential exists to prevent up to $2.5 billion in business interruption losses with increased REHS deployment.« less

  6. A framework for quantifying the impact of occupant behavior on energy savings of energy conservation measures

    DOE PAGES

    Sun, Kaiyu; Hong, Tianzhen

    2017-04-27

    To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energy performance of buildings. Thismore » paper presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior (the relative savings

  7. A framework for quantifying the impact of occupant behavior on energy savings of energy conservation measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaiyu; Hong, Tianzhen

    To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energy performance of buildings. Thismore » paper presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior (the relative savings

  8. A framework for quantifying the impact of occupant behavior on energy savings of energy conservation measures

    DOE PAGES

    Sun, K; Hong, T

    2017-07-01

    © 2017 Elsevier B.V. To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energymore » performance of buildings. This study presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior

  9. Quantifying Behavior Driven Energy Savings for Hotels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Bing; Wang, Na; Hooks, Edward

    2016-08-12

    Hotel facilities present abundant opportunities for energy savings. In the United States, there are around 25,000 hotels that spend on an average of $2,196 on energy costs per room each year. This amounts to about 6% of the total annual hotel operating cost. However, unlike offices, there are limited studies on establishing appropriate baselines and quantifying hotel energy savings given the variety of services and amenities, unpredictable customer behaviors, and the around-the-clock operation hours. In this study, we investigate behavior driven energy savings for three medium-size (around 90,000 sf2) hotels that offer similar services in different climate zones. We firstmore » used Department of Energy Asset Scoring Tool to establish baseline models. We then conducted energy saving analysis in EnergyPlus based on a behavior model that defines the upper bound and lower bound of customer and hotel staff behavior. Lastly, we presented a probabilistic energy savings outlook for each hotel. The analysis shows behavior driven energy savings up to 25%. We believe this is the first study to incorporate behavioral factors into energy analysis for hotels. It also demonstrates a procedure to quickly create tailored baselines and identify improvement opportunities for hotels.« less

  10. PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.

    PubMed

    McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas

    2015-11-03

    Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.

  11. Quantifying induced effects of subsurface renewable energy storage

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry

  12. Quantifying Safety Performance of Driveways on State Highways

    DOT National Transportation Integrated Search

    2012-08-01

    This report documents a research effort to quantify the safety performance of driveways in the State of Oregon. In : particular, this research effort focuses on driveways located adjacent to principal arterial state highways with urban or : rural des...

  13. Energy-Discriminative Performance of a Spectral Micro-CT System

    PubMed Central

    He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge

    2013-01-01

    Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristic of some known materials to calibrate the detector’s photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864

  14. Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition

    PubMed Central

    Chu, Xiakun; Gan, Linfeng; Wang, Erkang; Wang, Jin

    2013-01-01

    Biomolecular functions are determined by their interactions with other molecules. Biomolecular recognition is often flexible and associated with large conformational changes involving both binding and folding. However, the global and physical understanding for the process is still challenging. Here, we quantified the intrinsic energy landscapes of flexible biomolecular recognition in terms of binding–folding dynamics for 15 homodimers by exploring the underlying density of states, using a structure-based model both with and without considering energetic roughness. By quantifying three individual effective intrinsic energy landscapes (one for interfacial binding, two for monomeric folding), the association mechanisms for flexible recognition of 15 homodimers can be classified into two-state cooperative “coupled binding–folding” and three-state noncooperative “folding prior to binding” scenarios. We found that the association mechanism of flexible biomolecular recognition relies on the interplay between the underlying effective intrinsic binding and folding energy landscapes. By quantifying the whole global intrinsic binding–folding energy landscapes, we found strong correlations between the landscape topography measure Λ (dimensionless ratio of energy gap versus roughness modulated by the configurational entropy) and the ratio of the thermodynamic stable temperature versus trapping temperature, as well as between Λ and binding kinetics. Therefore, the global energy landscape topography determines the binding–folding thermodynamics and kinetics, crucial for the feasibility and efficiency of realizing biomolecular function. We also found “U-shape” temperature-dependent kinetic behavior and a dynamical cross-over temperature for dividing exponential and nonexponential kinetics for two-state homodimers. Our study provides a unique way to bridge the gap between theory and experiments. PMID:23754431

  15. Developing an Energy Performance Modeling Startup Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, A.

    2012-10-01

    In 2011, the NAHB Research Center began the first part of the multi-year effort by assessing the needs and motivations of residential remodelers regarding energy performance remodeling. The scope is multifaceted - all perspectives will be sought related to remodeling firms ranging in size from small-scale, sole proprietor to national. This will allow the Research Center to gain a deeper understanding of the remodeling and energy retrofit business and the needs of contractors when offering energy upgrade services. To determine the gaps and the motivation for energy performance remodeling, the NAHB Research Center conducted (1) an initial series of focusmore » groups with remodelers at the 2011 International Builders' Show, (2) a second series of focus groups with remodelers at the NAHB Research Center in conjunction with the NAHB Spring Board meeting in DC, and (3) quantitative market research with remodelers based on the findings from the focus groups. The goal was threefold, to: Understand the current remodeling industry and the role of energy efficiency; Identify the gaps and barriers to adding energy efficiency into remodeling; and Quantify and prioritize the support needs of professional remodelers to increase sales and projects involving improving home energy efficiency. This report outlines all three of these tasks with remodelers.« less

  16. Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data

    NASA Astrophysics Data System (ADS)

    Siemann, Amanda Lynn

    The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the

  17. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  18. Suitability of ANSI standards for quantifying communication satellite system performance

    NASA Technical Reports Server (NTRS)

    Cass, Robert D.

    1988-01-01

    A study on the application of American National Standards X3.102 and X3.141 to various classes of communication satellite systems from the simple analog bent-pipe to NASA's Advanced Communications Technology Satellite (ACTS) is discussed. These standards are proposed as means for quantifying the end-to-end communication system performance of communication satellite systems. An introductory overview of the two standards are given followed by a review of the characteristics, applications, and advantages of using X3.102 and X3.141 to quantify with a description of the application of these standards to ACTS.

  19. Fuzzy Performance between Surface Fitting and Energy Distribution in Turbulence Runner

    PubMed Central

    Liang, Zhongwei; Liu, Xiaochu; Ye, Bangyan; Brauwer, Richard Kars

    2012-01-01

    Because the application of surface fitting algorithms exerts a considerable fuzzy influence on the mathematical features of kinetic energy distribution, their relation mechanism in different external conditional parameters must be quantitatively analyzed. Through determining the kinetic energy value of each selected representative position coordinate point by calculating kinetic energy parameters, several typical algorithms of complicated surface fitting are applied for constructing microkinetic energy distribution surface models in the objective turbulence runner with those obtained kinetic energy values. On the base of calculating the newly proposed mathematical features, we construct fuzzy evaluation data sequence and present a new three-dimensional fuzzy quantitative evaluation method; then the value change tendencies of kinetic energy distribution surface features can be clearly quantified, and the fuzzy performance mechanism discipline between the performance results of surface fitting algorithms, the spatial features of turbulence kinetic energy distribution surface, and their respective environmental parameter conditions can be quantitatively analyzed in detail, which results in the acquirement of final conclusions concerning the inherent turbulence kinetic energy distribution performance mechanism and its mathematical relation. A further turbulence energy quantitative study can be ensured. PMID:23213287

  20. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  1. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    NASA Astrophysics Data System (ADS)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate

  2. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat.

    PubMed

    Straub, Anthony P; Elimelech, Menachem

    2017-11-07

    Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.

  3. Quantifying highly efficient incoherent energy transfer in perylene-based multichromophore arrays.

    PubMed

    Webb, James E A; Chen, Kai; Prasad, Shyamal K K; Wojciechowski, Jonathan P; Falber, Alexander; Thordarson, Pall; Hodgkiss, Justin M

    2016-01-21

    Multichromophore perylene arrays were designed and synthesized to have extremely efficient resonance energy transfer. Using broadband ultrafast photoluminescence and transient absorption spectroscopies, transfer timescales of approximately 1 picosecond were resolved, corresponding to efficiencies of up to 99.98%. The broadband measurements also revealed spectra corresponding to incoherent transfer between localized states. Polarization resolved spectroscopy was used to measure the dipolar angles between donor and acceptor chromophores, thereby enabling geometric factors to be fixed when assessing the validity of Förster theory in this regime. Förster theory was found to predict the correct magnitude of transfer rates, with measured ∼2-fold deviations consistent with the breakdown of the point-dipole approximation at close approach. The materials presented, along with the novel methods for quantifying ultrahigh energy transfer efficiencies, will be valuable for applications demanding extremely efficient energy transfer, including fluorescent solar concentrators, optical gain, and photonic logic devices.

  4. Quantifying the energy required for groundwater pumping across a regional aquifer system

    NASA Astrophysics Data System (ADS)

    Ronayne, M. J.; Shugert, D. T.

    2017-12-01

    Groundwater pumping can be a substantial source of energy expenditure, particularly in semiarid regions with large depths to water. In this study we assessed the energy required for groundwater pumping in the Denver Basin aquifer system, a group of sedimentary rock aquifers used for municipal water supply in Colorado. In recent decades, declining water levels in the Denver Basin aquifers has resulted in increased pumping lifts and higher energy use rates. We quantified the spatially variable energy intensity for groundwater pumping by analyzing spatial variations in the lift requirement. The median energy intensities for two major aquifers were 1.2 and 1.8 kWh m-3. Considering typical municipal well production rates and household water use in the study area, these results indicate that the energy cost associated with groundwater pumping can be a significant fraction (>20%) of the total electricity consumption for all household end uses. Pumping at this scale (hundreds of municipal wells producing from deep aquifers) also generates substantial greenhouse gas emissions. Analytical wellfield modeling conducted as part of this study clearly demonstrates how multiple components of the lift impact the energy requirement. Results provide guidance for water management strategies that reduce energy expenditure.

  5. Quantifying performance on an outdoor agility drill using foot-mounted inertial measurement units.

    PubMed

    Zaferiou, Antonia M; Ojeda, Lauro; Cain, Stephen M; Vitali, Rachel V; Davidson, Steven P; Stirling, Leia; Perkins, Noel C

    2017-01-01

    Running agility is required for many sports and other physical tasks that demand rapid changes in body direction. Quantifying agility skill remains a challenge because measuring rapid changes of direction and quantifying agility skill from those measurements are difficult to do in ways that replicate real task/game play situations. The objectives of this study were to define and to measure agility performance for a (five-cone) agility drill used within a military obstacle course using data harvested from two foot-mounted inertial measurement units (IMUs). Thirty-two recreational athletes ran an agility drill while wearing two IMUs secured to the tops of their athletic shoes. The recorded acceleration and angular rates yield estimates of the trajectories, velocities and accelerations of both feet as well as an estimate of the horizontal velocity of the body mass center. Four agility performance metrics were proposed and studied including: 1) agility drill time, 2) horizontal body speed, 3) foot trajectory turning radius, and 4) tangential body acceleration. Additionally, the average horizontal ground reaction during each footfall was estimated. We hypothesized that shorter agility drill performance time would be observed with small turning radii and large tangential acceleration ranges and body speeds. Kruskal-Wallis and mean rank post-hoc statistical analyses revealed that shorter agility drill performance times were observed with smaller turning radii and larger tangential acceleration ranges and body speeds, as hypothesized. Moreover, measurements revealed the strategies that distinguish high versus low performers. Relative to low performers, high performers used sharper turns, larger changes in body speed (larger tangential acceleration ranges), and shorter duration footfalls that generated larger horizontal ground reactions during the turn phases. Overall, this study advances the use of foot-mounted IMUs to quantify agility performance in contextually

  6. Water for Energy: Quantifying Water Use in the United States Energy Economy as of 2014

    NASA Astrophysics Data System (ADS)

    Grubert, E.; Sanders, K.

    2016-12-01

    The US energy economy requires significant quantities of water for primary energy extraction, processing and refining, conversion to secondary forms, waste disposal and site remediation. Major shifts in the energy sector have affected the water requirements of the US energy system in ways that are widely acknowledged but poorly quantified. For example, hydraulic fracturing represents a new demand for water, but wind turbines and solar photovoltaics require essentially no water. Further, many water intensity factors commonly used in energy studies are several decades old. This work updates water intensity factors for the US energy system based on recent data and thermodynamic principles, with a near comprehensive treatment of 16 energy fuel cycles from resource capture through post-conversion waste management. For the first time, we also provide absolute estimates of water withdrawn and consumed for energy, differentiated by water source (surface, ground, or reclaimed) and quality (fresh, brackish, saline, and brine). We find that as of 2014, the US consumed approximately 19 billion cubic meters (m3) and withdrew 210 billion m3 of water for the energy system. Most of this water was freshwater (76% of consumption and 86% of withdrawal). Essentially all withdrawals (excluding flow through hydroelectric facilities) are for thermoelectric power plant cooling, accounting for about 38% of total US water withdrawals. Water consumption for energy is estimated at about 12% of total US water consumption, of which an estimated 37% and 17% is for thermoelectric cooling and evaporation from hydroelectric reservoirs, respectively. Withdrawals and consumption for life cycle stages other than thermoelectric cooling are reported in detail, with locally relevant findings like basin-specific water use for coal mining. This work provides a new baseline understanding of water use for the changing US energy economy that can guide decision makers integrating water and energy decisions.

  7. Quantifying individual performance in Cricket — A network analysis of batsmen and bowlers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Satyam

    2014-01-01

    Quantifying individual performance in the game of Cricket is critical for team selection in International matches. The number of runs scored by batsmen and wickets taken by bowlers serves as a natural way of quantifying the performance of a cricketer. Traditionally the batsmen and bowlers are rated on their batting or bowling average respectively. However, in a game like Cricket it is always important the manner in which one scores the runs or claims a wicket. Scoring runs against a strong bowling line-up or delivering a brilliant performance against a team with a strong batting line-up deserves more credit. A player’s average is not able to capture this aspect of the game. In this paper we present a refined method to quantify the ‘quality’ of runs scored by a batsman or wickets taken by a bowler. We explore the application of Social Network Analysis (SNA) to rate the players in a team performance. We generate a directed and weighted network of batsmen-bowlers using the player-vs-player information available for Test cricket and ODI cricket. Additionally we generate a network of batsmen and bowlers based on the dismissal record of batsmen in the history of cricket-Test (1877-2011) and ODI (1971-2011). Our results show that M. Muralitharan is the most successful bowler in the history of Cricket. Our approach could potentially be applied in domestic matches to judge a player’s performance which in turn paves the way for a balanced team selection for International matches.

  8. Noncovalent Interactions of Tiopronin-Protected Gold Nanoparticles with DNA: Two Methods to Quantify Free Energy of Binding

    PubMed Central

    Prado-Gotor, R.; Grueso, E.

    2014-01-01

    The binding of gold nanoparticles capped with N-(2-mercaptopropionyl)glycine (Au@tiopronin) with double-stranded DNA has been investigated and quantified in terms of free energies by using two different approaches. The first approach follows the DNA conformational changes induced by gold nanoparticles using the CD technique. The second methodology consists in the use of pyrene-1-carboxaldehyde as a fluorescent probe. This second procedure implies the determination of the “true” free energy of binding of the probe with DNA, after corrections through solubility measurements. Working at different salt concentrations, the nonelectrostatic and electrostatic components of the binding free energy have been separated. The results obtained revealed that the binding is of nonelectrostatic character, fundamentally. The procedure used in this work could be extended to quantify the binding affinity of other AuNPs/DNA systems. PMID:24587710

  9. Quantifying palpation techniques in relation to performance in a clinical prostate exam.

    PubMed

    Wang, Ninghuan; Gerling, Gregory J; Childress, Reba Moyer; Martin, Marcus L

    2010-07-01

    This paper seeks to quantify finger palpation techniques in the prostate clinical exam, determine their relationship with performance in detecting abnormalities, and differentiate the tendencies of nurse practitioner students and resident physicians. One issue with the digital rectal examination (DRE) is that performance in detecting abnormalities varies greatly and agreement between examiners is low. The utilization of particular palpation techniques may be one way to improve clinician ability. Based on past qualitative instruction, this paper algorithmically defines a set of palpation techniques for the DRE, i.e., global finger movement (GFM), local finger movement (LFM), and average intentional finger pressure, and utilizes a custom-built simulator to analyze finger movements in an experiment with two groups: 18 nurse practitioner students and 16 resident physicians. Although technique utilization varied, some elements clearly impacted performance. For example, those utilizing the LFM of vibration were significantly better at detecting abnormalities. Also, the V GFM led to greater success, but finger pressure played a lesser role. Interestingly, while the residents were clearly the superior performers, their techniques differed only subtly from the students. In summary, the quantified palpation techniques appear to account for examination ability at some level, but not entirely for differences between groups.

  10. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    DOE PAGES

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less

  11. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less

  12. Energetic arousal and language: predictions from the computational theory of quantifiers processing.

    PubMed

    Zajenkowski, Marcin

    2013-10-01

    The author examines the relationship between energetic arousal (EA) and the processing of sentences containing natural-language quantifiers. Previous studies and theories have shown that energy may differentially affect various cognitive functions. Recent investigations devoted to quantifiers strongly support the theory that various types of quantifiers involve different cognitive functions in the sentence-picture verification task. In the present study, 201 students were presented with a sentence-picture verification task consisting of simple propositions containing a quantifier that referred to the color of a car on display. Color pictures of cars accompanied the propositions. In addition, the level of participants' EA was measured before and after the verification task. It was found that EA and performance on proportional quantifiers (e.g., "More than half of the cars are red") are in an inverted U-shaped relationship. This result may be explained by the fact that proportional sentences engage working memory to a high degree, and previous models of EA-cognition associations have been based on the assumption that tasks that require parallel attentional and memory processes are best performed when energy is moderate. The research described in the present article has several applications, as it shows the optimal human conditions for verbal comprehension. For instance, it may be important in workplace design to control the level of arousal experienced by office staff when work is mostly related to the processing of complex texts. Energy level may be influenced by many factors, such as noise, time of day, or thermal conditions.

  13. Quantifying Neonatal Sucking Performance: Promise of New Methods

    PubMed Central

    Capilouto, Gilson J.; Cunningham, Tommy J.; Mullineaux, David R.; Tamilia, Eleonora; Papadelis, Christos; Giannone, Peter J.

    2017-01-01

    Neonatal feeding has been traditionally understudied so guidelines and evidence-based support for common feeding practices are limited. A major contributing factor to the paucity of evidence-based practice in this area has been the lack of simple-to-use, low-cost tools for monitoring sucking performance. We describe new methods for quantifying neonatal sucking performance that hold significant clinical and research promise. We present early results from an ongoing study investigating neonatal sucking as a marker of risk for adverse neurodevelopmental outcomes. We include quantitative measures of sucking performance to better understand how movement variability evolves during skill acquisition. Results showed the coefficient of variation of suck duration was significantly different between preterm neonates at high risk for developmental concerns (HRPT) and preterm neonates at low risk for developmental concerns (LRPT). For HRPT, results indicated the coefficient of variation of suck smoothness increased from initial feeding to discharge and remained significantly greater than healthy full-term newborns (FT) at discharge. There was no significant difference in our measures between FT and LRPT at discharge. Our findings highlight the need to include neonatal sucking assessment as part of routine clinical care in order to capture the relative risk of adverse neurodevelopmental outcomes at discharge. PMID:28324904

  14. Quantifying Neonatal Sucking Performance: Promise of New Methods.

    PubMed

    Capilouto, Gilson J; Cunningham, Tommy J; Mullineaux, David R; Tamilia, Eleonora; Papadelis, Christos; Giannone, Peter J

    2017-04-01

    Neonatal feeding has been traditionally understudied so guidelines and evidence-based support for common feeding practices are limited. A major contributing factor to the paucity of evidence-based practice in this area has been the lack of simple-to-use, low-cost tools for monitoring sucking performance. We describe new methods for quantifying neonatal sucking performance that hold significant clinical and research promise. We present early results from an ongoing study investigating neonatal sucking as a marker of risk for adverse neurodevelopmental outcomes. We include quantitative measures of sucking performance to better understand how movement variability evolves during skill acquisition. Results showed the coefficient of variation of suck duration was significantly different between preterm neonates at high risk for developmental concerns (HRPT) and preterm neonates at low risk for developmental concerns (LRPT). For HRPT, results indicated the coefficient of variation of suck smoothness increased from initial feeding to discharge and remained significantly greater than healthy full-term newborns (FT) at discharge. There was no significant difference in our measures between FT and LRPT at discharge. Our findings highlight the need to include neonatal sucking assessment as part of routine clinical care in order to capture the relative risk of adverse neurodevelopmental outcomes at discharge. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Including the effect of motion artifacts in noise and performance analysis of dual-energy contrast-enhanced mammography

    NASA Astrophysics Data System (ADS)

    Allec, N.; Abbaszadeh, S.; Scott, C. C.; Lewin, J. M.; Karim, K. S.

    2012-12-01

    In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.

  16. Including the effect of motion artifacts in noise and performance analysis of dual-energy contrast-enhanced mammography.

    PubMed

    Allec, N; Abbaszadeh, S; Scott, C C; Lewin, J M; Karim, K S

    2012-12-21

    In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.

  17. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z < 2.5 (for JH IR < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  18. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  19. Modeling the Energy Performance of LoRaWAN

    PubMed Central

    2017-01-01

    LoRaWAN is a flagship Low-Power Wide Area Network (LPWAN) technology that has highly attracted much attention from the community in recent years. Many LoRaWAN end-devices, such as sensors or actuators, are expected not to be powered by the electricity grid; therefore, it is crucial to investigate the energy consumption of LoRaWAN. However, published works have only focused on this topic to a limited extent. In this paper, we present analytical models that allow the characterization of LoRaWAN end-device current consumption, lifetime and energy cost of data delivery. The models, which have been derived based on measurements on a currently prevalent LoRaWAN hardware platform, allow us to quantify the impact of relevant physical and Medium Access Control (MAC) layer LoRaWAN parameters and mechanisms, as well as Bit Error Rate (BER) and collisions, on energy performance. Among others, evaluation results show that an appropriately configured LoRaWAN end-device platform powered by a battery of 2400 mAh can achieve a 1-year lifetime while sending one message every 5 min, and an asymptotic theoretical lifetime of 6 years for infrequent communication. PMID:29035347

  20. Modeling the Energy Performance of LoRaWAN.

    PubMed

    Casals, Lluís; Mir, Bernat; Vidal, Rafael; Gomez, Carles

    2017-10-16

    LoRaWAN is a flagship Low-Power Wide Area Network (LPWAN) technology that has highly attracted much attention from the community in recent years. Many LoRaWAN end-devices, such as sensors or actuators, are expected not to be powered by the electricity grid; therefore, it is crucial to investigate the energy consumption of LoRaWAN. However, published works have only focused on this topic to a limited extent. In this paper, we present analytical models that allow the characterization of LoRaWAN end-device current consumption, lifetime and energy cost of data delivery. The models, which have been derived based on measurements on a currently prevalent LoRaWAN hardware platform, allow us to quantify the impact of relevant physical and Medium Access Control (MAC) layer LoRaWAN parameters and mechanisms, as well as Bit Error Rate (BER) and collisions, on energy performance. Among others, evaluation results show that an appropriately configured LoRaWAN end-device platform powered by a battery of 2400 mAh can achieve a 1-year lifetime while sending one message every 5 min, and an asymptotic theoretical lifetime of 6 years for infrequent communication.

  1. Approaches for quantifying energy intake and %calorie restriction during calorie restriction interventions in humans: the multicenter CALERIE study.

    PubMed

    Racette, Susan B; Das, Sai Krupa; Bhapkar, Manjushri; Hadley, Evan C; Roberts, Susan B; Ravussin, Eric; Pieper, Carl; DeLany, James P; Kraus, William E; Rochon, James; Redman, Leanne M

    2012-02-15

    Calorie restriction (CR) is a component of most weight loss interventions and a potential strategy to slow aging. Accurate determination of energy intake and %CR is critical when interpreting the results of CR interventions; this is most accurately achieved using the doubly labeled water method to quantify total energy expenditure (TEE). However, the costs and analytical requirements of this method preclude its repeated use in many clinical trials. Our aims were to determine 1) the optimal TEE assessment time points for quantifying average energy intake and %CR during long-term CR interventions and 2) the optimal approach for quantifying short-term changes in body energy stores to determine energy intake and %CR during 2-wk DLW periods. Adults randomized to a CR intervention in the multicenter CALERIE study underwent measurements of TEE by doubly labeled water and body composition at baseline and months 1, 3, and 6. Average %CR achieved during the intervention was 24.9 ± 8.7%, which was computed using an approach that included four TEE assessment time points (i.e., TEE(baseline, months 1, 3, and 6)) plus the 6-mo change in body composition. Approaches that included fewer TEE assessments yielded %CR values of 23.4 ± 9.0 (TEE(baseline,) months 3 and 6), 25.0 ± 8.7 (TEE(baseline,) months 1 and 6), and 20.9 ± 7.1% (TEE(baseline, month 6)); the latter approach differed significantly from approach 1 (P < 0.001). TEE declined 9.6 ± 9.9% within 2-4 wk of CR beginning and then stabilized. Regression of daily home weights provided the most reliable estimate of short-term change in energy stores. In summary, optimal quantification of energy intake and %CR during weight loss necessitates a TEE measurement within the first month of CR to capture the rapid reduction in TEE.

  2. Approaches for quantifying energy intake and %calorie restriction during calorie restriction interventions in humans: the multicenter CALERIE study

    PubMed Central

    Das, Sai Krupa; Bhapkar, Manjushri; Hadley, Evan C.; Roberts, Susan B.; Ravussin, Eric; Pieper, Carl; DeLany, James P.; Kraus, William E.; Rochon, James; Redman, Leanne M.

    2012-01-01

    Calorie restriction (CR) is a component of most weight loss interventions and a potential strategy to slow aging. Accurate determination of energy intake and %CR is critical when interpreting the results of CR interventions; this is most accurately achieved using the doubly labeled water method to quantify total energy expenditure (TEE). However, the costs and analytical requirements of this method preclude its repeated use in many clinical trials. Our aims were to determine 1) the optimal TEE assessment time points for quantifying average energy intake and %CR during long-term CR interventions and 2) the optimal approach for quantifying short-term changes in body energy stores to determine energy intake and %CR during 2-wk DLW periods. Adults randomized to a CR intervention in the multicenter CALERIE study underwent measurements of TEE by doubly labeled water and body composition at baseline and months 1, 3, and 6. Average %CR achieved during the intervention was 24.9 ± 8.7%, which was computed using an approach that included four TEE assessment time points (i.e., TEEbaseline, months 1, 3, and 6) plus the 6-mo change in body composition. Approaches that included fewer TEE assessments yielded %CR values of 23.4 ± 9.0 (TEEbaseline, months 3 and 6), 25.0 ± 8.7 (TEEbaseline, months 1 and 6), and 20.9 ± 7.1% (TEEbaseline, month 6); the latter approach differed significantly from approach 1 (P < 0.001). TEE declined 9.6 ± 9.9% within 2–4 wk of CR beginning and then stabilized. Regression of daily home weights provided the most reliable estimate of short-term change in energy stores. In summary, optimal quantification of energy intake and %CR during weight loss necessitates a TEE measurement within the first month of CR to capture the rapid reduction in TEE. PMID:22127229

  3. Diagnosis and characterization of mania: Quantifying increased energy and activity in the human behavioral pattern monitor

    PubMed Central

    Perry, William; McIlwain, Meghan; Kloezeman, Karen; Henry, Brook L.; Minassian, Arpi

    2016-01-01

    Increased energy or activity is now an essential feature of the mania of Bipolar Disorder (BD) according to DSM-5. This study examined whether objective measures of increased energy can differentiate manic BD individuals and provide greater diagnostic accuracy compared to rating scales, extending the work of previous studies with smaller samples. We also tested the relationship between objective measures of energy and rating scales. 50 hospitalized manic BD patients were compared to healthy subjects (HCS, n=39) in the human Behavioral Pattern Monitor (hBPM) which quantifies motor activity and goal-directed behavior in an environment containing novel stimuli. Archival hBPM data from 17 schizophrenia patients were used in sensitivity and specificity analyses. Manic BD patients exhibited higher motor activity than HCS and higher novel object interactions. hBPM activity measures were not correlated with observer-rated symptoms, and hBPM activity was more sensitive in accurately classifying hospitalized BD subjects than observer ratings. Although the findings can only be generalized to inpatient populations, they suggest that increased energy, particularly specific and goal-directed exploration, is a distinguishing feature of BD mania and is best quantified by objective measures of motor activity. A better understanding is needed of the biological underpinnings of this cardinal feature. PMID:27138818

  4. Quantifying the performance of individual players in a team activity.

    PubMed

    Duch, Jordi; Waitzman, Joshua S; Amaral, Luís A Nunes

    2010-06-16

    Teamwork is a fundamental aspect of many human activities, from business to art and from sports to science. Recent research suggest that team work is of crucial importance to cutting-edge scientific research, but little is known about how teamwork leads to greater creativity. Indeed, for many team activities, it is not even clear how to assign credit to individual team members. Remarkably, at least in the context of sports, there is usually a broad consensus on who are the top performers and on what qualifies as an outstanding performance. In order to determine how individual features can be quantified, and as a test bed for other team-based human activities, we analyze the performance of players in the European Cup 2008 soccer tournament. We develop a network approach that provides a powerful quantification of the contributions of individual players and of overall team performance. We hypothesize that generalizations of our approach could be useful in other contexts where quantification of the contributions of individual team members is important.

  5. Achieving Deeper Energy Savings in Federal Energy Performance Contracts

    DOE PAGES

    Shonder, John A.; Nasseri, Cyrus

    2015-01-01

    Legislation requires each agency of the US federal government to reduce the aggregate energy use index of its buildings by 30% by 2015, with respect to a 2003 baseline. The declining availability of appropriated funding means that energy performance contracting will be key to achieving this goal. Historically however, energy performance contracts have been able to reduce energy use by only about 20% over baseline. Achieving 30% energy reductions using performance contracting will require new approaches and a specific focus on achieving higher energy savings, both by ESCOs and by agencies. This paper describes some of the ways federal agenciesmore » are meeting this challenge, and presents results from the efforts of one agency the US General Services Administration -- to achieve deeper energy savings in conventional energy savings performance contracts.« less

  6. QUANTIFYING AN UNCERTAIN FUTURE: HYDROLOGIC MODEL PERFORMANCE FOR A SERIES OF REALIZED "/FUTURE" CONDITIONS

    EPA Science Inventory

    A systematic analysis of model performance during simulations based on observed landcover/use change is used to quantify errors associated with simulations of known "future" conditions. Calibrated and uncalibrated assessments of relative change over different lengths of...

  7. Diagnosis and characterization of mania: Quantifying increased energy and activity in the human behavioral pattern monitor.

    PubMed

    Perry, William; McIlwain, Meghan; Kloezeman, Karen; Henry, Brook L; Minassian, Arpi

    2016-06-30

    Increased energy or activity is now an essential feature of the mania of Bipolar Disorder (BD) according to DSM-5. This study examined whether objective measures of increased energy can differentiate manic BD individuals and provide greater diagnostic accuracy compared to rating scales, extending the work of previous studies with smaller samples. We also tested the relationship between objective measures of energy and rating scales. 50 hospitalized manic BD patients were compared to healthy subjects (HCS, n=39) in the human Behavioral Pattern Monitor (hBPM) which quantifies motor activity and goal-directed behavior in an environment containing novel stimuli. Archival hBPM data from 17 schizophrenia patients were used in sensitivity and specificity analyses. Manic BD patients exhibited higher motor activity than HCS and higher novel object interactions. hBPM activity measures were not correlated with observer-rated symptoms, and hBPM activity was more sensitive in accurately classifying hospitalized BD subjects than observer ratings. Although the findings can only be generalized to inpatient populations, they suggest that increased energy, particularly specific and goal-directed exploration, is a distinguishing feature of BD mania and is best quantified by objective measures of motor activity. A better understanding is needed of the biological underpinnings of this cardinal feature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 1.; Analysis Techniques and Methodology

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A.W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present a detailed outline and discussion of the analysis techniques used to compare the relevance of different energy dissipation mechanisms at collisionless shock waves. We show that the low-frequency, quasi-static fields contribute less to ohmic energy dissipation, (-j · E ) (minus current density times measured electric field), than their high-frequency counterparts. In fact, we found that high-frequency, large-amplitude (greater than 100 millivolts per meter and/or greater than 1 nanotesla) waves are ubiquitous in the transition region of collisionless shocks. We quantitatively show that their fields, through wave-particle interactions, cause enough energy dissipation to regulate the global structure of collisionless shocks. The purpose of this paper, part one of two, is to outline and describe in detail the background, analysis techniques, and theoretical motivation for our new results presented in the companion paper. The companion paper presents the results of our quantitative energy dissipation rate estimates and discusses the implications. Together, the two manuscripts present the first study quantifying the contribution that high-frequency waves provide, through wave-particle interactions, to the total energy dissipation budget of collisionless shock waves.

  9. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  10. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.

    PubMed

    Naemi, Roozbeh; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan

    2016-03-01

    Mechanical behaviour of the heel pad, as a shock attenuating interface during a foot strike, determines the loading on the musculoskeletal system during walking. The mathematical models that describe the force deformation relationship of the heel pad structure can determine the mechanical behaviour of heel pad under load. Hence, the purpose of this study was to propose a method of quantifying the heel pad stress-strain relationship using force-deformation data from an indentation test. The energy input and energy returned densities were calculated by numerically integrating the area below the stress-strain curve during loading and unloading, respectively. Elastic energy and energy absorbed densities were calculated as the sum of and the difference between energy input and energy returned densities, respectively. By fitting the energy function, derived from a nonlinear viscoelastic model, to the energy density-strain data, the elastic and viscous model parameters were quantified. The viscous and elastic exponent model parameters were significantly correlated with maximum strain, indicating the need to perform indentation tests at realistic maximum strains relevant to walking. The proposed method showed to be able to differentiate between the elastic and viscous components of the heel pad response to loading and to allow quantifying the corresponding stress-strain model parameters.

  11. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  12. Constraining Habitable Environments on Mars by Quantifying Available Geochemical Energy

    NASA Astrophysics Data System (ADS)

    Tierney, L. L.; Jakosky, B. M.

    2009-12-01

    The search for life on Mars includes the availability of liquid water, access to biogenic elements and an energy source. In the past, when water was more abundant on Mars, a source of energy may have been the limiting factor for potential life. Energy, either from photosynthesis or chemosynthesis, is required in order to drive metabolism. Potential martian organisms most likely took advantage of chemosynthetic reactions at and below the surface. Terrestrial chemolithoautotrophs, for example, thrive off of chemical disequilibrium that exists in many environments and use inorganic redox (reduction-oxidation) reactions to drive metabolism and create cellular biomass. The chemical disequilibrium of six different martian environments were modeled in this study and analyzed incorporating a range of water and rock compositions, water:rock mass ratios, atmospheric fugacities, pH, and temperatures. All of these models can be applied to specific sites on Mars including environments similar to Meridiani Planum and Gusev Crater. Both a mass transfer geochemical model of groundwater-basalt interaction and a mixing model of groundwater-hydrothermal fluid interaction were used to estimate hypothetical martian fluid compositions that results from mixing over the entire reaction path. By determining the overall Gibbs free energy yields for redox reactions in the H-O-C-S-Fe-Mn system, the amount of geochemical energy that was available for potential chemolithoautotrophic microorganisms was quantified and the amount of biomass that could have been sustained was estimated. The quantity of biomass that can be formed and supported within a system depends on energy availability, thus sites that have higher levels and fluxes of energy have greater potential to support life. Results show that iron- and sulfur-oxidation reactions would have been the most favorable redox reactions in aqueous systems where groundwater and rock interacted at or near the surface. These types of reactions could

  13. Quantifying risk and benchmarking performance in the adult intensive care unit.

    PubMed

    Higgins, Thomas L

    2007-01-01

    Morbidity, mortality, and length-of-stay outcomes in patients receiving critical care are difficult to interpret unless they are risk-stratified for diagnosis, presenting severity of illness, and other patient characteristics. Acuity adjustment systems for adults include the Acute Physiology And Chronic Health Evaluation (APACHE), the Mortality Probability Model (MPM), and the Simplified Acute Physiology Score (SAPS). All have recently been updated and recalibrated to reflect contemporary results. Specialized scores are also available for patient subpopulations where general acuity scores have drawbacks. Demand for outcomes data is likely to grow with pay-for-performance initiatives as well as for routine clinical, prognostic, administrative, and research applications. It is important for clinicians to understand how these scores are derived and how they are properly applied to quantify patient severity of illness and benchmark intensive care unit performance.

  14. Advanced Performance Hydraulic Wind Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  15. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  16. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  17. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  18. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  19. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  20. On the short-term uncertainty in performance f a point absorber wave energy converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Ryan Geoffrey; Michelen, Carlos; Manuel, Lance

    2016-03-01

    Of interest, in this study, is the quantification of uncertainty in the performance of a two-body wave point absorber (Reference Model 3 or RM3), which serves as a wave energy converter (WEC). We demonstrate how simulation tools may be used to establish short-term relationships between any performance parameter of the WEC device and wave height in individual sea states. We demonstrate this methodology for two sea states. Efficient structural reliability methods, validated using more expensive Monte Carlo sampling, allow the estimation of uncertainty in performance of the device. Such methods, when combined with metocean data quantifying the likelihood of differentmore » sea states, can be useful in long-term studies and in reliability-based design.« less

  1. Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design.

    PubMed

    Nguyen, Richard; Perfetto, Stephen; Mahnke, Yolanda D; Chattopadhyay, Pratip; Roederer, Mario

    2013-03-01

    After compensation, the measurement errors arising from multiple fluorescences spilling into each detector become evident by the spreading of nominally negative distributions. Depending on the instrument configuration and performance, and reagents used, this "spillover spreading" (SS) affects sensitivity in any given parameter. The degree of SS had been predicted theoretically to increase with measurement error, i.e., by the square root of fluorescence intensity, as well as directly related to the spectral overlap matrix coefficients. We devised a metric to quantify SS between any pair of detectors. This metric is intrinsic, as it is independent of fluorescence intensity. The combination of all such values for one instrument can be represented as a spillover spreading matrix (SSM). Single-stained controls were used to determine the SSM on multiple instruments over time, and under various conditions of signal quality. SSM values reveal fluorescence spectrum interactions that can limit the sensitivity of a reagent in the presence of brightly-stained cells on a different color. The SSM was found to be highly reproducible; its non-trivial values show a CV of less than 30% across a 2-month time frame. In addition, the SSM is comparable between similarly-configured instruments; instrument-specific differences in the SSM reveal underperforming detectors. Quantifying and monitoring the SSM can be a useful tool in instrument quality control to ensure consistent sensitivity and performance. In addition, the SSM is a key element for predicting the performance of multicolor immunofluorescence panels, which will aid in the optimization and development of new panels. We propose that the SSM is a critical component of QA/QC in evaluation of flow cytometer performance. Published 2013 Wiley Periodicals, Inc.

  2. Quantifying the energy stores of capital breeding humpback whales and income breeding sperm whales using historical whaling records.

    PubMed

    Irvine, Lyn G; Thums, Michele; Hanson, Christine E; McMahon, Clive R; Hindell, Mark A

    2017-03-01

    Cetacean energy stores are known to vary according to life history, reproductive status and time of year; however, the opportunity to quantify these relationships is rare. Using a unique set of historical whaling records from Western Australia (1952-1963), we investigated energy stores of large cetaceans with differing life histories, and quantified the relationship between total body lipid and length for humpback whales ( Megaptera novaeangliae) ( n  = 905) and sperm whales (Physeter macrocephalus) ( n  = 1961). We found that total body lipid increased with body length in both humpback and sperm whales, consistent with size-related energy stores. Male humpback whales stored 2.49 kl (15.6 barrels) (31.9-74.9%) more lipid than male sperm whales of equivalent length, to fuel their annual migration. Relative lipid stores of sperm whales (males) were constant throughout the year, while those of humpback whales varied with reproductive class and sampling date. Pregnant female humpback whales had higher relative energy stores than non-pregnant females and males (26.2% and 37.4%, respectively), to fuel the energy demands of gestation and lactation. Those that reached the sampling site later ( en route to their breeding grounds) carried higher lipid stores than those that arrived earlier, possibly reflecting individual variation in residency times in the Antarctic feeding grounds. Importantly, longer pregnant females had relatively larger energy stores than the shorter pregnant females, indicating that the smaller individuals may experience higher levels of energetic stress during the migration fast. The relationships we developed between body lipid and length can be used to inform bioenergetics and ecosystem models when such detailed information is not available.

  3. Quantifying the energy stores of capital breeding humpback whales and income breeding sperm whales using historical whaling records

    PubMed Central

    Thums, Michele; Hanson, Christine E.; McMahon, Clive R.; Hindell, Mark A.

    2017-01-01

    Cetacean energy stores are known to vary according to life history, reproductive status and time of year; however, the opportunity to quantify these relationships is rare. Using a unique set of historical whaling records from Western Australia (1952–1963), we investigated energy stores of large cetaceans with differing life histories, and quantified the relationship between total body lipid and length for humpback whales (Megaptera novaeangliae) (n = 905) and sperm whales (Physeter macrocephalus) (n = 1961). We found that total body lipid increased with body length in both humpback and sperm whales, consistent with size-related energy stores. Male humpback whales stored 2.49 kl (15.6 barrels) (31.9–74.9%) more lipid than male sperm whales of equivalent length, to fuel their annual migration. Relative lipid stores of sperm whales (males) were constant throughout the year, while those of humpback whales varied with reproductive class and sampling date. Pregnant female humpback whales had higher relative energy stores than non-pregnant females and males (26.2% and 37.4%, respectively), to fuel the energy demands of gestation and lactation. Those that reached the sampling site later (en route to their breeding grounds) carried higher lipid stores than those that arrived earlier, possibly reflecting individual variation in residency times in the Antarctic feeding grounds. Importantly, longer pregnant females had relatively larger energy stores than the shorter pregnant females, indicating that the smaller individuals may experience higher levels of energetic stress during the migration fast. The relationships we developed between body lipid and length can be used to inform bioenergetics and ecosystem models when such detailed information is not available. PMID:28405350

  4. Quantify the energy and environmental effects of using recycled asphalt and recycled concrete for pavement construction phase I : final report.

    DOT National Transportation Integrated Search

    2009-08-01

    The objective of this study is to quantify the energy and environment impacts from using recycled materials : for highway construction. Specifically, when recycled asphalt pavement is re-used for producing hot mix : asphalt or when recycled concrete ...

  5. Energy Savings Performance Contract Energy Sales Agreement Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    FEMP developed the Energy Savings Performance Contracting Energy Sales Agreement (ESPC ESA) Toolkit to provide federal agency contracting officers and other acquisition team members with information that will facilitate the timely execution of ESPC ESA projects.

  6. DEEP: Database of Energy Efficiency Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly

  7. Energy performance assessment with empirical methods: application of energy signature

    NASA Astrophysics Data System (ADS)

    Belussi, L.; Danza, L.; Meroni, I.; Salamone, F.

    2015-03-01

    Energy efficiency and reduction of building consumption are deeply felt issues both at Italian and international level. The recent regulatory framework sets stringent limits on energy performance of buildings. Awaiting the adoption of these principles, several methods have been developed to solve the problem of energy consumption of buildings, among which the simplified energy audit is intended to identify any anomalies in the building system, to provide helpful tips for energy refurbishments and to raise end users' awareness. The Energy Signature is an operational tool of these methodologies, an evaluation method in which energy consumption is correlated with climatic variables, representing the actual energy behaviour of the building. In addition to that purpose, the Energy Signature can be used as an empirical tool to determine the real performances of the technical elements. The latter aspect is illustrated in this article.

  8. Review of Methods for Buildings Energy Performance Modelling

    NASA Astrophysics Data System (ADS)

    Krstić, Hrvoje; Teni, Mihaela

    2017-10-01

    Research presented in this paper gives a brief review of methods used for buildings energy performance modelling. This paper gives also a comprehensive review of the advantages and disadvantages of available methods as well as the input parameters used for modelling buildings energy performance. European Directive EPBD obliges the implementation of energy certification procedure which gives an insight on buildings energy performance via exiting energy certificate databases. Some of the methods for buildings energy performance modelling mentioned in this paper are developed by employing data sets of buildings which have already undergone an energy certification procedure. Such database is used in this paper where the majority of buildings in the database have already gone under some form of partial retrofitting - replacement of windows or installation of thermal insulation but still have poor energy performance. The case study presented in this paper utilizes energy certificates database obtained from residential units in Croatia (over 400 buildings) in order to determine the dependence between buildings energy performance and variables from database by using statistical dependencies tests. Building energy performance in database is presented with building energy efficiency rate (from A+ to G) which is based on specific annual energy needs for heating for referential climatic data [kWh/(m2a)]. Independent variables in database are surfaces and volume of the conditioned part of the building, building shape factor, energy used for heating, CO2 emission, building age and year of reconstruction. Research results presented in this paper give an insight in possibilities of methods used for buildings energy performance modelling. Further on it gives an analysis of dependencies between buildings energy performance as a dependent variable and independent variables from the database. Presented results could be used for development of new building energy performance predictive

  9. Incorporating Non-energy Benefits into Energy Savings Performance Contracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter; Goldman, Charles; Gilligan, Donald

    2012-06-01

    This paper evaluates the issue of non-energy benefits within the context of the U.S. energy services company (ESCO) industry?a growing industry comprised of companies that provide energy savings and other benefits to customers through the use of performance-based contracting. Recent analysis has found that ESCO projects in the public/institutional sector, especially at K-12 schools, are using performance-based contracting, at the behest of the customers, to partially -- but not fully -- offset substantial accumulated deferred maintenance needs (e.g., asbestos removal, wiring) and measures that have very long paybacks (roof replacement). This trend is affecting the traditional economic measures policymakers usemore » to evaluate success on a benefit to cost basis. Moreover, the value of non-energy benefits which can offset some or all of the cost of the non-energy measures -- including operations and maintenance (O&M) savings, avoided capital costs, and tradable pollution emissions allowances-- are not always incorporated into a formal cost-effectiveness analysis of ESCO projects. Nonenergy benefits are clearly important to customers, but state and federal laws that govern the acceptance of these types of benefits for ESCO projects vary widely (i.e., 0-100percent of allowable savings can come from one or more non-energy categories). Clear and consistent guidance on what types of savings are recognized in Energy Savings agreements under performance contracts is necessary, particularly where customers are searching for deep energy efficiency gains in the building sector.« less

  10. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach

    PubMed Central

    Kneifel, Joshua; Webb, David

    2016-01-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  11. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach.

    PubMed

    Kneifel, Joshua; Webb, David

    2016-09-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  12. Measurement of Energy Performances for General-Structured Servers

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Chen, Lili; Li, Pengcheng; Liu, Meng; Chen, Haihong

    2017-11-01

    Energy consumption of servers in data centers increases rapidly along with the wide application of Internet and connected devices. To improve the energy efficiency of servers, voluntary or mandatory energy efficiency programs for servers, including voluntary label program or mandatory energy performance standards have been adopted or being prepared in the US, EU and China. However, the energy performance of servers and testing methods of servers are not well defined. This paper presents matrices to measure the energy performances of general-structured servers. The impacts of various components of servers on their energy performances are also analyzed. Based on a set of normalized workload, the author proposes a standard method for testing energy efficiency of servers. Pilot tests are conducted to assess the energy performance testing methods of servers. The findings of the tests are discussed in the paper.

  13. Comparing primary energy attributed to renewable energy with primary energy equivalent to determine carbon abatement in a national context.

    PubMed

    Gallachóir, Brian P O; O'Leary, Fergal; Bazilian, Morgan; Howley, Martin; McKeogh, Eamon J

    2006-01-01

    The current conventional approach to determining the primary energy associated with non-combustible renewable energy (RE) sources such as wind energy and hydro power is to equate the electricity generated from these sources with the primary energy supply. This paper compares this with an approach that was formerly used by the IEA, in which the primary energy equivalent attributed to renewable energy was equated with the fossil fuel energy it displaces. Difficulties with implementing this approach in a meaningful way for international comparisons lead to most international organisations abandoning the primary energy equivalent methodology. It has recently re-emerged in prominence however, as efforts grow to develop baseline procedures for quantifying the greenhouse gas (GHG) emissions avoided by renewable energy within the context of the Kyoto Protocol credit trading mechanisms. This paper discusses the primary energy equivalent approach and in particular the distinctions between displacing fossil fuel energy in existing plant or in new plant. The approach is then extended provide insight into future primary energy displacement by renewable energy and to quantify the amount of CO2 emissions avoided by renewable energy. The usefulness of this approach in quantifying the benefits of renewable energy is also discussed in an energy policy context, with regard to increasing security of energy supply as well as reducing energy-related GHG (and other) emissions. The approach is applied in a national context and Ireland is case study country selected for this research. The choice of Ireland is interesting in two respects. The first relates to the high proportion of electricity only fossil fuel plants in Ireland resulting in a significant variation between primary energy and primary energy equivalent. The second concerns Ireland's poor performance to date in limiting GHG emissions in line with its Kyoto target and points to the need for techniques to quantify the potential

  14. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance standard...

  15. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance standard...

  16. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance standard...

  17. Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory

    2015-01-01

    Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, pingpong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities.The goal of this investigation is to understand the trade space associated with carrying out remotesensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically,this study seeks to understand the surface viewing geometries, ranges, etc. that are available fromseveral commonly proposed mapping orbits architectures.

  18. Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory

    2015-01-01

    Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, ping pong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities. The goal of this investigation is to understand the trade space associated with carrying out remote sensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically, this study seeks to understand the surface viewing geometries, ranges, etc. that are available from several commonly proposed mapping orbits architectures

  19. The value of compressed air energy storage in energy and reserve markets

    DOE PAGES

    Drury, Easan; Denholm, Paul; Sioshansi, Ramteen

    2011-06-28

    Storage devices can provide several grid services, however it is challenging to quantify the value of providing several services and to optimally allocate storage resources to maximize value. We develop a co-optimized Compressed Air Energy Storage (CAES) dispatch model to characterize the value of providing operating reserves in addition to energy arbitrage in several U.S. markets. We use the model to: (1) quantify the added value of providing operating reserves in addition to energy arbitrage; (2) evaluate the dynamic nature of optimally allocating storage resources into energy and reserve markets; and (3) quantify the sensitivity of CAES net revenues tomore » several design and performance parameters. We find that conventional CAES systems could earn an additional 23 ± 10/kW-yr by providing operating reserves, and adiabatic CAES systems could earn an additional 28 ± 13/kW-yr. We find that arbitrage-only revenues are unlikely to support a CAES investment in most market locations, but the addition of reserve revenues could support a conventional CAES investment in several markets. Adiabatic CAES revenues are not likely to support an investment in most regions studied. As a result, modifying CAES design and performance parameters primarily impacts arbitrage revenues, and optimizing CAES design will be nearly independent of dispatch strategy.« less

  20. Quantifying uncertainties in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Patlakas, Platon; Galanis, George; Kallos, George

    2015-04-01

    The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.

  1. 78 FR 20097 - Energy Savings Performance Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Savings Performance Contracts AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of request for information (RFI). SUMMARY: The U.S. Department of Energy (DOE) seeks comments and information...

  2. Quantifying Low Energy Proton Damage in Multijunction Solar Cells

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Warner, Jeffrey H.; Summers, Geoffrey P.; Lorentzen, Justin R.; Morton, Thomas L.; Taylor, Steven J.

    2007-01-01

    An analysis of the effects of low energy proton irradiation on the electrical performance of triple junction (3J) InGaP2/GaAs/Ge solar cells is presented. The Monte Carlo ion transport code (SRIM) is used to simulate the damage profile induced in a 3J solar cell under the conditions of typical ground testing and that of the space environment. The results are used to present a quantitative analysis of the defect, and hence damage, distribution induced in the cell active region by the different radiation conditions. The modelling results show that, in the space environment, the solar cell will experience a uniform damage distribution through the active region of the cell. Through an application of the displacement damage dose analysis methodology, the implications of this result on mission performance predictions are investigated.

  3. Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Templeton, Nicole P.; Vivoni, Enrique R.; Wang, Zhi-Hua; Schreiner-McGraw, Adam P.

    2018-02-01

    The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance tower was deployed at three locations in Phoenix, Arizona, to sample the surface energy balance at a parking lot, a xeric landscaping (irrigated trees with gravel) and a mesic landscaping (irrigated turf grass). These deployments were compared to a stationary eddy covariance tower in a suburban neighborhood. A comparison of the observations revealed key differences between the mobile and reference sites tied to the urban land cover within the measurement footprints. For instance, the net radiation varied substantially among the sites in manners consistent with albedo and shallow soil temperature differences. The partitioning of available energy between sensible and latent heat fluxes was modulated strongly by the presence of outdoor water use, with the irrigated turf grass exhibiting the highest evaporative fraction. At this site, we identified a lack of sensitivity of turbulent flux partitioning to precipitation events, which suggests that frequent outdoor water use removes water limitations in an arid climate, thus leading to mesic conditions. Other urban land covers with less irrigation, however, exhibited sensitivity to the occurrence of precipitation, as expected for an arid climate. As a result, quantifying the frequency and magnitude of outdoor water use is critical for understanding evapotranspiration losses in arid urban areas.

  4. High Performance Computing Meets Energy Efficiency - Continuum Magazine |

    Science.gov Websites

    NREL High Performance Computing Meets Energy Efficiency High Performance Computing Meets Energy turbines. Simulation by Patrick J. Moriarty and Matthew J. Churchfield, NREL The new High Performance Computing Data Center at the National Renewable Energy Laboratory (NREL) hosts high-speed, high-volume data

  5. Quantifying the Hydrodynamic Performance of an Explosively-Driven Two-Shock Source

    NASA Astrophysics Data System (ADS)

    Furlanetto, Michael; Bauer, Amy; King, Robert; Buttler, William; Olson, Russell; Hagelberg, Carl

    2015-06-01

    An explosively-driven experimental package capable of generating a tunable two-shock drive would enable a host of experiments in shock physics. To make the best use of such a platform, though, its symmetry, reproducibility, and performance must be characterized thoroughly. We report on a series of experiments on a particular two-shock design that used shock reverberation between the sample and a heavy anvil to produce a second shock. Drive package diameters were varied between 50 and 76 mm in order to investigate release wave propagation. We used proton radiography to characterize the detonation and reverberation fronts within the high explosive elements of the packages, as well as surface velocimetry to measure the resulting shock structure in the sample under study. By fielding more than twenty channels of velocimetry per shot, we were able to quantify the symmetry and reproducibility of the drive.

  6. Quantifying arm nonuse in individuals poststroke.

    PubMed

    Han, Cheol E; Kim, Sujin; Chen, Shuya; Lai, Yi-Hsuan; Lee, Jeong-Yoon; Osu, Rieko; Winstein, Carolee J; Schweighofer, Nicolas

    2013-06-01

    Arm nonuse, defined as the difference between what the individual can do when constrained to use the paretic arm and what the individual does when given a free choice to use either arm, has not yet been quantified in individuals poststroke. (1) To quantify nonuse poststroke and (2) to develop and test a novel, simple, objective, reliable, and valid instrument, the Bilateral Arm Reaching Test (BART), to quantify arm use and nonuse poststroke. First, we quantify nonuse with the Quality of Movement (QOM) subscale of the Actual Amount of Use Test (AAUT) by subtracting the AAUT QOM score in the spontaneous use condition from the AAUT QOM score in a subsequent constrained use condition. Second, we quantify arm use and nonuse with BART by comparing reaching performance to visual targets projected over a 2D horizontal hemi-work space in a spontaneous-use condition (in which participants are free to use either arm at each trial) with reaching performance in a constrained-use condition. All participants (N = 24) with chronic stroke and with mild to moderate impairment exhibited nonuse with the AAUT QOM. Nonuse with BART had excellent test-retest reliability and good external validity. BART is the first instrument that can be used repeatedly and practically in the clinic to quantify the effects of neurorehabilitation on arm use and nonuse and in the laboratory for advancing theoretical knowledge about the recovery of arm use and the development of nonuse and "learned nonuse" after stroke.

  7. Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Erturk, A.

    2014-12-01

    There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive-inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and dramatically

  8. Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering

    NASA Astrophysics Data System (ADS)

    Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo

    2011-01-01

    (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.

  9. Energy Efficient Operation of Ammonia Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employmore » dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.« less

  10. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Thomas; Willem, Henry; Ni, Chun Chun

    2014-12-12

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance ofmore » PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States. LBNL performed its field-metering study from mid-April to late October 2014. The study, which monitored 19 sites in the Northeastern United States (4 in upstate New York and 15 near Philadelphia), collected real-time data on PAC energy consumption along with information regarding housing characteristics, consumer behavior, and environmental conditions that were expected to affect PAC performance. Given the limited number of test sites, this study was not intended to be statistically representative of PAC users in the United States but rather to understand the system response to the cooling

  11. Performance profiles of major energy producers, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-01-01

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to themore » FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.« less

  12. Quantifying the water-energy nexus in Greece

    NASA Astrophysics Data System (ADS)

    Ziogou, Isidoros; Zachariadis, Theodoros

    2017-11-01

    In this paper we provide an assessment of the water-energy nexus for Greece. More specifically, the amount of freshwater consumed per unit of energy produced is determined: for both conventional (lignite, diesel and fuel oil-fired) and advanced (combined operation of gas turbine) thermal power plants in the electricity generation sector; for extraction and refining activities in the primary energy production sector; and for the production of biodiesel that is used as a blend in the ultimately delivered automotive diesel fuel. In addition, the amount of electricity consumed for the purposes of water supply and sewerage is presented. In view of the expected effects of climate change in the Mediterranean region, the results of this study highlight the need for authorities to prepare a national strategy that will ensure climate resilience in both energy and water sectors of the country.

  13. Simulating the energy performance of holographic glazings

    NASA Astrophysics Data System (ADS)

    Papamichael, K.; Beltran, L.; Furler, Reto; Lee, E. S.; Selkowitz, Steven E.; Rubin, Michael

    1994-09-01

    The light diffraction properties of holographic diffractive structures present an opportunity to improve the daylight performance in side-lit office spaces by redirecting and reflecting sunlight off the ceiling, providing adequate daylight illumination up to 30 ft (9.14 m) from the window wall. Prior studies of prototypical holographic glazings, installed above conventional `view' windows, have shown increased daylight levels over a deeper perimeter area than clear glass, for selected sun positions. In this study, we report on the simulation of the energy performance of prototypical holographic glazings assuming a commercial office building in the inland Los Angeles climate. The simulation of the energy performance involved determination of both luminous and thermal performance. Since the optical complexity of holographic glazings prevented the use of conventional algorithms for the simulation of their luminous performance, we used a newly developed method that combines experimentally determined directional workplane illuminance coefficients with computer-based analytical routines to determine a comprehensive set of daylight factors for many sun positions. These daylight factors were then used within the DOE-2.1D energy simulation program to determine hourly daylight and energy performance over the course of an entire year for four window orientations. Since the prototypical holographic diffractive structures considered in this study were applied on single pane clear glass, we also simulated the performance of hypothetical glazings, assuming the daylight performance of the prototype holographic glazings and the thermal performance of double-pane and low-e glazings. Finally, we addressed various design and implementation issues towards potential performance improvement.

  14. Automatic Energy Schemes for High Performance Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundriyal, Vaibhav

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-allmore » and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.« less

  15. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    NASA Astrophysics Data System (ADS)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  16. Quantifying the Performances of DFT for Predicting Vibrationally Resolved Optical Spectra: Asymmetric Fluoroborate Dyes as Working Examples.

    PubMed

    Bednarska, Joanna; Zaleśny, Robert; Bartkowiak, Wojciech; Ośmiałowski, Borys; Medved', Miroslav; Jacquemin, Denis

    2017-09-12

    This article aims at a quantitative assessment of the performances of a panel of exchange-correlation functionals, including semilocal (BLYP and PBE), global hybrids (B3LYP, PBE0, M06, BHandHLYP, M06-2X, and M06-HF), and range-separated hybrids (CAM-B3LYP, LC-ωPBE, LC-BLYP, ωB97X, and ωB97X-D), in predicting the vibrationally resolved absorption spectra of BF 2 -carrying compounds. To this end, for 19 difluoroborates as examples, we use, as a metric, the vibrational reorganization energy (λ vib ) that can be determined based on the computationally efficient linear coupling model (a.k.a. vertical gradient method). The reference values of λ vib were determined by employing the CC2 method combined with the cc-pVTZ basis set for a representative subset of molecules. To validate the performances of CC2, comparisons with experimental data have been carried out as well. This study shows that the vibrational reorganization energy, involving Huang-Rhys factors and normal-mode frequencies, can indeed be used to quantify the reliability of functionals in the calculations of the vibrational fine structure of absorption bands, i.e., an accurate prediction of the vibrational reorganization energy leads to absorption band shapes better fitting the selected reference. The CAM-B3LYP, M06-2X, ωB97X-D, ωB97X, and BHandHLYP functionals all deliver vibrational reorganization energies with absolute relative errors smaller than 20% compared to CC2, whereas 10% accuracy can be achieved with the first three functionals. Indeed, the set of examined exchange-correlation functionals can be divided into three groups: (i) BLYP, B3LYP, PBE, PBE0, and M06 yield inaccurate band shapes (λ vib,TDDFT < λ vib,CC2 ), (ii) BHandHLYP, CAM-B3LYP, M06-2X, ωB97X, and ωB97X-D provide accurate band shapes (λ vib,TDDFT ≈ λ vib,CC2 ), and (iii) LC-ωPBE, LC-BLYP, and M06-HF deliver rather poor band topologies (λ vib,TDDFT > λ vib,CC2 ). This study also demonstrates that λ vib can be reliably

  17. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave

  18. Performance Profiles of Major Energy Producers

    EIA Publications

    2011-01-01

    The information and analyses in Performance Profiles of Major Energy Producers is intended to provide a critical review, and promote an understanding, of the possible motivations and apparent consequences of investment decisions made by some of the largest corporations in the energy industry.

  19. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  20. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  1. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  2. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  3. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  4. Thermodynamic Performance and Cost Optimization of a Novel Hybrid Thermal-Compressed Air Energy Storage System Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz

    Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less

  5. Deaf Learners' Knowledge of English Universal Quantifiers

    ERIC Educational Resources Information Center

    Berent, Gerald P.; Kelly, Ronald R.; Porter, Jeffrey E.; Fonzi, Judith

    2008-01-01

    Deaf and hearing students' knowledge of English sentences containing universal quantifiers was compared through their performance on a 50-item, multiple-picture task that required students to decide whether each of five pictures represented a possible meaning of a target sentence. The task assessed fundamental knowledge of quantifier sentences,…

  6. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  7. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  8. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  9. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  10. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  11. Quantifying design trade-offs of beryllium targets on NIF

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Loomis, E. N.; Kyrala, G. A.; Shah, R. C.; Perry, T. S.; Kanzleiter, R. J.; Batha, S. H.; MacLaren, S. A.; Ralph, J. E.; Masse, L. P.; Salmonson, J. D.; Tipton, R. E.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    An important determinant of target performance is implosion kinetic energy, which scales with the capsule size. The maximum achievable performance for a given laser is thus related to the largest capsule that can be imploded symmetrically, constrained by drive uniformity. A limiting factor for symmetric radiation drive is the ratio of hohlraum to capsule radii, or case-to-capsule ratio (CCR). For a fixed laser energy, a larger hohlraum allows for driving bigger capsules symmetrically at the cost of reduced peak radiation temperature (Tr). Beryllium ablators may thus allow for unique target design trade-offs due to their higher ablation efficiency at lower Tr. By utilizing larger hohlraum sizes than most modern NIF designs, beryllium capsules thus have the potential to operate in unique regions of the target design parameter space. We present design simulations of beryllium targets with a large CCR = 4.3 3.7 . These are scaled surrogates of large hohlraum low Tr beryllium targets, with the goal of quantifying symmetry tunability as a function of CCR. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52- 06NA25396, and by LLNL under Contract DE-AC52-07NA27344.

  12. Quantifying Faculty Productivity in Japan: Development and Application of the Achievement-Motivated Key Performance Indicator. Research & Occasional Paper Series: CSHE.8.16

    ERIC Educational Resources Information Center

    Aida, Misako; Watanabe, Satoshi P.

    2016-01-01

    Universities throughout the world are trending toward more performance based methods to capture their strengths, weaknesses and productivity. Hiroshima University has developed an integrated objective measure for quantifying multifaceted faculty activities, namely the "Achievement-Motivated Key Performance Indicator" (A-KPI), in order to…

  13. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy...

  14. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy...

  15. New methods to quantify the cracking performance of cementitious systems made with internal curing

    NASA Astrophysics Data System (ADS)

    Schlitter, John L.

    The use of high performance concretes that utilize low water-cement ratios have been promoted for use in infrastructure based on their potential to increase durability and service life because they are stronger and less porous. Unfortunately, these benefits are not always realized due to the susceptibility of high performance concrete to undergo early age cracking caused by shrinkage. This problem is widespread and effects federal, state, and local budgets that must maintain or replace deterioration caused by cracking. As a result, methods to reduce or eliminate early age shrinkage cracking have been investigated. Internal curing is one such method in which a prewetted lightweight sand is incorporated into the concrete mixture to provide internal water as the concrete cures. This action can significantly reduce or eliminate shrinkage and in some cases causes a beneficial early age expansion. Standard laboratory tests have been developed to quantify the shrinkage cracking potential of concrete. Unfortunately, many of these tests may not be appropriate for use with internally cured mixtures and only provide limited amounts of information. Most standard tests are not designed to capture the expansive behavior of internally cured mixtures. This thesis describes the design and implementation of two new testing devices that overcome the limitations of current standards. The first device discussed in this thesis is called the dual ring. The dual ring is a testing device that quantifies the early age restrained shrinkage performance of cementitious mixtures. The design of the dual ring is based on the current ASTM C 1581-04 standard test which utilizes one steel ring to restrain a cementitious specimen. The dual ring overcomes two important limitations of the standard test. First, the standard single ring test cannot restrain the expansion that takes place at early ages which is not representative of field conditions. The dual ring incorporates a second restraining ring

  16. Developing an Energy Performance Modeling Startup Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2012-10-01

    In 2011, the NAHB Research Center began assessing the needs and motivations of residential remodelers regarding energy performance remodeling. This report outlines: the current remodeling industry and the role of energy efficiency; gaps and barriers to adding energy efficiency into remodeling; and support needs of professional remodelers to increase sales and projects involving improving home energy efficiency.

  17. Performance Analysis: Control of Hazardous Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Grange, Connie E.; Freeman, Jeff W.; Kerr, Christine E.

    2010-10-06

    LLNL experienced 26 occurrences related to the control of hazardous energy from January 1, 2008 through August 2010. These occurrences were 17% of the total number of reported occurrences during this 32-month period. The Performance Analysis and Reporting Section of the Contractor Assurance Office (CAO) routinely analyzes reported occurrences and issues looking for patterns that may indicate changes in LLNL’s performance and early indications of performance trends. It became apparent through these analyses that LLNL might have experienced a change in the control of hazardous energy and that these occurrences should be analyzed in more detail to determine if themore » perceived change in performance was real, whether that change is significant and if the causes of the occurrences are similar. This report documents the results of this more detailed analysis.« less

  18. Quantifying the Reuse of Learning Objects

    ERIC Educational Resources Information Center

    Elliott, Kristine; Sweeney, Kevin

    2008-01-01

    This paper reports the findings of one case study from a larger project, which aims to quantify the claimed efficiencies of reusing learning objects to develop e-learning resources. The case study describes how an online inquiry project "Diabetes: A waste of energy" was developed by searching for, evaluating, modifying and then…

  19. The energy performance of thermochromic glazing

    NASA Astrophysics Data System (ADS)

    Diamantouros, Pavlos

    This study investigated the energy performance of thermochromic glazing. It was done by simulating the model of a small building in a highly advanced computer program (EnergyPlus - U.S. DOE). The physical attributes of the thermochromic samples examined came from actual laboratory samples fabricated in UCL's Department of Chemistry (Prof I. P. Parkin). It was found that they can substantially reduce cooling loads while requiring the same heating loads as a high end low-e double glazing. The reductions in annual cooling energy required were in the 20%-40% range depending on sample, location and building layout. A series of sensitivity analyses showed the importance of switching temperature and emissivity factor in the performance of the glazing. Finally an ideal pane was designed to explore the limits this technology has to offer.

  20. Quantifying Human Visible Color Variation from High Definition Digital Images of Orb Web Spiders.

    PubMed

    Tapia-McClung, Horacio; Ajuria Ibarra, Helena; Rao, Dinesh

    2016-01-01

    Digital processing and analysis of high resolution images of 30 individuals of the orb web spider Verrucosa arenata were performed to extract and quantify human visible colors present on the dorsal abdomen of this species. Color extraction was performed with minimal user intervention using an unsupervised algorithm to determine groups of colors on each individual spider, which was then analyzed in order to quantify and classify the colors obtained, both spatially and using energy and entropy measures of the digital images. Analysis shows that the colors cover a small region of the visible spectrum, are not spatially homogeneously distributed over the patterns and from an entropic point of view, colors that cover a smaller region on the whole pattern carry more information than colors covering a larger region. This study demonstrates the use of processing tools to create automatic systems to extract valuable information from digital images that are precise, efficient and helpful for the understanding of the underlying biology.

  1. Quantifying Human Visible Color Variation from High Definition Digital Images of Orb Web Spiders

    PubMed Central

    Ajuria Ibarra, Helena; Rao, Dinesh

    2016-01-01

    Digital processing and analysis of high resolution images of 30 individuals of the orb web spider Verrucosa arenata were performed to extract and quantify human visible colors present on the dorsal abdomen of this species. Color extraction was performed with minimal user intervention using an unsupervised algorithm to determine groups of colors on each individual spider, which was then analyzed in order to quantify and classify the colors obtained, both spatially and using energy and entropy measures of the digital images. Analysis shows that the colors cover a small region of the visible spectrum, are not spatially homogeneously distributed over the patterns and from an entropic point of view, colors that cover a smaller region on the whole pattern carry more information than colors covering a larger region. This study demonstrates the use of processing tools to create automatic systems to extract valuable information from digital images that are precise, efficient and helpful for the understanding of the underlying biology. PMID:27902724

  2. The Business Value of Superior Energy Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKane, Aimee; Scheihing, Paul; Evans, Tracy

    Industrial facilities participating in the U.S. Department of Energy’s (US DOE) Superior Energy Performance (SEP) program are finding that it provides them with significant business value. This value starts with the implementation of ISO 50001-Energy management system standard, which provides an internationally-relevant framework for integration of energy management into an organization’s business processes. The resulting structure emphasizes effective use of available data and supports continual improvement of energy performance. International relevance is particularly important for companies with a global presence or trading interests, providing them with access to supporting ISO standards and a growing body of certified companies representing themore » collective knowledge of communities of practice. This paper examines the business value of SEP, a voluntary program that builds on ISO 50001, inviting industry to demonstrate an even greater commitment through third-party verification of energy performance improvement to a specified level of achievement. Information from 28 facilities that have already achieved SEP certification will illustrate key findings concerning both the value and the challenges from SEP/ISO 50001 implementation. These include the facilities’ experience with implementation, internal and external value of third-party verification of energy performance improvement; attractive payback periods and the importance of SEP tools and guidance. US DOE is working to bring the program to scale, including the Enterprise-Wide Accelerator (SEP for multiple facilities in a company), the Ratepayer-Funded Program Accelerator (supporting tools for utilities and program administrators to include SEP in their program offerings), and expansion of the program to other sectors and industry supply chains.« less

  3. Performance of deep geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  4. Quantifying protein microstructure and electrostatic effects on the change in Gibbs free energy of binding in immobilized metal affinity chromatography.

    PubMed

    Pathange, Lakshmi P; Bevan, David R; Zhang, Chenming

    2008-03-01

    Electrostatic forces play a major role in maintaining both structural and functional properties of proteins. A major component of protein electrostatics is the interactions between the charged or titratable amino acid residues (e.g., Glu, Lys, and His), whose pK(a) (or the change of the pK(a)) value could be used to study protein electrostatics. Here, we report the study of electrostatic forces through experiments using a well-controlled model protein (T4 lysozyme) and its variants. We generated 10 T4 lysozyme variants, in which the electrostatic environment of the histidine residue was perturbed by altering charged and neutral amino acid residues at various distances from the histidine (probe) residue. The electrostatic perturbations were theoretically quantified by calculating the change in free energy (DeltaDeltaG(E)) using Coulomb's law. On the other hand, immobilized metal affinity chromatography (IMAC) was used to quantify these perturbations in terms of protein binding strength or change in free energy of binding (DeltaDeltaG(B)), which varies from -0.53 to 0.99 kcal/mol. For most of the variants, there is a good correlation (R(2) = 0.97) between the theoretical DeltaDeltaG(E) and experimental DeltaDeltaG(B) values. However, there are three deviant variants, whose histidine residue was found to be involved in site-specific interactions (e.g., ion pair and steric hindrance), which were further investigated by molecular dynamics simulation. This report demonstrates that the electrostatic (DeltaDeltaG(Elec)) and microstructural effects (DeltaDeltaG(Micro)) in a protein can be quantified by IMAC through surface histidine mediated protein-metal ion interaction and that the unique microstructure around a histidine residue can be identified by identifying the abnormal binding behaviors during IMAC.

  5. An urban energy performance evaluation system and its computer implementation.

    PubMed

    Wang, Lei; Yuan, Guan; Long, Ruyin; Chen, Hong

    2017-12-15

    To improve the urban environment and effectively reflect and promote urban energy performance, an urban energy performance evaluation system was constructed, thereby strengthening urban environmental management capabilities. From the perspectives of internalization and externalization, a framework of evaluation indicators and key factors that determine urban energy performance and explore the reasons for differences in performance was proposed according to established theory and previous studies. Using the improved stochastic frontier analysis method, an urban energy performance evaluation and factor analysis model was built that brings performance evaluation and factor analysis into the same stage for study. According to data obtained for the Chinese provincial capitals from 2004 to 2013, the coefficients of the evaluation indicators and key factors were calculated by the urban energy performance evaluation and factor analysis model. These coefficients were then used to compile the program file. The urban energy performance evaluation system developed in this study was designed in three parts: a database, a distributed component server, and a human-machine interface. Its functions were designed as login, addition, edit, input, calculation, analysis, comparison, inquiry, and export. On the basis of these contents, an urban energy performance evaluation system was developed using Microsoft Visual Studio .NET 2015. The system can effectively reflect the status of and any changes in urban energy performance. Beijing was considered as an example to conduct an empirical study, which further verified the applicability and convenience of this evaluation system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Is the SenseWear Armband accurate enough to quantify and estimate energy expenditure in healthy adults?

    PubMed

    Santos-Lozano, Alejandro; Hernández-Vicente, Adrián; Pérez-Isaac, Raúl; Santín-Medeiros, Fernanda; Cristi-Montero, Carlos; Casajús, Jose Antonio; Garatachea, Nuria

    2017-03-01

    The SenseWear Armband (SWA) is a monitor that can be used to estimate energy expenditure (EE); however, it has not been validated in healthy adults. The objective of this paper was to study the validity of the SWA for quantifying EE levels. Twenty-three healthy adults (age 40-55 years, mean: 48±3.42 years) performed different types of standardized physical activity (PA) for 10 minutes (rest, walking at 3 and 5 km·h -1 , running at 7 and 9 km·h -1 , and sitting/standing at a rate of 30 cycle·min -1 ). Participants wore the SWA on their right arm, and their EE was measured by indirect calorimetry (IC) the gold standard. There were significant differences between the SWA and IC, except in the group that ran at 9 km·h -1 (>9 METs). Bland-Altman analysis showed a BIAS of 1.56 METs (±1.83 METs) and limits of agreement (LOA) at 95% of -2.03 to 5.16 METs. There were indications of heteroscedasticity (R 2 =0.03; P<0.05). Analysis of the receiver operating characteristic (ROC) curves showed that the SWA seems to be not sensitive enough to estimate the level of EE at highest intensities. The SWA is not as precise in estimating EE as IC, but it could be a useful tool to determine levels of EE at low intensities.

  7. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions andmore » 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to

  8. Integrated energy system for a high performance building

    NASA Astrophysics Data System (ADS)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  9. Virtual environment to quantify the influence of colour stimuli on the performance of tasks requiring attention.

    PubMed

    Silva, Alessandro P; Frère, Annie F

    2011-08-19

    Recent studies indicate that the blue-yellow colour discrimination is impaired in ADHD individuals. However, the relationship between colour and performance has not been investigated. This paper describes the development and the testing of a virtual environment that is capable to quantify the influence of red-green versus blue-yellow colour stimuli on the performance of people in a fun and interactive way, being appropriate for the target audience. An interactive computer game based on virtual reality was developed to evaluate the performance of the players.The game's storyline was based on the story of an old pirate who runs across islands and dangerous seas in search of a lost treasure. Within the game, the player must find and interpret the hints scattered in different scenarios. Two versions of this game were implemented. In the first, hints and information boards were painted using red and green colours. In the second version, these objects were painted using blue and yellow colours. For modelling, texturing, and animating virtual characters and objects the three-dimensional computer graphics tool Blender 3D was used. The textures were created with the GIMP editor to provide visual effects increasing the realism and immersion of the players. The games were tested on 20 non-ADHD volunteers who were divided into two subgroups (A1 and A2) and 20 volunteers with ADHD who were divided into subgroups B1 and B2. Subgroups A1 and B1 used the first version of the game with the hints painted in green-red colors, and subgroups A2 and B2 the second version using the same hints now painted in blue-yellow. The time spent to complete each task of the game was measured. Data analyzed with ANOVA two-way and posthoc TUKEY LSD showed that the use of blue/yellow instead of green/red colors decreased the game performance of all participants. However, a greater decrease in performance could be observed with ADHD participants where tasks, that require attention, were most affected

  10. Increasing Flexibility in Energy Code Compliance: Performance Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Rosenberg, Michael I.

    Energy codes and standards have provided significant increases in building efficiency over the last 38 years, since the first national energy code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. As the code matures, the prescriptive path becomes more complicated, and also more restrictive. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. Performance code paths are increasing in popularity; however, there remains a significant designmore » team overhead in following the performance path, especially for smaller buildings. This paper focuses on development of one alternative format, prescriptive packages. A method to develop building-specific prescriptive packages is reviewed based on a multiple runs of prototypical building models that are used to develop parametric decision analysis to determines a set of packages with equivalent energy performance. The approach is designed to be cost-effective and flexible for the design team while achieving a desired level of energy efficiency performance. A demonstration of the approach based on mid-sized office buildings with two HVAC system types is shown along with a discussion of potential applicability in the energy code process.« less

  11. Energy Performance of Daylit Schools in North Carolina.

    ERIC Educational Resources Information Center

    Nicklas, Michael; Bailey, Gary

    This study analyzes the energy performance and cost of daylit schools designed by Innovative Design in Johnston County, North Carolina. The analysis compares the first-year energy performances of the Clayton and Selma Middle Schools and the K-5 Four Oaks School with similar but non-daylit schools in Johnston County. The study analyses the…

  12. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Thomas; Willem, Henry; Ni, Chun Chun

    2014-12-01

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance ofmore » PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States.« less

  13. Children's interpretations of general quantifiers, specific quantifiers, and generics

    PubMed Central

    Gelman, Susan A.; Leslie, Sarah-Jane; Was, Alexandra M.; Koch, Christina M.

    2014-01-01

    Recently, several scholars have hypothesized that generics are a default mode of generalization, and thus that young children may at first treat quantifiers as if they were generic in meaning. To address this issue, the present experiment provides the first in-depth, controlled examination of the interpretation of generics compared to both general quantifiers ("all Xs", "some Xs") and specific quantifiers ("all of these Xs", "some of these Xs"). We provided children (3 and 5 years) and adults with explicit frequency information regarding properties of novel categories, to chart when "some", "all", and generics are deemed appropriate. The data reveal three main findings. First, even 3-year-olds distinguish generics from quantifiers. Second, when children make errors, they tend to be in the direction of treating quantifiers like generics. Third, children were more accurate when interpreting specific versus general quantifiers. We interpret these data as providing evidence for the position that generics are a default mode of generalization, especially when reasoning about kinds. PMID:25893205

  14. Energy performance evaluation of AAC

    NASA Astrophysics Data System (ADS)

    Aybek, Hulya

    The U.S. building industry constitutes the largest consumer of energy (i.e., electricity, natural gas, petroleum) in the world. The building sector uses almost 41 percent of the primary energy and approximately 72 percent of the available electricity in the United States. As global energy-generating resources are being depleted at exponential rates, the amount of energy consumed and wasted cannot be ignored. Professionals concerned about the environment have placed a high priority on finding solutions that reduce energy consumption while maintaining occupant comfort. Sustainable design and the judicious combination of building materials comprise one solution to this problem. A future including sustainable energy may result from using energy simulation software to accurately estimate energy consumption and from applying building materials that achieve the potential results derived through simulation analysis. Energy-modeling tools assist professionals with making informed decisions about energy performance during the early planning phases of a design project, such as determining the most advantageous combination of building materials, choosing mechanical systems, and determining building orientation on the site. By implementing energy simulation software to estimate the effect of these factors on the energy consumption of a building, designers can make adjustments to their designs during the design phase when the effect on cost is minimal. The primary objective of this research consisted of identifying a method with which to properly select energy-efficient building materials and involved evaluating the potential of these materials to earn LEED credits when properly applied to a structure. In addition, this objective included establishing a framework that provides suggestions for improvements to currently available simulation software that enhance the viability of the estimates concerning energy efficiency and the achievements of LEED credits. The primary objective

  15. Performance Characterization of High Energy Commercial Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Schneidegger, Brianne T.

    2010-01-01

    The NASA Glenn Research Center Electrochemistry Branch performed characterization of commercial lithium-ion cells to determine the cells' performance against Exploration Technology Development Program (ETDP) Key Performance Parameters (KPP). The goals of the ETDP Energy Storage Project require significant improvements in the specific energy of lithium-ion technology over the state-of-the-art. This work supports the high energy cell development for the Constellation customer Lunar Surface Systems (LSS). In support of these goals, testing was initiated in September 2009 with high energy cylindrical cells obtained from Panasonic and E-One Moli. Both manufacturers indicated the capability of their cells to deliver specific energy of at least 180 Wh/kg or higher. Testing is being performed at the NASA Glenn Research Center to evaluate the performance of these cells under temperature, rate, and cycling conditions relevant to the ETDP goals for high energy cells. The cell-level specific energy goal for high energy technology is 180 Wh/kg at a C/10 rate and 0 C. The threshold value is 165 Wh/kg. The goal is to operate for at least 2000 cycles at 100 percent DOD with greater than 80 percent capacity retention. The Panasonic NCR18650 cells were able to deliver nearly 200 Wh/kg at the aforementioned conditions. The E-One Moli ICR18650J cells also met the specific energy goal by delivering 183 Wh/kg. Though both cells met the goal for specific energy, this testing was only one portion of the testing required to determine the suitability of commercial cells for the ETDP. The cells must also meet goals for cycle life and safety. The results of this characterization are summarized in this report.

  16. Seasonal Evaporation and Surface Energy Budget Estimation Across an Arid Agricultural Region in Saudi Arabia: Quantifying Groundwater Extraction

    NASA Astrophysics Data System (ADS)

    Aragon, B.; Huang, D.; Houborg, R.; Dasari, H. P.; Hoteit, I.; McCabe, M.

    2017-12-01

    In arid-land agricultural environments, knowledge of the water and energy budget is critical in order to sustainably manage the allocation and use of water resources. Using long-term weather reanalysis data from the Weather Research and Forecasting (WRF) model and a time-series record of Landsat 8 imagery, we apply the Priestly-Taylor Jet Propulsion Lab (PT-JPL) model to estimate the energy budget over the Al Jawf agricultural region in the north of Saudi Arabia. This zone generates a significant proportion of the agricultural production in Saudi Arabia and consumes an important fraction of the non-renewable water resources. This research contributes towards efforts seeking to quantify the precise amount of water that is used in agriculture - a difficult variable given that the overwhelming majority of supply comes from groundwater extraction. Results of this research can be used to improve crop management and to mitigate aquifer over-exploitation by monitoring the indiscriminate use of water and establishing bounds around the rates of groundwater withdrawal.

  17. High-energy radiographic imaging performance of LYSO

    DOE PAGES

    Smalley, Duane; Duke, Dana; Webb, Timothy; ...

    2018-05-23

    Here, a comprehensive comparison of the dominant sources of radiation-induced blur for radiographic imaging system performance is made. End-point energies of 6, 10, 15, and 20 MeV bremsstrahlung photon radiation produced at the Los Alamos National Laboratory Microtron facility were used to examine the performance of large-panel cerium-doped lutetium yttrium silicon oxide (LYSO:Ce) scintillators 3, 5 and 10 mm thick. The system resolution was measured and compared between the various end-point energies and scintillator thicknesses. Contrary to expectations, it is found that there was only a minor dependence of system resolution on scintillator thickness or beam end-point energy. This indicatesmore » that increased scintillator thickness does not have a dramatic effect on system performance. The data are then compared to Geant4 simulations to assess contributions to the system performance through the examination of modulation transfer functions. It was determined that the low-frequency response of the system is dominated by the radiation-induced signal, while the higher-frequency response of the system is dominated by the optical imaging of the scintillation emission.« less

  18. High-energy radiographic imaging performance of LYSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalley, Duane; Duke, Dana; Webb, Timothy

    Here, a comprehensive comparison of the dominant sources of radiation-induced blur for radiographic imaging system performance is made. End-point energies of 6, 10, 15, and 20 MeV bremsstrahlung photon radiation produced at the Los Alamos National Laboratory Microtron facility were used to examine the performance of large-panel cerium-doped lutetium yttrium silicon oxide (LYSO:Ce) scintillators 3, 5 and 10 mm thick. The system resolution was measured and compared between the various end-point energies and scintillator thicknesses. Contrary to expectations, it is found that there was only a minor dependence of system resolution on scintillator thickness or beam end-point energy. This indicatesmore » that increased scintillator thickness does not have a dramatic effect on system performance. The data are then compared to Geant4 simulations to assess contributions to the system performance through the examination of modulation transfer functions. It was determined that the low-frequency response of the system is dominated by the radiation-induced signal, while the higher-frequency response of the system is dominated by the optical imaging of the scintillation emission.« less

  19. M & V Shootout: Setting the Stage For Testing the Performance of New Energy Baseline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touzani, Samir; Custodio, Claudine; Sohn, Michael

    Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming data acquisition and often do not deliver results until years after the program period has ended. A spectrum of savings calculation approaches are used, with some relying more heavily on measured data and others relying more heavily on estimated or modeled data, or stipulatedmore » information. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or improved accuracy. Energy management and information systems (EMIS) technologies, not only enable significant site energy savings, but are also beginning to offer M&V capabilities. This paper expands recent analyses of public-domain, whole-building M&V methods, focusing on more novel baseline modeling approaches that leverage interval meter data. We detail a testing procedure and metrics to assess the performance of these new approaches using a large test dataset. We also provide conclusions regarding the accuracy, cost, and time trade-offs between more traditional M&V and these emerging streamlined methods. Finally, we discuss the potential evolution of M&V to better support the energy efficiency industry through low-cost approaches, and the long-term agenda for validation of building energy analytics.« less

  20. Energy Storage Thermal Performance | Transportation Research | NREL

    Science.gov Websites

    Thermal Performance Energy Storage Thermal Performance Photo of tweezers placing a small round nation's recognized leader in battery thermal management research and development (R&D), NREL is one of system level. The lab's assessments of thermal behavior, capacity, lifespan, and overall performance

  1. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    PubMed

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  2. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    PubMed Central

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  3. Quantifying Pollutant Emissions from Office Equipment Phase IReport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, R.L.; Destaillats, H.; Hodgson, A.T.

    2006-12-01

    Although office equipment has been a focal point for governmental efforts to promote energy efficiency through programs such as Energy Star, little is known about the relationship between office equipment use and indoor air quality. This report provides results of the first phase (Phase I) of a study in which the primary objective is to measure emissions of organic pollutants and particulate matter from a selected set of office equipment typically used in residential and office environments. The specific aims of the overall research effort are: (1) use screening-level measurements to identify and quantify the concentrations of air pollutants ofmore » interest emitted by major categories of distributed office equipment in a controlled environment; (2) quantify the emissions of air pollutants from generally representative, individual machines within each of the major categories in a controlled chamber environment using well defined protocols; (3) characterize the effects of ageing and use on emissions for individual machines spanning several categories; (4) evaluate the importance of operational factors that can be manipulated to reduce pollutant emissions from office machines; and (5) explore the potential relationship between energy consumption and pollutant emissions for machines performing equivalent tasks. The study includes desktop computers (CPU units), computer monitors, and three categories of desktop printing devices. The printer categories are: (1) printers and multipurpose devices using color inkjet technology; (2) low- to medium output printers and multipurpose devices employing monochrome or color laser technology; and (3) high-output monochrome and color laser printers. The literature review and screening level experiments in Phase 1 were designed to identify substances of toxicological significance for more detailed study. In addition, these screening level measurements indicate the potential relative importance of different categories of office

  4. Performance outcomes and unwanted side effects associated with energy drinks.

    PubMed

    Mora-Rodriguez, Ricardo; Pallarés, Jesús G

    2014-10-01

    Energy drinks are increasingly popular among athletes and others. Advertising for these products typically features images conjuring great muscle power and endurance; however, the scientific literature provides sparse evidence for an ergogenic role of energy drinks. Although the composition of energy drinks varies, most contain caffeine; carbohydrates, amino acids, herbs, and vitamins are other typical ingredients. This report analyzes the effects of energy drink ingredients on prolonged submaximal (endurance) exercise as well as on short-term strength and power (neuromuscular performance). It also analyzes the effects of energy drink ingredients on the fluid and electrolyte deficit during prolonged exercise. In several studies, energy drinks have been found to improve endurance performance, although the effects could be attributable to the caffeine and/or carbohydrate content. In contrast, fewer studies find an ergogenic effect of energy drinks on muscle strength and power. The existing data suggest that the caffeine dose given in studies of energy drinks is insufficient to enhance neuromuscular performance. Finally, it is unclear if energy drinks are the optimal vehicle to deliver caffeine when high doses are needed to improve neuromuscular performance. © 2014 International Life Sciences Institute.

  5. Quantifying the signals contained in heterogeneous neural responses and determining their relationships with task performance

    PubMed Central

    Pagan, Marino

    2014-01-01

    The responses of high-level neurons tend to be mixtures of many different types of signals. While this diversity is thought to allow for flexible neural processing, it presents a challenge for understanding how neural responses relate to task performance and to neural computation. To address these challenges, we have developed a new method to parse the responses of individual neurons into weighted sums of intuitive signal components. Our method computes the weights by projecting a neuron's responses onto a predefined orthonormal basis. Once determined, these weights can be combined into measures of signal modulation; however, in their raw form these signal modulation measures are biased by noise. Here we introduce and evaluate two methods for correcting this bias, and we report that an analytically derived approach produces performance that is robust and superior to a bootstrap procedure. Using neural data recorded from inferotemporal cortex and perirhinal cortex as monkeys performed a delayed-match-to-sample target search task, we demonstrate how the method can be used to quantify the amounts of task-relevant signals in heterogeneous neural populations. We also demonstrate how these intuitive quantifications of signal modulation can be related to single-neuron measures of task performance (d′). PMID:24920017

  6. Virtual environment to quantify the influence of colour stimuli on the performance of tasks requiring attention

    PubMed Central

    2011-01-01

    Background Recent studies indicate that the blue-yellow colour discrimination is impaired in ADHD individuals. However, the relationship between colour and performance has not been investigated. This paper describes the development and the testing of a virtual environment that is capable to quantify the influence of red-green versus blue-yellow colour stimuli on the performance of people in a fun and interactive way, being appropriate for the target audience. Methods An interactive computer game based on virtual reality was developed to evaluate the performance of the players. The game's storyline was based on the story of an old pirate who runs across islands and dangerous seas in search of a lost treasure. Within the game, the player must find and interpret the hints scattered in different scenarios. Two versions of this game were implemented. In the first, hints and information boards were painted using red and green colours. In the second version, these objects were painted using blue and yellow colours. For modelling, texturing, and animating virtual characters and objects the three-dimensional computer graphics tool Blender 3D was used. The textures were created with the GIMP editor to provide visual effects increasing the realism and immersion of the players. The games were tested on 20 non-ADHD volunteers who were divided into two subgroups (A1 and A2) and 20 volunteers with ADHD who were divided into subgroups B1 and B2. Subgroups A1 and B1 used the first version of the game with the hints painted in green-red colors, and subgroups A2 and B2 the second version using the same hints now painted in blue-yellow. The time spent to complete each task of the game was measured. Results Data analyzed with ANOVA two-way and posthoc TUKEY LSD showed that the use of blue/yellow instead of green/red colors decreased the game performance of all participants. However, a greater decrease in performance could be observed with ADHD participants where tasks, that require

  7. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A. K., E-mail: adavi@lle.rochester.edu; Cao, D.; Michel, D. T.

    The angularly resolved mass ablation rates and ablation-front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify cross-beam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration, where the equatorial laser beams were dropped and the polar beams were repointed from a symmetric direct-drive configuration, was used to limit CBET at the pole while allowing it to persist at the equator. The combination of low- and high-CBET conditions observed in the same implosion allowed for the effects of CBET on the ablation rate and ablation pressure to be determined. Hydrodynamic simulationsmore » performed without CBET agreed with the measured ablation rate and ablation-front trajectory at the pole of the target, confirming that the CBET effects on the pole are small. The simulated mass ablation rates and ablation-front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall's equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with a multiplier on the CBET gain factor. These measurements were performed on OMEGA and at the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. The presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations caused by diffraction, polarization effects, or shortcomings of extending the 1-D Randall model to 3-D, should be explored to explain the differences in observed and predicted drive.« less

  8. EnergyPlus Run Time Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-09-20

    EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences,more » identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.« less

  9. 77 FR 23373 - Small Business Investment Companies-Energy Saving Qualified Investments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Debenture usage, number of Small Businesses financed, resulting breakthroughs in technology, comparative studies quantifying energy savings, and performance of Small Businesses financed. While SBA is concerned...

  10. Creating high performance buildings: Lower energy, better comfort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. Inmore » contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.« less

  11. Quantifying the Level of Cross-State Renewable Energy Transactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenny Heeter, Philipp Beiter, Francisco Flores-Espino, David Hurlbut, Chang Liu

    2015-02-01

    This analysis provides first-ever assessment of the extent to which renewable energy is crossing state borders to be used to meet renewable portfolio standard (RPS) requirements. Two primary methods for data collection are Renewable Energy Certificate (REC) tracking and power flow estimates. Data from regional REC tracking systems, state agencies, and utility compliance reports help understand how cross-state transactions have been used to meet RPS compliance. Data on regional renewable energy flow use generator-specific information primarily sourced from EIA, SNL Energy, and FERC Form 1 filings. The renewable energy examined through this method may or may not have actually beenmore » used to meet RPS compliance.« less

  12. Dataset on the energy performance of atrium type hotel buildings.

    PubMed

    Vujosevic, Milica; Krstic-Furundzic, Aleksandra

    2018-04-01

    The data presented in this article are related to the research article entitled "The Influence of Atrium on Energy Performance of Hotel Building" (Vujosevic and Krstic-Furundzic, 2017) [1], which describes the annual energy performance of atrium type hotel building in Belgrade climate conditions, with the objective to present the impact of the atrium on the hotel building's energy demands for space heating and cooling. This dataset is made publicly available to show energy performance of selected hotel design alternatives, in order to enable extended analyzes of these data for other researchers.

  13. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Yang, Le; Hill, David

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energymore » audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4

  14. Identify and Quantify the Mechanistic Sources of Sensor Performance Variation Between Individual Sensors SN1 and SN2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Aaron A.; Baldwin, David L.; Cinson, Anthony D.

    2014-08-06

    This Technical Letter Report satisfies the M3AR-14PN2301022 milestone, and is focused on identifying and quantifying the mechanistic sources of sensor performance variation between individual 22-element, linear phased-array sensor prototypes, SN1 and SN2. This effort constitutes an iterative evolution that supports the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor inspection system. The scope of the work for this portion of the PNNL effort conducted in FY14 includes performing a comparative evaluation and assessment of the performance characteristics of themore » SN1 and SN2 22 element PA-UT probes manufactured at PNNL. Key transducer performance parameters, such as sound field dimensions, resolution capabilities, frequency response, and bandwidth are used as a metric for the comparative evaluation and assessment of the SN1 and SN2 engineering test units.« less

  15. International Experiences with Quantifying the Co-Benefits of Energy-Efficiency and Greenhouse-Gas Mitigation Programs and Policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Christopher; Hasanbeigi, Ali; Price, Lynn

    Improving the efficiency of energy production and consumption and switching to lower carbon energy sources can significantly decrease carbon dioxide (CO2) emissions and reduce climate change impacts. A growing body of research has found that these measures can also directly mitigate many non-climate change related human health hazards and environmental damage. Positive impacts of policies and programs that occur in addition to the intended primary policy goal are called co-benefits. Policy analysis relies on forecasting and comparing the costs of policy and program implementation and the benefits that accrue to society from implementation. GHG reduction and energy efficiency policies andmore » programs face political resistance in part because of the difficulty of quantifying their benefits. On the one hand, climate change mitigation policy benefits are often global, long-term, and subject to large uncertainties, and subsidized energy pricing can reduce the direct monetary benefits of energy efficiency policies to below their cost. On the other hand, the co-benefits that accrue from these efforts’ resultant reductions in conventional air pollution (such as improved health, agricultural productivity, reduced damage to infrastructure, and local ecosystem improvements) are generally near term, local, and more certain than climate change mitigation benefits and larger than the monetary value of energy savings. The incorporation of co-benefits into energy efficiency and climate mitigation policy and program analysis therefore might significantly increase the uptake of these policies. Faster policy uptake is especially important in developing countries because ongoing development efforts that do not consider co-benefits may lock in suboptimal technologies and infrastructure and result in high costs in future years. Over the past two decades, studies have repeatedly documented that non-climate change related benefits of energy efficiency and fuel conversion efforts

  16. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operationmore » in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance

  17. The energy performance of prototype holographic glazings

    NASA Astrophysics Data System (ADS)

    Papamichael, K.; Beltran, L.; Furler, R.; Lee, E. S.; Selkowitz, S.; Rubin, M.

    1993-02-01

    We report on the simulation of the energy performance of prototype holographic glazings in commercial office buildings in a California climate. These prototype glazings, installed above conventional side windows, are designed to diffract the transmitted solar radiation and reflect it off the ceiling, providing adequate daylight illumination for typical office tasks up to 10m from the window. In this study, we experimentally determined a comprehensive set of solar-optical properties and characterized the contribution of the prototype holographic glazings to workplane illuminance in a scale model of a typical office space. We then used the scale model measurements to simulate the energy performance of the holographic glazings over the course of an entire year for four window orientations (North, East, South and West) for the inland Los Angeles climate, using the DOE-2.lD building energy analysis computer program. The results of our experimental analyses indicate that these prototype holographic glazings diffract only a small fraction of the incident light. The results of this study indicate that these prototype holographic glazings will not save energy in commercial office buildings. Their performance is very similar to that of clear glass, which, through side windows, cannot efficiently illuminate more than a 4-6 m depth of a building's perimeter, because the cooling penalties due to solar heat gain are greater than the electric lighting savings due to daylighting.

  18. Performance analysis of TCP traffic and its influence on ONU's energy saving in energy efficient TDM-PON

    NASA Astrophysics Data System (ADS)

    Alaelddin, Fuad Yousif Mohammed; Newaz, S. H. Shah; Lee, Joohyung; Uddin, Mohammad Rakib; Lee, Gyu Myoung; Choi, Jun Kyun

    2015-12-01

    The majority of the traffic over the Internet is TCP based, which is very sensitive to packet loss and delay. Existing research efforts in TDM-Passive Optical Networks (TDM-PONs) mostly evaluate energy saving and traffic delay performances under different energy saving solutions. However, to the best of our knowledge, how energy saving mechanisms could affect TCP traffic performance in TDM-PONs has hardly been studied. In this paper, by means of our state-of-art OPNET Modular based TDM-PON simulator, we evaluate TCP traffic delay, throughput, and Optical Network Unit (ONU) energy consumption performances in a TDM-PON where energy saving mechanisms are employed in ONUs. Here, we study the performances under commonly used energy saving mechanisms defined in standards for TDM-PONs: cyclic sleep and doze mode. In cyclic sleep mode, we evaluate the performances under two well-known sleep interval length deciding algorithms (i.e. fixed sleep interval (FSI) and exponential sleep interval deciding (ESID)) that an OLT uses to decide sleep interval lengths for an ONU. Findings in this paper put forward the strong relationship among TCP traffic delay, throughput and ONU energy consumption under different sleep interval lengths. Moreover, we reveal that under high TCP traffic, both FSI and ESID will end up showing similar delay, energy and throughput performance. Our findings also show that doze mode can offer better TCP throughput and delay performance at the price of consuming more energy than cyclic sleep mode. In addition, our results provide a glimpse on understanding at what point doze mode becomes futile in improving energy saving of an ONU under TCP traffic. Furthermore, in this paper, we highlight important research issues that should be studied in future research to maximize energy saving in TDM-PONs while meeting traffic Quality of Service requirements.

  19. Surface energy balance of an extensive green roof as quantified by full year eddy-covariance measurements.

    PubMed

    Heusinger, Jannik; Weber, Stephan

    2017-01-15

    Green roofs are discussed as a promising type of green infrastructure to lower heat stress in cities. In order to enhance evaporative cooling, green roofs should ideally have similar Bowen ratio (β=sensible heat flux/latent heat flux) characteristics such as rural sites, especially during summer periods with high air temperatures. We use the eddy-covariance (EC) method to quantify the energy balance of an 8600m 2 extensive, non-irrigated green roof at the Berlin Brandenburg Airport, Germany over a full annual cycle. To understand the influence of water availability on green roof-atmosphere energy exchange, we studied dry and wet periods and looked into functional relationships between leaf area, volumetric water content (VWC) of the substrate, shortwave radiation and β. The surface energy balance was dominated by turbulent heat fluxes in comparison to conductive substrate heat fluxes. The Bowen ratio was slightly below unity on average but highly variable due to ambient meteorology and substrate water availability, i.e. β increased to 2 in the summer season. During dry periods mean daytime β was 3, which is comparable to typical values of urban instead of rural sites. In contrast, mean daytime β was 0.3 during wet periods. Following a summer wet period the green roof maximum daily evapotranspiration (ET) was 3.3mm, which is a threefold increase with respect to the mean summer ET. A multiple regression model indicated that the substrate VWC at the present site has to be >0.11m 3 m -3 during summer high insolation periods (>500Wm -2 ) in order to maintain favourable green roof energy partitioning, i.e. mid-day β<1. The microclimate benefit of urban green roofs can be significantly optimised by using sustainable irrigation approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Measured impacts of supermarket humidity level on defrost performance and refrigerating system energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, H.I.; Khattar, M.

    This paper presents field-monitor data from two supermarkets where the impact of space humidity on refrigerating system energy use was evaluated. Direct digital control (DDC) systems were used at both stores to collect 15-minute monitored data. At Store A in Minneapolis, the DDC system was used to monitor system performance as well as to implement temperature-terminated control in place of time-terminated control on 16 refrigerated zones using hot gas defrost. At Store B in Indianapolis, the DDC system was used to quantify the performance trends for the single compressor rack system with electric defrost. The results at Store B showedmore » that refrigerating system energy use decreases by nearly 10 kWh/day for each 1% drop in space relative humidity, or about 0.4% of average annual system energy use. This value includes the impact of reduced latent loads, the reduction in direct energy use and imposed load from reduced electric defrost heater operation, and the smaller imposed load from reduced anti-sweat heater energy use. The measured reductions agree well with the impact predicted using the calculation methods developed by Howell (1933b) in ASHRAE Research Project 596. At Store A, the measured data show that implementing temperature-terminated defrost reduced refrigerating system energy use by nearly 70 kWh/day over the winter period when the average space humidity was 22% RH. The savings from temperature-terminated defrost increase by 4 kWh/day per each 1% drop in relative humidity. At both stores, the same type of mechanical controls were used to duty cycle the anti-sweat heaters based on store dew point. Anti-sweat heater electricity use was observed to decrease by 4.6 kWh/day at Store B and 3.4 kWh/day at Store A for each 1% drop in relative humidity. At Store A, a more aggressive control scheme was implemented with the DDC system that reduced anti-sweat heater energy use by 7.8 kWh/day per % RH. The more aggressive control approach was reported to

  1. Quantifying radionuclide signatures from a γ-γ coincidence system.

    PubMed

    Britton, Richard; Jackson, Mark J; Davies, Ashley V

    2015-11-01

    A method for quantifying gamma coincidence signatures has been developed, and tested in conjunction with a high-efficiency multi-detector system to quickly identify trace amounts of radioactive material. The γ-γ system utilises fully digital electronics and list-mode acquisition to time-stamp each event, allowing coincidence matrices to be easily produced alongside typical 'singles' spectra. To quantify the coincidence signatures a software package has been developed to calculate efficiency and cascade summing corrected branching ratios. This utilises ENSDF records as an input, and can be fully automated, allowing the user to quickly and easily create/update a coincidence library that contains all possible γ and conversion electron cascades, associated cascade emission probabilities, and true-coincidence summing corrected γ cascade detection probabilities. It is also fully searchable by energy, nuclide, coincidence pair, γ multiplicity, cascade probability and half-life of the cascade. The probabilities calculated were tested using measurements performed on the γ-γ system, and found to provide accurate results for the nuclides investigated. Given the flexibility of the method, (it only relies on evaluated nuclear data, and accurate efficiency characterisations), the software can now be utilised for a variety of systems, quickly and easily calculating coincidence signature probabilities. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. High-Performance Computing Data Center | Energy Systems Integration

    Science.gov Websites

    Facility | NREL High-Performance Computing Data Center High-Performance Computing Data Center The Energy Systems Integration Facility's High-Performance Computing Data Center is home to Peregrine -the largest high-performance computing system in the world exclusively dedicated to advancing

  3. A stochastic approach to quantifying the blur with uncertainty estimation for high-energy X-ray imaging systems

    DOE PAGES

    Fowler, Michael J.; Howard, Marylesa; Luttman, Aaron; ...

    2015-06-03

    One of the primary causes of blur in a high-energy X-ray imaging system is the shape and extent of the radiation source, or ‘spot’. It is important to be able to quantify the size of the spot as it provides a lower bound on the recoverable resolution for a radiograph, and penumbral imaging methods – which involve the analysis of blur caused by a structured aperture – can be used to obtain the spot’s spatial profile. We present a Bayesian approach for estimating the spot shape that, unlike variational methods, is robust to the initial choice of parameters. The posteriormore » is obtained from a normal likelihood, which was constructed from a weighted least squares approximation to a Poisson noise model, and prior assumptions that enforce both smoothness and non-negativity constraints. A Markov chain Monte Carlo algorithm is used to obtain samples from the target posterior, and the reconstruction and uncertainty estimates are the computed mean and variance of the samples, respectively. Lastly, synthetic data-sets are used to demonstrate accurate reconstruction, while real data taken with high-energy X-ray imaging systems are used to demonstrate applicability and feasibility.« less

  4. Quantifying Performance Bias in Label Fusion

    DTIC Science & Technology

    2012-08-21

    detect ), may provide the end-user with the means to appropriately adjust the performance and optimal thresholds for performance by fusing legacy systems...boolean combination of classification systems in ROC space: An application to anomaly detection with HMMs. Pattern Recognition, 43(8), 2732-2752. 10...Shamsuddin, S. (2009). An overview of neural networks use in anomaly intrusion detection systems. Paper presented at the Research and Development (SCOReD

  5. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A. K.; Cao, D.; Michel, D. T.

    The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less

  6. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    DOE PAGES

    Davis, A. K.; Cao, D.; Michel, D. T.; ...

    2016-04-20

    The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less

  7. Perceived stress, energy drink consumption, and academic performance among college students.

    PubMed

    Pettit, Michele L; DeBarr, Kathy A

    2011-01-01

    This study explored relationships regarding perceived stress, energy drink consumption, and academic performance among college students. Participants included 136 undergraduates attending a large southern plains university. Participants completed surveys including items from the Perceived Stress Scale(1) and items to describe energy drink consumption, academic performance, and demographics. Positive correlations existed between participants' perceived stress and energy drink consumption. Participants' energy drink consumption and academic performance were negatively correlated. Freshmen (M = 0.330) and sophomores (M = 0.408) consumed a lower number of energy drinks yesterday than juniors (M = 1.000). Males reported higher means than females for selected energy drink consumption items. Statistically significant interactions existed between gender and year in school for selected energy drink consumption items. Results confirm gender differences in energy drink consumption and illuminate a need for education regarding use of energy drinks in response to perceived stress.

  8. Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem

    NASA Technical Reports Server (NTRS)

    Moore, D. M.

    1984-01-01

    The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.

  9. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  10. Energy performance of net-zero and near net-zero energy homes in New England

    NASA Astrophysics Data System (ADS)

    Thomas, Walter D.

    Net-Zero Energy Homes (NZEHs) are homes that consume no more energy than they produce on site during the course of a year. They are well insulated and sealed, use energy efficient appliances, lighting, and mechanical equipment, are designed to maximize the benefits from day lighting, and most often use a combination of solar hot water, passive solar and photovoltaic (PV) panels to produce their on-site energy. To date, NZEHs make up a miniscule percentage of homes in the United States, and of those, few have had their actual performance measured and analyzed once built and occupied. This research focused on 19 NZEHs and near net-zero energy homes (NNZEHs) built in New England. This set of homes had varying designs, numbers of occupants, and installed technologies for energy production, space heating and cooling, and domestic hot water systems. The author worked with participating homeowners to collect construction and systems specifications, occupancy information, and twelve months of energy consumption, production and cost measurements, in order to determine whether the homes reached their respective energy performance design goals. The author found that six out of ten NZEHs achieved net-zero energy or better, while all nine of the NNZEHs achieved an energy density (kWh/ft 2/person) at least half as low as the control house, also built in New England. The median construction cost for the 19 homes was 155/ft 2 vs. 110/ft2 for the US average, their average monthly energy cost was 84% below the average for homes in New England, and their estimated CO2 emissions averaged 90% below estimated CO2 emissions from the control house. Measured energy consumption averaged 14% below predictions for the NZEHs and 38% above predictions for the NNZEHs, while generated energy was within +/- 10% of predicted for 17 out of 18 on-site PV systems. Based on these results, the author concludes that these types of homes can meet or exceed their designed energy performance (depending on

  11. Quantifying the statistical importance of utilizing regression over classic energy intensity calculations for tracking efficiency improvements in industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Wenning, Thomas J.; Guo, Wei

    In the United States, manufacturing facilities account for about 32% of total domestic energy consumption in 2014. Robust energy tracking methodologies are critical to understanding energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the classic energy intensity method (i.e. the ratio of total energy use over total production) is the most widely adopted. However, the classic energy intensity method does not take into account the variation of other relevant parameters (i.e. product type, feed stock type, weather, etc.). Furthermore, the energy intensity method assumes that the facilities’ base energy consumption (energy use at zero production) is zero,more » which rarely holds true. Therefore, it is commonly recommended to utilize regression models rather than the energy intensity approach for tracking improvements at the facility level. Unfortunately, many energy managers have difficulties understanding why regression models are statistically better than utilizing the classic energy intensity method. While anecdotes and qualitative information may convince some, many have major reservations about the accuracy of regression models and whether it is worth the time and effort to gather data and build quality regression models. This paper will explain why regression models are theoretically and quantitatively more accurate for tracking energy performance improvements. Based on the analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative results on the importance of utilizing regression models over the energy intensity methodology. This paper will also document scenarios where regression models do not have significant relevance over the energy intensity method.« less

  12. Quantifying the Incoming Jet Past Heart Valve Prostheses Using Vortex Formation Dynamics

    NASA Astrophysics Data System (ADS)

    Pierrakos, Olga

    2005-11-01

    Heart valve (HV) replacement prostheses are associated with hemodynamic compromises compared to their native counterparts. Traditionally, HV performance and hemodynamics have been quantified using effective orifice size and pressure gradients. However, quality and direction of flow are also important aspects of HV function and relate to HV design, implantation technique, and orientation. The flow past any HV is governed by the generation of shear layers followed by the formation and shedding of organized flow structures in the form of vortex rings (VR). For the first time, vortex formation (VF) in the LV is quantified. Vortex energy measurements allow for calculation of the critical formation number (FN), which is the time at which the VR reaches its maximum strength. Inefficiencies in HV function result in critical FN decrease. This study uses the concept of FN to compare mitral HV prostheses in an in-vitro model (a silicone LV model housed in a piston-driven heart simulator) using Time-resolved Digital Particle Image Velocimetry. Two HVs were studied: a porcine HV and bileaflet MHV, which was tested in an anatomic and non-anatomic orientation. The results suggest that HV orientation and design affect the critical FN. We propose that the critical FN, which is contingent on the HV design, orientation, and physical flow characteristics, serve as a parameter to quantify the incoming jet and the efficiency of the HV.

  13. High-performance liquid chromatography analysis methods developed for quantifying enzymatic esterification of flavonoids in ionic liquids.

    PubMed

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2008-07-11

    Methods using reversed-phase high-performance liquid chromatography (RP-HPLC) with ELSD were investigated to quantify enzymatic reactions of flavonoids with fatty acids in the presence of diverse room temperature ionic liquids (RTILs). A buffered salt (preferably triethylamine-acetate) was found essential for separation of flavonoids from strongly polar RTILs, whereby RTILs were generally visible as two major peaks identified based on an ion-pairing/exchanging hypothesis. C8 and C12 stationary phases were optimal while mobile phase pH (3-7) had only a minor influence on separation. The method developed was successfully applied for primary screening of RTILs (>20), with in depth evaluation of substrates in 10 RTILs, for their evaluation as reaction media.

  14. A simple method for quantifying jump loads in volleyball athletes.

    PubMed

    Charlton, Paula C; Kenneally-Dabrowski, Claire; Sheppard, Jeremy; Spratford, Wayne

    2017-03-01

    Evaluate the validity of a commercially available wearable device, the Vert, for measuring vertical displacement and jump count in volleyball athletes. Propose a potential method of quantifying external load during training and match play within this population. Validation study. The ability of the Vert device to measure vertical displacement in male, junior elite volleyball athletes was assessed against reference standard laboratory motion analysis. The ability of the Vert device to count jumps during training and match-play was assessed via comparison with retrospective video analysis to determine precision and recall. A method of quantifying external load, known as the load index (LdIx) algorithm was proposed using the product of the jump count and average kinetic energy. Correlation between two separate Vert devices and three-dimensional trajectory data were good to excellent for all jump types performed (r=0.83-0.97), with a mean bias of between 3.57-4.28cm. When matched against jumps identified through video analysis, the Vert demonstrated excellent precision (0.995-1.000) evidenced by a low number of false positives. The number of false negatives identified with the Vert was higher resulting in lower recall values (0.814-0.930). The Vert is a commercially available tool that has potential for measuring vertical displacement and jump count in elite junior volleyball athletes without the need for time-consuming analysis and bespoke software. Subsequently, allowing the collected data to better quantify load using the proposed algorithm (LdIx). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards

    PubMed Central

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-01-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. PMID:26380689

  16. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards.

    PubMed

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-09-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior.

  17. Quantifiers more or less quantify online: ERP evidence for partial incremental interpretation

    PubMed Central

    Urbach, Thomas P.; Kutas, Marta

    2010-01-01

    Event-related brain potentials were recorded during RSVP reading to test the hypothesis that quantifier expressions are incrementally interpreted fully and immediately. In sentences tapping general knowledge (Farmers grow crops/worms as their primary source of income), Experiment 1 found larger N400s for atypical (worms) than typical objects (crops). Experiment 2 crossed object typicality with non-logical subject-noun phrase quantifiers (most, few). Off-line plausibility ratings exhibited the crossover interaction predicted by full quantifier interpretation: Most farmers grow crops and Few farmers grow worms were rated more plausible than Most farmers grow worms and Few farmers grow crops. Object N400s, although modulated in the expected direction, did not reverse. Experiment 3 replicated these findings with adverbial quantifiers (Farmers often/rarely grow crops/worms). Interpretation of quantifier expressions thus is neither fully immediate nor fully delayed. Furthermore, object atypicality was associated with a frontal slow positivity in few-type/rarely quantifier contexts, suggesting systematic processing differences among quantifier types. PMID:20640044

  18. Analysis of Photovoltaic System Energy Performance Evaluation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.; Newmiller, J.; Kimber, A.

    2013-11-01

    Documentation of the energy yield of a large photovoltaic (PV) system over a substantial period can be useful to measure a performance guarantee, as an assessment of the health of the system, for verification of a performance model to then be applied to a new system, or for a variety of other purposes. Although the measurement of this performance metric might appear to be straight forward, there are a number of subtleties associated with variations in weather and imperfect data collection that complicate the determination and data analysis. A performance assessment is most valuable when it is completed with amore » very low uncertainty and when the subtleties are systematically addressed, yet currently no standard exists to guide this process. This report summarizes a draft methodology for an Energy Performance Evaluation Method, the philosophy behind the draft method, and the lessons that were learned by implementing the method.« less

  19. Case study: molasses as the primary energy source on an organic grazing dairy

    USDA-ARS?s Scientific Manuscript database

    Organic dairies face many challenges, one of which is the high cost of purchased organic grains. Molasses may be a less expensive energy alternative. However, anecdotal results have been mixed for farms that used molasses as the sole energy source. This research project quantified animal performance...

  20. Quantifying the ice-albedo feedback through decoupling

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  1. The US-DOE ARM/ASR Effort in Quantifying Uncertainty in Ground-Based Cloud Property Retrievals (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Protat, A.; Zhao, C.

    2013-12-01

    One primary goal of the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program is to obtain and retrieve cloud microphysical properties from detailed cloud observations using ground-based active and passive remote sensors. However, there is large uncertainty in the retrieved cloud property products. Studies have shown that the uncertainty could arise from instrument limitations, measurement errors, sampling errors, retrieval algorithm deficiencies in assumptions, as well as inconsistent input data and constraints used by different algorithms. To quantify the uncertainty in cloud retrievals, a scientific focus group, Quantification of Uncertainties In Cloud Retrievals (QUICR), was recently created by the DOE Atmospheric System Research (ASR) program. This talk will provide an overview of the recent research activities conducted within QUICR and discuss its current collaborations with the European cloud retrieval community and future plans. The goal of QUICR is to develop a methodology for characterizing and quantifying uncertainties in current and future ARM cloud retrievals. The Work at LLNL was performed under the auspices of the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. LLNL-ABS-641258.

  2. Food Waste in the Food-Energy-Water Nexus: Energy and Water Footprints of Wasted Food

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Sarker, T.; Reinhart, D.

    2016-12-01

    The impact of wasted food to the food-energy-water (FEW) nexus is not well conceptualized or quantified, and is thus poorly understood. While improved understanding of water and energy requirements for food production may be applied to estimate costs associated with production of wasted food, the post-disposal costs of food waste to energy and water sectors are unknown. We apply both theoretical methods and direct observation of landfill leachate composition to quantify the net energy and water impact of food waste that is disposed in landfills. We characterize necessary energy inputs and biogas production to compute net impact to the energy sector. With respect to water, we quantify the volumes of water needed to attain permitted discharge concentrations of treated leachate, as well as the gray water footprint necessary for waste assimilation to the ambient regulatory standard. We find that approximately three times the energy produced as biogas (4.6E+8 kWh) is consumed in managing food waste and treating contamination from wasted food (1.3E+9 kWh). This energy requirement represents around 3% of the energy consumed in food production. The water requirement for leachate treatment and assimilation may exceed the amount of water needed to produce food. While not a consumptive use, the existence and replenishment of sufficient quantities of water in the environment for waste assimilation is an ecosystem service of the hydrosphere. This type of analysis may be applied to create water quality-based standards for necessary instream flows to perform the ecosystem service of waste assimilation. Clearer perception of wasted food as a source/sink for energy and water within the FEW nexus could be a powerful approach towards reducing the quantities of wasted food and more efficiently managing food that is wasted. For instance, comparative analysis of FEW impact across waste management strategies (e.g. landfilling, composting, anaerobic digestion) may assist local governments

  3. Quantifying Systemic Efficiency using Exergy and Energy Analysis for Ground Source Heat Pumps: Domestic Space Conditioning and Water Heating Applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ally, Moonis Raza; Baxter, Van D; Gehl, Anthony C

    Although air temperatures over land surfaces show wide seasonal and daily variations, the ground, approximately 10 meters below the earth s surface, remains relatively stable in temperature thereby serving as an energy source or sink. Ground source heat pumps can heat, cool, and supply homes with hot water efficiently by utilizing the earth s renewable and essentially inexhaustible energy resources, saving fossil fuels, reducing greenhouse gas emissions, and lowering the environmental footprint. In this paper, evidence is shown that ground source heat pumps can provide up to 79%-87% of domestic hot water energy needs, and up to 77% of spacemore » heating needs with the ground s thermal energy resources. The case refers to a 12-month study conducted at a 253 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days and CDD of 723 C-days under simulated occupancy conditions. A single 94.5m vertical bore interfaced the heat pump with the ground. The research shows that this technology is capable of achieving US DOE targets of 25 % and 35% energy savings in HVAC, and in water heating, respectively by 2030. It is also a viable technology to meet greenhouse gas target emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources. The paper quantifies systemic efficiencies using Exergy analysis of the major components, clearly pointing areas for further improvement.« less

  4. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belzer, D.; Mosey, G.; Plympton, P.

    2007-07-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest Nationalmore » Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.« less

  5. Performance calculation and simulation system of high energy laser weapon

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke

    2014-12-01

    High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.

  6. A practical technique for quantifying the performance of acoustic emission systems on plate-like structures.

    PubMed

    Scholey, J J; Wilcox, P D; Wisnom, M R; Friswell, M I

    2009-06-01

    A model for quantifying the performance of acoustic emission (AE) systems on plate-like structures is presented. Employing a linear transfer function approach the model is applicable to both isotropic and anisotropic materials. The model requires several inputs including source waveforms, phase velocity and attenuation. It is recognised that these variables may not be readily available, thus efficient measurement techniques are presented for obtaining phase velocity and attenuation in a form that can be exploited directly in the model. Inspired by previously documented methods, the application of these techniques is examined and some important implications for propagation characterisation in plates are discussed. Example measurements are made on isotropic and anisotropic plates and, where possible, comparisons with numerical solutions are made. By inputting experimentally obtained data into the model, quantitative system metrics are examined for different threshold values and sensor locations. By producing plots describing areas of hit success and source location error, the ability to measure the performance of different AE system configurations is demonstrated. This quantitative approach will help to place AE testing on a more solid foundation, underpinning its use in industrial AE applications.

  7. Quantifying Scheduling Challenges for Exascale System Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondragon, Oscar; Bridges, Patrick G.; Jones, Terry R

    2015-01-01

    The move towards high-performance computing (HPC) ap- plications comprised of coupled codes and the need to dra- matically reduce data movement is leading to a reexami- nation of time-sharing vs. space-sharing in HPC systems. In this paper, we discuss and begin to quantify the perfor- mance impact of a move away from strict space-sharing of nodes for HPC applications. Specifically, we examine the po- tential performance cost of time-sharing nodes between ap- plication components, we determine whether a simple coor- dinated scheduling mechanism can address these problems, and we research how suitable simple constraint-based opti- mization techniques are for solvingmore » scheduling challenges in this regime. Our results demonstrate that current general- purpose HPC system software scheduling and resource al- location systems are subject to significant performance de- ciencies which we quantify for six representative applica- tions. Based on these results, we discuss areas in which ad- ditional research is needed to meet the scheduling challenges of next-generation HPC systems.« less

  8. Improvements in magnetic bearing performance for flywheel energy storage

    NASA Technical Reports Server (NTRS)

    Plant, David P.; Anand, Davinder K.; Kirk, James A.; Calomeris, Anthony J.; Romero, Robert L.

    1988-01-01

    The paper considers the development of a 500-Watt-hour magnetically suspended flywheel stack energy storage system. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of noncontacting displacement transducers, and performance enhancements of magnetic bearings. Experimental results show that a stack flywheel energy storage system is feasible technology.

  9. Energy performance and savings potentials with skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arasteh, D.; Johnson, R.; Selkowitz, S.

    1984-12-01

    This study systematically explores the energy effects of skylight systems in a prototypical office building module and examines the savings from daylighting. For specific climates, roof/skylight characteristics are identified that minimize total energy or peak electrical demand. Simplified techniques for energy performance calculation are also presented based on a multiple regression analysis of our data base so that one may easily evaluate daylighting's effects on total and component energy loads and electrical peaks. This provides additional insights into the influence of skylight parameters on energy consumption and electrical peaks. We use the DOE-2.1B energy analysis program with newly incorporated daylightingmore » algorithms to determine hourly, monthly, and annual impacts of daylighting strategies on electrical lighting consumption, cooling, heating, fan power, peak electrical demands, and total energy use. A data base of more than 2000 parametric simulations for 14 US climates has been generated. Parameters varied include skylight-to-roof ratio, shading coefficient, visible transmittance, skylight well light loss, electric lighting power density, roof heat transfer coefficient, and electric lighting control type. 14 references, 13 figures, 4 tables.« less

  10. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    PubMed

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  11. Handheld calorimeter is a valid instrument to quantify resting energy expenditure in hospitalized cirrhotic patients: a prospective study.

    PubMed

    Glass, Cathy; Hipskind, Peggy; Cole, Denise; Lopez, Rocio; Dasarathy, Srinivasan

    2012-10-01

    Nutrition management of cirrhosis in hospitalized patients is overlooked despite the clinical significance of sarcopenia or loss of muscle mass in cirrhosis. Determining optimal nutrition requirement needs precise measurement of resting energy expenditure (REE) in the cirrhotic patient. Predictive equations are not accurate, and the metabolic cart is expensive and cumbersome. The authors therefore performed a prospective study to examine the feasibility and accuracy of a handheld respiratory calorimeter (HHRC) in quantifying the REE in hospitalized cirrhotic patients not in the intensive care unit. The study was done in 2 phases: in the first phase, the REE of 24 consecutive healthy volunteers was measured using an HHRC in different positions. The objective of this phase was to identify the impact of body and arm position on measured REE. Subsequently, in the second phase of the study, REE was measured using the HHRC and the metabolic cart in 25 consecutive well-characterized, hospitalized cirrhotic patients. The degree of concordance was calculated. Body position and arm position did not significantly affect the measured REE using HHRC. In patients with cirrhosis, the mean measured REE (kcal/d) using the HHRC was 1453.2 ± 319.3 in the hospital room, 1525.6 ± 305.2 in a quiet environment, and 1553.7 ± 270.6 with the metabolic cart (P > .1). Predicted REE using 2 widely used equations did not correlate either with each other or with the measured REE. HHRC is a valid, feasible, and rapid method to determine optimal caloric needs in hospitalized cirrhotic patients.

  12. Energy performance analysis of a detached single-family house to be refurbished

    NASA Astrophysics Data System (ADS)

    Aleixo, Kevin; Curado, António

    2017-07-01

    This study was developed with the purpose of analyzing the reinforcement of the energy performance in a detached single-family house to be refurbished, using this building as a case-study for simulation and experimental analysis. The building is located in Viana do Castelo, a city in the northwest of Portugal nearby the Atlantic Ocean. The developed study was carried out in order to characterize the thermal performance of the house, using simulation analysis in a dynamic regime. The energy consumption study was developed in permanent regime analysis, using simulation tools. At the end, the study aimed to propose and define the best retrofitting solutions, both passive and active, and to improve the energy performance of the building. The outcomes of the study provided the importance of passive retrofitting solutions on thermal comfort and energy performance. The use of a set of thermal solutions, as the insulation of the roof, walls and the windows, it is possible to achieve a global gain of 0, 63 °C and to reduce energy consumption in 61, 46 [kWh/m2.year]. The study of the building in a simplified thermal regime, according to the Portuguese energy efficiency regulation, allowed the determination of the energy efficiency class of the house and retrofitting solutions proposed. The initial energy performance class of the building is C. With the application of a passive set of solutions, it's possible to improve the energy performance to a class B. With the implementation of some active solutions, it is possible to reach an energy class A +.

  13. Energy Efficient Graphene Based High Performance Capacitors.

    PubMed

    Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo

    2017-07-10

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babarit, A.; Wendt, F.; Yu, Y. -H.

    2017-04-01

    In this article, we investigate the energy absorption performance of a fixed-bottom pressure-differential wave energy converter. Two versions of the technology are considered: one has the moving surfaces on the bottom of the air chambers whereas the other has the moving surfaces on the top. We developed numerical models in the frequency domain, thereby enabling the power absorption of the two versions of the device to be assessed. It is observed that the moving surfaces on the top allow for easier tuning of the natural period of the system. Taking into account stroke limitations, the design is optimized. Results indicatemore » that the pressure-differential wave energy converter is a highly efficient technology both with respect to energy absorption and selected economic performance indicators.« less

  15. Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Jayson F.; Dirks, James A.

    2008-08-29

    EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energymore » Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.« less

  16. Quantifying the Level of Cross-State Renewable Energy Transactions (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, J.; Beiter, P.; Flores, F.

    2015-02-01

    This presentation and associated spreadsheet examine the level of cross-state renewable energy transactions. Most state renewable portfolio standard (RPS) policies allow for out-of-state renewable energy or renewable energy certificates to count towards compliance. This analysis focuses on compliance for 2012 and provides stakeholders with an understanding of the extent to which RPSs are being met.

  17. Experimental investigation on the hydrodynamic performance of a wave energy converter

    NASA Astrophysics Data System (ADS)

    Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu

    2017-06-01

    Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.

  18. [The effect of energy drinks on the cognitive performance of adolescents].

    PubMed

    Wilhelm, P; van Diepen, M A C; Nieuwenhuis, L; Boulogne, T L A

    2013-01-01

    Manufacturers of energy drinks claim that their drinks can have a positive effect on cognitive performance. So far, there is little evidence that energy drinks do in fact enhance the cognitive performance of adolescents. To find out, via a series of tests, whether the manufacturers of energy drinks are justified in claiming that their drinks improve the cognitive performance of young people. In a quasi-experimental design a number of young people (aged 15-18) were divided into three groups: a control group, each of whose members drank water beforehand; a placebo group whose members drank a glass of sugar-free lemonade, and an experimental group whose members drank a currently available energy drink (Megaforce). Pencil and paper tests were administered to the members of each group in order to measure attention and concentration, learning ability, memory, verbal and numerical reasoning, numerical aptitude and vocabulary. No significant differences between groups were found that could solely be ascribed to the effect of energy drink. Given the warnings about the potential health-risks of energy drinks and the fact that no evidence was found for positive effects of energy drinks on the cognitive performance of young people, we are of the opinion that youngsters should stay away from such drinks.

  19. On the Role of Water Models in Quantifying the Binding Free Energy of Highly Conserved Water Molecules in Proteins: The Case of Concanavalin A.

    PubMed

    Fadda, Elisa; Woods, Robert J

    2011-10-11

    The ability of ligands to displace conserved water molecules in protein binding sites is of significant interest in drug design and is particularly pertinent in the case of glycomimetic drugs. This concept was explored in previous work [ Clarke et al. J. Am. Chem. Soc. 2001 , 123 , 12238 - 12247 and Kadirvelraj et al. J. Am. Chem. Soc. 2008 , 130 , 16933 - 16942 ] for a highly conserved water molecule located in the binding site of the prototypic carbohydrate-binding protein Concanavalin A (Con A). A synthetic ligand was designed with the aim of displacing such water. While the synthetic ligand bound to Con A in an analogous manner to that of the natural ligand, crystallographic analysis demonstrated that it did not displace the conserved water. In order to quantify the affinity of this particular water for the Con A surface, we report here the calculated standard binding free energy for this water in both ligand-bound and free Con A, employing three popular water models: TIP3P, TIP4P, and TIP5P. Although each model was developed to perform well in simulations of bulk-phase water, the computed binding energies for the isolated water molecule displayed a high sensitivity to the model. Both molecular dynamics simulation and free energy results indicate that the choice of water model may greatly influence the characterization of surface water molecules as conserved (TIP5P) or not (TIP3P) in protein binding sites, an observation of considerable significance to rational drug design. Structural and theoretical aspects at the basis of the different behaviors are identified and discussed.

  20. Bike Desks in the Classroom: Energy Expenditure, Physical Health, Cognitive Performance, Brain Functioning, and Academic Performance.

    PubMed

    Torbeyns, Tine; de Geus, Bas; Bailey, Stephen; Decroix, Lieselot; Van Cutsem, Jeroen; De Pauw, Kevin; Meeusen, Romain

    2017-06-01

    Physical activity is positively associated with physical health, cognitive performance, brain functioning and academic performance. The aim of this study is to investigate the influence of bike desks in the classroom on adolescents' energy expenditure, physical health, cognitive performance, brain functioning and academic performance. Forty-four adolescents were randomly assigned to control group (CG) or intervention group (IG). During 5 months, the IG used a bike desk for 4 class hours/week. Energy expenditure was measured during 6 consecutive days. Anthropometric parameters, aerobic fitness, academic performance, cognitive performance and brain functioning were assessed before (T0) and after (T1) the intervention. Energy expenditure of the IG was significantly higher during the class hours in which they used the bike desks relative to normal class hours. The CG had a significantly higher BMI at T1 relative to T0 while this was not significantly different for the IG. Aerobic fitness was significantly better in the IG at T1 relative to T0. No significant effects on academic performance cognitive performance and brain functioning were observed. As the implementation of bike desks in the classroom did not interfere with adolescents' academic performance, this can be seen as an effective means of reducing in-class sedentary time and improving adolescents' physical health.

  1. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters.

    PubMed

    Zhao, Chao; Ebaid, Mohamed; Zhang, Huafan; Priante, Davide; Janjua, Bilal; Zhang, Daliang; Wei, Nini; Alhamoud, Abdullah A; Shakfa, Mohammad Khaled; Ng, Tien Khee; Ooi, Boon S

    2018-06-13

    p-Type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity, while Mott-Schottky experiments measured a hole concentration of 1.3 × 1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and an optimized p-type AlGaN contact layer for UV-transparency. The ∼335 nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate the electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.

  2. Study Quantifies Physical Demands of Yoga in Seniors

    MedlinePlus

    ... Z Study Quantifies Physical Demands of Yoga in Seniors Share: A recent NCCAM-funded study measured the ... performance of seven standing poses commonly taught in senior yoga classes: Chair, Wall Plank, Tree, Warrior II, ...

  3. The integration of daylighting with artificial lighting to enhance building energy performance

    NASA Astrophysics Data System (ADS)

    Al-Ashwal, Najib Taher; Hassan, Ahmad Sanusi

    2017-10-01

    In sustainable building designs, daylight is considered as an alternative source of light to artificial lighting. Daylight is an energy-free and efficient-cost lighting source. Natural light is the best source for light due to its good quality, which matches the visual response of the human eyes. Daylight positively affects people by providing a sense of liveliness and brightness in the living space. The positive impact of daylight on the building occupants' visual comfort, health and performance is well recognized. However, daylight is not widely utilized to supplement artificial lighting, because there is a lack of information and tools to evaluate daylighting and potentials for energy savings. The efficient utilization of natural lighting will not only affect the interior environment and the occupants' health and performance but also has a direct impact on the building energy performance. Therefore, this paper reviews and discusses the effects of daylighting on the building energy performance mainly in schools and office buildings. This includes lighting energy performance, total energy consumption, cooling load. The methods, which are used to estimate the possible reduction in total energy consumption, are also reviewed in this research paper. Previous studies revealed that a clear reduction can be obtained in the energy consumed by electric lighting, as well as in the total energy end-use when a suitable lighting control system is applied to utilize the available natural light.

  4. TU-EF-304-09: Quantifying the Biological Effects of Therapeutic Protons by LET Spectrum Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, F; Bronk, L; Kerr, M

    2015-06-15

    Purpose: To correlate in vitro cell kill with linear energy transfer (LET) spectra using Monte Carlo simulations and knowledge obtained from previous high-throughput in vitro proton relative biological effectiveness (RBE) measurements. Methods: The Monte Carlo simulation toolkit Geant4 was used to design the experimental setups and perform the dose, dose-averaged LET, and LET spectra calculations. The clonogenic assay was performed using the H460 lung cancer cell line in standard 6-well plates. Using two different experimental setups, the same dose and dose-averaged LET (12.6 keV/µm) was delivered to the cell layer; however, each respective energy or LET spectrum was different. Wemore » quantified the dose contributions from high-LET (≥10 keV/µm, threshold determined by previous RBE measurements) events in the LET spectra separately for these two setups as 39% and 53%. 8 dose levels with 1 Gy increments were delivered. The photon reference irradiation was performed using 6 MV x-rays from a LINAC. Results: The survival curves showed that both proton irradiations demonstrated an increased RBE compared to the reference photon irradiation. Within the proton-irradiated cells, the setup with 53% dose contribution from high-LET events exhibited the higher biological effectiveness. Conclusion: The experimental results indicate that the dose-averaged LET may not be an appropriate indicator to quantify the biological effects of protons when the LET spectrum is broad enough to contain both low- and high-LET events. Incorporating the LET spectrum distribution into robust intensity-modulated proton therapy optimization planning may provide more accurate biological dose distribution than using the dose-averaged LET. NIH Program Project Grant 2U19CA021239-35.« less

  5. Quantifying the mode II critical strain energy release rate of borate bioactive glass coatings on Ti6Al4V substrates.

    PubMed

    Matinmanesh, A; Li, Y; Clarkin, O; Zalzal, P; Schemitsch, E H; Towler, M R; Papini, M

    2017-11-01

    Bioactive glasses have been used as coatings for biomedical implants because they can be formulated to promote osseointegration, antibacterial behavior, bone formation, and tissue healing through the incorporation and subsequent release of certain ions. However, shear loading on coated implants has been reported to cause the delamination and loosening of such coatings. This work uses a recently developed fracture mechanics testing methodology to quantify the critical strain energy release rate under nearly pure mode II conditions, G IIC , of a series of borate-based glass coating/Ti6Al4V alloy substrate systems. Incorporating increasing amounts of SrCO 3 in the glass composition was found to increase the G IIC almost twofold, from 25.3 to 46.9J/m 2 . The magnitude and distribution of residual stresses in the coating were quantified, and it was found that the residual stresses in all cases distributed uniformly over the cross section of the coating. The crack was driven towards, but not into, the glass/Ti6Al4V substrate interface due to the shear loading. This implied that the interface had a higher fracture toughness than the coating itself. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Repurposing Mass-produced Internal Combustion Engines Quantifying the Value and Use of Low-cost Internal Combustion Piston Engines for Modular Applications in Energy and Chemical Engineering Industries

    NASA Astrophysics Data System (ADS)

    L'Heureux, Zara E.

    This thesis proposes that internal combustion piston engines can help clear the way for a transformation in the energy, chemical, and refining industries that is akin to the transition computer technology experienced with the shift from large mainframes to small personal computers and large farms of individually small, modular processing units. This thesis provides a mathematical foundation, multi-dimensional optimizations, experimental results, an engine model, and a techno-economic assessment, all working towards quantifying the value of repurposing internal combustion piston engines for new applications in modular, small-scale technologies, particularly for energy and chemical engineering systems. Many chemical engineering and power generation industries have focused on increasing individual unit sizes and centralizing production. This "bigger is better" concept makes it difficult to evolve and incorporate change. Large systems are often designed with long lifetimes, incorporate innovation slowly, and necessitate high upfront investment costs. Breaking away from this cycle is essential for promoting change, especially change happening quickly in the energy and chemical engineering industries. The ability to evolve during a system's lifetime provides a competitive advantage in a field dominated by large and often very old equipment that cannot respond to technology change. This thesis specifically highlights the value of small, mass-manufactured internal combustion piston engines retrofitted to participate in non-automotive system designs. The applications are unconventional and stem first from the observation that, when normalized by power output, internal combustion engines are one hundred times less expensive than conventional, large power plants. This cost disparity motivated a look at scaling laws to determine if scaling across both individual unit size and number of units produced would predict the two order of magnitude difference seen here. For the first

  7. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheib, J.; Pless, S.; Torcellini, P.

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy usemore » requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.« less

  8. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGES

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  9. Data driven models of the performance and repeatability of NIF high foot implosions

    NASA Astrophysics Data System (ADS)

    Gaffney, Jim; Casey, Dan; Callahan, Debbie; Hartouni, Ed; Ma, Tammy; Spears, Brian

    2015-11-01

    Recent high foot (HF) inertial confinement fusion (ICF) experiments performed at the national ignition facility (NIF) have consisted of enough laser shots that a data-driven analysis of capsule performance is feasible. In this work we use 20-30 individual implosions of similar design, spanning laser drive energies from 1.2 to 1.8 MJ, to quantify our current understanding of the behavior of HF ICF implosions. We develop a probabilistic model for the projected performance of a given implosion and use it to quantify uncertainties in predicted performance including shot-shot variations and observation uncertainties. We investigate the statistical significance of the observed performance differences between different laser pulse shapes, ablator materials, and capsule designs. Finally, using a cross-validation technique, we demonstrate that 5-10 repeated shots of a similar design are required before real trends in the data can be distinguished from shot-shot variations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-674957.

  10. Performance of Radiant Heating Systems of Low-Energy Buildings

    NASA Astrophysics Data System (ADS)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  11. Applications of thermal energy storage in the cement industry

    NASA Technical Reports Server (NTRS)

    Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.

    1978-01-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.

  12. Quantifying resilience

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.

    2016-01-01

    Several frameworks to operationalize resilience have been proposed. A decade ago, a special feature focused on quantifying resilience was published in the journal Ecosystems (Carpenter, Westley & Turner 2005). The approach there was towards identifying surrogates of resilience, but few of the papers proposed quantifiable metrics. Consequently, many ecological resilience frameworks remain vague and difficult to quantify, a problem that this special feature aims to address. However, considerable progress has been made during the last decade (e.g. Pope, Allen & Angeler 2014). Although some argue that resilience is best kept as an unquantifiable, vague concept (Quinlan et al. 2016), to be useful for managers, there must be concrete guidance regarding how and what to manage and how to measure success (Garmestani, Allen & Benson 2013; Spears et al. 2015). Ideas such as ‘resilience thinking’ have utility in helping stakeholders conceptualize their systems, but provide little guidance on how to make resilience useful for ecosystem management, other than suggesting an ambiguous, Goldilocks approach of being just right (e.g. diverse, but not too diverse; connected, but not too connected). Here, we clarify some prominent resilience terms and concepts, introduce and synthesize the papers in this special feature on quantifying resilience and identify core unanswered questions related to resilience.

  13. The comprehension and production of quantifiers in isiXhosa-speaking Grade 1 learners

    PubMed Central

    Southwood, Frenette

    2016-01-01

    Background Quantifiers form part of the discourse-internal linguistic devices that children need to access and produce narratives and other classroom discourse. Little is known about the development - especially the prodiction - of quantifiers in child language, specifically in speakers of an African language. Objectives The study aimed to ascertain how well Grade 1 isiXhosa first language (L1) learners perform at the beginning and at the end of Grade 1 on quantifier comprehension and production tasks. Method Two low socioeconomic groups of L1 isiXhosa learners with either isiXhosa or English as language of learning and teaching (LOLT) were tested in February and November of their Grade 1 year with tasks targeting several quantifiers. Results The isiXhosa LOLT group comprehended no/none, any and all fully either in February or then in November of Grade 1, and they produced all assessed quantifiers in February of Grade 1. For the English LOLT group, neither the comprehension nor the production of quantifiers was mastered by the end of Grade 1, although there was a significant increase in both their comprehension and production scores. Conclusion The English LOLT group made significant progress in comprehension and production of quantifiers, but still performed worse than peers who had their L1 as LOLT. Generally, children with no or very little prior knowledge of the LOLT need either, (1) more deliberate exposure to quantifier-rich language or, (2) longer exposure to general classroom language before quantifiers can be expected to be mastered sufficiently to allow access to quantifier-related curriculum content. PMID:27245132

  14. Effect of Breakfast Omission on Energy Intake and Evening Exercise Performance.

    PubMed

    Clayton, David J; Barutcu, Asya; Machin, Claire; Stensel, David J; James, Lewis J

    2015-12-01

    Breakfast omission may reduce daily energy intake. Exercising fasted impairs performance compared with exercising after breakfast, but the effect breakfast omission has on evening exercise performance is unknown. This study assessed the effect of omitting breakfast on evening exercise performance and within-day energy intake. Ten male, habitual breakfast eaters completed two trials in a randomized, counterbalanced order. Subjects arrived at the laboratory in an overnight-fasted state and either consumed or omitted a 733 ± 46 kcal (3095 ± 195 kJ) breakfast. Ad libitum energy intake was assessed at 4.5 h (lunch) and 11 h (dinner). At 9 h, subjects completed a 30-min cycling exercise at approximately 60% VO2peak, followed by a 30-min maximal cycling performance test. Food was not permitted for subjects once they left the laboratory after dinner until 0800 h the following morning. Acylated ghrelin, GLP-1(7-36), glucose, and insulin were assessed at 0, 4.5, and 9 h. Subjective appetite sensations were recorded throughout. Energy intake was 199 ± 151 kcal greater at lunch (P < 0.01) after breakfast omission compared with that after breakfast consumption and tended to be greater at dinner after consuming breakfast (P = 0.052). Consequently, total ad libitum energy intake was similar between trials (P = 0.196), with 24-h energy intake 19% ± 5% greater after consuming breakfast (P < 0.001). Total work completed during the exercise performance test was 4.5% greater after breakfast (314 ± 53 vs 300 ± 56 kJ; P < 0.05). Insulin was greater during breakfast consumption at 4.5 h (P < 0.05), with no other interaction effect for hormone concentrations. Breakfast omission might be an effective means of reducing daily energy intake but may impair performance later that day, even after consuming lunch.

  15. Quantifying Energy and Water Savings in the U.S. Residential Sector.

    PubMed

    Chini, Christopher M; Schreiber, Kelsey L; Barker, Zachary A; Stillwell, Ashlynn S

    2016-09-06

    Stress on water and energy utilities, including natural resource depletion, infrastructure deterioration, and growing populations, threatens the ability to provide reliable and sustainable service. This study presents a demand-side management decision-making tool to evaluate energy and water efficiency opportunities at the residential level, including both direct and indirect consumption. The energy-water nexus accounts for indirect resource consumption, including water-for-energy and energy-for-water. We examine the relationship between water and energy in common household appliances and fixtures, comparing baseline appliances to ENERGY STAR or WaterSense appliances, using a cost abatement analysis for the average U.S. household, yielding a potential annual per household savings of 7600 kWh and 39 600 gallons, with most upgrades having negative abatement cost. We refine the national average cost abatement curves to understand regional relationships, specifically for the urban environments of Los Angeles, Chicago, and New York. Cost abatement curves display per unit cost savings related to overall direct and indirect energy and water efficiency, allowing utilities, policy makers, and homeowners to consider the relationship between energy and water when making decisions. Our research fills an important gap of the energy-water nexus in a residential unit and provides a decision making tool for policy initiatives.

  16. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency proj

  17. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project.

  18. Quantifying capital goods for biological treatment of organic waste.

    PubMed

    Brogaard, Line K; Petersen, Per H; Nielsen, Peter D; Christensen, Thomas H

    2015-02-01

    Materials and energy used for construction of anaerobic digestion (AD) and windrow composting plants were quantified in detail. The two technologies were quantified in collaboration with consultants and producers of the parts used to construct the plants. The composting plants were quantified based on the different sizes for the three different types of waste (garden and park waste, food waste and sludge from wastewater treatment) in amounts of 10,000 or 50,000 tonnes per year. The AD plant was quantified for a capacity of 80,000 tonnes per year. Concrete and steel for the tanks were the main materials for the AD plant. For the composting plants, gravel and concrete slabs for the pavement were used in large amounts. To frame the quantification, environmental impact assessments (EIAs) showed that the steel used for tanks at the AD plant and the concrete slabs at the composting plants made the highest contribution to Global Warming. The total impact on Global Warming from the capital goods compared to the operation reported in the literature on the AD plant showed an insignificant contribution of 1-2%. For the composting plants, the capital goods accounted for 10-22% of the total impact on Global Warming from composting. © The Author(s) 2015.

  19. Solar energy system performance evaluation - Seasonal Report for Seeco Lincoln, Lincoln, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-06-01

    The SEECO Lincoln Solar Energy System was designed to provide 60 percent of the space heating for the 50 seat Hyde Memorial Observatory in Lincoln, Nebraska. The system consists of nine SEECO Mod 1 flat plate air collectors (481 square feet), a 347 cubic foot rock storage bin, blowers, controls and air ducting. An auxiliary natural gas furnace provides additional energy when the solar energy is not adequate to meet the space heating demand. The system has five modes of operation. System description, typical system operation, system operating sequence, performance assessment, system performance, subsystem performance (collector array, storage, space heating),more » operating energy, energy savings and maintenance are discussed.« less

  20. A method to quantify the "cone of economy".

    PubMed

    Haddas, Ram; Lieberman, Isador H

    2018-05-01

    A non-randomized, prospective, concurrent control cohort study. The purpose of this study is to develop and evaluate a method to quantify the dimensions of the cone of economy (COE) and the energy expenditure associated with maintaining a balanced posture within the COE, scoliosis patients and compare them to matched non-scoliotic controls in a group of adult degenerative. Balance is defined as the ability of the human body to maintain its center of mass (COM) within the base of support with minimal postural sway. The cone of economy refers to the stable region of upright standing posture. The underlying assumption is that deviating outside one's individual cone challenges the balance mechanisms. Adult degenerative scoliosis (ADS) patients exhibit a variety of postural changes within their COE, involving the spine, pelvis and lower extremities, in their effort to compensate for the altered posture. Ten ADS patients and ten non-scoliotic volunteers performed a series of functional balance tests. The dimensions of the COE and the energy expenditure related to maintaining balance within the COE were measured using a human motion video capture system and dynamic surface electromyography. ADS patients presented more COM sway in the sagittal (ADS: 1.59 cm vs. H: 0.61 cm; p = 0.049) and coronal (ADS: 2.84 cm vs. H: 1.72 cm; p = 0.046) directions in comparison to the non-scoliotic control. ADS patients presented with more COM (ADS: 33.30 cm vs. H: 19.13 cm; p = 0.039) and head (ADS: 31.06 cm vs. H: 19.13 cm; p = 0.013) displacements in comparison to the non-scoliotic controls. Scoliosis patients expended more muscle activity to maintain static standing, as manifest by increased muscle activity in their erector spinae (ADS: 37.16 mV vs. H: 20.31 mV; p = 0.050), and gluteus maximus (ADS: 33.12 mV vs. H: 12.09 mV; p = 0.001) muscles. We were able to develop and evaluate a method that quantifies the COE boundaries, COM displacement, and amount of sway within the COE

  1. Energy Efficient Engine core design and performance report

    NASA Technical Reports Server (NTRS)

    Stearns, E. Marshall

    1982-01-01

    The Energy Efficient Engine (E3) is a NASA program to develop fuel saving technology for future large transport aircraft engines. Testing of the General Electric E3 core showed that the core component performance and core system performance necessary to meet the program goals can be achieved. The E3 core design and test results are described.

  2. Performance of fuel cell for energy supply of passive house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badea, G.; Felseghi, R. A., E-mail: Raluca.FELSEGHI@insta.utcluj.ro; Mureşan, D.

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that providemore » an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.« less

  3. Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jochem W.; Laird, Daniel

    Wave energy converter (WEC) technology development has not yet delivered the desired commercial maturity nor, and more importantly, the techno-economic performance. The reasons for this have been recognized and fundamental requirements for successful WEC technology development have been identified. This paper describes a multi-year project pursued in collaboration by the National Renewable Energy Laboratory and Sandia National Laboratories to innovate and develop new WEC technology. It specifies the project strategy, shows how this differs from the state-of-the-art approach and presents some early project results. Based on the specification of fundamental functional requirements of WEC technology, structured innovation and systemic problemmore » solving methodologies are applied to invent and identify new WEC technology concepts. Using Technology Performance Levels (TPL) as an assessment metric of the techno-economic performance potential, high performance technology concepts are identified and selected for further development. System performance is numerically modelled and optimized and key performance aspects are empirically validated. The project deliverables are WEC technology specifications of high techno-economic performance technologies of TPL 7 or higher at TRL 3 with some key technology challenges investigated at higher TRL. These wave energy converter technology specifications will be made available to industry for further, full development and commercialisation (TRL 4 - TRL 9).« less

  4. Quantifying and Disaggregating Consumer Purchasing Behavior for Energy Systems Modeling

    EPA Science Inventory

    Consumer behaviors such as energy conservation, adoption of more efficient technologies, and fuel switching represent significant potential for greenhouse gas mitigation. Current efforts to model future energy outcomes have tended to use simplified economic assumptions ...

  5. Measuring information-based energy and temperature of literary texts

    NASA Astrophysics Data System (ADS)

    Chang, Mei-Chu; Yang, Albert C.-C.; Eugene Stanley, H.; Peng, C.-K.

    2017-02-01

    We apply a statistical method, information-based energy, to quantify informative symbolic sequences. To apply this method to literary texts, it is assumed that different words with different occurrence frequencies are at different energy levels, and that the energy-occurrence frequency distribution obeys a Boltzmann distribution. The temperature within the Boltzmann distribution can be an indicator for the author's writing capacity as the repertory of thoughts. The relative temperature of a text is obtained by comparing the energy-occurrence frequency distributions of words collected from one text versus from all texts of the same author. Combining the relative temperature with the Shannon entropy as the text complexity, the information-based energy of the text is defined and can be viewed as a quantitative evaluation of an author's writing performance. We demonstrate the method by analyzing two authors, Shakespeare in English and Jin Yong in Chinese, and find that their well-known works are associated with higher information-based energies. This method can be used to measure the creativity level of a writer's work in linguistics, and can also quantify symbolic sequences in different systems.

  6. Quantified Gamow shell model interaction for p s d -shell nuclei

    NASA Astrophysics Data System (ADS)

    Jaganathen, Y.; Betan, R. M. Id; Michel, N.; Nazarewicz, W.; Płoszajczak, M.

    2017-11-01

    Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the p s d f -shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤A ≲12 at the p -s d -shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A =9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities

  7. Quantified Gamow shell model interaction for p s d -shell nuclei

    DOE PAGES

    Jaganathen, Y.; Betan, R. M. Id; Michel, N.; ...

    2017-11-20

    Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In thismore » study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤ A ≲ 12 at the p-sd-shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ 2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon- 4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A = 9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation

  8. A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maile, Tobias; Bazjanac, Vladimir; O'Donnell, James

    2011-11-01

    Building energy performance is often inadequate when compared to design goals. To link design goals to actual operation one can compare measured with simulated energy performance data. Our previously developed comparison approach is the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured and simulated performance data. In context of this method, we developed a software tool that provides graphing and data processing capabilities of the two performance data sets. The software tool called SEE IT (Stanford Energy Efficiency Information Tool) eliminates the need for manual generation of data plots andmore » data reformatting. SEE IT makes the generation of time series, scatter and carpet plots independent of the source of data (measured or simulated) and provides a valuable tool for comparing measurements with simulation results. SEE IT also allows assigning data points on a predefined building object hierarchy and supports different versions of simulated performance data. This paper briefly introduces the EPCM, describes the SEE IT tool and illustrates its use in the context of a building case study.« less

  9. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  10. Short-term exposure to municipal wastewater influences energy, growth, and swimming performance in juvenile Empire Gudgeons (Hypseleotris compressa).

    PubMed

    Melvin, Steven D

    2016-01-01

    Effectively treating domestic wastewater is paramount for preserving the health of aquatic ecosystems. Various technologies exist for wastewater treatment, ranging from simple pond-based systems to advanced filtration, and it is important to evaluate the potential for these different options to produce water that is acceptable for discharge. Sub-lethal responses were therefore assessed in juvenile Empire Gudgeons (Hypseleotris compressa) exposed for a period of two weeks to control, 12.5, 25, 50, and 100% wastewater treated through a multi-stage constructed wetland (CW) treatment system. Effects on basic energy reserves (i.e., lipids and protein), growth and condition, and swimming performance were quantified following exposure. A significant increase in weight and condition was observed in fish exposed to 50 and 100% wastewater dilutions, whereas whole-body lipid content was significantly reduced in these treatments. Maximum swimming velocity increased in a dose-dependent manner amongst treatment groups (although not significantly), whereas angular velocity was significantly reduced in the 50 and 100% dilutions. Results demonstrate that treated domestic wastewater can influence the growth and swimming performance of fish, and that such effects may be related to alterations to primary energy stores. However, studies assessing complex wastewaters present difficulties when it comes to interpreting responses, as many possible factors can contribute towards the observed effects. Future research should address these uncertainties by exploring interaction between nutrients, basic water quality characteristics and relevant contaminant mixtures, for influencing the energetics, growth, and functional performance of aquatic animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Expanding Energy Performance Contracting in china: policy solutions and market mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Price, Lynn; Liu, Xu

    Energy performance contracting is an important market mechanism that uses energy savings to pay over time for the upfront costs of energy efficiency retrofits in buildings, industries, and other types of facilities. Through energy performance contracts (EPCs), Energy Service Companies (ESCOs) play an important role in implementing energy efficiency retrofits. Both China and the United States have large markets for EPCs and significant opportunities for growth. The Chinese government has made great efforts in promoting the country’s ESCO business and expanding its EPC markets. This paper makes a series of recommendations for China to adopt more ambitious policy measures tomore » encourage deep energy savings projects via EPCs. These recommendations are built on initial insights from a white paper developed by researchers at the Pacific Northwest National Laboratory and the Lawrence Berkeley National Laboratory with the assistance from the ESCO Committee of China’s Energy Conservation Association (EMCA). Key recommendations are listed below.« less

  12. Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaukus, C.

    2014-12-01

    The improvement of existing homes in the United States can have a much greater impact on overall residential energy use than the construction of highly efficient new homes. There are over 130 million existing housing units in the U.S., while annually new construction represents less than two percent of the total supply (U.S. Census Bureau, 2013). Therefore, the existing housing stock presents a clear opportunity and responsibility for Building America (BA) to guide the remodeling and retrofit market toward higher performance existing homes. There are active programs designed to improve the energy performance of existing homes. Home Performance with ENERGYmore » STAR (HPwES) is a market-rate program among them. BARA's research in this project verified that the New Jersey HPwES program is achieving savings in existing homes that meet or exceed BA's goal of 30%. Among the 17 HPwES projects with utility data included in this report, 15 have actual energy savings ranging from 24% to 46%. Further, two of the homes achieved that level of energy savings without the costly replacement of heating and cooling equipment, which indicates that less costly envelope packages could be offered to consumers unable to invest in more costly mechanical packages, potentially creating broader market impact.« less

  13. Energy Conservation in the Home. Performance Based Lesson Plans.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery. Home Economics Service.

    These ten performance-based lesson plans concentrate on tasks related to energy conservation in the home. They are (1) caulk cracks, holes, and joints; (2) apply weatherstripping to doors and windows; (3) add plastic/solar screen window covering; (4) arrange furniture for saving energy; (5) set heating/cooling thermostat; (6) replace faucet…

  14. A New Metric for Quantifying Performance Impairment on the Psychomotor Vigilance Test

    DTIC Science & Technology

    2012-01-01

    used the coefficient of determination (R2) and the P-values based on Bartelss test of randomness of the residual error to quantify the goodness - of - fit ...we used the goodness - of - fit between each metric and the corresponding individualized two-process model output (Rajaraman et al., 2008, 2009) to assess...individualized two-process model fits for each of the 12 subjects using the five metrics. The P-values are for Bartelss

  15. Solar energy system performance evaluaton: Seasonal report for Solaron-Akron, Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the solar energy system by Solaron Corporation is described. The system was designed to provide an 1940 square foot floor area with space heating and domestic hot water for a dual-level single family residence in Akron, Ohio. The solar energy system uses air as the heat transport medium, has a 546 square foot flat plate collector array subsystem, a 270 cubic foot rock thermal storage bin subsystem, a domestic hot water preheat tank, pumps, controls and transport lines. In general, the performance of the Solaron Akron solar energy system was somewhat difficult to assess for the November 1978 through October 1979 time period. The problems relating to the control systems, various solar energy leakages, air flow correction factors and instrumentation cause a significant amount of subjectivity to be involved in the performance assessment for this solar energy system. Had these problems not been present, it is felt that this system would have exhibited a resonably high level of measured performance.

  16. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  17. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    NASA Technical Reports Server (NTRS)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  18. Process Performance of Optima XEx Single Wafer High Energy Implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J. H.; Yoon, Jongyoon; Kondratenko, S.

    2011-01-07

    To meet the process requirements for well formation in future CMOS memory production, high energy implanters require more robust angle, dose, and energy control while maintaining high productivity. The Optima XEx high energy implanter meets these requirements by integrating a traditional LINAC beamline with a robust single wafer handling system. To achieve beam angle control, Optima XEx can control both the horizontal and vertical beam angles to within 0.1 degrees using advanced beam angle measurement and correction. Accurate energy calibration and energy trim functions accelerate process matching by eliminating energy calibration errors. The large volume process chamber and UDC (upstreammore » dose control) using faraday cups outside of the process chamber precisely control implant dose regardless of any chamber pressure increase due to PR (photoresist) outgassing. An optimized RF LINAC accelerator improves reliability and enables singly charged phosphorus and boron energies up to 1200 keV and 1500 keV respectively with higher beam currents. A new single wafer endstation combined with increased beam performance leads to overall increased productivity. We report on the advanced performance of Optima XEx observed during tool installation and volume production at an advanced memory fab.« less

  19. Battery energy storage market feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as amore » means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less

  20. Chapter 2: Assessing the Potential Energy Impacts of Clean Energy Initiatives

    EPA Pesticide Factsheets

    Chapter 2 of Assessing the Multiple Benefits of Clean Energy helps state energy, environmental, and economic policy makers identify and quantify the many benefits of clean energy to support the development and implementation of cost-effective clean energ

  1. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    NASA Astrophysics Data System (ADS)

    Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.

    2012-09-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  2. Energy Efficiency/Renewable Energy Programs in State Implementation Plans - Guidance Documents

    EPA Pesticide Factsheets

    final document that provides guidance to States and local areas on quantifying and including emission reductions from energy efficiency and renewable energy measures in State Implementation Plans (SIPS).

  3. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Abu Yazid, Taher; Zu, Jean; Wang, Zhong Lin

    2017-05-01

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester’s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  4. Design guidelines of triboelectric nanogenerator for water wave energy harvesters.

    PubMed

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin

    2017-05-05

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  5. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE PAGES

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil; ...

    2018-03-22

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  6. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  7. Quantifying Variations In Multi-parameter Models With The Photon Clean Method (PCM) And Bootstrap Methods

    NASA Astrophysics Data System (ADS)

    Carpenter, Matthew H.; Jernigan, J. G.

    2007-05-01

    We present examples of an analysis progression consisting of a synthesis of the Photon Clean Method (Carpenter, Jernigan, Brown, Beiersdorfer 2007) and bootstrap methods to quantify errors and variations in many-parameter models. The Photon Clean Method (PCM) works well for model spaces with large numbers of parameters proportional to the number of photons, therefore a Monte Carlo paradigm is a natural numerical approach. Consequently, PCM, an "inverse Monte-Carlo" method, requires a new approach for quantifying errors as compared to common analysis methods for fitting models of low dimensionality. This presentation will explore the methodology and presentation of analysis results derived from a variety of public data sets, including observations with XMM-Newton, Chandra, and other NASA missions. Special attention is given to the visualization of both data and models including dynamic interactive presentations. This work was performed under the auspices of the Department of Energy under contract No. W-7405-Eng-48. We thank Peter Beiersdorfer and Greg Brown for their support of this technical portion of a larger program related to science with the LLNL EBIT program.

  8. Field swimming performance of bluegill sunfish, Lepomis macrochirus: implications for field activity cost estimates and laboratory measures of swimming performance.

    PubMed

    Cathcart, Kelsey; Shin, Seo Yim; Milton, Joanna; Ellerby, David

    2017-10-01

    Mobility is essential to the fitness of many animals, and the costs of locomotion can dominate daily energy budgets. Locomotor costs are determined by the physiological demands of sustaining mechanical performance, yet performance is poorly understood for most animals in the field, particularly aquatic organisms. We have used 3-D underwater videography to quantify the swimming trajectories and propulsive modes of bluegills sunfish ( Lepomis macrochirus , Rafinesque) in the field with high spatial (1-3 mm per pixel) and temporal (60 Hz frame rate) resolution. Although field swimming trajectories were variable and nonlinear in comparison to quasi steady-state swimming in recirculating flumes, they were much less unsteady than the volitional swimming behaviors that underlie existing predictive models of field swimming cost. Performance analyses suggested that speed and path curvature data could be used to derive reasonable estimates of locomotor cost that fit within measured capacities for sustainable activity. The distinct differences between field swimming behavior and performance measures obtained under steady-state laboratory conditions suggest that field observations are essential for informing approaches to quantifying locomotor performance in the laboratory.

  9. Exploring the Process of Energy Generation in Pathophysiology by Targeted Metabolomics: Performance of a Simple and Quantitative Method.

    PubMed

    Riera-Borrull, Marta; Rodríguez-Gallego, Esther; Hernández-Aguilera, Anna; Luciano, Fedra; Ras, Rosa; Cuyàs, Elisabet; Camps, Jordi; Segura-Carretero, Antonio; Menendez, Javier A; Joven, Jorge; Fernández-Arroyo, Salvador

    2016-01-01

    Abnormalities in mitochondrial metabolism and regulation of energy balance contribute to human diseases. The consequences of high fat and other nutrient intake, and the resulting acquired mitochondrial dysfunction, are essential to fully understand common disorders, including obesity, cancer, and atherosclerosis. To simultaneously and noninvasively measure and quantify indirect markers of mitochondrial function, we have developed a method based on gas chromatography coupled to quadrupole-time of flight mass spectrometry and an electron ionization interface, and validated the system using plasma from patients with peripheral artery disease, human cancer cells, and mouse tissues. This approach was used to increase sensibility in the measurement of a wide dynamic range and chemical diversity of multiple intermediate metabolites used in energy metabolism. We demonstrate that our targeted metabolomics method allows for quick and accurate identification and quantification of molecules, including the measurement of small yet significant biological changes in experimental samples. The apparently low process variability required for its performance in plasma, cell lysates, and tissues allowed a rapid identification of correlations between interconnected pathways. Our results suggest that delineating the process of energy generation by targeted metabolomics can be a valid surrogate for predicting mitochondrial dysfunction in biological samples. Importantly, when used in plasma, targeted metabolomics should be viewed as a robust and noninvasive source of biomarkers in specific pathophysiological scenarios.

  10. Exploring the Process of Energy Generation in Pathophysiology by Targeted Metabolomics: Performance of a Simple and Quantitative Method

    NASA Astrophysics Data System (ADS)

    Riera-Borrull, Marta; Rodríguez-Gallego, Esther; Hernández-Aguilera, Anna; Luciano, Fedra; Ras, Rosa; Cuyàs, Elisabet; Camps, Jordi; Segura-Carretero, Antonio; Menendez, Javier A.; Joven, Jorge; Fernández-Arroyo, Salvador

    2016-01-01

    Abnormalities in mitochondrial metabolism and regulation of energy balance contribute to human diseases. The consequences of high fat and other nutrient intake, and the resulting acquired mitochondrial dysfunction, are essential to fully understand common disorders, including obesity, cancer, and atherosclerosis. To simultaneously and noninvasively measure and quantify indirect markers of mitochondrial function, we have developed a method based on gas chromatography coupled to quadrupole-time of flight mass spectrometry and an electron ionization interface, and validated the system using plasma from patients with peripheral artery disease, human cancer cells, and mouse tissues. This approach was used to increase sensibility in the measurement of a wide dynamic range and chemical diversity of multiple intermediate metabolites used in energy metabolism. We demonstrate that our targeted metabolomics method allows for quick and accurate identification and quantification of molecules, including the measurement of small yet significant biological changes in experimental samples. The apparently low process variability required for its performance in plasma, cell lysates, and tissues allowed a rapid identification of correlations between interconnected pathways. Our results suggest that delineating the process of energy generation by targeted metabolomics can be a valid surrogate for predicting mitochondrial dysfunction in biological samples. Importantly, when used in plasma, targeted metabolomics should be viewed as a robust and noninvasive source of biomarkers in specific pathophysiological scenarios.

  11. Long term performance of wearable transducer for motion energy harvesting

    NASA Astrophysics Data System (ADS)

    McGarry, Scott A.; Behrens, Sam

    2010-04-01

    Personal electronic devices such as cell phones, GPS and MP3 players have traditionally depended on battery energy storage technologies for operation. By harvesting energy from a person's motion, these devices may achieve greater run times without increasing the mass or volume of the electronic device. Through the use of a flexible piezoelectric transducer such as poly-vinylidene fluoride (PVDF), and integrating it into a person's clothing, it becomes a 'wearable transducer'. As the PVDF transducer is strained during the person's routine activities, it produces an electrical charge which can then be harvested to power personal electronic devices. Existing wearable transducers have shown great promise for personal motion energy harvesting applications. However, they are presently physically bulky and not ergonomic for the wearer. In addition, there is limited information on the energy harvesting performance for wearable transducers, especially under realistic conditions and for extended cyclic force operations - as would be experienced when worn. In this paper, we present experimental results for a wearable PVDF transducer using a person's measured walking force profile, which is then cycled for a prolonged period of time using an experimental apparatus. Experimental results indicate that after an initial drop in performance, the transducer energy harvesting performance does not substantially deteriorate over time, as less than 10% degradation was observed. Longevity testing is still continuing at CSIRO.

  12. Energy management using virtual reality improves 2000-m rowing performance.

    PubMed

    Hoffmann, Charles P; Filippeschi, Alessandro; Ruffaldi, Emanuele; Bardy, Benoit G

    2014-01-01

    Elite-standard rowers tend to use a fast-start strategy followed by an inverted parabolic-shaped speed profile in 2000-m races. This strategy is probably the best to manage energy resources during the race and maximise performance. This study investigated the use of virtual reality (VR) with novice rowers as a means to learn about energy management. Participants from an avatar group (n = 7) were instructed to track a virtual boat on a screen, whose speed was set individually to follow the appropriate to-be-learned speed profile. A control group (n = 8) followed an indoor training programme. In spite of similar physiological characteristics in the groups, the avatar group learned and maintained the required profile, resulting in an improved performance (i.e. a decrease in race duration), whereas the control group did not. These results suggest that VR is a means to learn an energy-related skill and improve performance.

  13. District Heating Systems Performance Analyses. Heat Energy Tariff

    NASA Astrophysics Data System (ADS)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  14. Energy expenditure in rock/pop drumming.

    PubMed

    De La Rue, S E; Draper, S B; Potter, C R; Smith, M S

    2013-10-01

    Despite the vigorous nature of rock/pop drumming, there are no precise data on the energy expenditure of this activity. The aim of this study was to quantify the energy cost of rock/pop drumming. Fourteen male drummers (mean±SD; age 27±8 yrs.) completed an incremental drumming test to establish the relationship between energy expenditure and heart rate for this activity and a ramped cycle ergometer test to exhaustion as a criterion measure for peak values (oxygen uptake and heart rate). During live concert performance heart rate was continuously measured and used to estimate energy expenditure (from the energy expenditure vs. heart rate data derived from the drumming test). During concert performance, estimated energy expenditure (mean±SD) was 623±168 kcal.h⁻¹ (8.1±2.2 METs) during performances of 38.6±15.6 min, and drummers achieved a peak heart rate of 186±16 b.min⁻¹. During the drumming test participants attained 78.7±8.3% of the cycle ergometer peak oxygen uptake. Rock/pop drumming represents a relatively high-intensity form of physical activity and as such involves significant energy expenditure. Rock/pop drumming should be considered as a viable alternative to more traditional forms of physical activity. © Georg Thieme Verlag KG Stuttgart · New York.

  15. The use of remotely-sensed wildland fire radiation to infer the fates of carbon during biomass combustion - the need to understand and quantify a fire's mass and energy budget

    NASA Astrophysics Data System (ADS)

    Dickinson, M. B.; Dietenberger, M.; Ellicott, E. A.; Hardy, C.; Hudak, A. T.; Kremens, R.; Mathews, W.; Schroeder, W.; Smith, A. M.; Strand, E. K.

    2016-12-01

    Few measurement techniques offer broad-scale insight on the extent and characteristics of biomass combustion during wildland fires. Remotely-sensed radiation is one of these techniques but its measurement suffers from several limitations and, when quantified, its use to derive variables of real interest depends on an understanding of the fire's mass and energy budget. In this talk, we will review certain assumptions of wildland fire radiation measurement and explore the use of those measurements to infer the fates of biomass and the dissipation of combustion energy. Recent measurements show that the perspective of the sensor (nadir vs oblique) matters relative to estimates of fire radiated power. Other considerations for producing accurate estimates of fire radiation from remote sensing include obscuration by an intervening forest canopy and to what extent measurements that are based on the assumption of graybody/blackbody behavior underestimate fire radiation. Fire radiation measurements are generally a means of quantifying other variables and are often not of interest in and of themselves. Use of fire radiation measurements as a means of inference currently relies on correlations with variables of interest such as biomass consumption and sensible and latent heat and emissions fluxes. Radiation is an imperfect basis for these correlations in that it accounts for a minority of combustion energy ( 15-30%) and is not a constant as is often assumed. Measurements suggest that fire convective energy accounts for the majority of combustion energy and (after radiation) is followed by latent energy, soil heating, and pyrolysis energy, more or less in that order. Combustion energy in and of itself is not its potential maximum, but is reduced to an effective heat of combustion by combustion inefficiency and by work done to pyrolyze fuel (important in char production) and in moisture vaporization. The effective heat of combustion is often on the order of 65% of its potential

  16. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. Thismore » report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.« less

  17. Data in support of energy performance of double-glazed windows.

    PubMed

    Shakouri, Mahmoud; Banihashemi, Saeed

    2016-06-01

    This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.

  18. Neural basis for generalized quantifier comprehension.

    PubMed

    McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray

    2005-01-01

    Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.

  19. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  20. Performance Contracting and Energy Efficiency in the State Government Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharvirkar, Ranjit; Goldman, Charles; Gilligan, Donald

    There is growing interest in energy efficiency (EE) among state policymakers as a result of increasing environmental concerns, rising electricity and natural gas prices, and lean economic times that motivate states to look more aggressively for cost-saving opportunities in public sector buildings. One logical place for state policymakers to demonstrate their commitment to energy efficiency is to 'lead by example' by developing and implementing strategies to reduce the energy consumption of state government facilities through investments in energy efficient technologies. Traditionally, energy efficiency improvements at state government facilities are viewed as a subset in the general category of building maintenancemore » and construction. These projects are typically funded through direct appropriations. However, energy efficiency projects are often delayed or reduced in scope whereby not all cost-effective measures are implemented because many states have tight capital budgets. Energy Savings Performance Contracting (ESPC) offers a potentially useful strategy for state program and facility managers to proactively finance and develop energy efficiency projects. In an ESPC project, Energy Service Companies (ESCOs) typically guarantee that the energy and cost savings produced by the project will equal or exceed all costs associated with implementing the project over the term of the contract. ESCOs typically provide turnkey design, installation, and maintenance services and also help arrange project financing. Between 1990 and 2006, U.S. ESCOs reported market activity of {approx}$28 Billion, with about {approx}75-80% of that activity concentrated in the institutional markets (K-12 schools, colleges/universities, state/local/federal government and hospitals). In this study, we review the magnitude of energy efficiency investment in state facilities and identify 'best practices' while employing performance contracting in the state government sector. The state

  1. Program optimizations: The interplay between power, performance, and energy

    DOE PAGES

    Leon, Edgar A.; Karlin, Ian; Grant, Ryan E.; ...

    2016-05-16

    Practical considerations for future supercomputer designs will impose limits on both instantaneous power consumption and total energy consumption. Working within these constraints while providing the maximum possible performance, application developers will need to optimize their code for speed alongside power and energy concerns. This paper analyzes the effectiveness of several code optimizations including loop fusion, data structure transformations, and global allocations. A per component measurement and analysis of different architectures is performed, enabling the examination of code optimizations on different compute subsystems. Using an explicit hydrodynamics proxy application from the U.S. Department of Energy, LULESH, we show how code optimizationsmore » impact different computational phases of the simulation. This provides insight for simulation developers into the best optimizations to use during particular simulation compute phases when optimizing code for future supercomputing platforms. Here, we examine and contrast both x86 and Blue Gene architectures with respect to these optimizations.« less

  2. Comparison of methods for quantifying surface sublimation over seasonally snow-covered terrain

    USGS Publications Warehouse

    Sexstone, Graham A.; Clow, David W.; Stannard, David I.; Fassnacht, Steven R.

    2016-01-01

    Snow sublimation can be an important component of the snow-cover mass balance, and there is considerable interest in quantifying the role of this process within the water and energy balance of snow-covered regions. In recent years, robust eddy covariance (EC) instrumentation has been used to quantify snow sublimation over snow-covered surfaces in complex mountainous terrain. However, EC can be challenging for monitoring turbulent fluxes in snow-covered environments because of intensive data, power, and fetch requirements, and alternative methods of estimating snow sublimation are often relied upon. To evaluate the relative merits of methods for quantifying surface sublimation, fluxes calculated by the EC, Bowen ratio–energy balance (BR), bulk aerodynamic flux (BF), and aerodynamic profile (AP) methods and their associated uncertainty were compared at two forested openings in the Colorado Rocky Mountains. Biases between methods are evaluated over a range of environmental conditions, and limitations of each method are discussed. Mean surface sublimation rates from both sites ranged from 0.33 to 0.36 mm day−1, 0.14 to 0.37 mm day−1, 0.10 to 0.17 mm day−1, and 0.03 to 0.10 mm day−1 for the EC, BR, BF and AP methods, respectively. The EC and/or BF methods are concluded to be superior for estimating surface sublimation in snow-covered forested openings. The surface sublimation rates quantified in this study are generally smaller in magnitude compared with previously published studies in this region and help to refine sublimation estimates for forested openings in the Colorado Rocky Mountains.

  3. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-06-01

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project. The project was designed to improve the efficiency of the circulating water pumping system serving the utility's 405-MW steam turbine. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial assessment of the system.

  4. Facility Energy Performance Benchmarking in a Data-Scarce Environment

    DTIC Science & Technology

    2017-08-01

    environment, and analyze occupant-, system-, and component-level faults contributing to energy in- efficiency. A methodology for developing DoD-specific...Research, Development, Test, and Evaluation (RDTE) Program to develop an intelligent framework, encompassing methodology and model- ing, that...energy performers by installation, climate zone, and other criteria. A methodology for creating the DoD-specific EUIs would be an important part of a

  5. Quantifying a cellular automata simulation of electric vehicles

    NASA Astrophysics Data System (ADS)

    Hill, Graeme; Bell, Margaret; Blythe, Phil

    2014-12-01

    Within this work the Nagel-Schreckenberg (NS) cellular automata is used to simulate a basic cyclic road network. Results from SwitchEV, a real world Electric Vehicle trial which has collected more than two years of detailed electric vehicle data, are used to quantify the results of the NS automata, demonstrating similar power consumption behavior to that observed in the experimental results. In particular the efficiency of the electric vehicles reduces as the vehicle density increases, due in part to the reduced efficiency of EVs at low speeds, but also due to the energy consumption inherent in changing speeds. Further work shows the results from introducing spatially restricted speed restriction. In general it can be seen that induced congestion from spatially transient events propagates back through the road network and alters the energy and efficiency profile of the simulated vehicles, both before and after the speed restriction. Vehicles upstream from the restriction show a reduced energy usage and an increased efficiency, and vehicles downstream show an initial large increase in energy usage as they accelerate away from the speed restriction.

  6. Quantifying cadherin mechanotransduction machinery assembly/disassembly dynamics using fluorescence covariance analysis.

    PubMed

    Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J

    2016-06-30

    Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.

  7. Solar energy system performance evaluation: A seasonal report for SEMCO, Macon, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system for heating water in a single-family residence for a family of four is described. The system operation, the operating energy, energy savings, maintenance, and performance are analyzed.

  8. Structure for identifying, locating and quantifying physical phenomena

    DOEpatents

    Richardson, John G.

    2006-10-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  9. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  10. Development of an Enhanced Payback Function for the Superior Energy Performance Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Therkelsen, Peter; Rao, Prakash; McKane, Aimee

    2015-08-03

    The U.S. DOE Superior Energy Performance (SEP) program provides recognition to industrial and commercial facilities that achieve certification to the ISO 50001 energy management system standard and third party verification of energy performance improvements. Over 50 industrial facilities are participating and 28 facilities have been certified in the SEP program. These facilities find value in the robust, data driven energy performance improvement result that the SEP program delivers. Previous analysis of SEP certified facility data demonstrated the cost effectiveness of SEP and identified internal staff time to be the largest cost component related to SEP implementation and certification. This papermore » analyzes previously reported and newly collected data of costs and benefits associated with the implementation of an ISO 50001 and SEP certification. By disaggregating “sunk energy management system (EnMS) labor costs”, this analysis results in a more accurate and detailed understanding of the costs and benefits of SEP participation. SEP is shown to significantly improve and sustain energy performance and energy cost savings, resulting in a highly attractive return on investment. To illustrate these results, a payback function has been developed and is presented. On average facilities with annual energy spend greater than $2M can expect to implement SEP with a payback of less than 1.5 years. Finally, this paper also observes and details decreasing facility costs associated with implementing ISO 50001 and certifying to the SEP program, as the program has improved from pilot, to demonstration, to full launch.« less

  11. Energy Design Guidelines for High Performance Schools: Temperate and Humid Climates.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  12. Energy Design Guidelines for High Performance Schools: Hot and Humid Climates.

    ERIC Educational Resources Information Center

    National Renewable Energy Lab. (DOE), Golden, CO.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  13. Energy Design Guidelines for High Performance Schools: Cool and Humid Climates.

    ERIC Educational Resources Information Center

    National Renewable Energy Lab. (DOE), Golden, CO.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  14. Energy Design Guidelines for High Performance Schools: Temperate and Mixed Climates.

    ERIC Educational Resources Information Center

    National Renewable Energy Lab. (DOE), Golden, CO.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  15. Energy Design Guidelines for High Performance Schools: Cool and Dry Climates.

    ERIC Educational Resources Information Center

    National Renewable Energy Lab. (DOE), Golden, CO.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  16. Energy Design Guidelines for High Performance Schools: Cold and Humid Climates.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  17. Turbulence statistics with quantified uncertainty in cold-wall supersonic channel flow

    NASA Astrophysics Data System (ADS)

    Ulerich, Rhys; Moser, Robert D.

    2012-11-01

    To investigate compressibility effects in wall-bounded turbulence, a series of direct numerical simulations of compressible channel flow with isothermal (cold) walls have been conducted. All combinations of Re = { 3000 , 5000 } and Ma = { 0 . 1 , 0 . 5 , 1 . 5 , 3 . 0 } have been simulated where the Reynolds and Mach numbers are based on bulk velocity and sound speed at the wall temperature. Turbulence statistics with precisely quantified uncertainties computed from these simulations will be presented and are being made available in a public data base at http://turbulence.ices.utexas.edu/. The simulations were performed using a new pseudo-spectral code called Suzerain, which was designed to efficiently produce high quality data on compressible, wall-bounded turbulent flows using a semi-implicit Fourier/B-spline numerical formulation. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].

  18. Energy prediction using spatiotemporal pattern networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhanhong; Liu, Chao; Akintayo, Adedotun

    This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for energy/power prediction for complex dynamical systems. Built on symbolic dynamical filtering, the STPN framework is used to capture not only the individual system characteristics but also the pair-wise causal dependencies among different sub-systems. To quantify causal dependencies, a mutual information based metric is presented and an energy prediction approach is subsequently proposed based on the STPN framework. To validate the proposed scheme, two case studies are presented, one involving wind turbine power prediction (supply side energy) using the Western Wind Integration data set generated bymore » the National Renewable Energy Laboratory (NREL) for identifying spatiotemporal characteristics, and the other, residential electric energy disaggregation (demand side energy) using the Building America 2010 data set from NREL for exploring temporal features. In the energy disaggregation context, convex programming techniques beyond the STPN framework are developed and applied to achieve improved disaggregation performance.« less

  19. Quantifying spatial distribution of spurious mixing in ocean models.

    PubMed

    Ilıcak, Mehmet

    2016-12-01

    Numerical mixing is inevitable for ocean models due to tracer advection schemes. Until now, there is no robust way to identify the regions of spurious mixing in ocean models. We propose a new method to compute the spatial distribution of the spurious diapycnic mixing in an ocean model. This new method is an extension of available potential energy density method proposed by Winters and Barkan (2013). We test the new method in lock-exchange and baroclinic eddies test cases. We can quantify the amount and the location of numerical mixing. We find high-shear areas are the main regions which are susceptible to numerical truncation errors. We also test the new method to quantify the numerical mixing in different horizontal momentum closures. We conclude that Smagorinsky viscosity has less numerical mixing than the Leith viscosity using the same non-dimensional constant.

  20. Caffeinated energy drinks improve volleyball performance in elite female players.

    PubMed

    Pérez-López, Alberto; Salinero, Juan José; Abian-Vicen, Javier; Valadés, David; Lara, Beatriz; Hernandez, Cesar; Areces, Francisco; González, Cristina; Del Coso, Juan

    2015-04-01

    The objective of this study is to determine the effects of a caffeine-containing energy drink on female volleyball players' performance. Thirteen elite female volleyball players ingested 3 mg·kg of caffeine with an energy drink or the same drink without caffeine (placebo drink) in a double-blind and randomized study. Then, participants performed the following: standing spike, jumping spike, spike jump, blocking jump, squat jump, countermovement jump, manual dynamometry, and the agility t-test. A simulated volleyball game was played, videotaped, and notated afterward. In comparison to the placebo drink, the ingestion of the caffeinated energy drink increased the ball velocity in the standing spike (19.2 ± 2.1 vs 19.7 ± 1.9 m·s, P = 0.023) and in the jumping spike (17.9 ± 2.2 vs 18.8 ± 2.2 m·s, P = 0.038) and the jump height in the squat jump (28.1 ± 3.2 vs 29.4 ± 3.6 cm, P = 0.028), countermovement jump (32.0 ± 4.6 vs 33.1 ± 4.5 cm, P = 0.018), spike jump (43.3 ± 4.7 vs 44.4 ± 5.0 cm, P = 0.025), and block jump (35.2 ± 5.1 vs 36.1 ± 5.1 cm, P = 0.044). Furthermore, the caffeinated energy drink decreased the time needed to complete the agility t-test (11.1 ± 0.5 vs 10.9 ± 0.3 s, P = 0.036). During the game, the volleyball actions categorized as successful were more frequent with the caffeinated energy drink (34% ± 9% vs 45% ± 9%, P < 0.001), whereas imprecise actions decreased (28% ± 7% vs 14% ± 9%, P < 0.001) when compared with the placebo drink. Commercially available energy drinks can significantly improve physical performance in female volleyball players. Increased physical performance led to improved accuracy during an actual volleyball match.

  1. Energy Efficiency Resources to Support State Energy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  2. Institute for Sustained Performance, Energy, and Resilience (SuPER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagode, Heike; Bosilca, George; Danalis, Anthony

    The University of Tennessee (UTK) and University of Texas at El Paso (UTEP) partnership supported the three main thrusts of the SUPER project---performance, energy, and resilience. The UTK-UTEP effort thus helped advance the main goal of SUPER, which was to ensure that DOE's computational scientists can successfully exploit the emerging generation of high performance computing (HPC) systems. This goal is being met by providing application scientists with strategies and tools to productively maximize performance, conserve energy, and attain resilience. The primary vehicle through which UTK provided performance measurement support to SUPER and the larger HPC community is the Performance Applicationmore » Programming Interface (PAPI). PAPI is an ongoing project that provides a consistent interface and methodology for collecting hardware performance information from various hardware and software components, including most major CPUs, GPUs and accelerators, interconnects, I/O systems, and power interfaces, as well as virtual cloud environments. The PAPI software is widely used for performance modeling of scientific and engineering applications---for example, the HOMME (High Order Methods Modeling Environment) climate code, and the GAMESS and NWChem computational chemistry codes---on DOE supercomputers. PAPI is widely deployed as middleware for use by higher-level profiling, tracing, and sampling tools (e.g., CrayPat, HPCToolkit, Scalasca, Score-P, TAU, Vampir, PerfExpert), making it the de facto standard for hardware counter analysis. PAPI has established itself as fundamental software infrastructure in every application domain (spanning academia, government, and industry), where improving performance can be mission critical. Ultimately, as more application scientists migrate their applications to HPC platforms, they will benefit from the extended capabilities this grant brought to PAPI to analyze and optimize performance in these environments, whether they use PAPI

  3. NREL Provides a Foundation for Home Energy Performance - Continuum

    Science.gov Websites

    , Colorado home. Photo by Dennis Schroeder, NREL NREL Provides a Foundation for Home Energy Performance NREL effectively and safely. Photo by Dennis Schroeder, NREL DOE's weatherization program, 35 years old in 2014 checklists to his crews as they perform upgrades like drilling a hole to add insulation. Photo by Dennis

  4. Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives

    DOE PAGES

    Bauer, Nico; Calvin, Katherine; Emmerling, Johannes; ...

    2016-08-23

    Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomicmore » Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO 2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy

  5. Stress and performance: do service orientation and emotional energy moderate the relationship?

    PubMed

    Smith, Michael R; Rasmussen, Jennifer L; Mills, Maura J; Wefald, Andrew J; Downey, Ronald G

    2012-01-01

    The current study examines the moderating effect of customer service orientation and emotional energy on the stress-performance relationship for 681 U.S. casual dining restaurant employees. Customer service orientation was hypothesized to moderate the stress-performance relationship for Front-of-House (FOH) workers. Emotional energy was hypothesized to moderate stress-performance for Back-of-House (BOH) workers. Contrary to expectations, customer service orientation failed to moderate the effects of stress on performance for FOH employees, but the results supported that customer service orientation is likely a mediator of the relationship. However, the hypothesis was supported for BOH workers; emotional energy was found to moderate stress performance for these employees. This finding suggests that during times of high stress, meaningful, warm, and empathetic relationships are likely to impact BOH workers' ability to maintain performance. These findings have real-world implications in organizational practice, including highlighting the importance of developing positive and meaningful social interactions among workers and facilitating appropriate person-job fits. Doing so is likely to help in alleviating worker stress and is also likely to encourage worker performance.

  6. Investigation of beamed-energy ERH thruster performance

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.; Strayer, T. Darton; Bossard, John A.; Richard, Jacques C.; Gallimore, Alec D.

    1986-01-01

    The objective of this study was to determine the performance of an External Radiation Heated (ERH) thruster. In this thruster, high intensity laser energy is focused to ignite either a Laser Supported Combustion (LSC) wave or a Laser Supported Detonation (LSD) wave. Thrust is generated as the LSC or LSD wave propagates over the thruster's surface, or in the proposed thruster configuration, the vehicle afterbody. Thrust models for the LSC and LSD waves were developed and simulated on a computer. Performance parameters investigated include the effect of laser intensity, flight Mach number, and altitude on mean-thrust and coupling coefficient of the ERH thruster. Results from these models suggest that the ERH thruster using LSC/LSD wave ignition could provide propulsion performance considerably greater than any propulsion system currently available.

  7. Using channelized Hotelling observers to quantify temporal effects of medical liquid crystal displays on detection performance

    NASA Astrophysics Data System (ADS)

    Platiša, Ljiljana; Goossens, Bart; Vansteenkiste, Ewout; Badano, Aldo; Philips, Wilfried

    2010-02-01

    Clinical practice is rapidly moving in the direction of volumetric imaging. Often, radiologists interpret these images in liquid crystal displays at browsing rates of 30 frames per second or higher. However, recent studies suggest that the slow response of the display can compromise image quality. In order to quantify the temporal effect of medical displays on detection performance, we investigate two designs of a multi-slice channelized Hotelling observer (msCHO) model in the task of detecting a single-slice signal in multi-slice simulated images. The design of msCHO models is inspired by simplifying assumptions about how humans observe while viewing in the stack-browsing mode. For comparison, we consider a standard CHO applied only on the slice where the signal is located, recently used in a similar study. We refer to it as a single-slice CHO (ssCHO). Overall, our results confirm previous findings that the slow response of displays degrades the detection performance of the observers. More specifically, the observed performance range of msCHO designs is higher compared to the ssCHO suggesting that the extent and rate of degradation, though significant, may be less drastic than previously estimated by the ssCHO. Especially, the difference between msCHO and ssCHO is more significant for higher browsing speeds than for slow image sequences or static images. This, together with their design criteria driven by the assumptions about humans, makes the msCHO models promising candidates for further studies aimed at building anthropomorphic observer models for the stack-mode image presentation.

  8. A Generalizable Methodology for Quantifying User Satisfaction

    NASA Astrophysics Data System (ADS)

    Huang, Te-Yuan; Chen, Kuan-Ta; Huang, Polly; Lei, Chin-Laung

    Quantifying user satisfaction is essential, because the results can help service providers deliver better services. In this work, we propose a generalizable methodology, based on survival analysis, to quantify user satisfaction in terms of session times, i. e., the length of time users stay with an application. Unlike subjective human surveys, our methodology is based solely on passive measurement, which is more cost-efficient and better able to capture subconscious reactions. Furthermore, by using session times, rather than a specific performance indicator, such as the level of distortion of voice signals, the effects of other factors like loudness and sidetone, can also be captured by the developed models. Like survival analysis, our methodology is characterized by low complexity and a simple model-developing process. The feasibility of our methodology is demonstrated through case studies of ShenZhou Online, a commercial MMORPG in Taiwan, and the most prevalent VoIP application in the world, namely Skype. Through the model development process, we can also identify the most significant performance factors and their impacts on user satisfaction and discuss how they can be exploited to improve user experience and optimize resource allocation.

  9. Quantifying the Energy Landscape Statistics in Proteins - a Relaxation Mode Analysis

    NASA Astrophysics Data System (ADS)

    Cai, Zhikun; Zhang, Yang

    Energy landscape, the hypersurface in the configurational space, has been a useful concept in describing complex processes that occur over a very long time scale, such as the multistep slow relaxations of supercooled liquids and folding of polypeptide chains into structured proteins. Despite extensive simulation studies, its experimental characterization still remains a challenge. To address this challenge, we developed a relaxation mode analysis (RMA) for liquids under a framework analogous to the normal mode analysis for solids. Using RMA, important statistics of the activation barriers of the energy landscape becomes accessible from experimentally measurable two-point correlation functions, e.g. using quasi-elastic and inelastic scattering experiments. We observed a prominent coarsening effect of the energy landscape. The results were further confirmed by direct sampling of the energy landscape using a metadynamics-like adaptive autonomous basin climbing computation. We first demonstrate RMA in a supercooled liquid when dynamical cooperativity emerges in the landscape-influenced regime. Then we show this framework reveals encouraging energy landscape statistics when applied to proteins.

  10. Quantifier Comprehension in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    McMillan, Corey T.; Clark, Robin; Moore, Peachie; Grossman, Murray

    2006-01-01

    In this study, we investigated patients with focal neurodegenerative diseases to examine a formal linguistic distinction between classes of generalized quantifiers, like "some X" and "less than half of X." Our model of quantifier comprehension proposes that number knowledge is required to understand both first-order and higher-order quantifiers.…

  11. Analyzing the Energy Performance, Wind Loading, and Costs of Photovoltaic Slat Modules on Commercial Rooftops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Geet, Otto D.; Fu, Ran; Horowitz, Kelsey A.

    NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air tomore » flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.« less

  12. From Energy Audits to Home Performance: 30 Years of Articles in Home Energy Magazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Alan

    Home Energy Magazine has been publishing articles about residential energy efficiency for 30 years. Its goal has been to disseminate technically reliable and neutral information to the practitioners, that is, professionals in the business of home energy efficiency. The articles, editorials, letters, and advertisements are a kind of window on the evolution of energy conservation technologies, policies, and organizations. Initially, the focus was on audits and simple retrofits, such as weatherstripping and insulation. Instrumentation was sparse sometimes limited to a ruler to measure depth of attic insulation and a blower door was exotic. CFLs were heavy, awkward bulbs which might,more » or might not, fit in a fixture. Saving air conditioning energy was not a priority. Solar energy was only for the most adventurous. Thirty years on, the technologies and business have moved beyond just insulating attics to the larger challenge of delivering home performance and achieving zero net energy. This shift reflects the success in reducing space heating energy and the need to create a profitable industry by providing more services. The leading edge of the residential energy services market is becoming much more sophisticated, offering both efficiency and solar systems. The challenge is to continue providing relevant and reliable information in a transformed industry and a revolutionized media landscape.« less

  13. Quantifying Pilot Visual Attention in Low Visibility Terminal Operations

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.

    2012-01-01

    Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation

  14. Optimizing Irregular Applications for Energy and Performance on the Tilera Many-core Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Panyala, Ajay R.; Halappanavar, Mahantesh

    Optimizing applications simultaneously for energy and performance is a complex problem. High performance, parallel, irregular applications are notoriously hard to optimize due to their data-dependent memory accesses, lack of structured locality and complex data structures and code patterns. Irregular kernels are growing in importance in applications such as machine learning, graph analytics and combinatorial scientific computing. Performance- and energy-efficient implementation of these kernels on modern, energy efficient, multicore and many-core platforms is therefore an important and challenging problem. We present results from optimizing two irregular applications { the Louvain method for community detection (Grappolo), and high-performance conjugate gradient (HPCCG) {more » on the Tilera many-core system. We have significantly extended MIT's OpenTuner auto-tuning framework to conduct a detailed study of platform-independent and platform-specific optimizations to improve performance as well as reduce total energy consumption. We explore the optimization design space along three dimensions: memory layout schemes, compiler-based code transformations, and optimization of parallel loop schedules. Using auto-tuning, we demonstrate whole node energy savings of up to 41% relative to a baseline instantiation, and up to 31% relative to manually optimized variants.« less

  15. Quantifying capital goods for waste incineration.

    PubMed

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Quantifying Bell nonlocality with the trace distance

    NASA Astrophysics Data System (ADS)

    Brito, S. G. A.; Amaral, B.; Chaves, R.

    2018-02-01

    Measurements performed on distant parts of an entangled quantum state can generate correlations incompatible with classical theories respecting the assumption of local causality. This is the phenomenon known as quantum nonlocality that, apart from its fundamental role, can also be put to practical use in applications such as cryptography and distributed computing. Clearly, developing ways of quantifying nonlocality is an important primitive in this scenario. Here, we propose to quantify the nonlocality of a given probability distribution via its trace distance to the set of classical correlations. We show that this measure is a monotone under the free operations of a resource theory and, furthermore, that it can be computed efficiently with a linear program. We put our framework to use in a variety of relevant Bell scenarios also comparing the trace distance to other standard measures in the literature.

  17. Integrating field research, modeling and remote sensing to quantify morphodynamics in a high-energy coastal setting, ocean beach, San Francisco, California

    USGS Publications Warehouse

    Barnard, P.L.; Hanes, D.M.

    2006-01-01

    Wave and coastal circulation modeling are combined with multibeam bathymetry, high-resolution beach surveys, cross-shore Personal Water Craft surveys, digital bed sediment camera surveys, and real-time video monitoring to quantify morphological change and nearshore processes at Ocean Beach, San Francisco. Initial SWAN (Simulating Waves Nearshore) wave modeling results show a focusing of wave energy at the location of an erosion hot spot on the southern end of Ocean Beach during prevailing northwest swell conditions. During El Nin??o winters, swell out of the west and southwest dominates the region, and although the wave energy is focused further to the north on Ocean Beach, the oblique wave approach sets up a strong northerly littoral drift, thereby starving the southern end of sediment, leaving it increasingly vulnerable to wave attack when the persistent northwest swell returns. An accurate assessment of the interaction between wave and tidal processes is crucial for evaluating coastal management options in an area that includes the annual dredging and disposal of ship channel sediment and an erosion hot spot that is posing a threat to local infrastructure. Copyright ASCE 2006.

  18. Diesel Emissions Quantifier (DEQ)

    EPA Pesticide Factsheets

    .The Diesel Emissions Quantifier (Quantifier) is an interactive tool to estimate emission reductions and cost effectiveness. Publications EPA-420-F-13-008a (420f13008a), EPA-420-B-10-035 (420b10023), EPA-420-B-10-034 (420b10034)

  19. Caffeine-containing energy drink improves physical performance in female soccer players.

    PubMed

    Lara, Beatriz; Gonzalez-Millán, Cristina; Salinero, Juan Jose; Abian-Vicen, Javier; Areces, Francisco; Barbero-Alvarez, Jose Carlos; Muñoz, Víctor; Portillo, Luis Javier; Gonzalez-Rave, Jose Maria; Del Coso, Juan

    2014-05-01

    There is little information about the effects of caffeine intake on female team-sport performance. The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to improve physical performance in female soccer players during a simulated game. A double-blind, placebo controlled and randomized experimental design was used in this investigation. In two different sessions, 18 women soccer players ingested 3 mg of caffeine/kg in the form of an energy drink or an identical drink with no caffeine content (placebo). After 60 min, they performed a countermovement jump (CMJ) and a 7 × 30 m sprint test followed by a simulated soccer match (2 × 40 min). Individual running distance and speed were measured using GPS devices. In comparison to the placebo drink, the ingestion of the caffeinated energy drink increased the CMJ height (26.6 ± 4.0 vs 27.4 ± 3.8 cm; P < 0.05) and the average peak running speed during the sprint test (24.2 ± 1.6 vs 24.5 ± 1.7 km/h; P < 0.05). During the simulated match, the energy drink increased the total running distance (6,631 ± 1,618 vs 7,087 ± 1,501 m; P < 0.05), the number of sprints bouts (16 ± 9 vs 21 ± 13; P < 0.05) and the running distance covered at >18 km/h (161 ± 99 vs 216 ± 103 m; P < 0.05). The ingestion of the energy drink did not affect the prevalence of negative side effects after the game. An energy drink with a dose equivalent to 3 mg of caffeine/kg might be an effective ergogenic aid to improve physical performance in female soccer players.

  20. Quantifying Transmission.

    PubMed

    Woolhouse, Mark

    2017-07-01

    Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.

  1. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Leach, M.; Bonnema, E.

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations aremore » applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.« less

  2. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They alsomore » represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.« less

  3. Building integrated semi-transparent photovoltaics: energy and daylighting performance

    NASA Astrophysics Data System (ADS)

    Kapsis, Konstantinos; Athienitis, Andreas K.

    2011-08-01

    This paper focuses on modeling and evaluation of semi-transparent photovoltaic technologies integrated into a coolingdominated office building façade by employing the concept of three-section façade. An energy simulation model is developed, using building simulation software, to investigate the effect of semi-transparent photovoltaic transmittance on the energy performance of an office in a typical office building in Montreal. The analysis is performed for five major façade orientations and two façade configurations. Using semi-transparent photovoltaic integrated into the office façade, electricity savings of up to 53.1% can be achieved compared to a typical office equipped with double glazing with Argon filling and a low emissivity coating, and lighting controlled based on occupancy and daylight levels.e.c

  4. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport.

    PubMed

    Ackerman, Kathryn E; Holtzman, Bryan; Cooper, Katherine M; Flynn, Erin F; Bruinvels, Georgie; Tenforde, Adam S; Popp, Kristin L; Simpkin, Andrew J; Parziale, Allyson L

    2018-06-02

    Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC. The purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes. One thousand female athletes (15-30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05). Athletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance. These findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Comparative study of air-conditioning energy use of four office buildings in China and USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin; Yan, Da; An, Jingjing

    Energy use in buildings has great variability. In order to design and operate low energy buildings as well as to establish building energy codes and standards and effective energy policy, it is crucial to understand and quantify key factors influencing building energy performance. Here, this study investigates air-conditioning (AC) energy use of four office buildings in four locations: Beijing, Taiwan, Hong Kong, and Berkeley. Building simulation was employed to quantify the influences of key factors, including climate, building envelope and occupant behavior. Through simulation of various combinations of the three influencing elements, it is found that climate can lead tomore » AC cooling consumption differences by almost two times, while occupant behavior resulted in the greatest differences (of up to three times) in AC cooling consumption. The influence of occupant behavior on AC energy consumption is not homogeneous. Under similar climates, when the occupant behavior in the building differed, the optimized building envelope design also differed. In conclusion, the optimal building envelope should be determined according to the climate as well as the occupants who use the building.« less

  6. Comparative study of air-conditioning energy use of four office buildings in China and USA

    DOE PAGES

    Zhou, Xin; Yan, Da; An, Jingjing; ...

    2018-04-05

    Energy use in buildings has great variability. In order to design and operate low energy buildings as well as to establish building energy codes and standards and effective energy policy, it is crucial to understand and quantify key factors influencing building energy performance. Here, this study investigates air-conditioning (AC) energy use of four office buildings in four locations: Beijing, Taiwan, Hong Kong, and Berkeley. Building simulation was employed to quantify the influences of key factors, including climate, building envelope and occupant behavior. Through simulation of various combinations of the three influencing elements, it is found that climate can lead tomore » AC cooling consumption differences by almost two times, while occupant behavior resulted in the greatest differences (of up to three times) in AC cooling consumption. The influence of occupant behavior on AC energy consumption is not homogeneous. Under similar climates, when the occupant behavior in the building differed, the optimized building envelope design also differed. In conclusion, the optimal building envelope should be determined according to the climate as well as the occupants who use the building.« less

  7. Energy extraction from atmospheric turbulence to improve flight vehicle performance

    NASA Astrophysics Data System (ADS)

    Patel, Chinmay Karsandas

    Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed

  8. Window performance and building energy use: Some technical options for increasing energy efficiency

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    1985-11-01

    Window system design and operation has a major impact on energy use in buildings as well as on occupants' thermal and visual comfort. Window performance will be a function of optical and thermal properties, window management strategies, climate and orientation, and building type and occupancy. In residences, heat loss control is a primary concern, followed by sun control in more southerly climates. In commercial buildings, the daylight provided by windows may be the major energy benefits but solar gain must be controlled so that increased cooling loads do not exceed daylighting savings. Reductions in peak electrical demand and HVAC system size may also be possible in well-designed daylighted buildings.

  9. Energy transfer, pressure tensor, and heating of kinetic plasma

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Matthaeus, William H.; Parashar, Tulasi N.; Haggerty, Colby C.; Roytershteyn, Vadim; Daughton, William; Wan, Minping; Shi, Yipeng; Chen, Shiyi

    2017-07-01

    Kinetic plasma turbulence cascade spans multiple scales ranging from macroscopic fluid flow to sub-electron scales. Mechanisms that dissipate large scale energy, terminate the inertial range cascade, and convert kinetic energy into heat are hotly debated. Here, we revisit these puzzles using fully kinetic simulation. By performing scale-dependent spatial filtering on the Vlasov equation, we extract information at prescribed scales and introduce several energy transfer functions. This approach allows highly inhomogeneous energy cascade to be quantified as it proceeds down to kinetic scales. The pressure work, - ( P . ∇ ) . u , can trigger a channel of the energy conversion between fluid flow and random motions, which contains a collision-free generalization of the viscous dissipation in collisional fluid. Both the energy transfer and the pressure work are strongly correlated with velocity gradients.

  10. Quality of corneal lamellar cuts quantified using atomic force microscopy

    PubMed Central

    Ziebarth, Noël M.; Dias, Janice; Hürmeriç, Volkan; Shousha, Mohamed Abou; Yau, Chiyat Ben; Moy, Vincent T.; Culbertson, William; Yoo, Sonia H.

    2012-01-01

    PURPOSE To quantify the cut quality of lamellar dissections made with the femtosecond laser using atomic force microscopy (AFM). SETTING Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA. DESIGN Experimental study. METHODS Experiments were performed on 3 pairs of human cadaver eyes. The cornea was thinned to physiologic levels by placing the globe, cornea side down, in 25% dextran for 24 hours. The eyes were reinflated to normal pressures by injecting a balanced salt solution into the vitreous cavity. The eyes were placed in a holder, the epithelium was removed, and the eyes were cut with a Visumax femtosecond laser. The energy level was 180 nJ for the right eye and 340 nJ for the left eye of each pair. The cut depths were 200 μm, 300 μm, and 400 μm, with the cut depth maintained for both eyes of each pair. A 12.0 mm trephination was then performed. The anterior portion of the lamellar surface was placed in a balanced salt solution and imaged with AFM. As a control, the posterior surface was placed in 2% formalin and imaged with environmental scanning electron microscopy (SEM). Four quantitative parameters (root-mean-square deviation, average deviation, skewness, kurtosis) were calculated from the AFM images. RESULTS From AFM, the 300 μm low-energy cuts were the smoothest. Similar results were seen qualitatively in the environmental SEM images. CONCLUSION Atomic force microscopy provided quantitative information on the quality of lamellar dissections made using a femtosecond laser, which is useful in optimizing patient outcomes in refractive and lamellar keratoplasty surgeries. PMID:23141078

  11. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  12. Toward quantifying the composition of soft tissues by spectral CT with Medipix3.

    PubMed

    Ronaldson, J Paul; Zainon, Rafidah; Scott, Nicola Jean Agnes; Gieseg, Steven Paul; Butler, Anthony P; Butler, Philip H; Anderson, Nigel G

    2012-11-01

    To determine the potential of spectral computed tomography (CT) with Medipix3 for quantifying fat, calcium, and iron in soft tissues within small animal models and surgical specimens of diseases such as fatty liver (metabolic syndrome) and unstable atherosclerosis. The spectroscopic method was applied to tomographic data acquired using a micro-CT system incorporating a Medipix3 detector array with silicon sensor layer and microfocus x-ray tube operating at 50 kVp. A 10 mm diameter perspex phantom containing a fat surrogate (sunflower oil) and aqueous solutions of ferric nitrate, calcium chloride, and iodine was imaged with multiple energy bins. The authors used the spectroscopic characteristics of the CT number to establish a basis for the decomposition of soft tissue components. The potential of the method of constrained least squares for quantifying different sets of materials was evaluated in terms of information entropy and degrees of freedom, with and without the use of a volume conservation constraint. The measurement performance was evaluated quantitatively using atheroma and mouse equivalent phantoms. Finally the decomposition method was assessed qualitatively using a euthanized mouse and an excised human atherosclerotic plaque. Spectral CT measurements of a phantom containing tissue surrogates confirmed the ability to distinguish these materials by the spectroscopic characteristics of their CT number. The assessment of performance potential in terms of information entropy and degrees of freedom indicated that certain sets of up to three materials could be decomposed by the method of constrained least squares. However, there was insufficient information within the data set to distinguish calcium from iron within soft tissues. The quantification of calcium concentration and fat mass fraction within atheroma and mouse equivalent phantoms by spectral CT correlated well with the nominal values (R(2) = 0.990 and R(2) = 0.985, respectively). In the euthanized

  13. Quantifying evapotranspiration from urban green roofs: a comparison of chamber measurements with commonly used predictive methods.

    PubMed

    Marasco, Daniel E; Hunter, Betsy N; Culligan, Patricia J; Gaffin, Stuart R; McGillis, Wade R

    2014-09-02

    Quantifying green roof evapotranspiration (ET) in urban climates is important for assessing environmental benefits, including stormwater runoff attenuation and urban heat island mitigation. In this study, a dynamic chamber method was developed to quantify ET on two extensive green roofs located in New York City, NY. Hourly chamber measurements taken from July 2009 to December 2009 and April 2012 to October 2013 illustrate both diurnal and seasonal variations in ET. Observed monthly total ET depth ranged from 0.22 cm in winter to 15.36 cm in summer. Chamber results were compared to two predictive methods for estimating ET; namely the Penman-based ASCE Standardized Reference Evapotranspiration (ASCE RET) equation, and an energy balance model, both parametrized using on-site environmental conditions. Dynamic chamber ET results were similar to ASCE RET estimates; however, the ASCE RET equation overestimated bottommost ET values during the winter months, and underestimated peak ET values during the summer months. The energy balance method was shown to underestimate ET compared the ASCE RET equation. The work highlights the utility of the chamber method for quantifying green roof evapotranspiration and indicates green roof ET might be better estimated by Penman-based evapotranspiration equations than energy balance methods.

  14. Quantifying and visualizing site performance in clinical trials.

    PubMed

    Yang, Eric; O'Donovan, Christopher; Phillips, JodiLyn; Atkinson, Leone; Ghosh, Krishnendu; Agrafiotis, Dimitris K

    2018-03-01

    One of the keys to running a successful clinical trial is the selection of high quality clinical sites, i.e., sites that are able to enroll patients quickly, engage them on an ongoing basis to prevent drop-out, and execute the trial in strict accordance to the clinical protocol. Intuitively, the historical track record of a site is one of the strongest predictors of its future performance; however, issues such as data availability and wide differences in protocol complexity can complicate interpretation. Here, we demonstrate how operational data derived from central laboratory services can provide key insights into the performance of clinical sites and help guide operational planning and site selection for new clinical trials. Our methodology uses the metadata associated with laboratory kit shipments to clinical sites (such as trial and anonymized patient identifiers, investigator names and addresses, sample collection and shipment dates, etc.) to reconstruct the complete schedule of patient visits and derive insights about the operational performance of those sites, including screening, enrollment, and drop-out rates and other quality indicators. This information can be displayed in its raw form or normalized to enable direct comparison of site performance across studies of varied design and complexity. Leveraging Covance's market leadership in central laboratory services, we have assembled a database of operational metrics that spans more than 14,000 protocols, 1400 indications, 230,000 unique investigators, and 23 million patient visits and represents a significant fraction of all clinical trials run globally in the last few years. By analyzing this historical data, we are able to assess and compare the performance of clinical investigators across a wide range of therapeutic areas and study designs. This information can be aggregated across trials and geographies to gain further insights into country and regional trends, sometimes with surprising results. The

  15. Quantifying the physical demands of a musical performance and their effects on performance quality.

    PubMed

    Drinkwater, Eric J; Klopper, Christopher J

    2010-06-01

    This study investigated the effects of fatigue on performance quality induced by a prolonged musical performance. Ten participants prepared 10 min of repertoire for their chosen wind instrument that they played three times consecutively. Prior to the performance and within short breaks between performances, researchers collected heart rate, respiratory rate, blood pressure, blood lactate concentration, rating of perceived exertion (RPE), and rating of anxiety. All performances were audio recorded and later analysed for performance errors. Reliability in assessing performance errors was assessed by typical error of measure (TEM) of 15 repeat performances. Results indicate all markers of physical stress significantly increased by a moderate to large amount (4.6 to 62.2%; d = 0.50 to 1.54) once the performance began, while heart rate, respirations, and RPE continued to rise by a small to large amount (4.9 to 23.5%; d = 0.28 to 0.93) with each performance. Observed changes in performance between performances were well in excess of the TEM of 7.4%. There was a significant small (21%, d = 0.43) decrease in errors after the first performance; after the second performance, there was a significant large increase (70.4%, d = 1.14). The initial increase in physiological stress with corresponding decrease in errors after the first performance likely indicates "warming up," while the continued increase in markers of physical stress with dramatic decrement in performance quality likely indicates fatigue. Musicians may consider the relevance of physical fitness to maintaining performance quality over the duration of a performance.

  16. Meeting the Challenge: Providing High-Quality School Environments through Energy Performance Contracting.

    ERIC Educational Resources Information Center

    Birr, David

    2000-01-01

    Energy performance contracting allows schools to pay for needed new energy equipment and modernization improvements with savings from reduced utility and maintenance costs. Improved energy efficiency reduces demand for burning fossil fuels, which reduces air pollution, leading to improved learning environments and budgets (through improved average…

  17. Quantifiable outcomes from corporate and higher education learning collaborations

    NASA Astrophysics Data System (ADS)

    Devine, Thomas G.

    The study investigated the existence of measurable learning outcomes that emerged out of the shared strengths of collaborating sponsors. The study identified quantifiable learning outcomes that confirm corporate, academic and learner participation in learning collaborations. Each of the three hypotheses and the synergy indicator quantitatively and qualitatively confirmed learning outcomes benefiting participants. The academic-indicator quantitatively confirmed that learning outcomes attract learners to the institution. The corporate-indicator confirmed that learning outcomes include knowledge exchange and enhanced workforce talents for careers in the energy-utility industry. The learner-indicator confirmed that learning outcomes provide professional development opportunities for employment. The synergy-indicator confirmed that best learning practices in learning collaborations emanate out of the sponsors' shared strengths, and that partnerships can be elevated to strategic alliances, going beyond response to the desires of sponsors to create learner-centered cultures. The synergy-indicator confirmed the value of organizational processes that elevate sponsors' interactions to sharing strength, to create a learner-centered culture. The study's series of qualitative questions confirmed prior success factors, while verifying the hypothesis results and providing insight not available from quantitative data. The direct benefactors of the study are the energy-utility learning-collaboration participants of the study, and corporation, academic institutions, and learners of the collaboration. The indirect benefactors are the stakeholders of future learning collaborations, through improved knowledge of the existence or absence of quantifiable learning outcomes.

  18. 48 CFR 570.117-1 - Federal leadership in environmental, energy, and economic performance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Federal leadership in environmental, energy, and economic performance. 570.117-1 Section 570.117-1 Federal Acquisition Regulations... PROPERTY General 570.117-1 Federal leadership in environmental, energy, and economic performance. In order...

  19. 48 CFR 570.117-1 - Federal leadership in environmental, energy, and economic performance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Federal leadership in environmental, energy, and economic performance. 570.117-1 Section 570.117-1 Federal Acquisition Regulations... PROPERTY General 570.117-1 Federal leadership in environmental, energy, and economic performance. In order...

  20. 48 CFR 570.117-1 - Federal leadership in environmental, energy, and economic performance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Federal leadership in environmental, energy, and economic performance. 570.117-1 Section 570.117-1 Federal Acquisition Regulations... PROPERTY General 570.117-1 Federal leadership in environmental, energy, and economic performance. In order...

  1. 48 CFR 570.117-1 - Federal leadership in environmental, energy, and economic performance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Federal leadership in environmental, energy, and economic performance. 570.117-1 Section 570.117-1 Federal Acquisition Regulations... PROPERTY General 570.117-1 Federal leadership in environmental, energy, and economic performance. In order...

  2. Influential Effects of Intrinsic-Extrinsic Incentive Factors on Management Performance in New Energy Enterprises

    PubMed Central

    Wang, Ping; Lu, Zhengnan; Sun, Jihong

    2018-01-01

    Background: New energy has become a key trend for global energy industry development. Talent plays a very critical role in the enhancement of new energy enterprise competitiveness. As a key component of talent, managers have been attracting more and more attention. The increase in job performance relies on, to a certain extent, incentive mechanism. Based on the Two-factor Theory, differences in influences and effects of different incentives on management performance have been checked in this paper from an empirical perspective. Methods: This paper selects the middle and low level managers in new energy enterprises as research samples and classifies the managers’ performance into task performance, contextual performance and innovation performance. It uses manager performance questionnaires and intrinsic-extrinsic incentive factor questionnaires to investigate and study the effects and then uses Amos software to analyze the inner link between the intrinsic-extrinsic incentives and job performance. Results: Extrinsic incentives affect task performance and innovation performance positively. Intrinsic incentives impose active significant effects on task performance, contextual performance, and innovation performance. The intrinsic incentive plays a more important role than the extrinsic incentive. Conclusions: Both the intrinsic-extrinsic incentives affect manager performance positively and the intrinsic incentive plays a more important role than the extrinsic incentive. Several suggestions to management should be given based on these results. PMID:29419730

  3. Influential Effects of Intrinsic-Extrinsic Incentive Factors on Management Performance in New Energy Enterprises.

    PubMed

    Wang, Ping; Lu, Zhengnan; Sun, Jihong

    2018-02-08

    Background : New energy has become a key trend for global energy industry development. Talent plays a very critical role in the enhancement of new energy enterprise competitiveness. As a key component of talent, managers have been attracting more and more attention. The increase in job performance relies on, to a certain extent, incentive mechanism. Based on the Two-factor Theory, differences in influences and effects of different incentives on management performance have been checked in this paper from an empirical perspective. Methods : This paper selects the middle and low level managers in new energy enterprises as research samples and classifies the managers' performance into task performance, contextual performance and innovation performance. It uses manager performance questionnaires and intrinsic-extrinsic incentive factor questionnaires to investigate and study the effects and then uses Amos software to analyze the inner link between the intrinsic-extrinsic incentives and job performance. Results : Extrinsic incentives affect task performance and innovation performance positively. Intrinsic incentives impose active significant effects on task performance, contextual performance, and innovation performance. The intrinsic incentive plays a more important role than the extrinsic incentive. Conclusions : Both the intrinsic-extrinsic incentives affect manager performance positively and the intrinsic incentive plays a more important role than the extrinsic incentive. Several suggestions to management should be given based on these results.

  4. Battery energy storage market feasibility study -- Expanded report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and asmore » a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less

  5. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    This guide contains recommendations for designing high performance, energy efficient schools located in hot and dry climates. A high performance checklist for designers is included along with several case studies of projects that successfully demonstrated high performance design solutions for hot and dry climates. The guide's 10 sections…

  6. Quantifying three dimensional reconnection in fragmented current layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F., E-mail: peter.f.wyper@nasa.gov; Hesse, M., E-mail: michael.hesse-1@nasa.gov

    There is growing evidence that when magnetic reconnection occurs in high Lundquist number plasmas such as in the Solar Corona or the Earth's Magnetosphere it does so within a fragmented, rather than a smooth current layer. Within the extent of these fragmented current regions, the associated magnetic flux transfer and energy release occur simultaneously in many different places. This investigation focusses on how best to quantify the rate at which reconnection occurs in such layers. An analytical theory is developed which describes the manner in which new connections form within fragmented current layers in the absence of magnetic nulls. Itmore » is shown that the collective rate at which new connections form can be characterized by two measures; a total rate which measures the true rate at which new connections are formed and a net rate which measures the net change of connection associated with the largest value of the integral of E{sub ||} through all of the non-ideal regions. Two simple analytical models are presented which demonstrate how each should be applied and what they quantify.« less

  7. Performance of the HIMAC beam control system using multiple-energy synchrotron operation

    NASA Astrophysics Data System (ADS)

    Mizushima, K.; Furukawa, T.; Iwata, Y.; Hara, Y.; Saotome, N.; Saraya, Y.; Tansho, R.; Sato, S.; Fujimoto, T.; Shirai, T.; Noda, K.

    2017-09-01

    Multiple-energy synchrotron operation was developed to realize fast 3D scanning irradiation for carbon-ion radiotherapy. This type of operation can output various carbon-ion beams with different energies in a single synchrotron cycle. The beam control system used in this kind of operation was developed to quickly provide the beam energy and intensity required from the irradiation control system. The performance of the system was verified by experimental tests. The system could output beams of 197 different energies in 63 s. The beam intensity could be controlled for all the output beams without large ripples or overshooting. The experimental test of irradiation for prostate cancer treatment was also successfully performed, and the test results proved that our system can greatly reduce the irradiation time.

  8. RapidRIP quantifies the intracellular metabolome of 7 industrial strains of E. coli.

    PubMed

    McCloskey, Douglas; Xu, Julia; Schrübbers, Lars; Christensen, Hanne B; Herrgård, Markus J

    2018-04-25

    Fast metabolite quantification methods are required for high throughput screening of microbial strains obtained by combinatorial or evolutionary engineering approaches. In this study, a rapid RIP-LC-MS/MS (RapidRIP) method for high-throughput quantitative metabolomics was developed and validated that was capable of quantifying 102 metabolites from central, amino acid, energy, nucleotide, and cofactor metabolism in less than 5 minutes. The method was shown to have comparable sensitivity and resolving capability as compared to a full length RIP-LC-MS/MS method (FullRIP). The RapidRIP method was used to quantify the metabolome of seven industrial strains of E. coli revealing significant differences in glycolytic, pentose phosphate, TCA cycle, amino acid, and energy and cofactor metabolites were found. These differences translated to statistically and biologically significant differences in thermodynamics of biochemical reactions between strains that could have implications when choosing a host for bioprocessing. Copyright © 2018. Published by Elsevier Inc.

  9. Performance modeling of unmanned aerial vehicles with on-board energy harvesting

    NASA Astrophysics Data System (ADS)

    Anton, Steven R.; Inman, Daniel J.

    2011-03-01

    The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition

  10. Exploring the energy benefits of advanced water metering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Michael A.; Hans, Liesel; Piscopo, Kate

    Recent improvements to advanced water metering and communications technologies have the potential to improve the management of water resources and utility infrastructure, benefiting both utilities and ratepayers. The highly granular, near-real-time data and opportunity for automated control provided by these advanced systems may yield operational benefits similar to those afforded by similar technologies in the energy sector. While significant progress has been made in quantifying the water-related benefits of these technologies, the research on quantifying the energy benefits of improved water metering is underdeveloped. Some studies have quantified the embedded energy in water in California, however these findings are basedmore » on data more than a decade old, and unanimously assert that more research is needed to further explore how topography, climate, water source, and other factors impact their findings. In this report, we show how water-related advanced metering systems may present a broader and more significant set of energy-related benefits. We review the open literature of water-related advanced metering technologies and their applications, discuss common themes with a series of water and energy experts, and perform a preliminary scoping analysis of advanced water metering deployment and use in California. We find that the open literature provides very little discussion of the energy savings potential of advanced water metering, despite the substantial energy necessary for water’s extraction, conveyance, treatment, distribution, and eventual end use. We also find that water AMI has the potential to provide water-energy co-efficiencies through improved water systems management, with benefits including improved customer education, automated leak detection, water measurement and verification, optimized system operation, and inherent water and energy conservation. Our findings also suggest that the adoption of these technologies in the water sector has

  11. Energy Performance Monitoring and Optimization System for DoD Campuses

    DTIC Science & Technology

    2014-02-01

    EPMO system exceeded the energy consumption reduction target of 20% and improved occupant thermal comfort by reducing the number of instances outside... thermal comfort constraints, and plant efficiency EW2011-42 Final Report 8 February 2014 in the same framework [30-33]. In this framework, 4-hour...conjunction with information such as: thermal comfort constraints, equipment constraints, energy performance objectives. All the information is

  12. The Fallacy of Quantifying Risk

    DTIC Science & Technology

    2012-09-01

    Defense AT&L: September–October 2012 18 The Fallacy of Quantifying Risk David E. Frick, Ph.D. Frick is a 35-year veteran of the Department of...a key to risk analysis was “choosing the right technique” of quantifying risk . The weakness in this argument stems not from the assertion that one...of information about the enemy), yet achiev- ing great outcomes. Attempts at quantifying risk are not, in and of themselves, objectionable. Prudence

  13. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper

    PubMed Central

    Hirn, Ulrich; Schennach, Robert

    2015-01-01

    The process of papermaking requires substantial amounts of energy and wood consumption, which contributes to larger environmental costs. In order to optimize the production of papermaking to suit its many applications in material science and engineering, a quantitative understanding of bonding forces between the individual pulp fibers is of importance. Here we show the first approach to quantify the bonding energies contributed by the individual bonding mechanisms. We calculated the impact of the following mechanisms necessary for paper formation: mechanical interlocking, interdiffusion, capillary bridges, hydrogen bonding, Van der Waals forces, and Coulomb forces on the bonding energy. Experimental results quantify the area in molecular contact necessary for bonding. Atomic force microscopy experiments derive the impact of mechanical interlocking. Capillary bridges also contribute to the bond. A model based on the crystal structure of cellulose leads to values for the chemical bonds. In contrast to general believe which favors hydrogen bonding Van der Waals bonds play the most important role according to our model. Comparison with experimentally derived bond energies support the presented model. This study characterizes bond formation between pulp fibers leading to insight that could be potentially used to optimize the papermaking process, while reducing energy and wood consumption. PMID:26000898

  14. Detailed performance and environmental monitoring of aquifer heating and cooling systems

    NASA Astrophysics Data System (ADS)

    Acuna, José; Ahlkrona, Malva; Zandin, Hanna; Singh, Ashutosh

    2016-04-01

    The project intends to quantify the performance and environmental impact of large scale aquifer thermal energy storage, as well as point at recommendations for operating and estimating the environmental footprint of future systems. Field measurements, test of innovative equipment as well as advanced modelling work and analysis will be performed. The following aspects are introduced and covered in the presentation: -Thermal, chemical and microbiological influence of akvifer thermal energy storage systems: measurement and evaluation of real conditions and the influence of one system in operation. -Follow up of energy extraction from aquifer as compared to projected values, recommendations for improvements. -Evaluation of the most used thermal modeling tool for design and calculation of groundwater temperatures, calculations with MODFLOW/MT3DMS -Test and evaluation of optical fiber cables as a way to measure temperatures in aquifer thermal energy storages

  15. Performance and Health Test Procedure for Grid Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baggu, Murali M; Smith, Kandler A; Friedl, Andrew

    A test procedure to evaluate the performance and health of field installations of grid-connected battery energy storage systems (BESS) is described. Performance and health metrics captured in the procedures are: round-trip efficiency, standby losses, response time/accuracy, and useable energy/state of charge at different discharge/charge rates over the system's lifetime. The procedures are divided into reference performance tests, which require the system to be put in a test mode and are to be conducted in intervals, and real-time monitoring tests, which collect data during normal operation without interruption. The procedures can be applied on a wide array of BESS with littlemore » modification and can thus support BESS operators in the management of BESS field installations with minimal interruption and expenditure. Simulated results based on a detailed system simulation of a prototype system are provided as guideline.« less

  16. A caffeinated energy drink improves jump performance in adolescent basketball players.

    PubMed

    Abian-Vicen, Javier; Puente, Carlos; Salinero, Juan José; González-Millán, Cristina; Areces, Francisco; Muñoz, Gloria; Muñoz-Guerra, Jesús; Del Coso, Juan

    2014-05-01

    This study aimed at investigating the effects of a commercially available energy drink on shooting precision, jump performance and endurance capacity in young basketball players. Sixteen young basketball players (first division of a junior national league; 14.9 ± 0.8 years; 73.4 ± 12.4 kg; 182.3 ± 6.5 cm) volunteered to participate in the research. They ingested either (a) an energy drink that contained 3 mg of caffeine per kg of body weight or (b) a placebo energy drink with the same appearance and taste. After 60 min for caffeine absorption, they performed free throw shooting and three-point shooting tests. After that, participants performed a maximal countermovement jump (CMJ), a repeated maximal jumps test for 15 s (RJ-15), and the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). Urine samples were obtained before and 30 min after testing. In comparison to the placebo, the ingestion of the caffeinated energy drink did not affect precision during the free throws (Caffeine = 70.7 ± 11.8 % vs placebo = 70.3 ± 11.0 %; P = 0.45), the three-point shooting test (39.9 ± 11.8 vs 38.1 ± 12.8 %; P = 0.33) or the distance covered in the Yo-Yo IR1 (2,000 ± 706 vs 1,925 ± 702 m; P = 0.19). However, the energy drink significantly increased jump height during the CMJ (38.3 ± 4.4 vs 37.5 ± 4.4 cm; P < 0.05) mean jump height during the RJ-15 (30.2 ± 3.6 vs 28.8 ± 3.4 cm; P < 0.05) and the excretion of urinary caffeine (1.2 ± 0.7 vs 0.1 ± 0.1 μg/mL; P < 0.05). The intake of a caffeine-containing energy drink (3 mg/kg body weight) increased jump performance although it did not affect basketball shooting precision.

  17. System to quantify gamma-ray radial energy deposition in semiconductor detectors

    DOEpatents

    Kammeraad, Judith E.; Blair, Jerome J.

    2001-01-01

    A system for measuring gamma-ray radial energy deposition is provided for use in conjunction with a semiconductor detector. The detector comprises two electrodes and a detector material, and defines a plurality of zones within the detecting material in parallel with the two electrodes. The detector produces a charge signal E(t) when a gamma-ray interacts with the detector. Digitizing means are provided for converting the charge signal E(t) into a digitized signal. A computational means receives the digitized signal and calculates in which of the plurality of zones the gamma-ray deposited energy when interacting with the detector. The computational means produces an output indicating the amount of energy deposited by the gamma-ray in each of the plurality of zones.

  18. [Computer-assisted image processing for quantifying histopathologic variables in the healing of colonic anastomosis in dogs].

    PubMed

    Novelli, M D; Barreto, E; Matos, D; Saad, S S; Borra, R C

    1997-01-01

    The authors present the experimental results of the computerized quantifying of tissular structures involved in the reparative process of colonic anastomosis performed by manual suture and biofragmentable ring. The quantified variables in this study were: oedema fluid, myofiber tissue, blood vessel and cellular nuclei. An image processing software developed at Laboratório de Informática Dedicado à Odontologia (LIDO) was utilized to quantifying the pathognomonic alterations in the inflammatory process in colonic anastomosis performed in 14 dogs. The results were compared to those obtained through traditional way diagnosis by two pathologists in view of counterproof measures. The criteria for these diagnoses were defined in levels represented by absent, light, moderate and intensive which were compared to analysis performed by the computer. There was significant statistical difference between two techniques: the biofragmentable ring technique exhibited low oedema fluid, organized myofiber tissue and higher number of alongated cellular nuclei in relation to manual suture technique. The analysis of histometric variables through computational image processing was considered efficient and powerful to quantify the main tissular inflammatory and reparative changing.

  19. Quantifying Wrinkle Features of Thin Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy B.; Iwasa, Takashi; Naton, M. C.

    2004-01-01

    For future micro-systems utilizing membrane based structures, quantified predictions of wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made. This work demonstrates that critical assumptions include: effects of gravity, supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 m x 02 m membrane is treated as a structural material with non-negligible bending stiffness. Finite element modeling is used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density and thickness for cases with differing initial conditions are independent of assumed initial conditions. In addition, analysis results indicate that the relationship between wrinkle amplitude scale (W/t) and structural scale (L/t) is independent of the nonlinear relationship between thickness and stiffness.

  20. The relationship between energy information management and energy management performance in higher education sector in Thailand, considering from resource and process based views

    NASA Astrophysics Data System (ADS)

    Mongkolsawat, Darunee

    The performance of energy management is usually considered through the energy reduction result however this does not sufficient for managing facility's energy in the long term. In combination to that, this study decides to investigate the relationship between the effectiveness of energy information management and the energy management performance. The interested sector is higher education institutions in Thailand due to their complex organisation both in management and property aspects. By not focusing on quantitative energy reduction as centre, the study seeks to establish a framework or tool in helping to understand such relationship qualitatively through organisation resource and process based view. Additionally, energy management structure is also accounted as initial factor. In relation to such framework, the performance of energy management is considered on its primary results concerning the issues of the data available, analysis results, and energy action. After the investigation, it is found that between the concerned factors and primary performance there are various specific relationships. For example, some tend to have direct connections as relations between the energy management structure and implemented actions, and between the investment in organisation resources and data available. While some have flexible relations as between data collection and results of analysed data. Furthermore, the load of energy management has been found influencing on organisation's motivation to invest in energy management. At the end of the paper, further application to the study is also proposed.

  1. Loyola University, New Orleans, Louisiana solar energy system performance evaluation, February 1981 - June 1981

    NASA Astrophysics Data System (ADS)

    Welch, K. M.

    1981-09-01

    The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the design goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data.

  2. Solar energy system performance evaluation. Seasonal report for Wormser, Columbia, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Wormser Solar Energy System's operational performance from April 1979 through March 1980 was evaluated. The space heating subsystem met 42 percent of the measured space heating load and the hot water subsystem met 23 percent of the measured hot water demand. Net electrical energy savings were 4.36 million Btu's or 1277 kwh. Fossil energy savings will increase considerably if the uncontrolled solar energy input to the building is considered.

  3. Energy performance indicators of wastewater treatment: a field study with 17 Portuguese plants.

    PubMed

    Silva, Catarina; Rosa, Maria João

    2015-01-01

    The energy costs usually represent the second largest part of the running costs of a wastewater treatment plant (WWTP). It is therefore crucial to increase the energy efficiency of these infrastructures and to implement energy management systems, where quantitative performance metrics, such as performance indicators (PIs), play a key role. This paper presents energy PIs which cover the unit energy consumption, production, net use from external sources and costs, and the results used to validate them and derive their reference values. The results of a field study with 17 Portuguese WWTPs (5-year period) were consistent with the results obtained through an international literature survey on the two key parcels of the energy balance--consumption and production. The unit energy consumption showed an overall inverse relation with the volume treated, and the reference values reflect this relation for trickling filters and for activated sludge systems (conventional, with coagulation/filtration (C/F) and with nitrification and C/F). The reference values of electrical energy production were derived from the methane generation potential (converted to electrical energy) and literature data, whereas those of energy net use were obtained by the difference between the energy consumption and production.

  4. 2012 ARPA-E Energy Innovation Summit: Profiling Foro Energy: High Power Lasers - Long Distances (Performer Video)

    ScienceCinema

    Moxley, John; Zediker, Mark; Chu, Steven; Deutch, Paul

    2018-05-30

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These "performer videos" highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video from Foro Energy are Joel Moxley, Founder and CEO, Mark Zediker, Founder and CTO, and Paul Deutch, President and COO. Steven Chu, Secretary of Energy, also appears briefly in this video to praise the accomplishment of a high powered laser that can transmit that power long distances for faster and more powerful drilling of geothermal, oil, and gas wells.

  5. Quantifying and Reducing Curve-Fitting Uncertainty in Isc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanelli, Mark; Duck, Benjamin; Emery, Keith

    2015-06-14

    Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data pointsmore » can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.« less

  6. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Verbrugge, Mark; Soukiazian, Souren

    For hybrid electric vehicle traction applications, energy storage devices with high power density and energy efficiency are required. A primary attribute of supercapacitors is that they retain their high power density and energy efficiency even at -30 °C, the lowest temperature at which unassisted starting must be provided to customers. More abuse-tolerant electrolytes are preferred to the high-conductivity acetonitrile-based systems commonly employed. Propylene carbonate based electrolytes are a promising alternative. In this work, we compare the electrochemical performance of two high-power density electrical double layer supercapacitors employing acetonitrile and propylene carbonate as solvents. From this study, we are able to elucidate phenomena that control the resistance of supercapacitor at lower temperatures, and quantify the difference in performance associated with the two electrolytes.

  7. Engineering Students Designing a Statistical Procedure for Quantifying Variability

    ERIC Educational Resources Information Center

    Hjalmarson, Margret A.

    2007-01-01

    The study examined first-year engineering students' responses to a statistics task that asked them to generate a procedure for quantifying variability in a data set from an engineering context. Teams used technological tools to perform computations, and their final product was a ranking procedure. The students could use any statistical measures,…

  8. Analysis of the Energy Performance of the Chesapeake Bay Foundation's Philip Merrill Environmental Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, B.; Deru M.; Torcellini, P.

    2005-04-01

    The Chesapeake Bay Foundation designed their new headquarters building to minimize its environmental impact on the already highly polluted Chesapeake Bay by incorporating numerous high-performance energy saving features into the building design. CBF then contacted NREL to perform a nonbiased energy evaluation of the building. Because their building attracted much attention in the sustainable design community, an unbiased evaluation was necessary to help designers replicate successes and identify and correct problem areas. This report focuses on NREL's monitoring and analysis of the overall energy performance of the building.

  9. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    NASA Technical Reports Server (NTRS)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  10. Quantifying Improved Visual Performance Through Vision Training

    DTIC Science & Technology

    1991-02-22

    Eibschitz, N., Friedman, Z. and Neuman, E. (1978) Comparative results of amblyopia treatment . Metab Opthalmol, 2, 111-112. Evans, D.W. and Ginsburg, A... treatment . Am Orthopt J, 5, 61-64. Garzia, R.P. (1987) The efficacy of visual training in amblyopia : A literature review. Am J Optom Physiol Opt, 64, 393...predicts pilots’ performance in aircraft simulators. Am. J. Opt. Physiol. Opt., 59(1), 105-109. Gortz, H. (1960) The corrective treatment of amblyopia

  11. Italian guidelines for energy performance of cultural heritage and historical buildings: the case study of the Sassi of Matera.

    NASA Astrophysics Data System (ADS)

    Negro, Elisabetta; Cardinale, Tiziana; Cardinale, Nicola

    2016-04-01

    The Sassi of Matera are a unique example in the world of rock settlement, developed from natural caves carved into the rock and then molded into increasingly complex structures inside two large natural amphitheatres: the Sasso Caveoso and the Sasso Barisano. Thanks also to this aspects Matera is an UNESCO world heritage site and was elected European Capital of Culture in 2019. Our research focuses on the compatibility of the energy efficiency measures applied in of Sassi buildings with the recent MiBACT (Italian Ministry of Cultural Heritage) guidelines on "Energy efficiency improvements in the cultural heritage" and AiCARR (Italian Association of Air Conditioning) guidelines on "Energy efficiency of historical building". One of the essential measures highlighted by Mibact guidelines is ensure the Indoor Environmental Quality improvement of the historical architecture in order to preserve their identity and cultural heritage. These paper aims to analyze energy and environmental performance of different buildings typology and monuments present in the Sassi site. The energy performance and microclimate measures conducted on different type of building by non-destructive measurements and laboratory tests in situ are useful to verify and quantify the thermal characteristics of the envelopes of the Mediterranean tradition and also to demonstrate their capacity to ensure internal comfort conditions. The calcarenite walls of vernacular building of Sassi show the excellent energy behavior of these constructions. But these material often present high moisture content which negatively influence the room microclimate in particular in presence of mural frescos and rocky churches. However these structures, once restored and in a condition of normal use, give indoor comfort within the limits of thermo-hygrometrics standards established by indices as the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD). Another interesting consideration stated from our

  12. Solar energy system performance evaluation: Seasonal report for fern, Tunkhannock, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is reported, and technical contributions to the definition of techniques and requirements for solar energy system design are made. The solar energy system was designed to supply space heating and domestic hot water for single-family residences. The system consists of air flat plate collectors, storage tank, pumps, heat exchangers, associated plumbing, and controls.

  13. Solar energy system performance evaluation: Seasonal report for SEMCO, Loxahatchee, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system and the technical contributions to the definition of techniques and requirements solar energy system design are analyzed. The solar energy system was designed to supply domestic hot water for a family of four, single-family residences. It consists of two liquid flat plate collectors, single tank, controls, and transport lines.

  14. Examination of a pre-exercise, high energy supplement on exercise performance

    PubMed Central

    Hoffman, Jay R; Kang, Jie; Ratamess, Nicholas A; Hoffman, Mattan W; Tranchina, Christopher P; Faigenbaum, Avery D

    2009-01-01

    Background The purpose of this study was to examine the effect of a pre-exercise high energy drink on reaction time and anaerobic power in competitive strength/power athletes. In addition, the effect of the pre-exercise drink on subjective feelings of energy, fatigue, alertness and focus was also explored. Methods Twelve male strength/power athletes (21.1 ± 1.3 y; 179.8 ± 7.1 cm; 88.6 ± 12.1 kg; 17.6 ± 3.3% body fat) underwent two testing sessions administered in a randomized and double-blind fashion. During each session, subjects reported to the Human Performance Laboratory and were provided with either 120 ml of a high energy drink (SUP), commercially marketed as Redline Extreme® or 120 ml of a placebo (PL) that was similar in taste and appearance but contained no active ingredients. Following consumption of the supplement or placebo subjects rested quietly for 10-minutes prior to completing a survey and commencing exercise. The survey consisted of 4 questions asking each subject to describe their feelings of energy, fatigue, alertness and focus for that moment. Following the completion of the questionnaire subjects performed a 2-minute quickness and reaction test on the Makoto testing device (Makoto USA, Centennial CO) and a 20-second Wingate Anaerobic Power test. Following a 10-minute rest subjects repeated the testing sequence and after a similar rest period a third and final testing sequence was performed. The Makoto testing device consisted of subjects reacting to both a visual and auditory stimulus and striking one out of 30 potential targets on three towers. Results Significant difference in reaction performance was seen between SUP and PL in both average number of targets struck (55.8 ± 7.4 versus 51.9 ± 7.4, respectively) and percent of targets struck (71.9 ± 10.5% versus 66.8 ± 10.9%, respectively). No significant differences between trials were seen in any anaerobic power measure. Subjective feelings of energy (3.5 ± 0.5 versus 3.1 ± 0

  15. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans,more » etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.« less

  16. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achievingmore » savings in non-building applications.« less

  17. Development of new methodologies for evaluating the energy performance of new commercial buildings

    NASA Astrophysics Data System (ADS)

    Song, Suwon

    The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: (1) The development of a method to synthesize weather-normalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, (2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and (3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: (1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, (2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and (3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: (1) Energy Use Index (EUI) comparisons with sub-metered data, (2) New comparisons against

  18. 2012 ARPA-E Energy Innovation Summit: Profiling Foro Energy: High Power Lasers - Long Distances (Performer Video)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moxley, John; Zediker, Mark; Chu, Steven

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These "performer videos" highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video from Foro Energy are Joel Moxley, Founder and CEO, Mark Zediker, Founder and CTO, and Paulmore » Deutch, President and COO. Steven Chu, Secretary of Energy, also appears briefly in this video to praise the accomplishment of a high powered laser that can transmit that power long distances for faster and more powerful drilling of geothermal, oil, and gas wells.« less

  19. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    PubMed

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Solar energy system performance evaluation. Seasonal report for Colt Pueblo, Pueblo, Colorado

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Colt-Pueblo solar energy system, designed to provide space heating and hot water preheating, is described and its operational performance for a 12 month period from February 1979 through January 1980 is evaluated. The space heating subsystem met 31 percent of the measured space heating load which was close to the expected 34 percent solar fraction. Although the hot water solar fraction was 79 percent, the overall energy saving capability was reduced because of the low hot water demand. The measured heating subsystem performance would have improved considerably if the uncontrolled losses primarily from transport piping could have been reduced to an inconsequential level. Fossil energy savings of 70.31 million BTUs are estimated.

  1. Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Energy Performance Contracts (EPCs) in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.

    : Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This report overviews the latest developments in the Russian legislation related to energy efficiency in the public sector, describes the major challenges the regulations pose, and proposes ways to overcome these challenges. Given Russia’s limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. This paper discusses how EPCs and other mechanisms can help harness energy savings opportunities in Russia in general, and thus, can be applicable to any Russian region.

  2. Loyola University, New Orleans, Louisiana solar energy system performance evaluation, February 1981-June 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, K.M.

    1981-01-01

    The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the designmore » goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data. (LEW)« less

  3. Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, C.; Neuhauser, K.

    2014-03-01

    Between December, 2009 and December, 2012 42 deep energy retrofit (DER) projects were completed through a DER pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. 37 of these projects were comprehensive retrofits while 5 were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. The 42 DER projects represent 60 units of housing. The comprehensive projects all implemented a consistent 'package' of measures in terms of the performance targeted for major building components. Projects exhibited some variations in the approach tomore » implementing the retrofit package. Pre- and post-retrofit air leakage measurements were performed for each of the projects. Each project also reported information about project costs including identification of energy-related costs. Post-retrofit energy-use data was obtained for 29 of the DER projects. Post-retrofit energy use was analyzed based on the net energy used by the DER project regardless of whether the energy was generated on site or delivered to the site. Homeowner surveys were returned by 12 of the pilot participants. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average. Larger to medium sized homes that successful implement these retrofits can be expected to achieve source EUI that is comparable to Passive House targets for new construction. The community of DER projects show post-retrofit airtightness below 1.5 ACH50 to be eminently achievable.« less

  4. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink.

    PubMed

    Del Coso, Juan; Pérez-López, Alberto; Abian-Vicen, Javier; Salinero, Juan Jose; Lara, Beatriz; Valadés, David

    2014-11-01

    There are no scientific data about the effects of caffeine intake on volleyball performance. The aim of this study was to investigate the effect of a caffeine-containing energy drink to enhance physical performance in male volleyball players. A double-blind, placebo-controlled, randomized experimental design was used. In 2 different sessions separated by 1 wk, 15 college volleyball players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed volleyball-specific tests: standing spike test, maximal squat jump (SJ), maximal countermovement jump (CMJ), 15-s rebound jump test (15RJ), and agility T-test. Later, a simulated volleyball match was played and recorded. In comparison with the placebo drink, the ingestion of the caffeinated energy drink increased ball velocity in the spike test (73 ± 9 vs 75 ± 10 km/h, P < .05) and the mean jump height in SJ (31.1 ± 4.3 vs 32.7 ± 4.2 cm, P < .05), CMJ (35.9 ± 4.6 vs 37.7 ± 4.4 cm, P < .05), and 15RJ (29.0 ± 4.0 vs 30.5 ± 4.6 cm, P < .05). The time to complete the agility test was significantly reduced with the caffeinated energy drink (10.8 ± 0.7 vs 10.3 ± 0.4 s, P < .05). In addition, players performed successful volleyball actions more frequently (24.6% ± 14.3% vs 34.3% ± 16.5%, P < .05) with the ingestion of the caffeinated energy drink than with the placebo drink during the simulated game. A caffeine-containing energy drink, with a dose equivalent to 3 mg of caffeine per kg body mass, might be an effective ergogenic aid to improve physical performance and accuracy in male volleyball players.

  5. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.« less

  6. Standardization of the energy performance of photovoltaic modules in real operating conditions

    NASA Astrophysics Data System (ADS)

    Viganó, Davide; Kenny, Robert P.; Müllejans, Harald; Alimonti, Gianluca

    2014-12-01

    The performance of a PV module at STC [1] is a useful indicator for comparing the peak performance of different module types, but on its own is not sufficient to accurately predict how much energy a module will deliver in the field when subjected to a wide range of real operating conditions [2]. An Energy Rating approach has to be preferred for that aim. It is currently under development the standard series IEC 61853 on Energy Rating, for which only part 1 [3] has been issued. It describes methods to characterize the module performance as a function of irradiance and temperature. The reproducibility of the power matrix measurements obtained by the three different methods specified in the standard, namely: under natural sunlight using a tracking system; under natural sunlight without tracker; and a large area pulsed solar simulator of Class AAA were evaluated and discussed [4,5]. The work here presented is focused on the second method listed above, which explores the real working conditions for a PV device and therefore it represents the situation where Energy Rating procedures are expected to give the largest deviations from the STC predictions. The system for continuous monitoring of module performances, already implemented at ESTI, has been recently replaced with a new system having a number of improvements described in the following. The two system results have been compared showing a discrete compatibility. The two power matrices are then merged together using a weighted average and compared to those acquired with the other two remaining "ideal" systems. An interesting tendency seems to come up from this comparison, making the power rating under real operating conditions an essential procedure for energy rating purposes.

  7. High Performance Hybrid Energy Storage with Potassium Ferricyanide Redox Electrolyte.

    PubMed

    Lee, Juhan; Choudhury, Soumyadip; Weingarth, Daniel; Kim, Daekyu; Presser, Volker

    2016-09-14

    We demonstrate stable hybrid electrochemical energy storage performance of a redox-active electrolyte, namely potassium ferricyanide in aqueous media in a supercapacitor-like setup. Challenging issues associated with such a system are a large leakage current and high self-discharge, both stemming from ion redox shuttling through the separator. The latter is effectively eliminated when using an ion exchange membrane instead of a porous separator. Other critical factors toward the optimization of a redox-active electrolyte system, especially electrolyte concentration and volume of electrolyte, have been studied by electrochemical methods. Finally, excellent long-term stability is demonstrated up to 10 000 charge/discharge cycles at 1.2 and 1.8 V, with a broad maximum stability window of up to 1.8 V cell voltage as determined via cyclic voltammetry. An energy capacity of 28.3 Wh/kg or 11.4 Wh/L has been obtained from such cells, taking the nonlinearity of the charge-discharge profile into account. The power performance of our cell has been determined to be 7.1 kW/kg (ca. 2.9 kW/L or 1.2 kW/m(2)). These ratings are higher compared to the same cell operated in aqueous sodium sulfate. This hybrid electrochemical energy storage system is believed to find a strong foothold in future advanced energy storage applications.

  8. White Paper: Unleashing Energy Efficiency Retrofits Through Energy Performance Contracts in China and the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Price, Lynn; Liu, Manzhi

    2015-09-15

    Energy performance contracting (EPC) is a mechanism that uses private sector investment and expertise to deploy energy efficiency retrofits in buildings, industries, and other types of facilities. China and the United States both have large, growing EPC markets. This White Paper shares key insights on each market, including strengths and barriers inherent to these markets, compares the two markets, and sets forth options for enhancing EPC markets in each country. The White Paper concludes with recommendations structured around common goals of both countries.

  9. Securing Gender Equality through a Nexus of Energy Policy Performance and Relative Political Performance

    NASA Astrophysics Data System (ADS)

    Perkins-Ozuagiemhe, Andrea Christen

    This dissertation presents what is believed to be the first empirical study that measures the effect of increasing access to modern household energy sources upon advancing gender equality within developing countries. As a powerful and fundamental public infrastructural socio-economic building block, improved access to modern energy in developing countries delivers the necessary economic ingredient of time as a major component of household production and consumption and captures the interdependence between market and household economies. Thus, because it has been empirically proven that men and women differ in their utilization of household energy with women spending more time engaged in non-market household labor than men, improving access to modern household energy in developing countries, especially in rural areas, theoretically would disproportionately affect women's lives. Essentially, the element of "time" not only extends the day for women to use towards more economically and educationally productive activities, but also lessens the burden of domestic chores from women with technological advancements in more time-efficient household appliances and cleaner modern energy sources. This dissertation introduces gender differentiation in a model in the form of a gender relative status composite measure comparing socio-economic achievements in secondary education, life expectancy, and labor force participation rates by varying degree of demographic transition, thereby, measuring the effect of improved access to modern household energy upon overall gender equality. Fixed effects panel regressions employing a Driscoll-Kraay non-parametric covariance matrix, and estimated and interpreted adjusted predictions and marginal effects of the two-way interaction between a country's available access to residential electric power (kWh per capita) and the level of relative political performance against predicted values of gender relative status are employed. The models confirm

  10. Real estate market and building energy performance: Data for a mass appraisal approach

    PubMed Central

    Bonifaci, Pietro; Copiello, Sergio

    2015-01-01

    Mass appraisal is widely considered an advanced frontier in the real estate valuation field. Performing mass appraisal entails the need to get access to base information conveyed by a large amount of transactions, such as prices and property features. Due to the lack of transparency of many Italian real estate market segments, our survey has been addressed to gather data from residential property advertisements. The dataset specifically focuses on property offer prices and dwelling energy efficiency. The latter refers to the label expressed and exhibited by the energy performance certificate. Moreover, data are georeferenced with the highest possible accuracy: at the neighborhood level for a 76.8% of cases, at street or building number level for the remaining 23.2%. Data are related to the analysis performed in Bonifaci and Copiello [1], about the relationship between house prices and building energy performance, that is to say, the willingness to pay in order to benefit from more efficient dwellings. PMID:26793751

  11. Real estate market and building energy performance: Data for a mass appraisal approach.

    PubMed

    Bonifaci, Pietro; Copiello, Sergio

    2015-12-01

    Mass appraisal is widely considered an advanced frontier in the real estate valuation field. Performing mass appraisal entails the need to get access to base information conveyed by a large amount of transactions, such as prices and property features. Due to the lack of transparency of many Italian real estate market segments, our survey has been addressed to gather data from residential property advertisements. The dataset specifically focuses on property offer prices and dwelling energy efficiency. The latter refers to the label expressed and exhibited by the energy performance certificate. Moreover, data are georeferenced with the highest possible accuracy: at the neighborhood level for a 76.8% of cases, at street or building number level for the remaining 23.2%. Data are related to the analysis performed in Bonifaci and Copiello [1], about the relationship between house prices and building energy performance, that is to say, the willingness to pay in order to benefit from more efficient dwellings.

  12. Cobalt-Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage.

    PubMed

    Li, Bing; Shi, Yuxin; Huang, Kesheng; Zhao, Mingming; Qiu, Jiaqing; Xue, Huaiguo; Pang, Huan

    2018-03-01

    Compared to single metallic Ni or Co phosphides, bimetallic Ni-Co phosphides own ameliorative properties, such as high electrical conductivity, remarkable rate capability, upper specific capacity, and excellent cycle performance. Here, a simple one-step solvothermal process is proposed for the synthesis of bouquet-like cobalt-doped nickel phosphite (Ni 11 (HPO 3 ) 8 (OH) 6 ), and the effect of the structure on the pseudocapacitive performance is investigated via a series of electrochemical measurements. It is found that when the cobalt content is low, the glycol/deionized water ratio is 1, and the reaction is under 200 °C for 20 h, the morphology of the sample is uniform and has the highest specific surface area. The cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 electrode presents a maximum specific capacitance of 714.8 F g -1 . More significantly, aqueous and solid-state flexible electrochemical energy storage devices are successfully assembled. The aqueous device shows a high energy density of 15.48 mWh cm -2 at the power density of 0.6 KW cm -2 . The solid-state device shows a high energy density of 14.72 mWh cm -2 at the power density of 0.6 KW cm -2 . These excellent performances confirm that the cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 are promising materials for applications in electrochemical energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A new Hysteretic Nonlinear Energy Sink (HNES)

    NASA Astrophysics Data System (ADS)

    Tsiatas, George C.; Charalampakis, Aristotelis E.

    2018-07-01

    The behavior of a new Hysteretic Nonlinear Energy Sink (HNES) coupled to a linear primary oscillator is investigated in shock mitigation. Apart from a small mass and a nonlinear elastic spring of the Duffing oscillator, the HNES is also comprised of a purely hysteretic and a linear elastic spring of potentially negative stiffness, connected in parallel. The Bouc-Wen model is used to describe the force produced by both the purely hysteretic and linear elastic springs. Coupling the primary oscillator with the HNES, three nonlinear equations of motion are derived in terms of the two displacements and the dimensionless hysteretic variable, which are integrated numerically using the analog equation method. The performance of the HNES is examined by quantifying the percentage of the initially induced energy in the primary system that is passively transferred and dissipated by the HNES. Remarkable results are achieved for a wide range of initial input energies. The great performance of the HNES is mostly evidenced when the linear spring stiffness takes on negative values.

  14. Smith Newton Vehicle Performance Evaluation – Gen 2 – Cumulative; Energy Efficiency & Renewable Energy (EERE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  15. Quantifying the energy-storage benefits of controlled plug-in electric vehicle charging

    DOE PAGES

    Xi, Xiaomin; Sioshansi, Ramteen

    2016-01-01

    Flexibility in plug-in electric vehicle (PEV) charging can reduce PEV charging costs. Moreover, controlled PEV charging can be viewed as a limited form of energy storage, insomuch as charging loads are shifted from high-cost periods to lower-cost ones. Energy storage that is used for generation shifting is used in much the same manner. In this paper, we study these benefits of PEV charging, demonstrating that controlled PEV charging can reduce generation costs. As a result, we also determine how much energy storage would be needed to provide the same cost-reduction benefits that the PEV fleet does.

  16. Quantifying the energy-storage benefits of controlled plug-in electric vehicle charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Xiaomin; Sioshansi, Ramteen

    Flexibility in plug-in electric vehicle (PEV) charging can reduce PEV charging costs. Moreover, controlled PEV charging can be viewed as a limited form of energy storage, insomuch as charging loads are shifted from high-cost periods to lower-cost ones. Energy storage that is used for generation shifting is used in much the same manner. In this paper, we study these benefits of PEV charging, demonstrating that controlled PEV charging can reduce generation costs. As a result, we also determine how much energy storage would be needed to provide the same cost-reduction benefits that the PEV fleet does.

  17. Modeling the performance of a photon counting x-ray detector for CT: energy response and pulse pileup effects.

    PubMed

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C; Wang, Xiaolan; Iwanczyk, Jan S; Nygard, Einar; Hartsough, Neal E; Tsui, Benjamin M W; Barber, William C

    2011-02-01

    spectrum. The agreement between data measured by the DXMCT-1 and those predicted by the models was quantified by the coefficient of variation (COV), i.e., the root mean square difference divided by the mean of the measurement. Photon energy versus pulse height curves calculated with an analytical model and those measured using the DXMCT-1 were in agreement within 0.2% in terms of the COV. The COV between the output count rates measured and those predicted by analytical models was 2.5% for deadtime losses of up to 60%. The COVs between spectra measured and those predicted by the detector model were within 3.7%-7.2% with deadtime losses of 19%-46%. It has been demonstrated that the performance of the DXMCT-1 agreed exceptionally well with the analytical models regarding the energy response, the count rate, and the recorded spectrum with pulse pileup effects. These models will be useful in developing methods to compensate for these effects in PCXD-based clinical CT systems.

  18. Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects

    PubMed Central

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C.; Wang, Xiaolan; Iwanczyk, Jan S.; Nygard, Einar; Hartsough, Neal E.; Tsui, Benjamin M. W.; Barber, William C.

    2011-01-01

    distorted recorded spectrum. The agreement between data measured by the DXMCT-1 and those predicted by the models was quantified by the coefficient of variation (COV), i.e., the root mean square difference divided by the mean of the measurement. Results: Photon energy versus pulse height curves calculated with an analytical model and those measured using the DXMCT-1 were in agreement within 0.2% in terms of the COV. The COV between the output count rates measured and those predicted by analytical models was 2.5% for deadtime losses of up to 60%. The COVs between spectra measured and those predicted by the detector model were within 3.7%–7.2% with deadtime losses of 19%–46%. Conclusions: It has been demonstrated that the performance of the DXMCT-1 agreed exceptionally well with the analytical models regarding the energy response, the count rate, and the recorded spectrum with pulse pileup effects. These models will be useful in developing methods to compensate for these effects in PCXD-based clinical CT systems. PMID:21452746

  19. Controlling Energy Performance on the Big Stage - The New York Times Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settlemyre, Kevin; Regnier, Cindy

    2015-08-01

    The Times partnered with the U.S. Department of Energy (DOE) as part of DOE’s Commercial Building Partnerships (CBP) Program to develop a post-occupancy evaluation (POE) of three EEMs that were implemented during the construction of The Times building between 2004-2006. With aggressive goals to reduce energy use and carbon emissions at a national level, one strategy of the US Department of Energy is looking to exemplary buildings that have already invested in new approaches to achieving the energy performance goals that are now needed at scale. The Times building incorporated a number of innovative technologies, systems and processes that makemore » their project a model for widespread replication in new and existing buildings. The measured results from the post occupancy evaluation study, the tools and processes developed, and continuous improvements in the performance and cost of the systems studied suggest that these savings are scalable and replicable in a wide range of commercial buildings nationwide.« less

  20. A stochastic approach for quantifying immigrant integration: the Spanish test case

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Barra, Adriano; Contucci, Pierluigi; Sandell, Richard; Vernia, Cecilia

    2014-10-01

    We apply stochastic process theory to the analysis of immigrant integration. Using a unique and detailed data set from Spain, we study the relationship between local immigrant density and two social and two economic immigration quantifiers for the period 1999-2010. As opposed to the classic time-series approach, by letting immigrant density play the role of ‘time’ and the quantifier the role of ‘space,’ it becomes possible to analyse the behavior of the quantifiers by means of continuous time random walks. Two classes of results are then obtained. First, we show that social integration quantifiers evolve following diffusion law, while the evolution of economic quantifiers exhibits ballistic dynamics. Second, we make predictions of best- and worst-case scenarios taking into account large local fluctuations. Our stochastic process approach to integration lends itself to interesting forecasting scenarios which, in the hands of policy makers, have the potential to improve political responses to integration problems. For instance, estimating the standard first-passage time and maximum-span walk reveals local differences in integration performance for different immigration scenarios. Thus, by recognizing the importance of local fluctuations around national means, this research constitutes an important tool to assess the impact of immigration phenomena on municipal budgets and to set up solid multi-ethnic plans at the municipal level as immigration pressures build.

  1. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.« less

  2. Energy Savings and Persistence from an Energy Services Performance Contract at an Army Base

    DTIC Science & Technology

    2011-10-01

    control system upgrades, lighting retrofits, vending machine controls, and cooling tower variable frequency drivers (VFDs). To accomplish the...controls were installed in the vending machines , and for the 87018 thermal plant, cooling tower VFDs were implemented. To develop baseline models...identify the reasons of improved or deteriorated energy performance of the buildings. For example, periodic submetering of the vending machines

  3. Thermal performance and heat transport in aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  4. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    NASA Astrophysics Data System (ADS)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  5. Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning?

    PubMed

    Sanchez, Daniel J; Yarnik, Eric N; Reber, Paul J

    2015-03-01

    Studies of implicit perceptual-motor sequence learning have often shown learning to be inflexibly tied to the training conditions during learning. Since sequence learning is seen as a model task of skill acquisition, limits on the ability to transfer knowledge from the training context to a performance context indicates important constraints on skill learning approaches. Lack of transfer across contexts has been demonstrated by showing that when task elements are changed following training, this leads to a disruption in performance. These results have typically been taken as suggesting that the sequence knowledge relies on integrated representations across task elements (Abrahamse, Jiménez, Verwey, & Clegg, Psychon Bull Rev 17:603-623, 2010a). Using a relatively new sequence learning task, serial interception sequence learning, three experiments are reported that quantify this magnitude of performance disruption after selectively manipulating individual aspects of motor performance or perceptual information. In Experiment 1, selective disruption of the timing or order of sequential actions was examined using a novel response manipulandum that allowed for separate analysis of these two motor response components. In Experiments 2 and 3, transfer was examined after selective disruption of perceptual information that left the motor response sequence intact. All three experiments provided quantifiable estimates of partial transfer to novel contexts that suggest some level of information integration across task elements. However, the ability to identify quantifiable levels of successful transfer indicates that integration is not all-or-none and that measurement sensitivity is a key in understanding sequence knowledge representations.

  6. Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning?

    PubMed Central

    Sanchez, Daniel J.; Yarnik, Eric N.

    2015-01-01

    Studies of implicit perceptual-motor sequence learning have often shown learning to be inflexibly tied to the training conditions during learning. Since sequence learning is seen as a model task of skill acquisition, limits on the ability to transfer knowledge from the training context to a performance context indicates important constraints on skill learning approaches. Lack of transfer across contexts has been demonstrated by showing that when task elements are changed following training, this leads to a disruption in performance. These results have typically been taken as suggesting that the sequence knowledge relies on integrated representations across task elements (Abrahamse, Jiménez, Verwey, & Clegg, Psychon Bull Rev 17:603–623, 2010a). Using a relatively new sequence learning task, serial interception sequence learning, three experiments are reported that quantify this magnitude of performance disruption after selectively manipulating individual aspects of motor performance or perceptual information. In Experiment 1, selective disruption of the timing or order of sequential actions was examined using a novel response manipulandum that allowed for separate analysis of these two motor response components. In Experiments 2 and 3, transfer was examined after selective disruption of perceptual information that left the motor response sequence intact. All three experiments provided quantifiable estimates of partial transfer to novel contexts that suggest some level of information integration across task elements. However, the ability to identify quantifiable levels of successful transfer indicates that integration is not all-or-none and that measurement sensitivity is a key in understanding sequence knowledge representations. PMID:24668505

  7. Performance analysis of hybrid vibrational energy harvesters with experimental verification

    NASA Astrophysics Data System (ADS)

    Sriramdas, Rammohan; Pratap, Rudra

    2018-07-01

    In the present work, performance indices for a hybrid energy harvester (HEH) that is composed of piezoelectric and electrodynamic or electromagnetic mechanisms of energy conversion are analyzed. Performance of a HEH is defined in terms of Q-normalized power factor and efficiency of conversion. They are observed to acutely depend on coupling strength or figures of merit in both piezoelectric and electrodynamic domains. The influence of figures of merit on the Q-normalized power factor, and the limits of conversion efficiency are explored. Based on the studies, a suitable range for figures of merit that would maximize both Q-normalized power factor and conversion efficiency in hybrid harvesters is proposed. The proposed idea is verified experimentally for the appropriate values of figures of merit and efficiencies by fabricating and testing four experimental models of the HEHs.

  8. High-Performance Permanent Magnets for Energy-Efficient Devices

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George

    2012-02-01

    Permanent magnets (PMs) are indispensable for many commercial applications including the electric, electronic and automobile industries, communications, information technologies and automatic control engineering. In most of these applications, an increase in the magnetic energy density of the PM, usually presented via the maximum energy product (BH)max, immediately increases the efficiency of the whole device and makes it smaller and lighter. Worldwide demand for high performance permanent magnets has increased dramatically in the past few years driven by hybrid and electric cars, wind turbines and other power generation systems. New energy challenges in the world require devices with higher energy efficiency and minimum environmental impact. The potential of 3d-4f compounds which revolutionized the PM science and technology is almost fully utilized, and the supply of 4f rare earth elements does not seem to be much longer assured. This talk will address the major principles guiding the development of PMs and overview state-of-the-art theoretical and experimental research. Recent progress in the development of nanocomposite PMs, consisting of a fine (at the scale of the magnetic exchange length) mixture of phases with high magnetization and large magnetic hardness will be discussed. Fabrication of such PMs is currently the most promising way to boost the (BH)max, while simultaneously decreasing, at least partially, the reliance on the rare earth elements. Special attention will be paid to the impact which the next-generation high-(BH)max magnets is expected to have on existing and proposed energy-saving technologies.

  9. Quantifying and understanding reproductive allocation schedules in plants.

    PubMed

    Wenk, Elizabeth Hedi; Falster, Daniel S

    2015-12-01

    A plant's reproductive allocation (RA) schedule describes the fraction of surplus energy allocated to reproduction as it increases in size. While theorists use RA schedules as the connection between life history and energy allocation, little is known about RA schedules in real vegetation. Here we review what is known about RA schedules for perennial plants using studies either directly quantifying RA or that collected data from which the shape of an RA schedule can be inferred. We also briefly review theoretical models describing factors by which variation in RA may arise. We identified 34 studies from which aspects of an RA schedule could be inferred. Within those, RA schedules varied considerably across species: some species abruptly shift all resources from growth to reproduction; most others gradually shift resources into reproduction, but under a variety of graded schedules. Available data indicate the maximum fraction of energy allocated to production ranges from 0.1 to 1 and that shorter lived species tend to have higher initial RA and increase their RA more quickly than do longer-lived species. Overall, our findings indicate, little data exist about RA schedules in perennial plants. Available data suggest a wide range of schedules across species. Collection of more data on RA schedules would enable a tighter integration between observation and a variety of models predicting optimal energy allocation, plant growth rates, and biogeochemical cycles.

  10. Utilizing Commercial Real Estate Owner and Investor Data to Analyze the Financial Performance of Energy Efficient, High-Performance Office Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cloutier, Deborah; Hosseini, Farshid; White, Andrew

    Evidence has shown that owning and operating energy-efficient, high-performance, “green” properties results in multiple benefits including lower utility bills, higher rents, improved occupancy, and greater net operating income. However, it is difficult to isolate and control moderating factors to identify the specific drivers behind improved financial performance and value to investors that results from sustainability in real estate. DOE is interested in facilitating deeper investigation of the correlation between energy efficiency and financial performance, reducing data acquisition and matching challenges, and developing a stronger understanding of how sustainable design and energy efficiency impact value. DOE commissioned this pilot study tomore » test the logistical and empirical procedures required to establish a Commercial Real Estate Data Aggregation & Trends Analysis lab, determine the potential benefits available through the lab, and contribute to the existing body of evidence in this field.« less

  11. PDC-bit performance under simulated borehole conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.E.; Azar, J.J.

    1993-09-01

    Laboratory drilling tests were used to investigate the effects of pressure on polycrystalline-diamond-compact (PDC) drill-bit performance. Catoosa shale core samples were drilled with PDC and roller-cone bits at up to 1,750-psi confining pressure. All tests were conducted in a controlled environment with a full-scale laboratory drilling system. Test results indicate, that under similar operating conditions, increases in confining pressure reduce PDC-bit performance as much as or more than conventional-rock-bit performance. Specific energy calculations indicate that a combination of rock strength, chip hold-down, and bit balling may have reduced performance. Quantifying the degree to which pressure reduces PDC-bit performance will helpmore » researchers interpret test results and improve bit designs and will help drilling engineers run PDC bits more effectively in the field.« less

  12. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  13. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach.

    PubMed

    Camporeale, E; Sorriso-Valvo, L; Califano, F; Retinò, A

    2018-03-23

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  14. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.

    2018-03-01

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  15. Quantifying errors without random sampling.

    PubMed

    Phillips, Carl V; LaPole, Luwanna M

    2003-06-12

    All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling, error is almost never quantified and results are often reported in ways that dramatically overstate their precision. We argue that the precision implicit in typical reporting is problematic and sketch methods for quantifying the various sources of error, building up from simple examples that can be solved analytically to more complex cases. There are straightforward ways to partially quantify the uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting reported significant figures. We present simple methods for doing such quantifications, and for incorporating them into calculations. More complicated methods become necessary when multiple sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using available software, can estimate the uncertainty resulting from complicated calculations with many sources of uncertainty. We apply the method to the current estimate of the annual incidence of foodborne illness in the United States. Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty would more honestly represent study results, help show the probability that estimated values fall within some critical range, and facilitate better targeting of further research.

  16. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality,more » PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)« less

  17. Assessing actual evapotranspiration via surface energy balance aiming to optimize water and energy consumption in large scale pressurized irrigation systems

    NASA Astrophysics Data System (ADS)

    Awada, H.; Ciraolo, G.; Maltese, A.; Moreno Hidalgo, M. A.; Provenzano, G.; Còrcoles, J. I.

    2017-10-01

    Satellite imagery provides a dependable basis for computational models that aimed to determine actual evapotranspiration (ET) by surface energy balance. Satellite-based models enables quantifying ET over large areas for a wide range of applications, such as monitoring water distribution, managing irrigation and assessing irrigation systems' performance. With the aim to evaluate the energy and water consumption of a large scale on-turn pressurized irrigation system in the district of Aguas Nuevas, Albacete, Spain, the satellite-based image-processing model SEBAL was used for calculating actual ET. The model has been applied to quantify instantaneous, daily, and seasonal actual ET over high- resolution Landsat images for the peak water demand season (May to September) and for the years 2006 - 2008. The model provided a direct estimation of the distribution of main energy fluxes, at the instant when the satellite overpassed over each field of the district. The image acquisition day Evapotranspiration (ET24) was obtained from instantaneous values by assuming a constant evaporative fraction (Λ) for the entire day of acquisition; then, monthly and seasonal ET were estimated from the daily evapotranspiration (ETdaily) assuming that ET24 varies in proportion to reference ET (ETr) at the meteorological station, thus accounting for day to day variation in meteorological forcing. The comparison between the hydrants water consumption and the actual evapotranspiration, considering an irrigation efficiency of 85%, showed that a considerable amount of water and energy can be saved at district level.

  18. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    NASA Astrophysics Data System (ADS)

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-06-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.

  19. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    PubMed Central

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-01-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity. PMID:27297496

  20. Energy performance of semi-transparent PV modules for applications in buildings

    NASA Astrophysics Data System (ADS)

    Fung, Yu Yan

    Owing to the increasing awareness on energy conservation and environmental protection, building-integrated photovoltaic (BIPV) has been developed rapidly in the past decade. A number of research studies have been conducted on the energy performance of BIPV systems. However, most of the previous studies focused on the systems that incorporated with opaque type PV modules, little attention has been devoted to semi-transparent type PV modules, which have been commonly integrated in modern architectures. This thesis aims at evaluating the energy performance of the semi-transparent BIPV modules, including heat gains to the indoor environment, power generation from the PV modules and daylight utilization. Solar radiation intensity on PV module's surfaces is an essential parameter for assessing energy performance of the PV modules. Different slope solar radiation models are analyzed and compared. The model that best suits Hong Kong situations is selected for the further development of the energy performance of the BIPV modules. The optimum orientation and tilted angle are determined in the analysis. In addition to the solar radiation models, a detailed investigation on the heat gain through the semi-transparent BIPV modules is carried out in this study. A one-dimensional transient heat transfer model, the SPVHG model, for evaluating the thermal performance of the semi-transparent BIPV modules is developed. The SPVHG model considers in detail the energy that is transmitted, absorbed and reflected in each element of the BIPV modules such as solar cells and glass layers. A computer program of the model is written accordingly. By applying the SPVHG model, the heat gain through the semi-transparent BIPV module of any thickness can be determined for any solar irradiance level. The annual performance can also be assessed by inputting annual weather data to the model. In order to verify the SPVHG model, laboratory tests have been carried out on semi-transparent BIPV modules. A

  1. Quantifying and Reducing Curve-Fitting Uncertainty in Isc: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanelli, Mark; Duck, Benjamin; Emery, Keith

    Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data pointsmore » can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.« less

  2. Life cycle cost-based risk model for energy performance contracting retrofits

    NASA Astrophysics Data System (ADS)

    Berghorn, George H.

    Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a

  3. Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage.

    PubMed

    Sheng, Tian; Xu, Yue-Feng; Jiang, Yan-Xia; Huang, Ling; Tian, Na; Zhou, Zhi-You; Broadwell, Ian; Sun, Shi-Gang

    2016-11-15

    The performance of nanomaterials in electrochemical energy conversion (fuel cells) and storage (secondary batteries) strongly depends on the nature of their surfaces. Designing the structure of electrode materials is the key approach to achieving better performance. Metal or metal oxide nanocrystals (NCs) with high-energy surfaces and open surface structures have attained significant attention in the past decade since such features possess intrinsically exceptional properties. However, they are thermodynamically metastable, resulting in a huge challenge in their shape-controlled synthesis. The tuning of material structure, design, and performance on the nanoscale for electrochemical energy conversion and storage has attracted extended attention over the past few years. In this Account, recent progress made in shape-controlled synthesis of nanomaterials with high-energy surfaces and open surface structures using both electrochemical methods and surfactant-based wet chemical route are reviewed. In fuel cells, the most important catalytic materials are Pt and Pd and their NCs with high-energy surfaces of convex or concave morphology. These exhibit remarkable activity toward electrooxidation of small organic molecules, such as formic acid, methanol, and ethanol and so on. In practical applications, the successful synthesis of Pt NCs with high-energy surfaces of small sizes (sub-10 nm) realized a superior high mass activity. The electrocatalytic performances have been further boosted by synergetic effects in bimetallic systems, either through surface decoration using foreign metal atoms or by alloying in which the high-index facet structure is preserved and the electronic structure of the NCs is altered. The intrinsic relationship of high electrocatalytic performance dependent on open structure and high-energy surface is also valid for (metal) oxide nanomaterials used in Li ion batteries (LIB). It is essential for the anode nanomaterials to have optimized structures to

  4. Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.; Crawford, Aladsair J.; Fuller, Jason C.

    The Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems (PNNL-22010) was first issued in November 2012 as a first step toward providing a foundational basis for developing an initial standard for the uniform measurement and expression of energy storage system (ESS) performance. Based on experiences with the application and use of that document, and to include additional ESS applications and associated duty cycles, test procedures and performance metrics, a first revision of the November 2012 Protocol was issued in June 2014 (PNNL 22010 Rev. 1). As an update of the 2014 revision 1 to the Protocol,more » this document (the March 2016 revision 2 to the Protocol) is intended to supersede the June 2014 revision 1 to the Protocol and provide a more user-friendly yet more robust and comprehensive basis for measuring and expressing ESS performance.« less

  5. Relational energy at work: Implications for job engagement and job performance.

    PubMed

    Owens, Bradley P; Baker, Wayne E; Sumpter, Dana McDaniel; Cameron, Kim S

    2016-01-01

    Energy is emerging as a topic of importance to organizations, yet we have little understanding of how energy can be useful at an interpersonal level toward achieving workplace goals. We present the results of 4 studies aimed at developing, validating, and testing the relational energy construct. In Study 1, we report qualitative insights from 64 individuals about the experience and functioning of relational energy in the workplace. Study 2 draws from 3 employee samples to conduct exploratory and confirmatory factor analyses on a measure of relational energy, differentiating relational energy from related constructs. To test the predictive validity of the new relational energy scale, Study 3 comprises data from employees rating the level of relational energy they experienced during interactions with their leaders in a health services context. Results showed that relational energy employees experienced with their leaders at Time 1 predicted job engagement at Time 2 (1 month later), while controlling for the competing construct of perceived social support. Study 4 shows further differentiation of relational energy from leader-member exchange (LMX), replicates the positive relationship between relational energy (Time 1) and job engagement (Time 2), and shows that relational energy is positively associated with employee job performance (Time 3) through the mechanism of job engagement. We discuss the theoretical implications of our findings and highlight areas for future research. (c) 2016 APA, all rights reserved).

  6. Performance and Health Test Procedure for Grid Energy Storage Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baggu, Murali M; Smith, Kandler A; Friedl, Andrew

    A test procedure to evaluate the performance and health of field installations of grid-connected battery energy storage systems (BESS) is described. Performance and health metrics captured in the procedures are: Round-trip efficiency, Standby losses, Response time/accuracy, and Useable Energy/ State of Charge at different discharge/charge rates over the system's lifetime. The procedures are divided into Reference Performance Tests, which require the system to be put in a test mode and are to be conducted in intervals, and Real-time Monitoring tests, which collect data during normal operation without interruption. The procedures can be applied on a wide array of BESS withmore » little modifications and can thus support BESS operators in the management of BESS field installations with minimal interruption and expenditures.can be applied on a wide array of BESS with little modifications and can thus support BESS operators in the management of BESS field installations with minimal interruption and expenditures.« less

  7. Talker-specificity and adaptation in quantifier interpretation

    PubMed Central

    Yildirim, Ilker; Degen, Judith; Tanenhaus, Michael K.; Jaeger, T. Florian

    2015-01-01

    Linguistic meaning has long been recognized to be highly context-dependent. Quantifiers like many and some provide a particularly clear example of context-dependence. For example, the interpretation of quantifiers requires listeners to determine the relevant domain and scale. We focus on another type of context-dependence that quantifiers share with other lexical items: talker variability. Different talkers might use quantifiers with different interpretations in mind. We used a web-based crowdsourcing paradigm to study participants’ expectations about the use of many and some based on recent exposure. We first established that the mapping of some and many onto quantities (candies in a bowl) is variable both within and between participants. We then examined whether and how listeners’ expectations about quantifier use adapts with exposure to talkers who use quantifiers in different ways. The results demonstrate that listeners can adapt to talker-specific biases in both how often and with what intended meaning many and some are used. PMID:26858511

  8. Rolling friction and energy dissipation in a spinning disc

    PubMed Central

    Ma, Daolin; Liu, Caishan; Zhao, Zhen; Zhang, Hongjian

    2014-01-01

    This paper presents the results of both experimental and theoretical investigations for the dynamics of a steel disc spinning on a horizontal rough surface. With a pair of high-speed cameras, a stereoscopic vision method is adopted to perform omnidirectional measurements for the temporal evolution of the disc's motion. The experiment data allow us to detail the dynamics of the disc, and consequently to quantify its energy. From our experimental observations, it is confirmed that rolling friction is a primary factor responsible for the dissipation of the energy. Furthermore, a mathematical model, in which the rolling friction is characterized by a resistance torque proportional to the square of precession rate, is also proposed. By employing the model, we perform qualitative analysis and numerical simulations. Both of them provide results that precisely agree with our experimental findings. PMID:25197246

  9. Chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) quantify split solid objects.

    PubMed

    Cacchione, Trix; Hrubesch, Christine; Call, Josep

    2013-01-01

    Recent research suggests that gorillas' and orangutans' object representations survive cohesion violations (e.g., a split of a solid object into two halves), but that their processing of quantities may be affected by them. We assessed chimpanzees' (Pan troglodytes) and bonobos' (Pan paniscus) reactions to various fission events in the same series of action tasks modelled after infant studies previously run on gorillas and orangutans (Cacchione and Call in Cognition 116:193-203, 2010b). Results showed that all four non-human great ape species managed to quantify split objects but that their performance varied as a function of the non-cohesiveness produced in the splitting event. Spatial ambiguity and shape invariance had the greatest impact on apes' ability to represent and quantify objects. Further, we observed species differences with gorillas performing lower than other species. Finally, we detected a substantial age effect, with ape infants below 6 years of age being outperformed by both juvenile/adolescent and adult apes.

  10. Load Disaggregation Technologies: Real World and Laboratory Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Sullivan, Greg P.; Petersen, Joseph M.

    Low cost interval metering and communication technology improvements over the past ten years have enabled the maturity of load disaggregation (or non-intrusive load monitoring) technologies to better estimate and report energy consumption of individual end-use loads. With the appropriate performance characteristics, these technologies have the potential to enable many utility and customer facing applications such as billing transparency, itemized demand and energy consumption, appliance diagnostics, commissioning, energy efficiency savings verification, load shape research, and demand response measurement. However, there has been much skepticism concerning the ability of load disaggregation products to accurately identify and estimate energy consumption of end-uses; whichmore » has hindered wide-spread market adoption. A contributing factor is that common test methods and metrics are not available to evaluate performance without having to perform large scale field demonstrations and pilots, which can be costly when developing such products. Without common and cost-effective methods of evaluation, more developed disaggregation technologies will continue to be slow to market and potential users will remain uncertain about their capabilities. This paper reviews recent field studies and laboratory tests of disaggregation technologies. Several factors are identified that are important to consider in test protocols, so that the results reflect real world performance. Potential metrics are examined to highlight their effectiveness in quantifying disaggregation performance. This analysis is then used to suggest performance metrics that are meaningful and of value to potential users and that will enable researchers/developers to identify beneficial ways to improve their technologies.« less

  11. JANUS - A setup for low-energy Coulomb excitation at ReA3

    NASA Astrophysics Data System (ADS)

    Lunderberg, E.; Belarge, J.; Bender, P. C.; Bucher, B.; Cline, D.; Elman, B.; Gade, A.; Liddick, S. N.; Longfellow, B.; Prokop, C.; Weisshaar, D.; Wu, C. Y.

    2018-03-01

    A new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access to observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. In this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm2208Pb target at a beam energy of 3.9 MeV/u.

  12. Effects of daily energy expenditure on academic performance of elementary students in Taiwan.

    PubMed

    Wang, Peng-Sheng; Huang, Yi-Ching; Wu, Shu-Fang Vivienne; Wang, Kuo-Ming

    2014-01-01

    The objective of the study was to investigate the potential effects of daily energy expenditure on the academic performance (AP) of elementary schoolchildren, the results of which will be used as the basis of planning physical activity (PA) for children in the future. Participants were collected from 4th to 6th grade children at an elementary school in southern Taiwan. The effective sample data size was 1065 (79.8%; 528 boys and 537 girls). Daily mean energy expenditure was obtained using the 3 Day Physical Activity Recall (3-DPAR), and the intensive activities degrees of physical activity were categorized into lowest PA, middle PA, and highest PA group, and academic performance assessed with weighted academic score. The significant effect on the academic performance of schoolchildren was only in energy expenditure but not for sexes and tutorials attended. All students in the middle PA group performed better academically than those in the highest PA group. After controlling sexes, male students in the middle PA group performed better than other groups; female students in the lowest PA group performed better than other groups. These results may be consulted by schools, academic faculties, and parents in setting up exercise plans for children. © 2012 The Authors. Japan Journal of Nursing Science © 2012 Japan Academy of Nursing Science.

  13. Quantifying measurement uncertainty and spatial variability in the context of model evaluation

    NASA Astrophysics Data System (ADS)

    Choukulkar, A.; Brewer, A.; Pichugina, Y. L.; Bonin, T.; Banta, R. M.; Sandberg, S.; Weickmann, A. M.; Djalalova, I.; McCaffrey, K.; Bianco, L.; Wilczak, J. M.; Newman, J. F.; Draxl, C.; Lundquist, J. K.; Wharton, S.; Olson, J.; Kenyon, J.; Marquis, M.

    2017-12-01

    In an effort to improve wind forecasts for the wind energy sector, the Department of Energy and the NOAA funded the second Wind Forecast Improvement Project (WFIP2). As part of the WFIP2 field campaign, a large suite of in-situ and remote sensing instrumentation was deployed to the Columbia River Gorge in Oregon and Washington from October 2015 - March 2017. The array of instrumentation deployed included 915-MHz wind profiling radars, sodars, wind- profiling lidars, and scanning lidars. The role of these instruments was to provide wind measurements at high spatial and temporal resolution for model evaluation and improvement of model physics. To properly determine model errors, the uncertainties in instrument-model comparisons need to be quantified accurately. These uncertainties arise from several factors such as measurement uncertainty, spatial variability, and interpolation of model output to instrument locations, to name a few. In this presentation, we will introduce a formalism to quantify measurement uncertainty and spatial variability. The accuracy of this formalism will be tested using existing datasets such as the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign. Finally, the uncertainties in wind measurement and the spatial variability estimates from the WFIP2 field campaign will be discussed to understand the challenges involved in model evaluation.

  14. Performance metric comparison study for non-magnetic bi-stable energy harvesters

    NASA Astrophysics Data System (ADS)

    Udani, Janav P.; Wrigley, Cailin; Arrieta, Andres F.

    2017-04-01

    Energy harvesting employing non-linear systems offers considerable advantages over linear systems given the broadband resonant response which is favorable for applications involving diverse input vibrations. In this respect, the rich dynamics of bi-stable systems present a promising means for harvesting vibrational energy from ambient sources. Harvesters deriving their bi-stability from thermally induced stresses as opposed to magnetic forces are receiving significant attention as it reduces the need for ancillary components and allows for bio- compatible constructions. However, the design of these bi-stable harvesters still requires further optimization to completely exploit the dynamic behavior of these systems. This study presents a comparison of the harvesting capabilities of non-magnetic, bi-stable composite laminates under variations in the design parameters as evaluated utilizing established power metrics. Energy output characteristics of two bi-stable composite laminate plates with a piezoelectric patch bonded on the top surface are experimentally investigated for variations in the thickness ratio and inertial mass positions for multiple load conditions. A particular design configuration is found to perform better over the entire range of testing conditions which include single and multiple frequency excitation, thus indicating that design optimization over the geometry of the harvester yields robust performance. The experimental analysis further highlights the need for appropriate design guidelines for optimization and holistic performance metrics to account for the range of operational conditions.

  15. The Influence of Early Protein Energy Malnutrition on Subsequent Behavior and Intellectual Performance.

    ERIC Educational Resources Information Center

    Gupta, Sarita

    1990-01-01

    Protein-energy malnutrition in early childhood, as seen in many developing countries, influences subsequent behavior and intellectual performance. These impairments are associated with further reduction in fine motor skills and academic performance. (Author)

  16. High-performance blue phosphorescent OLEDs using energy transfer from exciplex.

    PubMed

    Seino, Yuki; Sasabe, Hisahiro; Pu, Yong-Jin; Kido, Junji

    2014-03-12

    An efficient energy transfer from an exciplex between a sulfone and an arylamine derivatives to a blue phosphorescent emitter enables OLED performances among the best, of over 50 lm W(-1) at 100 cd m(-2) . The formation of the exciplex realizes a barrier-free hole-electron recombination pathway, thereby leading to high OLED performances with an extremely low driving voltage of 2.9 V at 100 cd m(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of a Caffeine-Containing Energy Drink on Simulated Soccer Performance

    PubMed Central

    Del Coso, Juan; Muñoz-Fernández, Víctor E.; Muñoz, Gloria; Fernández-Elías, Valentín E.; Ortega, Juan F.; Hamouti, Nassim; Barbero, José C.; Muñoz-Guerra, Jesús

    2012-01-01

    Background To investigate the effects of a caffeine-containing energy drink on soccer performance during a simulated game. A second purpose was to assess the post-exercise urine caffeine concentration derived from the energy drink intake. Methodology/Principal Findings Nineteen semiprofessional soccer players ingested 630±52 mL of a commercially available energy drink (sugar-free Red Bull®) to provide 3 mg of caffeine per kg of body mass, or a decaffeinated control drink (0 mg/kg). After sixty minutes they performed a 15-s maximal jump test, a repeated sprint test (7×30 m; 30 s of active recovery) and played a simulated soccer game. Individual running distance and speed during the game were measured using global positioning satellite (GPS) devices. In comparison to the control drink, the ingestion of the energy drink increased mean jump height in the jump test (34.7±4.7 v 35.8±5.5 cm; P<0.05), mean running speed during the sprint test (25.6±2.1 v 26.3±1.8 km · h−1; P<0.05) and total distance covered at a speed higher than 13 km · h−1 during the game (1205±289 v 1436±326 m; P<0.05). In addition, the energy drink increased the number of sprints during the whole game (30±10 v 24±8; P<0.05). Post-exercise urine caffeine concentration was higher after the energy drink than after the control drink (4.1±1.0 v 0.1±0.1 µg · mL−1; P<0.05). Conclusions/significance A caffeine-containing energy drink in a dose equivalent to 3 mg/kg increased the ability to repeatedly sprint and the distance covered at high intensity during a simulated soccer game. In addition, the caffeinated energy drink increased jump height which may represent a meaningful improvement for headers or when players are competing for a ball. PMID:22348079

  18. Effects of a caffeine-containing energy drink on simulated soccer performance.

    PubMed

    Del Coso, Juan; Muñoz-Fernández, Víctor E; Muñoz, Gloria; Fernández-Elías, Valentín E; Ortega, Juan F; Hamouti, Nassim; Barbero, José C; Muñoz-Guerra, Jesús

    2012-01-01

    To investigate the effects of a caffeine-containing energy drink on soccer performance during a simulated game. A second purpose was to assess the post-exercise urine caffeine concentration derived from the energy drink intake. Nineteen semiprofessional soccer players ingested 630 ± 52 mL of a commercially available energy drink (sugar-free Red Bull®) to provide 3 mg of caffeine per kg of body mass, or a decaffeinated control drink (0 mg/kg). After sixty minutes they performed a 15-s maximal jump test, a repeated sprint test (7 × 30 m; 30 s of active recovery) and played a simulated soccer game. Individual running distance and speed during the game were measured using global positioning satellite (GPS) devices. In comparison to the control drink, the ingestion of the energy drink increased mean jump height in the jump test (34.7 ± 4.7 v 35.8 ± 5.5 cm; P<0.05), mean running speed during the sprint test (25.6 ± 2.1 v 26.3 ± 1.8 km · h(-1); P<0.05) and total distance covered at a speed higher than 13 km · h(-1) during the game (1205 ± 289 v 1436 ± 326 m; P<0.05). In addition, the energy drink increased the number of sprints during the whole game (30 ± 10 v 24 ± 8; P<0.05). Post-exercise urine caffeine concentration was higher after the energy drink than after the control drink (4.1 ± 1.0 v 0.1 ± 0.1 µg · mL(-1); P<0.05). A caffeine-containing energy drink in a dose equivalent to 3 mg/kg increased the ability to repeatedly sprint and the distance covered at high intensity during a simulated soccer game. In addition, the caffeinated energy drink increased jump height which may represent a meaningful improvement for headers or when players are competing for a ball.

  19. Liquid rocket performance computer model with distributed energy release

    NASA Technical Reports Server (NTRS)

    Combs, L. P.

    1972-01-01

    Development of a computer program for analyzing the effects of bipropellant spray combustion processes on liquid rocket performance is described and discussed. The distributed energy release (DER) computer program was designed to become part of the JANNAF liquid rocket performance evaluation methodology and to account for performance losses associated with the propellant combustion processes, e.g., incomplete spray gasification, imperfect mixing between sprays and their reacting vapors, residual mixture ratio striations in the flow, and two-phase flow effects. The DER computer program begins by initializing the combustion field at the injection end of a conventional liquid rocket engine, based on injector and chamber design detail, and on propellant and combustion gas properties. It analyzes bipropellant combustion, proceeding stepwise down the chamber from those initial conditions through the nozzle throat.

  20. Solar Energy system performance evaluation: El Toro, California, March 1981-November 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakkala, P.A.

    The El Toro Library is a public library facility in California with an active solar energy system designed to supply 97% of the heating load and 60% of the cooling load. The system is equipped with 1427 square feet of evacuated tube collectors, a 1500-gallon steel storage tank, and an auxiliary natural-gas-fired heating unit. During the period from March 1981 through November 1981 the system supplied only 16% of the space cooling load, far short of the 60% design value. Problems are reported related to control of a valve and of collection, low absorption chiller coefficient of performance during partmore » of the period, and small collector area. Performance data are reported for the system, including solar savings ratio, conventional fuel savings, system performance factor, system coefficient of performance, solar energy utilization, and system operation. Subsystem performance data are also given for the collector, storage, and space cooling subsystems and absorption chiller. The system is briefly described along with performance evaluation techniques and sensors, and typical data are presented for one month. Some weather data are also included. (LEW)« less

  1. Energy expenditure for massage therapists during performing selected classical massage techniques.

    PubMed

    Więcek, Magdalena; Szymura, Jadwiga; Maciejczyk, Marcin; Szyguła, Zbigniew; Cempla, Jerzy; Borkowski, Mateusz

    2018-04-11

    The aim of the study is to evaluate the intensity of the effort and energy expenditure in the course of performing selected classical massage techniques and to assess the workload of a massage therapist during a work shift. Thirteen massage therapists (age: 21.9±1.9 years old, body mass index: 24.5±2.8 kg×m-2, maximal oxygen consumption × body mass-1 (VO2 max×BM-1): 42.3±7 ml×kg-1×min-1) were involved in the study. The stress test consisted in performing selected classical massage techniques in the following order: stroking, kneading, shaking, beating, rubbing and direct vibration, during which the cardio-respiratory responses and the subjective rating of perceived exertion (RPE) were assessed. Intensity of exercise during each massage technique was expressed as % VO2 max, % maximal heart rate (HRmax) and % heart rate reserve (HRR). During each massage technique, net energy expenditure (EE) and energy cost of work using metabolic equivalent of task (MET) were determined. The intensity of exercise was 47.2±6.2% as expressed in terms of % VO2 max, and 74.7±3.2% as expressed in terms of % HRmax, while it was 47.8±1.7% on average when expressed in terms of % HRR during the whole procedure. While performing the classical massage, the average EE and MET were 5.6±0.9 kcal×min-1 and 5.6±0.2, respectively. The average RPE calculated for the entire procedure was 12.1±1.4. During the performance of a classical massage technique for a single treatment during the study, the average total EE was 176.5±29.6 kcal, resulting in an energy expenditure of 336.2±56.4 kcal×h-1. In the case of the classical massage technique, rubbing was the highest intensity exercise for the masseur who performed the massage (%VO2 max = 57.4±13.1%, HRmax = 79.6±7.7%, HRR = 58.5±13.1%, MET = 6.7±1.1, EE = 7.1±1.4 kcal×min-1

  2. Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Ganguly, Sayantan

    2017-04-01

    Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.

  3. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at

  4. The effects of energy drink in combination with alcohol on performance and subjective awareness.

    PubMed

    Alford, Chris; Hamilton-Morris, Jennifer; Verster, Joris C

    2012-08-01

    This study investigated the coadministration of an energy drink with alcohol to study the effects on subjective intoxication and objective performance. This study aims to evaluate the objective and subjective effects of alcohol versus placebo at two alcohol doses, alone and in combination with an energy drink, in a balanced order, placebo-controlled, double-blind design. Two groups of ten healthy volunteers, mean (SD) age of 24 (6.5), participated in the study. One group consumed energy drink containing 80 mg of caffeine and the other consumed a placebo drink, with both receiving two alcohol doses (0.046 and 0.087% breathalyser alcohol concentration). Tests included breath alcohol assessment, objective measures of performance (reaction time, word memory and Stroop task) and subjective visual analogue mood scales. Participants showed significantly impaired reaction time and memory after alcohol compared to the no alcohol condition and had poorer memory after the higher alcohol dose. Stroop performance was improved with the energy drink plus alcohol combination compared to the placebo drink plus alcohol combination. Participants felt significant subjective dose-related impairment after alcohol compared to no alcohol. Neither breath alcohol concentration nor the subjective measures showed a significant difference between the energy drink and the placebo energy drink when combined with alcohol. Subjective effects reflected awareness of alcohol intoxication and sensitivity to increasing alcohol dose. There were no overall significant group differences for subjective measures between energy drink and placebo groups in the presence of alcohol and no evidence that the energy drink masked the subjective effects of alcohol at either dose.

  5. Performance of optically stimulated luminescence Al₂O₃ dosimeter for low doses of diagnostic energy X-rays.

    PubMed

    Lim, Chang Seon; Lee, Sang Bock; Jin, Gye Hwan

    2011-10-01

    Personal dosimeters measure the radiation dose from exposure to hazardous sources outside the body. The present manuscript evaluates the performance of a commercially available optically stimulated luminescence (OSL) Al₂O₃ dosimeter using diagnostic energy X-rays. The OSL system satisfies the ANSI N13.11-2001 performance criteria for low dose diagnostic energy X-rays. Non-uniformity of sensitivity, dose linearity, X-ray energy response, and angular performance are all within the criteria of IEC-62387-1(2007). Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers.

    PubMed

    Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Abián-Vicén, Javier; Salinero, Juan José; Gonzalez-Millán, Cristina; Gallo-Salazar, César; Del Coso, Juan

    2015-09-28

    This study investigated the effect of a caffeinated energy drink on various aspects of performance in sprint swimmers. In a randomised and counterbalanced order, fourteen male sprint swimmers performed two acute experimental trials after the ingestion of a caffeinated energy drink (3 mg/kg) or after the ingestion of the same energy drink without caffeine (0 mg/kg; placebo). After 60 min of ingestion of the beverages, the swimmers performed a countermovement jump, a maximal handgrip test, a 50 m simulated competition and a 45 s swim at maximal intensity in a swim ergometer. A blood sample was withdrawn 1 min after the completion of the ergometer test. In comparison with the placebo drink, the intake of the caffeinated energy drink increased the height in the countermovement jump (49.4 (SD 5.3) v. 50.9 (SD 5.2) cm, respectively; P<0.05) and maximal force during the handgrip test with the right hand (481 (SD 49) v. 498 (SD 43) N; P<0.05). Furthermore, the caffeinated energy drink reduced the time needed to complete the 50 m simulated swimming competition (27.8 (SD 3.4) v. 27.5 (SD 3.2) s; P<0.05), and it increased peak power (273 (SD 55) v. 303 (SD 49) W; P <0.05) and blood lactate concentration (11.0 (SD 2.0) v. 11.7 (SD 2.1) mM; P<0.05) during the ergometer test. The caffeinated energy drink did not modify the prevalence of insomnia (7 v. 7%), muscle pain (36 v. 36%) or headache (0 v. 7%) during the hours following its ingestion (P>0.05). A caffeinated energy drink increased some aspects of swimming performance in competitive sprinters, whereas the side effects derived from the intake of this beverage were marginal at this dosage.

  7. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  8. Quantifying How Observations Inform a Numerical Reanalysis of Hawaii

    NASA Astrophysics Data System (ADS)

    Powell, B. S.

    2017-11-01

    When assimilating observations into a model via state-estimation, it is possible to quantify how each observation changes the modeled estimate of a chosen oceanic metric. Using an existing 2 year reanalysis of Hawaii that includes more than 31 million observations from satellites, ships, SeaGliders, and autonomous floats, I assess which observations most improve the estimates of the transport and eddy kinetic energy. When the SeaGliders were in the water, they comprised less than 2.5% of the data, but accounted for 23% of the transport adjustment. Because the model physics constrains advanced state-estimation, the prescribed covariances are propagated in time to identify observation-model covariance. I find that observations that constrain the isopycnal tilt across the transport section provide the greatest impact in the analysis. In the case of eddy kinetic energy, observations that constrain the surface-driven upper ocean have more impact. This information can help to identify optimal sampling strategies to improve both state-estimates and forecasts.

  9. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs: An Assessment of Performance Incentive Models

    NASA Astrophysics Data System (ADS)

    Gosman, Nathaniel

    For energy utilities faced with expanded jurisdictional energy efficiency requirements and pursuing demand-side management (DSM) incentive programs in the large industrial sector, performance incentive programs can be an effective means to maximize the reliability of planned energy savings. Performance incentive programs balance the objectives of high participation rates with persistent energy savings by: (1) providing financial incentives and resources to minimize constraints to investment in energy efficiency, and (2) requiring that incentive payments be dependent on measured energy savings over time. As BC Hydro increases its DSM initiatives to meet the Clean Energy Act objective to reduce at least 66 per cent of new electricity demand with DSM by 2020, the utility is faced with a higher level of DSM risk, or uncertainties that impact the costeffective acquisition of planned energy savings. For industrial DSM incentive programs, DSM risk can be broken down into project development and project performance risks. Development risk represents the project ramp-up phase and is the risk that planned energy savings do not materialize due to low customer response to program incentives. Performance risk represents the operational phase and is the risk that planned energy savings do not persist over the effective measure life. DSM project development and performance risks are, in turn, a result of industrial economic, technological and organizational conditions, or DSM risk factors. In the BC large industrial sector, and characteristic of large industrial sectors in general, these DSM risk factors include: (1) capital constraints to investment in energy efficiency, (2) commodity price volatility, (3) limited internal staffing resources to deploy towards energy efficiency, (4) variable load, process-based energy saving potential, and (5) a lack of organizational awareness of an operation's energy efficiency over time (energy performance). This research assessed the capacity

  10. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1982-01-01

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  11. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Astrophysics Data System (ADS)

    Cull, R. C.; Eltimsahy, A. H.

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  12. High-performance Sonitopia (Sonic Utopia): Hyper intelligent Material-based Architectural Systems for Acoustic Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Heidari, F.; Mahdavinejad, M.

    2017-08-01

    The rate of energy consumption in all over the world, based on reliable statistics of international institutions such as the International Energy Agency (IEA) shows significant increase in energy demand in recent years. Periodical recorded data shows a continuous increasing trend in energy consumption especially in developed countries as well as recently emerged developing economies such as China and India. While air pollution and water contamination as results of high consumption of fossil energy resources might be consider as menace to civic ideals such as livability, conviviality and people-oriented cities. In other hand, automobile dependency, cars oriented design and other noisy activities in urban spaces consider as threats to urban life. Thus contemporary urban design and planning concentrates on rethinking about ecology of sound, reorganizing the soundscape of neighborhoods, redesigning the sonic order of urban space. It seems that contemporary architecture and planning trends through soundscape mapping look for sonitopia (Sonic + Utopia) This paper is to propose some interactive hyper intelligent material-based architectural systems for acoustic energy harvesting. The proposed architectural design system may be result in high-performance architecture and planning strategies for future cities. The ultimate aim of research is to develop a comprehensive system for acoustic energy harvesting which cover the aim of noise reduction as well as being in harmony with architectural design. The research methodology is based on a literature review as well as experimental and quasi-experimental strategies according the paradigm of designedly ways of doing and knowing. While architectural design has solution-focused essence in problem-solving process, the proposed systems had better be hyper intelligent rather than predefined procedures. Therefore, the steps of the inference mechanism of the research include: 1- understanding sonic energy and noise potentials as energy

  13. Performance evaluation of nonlinear energy harvesting with magnetically coupled dual beams

    NASA Astrophysics Data System (ADS)

    Lan, Chunbo; Tang, Lihua; Qin, Weiyang

    2017-04-01

    To enhance the output power and broaden the operation bandwidth of vibration energy harvesters (VEH), nonlinear two degree-of-freedom (DOF) energy harvesters have attracted wide attention recently. In this paper, we investigate the performance of a nonlinear VEH with magnetically coupled dual beams and compare it with the typical Duffing-type VEH to find the advantages and drawbacks of this nonlinear 2-DOF VEH. First, based on the lumped parameter model, the characteristics of potential energy shapes and static equilibriums are analyzed. It is noted that the dual beam configuration is much easy to be transformed from a mono-stable state into a bi-stable state when the repulsive magnet force increases. Based on the equilibrium positions and different kinds of nonlinearities, four nonlinearity regimes are determined. Second, the performance of 1-DOF and 2-DOF configurations are compared respectively in these four nonlinearity regimes by simulating the forward sweep responses of these two nonlinear VEHs under different acceleration levels. Several meaningful conclusions are obtained. First, the main alternative to enlarge the operation bandwidth for dual-beam configuration is chaotic oscillation, in which two beams jump between two stable positions chaotically. However, the large-amplitude periodic oscillations, such as inter-well oscillation, cannot take place in both piezoelectric and parasitic beams at the same time. Generally speaking, both of the magnetically coupled dual-beam energy harvester and Duffingtype energy harvester, have their own advantages and disadvantages, while given a large enough base excitation, the maximum voltages of these two systems are almost the same in all these four regimes.

  14. Quantifying Supply Risk at a Cellulosic Biorefinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Jason K; Jacobson, Jacob Jordan; Cafferty, Kara Grace

    In order to increase the sustainability and security of the nation’s energy supply, the U.S. Department of Energy through its Bioenergy Technology Office has set a vision for one billion tons of biomass to be processed for renewable energy and bioproducts annually by the year 2030. The Renewable Fuels Standard limits the amount of corn grain that can be used in ethanol conversion sold in the U.S, which is already at its maximum. Therefore making the DOE’s vision a reality requires significant growth in the advanced biofuels industry where currently three cellulosic biorefineries convert cellulosic biomass to ethanol. Risk mitigationmore » is central to growing the industry beyond its infancy to a level necessary to achieve the DOE vision. This paper focuses on reducing the supply risk that faces a firm that owns a cellulosic biorefinery. It uses risk theory and simulation modeling to build a risk assessment model based on causal relationships of underlying, uncertain, supply driving variables. Using the model the paper quantifies supply risk reduction achieved by converting the supply chain from a conventional supply system (bales and trucks) to an advanced supply system (depots, pellets, and trains). Results imply that the advanced supply system reduces supply system risk, defined as the probability of a unit cost overrun, from 83% in the conventional system to 4% in the advanced system. Reducing cost risk in this nascent industry improves the odds of realizing desired growth.« less

  15. Use of nonlinear programming to optimize performance response to energy density in broiler feed formulation.

    PubMed

    Guevara, V R

    2004-02-01

    A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.

  16. Performance data for a desuperheater integrated to a thermal energy storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.H.W.; Jones, J.W.

    1995-11-01

    Desuperheaters are heat exchangers that recover heat from the compressor discharge gas to heat domestic hot water. The objective of this project was to conduct performance tests for a desuperheater in the cooling and heating modes of a thermal energy storage system so as to form a data base on the steady state performance of a residential desuperheater unit. The desuperheater integrated to a thermal energy storage system was installed in the Dual-Air Loop Test Facility at The Center for Energy Studies, the University of Texas at Austin. The major components of the system consist of the refrigerant compressor, domesticmore » hot water (DHW) desuperheater, thermal storage tank with evaporator/condenser coil, outdoor air coil, DHW storage tank, DHW circulating pump, space conditioning water circulation pump, and indoor heat exchanger. Although measurements were made to quantity space heating, space cooling, and domestic water heating, this paper only emphasizes the desuperheater performance of the unit. Experiments were conducted to study the effects of various outdoor temperature and entering water temperature on the performance of the desuperheater/TES system. In the cooling and heating modes, the desuperheater captured 5 to 18 percent and 8 to 17 percent, respectively, of the heat that would be normally rejected through the air coil condenser. At higher outdoor temperature, the desuperheater captured more heat. it was also noted that the heating and cooling COPs decreased with entering water temperature. The information generated in the experimental efforts could be used to form a data base on the steady state performance of a residential desuperheater unit.« less

  17. Quantifying climate feedbacks in polar regions.

    PubMed

    Goosse, Hugues; Kay, Jennifer E; Armour, Kyle C; Bodas-Salcedo, Alejandro; Chepfer, Helene; Docquier, David; Jonko, Alexandra; Kushner, Paul J; Lecomte, Olivier; Massonnet, François; Park, Hyo-Seok; Pithan, Felix; Svensson, Gunilla; Vancoppenolle, Martin

    2018-05-15

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range of feedbacks, offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.

  18. Effects of easy-to-use protein-rich energy bar on energy balance, physical activity and performance during 8 days of sustained physical exertion.

    PubMed

    Tanskanen, Minna M; Westerterp, Klaas R; Uusitalo, Arja L; Atalay, Mustafa; Häkkinen, Keijo; Kinnunen, Hannu O; Kyröläinen, Heikki

    2012-01-01

    Previous military studies have shown an energy deficit during a strenuous field training course (TC). This study aimed to determine the effects of energy bar supplementation on energy balance, physical activity (PA), physical performance and well-being and to evaluate ad libitum fluid intake during wintertime 8-day strenuous TC. Twenty-six men (age 20±1 yr.) were randomly divided into two groups: The control group (n = 12) had traditional field rations and the experimental (Ebar) group (n = 14) field rations plus energy bars of 4.1 MJ•day(-1). Energy (EI) and water intake was recorded. Fat-free mass and water loss were measured with deuterium dilution and elimination, respectively. The energy expenditure was calculated using the intake/balance method and energy availability as (EI/estimated basal metabolic rate). PA was monitored using an accelerometer. Physical performance was measured and questionnaires of upper respiratory tract infections (URTI), hunger and mood state were recorded before, during and after TC. Ebar had a higher EI and energy availability than the controls. However, decreases in body mass and fat mass were similar in both groups representing an energy deficit. No differences were observed between the groups in PA, water balance, URTI symptoms and changes in physical performance and fat-free mass. Ebar felt less hunger after TC than the controls and they had improved positive mood state during the latter part of TC while controls did not. Water deficit associated to higher PA. Furthermore, URTI symptoms and negative mood state associated negatively with energy availability and PA. An easy-to-use protein-rich energy bars did not prevent energy deficit nor influence PA during an 8-day TC. The high content of protein in the bars might have induced satiation decreasing energy intake from field rations. PA and energy intake seems to be primarily affected by other factors than energy supplementation such as mood state.

  19. Effects of Easy-to-Use Protein-Rich Energy Bar on Energy Balance, Physical Activity and Performance during 8 Days of Sustained Physical Exertion

    PubMed Central

    Tanskanen, Minna M.; Westerterp, Klaas R.; Uusitalo, Arja L.; Atalay, Mustafa; Häkkinen, Keijo; Kinnunen, Hannu O.; Kyröläinen, Heikki

    2012-01-01

    Background Previous military studies have shown an energy deficit during a strenuous field training course (TC). This study aimed to determine the effects of energy bar supplementation on energy balance, physical activity (PA), physical performance and well-being and to evaluate ad libitum fluid intake during wintertime 8-day strenuous TC. Methods Twenty-six men (age 20±1 yr.) were randomly divided into two groups: The control group (n = 12) had traditional field rations and the experimental (Ebar) group (n = 14) field rations plus energy bars of 4.1 MJ•day−1. Energy (EI) and water intake was recorded. Fat-free mass and water loss were measured with deuterium dilution and elimination, respectively. The energy expenditure was calculated using the intake/balance method and energy availability as (EI/estimated basal metabolic rate). PA was monitored using an accelerometer. Physical performance was measured and questionnaires of upper respiratory tract infections (URTI), hunger and mood state were recorded before, during and after TC. Results Ebar had a higher EI and energy availability than the controls. However, decreases in body mass and fat mass were similar in both groups representing an energy deficit. No differences were observed between the groups in PA, water balance, URTI symptoms and changes in physical performance and fat-free mass. Ebar felt less hunger after TC than the controls and they had improved positive mood state during the latter part of TC while controls did not. Water deficit associated to higher PA. Furthermore, URTI symptoms and negative mood state associated negatively with energy availability and PA. Conclusion An easy-to-use protein-rich energy bars did not prevent energy deficit nor influence PA during an 8-day TC. The high content of protein in the bars might have induced satiation decreasing energy intake from field rations. PA and energy intake seems to be primarily affected by other factors than energy supplementation such

  20. Energy in a Planetary Context

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.

    2017-01-01

    The potential present day habitability of solar system bodies beyond Earth is limited to subsurface environments, where the availability of energy in biologically useful form is a paramount consideration. Energy availability is commonly quantified in terms of molar Gibbs energy changes for metabolisms of interest, but this can provide an incomplete and even misleading picture. A second aspect of life's requirement for energy - the rate of delivery, or power - strongly influences habitability, biomass abundance, growth rates, and, ultimately, rates of evolution. We are developing an approach to quantify metabolic power, using a cell-scale reactive transport model in which physical and chemical environmental parameters are varied. Simultaneously, we evaluate cell-specific energy flux requirements and their dependence on environmental "extremes". Comparison of metabolic power supply and demand provides a constraint on how biomass abundance varies across a range of environmental parameters, and thereby a prediction of the relative habitability of different environments. We are evaluating the predictive capability of this approach through comparison to observed distributions of microbial abundance in a range of subsurface (predominantly serpentinizing) systems.

  1. Assessing the Multiple Benefits of Clean Energy Full Report

    EPA Pesticide Factsheets

    Guidance for state energy, environmental, and economic policy makers to identify and quantify the many benefits of clean energy to support the development and implementation of cost-effective clean energy initiatives.

  2. 25 CFR 224.80 - Under what authority will a tribe perform activities for energy resource development?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... energy resource development? 224.80 Section 224.80 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT... development? A tribe will perform activities for energy resource development activities undertaken under a...

  3. Optimal control of 2-wheeled mobile robot at energy performance index

    NASA Astrophysics Data System (ADS)

    Kaliński, Krzysztof J.; Mazur, Michał

    2016-03-01

    The paper presents the application of the optimal control method at the energy performance index towards motion control of the 2-wheeled mobile robot. With the use of the proposed method of control the 2-wheeled mobile robot can realise effectively the desired trajectory. The problem of motion control of mobile robots is usually neglected and thus performance of the realisation of the high level control tasks is limited.

  4. Whole Building Cost and Performance Measurement: Data Collection Protocol Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Spees, Kathleen L.; Kora, Angela R.

    2009-03-27

    This protocol was written for the Department of Energy’s Federal Energy Management Program (FEMP) to be used by the public as a tool for assessing building cost and performance measurement. The primary audiences are sustainable design professionals, asset owners, building managers, and research professionals within the Federal sector. The protocol was developed based on the need for measured performance and cost data on sustainable design projects. Historically there has not been a significant driver in the public or private sector to quantify whole building performance in comparable terms. The deployment of sustainable design into the building sector has initiated manymore » questions on the performance and operational cost of these buildings.« less

  5. Quantifying the Sensitivity of the Production of Environmental Externalities to Market-Based Interventions in the Power Sector

    NASA Astrophysics Data System (ADS)

    Peer, R.; Sanders, K.

    2017-12-01

    The optimization function that governs the dispatching of power generators to meet electricity demand minimizes the marginal cost of electricity generation without regard to the environmental or public health damages caused by power production. Although technologies exist for reducing the externalities resulting from electricity generation at power plants, current solutions typically raise the cost of power production or introduce operational challenges for the grid. This research quantifies the trade-offs and couplings between the cooling water, greenhouse gas emissions, and air quality impacts of different power generating technologies under business as usual market conditions, as well as a series of market-based interventions aimed to reduce the production of those externalities. Using publicly available data from the US Environmental Protection Agency (EPA) and the US Energy Information Administration (EIA) for power plant water use and emissions, a unit commitment and dispatch power market simulation model is modified to evaluate the production of environmental externalities from power production. Scenarios are developed to apply a set of fees for cooling water, carbon dioxide, nitrous oxide and sulfur oxide emissions, respectively. Trade-offs between environmental performance, overall generation costs, and shifts in the power plants dispatched to meet demand are quantified for each power market simulation. The results from this study will provide insight into the development of a novel market-based framework that modifies the optimization algorithms governing the dispatching of electricity onto the grid in efforts to achieve cost-effective improvements in its environmental performance without the need for new infrastructure investments.

  6. Quantifying the Contribution of Urban-Industrial Efficiency and Symbiosis to Deep Decarbonization: Impact of 637 Chinese Cities

    NASA Astrophysics Data System (ADS)

    Ramaswami, A.; Tong, K.; Fang, A.; Lal, R.; Nagpure, A.; Li, Y.; Yu, H.; Jiang, D.; Russell, A. G.; Shi, L.; Chertow, M.; Wang, Y.; Wang, S.

    2016-12-01

    Urban activities in China contribute significantly to global greenhouse gas (GHG) emissions and to local air pollution-related health risks. Co-location analysis can help inform the potential for energy- and material-exchanges across homes, businesses, infrastructure and industries co-located in cities. Such co-location dependent urban-industrial symbiosis strategies offer a new pathway toward urban energy efficiency and health that have not previously been quantified. Key examples includes the use of waste industrial heat in other co-located industries, and in residential-commercial district heating-cooling systems of cities. To quantify the impact of these strategies: (1) We develop a new data-set of 637 Chinese cities to assess the potential for efficiency and symbiosis across co-located homes, businesses, industries and the energy and construction sectors in the different cities. (2) A multi-scalar urban systems model quantifies trans-boundary CO2 impacts as well as local health benefits of these uniquely urban, co-location-dependent strategies. (3) CO2 impacts are aggregated across the 637 Chinese cities (home to 701 million people) to quantify national CO2 mitigation potential. (4) The local health benefits are modeled specific to each city and mapped geospatially to identify areas where co-benefits between GHG mitigation and health are maximized. Results: A first order conservative analysis of co-location dependent urban symbiosis indicates potential for reducing 6% of China's national total CO2 emissions in a relatively short time period, yielding a new pathway not previously considered in China's energy futures models. The magnitude of these reductions (6%) was similar in magnitude to sector specific industrial, power sector and buildings efficiency strategeies that together contributed 9% CO2 reduction aggregated across the nation. CO2 reductions mapped to the 637 cities ranged from <1% to 40%, depending upon co-location patterns, climate and other

  7. Performance and cost analysis of a structured concrete thermocline thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Strasser, Matthew N.

    Increasing global energy demands and diminishing fossil fuel resources have raised increased interest in harvesting renewable energy resources. Solar energy is a promising candidate, as sufficient irradiance is incident to the Earth to supply the energy demands of all of its inhabitants. At the utility scale, concentrating solar power (CSP) plants provide the most cost-efficient method of harnessing solar energy for conversion to electrical energy. A major roadblock to the large-scale implementation of CSP plants is the lack of thermal energy storage (TES) that would allow the continued production of electricity during the absence of constant irradiance. Sensible heat TES has been suggested as the most viable form of TES for CSP plants. Two-tank fluid TES systems have been incorporated at several CSP plants, significantly enhancing the performance of the plants. A single-tank thermocline TES system, requiring a reduced liquid media volume, has been suggested as a cost-reducing alternative. Unfortunately, the packed-aggregate bed of such TES system introduces the issue of thermal ratcheting and rupture of the tank's walls. To address this issue, it has been suggested that structured concrete be used in place of the aggregate bed. Potential concrete mix designs have been developed and tested for this application. Finite-difference-based numeric models are used to study the performance of packed-bed and structured concrete thermocline TES systems. Optimized models are developed for both thermocline configurations. The packed-bed thermocline model is used to determine whether or not assuming constant fluid properties over a temperature range is an acceptable assumption. A procedure is developed by which the cost of two-tank and single-tank thermocline TES systems in the capacity range of 100-3000 MWhe can be calculated. System Advisory Model is used to perform life-cycle cost and performance analysis of a central receiver plant incorporating four TES scenarios: no TES

  8. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  9. Quantifying the Energy Efficiency of Object Recognition and Optical Flow

    DTIC Science & Technology

    2014-03-28

    other linear solvers, such as conjugate- gradient (CG), preconditioned conjugate-gradient (PCG), and red-black Gauss Seidel (RB). We have also... Seidel , and conjugate gradient solvers. We are interested in the energy it takes to get a given solution quality. In Figure 6, we plot the quality of...in terms of Joules. Conversely, our implementation of red-black Gauss Seidel proves to be very inefficient when we consider Joules instead of just

  10. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is comparedmore » to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.« less

  11. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  12. Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, C.; Neuhauser, K.

    2014-03-01

    Between December, 2009 and December, 2012, 42 deep energy retrofit (DER) projects were completed through a pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. Thirty-seven of these projects were comprehensive retrofits while five were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. Building Science Corporation developed a consistent "package" of measures in terms of the performance targeted for major building components. Based on the community experience, this DER package is expected to result in yearly source energy use near 110more » MMBtu/year or approximately 40% below the Northeast regional average.« less

  13. Energy performance of building fabric - Comparing two types of vernacular residential houses

    NASA Astrophysics Data System (ADS)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  14. Energy Dissipation and Nonthermal Diffusion on Interstellar Ice Grains

    NASA Astrophysics Data System (ADS)

    Fredon, A.; Lamberts, T.; Cuppen, H. M.

    2017-11-01

    Interstellar dust grains are known to facilitate chemical reactions by acting as a meeting place and adsorbing energy. This process strongly depends on the ability of the reactive species to effectively diffuse over the surface. The cold temperatures around 10 K strongly hamper this for species other than H and H2. However, complex organic molecules have been observed in the gas phase at these cold conditions, indicating that their formation, as well as their return to the gas phase, should be effective. Here, we show how the energy released following surface reactions can be employed to solve both problems by inducing desorption or diffusion. To this purpose, we have performed thousands of Molecular Dynamics simulations to quantify the outcome of an energy dissipation process. Admolecules on top of a crystalline water surface have been given translational energy between 0.5 and 5 eV. Three different surface species are considered (CO2, H2O, and CH4), spanning a range in binding energies, number of internal degrees of freedom, and molecular weights. The admolecules are found to be able to travel up to several hundreds of angstroms before coming to a stand still, allowing for follow-up reactions en route. The probability of travel beyond any particular radius, as determined by our simulations, shows the same r dependence for all three admolecule species. Furthermore, we have been able to quantify the desorption probability, which depends on the binding energy of the species and the translational excitation. We provide expressions that can be incorporated in astrochemical models to predict grain surface formation and return into the gas phase of these products.

  15. Methods of performing downhole operations using orbital vibrator energy sources

    DOEpatents

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  16. Quantifying chaotic dynamics from integrate-and-fire processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, A. N.; Saratov State Technical University, Politehnicheskaya Str. 77, 410054 Saratov; Pavlova, O. N.

    2015-01-15

    Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periodsmore » of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.« less

  17. Processing of Numerical and Proportional Quantifiers

    ERIC Educational Resources Information Center

    Shikhare, Sailee; Heim, Stefan; Klein, Elise; Huber, Stefan; Willmes, Klaus

    2015-01-01

    Quantifier expressions like "many" and "at least" are part of a rich repository of words in language representing magnitude information. The role of numerical processing in comprehending quantifiers was studied in a semantic truth value judgment task, asking adults to quickly verify sentences about visual displays using…

  18. Who reports high company performance? A quantitative study of Chinese listed companies in the energy industry.

    PubMed

    Guo, Daoyan; Chen, Hong; Long, Ruyin

    2016-01-01

    In the increasingly competitive environment, top managers' background characteristics are undoubtedly vital factors for company performance. This study examines whether the performance of Chinese listed companies in the energy industry differs with respect to top managers' background characteristics and explores the exact distribution interval of top managers' background characteristics when company performance reaches the highest level. The initial sample was collected from the CSMAR database (2005-2014) for listed companies in the energy industry. After removing the outlier and missing data, the final number of observations was determined as 780. Descriptive statistics were used to investigate the present distribution of top managers' background characteristics, factor analysis was used to determine the dimensions of company performance, and one-way ANOVA was used to analyze the differences in company performance and its dimensions with respect to top managers' background characteristics. The findings show that both the age and length of service of top managers present an increasing trend over the years of the study period, whereas the educational level shows no significant changes. The performance of listed companies has three dimensions: profit performance, growth performance, and operating performance. Companies behave differently with regard to their top managers' background characteristics; when the top manager is 40-45 years old, with a doctoral degree and above, and in the 2nd-3rd year of his service period, his company will achieve a higher level of performance. This study contributes to the growing literature on company performance in the Chinese energy industry by demonstrating the differences in the performance of Chinese listed companies in the energy industry with regard to top managers' background characteristics, and reaching conclusions on the optimum distribution interval of top managers' background characteristics when company performance

  19. Quantifying the Financial Benefits of Multifamily Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbrick, D.; Scheu, R.; Brand, L.

    Increasing the adoption of energy efficient building practices will require the energy sector to increase their understanding of the way that retrofits affect multifamily financial performance as well as how those indicators are interpreted by the lending and appraisal industries. This project analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy efficiency retrofits and financial performance on three levels: building, city, and community. The project goals were to increase the data and analysis in the growing body of multifamily financial benefits work as well provide a framework formore » other geographies to produce similar characterization. The goals are accomplished through three tasks. Task one: A pre- and post-retrofit analysis of thirteen Chicago multifamily buildings. Task two: A comparison of Chicago income and expenses to two national datasets. Task three: An in-depth look at multifamily market sales data and the subsequent impact of buildings that undergo retrofits.« less

  20. Quantifying Square Membrane Wrinkle Behavior Using MITC Shell Elements

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy B.; Iwasa, Takashi; Natori, M. C.

    2004-01-01

    For future membrane based structures, quantified predictions of membrane wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made while using finite elements. Specifically, this work demonstrates that critical assumptions include: effects of gravity. supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 square meter membrane is treated as a structural material with non-negligible bending stiffness. Mixed Interpolation of Tensorial Components (MTTC) shell elements are used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density for cases with differing initial conditions are independent of assumed initial con&tions. In addition, analysis results indicate that the relationship between amplitude scale (W/t) and structural scale (L/t) is linear in the presence of a gravity field.

  1. Performance Evaluation of Bluetooth Low Energy: A Systematic Review.

    PubMed

    Tosi, Jacopo; Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto; Formica, Domenico

    2017-12-13

    Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits.

  2. Scalar Quantifiers: Logic, Acquisition, and Processing

    ERIC Educational Resources Information Center

    Geurts, Bart; Katsos, Napoleon; Cummins, Chris; Moons, Jonas; Noordman, Leo

    2010-01-01

    Superlative quantifiers ("at least 3", "at most 3") and comparative quantifiers ("more than 2", "fewer than 4") are traditionally taken to be interdefinable: the received view is that "at least n" and "at most n" are equivalent to "more than n-1" and "fewer than n+1",…

  3. Methodology for comparing worldwide performance of diverse weight-constrained high energy laser systems

    NASA Astrophysics Data System (ADS)

    Bartell, Richard J.; Perram, Glen P.; Fiorino, Steven T.; Long, Scott N.; Houle, Marken J.; Rice, Christopher A.; Manning, Zachary P.; Bunch, Dustin W.; Krizo, Matthew J.; Gravley, Liesebet E.

    2005-06-01

    The Air Force Institute of Technology's Center for Directed Energy has developed a software model, the High Energy Laser End-to-End Operational Simulation (HELEEOS), under the sponsorship of the High Energy Laser Joint Technology Office (JTO), to facilitate worldwide comparisons across a broad range of expected engagement scenarios of expected performance of a diverse range of weight-constrained high energy laser system types. HELEEOS has been designed to meet JTO's goals of supporting a broad range of analyses applicable to the operational requirements of all the military services, constraining weapon effectiveness through accurate engineering performance assessments allowing its use as an investment strategy tool, and the establishment of trust among military leaders. HELEEOS is anchored to respected wave optics codes and all significant degradation effects, including thermal blooming and optical turbulence, are represented in the model. The model features operationally oriented performance metrics, e.g. dwell time required to achieve a prescribed probability of kill and effective range. Key features of HELEEOS include estimation of the level of uncertainty in the calculated Pk and generation of interactive nomographs to allow the user to further explore a desired parameter space. Worldwide analyses are enabled at five wavelengths via recently available databases capturing climatological, seasonal, diurnal, and geographical spatial-temporal variability in atmospheric parameters including molecular and aerosol absorption and scattering profiles and optical turbulence strength. Examples are provided of the impact of uncertainty in weight-power relationships, coupled with operating condition variability, on results of performance comparisons between chemical and solid state lasers.

  4. Quantifying the Financial Benefits of Multifamily Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Philbrick; Scheu, R.; Brand, L.

    The U.S. Department of Energy’s Building America research team Partnership for Advanced Residential Retrofit analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy-efficiency retrofits and financial performance on three levels: building, city, and community.

  5. Capacity market design and renewable energy: Performance incentives, qualifying capacity, and demand curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byers, Conleigh; Levin, Todd; Botterud, Audun

    A review of capacity markets in the United States in the context of increasing levels of variable renewable energy finds substantial differences with respect to incentives for operational performance, methods to calculate qualifying capacity for variable renewable energy and energy storage, and demand curves for capacity. The review also reveals large differences in historical capacity market clearing prices. The authors conclude that electricity market design must continue to evolve to achieve cost-effective policies for resource adequacy.

  6. Energy breakdown in capacitive deionization.

    PubMed

    Hemmatifar, Ali; Palko, James W; Stadermann, Michael; Santiago, Juan G

    2016-11-01

    We explored the energy loss mechanisms in capacitive deionization (CDI). We hypothesize that resistive and parasitic losses are two main sources of energy losses. We measured contribution from each loss mechanism in water desalination with constant current (CC) charge/discharge cycling. Resistive energy loss is expected to dominate in high current charging cases, as it increases approximately linearly with current for fixed charge transfer (resistive power loss scales as square of current and charging time scales as inverse of current). On the other hand, parasitic loss is dominant in low current cases, as the electrodes spend more time at higher voltages. We built a CDI cell with five electrode pairs and standard flow between architecture. We performed a series of experiments with various cycling currents and cut-off voltages (voltage at which current is reversed) and studied these energy losses. To this end, we measured series resistance of the cell (contact resistances, resistance of wires, and resistance of solution in spacers) during charging and discharging from voltage response of a small amplitude AC current signal added to the underlying cycling current. We performed a separate set of experiments to quantify parasitic (or leakage) current of the cell versus cell voltage. We then used these data to estimate parasitic losses under the assumption that leakage current is primarily voltage (and not current) dependent. Our results confirmed that resistive and parasitic losses respectively dominate in the limit of high and low currents. We also measured salt adsorption and report energy-normalized adsorbed salt (ENAS, energy loss per ion removed) and average salt adsorption rate (ASAR). We show a clear tradeoff between ASAR and ENAS and show that balancing these losses leads to optimal energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Energy breakdown in capacitive deionization

    DOE PAGES

    Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; ...

    2016-08-12

    We explored the energy loss mechanisms in capacitive deionization (CDI). We hypothesize that resistive and parasitic losses are two main sources of energy losses. We measured contribution from each loss mechanism in water desalination with constant current (CC) charge/discharge cycling. Resistive energy loss is expected to dominate in high current charging cases, as it increases approximately linearly with current for fixed charge transfer (resistive power loss scales as square of current and charging time scales as inverse of current). On the other hand, parasitic loss is dominant in low current cases, as the electrodes spend more time at higher voltages.more » We built a CDI cell with five electrode pairs and standard flow between architecture. We performed a series of experiments with various cycling currents and cut-off voltages (voltage at which current is reversed) and studied these energy losses. To this end, we measured series resistance of the cell (contact resistances, resistance of wires, and resistance of solution in spacers) during charging and discharging from voltage response of a small amplitude AC current signal added to the underlying cycling current. We performed a separate set of experiments to quantify parasitic (or leakage) current of the cell versus cell voltage. We then used these data to estimate parasitic losses under the assumption that leakage current is primarily voltage (and not current) dependent. Our results confirmed that resistive and parasitic losses respectively dominate in the limit of high and low currents. We also measured salt adsorption and report energy-normalized adsorbed salt (ENAS, energy loss per ion removed) and average salt adsorption rate (ASAR). As a result, we show a clear tradeoff between ASAR and ENAS and show that balancing these losses leads to optimal energy efficiency.« less

  8. Quantification of Energy Release in Composite Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2003-01-01

    Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.

  9. Quantification of Energy Release in Composite Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2003-01-01

    Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 deg ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.

  10. Development of Performance-Related Specification for Fresh Emulsions Used for Surface Treatments and Performance Study of Chip Seals and Microsurfacing

    NASA Astrophysics Data System (ADS)

    Ilias, Mohammad

    Pavement preservation is a rapidly growing strategy for prolonging pavement service life. Pavement preservation consists of applying a thin layer of asphalt binder or emulsion with or without aggregate to the surface of an existing pavement. Preservation treatments do not provide any structural strength to the pavement but restores skid resistance, seals existing cracks, protects the underlying pavement from intrusion of water, and reduces further oxidative aging of the underlying pavement. In recent years, significant research has been dedicated to improving design of pavement preservation treatments. In pavement preservation treatments, asphalt emulsion is the predominant binding material used because of its low viscosity compared to asphalt cement which allows for production at greatly reduced temperatures, leading to energy efficiency, and potential cost savings. Currently, specifications for emulsions used in pavement preservation treatments are empirical and lack of direct relationship to performance. This study seeks to improve specifications for emulsions used in preservation treatments by developing performancerelated specifications (PRS) for (a) fresh emulsion properties, (b) microsurfacing emulsion residue, and (c) low-temperature raveling of chip seal emulsion residues. Fresh emulsion properties dictate constructability and stability, and consequently the resultant performance of a preservation treatment once placed. Specification test methods are proposed for chip seals, microsurfacings, and spray seals that reflect storage and construction conditions of the emulsions. Performance is quantified using viscosity measurements. Specification limits are determined based on a prior knowledge of emulsion performance coupled with statistical analyses. Microsurfacings are a preservation treatment consisting of application of a thin layer of asphalt emulsion -- fine aggregate mixture. Presently, mixture design and performances of microsurfacing mixtures are

  11. Quantifying the uncertainty in heritability.

    PubMed

    Furlotte, Nicholas A; Heckerman, David; Lippert, Christoph

    2014-05-01

    The use of mixed models to determine narrow-sense heritability and related quantities such as SNP heritability has received much recent attention. Less attention has been paid to the inherent variability in these estimates. One approach for quantifying variability in estimates of heritability is a frequentist approach, in which heritability is estimated using maximum likelihood and its variance is quantified through an asymptotic normal approximation. An alternative approach is to quantify the uncertainty in heritability through its Bayesian posterior distribution. In this paper, we develop the latter approach, make it computationally efficient and compare it to the frequentist approach. We show theoretically that, for a sufficiently large sample size and intermediate values of heritability, the two approaches provide similar results. Using the Atherosclerosis Risk in Communities cohort, we show empirically that the two approaches can give different results and that the variance/uncertainty can remain large.

  12. Quantifying the uncertainty in heritability

    PubMed Central

    Furlotte, Nicholas A; Heckerman, David; Lippert, Christoph

    2014-01-01

    The use of mixed models to determine narrow-sense heritability and related quantities such as SNP heritability has received much recent attention. Less attention has been paid to the inherent variability in these estimates. One approach for quantifying variability in estimates of heritability is a frequentist approach, in which heritability is estimated using maximum likelihood and its variance is quantified through an asymptotic normal approximation. An alternative approach is to quantify the uncertainty in heritability through its Bayesian posterior distribution. In this paper, we develop the latter approach, make it computationally efficient and compare it to the frequentist approach. We show theoretically that, for a sufficiently large sample size and intermediate values of heritability, the two approaches provide similar results. Using the Atherosclerosis Risk in Communities cohort, we show empirically that the two approaches can give different results and that the variance/uncertainty can remain large. PMID:24670270

  13. Positive effects of Red Bull® Energy Drink on driving performance during prolonged driving.

    PubMed

    Mets, Monique A J; Ketzer, Sander; Blom, Camilla; van Gerven, Maartje H; van Willigenburg, Gitta M; Olivier, Berend; Verster, Joris C

    2011-04-01

    The purpose of this study was to examine if Red Bull® Energy Drink can counteract sleepiness and driving impairment during prolonged driving. Twenty-four healthy volunteers participated in this double-blind placebo-controlled crossover study. After 2 h of highway driving in the STISIM driving simulator, subjects had a 15-min break and consumed Red Bull® Energy Drink (250 ml) or placebo (Red Bull® Energy Drink without the functional ingredients: caffeine, taurine, glucuronolactone, B vitamins (niacin, pantothenic acid, B6, B12), and inositol) before driving for two additional hours. A third condition comprised 4 h of uninterrupted driving. Primary parameter was the standard deviation of lateral position (SDLP), i.e., the weaving of the car. Secondary parameters included SD speed, subjective driving quality, sleepiness, and mental effort to perform the test. No significant differences were observed during the first 2 h of driving. Red Bull® Energy Drink significantly improved driving relative to placebo: SDLP was significantly reduced during the 3rd (p < 0.046) and 4th hour of driving (p < 0.011). Red Bull® Energy Drink significantly reduced the standard deviation of speed (p < 0.004), improved subjective driving quality (p < 0.0001), and reduced mental effort to perform the test (p < 0.024) during the 3rd hour of driving. Subjective sleepiness was significantly decreased during both the 3rd and 4th hour of driving after Red Bull® Energy Drink (p < 0.001 and p < 0.009, respectively). Relative to uninterrupted driving, Red Bull® Energy Drink significantly improved each parameter. Red Bull® Energy Drink significantly improves driving performance and reduces driver sleepiness during prolonged highway driving.

  14. Codes Don't Always Get Enforced, But Contracts Do: Changing the Procurement Paradigm to Drive Building Energy Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A; Scheib, Jennifer G; Pless, Shanti

    New construction could account for more than 25% of the U.S. energy consumption by 2030. Millions of square feet are built every year that will not perform as expected - despite advancing codes, rating systems, super-efficient technologies, and advanced utility programs. With retrofits of these under-performers decades away, savings potential will be lost for years to come. Only the building owner is in the driver's seat to demand - and verify - higher-performing buildings. Yet our current policy and market interventions really target the design team, not the owner. Accelerate Performance, a U.S. Department of Energy funded initiative, is changingmore » the building procurement approach to drive deeper, verified savings in three pilot states: Illinois, Minnesota, and Connecticut. Performance-based procurement ties energy performance to design and contractor team compensation while freeing them to meet energy targets with strategies most familiar to them. The process teases out the creativity of the design and contracting teams to deliver energy performance - without driving up the construction cost. The paper will share early results and lessons learned from new procurement and contract approaches in government, public, and private sector building projects. The paper provides practical guidance for building owners, facilities managers, design, and contractor teams who wish to incorporate effective performance-based procurement for deeper energy savings in their buildings.« less

  15. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    NASA Astrophysics Data System (ADS)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  16. Offshore Wind Energy Resource Assessment for Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa Moreira, Paula; Scott, George N.; Musial, Walter D.

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined.more » Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.« less

  17. Enhancing physical performance in elite junior tennis players with a caffeinated energy drink.

    PubMed

    Gallo-Salazar, César; Areces, Francisco; Abián-Vicén, Javier; Lara, Beatriz; Salinero, Juan José; Gonzalez-Millán, Cristina; Portillo, Javier; Muñoz, Victor; Juarez, Daniel; Del Coso, Juan

    2015-04-01

    The aim of this study was to investigate the effectiveness of a caffeinated energy drink to enhance physical performance in elite junior tennis players. In 2 different sessions separated by 1 wk, 14 young (16 ± 1 y) elite-level tennis players ingested 3 mg caffeine per kg body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed a handgrip-strength test, a maximal-velocity serving test, and an 8 × 15-m sprint test and then played a simulated singles match (best of 3 sets). Instantaneous running speed during the matches was assessed using global positioning (GPS) devices. Furthermore, the matches were videotaped and notated afterward. In comparison with the placebo drink, the ingestion of the caffeinated energy drink increased handgrip force by ~4.2% ± 7.2% (P = .03) in both hands, the running pace at high intensity (46.7 ± 28.5 vs 63.3 ± 27.7 m/h, P = .02), and the number of sprints (12.1 ± 1.7 vs 13.2 ± 1.7, P = .05) during the simulated match. There was a tendency for increased maximal running velocity during the sprint test (22.3 ± 2.0 vs 22.9 ± 2.1 km/h, P = .07) and higher percentage of points won on service with the caffeinated energy drink (49.7% ± 9.8% vs 56.4% ± 10.0%, P = .07) in comparison with the placebo drink. The energy drink did not improve ball velocity during the serving test (42.6 ± 4.8 vs 42.7 ± 5.0 m/s, P = .49). The preexercise ingestion of caffeinated energy drinks was effective to enhance some aspects of physical performance of elite junior tennis players.

  18. Energy flow during Olympic weight lifting.

    PubMed

    Garhammer, J

    1982-01-01

    Data obtained from 16-mm film of world caliber Olympic weight lifters performing at major competitions were analyzed to study energy changes during body segment and barbell movements, energy transfer to the barbell, and energy transfer between segments during the lifting movements contested. Determination of barbell and body segment kinematics and use of rigid-link modeling and energy flow techniques permitted the calculation of segment energy content and energy transfer between segments. Energy generation within and transfer to and from segments were determined at 0.04-s intervals by comparing mechanical energy changes of a segment with energy transfer at the joints, calculated from the scalar product of net joint force with absolute joint velocity, and the product of net joint torque due to muscular activity with absolute segment angular velocity. The results provided a detailed understanding of the magnitude and temporal input of energy from dominant muscle groups during a lift. This information also provided a means of quantifying lifting technique. Comparison of segment energy changes determined by the two methods were satisfactory but could likely be improved by employing more sophisticated data smoothing methods. The procedures used in this study could easily be applied to weight training and rehabilitative exercises to help determine their efficacy in producing desired results or to ergonomic situations where a more detailed understanding of the demands made on the body during lifting tasks would be useful.

  19. Perceived Stress, Energy Drink Consumption, and Academic Performance among College Students

    ERIC Educational Resources Information Center

    Pettit, Michele L.; DeBarr, Kathy A.

    2011-01-01

    Objective: This study explored relationships regarding perceived stress, energy drink consumption, and academic performance among college students. Participants: Participants included 136 undergraduates attending a large southern plains university. Methods: Participants completed surveys including items from the Perceived Stress Scale and items to…

  20. Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.; Crawford, Aladsair J.; Viswanathan, Vilayanur V.

    2014-06-01

    The Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems (PNNL-22010) was first issued in November 2012 as a first step toward providing a foundational basis for developing an initial standard for the uniform measurement and expression of energy storage system (ESS) performance. Its subsequent use in the field and review by the protocol working group and most importantly the users’ subgroup and the thermal subgroup has led to the fundamental modifications reflected in this update of the 2012 Protocol. As an update of the 2012 Protocol, this document (the June 2014 Protocol) is intended to supersedemore » its predecessor and be used as the basis for measuring and expressing ESS performance. The foreword provides general and specific details about what additions, revisions, and enhancements have been made to the 2012 Protocol and the rationale for them in arriving at the June 2014 Protocol.« less

  1. Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles

    PubMed Central

    Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana

    2017-01-01

    Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. PMID:26874437

  2. Quantifying climate feedbacks in polar regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosse, Hugues; Kay, Jennifer E.; Armour, Kyle C.

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range ofmore » feedbacks, thus offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.« less

  3. Quantifying climate feedbacks in polar regions

    DOE PAGES

    Goosse, Hugues; Kay, Jennifer E.; Armour, Kyle C.; ...

    2018-05-15

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range ofmore » feedbacks, thus offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.« less

  4. Quantifying ubiquitin signaling.

    PubMed

    Ordureau, Alban; Münch, Christian; Harper, J Wade

    2015-05-21

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Quantifying Ubiquitin Signaling

    PubMed Central

    Ordureau, Alban; Münch, Christian; Harper, J. Wade

    2015-01-01

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850

  6. Energy efficient engine high-pressure turbine component rig performance test report

    NASA Technical Reports Server (NTRS)

    Leach, K. P.

    1983-01-01

    A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.

  7. Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition.

    PubMed

    Del Coso, Juan; Portillo, Javier; Muñoz, Gloria; Abián-Vicén, Javier; Gonzalez-Millán, Cristina; Muñoz-Guerra, Jesús

    2013-06-01

    The aim of this study was to determine the effects of a caffeine-containing energy drink on physical performance during a rugby sevens competition. A second purpose was to investigate the post-competition urinary caffeine concentration derived from the energy drink intake. On two non-consecutive days of a friendly tournament, 16 women from the Spanish National rugby sevens Team (mean age and body mass = 23 ± 2 years and 66 ± 7 kg) ingested 3 mg of caffeine per kg of body mass in the form of an energy drink (Fure(®), ProEnergetics) or the same drink without caffeine (placebo). After 60 min for caffeine absorption, participants performed a 15-s maximal jump test, a 6 × 30 m sprint test, and then played three rugby sevens games against another national team. Individual running pace and instantaneous speed during the games were assessed using global positioning satellite (GPS) devices. Urine samples were obtained pre and post-competition. In comparison to the placebo, the ingestion of the energy drink increased muscle power output during the jump series (23.5 ± 10.1 vs. 25.6 ± 11.8 kW, P = 0.05), running pace during the games (87.5 ± 8.3 vs. 95.4 ± 12.7 m/min, P < 0.05), and pace at sprint velocity (4.6 ± 3.3 vs. 6.1 ± 3.4 m/min, P < 0.05). However, the energy drink did not affect maximal running speed during the repeated sprint test (25.0 ± 1.5 vs. 25.0 ± 1.7 km/h). The ingestion of the energy drink resulted in a higher post-competition urine caffeine concentration than the placebo (3.3 ± 0.7 vs. 0.2 ± 0.1 μg/mL; P < 0.05). In summary, 3 mg/kg of caffeine in the form of a commercially available energy drink considerably enhanced physical performance during a women's rugby sevens competition.

  8. Quantifying performance and effects of load carriage during a challenging balancing task using an array of wireless inertial sensors.

    PubMed

    Cain, Stephen M; McGinnis, Ryan S; Davidson, Steven P; Vitali, Rachel V; Perkins, Noel C; McLean, Scott G

    2016-01-01

    We utilize an array of wireless inertial measurement units (IMUs) to measure the movements of subjects (n=30) traversing an outdoor balance beam (zigzag and sloping) as quickly as possible both with and without load (20.5kg). Our objectives are: (1) to use IMU array data to calculate metrics that quantify performance (speed and stability) and (2) to investigate the effects of load on performance. We hypothesize that added load significantly decreases subject speed yet results in increased stability of subject movements. We propose and evaluate five performance metrics: (1) time to cross beam (less time=more speed), (2) percentage of total time spent in double support (more double support time=more stable), (3) stride duration (longer stride duration=more stable), (4) ratio of sacrum M-L to A-P acceleration (lower ratio=less lateral balance corrections=more stable), and (5) M-L torso range of motion (smaller range of motion=less balance corrections=more stable). We find that the total time to cross the beam increases with load (t=4.85, p<0.001). Stability metrics also change significantly with load, all indicating increased stability. In particular, double support time increases (t=6.04, p<0.001), stride duration increases (t=3.436, p=0.002), the ratio of sacrum acceleration RMS decreases (t=-5.56, p<0.001), and the M-L torso lean range of motion decreases (t=-2.82, p=0.009). Overall, the IMU array successfully measures subject movement and gait parameters that reveal the trade-off between speed and stability in this highly dynamic balance task. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A calibrated Monte Carlo approach to quantify the impacts of misorientation and different driving forces on texture development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liangzhe Zhang; Anthony D. Rollett; Timothy Bartel

    2012-02-01

    A calibrated Monte Carlo (cMC) approach, which quantifies grain boundary kinetics within a generic setting, is presented. The influence of misorientation is captured by adding a scaling coefficient in the spin flipping probability equation, while the contribution of different driving forces is weighted using a partition function. The calibration process relies on the established parametric links between Monte Carlo (MC) and sharp-interface models. The cMC algorithm quantifies microstructural evolution under complex thermomechanical environments and remedies some of the difficulties associated with conventional MC models. After validation, the cMC approach is applied to quantify the texture development of polycrystalline materials withmore » influences of misorientation and inhomogeneous bulk energy across grain boundaries. The results are in good agreement with theory and experiments.« less

  10. Solar-energy-system performance evaluation, General Electric - Milwaukee operational test site, Milwaukee, Wisconsin, September 1980 - March 1981

    NASA Astrophysics Data System (ADS)

    Howard, R. G.

    The active solar energy system for a recreation hall for senior citizens in Wisconsin, is equipped with 1290 square feet of evacuated tube collectors, 3000 gallons of water in a tank, and a natural gas fired furnace for auxiliary space heating and a natural gas fired domestic water heater. The solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance are given as well as performance data for the collector, storage, domestic hot water, and space heating subsystems, operating energy, energy savings, and weather conditions. Predicted performance data are also given for comparison with the measured data.

  11. The impacts of different expansion modes on performance of small solar energy firms: perspectives of absorptive capacity.

    PubMed

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-Long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance.

  12. Multi-objective robust design of energy-absorbing components using coupled process-performance simulations

    NASA Astrophysics Data System (ADS)

    Najafi, Ali; Acar, Erdem; Rais-Rohani, Masoud

    2014-02-01

    The stochastic uncertainties associated with the material, process and product are represented and propagated to process and performance responses. A finite element-based sequential coupled process-performance framework is used to simulate the forming and energy absorption responses of a thin-walled tube in a manner that both material properties and component geometry can evolve from one stage to the next for better prediction of the structural performance measures. Metamodelling techniques are used to develop surrogate models for manufacturing and performance responses. One set of metamodels relates the responses to the random variables whereas the other relates the mean and standard deviation of the responses to the selected design variables. A multi-objective robust design optimization problem is formulated and solved to illustrate the methodology and the influence of uncertainties on manufacturability and energy absorption of a metallic double-hat tube. The results are compared with those of deterministic and augmented robust optimization problems.

  13. Performance Evaluation of Bluetooth Low Energy: A Systematic Review

    PubMed Central

    Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto

    2017-01-01

    Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits. PMID:29236085

  14. A new method for quantifying the performance of EEG blind source separation algorithms by referencing a simultaneously recorded ECoG signal.

    PubMed

    Oosugi, Naoya; Kitajo, Keiichi; Hasegawa, Naomi; Nagasaka, Yasuo; Okanoya, Kazuo; Fujii, Naotaka

    2017-09-01

    Blind source separation (BSS) algorithms extract neural signals from electroencephalography (EEG) data. However, it is difficult to quantify source separation performance because there is no criterion to dissociate neural signals and noise in EEG signals. This study develops a method for evaluating BSS performance. The idea is neural signals in EEG can be estimated by comparison with simultaneously measured electrocorticography (ECoG). Because the ECoG electrodes cover the majority of the lateral cortical surface and should capture most of the original neural sources in the EEG signals. We measured real EEG and ECoG data and developed an algorithm for evaluating BSS performance. First, EEG signals are separated into EEG components using the BSS algorithm. Second, the EEG components are ranked using the correlation coefficients of the ECoG regression and the components are grouped into subsets based on their ranks. Third, canonical correlation analysis estimates how much information is shared between the subsets of the EEG components and the ECoG signals. We used our algorithm to compare the performance of BSS algorithms (PCA, AMUSE, SOBI, JADE, fastICA) via the EEG and ECoG data of anesthetized nonhuman primates. The results (Best case >JADE = fastICA >AMUSE = SOBI ≥ PCA >random separation) were common to the two subjects. To encourage the further development of better BSS algorithms, our EEG and ECoG data are available on our Web site (http://neurotycho.org/) as a common testing platform. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Quantifying similarity of pore-geometry in nanoporous materials

    DOE PAGES

    Lee, Yongjin; Barthel, Senja D.; Dłotko, Paweł; ...

    2017-05-23

    In most applications of nanoporous materials the pore structure is as important as the chemical composition as a determinant of performance. For example, one can alter performance in applications like carbon capture or methane storage by orders of magnitude by only modifying the pore structure. For these applications it is therefore important to identify the optimal pore geometry and use this information to find similar materials. But, the mathematical language and tools to identify materials with similar pore structures, but different composition, has been lacking. We develop a pore recognition approach to quantify similarity of pore structures and classify themmore » using topological data analysis. This then allows us to identify materials with similar pore geometries, and to screen for materials that are similar to given top-performing structures. Using methane storage as a case study, we also show that materials can be divided into topologically distinct classes requiring different optimization strategies.« less

  16. Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance.

    PubMed

    Zhao, Lei; Liu, Qing; Gao, Jing; Zhang, Shujun; Li, Jing-Feng

    2017-08-01

    Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O 3 -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO 3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm -3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO 3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO 3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm -1 versus 175 kV cm -1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantifying renewable groundwater stress with GRACE

    NASA Astrophysics Data System (ADS)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min-Hui; Reager, John T.; Famiglietti, James S.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-07-01

    Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human-dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE-based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions.

  18. Quantifying renewable groundwater stress with GRACE

    PubMed Central

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Reager, John T.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human‐dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE‐based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions. PMID:26900185

  19. Quantifying Qualitative Learning.

    ERIC Educational Resources Information Center

    Bogus, Barbara

    1995-01-01

    A teacher at an alternative school for at-risk students discusses the development of student assessment that increases students' self-esteem, convinces students that learning is fun, and prepares students to return to traditional school settings. She found that allowing students to participate in the assessment process successfully quantified the…

  20. A comparison of cognitive performance decreases during acute, progressive fatigue arising from different concurrent stressors.

    PubMed

    Fogt, Donovan L; Kalns, John E; Michael, Darren J

    2010-12-01

    Fatigue is known to impair cognitive performance, but it remains unclear whether concurrent common stressors affect cognitive performance similarly. We used the Stroop Color-Word Conflict Test to assess cognitive performance over 24 hours for four groups: control, sleep-deprived (SD), SD + energy deficit, and SD + energy deficit + fluid restricted. Fatigue levels were quantified using the Profile of Mood States (POMS) survey. Linear mixed-effects (LME) models allowed for testing of group-specific differences in cognitive performance while accounting for subject-level variation. Starting fatigue levels were similar among all groups, while 24-hour fatigue levels differed significantly. For each cognitive performance test, results were modeled separately. The simplest LME model contained a significant fixed-effects term for slope and intercept. Moreover, the simplest LME model used a single slope coefficient to fit data from all four groups, suggesting that loss in cognitive performance over a 24-hour duty cycle with respect to fatigue level is similar regardless of the cause.