Science.gov

Sample records for quantify oligopeptide acetylation

  1. Bacterial oligopeptide-binding proteins.

    PubMed

    Monnet, V

    2003-10-01

    This review focuses on bacterial oligopeptide-binding proteins, which form part of the oligopeptide transport system belonging to the ATP-binding cassette family of transporters. Depending on the bacterial species, these binding proteins (OppA) capture peptides ranging in size from 2 to 18 amino acids from the environment and pass them on to the other components of the oligopeptide transport system for internalisation. Bacteria have developed several strategies to produce these binding proteins, which are periplasmic in Gram- bacteria and membrane-anchored in Gram+, with a higher stoichiometry (probably necessary for efficient transport) than the other components in the transport system. The expression of OppA-encoding genes is clearly modulated by external factors, especially nitrogen compounds, but the mechanisms of regulation are not always clear. The best-understood roles played by OppAs are internalisation of peptides for nutrition and recycling of muropeptides. It has, however, recently become clear that OppAs are also involved in sensing the external medium via specific or non-specific peptides.

  2. Enhancing biocompatibility of D-oligopeptide hydrogels by negative charges.

    PubMed

    Hyland, Laura L; Twomey, Julianne D; Vogel, Savannah; Hsieh, Adam H; Yu, Y Bruce

    2013-02-11

    Oligopeptide hydrogels are emerging as useful matrices for cell culture with commercial products on the market, but L-oligopeptides are labile to proteases. An obvious solution is to create D-oligopeptide hydrogels, which lack enzymatic recognition. However, D-oligopeptide matrices do not support cell growth as well as L-oligopeptide matrices. In addition to chiral interactions, many cellular activities are strongly governed by charge-charge interactions. In this work, the effects of chirality and charge on human mesenchymal stem cell (hMSC) behavior were studied using hydrogels assembled from oppositely charged oligopeptides. It was found that negative charges significantly improved hMSC viability and proliferation in D-oligopeptide gels but had little effect on their interactions with L-oligopeptide gels. This result points to the possibility of using charge and other factors to engineer biomaterials whose chirality is distinct from that of natural biomaterials, but whose performance is close to that of natural biomaterials.

  3. Super-secondary structure of oligopeptide aggregates in an organic solvent

    NASA Astrophysics Data System (ADS)

    Hirata, H.; Yuuki, H.; Ogasawara, T.; Taga, K.; Yoshida, T.; Okabayashi, H.; Furusaka, M.; Kawasaki, K.; Kawakatsu, T.; Hirai, M.

    1995-02-01

    For N-acetyl-L-glutamic acid hexamer α,γ-benzyl ester (A6Z), synthesized by a stepwise procedure, the shape and size of an aggregate formed in dioxane has been investigated in connection with the super-secondary structure of oligopeptides by the SANS method. The results are summarized as follows. An A6Z aggregate in dioxane has a cylinder-like shape having a radius of 13 Å and a height of 135 Å, and the aggregation number is 36. Probably, the cylinder aggregate has a stacking structure of the A6Z β-sheets.

  4. A toolbox of oligopeptide-modified polymers for tailored elastomers.

    PubMed

    Croisier, Emmanuel; Liang, Su; Schweizer, Thomas; Balog, Sandor; Mionić, Marijana; Snellings, Ruben; Cugnoni, Joël; Michaud, Véronique; Frauenrath, Holger

    2014-09-08

    Biomaterials are constructed from limited sets of building blocks but exhibit extraordinary and versatile properties, because hierarchical structure formation lets them employ identical supramolecular motifs for different purposes. Here we exert a similar degree of structural control in synthetic supramolecular elastomers and thus tailor them for a broad range of thermomechanical properties. We show that oligopeptide-terminated polymers selectively self-assemble into small aggregates or nanofibrils, depending on the length of the oligopeptides. This process is self-sorting if differently long oligopeptides are combined so that different nanostructures coexist in bulk mixtures. Blends of polymers with oligopeptides matching in length furnish reinforced elastomers that exhibit shear moduli one order of magnitude higher than the parent polymers. By contrast, novel interpenetrating supramolecular networks that display excellent vibration damping properties are obtained from blends comprising non-matching oligopeptides or unmodified polymers. Hence, blends of oligopeptide-modified polymers constitute a toolbox for tailored elastomers with versatile properties.

  5. Insulin complexes with PEGylated basic oligopeptides.

    PubMed

    Tsiourvas, Dimitris; Sideratou, Zili; Sterioti, Nikoletta; Papadopoulos, Athanasios; Nounesis, George; Paleos, Constantinos M

    2012-10-15

    Biodegradable oligolysine and oligoarginine-type homopeptides functionalized with PEG of two different molecular weights interact with insulin, at physiological pH, affording complexes studied by dynamic light scattering, ζ-potential, circular dichroism, FTIR spectroscopy, and isothermal titration calorimetry (ITC). High levels of insulin complexation efficiencies (>99.5%) were determined for all derivatives. FTIR spectra suggest that the positively charged homo-oligopeptide derivatives interact with B chain C-terminus of insulin leading to the formation of nanoparticles than can be traced even at low oligopeptide/insulin molar ratios. The ITC profiles are complex, displaying significant endothermic and exothermic contributions. Oligoarginine-type derivatives exhibit the strongest interactions, while PEGylation of either oligopeptide with the high molecular weight chains significantly affects the ITC profiles and leads to larger enthalpy changes. This may be attributed to PEG-induced aggregation of insulin due to the depletion attraction effect leading to the formation of stable nanocomplexes. Stabilization of complexed insulin against enzymatic degradation by trypsin and α-chymotrypsin is observed especially for the high molecular weight PEGylated arginine-based derivative. Insulin release rates in simulated intestinal fluid are controlled by the length of PEG chains and the presence of arginine end-groups. Released insulin retains its secondary structure as established by circular dichroism spectroscopy.

  6. Effects of chain length on oligopeptide hydrogelation

    PubMed Central

    Taraban, Marc B.; Ramachandran, Sivakumar; Gryczynski, Ignacy; Gryczynski, Zygmunt; Trewhella, Jill

    2012-01-01

    The co-assembly of mutually complementary, but self-repulsive oligopeptide pairs into viscoelastic hydrogels has been studied. Oligopeptides of 6, 10, and 14 amino acid residues were used to investigate the effects of peptide chain length on the structural and mechanical properties of the resulting hydrogels. Biophysical characterizations, including dynamic rheometry, small-angle X-ray scattering (SAXS) and fluorescence spectroscopy, were used to investigate hydrogelation at the bulk, fiber, and molecular levels, respectively. Upon mixing, the 10-mer peptides and the 14-mer peptides both form hydrogels while the 6-mer peptides do not. SAXS studies point to morphological similarity of the cross-sections of fibers underlying the 10:10 and 14:14 gels. However, fluorescence spectroscopy data suggest tighter packing of the amino acid side chains in the 10:10 fibers. Consistent with this tighter packing, dynamic rheometry data show that the 10:10 gel has much higher elastic modulus than the 14:14 mer (18 kPa vs. 0.1 kPa). Therefore, from the standpoint of mechanical strength, the optimum peptide chain length for this class of oligopeptide-based hydrogels is around 10 amino acid residues. PMID:22287980

  7. Structural-functional diversity of the natural oligopeptides.

    PubMed

    Zamyatnin, Alexander A

    2017-09-30

    Natural oligopeptides may regulate nearly all vital processes. To date, the chemical structures of many oligopeptides have been identified from >2000 organisms representing all the biological kingdoms. We have considered a number of mathematical (sequence length), chemical, physical, and biological features of an array of natural oligopeptides on the basis of the oligopeptide EROP-Moscow database (http://erop.inbi.ras.ru, 15,351 entries) data. There is the substantial difference of these substances from polypeptide molecules of proteins according to their physicochemical characteristics. These characteristics may be critical for understanding the molecular mechanisms of the action of oligopeptides that lead to the development of physiological effects. Copyright © 2017. Published by Elsevier Ltd.

  8. Effect of grafted oligopeptides on friction.

    PubMed

    Iarikov, Dmitri D; Ducker, William A

    2013-05-14

    Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.

  9. Nucleosome acetylation sequencing to study the establishment of chromatin acetylation.

    PubMed

    Mittal, Chitvan; Blacketer, Melissa J; Shogren-Knaak, Michael A

    2014-07-15

    The establishment of posttranslational chromatin modifications is a major mechanism for regulating how genomic DNA is utilized. However, current in vitro chromatin assays do not monitor histone modifications at individual nucleosomes. Here we describe a strategy, nucleosome acetylation sequencing, that allows us to read the amount of modification at each nucleosome. In this approach, a bead-bound trinucleosome substrate is enzymatically acetylated with radiolabeled acetyl CoA by the SAGA complex from Saccharomyces cerevisae. The product is digested by restriction enzymes that cut at unique sites between the nucleosomes and then counted to quantify the extent of acetylation at each nucleosomal site. We find that we can sensitively, specifically, and reproducibly follow enzyme-mediated nucleosome acetylation. Applying this strategy, when acetylation proceeds extensively, its distribution across nucleosomes is relatively uniform. However, when substrates are used that contain nucleosomes mutated at the major sites of SAGA-mediated acetylation, or that are studied under initial rate conditions, changes in the acetylation distribution can be observed. Nucleosome acetylation sequencing should be applicable to analyzing a wide range of modifications. Additionally, because our trinucleosomes synthesis strategy is highly modular and efficient, it can be used to generate nucleosomal systems in which nucleosome composition differs across the array.

  10. [Oligopeptides in plant medicines cited in Chinese Pharmacopoeia].

    PubMed

    Su, Lei; Jiang, Yan-Yan; Liu, Bin

    2016-08-01

    In total, 23 plant plant medicined containing oligopeptides were cited in Chinese Pharmacopoeia (1 part) of 2015 version including Rubia cordifolia, Linum usitatissimum, Aster tataricus, Psammosilene tunicoides, Pseudostellaria heterophylla, Stellaria dichotoma, Vaccaria segetalis, Dianthus superbus, Celosia argentea, Lycii Cortex, Citrus medica, C. aurantium, Panax ginseng, Parmx notoginseng, Schisandra chinensis, Sparganium stoloniferum, Euryale ferox, Ophiopogon japonicas, Pinellia ternate, Achyranthes bidentata, Physalis alkekengi, Polygonatum odoratum, and Leonuri Fructus. There were 187 oligopeptides in plant medicines above as reported. Oligopeptides consisted mainly of linear peptides and cyclic peptides. The linear peptides included dipeptides, tripeptides and pentapeptides, and cyclic peptides included cyclic, bicyclic and tricyclic peptides. The number of residues of single cyclic peptides ranged from two to twelve. Bicyclic peptides were isolated mainly from R. cordifolia and C. argentea. Modern pharmacological study showed that oligopeptides had many pharmacological effects, including antitumor, anticoagulant, antibacterial, immune suppression and so on. Copyright© by the Chinese Pharmaceutical Association.

  11. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus.

    PubMed

    Garault, Peggy; Le Bars, Dominique; Besset, Colette; Monnet, Veronique

    2002-01-04

    The functions necessary for bacterial growth strongly depend on the features of the bacteria and the components of the growth media. Our objective was to identify the functions essential to the optimum growth of Streptococcus thermophilus in milk. Using random insertional mutagenesis on a S. thermophilus strain chosen for its ability to grow rapidly in milk, we obtained several mutants incapable of rapid growth in milk. We isolated and characterized one of these mutants in which an amiA1 gene encoding an oligopeptide-binding protein (OBP) was interrupted. This gene was a part of an operon containing all the components of an ATP binding cassette transporter. Three highly homologous amiA genes encoding OBPs work with the same components of the ATP transport system. Their simultaneous inactivation led to a drastic diminution in the growth rate in milk and the absence of growth in chemically defined medium containing peptides as the nitrogen source. We constructed single and multiple negative mutants for AmiAs and cell wall proteinase (PrtS), the only proteinase capable of hydrolyzing casein oligopeptides outside the cell. Growth experiments in chemically defined medium containing peptides indicated that AmiA1, AmiA2, and AmiA3 exhibited overlapping substrate specificities, and that the whole system allows the transport of peptides containing from 3 to 23 residues.

  13. Formation of oligopeptides in high yield under simple programmable conditions

    PubMed Central

    Rodriguez-Garcia, Marc; Surman, Andrew J.; Cooper, Geoffrey J.T.; Suárez-Marina, Irene; Hosni, Zied; Lee, Michael P.; Cronin, Leroy

    2015-01-01

    Many high-yielding reactions for forming peptide bonds have been developed but these are complex, requiring activated amino-acid precursors and heterogeneous supports. Herein we demonstrate the programmable one-pot dehydration–hydration condensation of amino acids forming oligopeptide chains in around 50% yield. A digital recursive reactor system was developed to investigate this process, performing these reactions with control over parameters such as temperature, number of cycles, cycle duration, initial monomer concentration and initial pH. Glycine oligopeptides up to 20 amino acids long were formed with very high monomer-to-oligomer conversion, and the majority of these products comprised three amino acid residues or more. Having established the formation of glycine homo-oligopeptides, we then demonstrated the co-condensation of glycine with eight other amino acids (Ala, Asp, Glu, His, Lys, Pro, Thr and Val), incorporating a range of side-chain functionality. PMID:26442968

  14. [Theory study on glycine linear oligopeptide vibrational spectrum frequency shift].

    PubMed

    Ye, Zhi-Peng; Li, Xin; Yang, Meng-Shi; Chen, Liang; Xu, Can; Chu, Xiu-Xiang

    2014-04-01

    By using the density functional theory, glycine linear oligopeptide of different lengths was geometrically optimized on the 6-31G (d) basis set level, their growth processes were simulated, and the average binding energy and vibration frequency were calculated with geometry. The results showed that the average binding energies tend to change in a regular pattern and stabilize with the number of residues increasing; With the oligopeptide chain bond length analysis it was found that the chain to the radial direction there is a opposite trend for chain and radial direction, which is anisotropic. It was found by the IR spectrum analysis that red shifts and blue shifts occur respectively when the same group of peptide bond vibrate, which is anisotropic; These phenomena originate from that quasi one-dimensional nanostructures lead to the anisotropy of the bond length; the induced effects, coupling effects and hydrogen bonding etc. between the same groups lead to the vibration frequency red shifts and blue shifts. The authors conclude that the growth of glycine linear oligopeptide is conducive to stability of the structure, and the authors infer that the oligopeptide has the tendency of self-assembled growth; Through the conformation and spectrum, the authors infer that there is a size effect in physical and chemical properties. The physical and chemical properties of peptide chain end group are extremely stable and unaffected by the impact of the oligopeptide chain length The results are significant to measuring the length and the number of residue of peptide, and to manufacturing the special features oligopeptide chain.

  15. Oligopeptide m13 phage display in pathogen research.

    PubMed

    Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael

    2013-10-16

    Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline.

  16. Oligopeptide M13 Phage Display in Pathogen Research

    PubMed Central

    Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael

    2013-01-01

    Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline. PMID:24136040

  17. Characterization of the PT clade of oligopeptide transporters in rice

    USDA-ARS?s Scientific Manuscript database

    Oligopeptide transporters (OPTs) are a group of membrane-localized proteins with a broad range of substrate transport capabilities, and which are thought to contribute to many biological processes. Nine OPTs belonging to the peptide transport (PT) clade were identified in the rice (Oryza sativa L.) ...

  18. Structural model and ligand interactions of the Xanthomonas axonopodis pv. citri oligopeptide-binding protein.

    PubMed

    Moutran, A; Balan, A; Ferreira, L C S; Giorgetti, A; Tramontano, A; Ferreira, R C C

    2007-12-11

    The oligopeptide-binding protein, OppA, ushers oligopeptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides by several bacterial species. In the present study, we report a structural model and an oligopeptide docking analysis of the OppA protein expressed by Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker. The X. citri OppA structural model showed a conserved three-dimensional structure, irrespective of the low amino acid identities with previously defined structures of Bacillus subtilis and Salmonella typhimurium orthologs. Oligopeptide docking analysis carried out with the proposed model indicated that the X. citri OppA preferentially binds tri- and tetrapeptides. The present study represents the first structural analysis of an OppA ortholog expressed by a phytopathogen and contributes to the understanding of the physiology and nutritional strategies of X. citri.

  19. Oligopeptides as Biomarkers of Cyanobacterial Subpopulations. Toward an Understanding of Their Biological Role

    PubMed Central

    Agha, Ramsy; Quesada, Antonio

    2014-01-01

    Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria. PMID:24960202

  20. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role.

    PubMed

    Agha, Ramsy; Quesada, Antonio

    2014-06-23

    Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria.

  1. Structure dependent spin selectivity in electron transport through oligopeptides

    NASA Astrophysics Data System (ADS)

    Kiran, Vankayala; Cohen, Sidney R.; Naaman, Ron

    2017-03-01

    The chiral-induced spin selectivity (CISS) effect entails spin-selective electron transmission through chiral molecules. In the present study, the spin filtering ability of chiral, helical oligopeptide monolayers of two different lengths is demonstrated using magnetic conductive probe atomic force microscopy. Spin-specific nanoscale electron transport studies elucidate that the spin polarization is higher for 14-mer oligopeptides than that of the 10-mer. We also show that the spin filtering ability can be tuned by changing the tip-loading force applied on the molecules. The spin selectivity decreases with increasing applied force, an effect attributed to the increased ratio of radius to pitch of the helix upon compression and increased tilt angles between the molecular axis and the surface normal. The method applied here provides new insights into the parameters controlling the CISS effect.

  2. Gating Topology of the Proton-Coupled Oligopeptide Symporters

    PubMed Central

    Fowler, Philip W.; Orwick-Rydmark, Marcella; Radestock, Sebastian; Solcan, Nicolae; Dijkman, Patricia M.; Lyons, Joseph A.; Kwok, Jane; Caffrey, Martin; Watts, Anthony; Forrest, Lucy R.; Newstead, Simon

    2015-01-01

    Summary Proton-coupled oligopeptide transporters belong to the major facilitator superfamily (MFS) of membrane transporters. Recent crystal structures suggest the MFS fold facilitates transport through rearrangement of their two six-helix bundles around a central ligand binding site; how this is achieved, however, is poorly understood. Using modeling, molecular dynamics, crystallography, functional assays, and site-directed spin labeling combined with double electron-electron resonance (DEER) spectroscopy, we present a detailed study of the transport dynamics of two bacterial oligopeptide transporters, PepTSo and PepTSt. Our results identify several salt bridges that stabilize outward-facing conformations and we show that, for all the current structures of MFS transporters, the first two helices of each of the four inverted-topology repeat units form half of either the periplasmic or cytoplasmic gate and that these function cooperatively in a scissor-like motion to control access to the peptide binding site during transport. PMID:25651061

  3. Mechanistic study for immobilization of cysteine-labeled oligopeptides on UV-activated surfaces.

    PubMed

    Ong, Lian Hao; Ding, Xiaokang; Yang, Kun-Lin

    2014-10-01

    In this study, we report immobilization of cysteine-labeled oligopeptides on UV activated surfaces decorated with N,N-dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP). Our result shows that cysteine group, regardless of its position in the oligopeptide, is essential for successful immobilization of oligopeptide on the UV-activated surface. A possible reaction mechanism is nucleophilic addition of thiolates to surface aldehyde groups generated during UV activation. By using this technique, we are able to incorporate anchoring points into oligopeptides through cysteine residues. Furthermore, immobilized oligopeptides on the UV-activated surface is very stable even under harsh washing conditions. Finally, we show that an HPQ-containing oligopeptide can be immobilized on the UV-activated surface, but the final surface density and its ability to bind streptavidin are affected by the position of cysteine and HPQ. An oligopeptide with a cysteine at the N-terminus and a HPQ motif at the C-terminus gives the highest binding signal in the streptavidin-binding assay. This result is potentially useful for the development of functional oligopeptide microarrays for detecting target protein molecules.

  4. [The role of a lysine residue in the antioxidant and dna-protective activity of oligopeptides].

    PubMed

    Prazdnova, E V; Mazanko, M S; Zolotukhin, P V; Kharchenko, E Y; Chistyakov, V A; Arutiunov, V A; Kozina, L S

    2016-01-01

    Oligopeptides present in the living cell were found to have antioxidative activity and to be involved in the regulation of antioxidant balance by interaction with the redox-dependent cellular signaling cascades. Experiments on animal models have shown that the introduction of oligopeptides causes geroprotective and adaptogenic effects. In the present work, we investigate the biological action of a number of synthetic oligopeptides using bacterial biosensors. This approach allows us to precisely estimate the antioxidant properties of the compounds without affecting their participation in regulatory cascades typical to eukaryotic cells. It has been shown that the ability of oligopeptides to protect cells from action of physical prooxidant factors (UV irradiation) is related to the presence of a lysine residue in the molecule. For chemical pro-oxidants (dioxidine), we have observed a similar, though less strict pattern. This effect also correlates with DNA-protective activity of the investigated oligopeptides.

  5. [Novel L-amino acid ligases catalyzing oligopeptide synthesis].

    PubMed

    Kino, Kuniki

    2010-11-01

    L-Amino acid ligase (EC 6.3.2.28) is a microbial enzyme catalyzing formation of an alpha-peptide bond from unprotected L-amino acids in an ATP-dependent manner. The YwfE protein from Bacillus subtilis 168 was the first reported L-amino acid ligase, and it synthesizes various dipeptides. Thereafter, several L-amino acid ligases were newly obtained by in silico analysis using the ATP-grasp motif. But these L-amino acid ligases synthesize only dipeptide and no longer peptide. A novel L-amino acid ligase capable of catalyzing oligopeptide synthesis is required to increase the variety of peptides. We have previously found a new member of L-amino acid ligase, RizA, from B. subtilis NBRC3134, a microorganism that produces the peptide-antibiotic rhizocticin. We newly found that a gene at approximately 9 kbp upstream of rizA encoded a novel L-amino acid ligase RizB. Recombinant RizB synthesized homo-oligomers of branched-chain amino acids consisting of 2 to 5 amino acids, and also synthesized various heteropeptides. RizB is the first reported L-amino acid ligase that catalyzes oligopeptide synthesis. In addition, we obtained L-amino acid ligases showing oligopeptide synthesis activities by in silico analysis using BLAST, which is a set of similarity search programs. These L-amino acid ligases showed low similarity in amino acid sequence, but commonly used branched-chain amino acids, such as RizB, as substrates. Furthermore, the spr0969 protein of Streptococcus pneumoniae synthesized longer peptides than those synthesized by RizB, and the BAD_1200 protein of Bifidobacteria adolescentis showed higher activity toward aromatic amino acids than toward branched-chain ones.

  6. Discovery of Anti-Hypertensive Oligopeptides from Adlay Based on In Silico Proteolysis and Virtual Screening

    PubMed Central

    Qiao, Liansheng; Li, Bin; Chen, Yankun; Li, Lingling; Chen, Xi; Wang, Lingzhi; Lu, Fang; Luo, Ganggang; Li, Gongyu; Zhang, Yanling

    2016-01-01

    Adlay (Coix larchryma-jobi L.) was the commonly used Traditional Chinese Medicine (TCM) with high content of seed storage protein. The hydrolyzed bioactive oligopeptides of adlay have been proven to be anti-hypertensive effective components. However, the structures and anti-hypertensive mechanism of bioactive oligopeptides from adlay were not clear. To discover the definite anti-hypertensive oligopeptides from adlay, in silico proteolysis and virtual screening were implemented to obtain potential oligopeptides, which were further identified by biochemistry assay and molecular dynamics simulation. In this paper, ten sequences of adlay prolamins were collected and in silico hydrolyzed to construct the oligopeptide library with 134 oligopeptides. This library was reverse screened by anti-hypertensive pharmacophore database, which was constructed by our research team and contained ten anti-hypertensive targets. Angiotensin-I converting enzyme (ACE) was identified as the main potential target for the anti-hypertensive activity of adlay oligopeptides. Three crystal structures of ACE were utilized for docking studies and 19 oligopeptides were finally identified with potential ACE inhibitory activity. According to mapping features and evaluation indexes of pharmacophore and docking, three oligopeptides were selected for biochemistry assay. An oligopeptide sequence, NPATY (IC50 = 61.88 ± 2.77 µM), was identified as the ACE inhibitor by reverse-phase high performance liquid chromatography (RP-HPLC) assay. Molecular dynamics simulation of NPATY was further utilized to analyze interactive bonds and key residues. ALA354 was identified as a key residue of ACE inhibitors. Hydrophobic effect of VAL518 and electrostatic effects of HIS383, HIS387, HIS513 and Zn2+ were also regarded as playing a key role in inhibiting ACE activities. This study provides a research strategy to explore the pharmacological mechanism of Traditional Chinese Medicine (TCM) proteins based on in silico

  7. Discovery of Anti-Hypertensive Oligopeptides from Adlay Based on In Silico Proteolysis and Virtual Screening.

    PubMed

    Qiao, Liansheng; Li, Bin; Chen, Yankun; Li, Lingling; Chen, Xi; Wang, Lingzhi; Lu, Fang; Luo, Ganggang; Li, Gongyu; Zhang, Yanling

    2016-12-14

    Adlay (Coix larchryma-jobi L.) was the commonly used Traditional Chinese Medicine (TCM) with high content of seed storage protein. The hydrolyzed bioactive oligopeptides of adlay have been proven to be anti-hypertensive effective components. However, the structures and anti-hypertensive mechanism of bioactive oligopeptides from adlay were not clear. To discover the definite anti-hypertensive oligopeptides from adlay, in silico proteolysis and virtual screening were implemented to obtain potential oligopeptides, which were further identified by biochemistry assay and molecular dynamics simulation. In this paper, ten sequences of adlay prolamins were collected and in silico hydrolyzed to construct the oligopeptide library with 134 oligopeptides. This library was reverse screened by anti-hypertensive pharmacophore database, which was constructed by our research team and contained ten anti-hypertensive targets. Angiotensin-I converting enzyme (ACE) was identified as the main potential target for the anti-hypertensive activity of adlay oligopeptides. Three crystal structures of ACE were utilized for docking studies and 19 oligopeptides were finally identified with potential ACE inhibitory activity. According to mapping features and evaluation indexes of pharmacophore and docking, three oligopeptides were selected for biochemistry assay. An oligopeptide sequence, NPATY (IC50 = 61.88 ± 2.77 µM), was identified as the ACE inhibitor by reverse-phase high performance liquid chromatography (RP-HPLC) assay. Molecular dynamics simulation of NPATY was further utilized to analyze interactive bonds and key residues. ALA354 was identified as a key residue of ACE inhibitors. Hydrophobic effect of VAL518 and electrostatic effects of HIS383, HIS387, HIS513 and Zn(2+) were also regarded as playing a key role in inhibiting ACE activities. This study provides a research strategy to explore the pharmacological mechanism of Traditional Chinese Medicine (TCM) proteins based on in silico

  8. Mining gut microbiome oligopeptides by functional metaproteome display

    PubMed Central

    Zantow, Jonas; Just, Sarah; Lagkouvardos, Ilias; Kisling, Sigrid; Dübel, Stefan; Lepage, Patricia; Clavel, Thomas; Hust, Michael

    2016-01-01

    Pathogen infections, autoimmune diseases, and chronic inflammatory disorders are associated with systemic antibody responses from the host immune system. Disease-specific antibodies can be important serum biomarkers, but the identification of antigens associated with specific immune reactions is challenging, in particular if complex communities of microorganisms are involved in the disease progression. Despite promising new diagnostic opportunities, the discovery of these serological markers becomes more difficult with increasing complexity of microbial communities. In the present work, we used a metagenomic M13 phage display approach to select immunogenic oligopeptides from the gut microbiome of transgenic mice suffering from chronic ileitis. We constructed three individual metaproteome phage display libraries with a library size of approximately 107 clones each. Using serum antibodies, we selected and validated three oligopeptides that induced specific antibody responses in the mouse model. This proof-of-concept study provides the first successful application of functional metaproteome display for the study of protein-protein interactions and the discovery of potential disease biomarkers. PMID:27703179

  9. Mining gut microbiome oligopeptides by functional metaproteome display.

    PubMed

    Zantow, Jonas; Just, Sarah; Lagkouvardos, Ilias; Kisling, Sigrid; Dübel, Stefan; Lepage, Patricia; Clavel, Thomas; Hust, Michael

    2016-10-05

    Pathogen infections, autoimmune diseases, and chronic inflammatory disorders are associated with systemic antibody responses from the host immune system. Disease-specific antibodies can be important serum biomarkers, but the identification of antigens associated with specific immune reactions is challenging, in particular if complex communities of microorganisms are involved in the disease progression. Despite promising new diagnostic opportunities, the discovery of these serological markers becomes more difficult with increasing complexity of microbial communities. In the present work, we used a metagenomic M13 phage display approach to select immunogenic oligopeptides from the gut microbiome of transgenic mice suffering from chronic ileitis. We constructed three individual metaproteome phage display libraries with a library size of approximately 10(7) clones each. Using serum antibodies, we selected and validated three oligopeptides that induced specific antibody responses in the mouse model. This proof-of-concept study provides the first successful application of functional metaproteome display for the study of protein-protein interactions and the discovery of potential disease biomarkers.

  10. Structural Design of Oligopeptides for Intestinal Transport Model.

    PubMed

    Hong, Seong-Min; Tanaka, Mitsuru; Koyanagi, Riho; Shen, Weilin; Matsui, Toshiro

    2016-03-16

    Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p < 0.05) lower transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.

  11. A Statistical Thermodynamic Model Applied to Experimental AFM Population and Location Data Is Able to Quantify DNA-Histone Binding Strength and Internucleosomal Interaction Differences between Acetylated and Unacetylated Nucleosomal Arrays

    PubMed Central

    Solis, F. J.; Bash, R.; Yodh, J.; Lindsay, S. M.; Lohr, D.

    2004-01-01

    Imaging of nucleosomal arrays by atomic force microscopy allows a determination of the exact statistical distributions for the numbers of nucleosomes per array and the locations of nucleosomes on the arrays. This precision makes such data an excellent reference for testing models of nucleosome occupation on multisite DNA templates. The approach presented here uses a simple statistical thermodynamic model to calculate theoretical population and positional distributions and compares them to experimental distributions previously determined for 5S rDNA nucleosomal arrays (208-12,172-12). The model considers the possible locations of nucleosomes on the template, and takes as principal parameters an average free energy of interaction between histone octamers and DNA, and an average wrapping length of DNA around the octamers. Analysis of positional statistics shows that it is possible to consider interactions between nucleosomes and positioning effects as perturbations on a random positioning noninteracting model. Analysis of the population statistics is used to determine histone-DNA association constants and to test for differences in the free energies of nucleosome formation with different types of histone octamers, namely acetylated or unacetylated, and different DNA templates, namely 172-12 or 208-12 5S rDNA multisite templates. The results show that the two template DNAs bind histones with similar affinities but histone acetylation weakens the association of histones with both templates. Analysis of locational statistics is used to determine the strength of specific nucleosome positioning tendencies by the DNA templates, and the strength of the interactions between neighboring nucleosomes. The results show only weak positioning tendencies and that unacetylated nucleosomes interact much more strongly with one another than acetylated nucleosomes; in fact acetylation appears to induce a small anticooperative occupation effect between neighboring nucleosomes. PMID

  12. Preparation, Identification and Antioxidant Properties of Black-Bone Silky Fowl (Gallus gallus domesticus Brisson) Iron(II)-Oligopeptide Chelate.

    PubMed

    Pan, Huanglei; Song, Shasha; Ma, Qiuyue; Wei, Hui; Ren, Difeng; Lu, Jun

    2016-06-01

    Black-bone silky fowl iron(II)-oligopeptide chelate was synthesized from iron(II) solution and the black-bone silky fowl oligopeptide, which was extracted from the muscle protein of black-bone silky fowl (Gallus gallus domesticus Brisson). Orthogonal array analysis was used to determine the optimal conditions for the iron(II)-oligopeptide chelate preparation. Ultraviolet-visible (UV-Vis) spectroscopy, electron microscopy, and Fourier transform infrared (FTIR) spectroscopy were used to identify the structure of iron(II)-oligopeptide chelate. 2-Diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging assays were performed to compare the antioxidant abilities of the black-bone silky fowl oligopeptide and iron(II)-oligopeptide chelate. The optimal conditions for iron(II)-oligopeptide chelate preparation were 4% of the black-bone silky fowl oligopeptide and a ratio of the black- -bone silky fowl oligopeptide to FeCl2·4H2O of 5:1 at pH=4. Under these conditions, the chelation rate was (84.9±0.2) % (p<0.05), and the chelation yield was (40.3±0.1) % (p<0.05). The structures detected with UV-Vis spectroscopy, electron microscopy and FTIR spectra changed significantly after chelation, suggesting that Fe(II) ions formed coordinate bonds with carboxylate (-RCOOŻ) and amino (-NH2) groups in the oligopeptides, confirming that this is a new oligopeptide-iron chelate. The iron(II)-oligopeptide chelate had stronger scavenging activity towards DPPH and superoxide radicals than did the black-bone silky fowl oligopeptide.

  13. Preparation, Identification and Antioxidant Properties of Black-Bone Silky Fowl (Gallus gallus domesticus Brisson) Iron(II)-Oligopeptide Chelate

    PubMed Central

    Pan, Huanglei; Song, Shasha; Ma, Qiuyue; Wei, Hui; Ren, Difeng; Lu, Jun

    2016-01-01

    Summary Black-bone silky fowl iron(II)-oligopeptide chelate was synthesized from iron(II) solution and the black-bone silky fowl oligopeptide, which was extracted from the muscle protein of black-bone silky fowl (Gallus gallus domesticus Brisson). Orthogonal array analysis was used to determine the optimal conditions for the iron(II)-oligopeptide chelate preparation. Ultraviolet-visible (UV-Vis) spectroscopy, electron microscopy, and Fourier transform infrared (FTIR) spectroscopy were used to identify the structure of iron(II)-oligopeptide chelate. 2-Diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging assays were performed to compare the antioxidant abilities of the black-bone silky fowl oligopeptide and iron(II)-oligopeptide chelate. The optimal conditions for iron(II)-oligopeptide chelate preparation were 4% of the black-bone silky fowl oligopeptide and a ratio of the black- -bone silky fowl oligopeptide to FeCl2·4H2O of 5:1 at pH=4. Under these conditions, the chelation rate was (84.9±0.2) % (p<0.05), and the chelation yield was (40.3±0.1) % (p<0.05). The structures detected with UV-Vis spectroscopy, electron microscopy and FTIR spectra changed significantly after chelation, suggesting that Fe(II) ions formed coordinate bonds with carboxylate (-RCOOŻ) and amino (-NH2) groups in the oligopeptides, confirming that this is a new oligopeptide-iron chelate. The iron(II)-oligopeptide chelate had stronger scavenging activity towards DPPH and superoxide radicals than did the black-bone silky fowl oligopeptide. PMID:27904406

  14. Self-organizing bioinspired oligothiophene–oligopeptide hybrids

    PubMed Central

    Schillinger, Eva-Kathrin; Mena-Osteritz, Elena; Schmid, Sylvia; Khalatur, Pavel G; Bäuerle, Peter; Khokhlov, Alexei R

    2011-01-01

    Summary In this minireview, we survey recent advances in the synthesis, characterization, and modeling of new oligothiophene–oligopeptide hybrids capable of forming nanostructured fibrillar aggregates in solution and on solid substrates. Compounds of this class are promising for applications because their self-assembly and stimuli-responsive properties, provided by the peptide moieties combined with the semiconducting properties of the thiophene blocks, can result in novel opportunities for the design of advanced smart materials. These bio-inspired molecular hybrids are experimentally shown to form stable fibrils as visualized by AFM and TEM. While the experimental evidence alone is not sufficient to reveal the exact molecular organization of the fibrils, theoretical approaches based on quantum chemistry calculations and large-scale atomistic molecular dynamics simulations are attempted in an effort to reveal the structure of the fibrils at the nanoscale. Based on the combined theoretical and experimental analysis, the most likely models of fibril formation and aggregation are suggested. PMID:22003459

  15. Magnetic Properties of Nanoscale Rare Earth-Tissue Mimicking Oligopeptide Composites

    NASA Astrophysics Data System (ADS)

    Valluzzi, R.; Guertin, R. P.; Haas, T. E.

    2003-03-01

    New peptide-metal composite materials were synthesized using wet chemistry techniques by attaching the rare earths Gd and Dy to glutamic acid bases at the terminal ends of small linear amino acid chains (oligopeptides). The oligopeptides selected mimic those of strong linear proteins found in collagen and silk. The resulting composites were carefully dried and found to crystallize in smectic-like arrays over length scales much longer than those of the molecular dimensions (=10 nm for collagen-mimicking oligopeptides and =4 nm for silk-mimicking oligopeptides). The resulting crystals (1-2 mg) were insulating and transparent in the visible. The rare earths form quasi-two dimensional sheets with a separation distance determined by the linear dimension of the oligopeptide. The magnetization, M(B,T), was determined down to 2 K and in fields to 5.5 T using SQUID magnetometry. All samples were paramagnetic. Crystalline electric field modification of the magnetization was evident in isothermal M(B) for Dy-based composites, but it was absent, as expected, for the Gd-based composites. A crossover in M(T, 0.5 T) indicated incipient ordering among the Dy-based short silk-like but not the longer collagen-like oligopeptide. Supported in part by the Research Corporation and NASA grant NAG8-1699.

  16. THE EXCHANGE REACTION OF ACETYL FLUORIDE AND ACETYL HEXAFLUOROARSENATE,

    DTIC Science & Technology

    From the temperature dependence of the exchange rate of the methyl protons between acetyl fluoride and acetyl hexafluoroarsenate an Arrhenius...the reaction was found to be one-half order in acetyl hexafluoroarsenate and zero order in acetyl fluoride. (Author)

  17. Bacterial chemotactic oligopeptides and the intestinal mucosal barrier

    SciTech Connect

    Ferry, D.M.; Butt, T.J.; Broom, M.F.; Hunter, J.; Chadwick, V.S.

    1989-07-01

    Intestinal absorption and enterohepatic circulation of N-formyl-methionyl-leucyl-/sup 125/I-tyrosine, a bioactive synthetic analog of the bacterial chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine has been investigated in the rat. In ileum and proximal and distal colon, dithiothreitol, which increases mucosal permeability, increased peptide absorption and biliary recovery fourfold, 70-fold, and 20-fold over control values, respectively. When dithiothreitol was combined with d-l-benzyl succinate, a potent inhibitor of intestinal carboxypeptidase, absorption and biliary recovery from ileal loops increased markedly to 40-fold over control, whereas there was no further increase in absorption from colon loops. There was a strong correlation between biliary N-formyl-methionyl-leucyl-/sup 125/I-tyrosine recovery and intestinal absorption of /sup 51/Cr-ethylenediaminetetraacetate, a marker of passive mucosal permeability (r = 0.97). We conclude that in the ileum both enzymic degradation and restricted mucosal permeability contribute to the intestinal barrier to luminal bacterial formyl oligopeptides. In the colon, however, enzymic mechanisms are less active and restricted mucosal permeability is the major factor. Abnormalities of the intestinal mucosal barrier to proinflammatory bacterial peptides could play a role in inflammatory disorders of the gut.

  18. Boosting Antimicrobial Peptides by Hydrophobic Oligopeptide End Tags*

    PubMed Central

    Schmidtchen, Artur; Pasupuleti, Mukesh; Mörgelin, Matthias; Davoudi, Mina; Alenfall, Jan; Chalupka, Anna; Malmsten, Martin

    2009-01-01

    A novel approach for boosting antimicrobial peptides through end tagging with hydrophobic oligopeptide stretches is demonstrated. Focusing on two peptides derived from kininogen, GKHKNKGKKNGKHNGWK (GKH17) and HKHGHGHGKHKNKGKKN (HKH17), tagging resulted in enhanced killing of Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and fungal Candida albicans. Microbicidal potency increased with tag length, also in plasma, and was larger for Trp and Phe stretches than for aliphatic ones. The enhanced microbicidal effects correlated to a higher degree of bacterial wall rupture. Analogously, tagging promoted peptide binding to model phospholipid membranes and liposome rupture, particularly for anionic and cholesterol-void membranes. Tagged peptides displayed low toxicity, particularly in the presence of serum, and resisted degradation by human leukocyte elastase and by staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo and in vivo in porcine S. aureus skin infection models. The generality of end tagging for facile boosting of antimicrobial peptides without the need for post-synthesis modification was also demonstrated. PMID:19398550

  19. Alternating access mechanism in the POT family of oligopeptide transporters.

    PubMed

    Solcan, Nicolae; Kwok, Jane; Fowler, Philip W; Cameron, Alexander D; Drew, David; Iwata, So; Newstead, Simon

    2012-08-15

    Short chain peptides are actively transported across membranes as an efficient route for dietary protein absorption and for maintaining cellular homeostasis. In mammals, peptide transport occurs via PepT1 and PepT2, which belong to the proton-dependent oligopeptide transporter, or POT family. The recent crystal structure of a bacterial POT transporter confirmed that they belong to the major facilitator superfamily of secondary active transporters. Despite the functional characterization of POT family members in bacteria, fungi and mammals, a detailed model for peptide recognition and transport remains unavailable. In this study, we report the 3.3-Å resolution crystal structure and functional characterization of a POT family transporter from the bacterium Streptococcus thermophilus. Crystallized in an inward open conformation the structure identifies a hinge-like movement within the C-terminal half of the transporter that facilitates opening of an intracellular gate controlling access to a central peptide-binding site. Our associated functional data support a model for peptide transport that highlights the importance of salt bridge interactions in orchestrating alternating access within the POT family.

  20. Synthetic adhesive oligopeptides with rigid polyhydroxylated amino acids.

    PubMed

    Deshmukh, Manjeet; Singh, Shashi; Geyer, Armin

    2013-05-01

    Synthetic oligopeptides containing polyhydroxylated bicyclic dipeptide (Glc=Tap) are investigated for their adhesion properties. The non-natural amino acid building block composed of Glc=Tap is derived from glucuronic acid and mimics the hydroxyl-amino acids of the natural proteins. Peptide oligomers of Glc=Tap flanked by the amino acids Tyr and Lys were synthesized and characterized. Solution structural studies performed by circular dichromism spectroscopy suggests that poly(Lys-Glc=Tap-Tyr) and poly(Glc=Tap-Tyr) adopts extended helical structures. Adhesion of these oligomers to the mica surface is shown by atomic force microscopy spectroscopy. Studies indicate that extended polyproline II polyhydroxylated peptide chains, which bear additional phenolic as well as cationic side chains, can mimic some of the adhesion properties of the natural protein models. Furthermore, obtained data suggest that poly(Glc=Tap-Tyr) and poly(Lys-Glc=Tap-Tyr) as outstanding adhesive compounds, which combine efficient synthetic accessibility with promising adhesive properties.

  1. Alternating access mechanism in the POT family of oligopeptide transporters

    PubMed Central

    Solcan, Nicolae; Kwok, Jane; Fowler, Philip W; Cameron, Alexander D; Drew, David; Iwata, So; Newstead, Simon

    2012-01-01

    Short chain peptides are actively transported across membranes as an efficient route for dietary protein absorption and for maintaining cellular homeostasis. In mammals, peptide transport occurs via PepT1 and PepT2, which belong to the proton-dependent oligopeptide transporter, or POT family. The recent crystal structure of a bacterial POT transporter confirmed that they belong to the major facilitator superfamily of secondary active transporters. Despite the functional characterization of POT family members in bacteria, fungi and mammals, a detailed model for peptide recognition and transport remains unavailable. In this study, we report the 3.3-Å resolution crystal structure and functional characterization of a POT family transporter from the bacterium Streptococcus thermophilus. Crystallized in an inward open conformation the structure identifies a hinge-like movement within the C-terminal half of the transporter that facilitates opening of an intracellular gate controlling access to a central peptide-binding site. Our associated functional data support a model for peptide transport that highlights the importance of salt bridge interactions in orchestrating alternating access within the POT family. PMID:22659829

  2. ISWI Remodelling of Physiological Chromatin Fibres Acetylated at Lysine 16 of Histone H4

    PubMed Central

    Klinker, Henrike; Mueller-Planitz, Felix; Yang, Renliang; Forné, Ignasi; Liu, Chuan-Fa; Nordenskiöld, Lars; Becker, Peter B.

    2014-01-01

    ISWI is the catalytic subunit of several ATP-dependent chromatin remodelling factors that catalyse the sliding of nucleosomes along DNA and thereby endow chromatin with structural flexibility. Full activity of ISWI requires residues of a basic patch of amino acids in the N-terminal ‘tail’ of histone H4. Previous studies employing oligopeptides and mononucleosomes suggested that acetylation of the H4 tail at lysine 16 (H4K16) within the basic patch may inhibit the activity of ISWI. On the other hand, the acetylation of H4K16 is known to decompact chromatin fibres. Conceivably, decompaction may enhance the accessibility of nucleosomal DNA and the H4 tail for ISWI interactions. Such an effect can only be evaluated at the level of nucleosome arrays. We probed the influence of H4K16 acetylation on the ATPase and nucleosome sliding activity of Drosophila ISWI in the context of defined, in vitro reconstituted chromatin fibres with physiological nucleosome spacing and linker histone content. Contrary to widespread expectations, the acetylation did not inhibit ISWI activity, but rather stimulated ISWI remodelling under certain conditions. Therefore, the effect of H4K16 acetylation on ISWI remodelling depends on the precise nature of the substrate. PMID:24516652

  3. Oligopeptide-assisted self-assembly of oligothiophenes: co-assembly and chirality transfer.

    PubMed

    Guo, Zongxia; Gong, Ruiying; Mu, Youbing; Wang, Xiao; Wan, Xiaobo

    2014-11-01

    The biomolecule-assisted self-assembly of semiconductive molecules has been developed recently for the formation of potential bio-based functional materials. Oligopeptide-assisted self-assembly of oligothiophene through weak intermolecular interactions was investigated; specifically the self-assembly and chirality-transfer behavior of achiral oligothiophenes in the presence of an oligopeptide with a strong tendency to form β-sheets. Two kinds of oligothiophenes without (QT) or with (QTDA) carboxylic groups were selected to explore the effect of the end functional group on self-assembly and chirality transfer. In both cases, organogels were formed. However, the assembly behavior of QT was quite different from that of QTDA. It was found that QT formed an organogel with the oligopeptide and co-assembled into chiral nanostructures. Conversely, although QTDA also formed a gel with the oligopeptide, it has a strong tendency to self-assemble independently. However, during the formation of the xerogel, the chirality of the oligopeptide can also be transferred to the QTDA assemblies. Different assembly models were proposed to explain the assembly behavior.

  4. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    PubMed

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  5. Mussel oligopeptides protect human fibroblasts from hydrogen peroxide (H2O2)-induced premature senescence.

    PubMed

    Zhou, Yue; Dong, Ying; Xu, Qing-Gang; Zhu, Shu-Yun; Tian, Shi-Lei; Huo, Jing-jing; Hao, Ting-Ting; Zhu, Bei-Wei

    2014-01-01

    Mussel bioactive peptides have been viewed as mediators to maximize the high quality of life. In this study, the anti-aging activities of mussel oligopeptides were evaluated using H2O2-induced prematurely senescent MRC-5 fibroblasts. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry displayed that exposure to H2O2 led to the loss of cell viability and cell cycle arrest. In addition, H2O2 caused the elevation of senescence-associated-β-galactosidase (SA-β-gal) activity and formation of senescence-associated heterochromatin foci (SAHF). It was found that pretreatment with mussel oligopeptides could significantly attenuate these properties associated with cellular senescence. Mussel oligopeptides also led to the increase of glutathione (GSH) level and mitochondrial transmembrane potential (Δψm) recovery. In addition, mussel oligopeptides resulted in an improvement in transcriptional activity of peroxiredoxin 1 (Prx1), nicotinamide phosphoribosyltransferase (NAMPT) and sirtuin 1 (SIRT1). This study revealed that mussel oligopeptides could protect against cellular senescence induced by H2O2, and the effects were closely associated with redox cycle modulating and potentiating the SIRT1 pathway. These findings provide new insights into the beneficial role of mussel bioactive peptides on retarding senescence process. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  6. The Fasted/Fed Mouse Metabolic Acetylome: N6-Acetylation Differences Suggest Acetylation Coordinates Organ-Specific Fuel Switching

    PubMed Central

    Yang, Li; Vaitheesvaran, Bhavapriya; Hartil, Kirsten; Robinson, Alan J.; Hoopmann, Michael R.; Eng, Jimmy K.; Kurland, Irwin J.; Bruce, James E.

    2011-01-01

    The elucidation of extra-nuclear lysine acetylation has been of growing interest, as the co-substrate for acetylation, acetyl CoA, is at a key metabolic intersection. Our hypothesis was that mitochondrial and cytoplasmic protein acetylation may be part of a fasted/re-fed feedback control system for the regulation of the metabolic network in fuel switching, where acetyl CoA would be provided by fatty acid oxidation, or glycolysis, respectively. To test this we characterized the mitochondrial and cytoplasmic acetylome in various organs that have a high metabolic rate relative to their mass, and/or switch fuels, under fasted and re-fed conditions (brain, kidney, liver, skeletal muscle, heart muscle, white and brown adipose tissues). Using immunoprecipitation, coupled with LC-MSMS label free quantification, we show there is a dramatic variation in global quantitative profiles of acetylated proteins from different organs. In total, 733 acetylated peptides from 337 proteins were identified and quantified, out of which 31 acetylated peptides from the metabolic proteins that may play organ-specific roles were analyzed in detail. Results suggest that fasted/re-fed acetylation changes coordinated by organ-specific (de-)acetylases in insulin-sensitive versus insensitive organs may underlie fuel use and switching. Characterization of the tissue-specific acetylome should increase understanding of metabolic conditions wherein normal fuel switching is disrupted, such as in Type II diabetes. PMID:21728379

  7. Counting basic sites in oligopeptides via gas-phase ion chemistry

    SciTech Connect

    Stephenson, J.L. Jr.; McLuckey, S.A.

    1997-02-01

    Cations derived from oligopeptides ranging from laminin fragment (5 residues) to {beta}-lactoglobulin (162 residues) have been subjected to gas-phase ion/molecule reactions with hydroiodic acid. The sum of the ion charge state and the maximum number of molecules of hydroiodic acid that attach to the ion is equal to the total number of lysines, arginines, histidines, and N-termini consisting of a primary amine for ions derived from all 21 oligopeptides studied. These results suggest that ion/molecule reactions can provide useful information regarding oligopeptide basic site number, which might be used as a criterion for searching protein data bases instead of, or in conjunction with, use of proteolytic digestion or gas-phase ion dissociation procedures. 31 refs., 3 figs., 1 tab.

  8. Histone acetylation in neurodevelopment.

    PubMed

    Contestabile, Antonio; Sintoni, Silvia

    2013-01-01

    Post-translational modification of histones is a primary mechanism through which epigenetic regulation of DNA transcription does occur. Among these modifications, regulation of histone acetylation state is an important tool to influence gene expression. Epigenetic regulation of neurodevelopment contributes to the structural and functional shaping of the brain during neurogenesis and continues to impact on neural plasticity lifelong. Alterations of these mechanisms during neurodevelopment may result in later occurrence of neuropsychatric disorders. The present paper reviews and discusses available data on histone modifications, in particular histone acetylation, in neurogenesis considering results obtained in culture systems of neural progenitors as well as in in vivo studies. Possible teratogenic effects of altered histone acetylation state during development are also considered. The use during pregnancy of drugs such as valproic acid, which acts as a histone deacetylase inhibitor, may result during postnatal development in autistic-like symptoms. The effect of gestational administration of the drug has been, therefore, tested on adult hippocampal neurogenesis in animals showing behavioral impairment as a consequence of the drug administration at a specific stage of pregnancy. These experimental results show that adult neurogenesis in the hippocampal dentate gyrus is not quantitatively altered by gestational valproic acid administration. Future steps and goals of research on the role and mechanisms of histone acetylation in neurodevelopment are briefly discussed.

  9. Final report on the safety assessment of acetyl triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, and acetyl trioctyl citrate.

    PubMed

    Johnson, Wilbur

    2002-01-01

    Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate all function as plasticizers in cosmetics. Additionally, the Trihexyl and Trioctyl forms are described as skin-conditioning agents-emollients, although there are currently no reported uses of Acetyl Trihexyl Citrate or Acetyl Trioctyl Citrate. Acetyl Triethyl Citrate and Acetyl Tributyl Citrate are used in nail products at concentrations up to 7%. Recognizing that there are no reported uses of Acetyl Trihexyl or Trioctyl Citrate, if they were to be used in the future, their concentration of use is expected to be no higher than that reported for Acetyl Triethyl and Tributyl Citrate. These ingredients were sufficiently similar in structure that safety test data on one were considered applicable to all. Approximately 99% of orally administered Acetyl Tributyl Citrate is excreted-intermediate metabolites include acetyl citrate, monobutyl citrate, acetyl monobutyl citrate, dibutyl citrate, and acetyl dibutyl citrate. In acute, short-term, subchronic, and chronic feeding studies, these ingredients were relatively nontoxic. Differences from controls were either not statistically significant or not related to any organ toxicity. Ocular exposures produced moderate reactions that cleared by 48 hours after instillation. Dermal application was not toxic in rabbits. In a guinea pig maximization test, Acetyl Triethyl Citrate was a sensitizer whereas Acetyl Tributyl Citrate was not. Limited clinical testing of Acetyl Triethyl Citrate and Acetyl Tributyl Citrate was negative for both skin irritation and sensitization. These clinical data were considered more relevant than the guinea pig maximization data, suggesting to the Cosmetic Ingredient Review Expert Panel that none of these ingredients would be a sensitizer. Physiologic effects noted with intravenous delivery of Acetyl Triethyl Citrate or Acetyl Tributyl Citrate include dose-related decreases in blood pressure and

  10. Stoichiometry of site-specific lysine acetylation in an entire proteome.

    PubMed

    Baeza, Josue; Dowell, James A; Smallegan, Michael J; Fan, Jing; Amador-Noguez, Daniel; Khan, Zia; Denu, John M

    2014-08-01

    Acetylation of lysine ϵ-amino groups influences many cellular processes and has been mapped to thousands of sites across many organisms. Stoichiometric information of acetylation is essential to accurately interpret biological significance. Here, we developed and employed a novel method for directly quantifying stoichiometry of site-specific acetylation in the entire proteome of Escherichia coli. By coupling isotopic labeling and a novel pairing algorithm, our approach performs an in silico enrichment of acetyl peptides, circumventing the need for immunoenrichment. We investigated the function of the sole NAD(+)-dependent protein deacetylase, CobB, on both site-specific and global acetylation. We quantified 2206 peptides from 899 proteins and observed a wide distribution of acetyl stoichiometry, ranging from less than 1% up to 98%. Bioinformatic analysis revealed that metabolic enzymes, which either utilize or generate acetyl-CoA, and proteins involved in transcriptional and translational processes displayed the highest degree of acetylation. Loss of CobB led to increased global acetylation at low stoichiometry sites and induced site-specific changes at high stoichiometry sites, and biochemical analysis revealed altered acetyl-CoA metabolism. Thus, this study demonstrates that sirtuin deacetylase deficiency leads to both site-specific and global changes in protein acetylation stoichiometry, affecting central metabolism.

  11. Stoichiometry of Site-specific Lysine Acetylation in an Entire Proteome*♦

    PubMed Central

    Baeza, Josue; Dowell, James A.; Smallegan, Michael J.; Fan, Jing; Amador-Noguez, Daniel; Khan, Zia; Denu, John M.

    2014-01-01

    Acetylation of lysine ϵ-amino groups influences many cellular processes and has been mapped to thousands of sites across many organisms. Stoichiometric information of acetylation is essential to accurately interpret biological significance. Here, we developed and employed a novel method for directly quantifying stoichiometry of site-specific acetylation in the entire proteome of Escherichia coli. By coupling isotopic labeling and a novel pairing algorithm, our approach performs an in silico enrichment of acetyl peptides, circumventing the need for immunoenrichment. We investigated the function of the sole NAD+-dependent protein deacetylase, CobB, on both site-specific and global acetylation. We quantified 2206 peptides from 899 proteins and observed a wide distribution of acetyl stoichiometry, ranging from less than 1% up to 98%. Bioinformatic analysis revealed that metabolic enzymes, which either utilize or generate acetyl-CoA, and proteins involved in transcriptional and translational processes displayed the highest degree of acetylation. Loss of CobB led to increased global acetylation at low stoichiometry sites and induced site-specific changes at high stoichiometry sites, and biochemical analysis revealed altered acetyl-CoA metabolism. Thus, this study demonstrates that sirtuin deacetylase deficiency leads to both site-specific and global changes in protein acetylation stoichiometry, affecting central metabolism. PMID:24917678

  12. Separation of chiral nanotubes with an opposite handedness by chiral oligopeptide adsorption: A molecular dynamics study.

    PubMed

    Raffaini, Giuseppina; Ganazzoli, Fabio

    2015-12-18

    The separation of enantiomeric chiral nanotubes that can form non-covalent complexes with an unlike stability upon adsorption of chiral molecules is a process of potential interest in different fields and applications. Using fully atomistic molecular dynamics simulations, we report in this paper a theoretical study of the adsorption and denaturation of an oligopeptide formed by 16 chiral amino acids having a helical structure in the native state on both the inner and the outer surface of the chiral (10, 20) and (20, 10) single-walled carbon nanotubes having an opposite handedness, and of the armchair (16, 16) nanotube with a similar diameter for comparison. In the final adsorbed state, the oligopeptide loses in all cases its native helical conformation, assuming elongated geometries that maximize its contact with the surface through all the 16 amino acids. We find that the complexes formed by the two chiral nanotubes and the chosen oligopeptide have a strongly unlike stability both when adsorption takes place on the outer convex surface of the nanotube, and when it occurs on the inner concave surface. Thus, our molecular simulations indicate that separation of chiral, enantiomeric carbon nanotubes for instance by chromatographic methods can indeed be carried out using oligopeptides of a sufficient length.

  13. Synthesis of oligopeptides containing an oxirane ring in the place of a peptidic bond.

    PubMed

    Taddei, M

    1999-01-01

    Oligopeptides containing an oxirane ring have recently been identified as inhibitors of a variety of proteases (1-3). These peptidomimetics have the potential to coordinate with metal present in the active site and, after nucleophilic ring opening, irreversibly blocking the enzyme. For this reason, oxirane containing peptidomimetics are good candidates to became transition states analogs or suicide inhibitors with long term efficacy in vivo (3). Synthetic routes to a variety of terminal (4-8) and internal epoxide peptidomimetics (9-11) have been reported but there are no examples of incorporation of such epoxides into oligopeptides. The focus of this chapter will be on the preparation of oligopeptides (up to a three-peptide) containing an epoxide in the place of the peptide bond. The structures prepared here can be identified, using the notation suggested by Spatola (12) as AAxψ[traws-epoxy]-AAy. The general synthetic approach described in this chapter is based on the aldol type reaction of a silylketene thioacetal and a β-amino α-selenyl aldehyde derived from an oligopeptide. This reaction stereoselectively generates a vicinal hydroxy selenide which can be further oxidized to epoxide (Fig. 1). Fig. 1. Retrosynthetic analysis of oxirane peptidomimetrics.

  14. Lysine acetylation targets protein complexes and co-regulates major cellular functions.

    PubMed

    Choudhary, Chunaram; Kumar, Chanchal; Gnad, Florian; Nielsen, Michael L; Rehman, Michael; Walther, Tobias C; Olsen, Jesper V; Mann, Matthias

    2009-08-14

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600 lysine acetylation sites on 1750 proteins and quantified acetylation changes in response to the deacetylase inhibitors suberoylanilide hydroxamic acid and MS-275. Lysine acetylation preferentially targets large macromolecular complexes involved in diverse cellular processes, such as chromatin remodeling, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other major posttranslational modifications.

  15. Oligopeptides of Chorionic Gonadotropin β-Subunit in Induction of T Cell Differentiation into Treg and Th17.

    PubMed

    Zamorina, S A; Shirshev, S V

    2015-11-01

    The role of oligopeptides of chorionic gonadotropin β-subunit (LQGV, AQGV, and VLPALP) in induction of differentiation into T-regulatory lymphocytes (Treg) and IL-17-producing lymphocytes (Th17) was studied in an in vitro system. Chorionic gonadotropin and oligopeptides promoted CD4(+) cell differentiation into functionally active Treg (FOXP3(+)GITR(+) and FOXP3(+)CTLA-4(+)), while chorionic gonadotropin and AQGV additionally stimulated IL-10 production by these cells. In parallel, chorionic gonadotropin and oligopeptides prevented CD4(+) cell differentiation into Th17 lymphocytes (ROR-gt(+)IL-17A(+)) and suppressed IL-17A secretion. Hence, oligopeptides of chorionic gonadotropin β-subunit promoted differentiation of CD4(+) cells into Treg and, in parallel, suppress Th17 induction, thus virtually completely reproducing the effects of the hormone, which opens new vista for their use in clinical practice.

  16. Production of the refolded oligopeptide-binding protein (OppA) encoded by the citrus pathogen Xanthomonas axonopodis pv. Citri.

    PubMed

    Balan, A; Ferreira, R C C; Ferreira, L C S

    2008-02-01

    The oligopeptide-binding protein, OppA, binds and ushers oligopeptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides expressed by several bacterial species. In the present study, we report the cloning, purification, refolding and conformational analysis of a recombinant OppA protein derived from Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker. The oppA gene was expressed in Escherichia coli BL21 (DE3) strain under optimized inducing conditions and the recombinant protein remained largely insoluble. Solubilization was achieved following refolding of the denatured protein. Circular dichroism analysis indicated that the recombinant OppA protein preserved conformational features of orthologs expressed by other bacterial species. The refolded recombinant OppA represents a useful tool for structural and functional analyses of the X. citri protein.

  17. STAT5 acetylation

    PubMed Central

    Kosan, Christian; Ginter, Torsten; Heinzel, Thorsten; Krämer, Oliver H

    2013-01-01

    The cytokine-inducible transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A and STAT5B) are important for the proper development of multicellular eukaryotes. Disturbed signaling cascades evoking uncontrolled expression of STAT5 target genes are associated with cancer and immunological failure. Here, we summarize how STAT5 acetylation is integrated into posttranslational modification networks within cells. Moreover, we focus on how inhibitors of deacetylases and tyrosine kinases can correct leukemogenic signaling nodes involving STAT5. Such small molecules can be exploited in the fight against neoplastic diseases and immunological disorders. PMID:24416653

  18. Histone acetylation in insect chromosomes.

    PubMed

    Allfrey, V G; Pogo, B G; Littau, V C; Gershey, E L; Mirsky, A E

    1968-01-19

    Acetylation of histones takes place along the salivary gland chromosomes of Chironomus thummi when RNA synthesis is active. It can be observed but not measured quantitatively by autoradiography of chromosome squashes. The "fixatives" commonly used in preparing squashes of insect chromosomes preferentially extract the highly acetylated "arginine-rich" histone fractions; the use of such fixatives may explain the reported absence of histone acetylation in Drosophila melanogaster.

  19. Oligopeptide-terminated poly(β-amino ester)s for highly efficient gene delivery and intracellular localization.

    PubMed

    Segovia, Nathaly; Dosta, Pere; Cascante, Anna; Ramos, Victor; Borrós, Salvador

    2014-05-01

    The main limitation of gene therapy towards clinics is the lack of robust, safe and efficient gene delivery vectors. This paper describes new polycations for gene delivery based on poly(β-amino ester)s (pBAE) containing terminal oligopeptides. The authors developed oligopeptide-modified pBAE-pDNA nanoparticles that achieve better cellular viability and higher transfection efficacy than other end-modified pBAE and commercial transfection agents. Gene expression in highly permissive cell lines was remarkably high, but transfection efficiency in less-permissive cell lines was highly dependent on oligopeptide composition and nanoparticle formulation. Moreover, the use of selected oligopeptides in the pBAE formulation led to preferential intracellular localization of the particles. Particle analysis of highly efficient pBAE formulations revealed different particle sizes and charge features, which indicates chemical pseudotyping of the particle surface, related to the oligopeptide chemical nature. In conclusion, chemical modification at the termini of pBAE with amine-rich oligopeptides is a powerful strategy for developing delivery systems for future gene therapy applications.

  20. Catch-and-Release of Target Cells Using Aptamer-Conjugated Electroactive Zwitterionic Oligopeptide SAM.

    PubMed

    Enomoto, Junko; Kageyama, Tatsuto; Osaki, Tatsuya; Bonalumi, Flavia; Marchese, Francesca; Gautieri, Alfonso; Bianchi, Elena; Dubini, Gabriele; Arrigoni, Chiara; Moretti, Matteo; Fukuda, Junji

    2017-03-07

    Nucleic acid aptamers possess attractive features such as specific molecular recognition, high-affinity binding, and rapid acquisition and replication, which could be feasible components for separating specific cells from other cell types. This study demonstrates that aptamers conjugated to an oligopeptide self-assembled monolayer (SAM) can be used to selectively trap human hepatic cancer cells from cell mixtures containing normal human hepatocytes or human fibroblasts. Molecular dynamics calculations have been performed to understand how the configurations of the aptamers are related to the experimental results of selective cell capture. We further demonstrate that the captured hepatic cancer cells can be detached and collected along with electrochemical desorption of the oligopeptide SAM, and by repeating these catch-and-release processes, target cells can be enriched. This combination of capture with aptamers and detachment with electrochemical reactions is a promising tool in various research fields ranging from basic cancer research to tissue engineering applications.

  1. Non-Statistical Oligopeptide Fragmentation by IR Photons with λ=16-18 μm

    NASA Astrophysics Data System (ADS)

    Jungclas, Hartmut; Komarov, Viacheslav V.; Popova, Anna M.; Schmidt, Lothar

    2015-12-01

    In this article we analyse the vibration excitation and following dissociation of protonated oligopeptide molecules induced by IR photons with λ=16-18 μm. The analysis is based on our previous works in which we considered a specific non-statistical dissociation process in organic molecules containing substructures consisting of chained identical diatomic dipoles such as (CH2)n. Such dipole chains can serve as IR antennas for external radiation in the IR frequency range. The acquired vibration energy accumulated in IR antennas can be large enough to dissociate molecules within a femtosecond time interval by a non-statistical process, which is driven by a radiationless low-energy transport mechanism inside the peptide molecules. We point out in this article that the suggested IR-induced dissociation mechanism can be applied to obtain sequence information of protonated oligopeptides.

  2. Super: a web server to rapidly screen superposable oligopeptide fragments from the protein data bank.

    PubMed

    Collier, James H; Lesk, Arthur M; Garcia de la Banda, Maria; Konagurthu, Arun S

    2012-07-01

    Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80,500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super.

  3. Catch-and-Release of Target Cells Using Aptamer-Conjugated Electroactive Zwitterionic Oligopeptide SAM

    PubMed Central

    Enomoto, Junko; Kageyama, Tatsuto; Osaki, Tatsuya; Bonalumi, Flavia; Marchese, Francesca; Gautieri, Alfonso; Bianchi, Elena; Dubini, Gabriele; Arrigoni, Chiara; Moretti, Matteo; Fukuda, Junji

    2017-01-01

    Nucleic acid aptamers possess attractive features such as specific molecular recognition, high-affinity binding, and rapid acquisition and replication, which could be feasible components for separating specific cells from other cell types. This study demonstrates that aptamers conjugated to an oligopeptide self-assembled monolayer (SAM) can be used to selectively trap human hepatic cancer cells from cell mixtures containing normal human hepatocytes or human fibroblasts. Molecular dynamics calculations have been performed to understand how the configurations of the aptamers are related to the experimental results of selective cell capture. We further demonstrate that the captured hepatic cancer cells can be detached and collected along with electrochemical desorption of the oligopeptide SAM, and by repeating these catch-and-release processes, target cells can be enriched. This combination of capture with aptamers and detachment with electrochemical reactions is a promising tool in various research fields ranging from basic cancer research to tissue engineering applications. PMID:28266533

  4. Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.

    PubMed

    Li, Bo; Li, Songsong; Zhou, Yuecheng; Ardoña, Herdeline Ann M; Valverde, Lawrence R; Wilson, William L; Tovar, John D; Schroeder, Charles M

    2017-02-01

    Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.

  5. Synthetic oligopeptide substrates: their diagnostic application in blood coagulation, fibrinolysis, and other pathologic states

    SciTech Connect

    Huseby, R.M.; Smith, R.E.

    1980-01-01

    This review article with 522 references, focuses on the use of synthetic oligopepide substrates to measure the activity of proteoytic enzymes in human physiology and pathology. A classification of proteinases based on their mechanism of action is presented. The application of these synthetic oligopeptide substrates to understand the disorders of the blood coagulation and fibrinolytic system is reviewed. Intracellular functioning proteinases were also assessed in relation to certain pathologies where their abnormal activity is recognized.

  6. The Ubiquitin ligase Ubr11 is essential for oligopeptide utilization in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Kitamura, Kenji; Nakase, Mai; Tohda, Hideki; Takegawa, Kaoru

    2012-03-01

    Uptake of extracellular oligopeptides in yeast is mediated mainly by specific transporters of the peptide transporter (PTR) and oligopeptide transporter (OPT) families. Here, we investigated the role of potential peptide transporters in the yeast Schizosaccharomyces pombe. Utilization of naturally occurring dipeptides required only Ptr2/SPBC13A2.04c and none of the other 3 OPT proteins (Isp4, Pgt1, and Opt3), whereas only Isp4 was indispensable for tetrapeptide utilization. Both Ptr2 and Isp4 localized to the cell surface, but under rich nutrient conditions Isp4 localized in the Golgi apparatus through the function of the ubiquitin ligase Pub1. Furthermore, the ubiquitin ligase Ubr11 played a significant role in oligopeptide utilization. The mRNA levels of both the ptr2 and isp4 genes were significantly reduced in ubr11Δ cells, and the dipeptide utilization defect in the ubr11Δ mutant was rescued by the forced expression of Ptr2. Consistent with its role in transcriptional regulation of peptide transporter genes, the Ubr11 protein was accumulated in the nucleus. Unlike the situation in Saccharomyces cerevisiae, the oligopeptide utilization defect in the S. pombe ubr11Δ mutant was not rescued by inactivation of the Tup11/12 transcriptional corepressors, suggesting that the requirement for the Ubr ubiquitin ligase in the upregulation of peptide transporter mRNA levels is conserved in both yeasts; however, the actual mechanism underlying the control appears to be different. We also found that the peptidomimetic proteasome inhibitor MG132 was still operative in a strain lacking all known PTR and OPT peptide transporters. Therefore, irrespective of its peptide-like structure, MG132 is carried into cells independently of the representative peptide transporters.

  7. Inclusion of Cu nano-cluster 1D arrays inside a C3-symmetric artificial oligopeptide via co-assembly

    NASA Astrophysics Data System (ADS)

    Gong, Ruiying; Li, Fei; Yang, Chunpeng; Wan, Xiaobo

    2015-12-01

    A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside.A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside. Electronic

  8. Oligopeptides as full-length New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors.

    PubMed

    Shen, Bingzheng; Zhu, Chengliang; Gao, Xiang; Liu, Gang; Song, Jinchun; Yu, Yan

    2017-01-01

    'Superbug' bacteria producing NDM-1 enzyme causing wide public concern were first detected in a patient who visited India in 2008. It's an effective approach to combining β-lactam antibiotics with NDM-1 inhibitor for treating NDM-1 producing strain infection. In our research, we designed ten oligopeptides, tested IC50 values against NDM-1 enzyme, determined the MIC values of synergistic antibacterial effect and explored the binding model. We found that the oligopeptides 2 (Cys-Phe) and 5 (Cys-Asp) respectively presented IC50 values of 113 μM and 68 μM and also displayed favorable synergistic effects of the inhibitors in combination with ertapenem against genetic engineering-host E. coli BL21 (DE3)/pET30a-NDM-1 and a clinical isolate of P. aeruginosa with blaNDM-1. Flexible docking and partial charge study suggested the interaction between oligopeptide and NDM-1. Three types of action effects, hydrogen bond, electrostatic effect and π-π interaction, contributed to the inhibitory activities.

  9. Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system

    PubMed Central

    Flores-Valdez, Mario Alberto; Morris, Rowan P.; Laval, Françoise; Daffé, Mamadou; Schoolnik, Gary K.

    2009-01-01

    Bacterial species utilize a vast repertoire of surface structures to interact with their surroundings and employ a number of strategies to reconfigure the cellular envelope according to specific stimuli. Gram-positive bacteria, exemplified by Streptomyces and Bacillus species, control production of some exposed molecules by importing oligopeptide signals via permeases (Opp). Such oligopeptides modulate intracellular signaling pathways. In this work, we functionally characterized an Opp of the human pathogen Mycobacterium tuberculosis (Mtb) and propose its reannotation. Using genome-wide transcriptional profiling, we found that Opp was required to modulate (fold-change ranging from −3.5 to 2.0) the expression of several genes, most of them encoding surface-exposed molecules. These included the virulence-associated lipids mycolic acids and phthiocerol dimycocerosates (PDIMs) as well as PE-family proteins. By thin-layer chromatography and MALDI-TOF-MS we confirmed changes in the lipid profile, including an altered accumulation of triacylglycerides and an affected ratio of mycolic acids to PDIMs. An Opp loss of function mutant showed no in vitro growth defect, but had diminished burden during chronic infection and produced a slightly delayed time to death of animals when compared to WT Mtb infection.—Flores-Valdez, M. A., Morris, R. P., Laval, F., Daffé, M., Schoolnik, G. K. Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system. PMID:19671666

  10. Mineral-enhanced hydrothermal oligopeptide formation at the second time scale.

    PubMed

    Kawamura, Kunio; Takeya, Hitoshi; Kushibe, Takao; Koizumi, Yuka

    2011-06-01

    Accumulation of biopolymers should have been an essential step for the emergence of life on primitive Earth. However, experimental simulations for submarine hydrothermal vent systems in which high-temperature water spouts through minerals within a short time scale have not been attempted. Here, we show that enhancement of hydrothermal oligopeptide elongation by naturally occurring minerals was successfully verified for the first time by using a mineral-mediated hydrothermal flow reactor system (MMHF). MMHF consists of a narrow tubular reactor packed with mineral particles, and the enhancement or inhibitory activities of 10 types of naturally occurring minerals were successfully evaluated for an elongation reaction from (Ala)(4) to (Ala)(5) and higher oligopeptides in the absence of condensation reagents. It was unexpected that calcite and dolomite facilitated the elongation from (Ala)(4) to (Ala)(5) and higher oligopeptides with 28% yield at pH 7, while tourmaline, galena, apatite, mica, sphalerite, quartz, chalcopyrite, and pyrite did not show enhancement activities. These facts suggest the importance of carbonate minerals for the accumulation of peptide in primitive Earth environments.

  11. One-step formation of oligopeptide-like molecules from Glu and Asp in hydrothermal environments

    NASA Astrophysics Data System (ADS)

    Kawamura, Kunio; Shimahashi, Masanori

    2008-05-01

    Biopolymer accumulation in the absence of enzymes is an essential step for the chemical evolution of primitive life-like systems, and successful simulation experiments of prebiotic biopolymer formation have suggested that oligopeptides could have formed near submarine hydrothermal vent environments on primitive earth. However, the yield and length of oligopeptides—typically limited to 6-mers—seems to be inadequate. One reason is the rapid formation of diketopiperazines (DKPs) from dipeptides. In this study, using a hydrothermal microflow reactor, we show that the one-step synthesis of oligopeptide-like molecules of length up to 20-mers proceeds from Glu and Asp. Yields of up to 0.17-0.57% were obtained in an acidic solution within 183 s at 250-310°C, as evaluated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis and different types of high-performance liquid chromatography (HPLC) analyses. The present study indicates that Glu and Asp may have played important roles in the chemical evolution of oligopeptide-like molecules in hydrothermal vent environments on primitive earth.

  12. A Highly Selective Oligopeptide Binding Protein from the Archaeon Sulfolobus Solfataricus▿ †

    PubMed Central

    Gogliettino, M.; Balestrieri, M.; Pocsfalvi, G.; Fiume, I.; Natale, L.; Rossi, M.; Palmieri, G.

    2010-01-01

    SSO1273 of Sulfolobus solfataricus was identified as a cell surface-bound protein by a proteomics approach. Sequence inspection of the genome revealed that the open reading frame of sso1273 is associated in an operon-like structure with genes encoding all the remaining components of a canonical protein-dependent ATP-binding cassette (ABC) transporter. sso1273 gene expression and SSO1273 protein accumulation on the cell surface were demonstrated to be strongly induced by the addition of a peptide mixture (tryptone) to the culture medium. The native protein was obtained in multimeric form, mostly hexameric, under the purification conditions used, and it was characterized as an oligopeptide binding protein, named S. solfataricus OppA (OppASs). OppaASs possesses typical sequence patterns required for glycosylphosphatidylinositol lipid anchoring, resulting in an N-linked glycoprotein with carbohydrate moieties likely composed of high mannose and/or hybrid complex carbohydrates. OppASs specifically binds oligopeptides and shows a marked selectivity for the amino acid composition of substrates when assayed in complex peptide mixtures. Moreover, a truncated version of OppASs, produced in recombinant form and including the putative binding domain, showed a low but significant oligopeptide binding activity. PMID:20382765

  13. Tissue engineering based on electrochemical desorption of an RGD-containing oligopeptide.

    PubMed

    Mochizuki, Naoto; Kakegawa, Takahiro; Osaki, Tatsuya; Sadr, Nasser; Kachouie, Nezamoddin N; Suzuki, Hiroaki; Fukuda, Junji

    2013-03-01

    This paper describes a non-invasive approach for efficient detachment of cells adhered to a gold substrate via a specific oligopeptide. Detachment is effected by an electrical stimulus. The oligopeptide contains cysteine, which spontaneously forms a gold-thiolate bond on a gold surface. This chemical adsorption reaches > 95% equilibrium within 10 min after immersion of a gold-coated substrate in a solution containing the peptide. The peptide is reversibly desorbed from the surface within 5 min of application of a negative electrical potential. By taking advantage of this simple adsorption and desorption mechanism, cells can be grown on an oligopeptide-functionalized gold surface and can be efficiently detached as single cells or cell sheets by application of a negative electrical potential. This approach was also applied to the surface of gold-coated microrods. Capillary-like microchannels were formed in collagen gel by transferring endothelial cells to the internal surfaces of the microchannels. During subsequent perfusion culture, the enveloped endothelial cells migrated into the collagen gel and formed luminal structures, which sprouted from the microchannels. This technique has the potential to provide a fundamental tool for the engineering of thick cell sheets as well as vascularized tissues and organs.

  14. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  15. Acetyl Radical Generation in Cigarette Smoke: Quantification and Simulations

    PubMed Central

    Hu, Na; Green, Sarah A.

    2014-01-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography–mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10–150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commerial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass filber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acealdehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke. PMID:25253993

  16. H(+)/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport.

    PubMed

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko; Akagawa, Mitsugu; Tsuji-Naito, Kentaro

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H(+) gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. Copyright © 2016 DHC corporation. Published by Elsevier Inc. All rights reserved.

  17. Limited stability of microcystins in oligopeptide compositions of Microcystis aeruginosa (Cyanobacteria): implications in the definition of chemotypes.

    PubMed

    Agha, Ramsy; Cirés, Samuel; Wörmer, Lars; Quesada, Antonio

    2013-06-06

    The occurrence of diverse oligopeptides in cyanobacteria, including the cyanotoxins microcystins, has been recently used to classify individual clones into sub-specific oligopeptide chemotypes, whose composition and dynamics modulate microcystin concentrations in cyanobacterial blooms. Cyanobacterial chemotyping allows the study of the ecology of chemotypical subpopulations, which have been shown to possess dissimilar ecological traits. However, the stability of chemotypes under changing abiotic conditions is usually assumed and has not been assessed in detail. We monitored oligopeptide patterns of three strains of Microcystis aeruginosa under different nutrient and light conditions. MALDI-TOF MS revealed alterations in the microcystins signatures under N and P poor conditions and high light intensities (150 and 400 μmol photons m-2s-1). Variations in the general oligopeptide composition were caused by a gradual disappearance of microcystins with low relative intensity signals from the fingerprint. The extent of such variations seems to be closely related to physiological stress caused by treatments. Under identical clonal compositions, alterations in the oligopeptide fingerprint may be misinterpreted as apparent shifts in chemotype succession. We discuss the nature of such variations, as well as the consequent implications in the use of cyanobacterial chemotyping in studies at the subpopulation level and propose new guidance for the definition of chemotypes as a consistent subpopulation marker.

  18. Histone acetylation in heterochromatin assembly

    PubMed Central

    Kim, Jeong-Hoon; Workman, Jerry L.

    2010-01-01

    Histone acetylation is generally considered a mark involved in activating gene expression by making chromatin structures less compact. In the April 1, 2010, issue of Genes & Development, Xhemalce and Kouzarides (pp. 647–652) demonstrate that the acetylation of histone H3 at Lys 4 (H3K4) plays a role in the formation of repressive heterochromatin in Schizosaccharomyces pombe. H3K4 acetylation mediates a switch of chromodomain proteins associated with methylated H3K9 during heterochromatin assembly. PMID:20395362

  19. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chunaram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl-CoA concentration in vivo and acetyl-CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl-CoA.

  20. An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver.

    PubMed

    Xu, Leilei; Wang, Fang; Xu, Ying; Wang, Yi; Zhang, Cuiping; Qin, Xue; Yu, Hongxiu; Yang, Pengyuan

    2015-12-07

    As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism. Acetylation is a prevalent modification process in enzymes. Protein acetylation modification occurs in sub-stoichiometric amounts; therefore extracting biologically meaningful information from these acetylation sites requires an adaptable, sensitive, specific, and robust method for their quantification. In this work, we combine immunoassays and multiple reaction monitoring-mass spectrometry (MRM-MS) technology to develop an absolute quantification for acetylation modification. With this hybrid method, we quantified the acetylation level of metabolic enzymes, which could demonstrate the regulatory mechanisms of the studied enzymes. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of protein acetylation in physiology and pathophysiology.

  1. Quantifying resilience

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.

    2016-01-01

    Several frameworks to operationalize resilience have been proposed. A decade ago, a special feature focused on quantifying resilience was published in the journal Ecosystems (Carpenter, Westley & Turner 2005). The approach there was towards identifying surrogates of resilience, but few of the papers proposed quantifiable metrics. Consequently, many ecological resilience frameworks remain vague and difficult to quantify, a problem that this special feature aims to address. However, considerable progress has been made during the last decade (e.g. Pope, Allen & Angeler 2014). Although some argue that resilience is best kept as an unquantifiable, vague concept (Quinlan et al. 2016), to be useful for managers, there must be concrete guidance regarding how and what to manage and how to measure success (Garmestani, Allen & Benson 2013; Spears et al. 2015). Ideas such as ‘resilience thinking’ have utility in helping stakeholders conceptualize their systems, but provide little guidance on how to make resilience useful for ecosystem management, other than suggesting an ambiguous, Goldilocks approach of being just right (e.g. diverse, but not too diverse; connected, but not too connected). Here, we clarify some prominent resilience terms and concepts, introduce and synthesize the papers in this special feature on quantifying resilience and identify core unanswered questions related to resilience.

  2. Fatal Intoxication with Acetyl Fentanyl.

    PubMed

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. © 2015 American Academy of Forensic Sciences.

  3. Viscoelastic Properties and Nano-scale Structures of Composite Oligopeptide-Polysaccharide Hydrogels

    PubMed Central

    Hyland, Laura L.; Taraban, Marc B.; Feng, Yue; Hammouda, Boualem; Yu, Y. Bruce

    2012-01-01

    Biocompatible and biodegradable peptide hydrogels are drawing increasing attention as prospective materials for human soft tissue repair and replacement. To improve the rather unfavorable mechanical properties of our pure peptide hydrogels, in this work we examined the possibility of creating a double hydrogel network. This network was created by means of the co-assembly of mutually attractive but self-repulsive oligopeptides within an already existing fibrous network formed by the charged, biocompatible polysaccharides chitosan, alginate, and chondroitin. Using dynamic oscillatory rheology experiments, it was found that the co-assembly of the peptides within the existing polysaccharide network resulted in a less stiff material as compared to the pure peptide networks (the elastic modulus G′ decreased from 90 kPa to 10 kPa). However, these composite oligopeptide-polysaccharide hydrogels were characterized by a greater resistance to deformation (the yield strain γ grew from 4 % to 100 %). Small-angle neutron scattering (SANS) was used to study the 2D cross-sectional shapes of the fibers, their dimensional characteristics and the mesh sizes of the fibrous networks. Differences in material structures found with SANS experiments confirmed rheology data showing that incorporation of the peptides dramatically changed the morphology of the polysaccharide network. The resulting fibers were structurally very similar to those forming the pure peptide networks, but formedless stiff gels because of their markedly greater mesh sizes. Together, these findings suggest an approach for the development of highly deformation-resistant biomaterials. PMID:21994046

  4. Horizontally acquired oligopeptide transporters favour adaptation of Saccharomyces cerevisiae wine yeast to oenological environment.

    PubMed

    Marsit, Souhir; Sanchez, Isabelle; Galeote, Virginie; Dequin, Sylvie

    2016-04-01

    In the past decade, horizontal gene transfer (HGT) has emerged as a major evolutionary process that has shaped the genome of Saccharomyces cerevisiae wine yeasts. We recently showed that a large Torulaspora microellipsoides genomic island carrying two oligopeptide transporters encoded by FOT genes increases the fitness of wine yeast during fermentation of grape must. However, the impact of these genes on the metabolic network of S. cerevisiae remained uncharacterized. Here we show that Fot-mediated peptide uptake substantially affects the glutamate node and the NADPH/NADP(+) balance, resulting in the delayed uptake of free amino acids and altered profiles of metabolites and volatile compounds. Transcriptome analysis revealed that cells using a higher amount of oligopeptides from grape must are less stressed and display substantial variation in the expression of genes in the central pathways of carbon and nitrogen metabolism, amino acid and protein biosynthesis, and the oxidative stress response. These regulations shed light on the molecular and metabolic mechanisms involved in the higher performance and fitness conferred by the HGT-acquired FOT genes, pinpointing metabolic effects that can positively affect the organoleptic balance of wines.

  5. A novel fungal family of oligopeptide transporters identified by functional metatranscriptomics of soil eukaryotes.

    PubMed

    Damon, Coralie; Vallon, Laurent; Zimmermann, Sabine; Haider, Muhammad Z; Galeote, Virginie; Dequin, Sylvie; Luis, Patricia; Fraissinet-Tachet, Laurence; Marmeisse, Roland

    2011-12-01

    Functional environmental genomics has the potential to identify novel biological functions that the systematic sequencing of microbial genomes or environmental DNA may fail to uncover. We targeted the functions expressed by soil eukaryotes using a metatranscriptomic approach based on the use of soil-extracted polyadenylated messenger RNA to construct environmental complementary DNA expression libraries. Functional complementation of a yeast mutant defective in di/tripeptide uptake identified a novel family of oligopeptide transporters expressed by fungi. This family has a patchy distribution in the Basidiomycota and Ascomycota and is present in the genome of a Saccharomyces cerevisiae wine strain. High throughput phenotyping of yeast mutants expressing two environmental transporters showed that they both displayed broad substrate specificity and could transport more than 60-80 dipeptides. When expressed in Xenopus oocytes one environmental transporter induced currents upon dipeptide addition, suggesting proton-coupled co-transport of dipeptides. This transporter was also able to transport specifically cysteine. Deletion of the two copies of the corresponding gene family members in the genome of the wine yeast strain severely reduced the number of dipeptides that it could assimilate. These results demonstrate that these genes are functional and can be used by fungi to efficiently scavenge the numerous, low concentration, oligopeptides continuously generated in soils by proteolysis.

  6. Directed self-assembly of π-conjugated oligopeptides for supramolecular electronics

    NASA Astrophysics Data System (ADS)

    Li, Bo; Li, Songsong; Zhou, Yuecheng; Tovar, John; Wilson, William; Schroeder, Charles

    The directed mesoscale engineering of nanoscale building blocks holds enormous promise to catalyze a revolution in new functional materials for advanced electronics. Bio-inspired systems can play a key role in this effort due to their inherent ``programmable'' function. In this work, oligopeptide with defined flanking sequences was appended to π-conjugated units, thereby directing their assembly processes in a designed manner. By utilizing custom-designed microfluidic devices and controlled acid vapor diffusion, the self-assembly rate was directed and precisely tuned. Notably, the kinetics was found to play a key role in the morphology of self-assembled π-conjugated oligopeptides. The influence of flanking peptide sequences and π-conjugated core-core interactions on the self-assembly nanostructure was systematically investigated. Importantly, the electronic properties of the synthetic peptide assembly was explored by integration as the active layer of a field effect transistor. The presented study offers insights to the design and fabrication of supramolecular electronics.

  7. Oligopeptides as External Molecular Signals Affecting Growth and Death in Animal Cell Cultures

    NASA Astrophysics Data System (ADS)

    Franek, František

    Protein hydrolysates in the form of oligopeptides and free amino acids are widely used in animal cell culture for the production of therapeutic proteins. The primary function of protein hydrolysates is to provide nitrogen source and at the same they may increase cell density and higher yields of proteins. It is interesting to note that some peptides exclusively increase cell density, others improve both cell density and product yield, and some peptides suppress cell growth and enhance the product yield. Thus it is very clear that oligopeptides act as external molecular signals affecting growth and death. However, the effect of peptide size and amino acid composition in the protein hydrolysates and the exact mechanism as how this is achieved is still not elucidated in animal cells. In this chapter we describe our work on the fractionation of protein hydrolysates and the use of synthetic peptides on hybridomas. This research work shed some insight about the peptide size, amino acids, concentration and composition of peptides, feeding strategies for peptides but by any means this is not complete and more work needs to be done. For example it is essential to extend this type of work with peptides larger than tetra and penta peptides and with different cell lines to elucidate the mode of action of peptides.

  8. Targeted drug delivery to bone: pharmacokinetic and pharmacological properties of acidic oligopeptide-tagged drugs.

    PubMed

    Takahashi-Nishioka, Tatsuo; Yokogawa, Koichi; Tomatsu, Shunji; Nomura, Masaaki; Kobayashi, Shinjiro; Miyamoto, Ken-Ichi

    2008-03-01

    Site-specific drug delivery to bone is considered to be achievable by utilizing acidic amino acid homopeptides. We found that fluorescence-labeled acidic amino acid (L-Asp or L-Glu) homopeptides containing six or more residues bound strongly to hydroxyapatite, which is a major component of bone, and were selectively delivered to and retained in bone after systemic administration. We explored the applicability of this result for drug delivery by conjugation of estradiol and levofloxacin with an L-Asp hexapeptide. We also similarly tagged an enzyme, tissue-nonspecific alkaline phosphatase, to see whether this would improve the efficacy of enzyme replacement therapy. The L-Asp hexapeptide-tagged drugs, including the enzyme, were selectively delivered to bone in comparison with the untagged drugs. It was expected that the ester linkage to the hexapeptide would be susceptible to hydrolysis in situ, releasing the drug or enzyme from the acidic oligopeptide. An in vivo experiment confirmed the efficacy of L-Asp hexapeptide-tagged estradiol and levofloxacin, although there was some loss of bioactivity of estradiol and levofloxacin in vitro, suggesting that the acidic hexapeptide was partly removed by hydrolysis in the body after delivery to bone. The adverse effect of estradiol on the uterus was greatly reduced by conjugation to the hexapeptide. These results support the usefulness of acidic oligopeptides as bone-targeting carriers for therapeutic agents. We present some pharmacokinetic and pharmacological properties of the L-Asp hexapeptide-tagged drugs and enzyme.

  9. Oligopeptide complex for targeted non-viral gene delivery to adipocytes

    NASA Astrophysics Data System (ADS)

    Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee

    2014-12-01

    Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

  10. Prevention of skeletal muscle atrophy in vitro using anti-ubiquitination oligopeptide carried by atelocollagen.

    PubMed

    Kawai, Nobuhiko; Hirasaka, Katsuya; Maeda, Tasuku; Haruna, Marie; Shiota, Chieko; Ochi, Arisa; Abe, Tomoki; Kohno, Shohei; Ohno, Ayako; Teshima-Kondo, Sigetada; Mori, Hiroyo; Tanaka, Eiji; Nikawa, Takeshi

    2015-05-01

    Skeletal muscle atrophy occurs when the rate of protein degradation exceeds that of protein synthesis in various catabolic conditions, such as fasting, disuse, aging, and chronic diseases. Insulin-like growth factor-1 (IGF-1) signaling stimulates muscle growth and suppresses muscle protein breakdown. In atrophied muscles, ubiquitin ligase, Cbl-b, increases and stimulates the ubiquitination and degradation of IRS-1, an intermediate in IGF-1 signaling pathway, resulting in IGF-1 resistance. In this study, we evaluated the efficacy of atelocollagen (ATCOL)-transported anti-ubiquitination oligopeptide (Cblin: Cbl-b inhibitor) (consisting of tyrosine phosphorylation domain of IRS-1) in starved C2C12 myotubes. The amount of IRS-1 protein was lower in starved versus unstarved myotubes. The Cblin-ATCOL complex inhibited IRS-1 degradation in a concentration-dependent manner. Myotubes incubated with Cblin-ATCOL complex showed significant resistance to starvation-induced atrophy (p<0.01). Furthermore, the Cblin-ATCOL complex significantly inhibited any decrease in Akt phosphorylation (p<0.01) and localization of FOXO3a to the nucleus in starved myotubes. These results suggest that Cblin prevented starvation-induced C2C12 myotube atrophy by maintaining the IGF-1/Akt/FOXO signaling. Therefore, attachment of anti-ubiquitination oligopeptide, Cblin, to ATCOL enhances its delivery to myotubes and could be a potentially effective strategy in the treatment of atrophic myopathies.

  11. Quantifying Transmission.

    PubMed

    Woolhouse, Mark

    2017-07-01

    Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.

  12. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli

    PubMed Central

    Castaño-Cerezo, Sara; Bernal, Vicente; Post, Harm; Fuhrer, Tobias; Cappadona, Salvatore; Sánchez-Díaz, Nerea C; Sauer, Uwe; Heck, Albert JR; Altelaar, AF Maarten; Cánovas, Manuel

    2014-01-01

    Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation. PMID:25518064

  13. H{sup +}/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport

    SciTech Connect

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko; Akagawa, Mitsugu; Tsuji-Naito, Kentaro

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. -- Highlights: •PEPT2 is expressed in keratinocytes, which are more common than other skin cells. •Immunolocalization analysis using human skin revealed epidermal PEPT2 localization. •Keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. •Di- and tripeptide pass actively through the epidermis.

  14. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  15. N-ACETYL GROUPS IN VITELLENIN,

    DTIC Science & Technology

    The presence of acetyl groups in vitellenin was confirmed by hydrazinolysis according to the DNP method of Phillips. After hydrazinolysis of 10-30...hydrazinolysis at room temperature for 1 hour, vitellenin contains N- acetyl , but no Oacetyl, groups. (Author)

  16. Generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of oligopeptides.

    PubMed

    Shi, X; Dalal, N S; Kasprzak, K S

    1992-11-15

    The generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of several oligopeptides was investigated by electron spin resonance (ESR) utilizing 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap. Incubation of Ni2+ with cumene hydroperoxide or t-butyl hydroperoxide did not generate any detectable free radical. In the presence of glycylglycylhistidine (GlyGlyHis), however, Ni2+ generated cumene peroxyl (ROO.) radical from cumene hydroperoxide, with the free radical generation reaching its saturation level within about 3 min. The reaction was first order with respect to both cumene hydroperoxide and Ni2+. Similar results were obtained using t-butyl hydroperoxide, but the yield of t-butyl peroxyl radical generation was about 7-fold lower. Other histidine-containing oligopeptides such as beta-alanyl-L-histidine (carnosine), gamma-aminobutyryl-L-histidine (homocarnosine), and beta-alanyl-3-methyl-L-histidine (anserine) caused the generation of both cumene alkyl (R.) and cumene alkoxyl (RO.) radicals in the reaction of Ni2+ with cumene hydroperoxide. Similar results were obtained using t-butyl hydroperoxide. Glutathione also caused generation of R. and RO. radicals in the reaction of Ni2+ with cumene hydroperoxide but the yield was approximately 25-fold greater than that produced by the histidine-containing peptides, except GlyGlyHis. The ratio of DMPO/R. and DMPO/RO. produced with glutathione and cumene hydroperoxide was approximately 3:1. Essentially the same results were obtained using t-butyl hydroperoxide except that the ratio of DMPO/R. to DMPO/RO. was approximately 1:1. The free radical generation from cumene hydroperoxide reached its saturation level almost instantaneously while in the case of t-butyl hydroperoxide, the saturation level was reached in about 3 min. In the presence of oxidized glutathione, the Ni2+/cumene hydroperoxide system caused DMPO/.OH generation from DMPO without forming free hydroxyl radical. Since glutathione

  17. Bacterial protein acetylation: new discoveries unanswered questions.

    PubMed

    Wolfe, Alan J

    2016-05-01

    Nε-acetylation is emerging as an abundant post-translational modification of bacterial proteins. Two mechanisms have been identified: one is enzymatic, dependent on an acetyltransferase and acetyl-coenzyme A; the other is non-enzymatic and depends on the reactivity of acetyl phosphate. Some, but not most, of those acetylations are reversed by deacetylases. This review will briefly describe the current status of the field and raise questions that need answering.

  18. Protein acetylation in archaea, bacteria, and eukaryotes.

    PubMed

    Soppa, Jörg

    2010-09-16

    Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which--Alba--was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  19. Quantifying entanglement

    NASA Astrophysics Data System (ADS)

    Thapliyal, Ashish Vachaspati

    Entanglement is an essential element of quantum mechanics. The aim of this work is to explore various properties of entanglement from the viewpoints of both physics and information science, thus providing a unique picture of entanglement from an interdisciplinary point of view. The focus of this work is on quantifying entanglement as a resource. We start with bipartite states, proposing a new measure of bipartite entanglement called entanglement of assistance, showing that bound entangled states of rank two cannot exist, exploring the number of members required in the ensemble achieving the entanglement of formation and the possibility of bound entangled states that are negative under partial transposition (NPT bound entangled states). For multipartite states we introduce the notions of reducibilities and equivalences under entanglement non-increasing operations and we study the relations between various reducibilities and equivalences such as exact and asymptotic LOCC, asymptotic LOCCq, cLOCC, LOc, etc. We use this new language to attempt to quantify entanglement for multiple parties. We introduce the idea of entanglement span and minimal entanglement generating set and entanglement coefficients associated with it which are the entanglement measures, thus proposing a multicomponent measure of entanglement for three or more parties. We show that the class of Schmidt decomposable states have only GHZM or Cat-like entanglement. Further we introduce the class of multiseparable states for quantification of their entanglement and prove that they are equivalent to the Schmidt decomposable states, and thus have only Cat-like entanglement. We further explore the conditions under which LOCO equivalences are possible for multipartite isentropic states. We define Cat-distillability, EPRB-distillability and distillability for multipartite mixed states and show that distillability implies EPRB-distillability. Further we show that all non-factorizable pure states are Cat

  20. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633

    PubMed Central

    Borisova, Svetlana A.; Circello, Benjamin T.; Zhang, Jun Kai; van der Donk, Wilfred A.; Metcalf, William W.

    2010-01-01

    Summary Rhizocticins are phosphonate oligopeptide antibiotics containing the C-terminal non-proteinogenic amino acid (Z)-l-2-amino-5-phosphono-3-pentenoic acid (APPA). Here we report the identification and characterization of the rhizocticin biosynthetic gene cluster (rhi) in Bacillus subtilis ATCC6633. Rhizocticin B was heterologously produced in the non-producer strain Bacillus subtilis 168. A biosynthetic pathway is proposed based on bioinformatics analysis of the rhi genes. One of the steps during the biosynthesis of APPA is an unusual aldol reaction between phosphonoacetaldehyde and oxaloacetate catalyzed by an aldolase homolog RhiG. Recombinant RhiG was prepared and the product of an in vitro enzymatic conversion was characterized. Access to this intermediate allows for biochemical characterization of subsequent steps in the pathway. PMID:20142038

  1. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter

    PubMed Central

    Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.

    2016-01-01

    Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  2. FRET study in oligopeptide-linked donor-acceptor system in PVA matrix

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Mandecki, Wlodek; Li, Ji; Gryczynski, Zygmunt; Borejdo, Julian; Gryczynski, Ignacy; Fudala, Rafal

    2016-12-01

    An oligopeptide: Lys-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys-NH2, cleaved specifically by a matrix metalloproteinase 9 (MMP-9) at the Ser-Leu bond, was labeled on the ɛ-NH2 groups of lysine with donor (5, 6 TAMRA) and acceptor (HiLyte647) dye. The donor control was a peptide labeled with 5, 6 TAMRA only on the C-terminal lysine, and the acceptor control was free HiLyte647. Following three products were studied by dissolving in 10% (w/w) poly(vinyl alcohol) and dried on glass slides forming 200 micron films. Absorption spectra of the films show full additivity of donor and acceptor absorptions. A strong Fluorescence Resonance Energy Transfer (FRET) with an efficiency of about 85% was observed in the fluorescence emission and excitation spectra. The lifetime of the donor was shorter and heterogeneous compared with the donor control.

  3. Free Energy Landscapes of Alanine Oligopeptides in Rigid-Body and Hybrid Water Models.

    PubMed

    Nayar, Divya; Chakravarty, Charusita

    2015-08-27

    Replica exchange molecular dynamics is used to study the effect of different rigid-body (mTIP3P, TIP4P, SPC/E) and hybrid (H1.56, H3.00) water models on the conformational free energy landscape of the alanine oligopeptides (acAnme and acA5nme), in conjunction with the CHARMM22 force field. The free energy landscape is mapped out as a function of the Ramachandran angles. In addition, various secondary structure metrics, solvation shell properties, and the number of peptide-solvent hydrogen bonds are monitored. Alanine dipeptide is found to have similar free energy landscapes in different solvent models, an insensitivity which may be due to the absence of possibilities for forming i-(i + 4) or i-(i + 3) intrapeptide hydrogen bonds. The pentapeptide, acA5nme, where there are three intrapeptide backbone hydrogen bonds, shows a conformational free energy landscape with a much greater degree of sensitivity to the choice of solvent model, though the three rigid-body water models differ only quantitatively. The pentapeptide prefers nonhelical, non-native PPII and β-sheet populations as the solvent is changed from SPC/E to the less tetrahedral liquid (H1.56) to an LJ-like liquid (H3.00). The pentapeptide conformational order metrics indicate a preference for open, solvent-exposed, non-native structures in hybrid solvent models at all temperatures of study. The possible correlations between the properties of solvent models and secondary structure preferences of alanine oligopeptides are discussed, and the competition between intrapeptide, peptide-solvent, and solvent-solvent hydrogen bonding is shown to be crucial in the relative free energies of different conformers.

  4. A Quantitative Study on the in-vitro and in-vivo Acetylation of High Mobility Group A1 Proteins

    PubMed Central

    Zhang, Qingchun; Zhang, Kangling; Zou, Yan; Perna, Avi; Wang, Yinsheng

    2007-01-01

    High mobility group (HMG) A1 proteins are subject to a number of post-translational modifications, which may regulate their function in gene transcription and other cellular processes. We examined, by using mass spectrometry, the acetylation of HMGA1a and HMGA1b proteins induced by histone acetyltransferases p300 and PCAF in vitro and in PC-3 human prostate cancer cells in vivo. It turned out that five lysine residues in HMGA1a, i.e., Lys-14, Lys-64, Lys-66, Lys-70, and Lys-73, could be acetylated by both p300 and PCAF. We further quantified the level of acetylation by analyzing, with LC-MS/MS, the proteolytic peptides of the in-vitro or in-vivo acetylated HMGA1 proteins where the unmodified lysine residues were chemically derivatized with a perdeuterated acetyl group. Quantification results revealed that p300 and PCAF exhibited different site preferences for the acetylation; the preference of p300 acetylation followed the order of Lys-64~Lys-70 > Lys-66 > Lys-14~Lys73, whereas the selectivity of PCAF acetylation followed the sequence of Lys-70~Lys-73 > Lys-64~Lys-66 > Lys-14. HMGA1b was acetylated in a very similar fashion as HMGA1a. We also demonstrated that C-terminal phosphorylation of HMGA1 proteins did not affect the in-vitro acetylation of the two proteins by either p300 or PCAF. Moreover, we examined the acetylation of lysine residues in HMGA1a and HMGA1b isolated from PC-3 human prostate cancer cells. Our results showed that all the above five lysine residues were also acetylated in vivo, with Lys-64, Lys-66 and Lys-70 in HMGA1a exhibiting higher levels of acetylation than Lys-14 and Lys-73. PMID:17627840

  5. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    PubMed Central

    Lundby, Alicia; Lage, Kasper; Weinert, Brian T.; Bekker-Jensen, Dorte B.; Secher, Anna; Skovgaard, Tine; Kelstrup, Christian D.; Dmytriyev, Anatoliy; Choudhary, Chunaram; Lundby, Carsten; Olsen, Jesper V.

    2014-01-01

    SUMMARY Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity. PMID:22902405

  6. Remarkable difference of phase transition behaviors between Langmuir monolayers and aqueous bilayer vesicles of oligopeptide-carrying lipids.

    PubMed

    Ariga, Katsuhiko; Nakanishi, Takashi; Kawanami, Shin-ichi; Kosaka, Takatoshi; Kikuchi, Jun-ichi

    2006-06-01

    In this research, we synthesized six kinds of oligopeptide-carrying lipids which possessing glycine, diglycine, triglycine, alanine, dialanine, and trialanine residues (see Figure 1 for their formulae), and systematically investigated their phase transition behaviors both at the air-water interface and in aqueous bilayer vesicles. pi-A Isotherms of Langmuir monolayers of these lipids were measured at the air-water interfaces under varied temperature conditions and were analyzed based on compressibility of the monolayers. Above the specific temperature, the transition pressure from its expanded phase to condensed phase is not distinguishable with the collapse pressure of the monolayer, i.e., the monolayer collapses directly from the expanded phase without forming the condensed phase. This temperature was defined as the phase transition temperature of the monolayer, which was compared with the phase transition temperature of the corresponding bilayer vesicle in water. The phase transition temperatures of the oligoglycine-carrying lipids and oligoalanine-carrying lipids are significantly different at the air-water interface, while the corresponding difference is not obvious in their aqueous bilayer vesicles. Consideration based on molecular structures suggests necessity of the water mediation for effective formation of hydrogen bonding between the oligopeptide residues directly connected to dialkyl chains. Therefore, the differences in water accessibility to the films may cause the difference of the phase transition behaviors of the oligopeptide-carrying lipids between the Langmuir monolayers and the aqueous bilayer vesicles. Although the proposed mechanism is not fully supported by experimental evidences, the data presented here clearly demonstrated the presence of significant difference of the phase transition properties between the Langmuir monolayers at the air-water interface and aqueous bilayer vesicles of the oligopeptide-carrying lipids.

  7. Investigation Into Efficiency of a Novel Glycol Chitosan-Bestatin Conjugate to Protect Thymopoietin Oligopeptides From Enzymatic Degradation.

    PubMed

    Zhang, Yong; Feng, Jiao; Cui, Lili; Zhang, Yuebin; Li, Wenzhao; Li, Chunlei; Shi, Nianqiu; Chen, Yan; Kong, Wei

    2016-02-01

    In this study, a novel glycol chitosan (GCS)-bestatin conjugate was synthesized and evaluated to demonstrate its efficacy in protecting thymopoietin oligopeptides from aminopeptidase-mediated degradation. Moreover, the mechanism and relative susceptibility of three thymopoietin oligopeptides, thymocartin (TP4), thymopentin (TP5), and thymotrinan (TP3), to enzymatic degradation were investigated and compared at the molecular level. Initial investigations indicated that formation of the GCS-bestatin conjugate, with a substitution degree of 7.0% (moles of bestatin per mole of glycol glucosamine unit), could significantly protect all 3 peptides from aminopeptidase-mediated degradation in a concentration-dependent manner. The space hindrance and loss of one pair of hydrogen bonds, resulting from the covalent conjugation of chitosan with bestatin, did not affect the specific interaction between bestatin and aminopeptidase. Moreover, TP4 displayed a higher degradation clearance compared with those of TP5 and TP3 under the same experimental conditions. The varying levels of susceptibility of these 3 peptides to aminopeptidase (TP4 > TP5 > TP3) were closely related to differences in their binding energies to enzyme, which mainly involved Van der Waals forces and electrostatic interactions, as supported by the results of molecular dynamics simulations. These results suggest that GCS-bestatin conjugate might be useful in the delivery of thymopoietin oligopeptides by mucosal routes, and that TP3 and TP5 are better alternatives to TP4 for delivery because of their robust resistance against enzymatic degradation.

  8. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs.

    PubMed

    Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A; Munusamy, Murugan A; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro

    2017-03-23

    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.

  9. Simultaneous analysis of seven oligopeptides in microbial fuel cell by micro-fluidic chip with reflux injection mode.

    PubMed

    Wang, Wei; Wang, Zijian; Lin, Xiuli; Wang, ZongWen; Fu, FengFu

    2012-10-15

    In this work, a reflux injection mode for the cross form micro-fluidic chip was studied. This injection mode could flexibly control the length of sample plug from less than one channel width (<83 μm) to tens of channel widths (millimeter-sized) by adjusting the injection time. Namely, the separation resolution or sample detection sensitivity could be selectively improved by changing injection time. Composed of four steps, the reflux injection mode alleviated the electrophoretic sampling bias and prevented sample leakage successfully. On a micro-fluidic chip coupled with laser induced fluorescence (LIF) detector, the injection mode was applied to separate seven oligopeptides, namely GG, GL, RPP, KPV, VKK, WYD and YWS. All analytes were completely separated and detected within 12 min with detection limits of 25-625 nmol/L. At last, the proposed method had been successfully applied to detect oligopeptides consumed by bacillus licheniformis in anode chamber of microbial fuel cell (MFC) to study the effect of oligopeptides on the MFC running.

  10. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs

    PubMed Central

    Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro

    2017-01-01

    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells. PMID:28332572

  11. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    PubMed

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-03

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.

  12. Acetylation

    Treesearch

    Roger M. Rowell

    2006-01-01

    Wood was designed after millions of years of evolution, to perform in a wet environment, and nature is programmed to recycle it, in a timely way, back to the basic building blocks of carbon dioxide and water through biological, thermal, aqueous, photochemical, chemical, and mechanical degredations. We learned to use wood, accepting that it changes dimensions with...

  13. Postdiffusion of oligo-peptide within exponential growth multilayer films for localized peptide delivery.

    PubMed

    Wang, Xuefei; Ji, Jian

    2009-10-06

    The multilayers of poly(L-lysine) (PLL) and hyaluronic acid (HA) were constructed by alternating deposition of PLL at high pH and HA at low pH. The exponential growth of the multilayer was proved to be amplified by increasing the pH difference between the two deposition solutions. The exponential growth multilayers of PLL/HA assembled at different pH were utilized as reservoirs for loading a trans-activating transcriptional factor (TAT) peptide. The confocal laser scanning microscopy (CLSM) results indicated that the FITC-labeled TAT could diffuse throughout the exponentially growing PLL/HA film. The amount of peptide embedded within multilayer could be adjusted by both multilayer assembly pH and the TAT loading pH. Compared with (PLL/HA 6.5/6.5)5 multilayer (PLL/HA a/b means that the multilayer film was constructed by using PLL at pH a and HA at pH b), the (PLL/HA 9.5/2.9)5 film can be loaded with more TAT peptide at the same loading pH 6.5. The excess of positively charged TAT peptide within (PLL/HA 9.5/2.9)5 film could not only be ascribed to its extraordinary thickness but also be attributed to its uncompensated negative charge density enhanced by the pH difference between film buildup and peptide loading process. Increasing of the TAT loading pH from 6.5 to 9.5, which increases the pH difference between multilayer assembly and peptide loading process, enhances the uncompensated charge density within (PLL/HA 9.5/2.9)5 film and elevates the peptide density from 13.8 to 25.0 microg/cm2. Compared with direct layer-by-layer assembly of TAT and HA, the postdiffusion of TAT into (PLL/HA 9.5/2.9)5 film was loaded much more peptide. The postdiffusion of peptide into a rapid growth multilayer can be more favorable to load and sustainedly release functional oligo-peptide. The cell culture results indicated that the TAT embedded within the film maintained the ability to traverse across the Hep G2 cell membrane. The functionalized (PLL/HA 9.5/2.9)5 TAT 9.5 film was more

  14. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  15. Acetylation of prostaglandin synthase by aspirin.

    PubMed Central

    Roth, G J; Stanford, N; Majerus, P W

    1975-01-01

    When microsomes of sheep or bovine seminal vesicles are incubated with [acetyl-3H]aspirin (acetyl salicylic acid), 200 Ci/mol, we observe acetylation of a single protein, as measured by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The protein has a molecular weight of 85,000 and corresponds to a similar acetylated protein found in the particulate fraction of aspirin-treated human platelets. The aspirin-mediated acetylation reaction proceeds with the same time course and at the same concentration as does the inhibition of prostaglandin synthase (cyclo-oxygenase) (EC 1.14.99.1; 8,11,14-eicosatrienoate, hydrogen-donor:oxygen oxidoreductase) by the drug. At 100 muM aspirin, 50% inhibition of prostaglandin synthase and 50% of maximal acetylation are observed after 15 min at 37 degrees. Furthermore, the substrate for cyclo-oxygenase, arachidonic acid, inhibits protein acetylation by aspirin at concentrations (50% inhibition at 10-30 muM) which correlate with the Michaelis constant of arachidonic acid as a substrate for cyclooxygenase. Arachidonic acid analogues and indomethacin inhibit the acetylation reaction in proportion to their effectiveness as cyclo-oxygenase inhibitors. The results suggest that aspirin acts as an active-site acetylating agent for the enzyme cyclo-oxygenase. This action of aspirin may account for its anti-inflammatory and anti-platelet action. PMID:810797

  16. Acetylation of woody lignocellulose: significance and regulation

    PubMed Central

    Pawar, Prashant Mohan-Anupama; Koutaniemi, Sanna; Tenkanen, Maija; Mellerowicz, Ewa J.

    2013-01-01

    Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase) or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose toward improved saccharification. In this review we: (1) summarize literature on lignocellulose acetylation in different tree species, (2) present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, (3) describe plant proteins involved in lignocellulose O-acetylation, (4) give examples of microbial enzymes capable to de-acetylate lignocellulose, and (5) discuss prospects for exploiting these enzymes in planta to modify xylan acetylation. PMID:23734153

  17. Contributions of the Histidine Side Chain and the N-terminal α-Amino Group to the Binding Thermodynamics of Oligopeptides to Nucleic Acids as a Function of pH

    PubMed Central

    Ballin, Jeff D.; Prevas, James P.; Ross, Christina R.; Toth, Eric A.; Wilson, Gerald M.; Record, M. Thomas

    2010-01-01

    Interactions of histidine with nucleic acid phosphates and histidine pKa shifts make important contributions to many protein-nucleic acid binding processes. To characterize these phenomena in simplified systems, we quantified binding of a histidine-containing model peptide HWKK (+NH3-His-Trp-Lys-Lys-NH2) and its lysine analog KWKK (+NH3-Lys-Trp-Lys-Lys-NH2) to a single-stranded RNA model, polyuridylate (polyU), by changes in tryptophan fluorescence as a function of salt concentration and pH. For both HWKK and KWKK, equilibrium binding constants, Kobs, and magnitudes of log-log salt derivatives SKobs ≡ (∂logKobs/∂log[Na+]), decreased with increasing pH in the manner expected for a titration curve model in which deprotonation of the histidine and α-amino groups weakens binding and reduces its salt-dependence. Fully protonated HWKK and KWKK exhibit the same Kobs and SKobs within uncertainty, and these SKobs values are consistent with limiting-law polyelectrolyte theory for +4 cationic oligopeptides binding to single-stranded nucleic acids. The pH-dependence of HWKK binding to polyU provides no evidence for pKa shifts nor any requirement for histidine protonation, in stark contrast to the thermodynamics of coupled protonation often seen for these cationic residues in the context of native protein structure where histidine protonation satisfies specific interactions (e.g., salt-bridge formation) within highly complementary binding interfaces. The absence of pKa shifts in our studies indicates that additional Coulombic interactions across the nonspecific-binding interface between RNA and protonated histidine or the α-amino group are not sufficient to promote proton uptake for these oligopeptides. We present our findings in the context of hydration models for specific versus nonspecific nucleic acid binding. PMID:20108951

  18. Characterization and Prediction of Lysine (K)-Acetyl-Transferase Specific Acetylation Sites*

    PubMed Central

    Li, Tingting; Du, Yipeng; Wang, Likun; Huang, Lei; Li, Wenlin; Lu, Ming; Zhang, Xuegong; Zhu, Wei-Guo

    2012-01-01

    Lysine acetylation is a well-studied post-translational modification on both histone and nonhistone proteins. More than 2000 acetylated proteins and 4000 lysine acetylation sites have been identified by large scale mass spectrometry or traditional experimental methods. Although over 20 lysine (K)-acetyl-transferases (KATs) have been characterized, which KAT is responsible for a given protein or lysine site acetylation is mostly unknown. In this work, we collected KAT-specific acetylation sites manually and analyzed sequence features surrounding the acetylated lysine of substrates from three main KAT families (CBP/p300, GCN5/PCAF, and the MYST family). We found that each of the three KAT families acetylates lysines with different sequence features. Based on these differences, we developed a computer program, Acetylation Set Enrichment Based method to predict which KAT-families are responsible for acetylation of a given protein or lysine site. Finally, we evaluated the efficiency of our method, and experimentally detected four proteins that were predicted to be acetylated by two KAT families when one representative member of the KAT family is over expressed. We conclude that our approach, combined with more traditional experimental methods, may be useful for identifying KAT families responsible for acetylated substrates proteome-wide. PMID:21964354

  19. Protective Effects of Soy Oligopeptides in Ultraviolet B-Induced Acute Photodamage of Human Skin.

    PubMed

    Zhou, Bing-Rong; Ma, Li-Wen; Liu, Juan; Zhang, Jia-An; Xu, Yang; Wu, Di; Permatasari, Felicia; Luo, Dan

    2016-01-01

    Aim. We explored the effects of soy oligopeptides (SOP) in ultraviolet B- (UVB-) induced acute photodamage of human skin in vivo and foreskin ex vivo. Methods. We irradiated the forearm with 1.5 minimal erythemal dose (MED) of UVB for 3 consecutive days, establishing acute photodamage of skin, and topically applied SOP. Erythema index (EI), melanin index, stratum corneum hydration, and transepidermal water loss were measured by using Multiprobe Adapter 9 device. We irradiated foreskin ex vivo with the same dose of UVB (180 mJ/cm(2)) for 3 consecutive days and topically applied SOP. Sunburn cells were detected by using hematoxylin and eosin staining. Apoptotic cells were detected by using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Cyclobutane pyrimidine dimers (CPDs), p53 protein, Bax protein, and Bcl-2 protein were detected by using immunohistochemical staining. Results. Compared with UVB group, UVB-irradiated skin with topically applied SOP showed significantly decreased EI. Compared with UVB group, topical SOP significantly increased Bcl-2 protein expression and decreased CPDs-positive cells, sunburn cells, apoptotic cells, p53 protein expression, and Bax protein expressions in the epidermis of UVB-irradiated foreskin. Conclusion. Our study demonstrated that topical SOP can protect human skin against UVB-induced photodamage.

  20. Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides

    SciTech Connect

    None, None

    2016-03-22

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markov process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.

  1. Thermodynamics, morphology, and kinetics of early- stage self-assembly of pi-conjugated oligopeptides

    NASA Astrophysics Data System (ADS)

    Thurston, Bryce; Tovar, John; Ferguson, Andrew

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate self-assembly. At low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ~ - 25kB T . Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini. We model simulations of hundereds of monomers as a continuous-time Markov process. We infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates. Supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Award DE-SC0004857. Molecular simulations partially conducted on University of Illinois Computational Science and Engineering Program parallel computing resources.

  2. Protective Effects and Mechanism of Meretrix meretrix Oligopeptides against Nonalcoholic Fatty Liver Disease

    PubMed Central

    Huang, Fangfang; Zhao, Shasha; Yu, Fangmiao; Yang, Zuisu; Ding, Guofang

    2017-01-01

    Meretrix meretrix oligopeptides (MMO) derived from shellfish have important medicinal properties. We previously obtained MMO from alcalase by hydrolysis processes. Here we examine the protective effects of MMO against nonalcoholic fatty liver disease (NAFLD) and explored the underlying mechanism. Human Chang liver cells were used in our experiments after exposure to palmitic acid at a final concentration of 15 μg/mL for 48 h to induce an overload of fatty acid as NAFLD model cells. Treatment with MMO for 24 h increased the viability of the NAFLD model cells by inhibiting apoptosis. MMO alleviated oxidative stress in the NAFLD model cells by preserving reactive oxygen species activity and increasing malondialdehyde and superoxide dismutase activity. MMO improved mitochondrial dysfunction by decreasing the mitochondrial membrane potential and increasing the activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase. In addition, MMO inhibited the activation of cell death-related pathways, based on reduced p-JNK, Bax expression, tumor necrosis factor-α, caspase-9, and caspase-3 activity in the NAFLD model cells, and Bcl-2 expression was enhanced in the NAFLD model cells compared with the control group. These findings indicate that MMO have antioxidant and anti-apoptotic effects on NAFLD model cells and may thus exert protective effects against NAFLD. PMID:28216552

  3. Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides.

    PubMed

    Reardon, Patrick N; Chacon, Stephany S; Walter, Eric D; Bowden, Mark E; Washton, Nancy M; Kleber, Markus

    2016-04-05

    The ability of plants and microorganisms to take up organic nitrogen in the form of free amino acids and oligopeptides has received increasing attention over the last two decades, yet the mechanisms for the formation of such compounds in soil environments remain poorly understood. We used Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies to distinguish the reaction of a model protein with a pedogenic oxide (Birnessite, MnO2) from its response to a phyllosilicate (Kaolinite). Our data demonstrate that birnessite fragments the model protein while kaolinite does not, resulting in soluble peptides that would be available to soil biota and confirming the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms. The absence of reduced Mn(II) in the solution suggests that birnessite acts as a catalyst rather than an oxidant in this reaction. NMR and EPR spectroscopies are shown to be valuable tools to observe these reactions and capture the extent of protein transformation together with the extent of mineral response.

  4. Protective Effects of Soy Oligopeptides in Ultraviolet B-Induced Acute Photodamage of Human Skin

    PubMed Central

    Ma, Li-wen; Liu, Juan; Zhang, Jia-an; Xu, Yang; Wu, Di; Permatasari, Felicia

    2016-01-01

    Aim. We explored the effects of soy oligopeptides (SOP) in ultraviolet B- (UVB-) induced acute photodamage of human skin in vivo and foreskin ex vivo. Methods. We irradiated the forearm with 1.5 minimal erythemal dose (MED) of UVB for 3 consecutive days, establishing acute photodamage of skin, and topically applied SOP. Erythema index (EI), melanin index, stratum corneum hydration, and transepidermal water loss were measured by using Multiprobe Adapter 9 device. We irradiated foreskin ex vivo with the same dose of UVB (180 mJ/cm2) for 3 consecutive days and topically applied SOP. Sunburn cells were detected by using hematoxylin and eosin staining. Apoptotic cells were detected by using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Cyclobutane pyrimidine dimers (CPDs), p53 protein, Bax protein, and Bcl-2 protein were detected by using immunohistochemical staining. Results. Compared with UVB group, UVB-irradiated skin with topically applied SOP showed significantly decreased EI. Compared with UVB group, topical SOP significantly increased Bcl-2 protein expression and decreased CPDs-positive cells, sunburn cells, apoptotic cells, p53 protein expression, and Bax protein expressions in the epidermis of UVB-irradiated foreskin. Conclusion. Our study demonstrated that topical SOP can protect human skin against UVB-induced photodamage. PMID:27478534

  5. Sepia ink oligopeptide induces apoptosis and growth inhibition in human lung cancer cells

    PubMed Central

    Zhou, Guoren; Xie, Peng; Ye, Jinjun

    2017-01-01

    Sepia ink oligopeptide (SIO), as a tripeptide extracted from Sepia ink, could be used as an inducer of apoptosis in human prostate cancer cells. We designed a cyclo-mimetic peptide of SIO by introducing a disulfide bond to stabilize the native peptide into beta turn structure, and produced a peptide with higher cell permeability and stability. Through labeling an FITC to the N-terminus of the peptide, the cell permeability was examined. Stabilized peptide showed enhanced cellular uptake than linear tripeptide as indicated by flow cytometry and cell fluorescent imaging. The high intracellular delivery of stable SIO could more efficiently inhibit cell proliferation and induce apoptosis. Furthermore, the expression of the anti-apoptotic protein Bcl-2 was down-regulated, whereas pro-apoptotic proteins P53 and caspase-3 were up-regulated by stable SIO. In conclusion, our study is the first to use stable SIO to induce apoptosis in two lung cancer cells A549 and H1299. PMID:28423568

  6. Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction.

    PubMed

    Stacey, Minviluz G; Osawa, Hiroki; Patel, Ami; Gassmann, Walter; Stacey, Gary

    2006-01-01

    AtOPT promoter-GUS fusions were constructed for six of the nine known, putative oligopeptide transporters (OPTs) in Arabidopsis thaliana and used to examine AtOPT expression at various stages of plant development. AtOPT1, AtOPT3, AtOPT4, AtOPT6 and AtOPT7 were expressed in the embryonic cotyledons prior to root radicle emergence. Except for AtOPT8, which gave weak expression, all AtOPTs were strongly expressed in post-germinative seedlings with strongest expression in vascular tissues of cotyledons and hypocotyls. Preferential expression of AtOPTs in vascular tissues was also observed in cotyledons, leaves, hypocotyls, roots, flowers, siliques, and seed funiculi of seedlings and adult plants. Differential tissue-specific expression was observed for specific AtOPTs. For example, AtOPT1, AtOPT3 and AtOPT8 were uniquely expressed in pollen. Only AtOPT1 was expressed in growing pollen tubes, while only AtOPT6 was observed in ovules. AtOPT8 was transiently expressed in seeds during early stages of embryogenesis. Iron limitation was found to enhance expression of AtOPT3. These data suggest distinct cellular roles for specific AtOPTs including nitrogen mobilization during germination and senescence, pollen tube growth, pollen and ovule development, seed formation and metal transport.

  7. Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides

    DOE PAGES

    None, None

    2016-03-22

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less

  8. The oligopeptide permease (Opp) of the plant pathogen Xanthomonas axonopodis pv. citri.

    PubMed

    Moutran, Alexandre; Quaggio, Ronaldo Bento; Balan, Andrea; Ferreira, Luis Carlos de Souza; Ferreira, Rita de Cássia Café

    2004-05-01

    The oligopeptide permease (Opp), a protein-dependent ABC transporter, has been found in the genome of Xanthomonas axonopodis pv. citri ( Xac), but not in Xanthomonas campestris pv. campestris ( Xcc). Sequence analysis indicated that 4 opp genes ( oppA, oppB, oppC, oppD/F), located in a 33.8-kbp DNA fragment present only in the Xac genome, are arranged in an operon-like structure and share highest sequence similarities with Streptomyces roseofulvus orthologs. Nonetheless, analyses of the GC content, codon usage, and transposon positioning suggested that the Xac opp operon does not have an exogenous origin. The presence of a stop codon at one of the ATP-binding domains of OppD/F would render the uptake system nonfunctional, but detection of a single polycistronic mRNA and periplasmic OppA in actively growing bacteria suggests that the Opp permease is active and could contribute to the distinct nutritional requirements and host specificities of the two Xanthomonas species.

  9. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; ...

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  10. Lysine acetylation and cancer: A proteomics perspective.

    PubMed

    Gil, Jeovanis; Ramírez-Torres, Alberto; Encarnación-Guevara, Sergio

    2017-01-06

    Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins. Because acetylation targets almost all cellular processes, this modification has been associated with cancer. Several KATs, KDACs and bromodomain-containing proteins have been linked to cancer development. Many small molecules targeting some of these proteins have been or are being tested as potential cancer therapies. The stoichiometry of lysine acetylation has not been explored in cancer, representing a promising field in which to increase our knowledge of how this modification is affected in cancer. In this review, we will focus on the strategies that can be used to go deeper in the characterization of the protein lysine acetylation emphasizing in cancer research.

  11. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4

    SciTech Connect

    Hagmann, W.; Denzlinger, C.; Rapp, S.; Weckbecker, G.; Keppler, D.

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of (/sup 3/H)LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  12. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4.

    PubMed

    Hagmann, W; Denzlinger, C; Rapp, S; Weckbecker, G; Keppler, D

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of [3H]LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  13. Accurate quantification of site-specific acetylation stoichiometry reveals the impact of sirtuin deacetylase CobB on the E. coli acetylome.

    PubMed

    Weinert, Brian Tate; Satpathy, Shankha; Hansen, Bogi Karbech; Lyon, David; Jensen, Lars Juhl; Choudhary, Chunaram

    2017-03-02

    Lysine acetylation is a protein posttranslational modification (PTM) that occurs on thousands of lysine residues in diverse organisms from bacteria to humans. Accurate measurement of acetylation stoichiometry on a proteome-wide scale remains challenging. Most methods employ a comparison of chemically acetylated peptides to native acetylated peptides, however, the potentially large differences in abundance between these peptides presents a challenge for accurate quantification. Stable isotope labeling by amino acids in cell culture (SILAC)-based mass spectrometry (MS) is one of the most widely used quantitative proteomic methods. Here we show that serial dilution of SILAC-labeled peptides (SD-SILAC) can be used to identify accurately quantified peptides and to estimate the quantification error rate. We applied SD-SILAC to determine absolute acetylation stoichiometry in exponentially-growing and stationary-phase wild type and Sirtuin deacetylase CobB-deficient cells. To further analyze CobB-regulated sites under conditions of globally increased or decreased acetylation, we measured stoichiometry in phophotransacetylase (ptaΔ) and acetate kinase (ackAΔ) mutant strains in the presence and absence of the Sirtuin inhibitor nicotinamide. We measured acetylation stoichiometry at 3,669 unique sites and found that the vast majority of acetylation occurred at a low stoichiometry. Manipulations that cause increased nonenzymatic acetylation by acetyl-phosphate (AcP), such as stationary-phase arrest and deletion of ackA, resulted in globally increased acetylation stoichiometry. Comparison to relative quantification under the same conditions validated our stoichiometry estimates at hundreds of sites, demonstrating the accuracy of our method. Similar to Sirtuin deacetylase 3 (SIRT3) in mitochondria, CobB suppressed acetylation to lower than median stoichiometry in WT, ptaΔ, and ackAΔ cells. Together, our results provide a detailed view of acetylation stoichiometry in E. coli

  14. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    SciTech Connect

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang; and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  15. Metabolic control of methylation and acetylation.

    PubMed

    Su, Xiaoyang; Wellen, Kathryn E; Rabinowitz, Joshua D

    2016-02-01

    Methylation and acetylation of DNA and histone proteins are the chemical basis for epigenetics. From bacteria to humans, methylation and acetylation are sensitive to cellular metabolic status. Modification rates depend on the availability of one-carbon and two-carbon substrates (S-adenosylmethionine, acetyl-CoA, and in bacteria also acetyl-phosphate). In addition, they are sensitive to demodification enzyme cofactors (α-ketoglutarate, NAD(+)) and structural analog metabolites that function as epigenetic enzyme inhibitors (e.g., S-adenosylhomocysteine, 2-hydroxyglutarate). Methylation and acetylation likely initially evolved to tailor protein activities in microbes to their metabolic milieu. While the extracellular environment of mammals is more tightly controlled, the combined impact of nutrient abundance and metabolic enzyme expression impacts epigenetics in mammals sufficiently to drive important biological outcomes such as stem cell fate and cancer.

  16. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. PMID:27600229

  17. Metabolic control of methylation and acetylation

    PubMed Central

    Su, Xiaoyang; Wellen, Kathryn E.; Rabinowitz, Joshua D

    2015-01-01

    Methylation and acetylation of DNA and histone proteins are the chemical basis for epigenetics. From bacteria to humans, methylation and acetylation are sensitive to cellular metabolic status. Modification rates depend on the availability of one-carbon and two-carbon substrates (S-adenosylmethionine, acetyl-CoA, and in bacteria also acetyl-phosphate). In addition, they are sensitive to demodification enzyme cofactors (α-ketoglutarate, NAD+) and structural analog metabolites that function as epigenetic enzyme inhibitors (e.g., S-adenosylhomocysteine, 2-hydroxyglutarate). Methylation and acetylation likely initially evolved to tailor protein activities in microbes to their metabolic milieu. While the extracellular environment of mammals is more tightly controlled, the combined impact of nutrient abundance and metabolic enzyme expression impacts epigenetics in mammals sufficiently to drive important biological outcomes such as stem cell fate and cancer. PMID:26629854

  18. Surface charge tunability as a powerful strategy to control electrostatic interaction for high efficiency silencing, using tailored oligopeptide-modified poly(beta-amino ester)s (PBAEs).

    PubMed

    Dosta, Pere; Segovia, Nathaly; Cascante, Anna; Ramos, Victor; Borrós, Salvador

    2015-07-01

    Here we present an extended family of pBAEs that incorporate terminal oligopeptide moieties synthesized from both positive and negative amino acids. Polymer formulations of mixtures of negative and positive oligopeptide-modified pBAEs are capable of condensing siRNA into discrete nanoparticles. We have demonstrated that efficient delivery of nucleic acids in a cell-type dependent manner can be achieved by careful control of the pBAE formulation. In addition, our approach of adding differently charged oligopeptides to the termini of poly(β-amino ester)s is of great interest for the design of tailored complexes having specific features, such as tuneable zeta potential. We anticipate that this surface charge tunability may be a powerful strategy to control unwanted electrostatic interactions, while preserving high silencing efficiency and reduced toxicity.

  19. New proline-rich oligopeptides from the venom of African adders: Insights into the hypotensive effect of the venoms.

    PubMed

    Kodama, Roberto T; Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre K; Kitano, Eduardo S; Tashima, Alexandre K; Barna, Barbara F; Takakura, Ana Carolina; Serrano, Solange M T; Dias-Da-Silva, Wilmar; Tambourgi, Denise V; Portaro, Fernanda V

    2015-06-01

    The snakes from the Bitis genus are some of the most medically important venomous snakes in sub Saharan Africa, however little is known about the composition and effects of these snake venom peptides. Considering that the victims with Bitis genus snakes have exacerbate hypotension and cardiovascular disorders, we investigated here the presence of angiotensin-converting enzyme modulators on four different species of venoms. The peptide fractions from Bitis gabonica gabonica, Bitis nasicornis, Bitis gabonica rhinoceros and Bitis arietans which showed inhibitory activity on angiotensin-converting enzyme were subjected to mass spectrometry analysis. Eight proline-rich peptides were synthetized and their potencies were evaluated in vitro and in vivo. The MS analysis resulted in over 150 sequences, out of which 32 are new proline-rich oligopeptides, and eight were selected for syntheses. For some peptides, inhibition assays showed inhibitory potentials of cleavage of angiotensin I ten times greater when compared to bradykinin. In vivo tests showed that all peptides decreased mean arterial pressure, followed by tachycardia in 6 out of 8 of the tests. We describe here some new and already known proline-rich peptides, also known as bradykinin-potentiating peptides. Four synthetic peptides indicated a preferential inhibition of angiotensin-converting enzyme C-domain. In vivo studies show that the proline-rich oligopeptides are hypotensive molecules. Although proline-rich oligopeptides are known molecules, we present here 32 new sequences that are inhibitors of the angiotensin-converting enzyme and consistent with the symptoms of the victims of Bitis spp, who display severe hypotension. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The oligopeptide DT-2 is a specific PKG I inhibitor only in vitro, not in living cells.

    PubMed

    Gambaryan, Stepan; Butt, Elke; Kobsar, Anna; Geiger, Joerg; Rukoyatkina, Natalia; Parnova, Rimma; Nikolaev, Viacheslav O; Walter, Ulrich

    2012-10-01

    cGMP is involved in the regulation of many cellular processes including cardiac and smooth muscle contractility, aldosterone synthesis and inhibition of platelet activation. Intracellular effects cGMP are mediated by cGMP-dependent PKs, cGMP-regulated PDEs and cGMP-gated ion channels. PKG inhibitors are widely used to discriminate PKG-specific effects. They can be divided into cyclic nucleotide-binding site inhibitors such as Rp-phosphorothioate analogues (Rp-cGMPS), ATP-binding site inhibitors such as KT5823, and substrate binding site inhibitors represented by the recently described DT-oligopeptides. As it has been shown that Rp-cGMPS and KT5823 have numerous non-specific effects, we analysed the pharmacological properties of the oligopeptide (D)-DT-2 described as a highly specific, membrane-permeable, PKG inhibitor. Specificity and potency of (D)-DT-2 to inhibit PKG activity was evaluated using biochemical assays in vitro and by substrate phosphorylation analysis in various cell types including human platelets, rat mesangial cells and rat neonatal cardiomyocytes. Despite potent inhibition of PKGI in vitro, (D)-DT-2 lost specificity for PKG in cell homogenates and particularly in living cells, as demonstrated by phosphorylation of different substrates. Instead, (D)-DT-2 modulated activity of other kinases including ERK, p38, PKB and PKC, thereby inducing unpredicted and often opposing functional effects. We conclude that DT-oligopeptides, as other inhibitors, cannot be used to specifically inhibit PKG in intact cells. Therefore, no specific pharmacological PKG inhibitors are available, and reliable studies of PKG signalling can only be made by using RNA knockdown or genetic deletion methods. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  1. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium.

    PubMed

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires Júnior, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.

  2. Effects of soya oligosaccharides and soya oligopeptides on lipid metabolism in hyperlipidaemic rats.

    PubMed

    Xie, Shali; Zhu, Jundong; Zhang, Yanqi; Shi, Kai; Shi, Yuangang; Ma, Xiao

    2012-08-01

    In the present study, we aimed to examine the effects of soya oligosaccharides (SOS) and soya oligopeptides (SOP) on blood lipid levels, release of vasoactive substances, antioxidant activity and faecal bile acid (FBA) excretion in rats fed a high-fat diet (HFD). Male Sprague-Dawley rats were evenly divided into five groups according to diets as follows: regular diet (control), HFD, HFD enriched with 2 % of SOS (SOS), HFD enriched with 3 % of SOP (SOP) and HFD enriched with 2 % SOS and 3 % SOP (SOSP). The results showed that SOS and SOP significantly reduced plasma total cholesterol, LDL-cholesterol and TAG, whereas HDL-cholesterol concentration was significantly increased. Furthermore, SOS and SOP reduced plasma apoB, apoE and the apoB:apoAI ratio, whereas apoAI was significantly increased. Moreover, SOS and SOP also reduced plasma thromboxane A₂ (TXA₂) and the TXA₂:prostacyclin (PGI₂) ratio, whereas plasma PGI₂ and nitric oxide were significantly increased. In addition, SOS and SOP significantly reduced serum and liver malondialdehyde concentrations and increased FBA excretion. However, we did not observe obvious influences of SOS and SOP on superoxide dismutase activities in the liver of HFD-fed rats. The combination of 2 % SOS and 3 % SOP showed a more marked effect than SOS or SOP alone in improving the lipid profile, release of vasoactive substances and increasing FBA excretion (P < 0.05). In summary, SOS and SOP might help prevent atherosclerosis through improving abnormal blood lipid levels, regulating vasoactive substances and protecting against oxidative stress.

  3. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium

    PubMed Central

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases. PMID:26661890

  4. Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins

    PubMed Central

    Lu, Xiaoxi; Chan, Ting; Xu, Chenghao; Zhu, Ling; Zhou, Qi Tony; Roberts, Kade D.; Chan, Hak-Kim; Li, Jian; Zhou, Fanfan

    2016-01-01

    Objectives Polymyxins are a last-line therapy to treat MDR Gram-negative bacterial infections. Nephrotoxicity is the dose-limiting factor for polymyxins and recent studies demonstrated significant accumulation of polymyxins in renal tubular cells. However, little is known about the mechanism of polymyxin uptake into these cells. Oligopeptide transporter 2 (PEPT2) is a solute carrier transporter (SLC) expressed at the apical membrane of renal proximal tubular cells and facilitates drug reabsorption in the kidney. In this study, we examined the role of PEPT2 in polymyxin uptake into renal tubular cells. Methods We investigated the inhibitory effects of colistin and polymyxin B on the substrate uptake mediated through 15 essential SLCs in overexpressing HEK293 cells. The inhibitory potency of both polymyxins on PEPT2-mediated substrate uptake was measured. Fluorescence imaging was employed to investigate PEPT2-mediated uptake of the polymyxin fluorescent probe MIPS-9541 and a transport assay was conducted with MIPS-9541 and [3H]polymyxin B1. Results Colistin and polymyxin B potently inhibited PEPT2-mediated [3H]glycyl-sarcosine uptake (IC50 11.4 ± 3.1 and 18.3 ± 4.2 μM, respectively). In contrast, they had no or only mild inhibitory effects on the transport activity of the other 14 SLCs evaluated. MIPS-9541 potently inhibited PEPT2-mediated [3H]glycyl-sarcosine uptake (IC50 15.9 μM) and is also a substrate of PEPT2 (Km 74.9 μM). [3H]polymyxin B1 was also significantly taken up by PEPT2-expressing cells (Km 87.3 μM). Conclusions Our study provides the first evidence of PEPT2-mediated uptake of polymyxins and contributes to a better understanding of the accumulation of polymyxins in renal tubular cells. PMID:26494147

  5. Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats.

    PubMed

    Lapphanichayakool, Phakhamon; Sutheerawattananonda, Manote; Limpeanchob, Nanteetip

    2017-01-01

    The beneficial effect of cholesterol-lowering proteins and/or peptides derived from various dietary sources is continuously reported. A non-dietary protein from silk cocoon, sericin, has also demonstrated cholesterol-lowering activity. A sericin hydrolysate prepared by enzymatic hydrolysis was also expected to posses this effect. The present study was aimed at investigating the cholesterol-lowering effect of sericin peptides, so called "sericin-derived oligopeptides" (SDO) both in vivo and in vitro. The results showed that SDO at all three doses tested (10 mg kg(-1) day(-1), 50 mg kg(-1) day(-1), and 200 mg kg(-1) day(-1)) suppressed serum total and non-HDL cholesterol levels in rats fed a high-cholesterol diet. Triglyceride and HDL-cholesterol levels were not significantly changed among all groups. The fecal contents of bile acids and cholesterol did not differ among high-cholesterol fed rats. SDO dose-dependently reduced cholesterol solubility in lipid micelles, and inhibited cholesterol uptake in monolayer Caco-2 cells. SDO also effectively bound to all three types of bile salts including taurocholate, deoxytaurocholate, and glycodeoxycholate. Direct interaction with bile acids of SDO may disrupt micellar cholesterol solubility, and subsequently reduce the absorption of dietary cholesterol in intestines. Taking all data together, SDO or sericin peptides exhibit a beneficial effect on blood cholesterol levels and could be potentially used as a health-promoting dietary supplement or nutraceutical product.

  6. Expression of the oligopeptide transporter, PepT1, in larval Atlantic cod (Gadus morhua).

    PubMed

    Amberg, J J; Myr, C; Kamisaka, Y; Jordal, A-E O; Rust, M B; Hardy, R W; Koedijk, R; Rønnestad, I

    2008-06-01

    The intestinal absorption of di- and tri-peptides generally occurs via the oligopeptide transporter, PepT1. This study evaluates the expression of PepT1 in larval Atlantic cod (Gadus morhua) during the three weeks following the onset of exogenous feeding. Larval Atlantic cod were fed either wild captured zooplankton or enriched rotifers. cDNA was prepared from whole cod larvae preceding first feeding and at 1000 each Tuesday and Thursday for the following three weeks. Spatial and temporal expression patterns of PepT1 mRNA were compared between fish consuming the two prey types using in situ hybridization and quantitative real-time PCR. Results indicated that PepT1 mRNA was expressed prior to the onset of exogenous feeding. In addition, PepT1 was expressed throughout the digestive system except the esophagus and sphincter regions. Expression slightly increased following first-feeding and continued to increase throughout the study for larvae feeding on both prey types. When comparing PepT1 expression in larvae larger than 0.15-mg dry mass with expression levels in larvae prior to feeding, no differences were detected for larvae fed rotifers, but the larvae fed zooplankton had significantly greater PepT1 expression at the larger size. In addition, PepT1 expression in the zooplankton fed larvae larger than 0.15-mg dry mass had significantly greater expression than rotifer fed larvae of a similar weight. Switching prey types did not affect PepT1 expression. These results indicate that Atlantic cod PepT1 expression was slightly different relative to dietary treatment during the three weeks following first-feeding. In addition, PepT1 may play an important role in the larval nutrition since it is widely expressed in the digestive tract.

  7. Nonhistone protein acetylation as cancer therapy targets

    PubMed Central

    Singh, Brahma N; Zhang, Guanghua; Hwa, Yi L; Li, Jinping; Dowdy, Sean C; Jiang, Shi-Wen

    2012-01-01

    Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein–protein and protein–DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed. PMID:20553216

  8. Acetylation of rice straw for thermoplastic applications.

    PubMed

    Zhang, Guangzhi; Huang, Kai; Jiang, Xue; Huang, Dan; Yang, Yiqi

    2013-07-01

    An inexpensive and biodegradable thermoplastic was developed through acetylation of rice straw (RS) with acetic anhydride. Acetylation conditions were optimized. The structure and properties of acetylated RS were characterized by fourier transform infrared (FTIR), solid-state (13)C NMR spectroscopy, X-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that acetylation of RS has successfully taken place, and comparing with raw RS, the degree of crystallinity decreased and the decomposition rate was slow. The acetylated RS has got thermoplasticity when weight ratio of RS and acetic anhydride was 1:3, using sulphuric acid (9% to RS) as catalyst in glacial acetic acid 35°C for 12h, and the dosage of solvent was 9 times RS, in which weight percent gain (WPG) of the modified RS powder was 35.5% and its percent acetyl content was 36.1%. The acetylated RS could be formed into transparent thin films with different amount of plasticizer diethyl phthalate (DEP) using tape casting technology.

  9. Acetylation modulates the STAT signaling code.

    PubMed

    Wieczorek, Martin; Ginter, Torsten; Brand, Peter; Heinzel, Thorsten; Krämer, Oliver H

    2012-12-01

    A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.

  10. Site-Specific Acetyl Lysine Antibodies Reveal Differential Regulation of Histone Acetylation upon Kinase Inhibition.

    PubMed

    Chen, Shi; Chen, Suping; Duan, Qianqian; Xu, Guoqiang

    2017-03-01

    Lysine acetylation regulates diverse biological functions for the modified proteins. Mass spectrometry-based proteomic approaches have identified thousands of lysine acetylation sites in cells and tissues. However, functional studies of these acetylation sites were limited by the lack of antibodies recognizing the specific modification sites. Here, we generated 55 site-specific acetyl lysine antibodies for the detection of this modification in cell lysates and evaluated the quality of these antibodies. Based on the immunoblotting analyses, we found that the nature of amino acid sequences adjacent to the modification sites affected the specificity of the site-specific acetyl lysine antibodies. Amino acids with charged, hydrophilic, small, or flexible side chains adjacent to the modification sites increase the likelihood of obtaining high quality site-specific acetyl lysine antibodies. This result may provide valuable insights in fine-tuning the amino acid sequences of the epitopes for the generation of site-specific acetyl lysine antibodies. Using the site-specific acetyl lysine antibodies, we further discovered that acetylation of histone 3 at four lysine residues was differentially regulated by kinase inhibitors. This result demonstrates the potential application of these antibodies in the study of new signaling pathways that lysine acetylation may participate in.

  11. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A; Schölz, Christian; Gummesson, Bertil; Beli, Petra; Nyström, Thomas; Choudhary, Chunaram

    2013-07-25

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in a manner that depended on the formation of acetyl-phosphate (AcP) through glycolysis. Mutant cells unable to produce AcP had significantly reduced acetylation levels, while mutant cells unable to convert AcP to acetate had significantly elevated acetylation levels. We showed that AcP can chemically acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low level and is dynamically affected by metabolism and cell proliferation in a global, uniform manner.

  12. Acetyl Fentanyl Toxicity: Two Case Reports.

    PubMed

    Fort, Chelsea; Curtis, Byron; Nichols, Clay; Niblo, Cheryl

    2016-11-01

    Acetyl fentanyl is an illicit fentanyl analog recently appearing in forensic casework. A quantitative method was created for measuring acetyl fentanyl in various biological matrices acquired post-mortem due to recent positive screening results in casework. Initial detection by immunoassay and standard gas chromatography mass spectrometry (GC/MS) methods have been previously reported for acetyl fentanyl and are examined further here. A Selective Ion Monitoring (SIM) method was created using a GC/MS for quantitation. In two separate cases, acetyl fentanyl was found to be in similar concentrations to those previously reported and ruled to be the cause of death. Acetyl fentanyl concentrations were determined in blood samples, liver, brain, vitreous humor, and urine. Individual 1 had acetyl fentanyl concentrations as follows: heart blood-285 ng/mL, femoral blood-192 ng/mL, liver-1,100 ng/g, brain-620 ng/g, and urine-3,420 ng/mL. Individual 2 had acetyl fentanyl concentrations as follows: heart blood-210 ng/mL, femoral blood-255 ng/mL, urine-2,720 ng/mL and vitreous humor-140 ng/mL. Experimental conditions for screening and quantitation are provided, using immunoassay and GC/MS methods. Due to the recent emergence of acetyl fentanyl, more data will need to be generated to fully differentiate recreational and fatal concentrations of acetyl fentanyl to assist toxicologists accurately understanding its physiological impact. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Chemical biology of peptidoglycan acetylation and deacetylation.

    PubMed

    Moynihan, Patrick J; Sychantha, David; Clarke, Anthony J

    2014-06-01

    Post-synthetic modification of the bacterial cell wall represents an important strategy for pathogenic bacteria to evade innate immunity and control autolysins. Modifications to the glycan backbone of peptidoglycan are generally restricted to the C-6 hydroxyl and C-3 amino moieties, with the most common being acetylation and deacetylation. In this review we discuss the pathways for O-acetylation, de-O-acetylation and N-deacetylation with an emphasis on the chemical-biological approaches used in their investigation. The current challenges in the field and the prospects of targeting these systems with novel therapeutics are also explored.

  14. Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.

    PubMed

    Hartl, Markus; König, Ann-Christine; Finkemeier, Iris

    2015-01-01

    The (ε)N-acetylation of lysine side chains is a highly conserved posttranslational modification of both prokaryotic and eukaryotic proteins. Lysine acetylation not only occurs on histones in the nucleus but also on many mitochondrial proteins in plants and animals. As the transfer of the acetyl group to lysine eliminates its positive charge, lysine acetylation can affect the biological function of proteins. This chapter describes two methods for the identification of lysine-acetylated proteins in plant mitochondria using an anti-acetyllysine antibody. We describe the Western blot analysis of a two-dimensional blue native-polyacrylamide gel electrophoresis with an anti-acetyllysine antibody as well as the immuno-enrichment of lysine-acetylated peptides followed by liquid chromatography-tandem mass spectrometry data acquisition and analysis.

  15. Helical Oligopeptides of a Quaternized Amino Acid with Tunable Chiral-Induction Ability and an Anomalous pH Response.

    PubMed

    Cho, Joonil; Ishida, Yasuhiro; Aida, Takuzo

    2017-04-06

    A series of octamer (8-mer) and hexadecamer (16-mer) oligopeptides of 4-aminopiperidine-4-carboxylic acid (Api) with l-leucine as a chiral auxiliary at their N or C termini were synthesized. By using circular dichroism spectroscopy, the conformational profiles of the peptides were systematically studied, which revealed that the α-helix-formation ability of the peptides is determined by the combination of parameters, which includes peptide length, state of the piperidine groups in the Api units, and position of the chiral auxiliary. When the piperidines were in the free-base state, the peptides showed a low propensity to form helical structures. However, the protonation and acylation of the piperidines enhanced the formation of helical structures, such that the order for helix-formation ability was protonated>acylated>free base. In terms of peptide length, the 16-mers generally showed higher helix-formation ability than the corresponding 8-mers, and one of the 16-mers showed helicity at the highest level reported thus far for oligopeptides of a similar length. It was also found that the sensitivity of the helical structure towards the state of the piperidine groups changed drastically depending on the chiral auxiliary position; the N-terminal chiral peptides were more sensitive than the C-terminal chiral analogues.

  16. Anti-Fatigue Effects of Small Molecule Oligopeptides Isolated from Panax ginseng C. A. Meyer in Mice.

    PubMed

    Bao, Lei; Cai, Xiaxia; Wang, Junbo; Zhang, Yuan; Sun, Bin; Li, Yong

    2016-12-13

    Panax ginseng C. A. Meyer (ginseng) is an edible and medicinal Chinese herb, which is often used in Asian countries for physical fitness. Ginseng is reported to have a wide range of biological activity and pharmaceutical properties. There were more studies on ginsenosides and polysaccharides, but fewer studies on ginseng oligopeptides (GOP), which are small molecule oligopeptides isolated from ginseng. The present study was designed to evaluate the anti-fatigue effects of GOP in mice and explore the possible underlying mechanism. Mice were randomly divided into four experimental sets for the detection of different indicators. Each set of mice were then divided into four groups. The control group was administered distilled water, and three GOP intervention groups were administered 125, 250, and 500 mg/kg of body weight, respectively, of GOP by gavage each day. After 30 days of GOP treatment, it was observed that GOP could significantly increase the forced swimming time, enhance lactate dehydrogenase (LDH) activity and hepatic glycogen levels, and retard the accumulation of serum urea nitrogen (SUN) and blood lactic acid (BLA) in mice. GOP also markedly ameliorated fatigue-induced alterations of inoxidative stress biomarkers and antioxidant enzymes. Notably, GOP increased the mRNA expression of mitochondrial biogenesis factors and mitochondrial DNA content in skeletal muscles of mice. These results suggest that GOP possess anti-fatigue effects, which may be attributed to the inhibition of oxidative stress and the improvement of mitochondrial function in skeletal muscles. GOP could be a novel natural agent for relieving exercise fatigue.

  17. Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces.

    PubMed

    Vater, Svenja M; Finlay, John; Callow, Maureen E; Callow, James A; Ederth, Thomas; Liedberg, Bo; Grunze, Michael; Rosenhahn, Axel

    2015-01-01

    Interaction of zoospores of Ulva linza with cationic, arginine-rich oligopeptide self-assembled monolayers (SAMs) is characterized by rapid settlement. Some spores settle (ie permanently attach) in a 'normal' manner involving the secretion of a permanent adhesive, retraction of the flagella and cell wall formation, whilst others undergo 'pseudosettlement' whereby motile spores are trapped (attached) on the SAM surface without undergoing the normal metamorphosis into a settled spore. Holographic microscopy was used to record videos of swimming zoospores in the vicinity of surfaces with different cationic oligopeptide concentrations to provide time-resolved insights into processes associated with attachment of spores. The data reveal that spore attachment rate increases with increasing cationic peptide content. Accordingly, the decrease in swimming activity in the volume of seawater above the surface accelerated with increasing surface charge. Three-dimensional trajectories of individual swimming spores showed a 'hit and stick' motion pattern, exclusively observed for the arginine-rich peptide SAMs, whereby spores were immediately trapped upon contact with the surface.

  18. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    PubMed

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  19. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer

    PubMed Central

    Miller, Kyle M.

    2016-01-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer. PMID:27631103

  20. p53 Acetylation: Regulation and Consequences

    PubMed Central

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer. PMID:25545885

  1. Biological activity of acetylated phenolic compounds.

    PubMed

    Fragopoulou, Elizabeth; Nomikos, Tzortzis; Karantonis, Haralabos C; Apostolakis, Constantinos; Pliakis, Emmanuel; Samiotaki, Martina; Panayotou, George; Antonopoulou, Smaragdi

    2007-01-10

    In recent years an effort has been made to isolate and identify biologically active compounds that are included in the Mediterranean diet. The existence of naturally occurring acetylated phenolics, as well as studies with synthetic ones, provide evidence that acetyl groups could be correlated with their biological activity. Platelet activating factor (PAF) is implicated in atherosclerosis, whereas its inhibitors seem to play a protective role against cardiovascular disease. The aim of this study was to examine the biological activity of resveratrol and tyrosol and their acetylated derivatives as inhibitors of PAF-induced washed rabbit platelet aggregation. Acetylation of resveratrol and tyrosol was performed, and separation was achieved by HPLC. Acetylated derivatives were identified by negative mass spectrometry. The data showed that tyrosol and its monoacetylated derivatives act as PAF inhibitors, whereas diacetylated derivatives induce platelet aggregation. Resveratrol and its mono- and triacetylated derivatives exert similar inhibitory activity, whereas the diacetylated ones are more potent inhibitors. In conclusion, acetylated phenolics exert the same or even higher antithrombotic activity compared to the biological activity of the initial one.

  2. Protein Acetylation in Procaryotes Increases Stress Resistance

    PubMed Central

    Ma, Qun; Wood, Thomas K.

    2011-01-01

    Acetylation of lysine residues is conserved in all three kingdoms; however, its role in prokaryotes is unknown. Here we demonstrate that acetylation enables the reference bacterium Escherichia coli to withstand environmental stress. Specifically, the bacterium reaches higher cell densities and becomes more resistant to heat and oxidative stress when its proteins are acetylated as shown by deletion of the gene encoding acetyltransferase YfiQ and the gene encoding deacetylase CobB as well as by overproducing YfiQ and CobB. Furthermore, we show that the increase in oxidative stress resistance with acetylation is due to the induction of catalase activity through enhanced katG expression. We also found that two-component system proteins CpxA, PhoP, UvrY, and BasR are associated with cell catalase activity and may be responsible as the connection between bacterial acetylation and the stress response. This is the first demonstration of a specific environmental role of acetylation in prokaryotes. PMID:21703240

  3. Protein acetylation in prokaryotes increases stress resistance.

    PubMed

    Ma, Qun; Wood, Thomas K

    2011-07-15

    Acetylation of lysine residues is conserved in all three kingdoms; however, its role in prokaryotes is unknown. Here we demonstrate that acetylation enables the reference bacterium Escherichia coli to withstand environmental stress. Specifically, the bacterium reaches higher cell densities and becomes more resistant to heat and oxidative stress when its proteins are acetylated as shown by deletion of the gene encoding acetyltransferase YfiQ and the gene encoding deacetylase CobB as well as by overproducing YfiQ and CobB. Furthermore, we show that the increase in oxidative stress resistance with acetylation is due to the induction of catalase activity through enhanced katG expression. We also found that two-component system proteins CpxA, PhoP, UvrY, and BasR are associated with cell catalase activity and may be responsible as the connection between bacterial acetylation and the stress response. This is the first demonstration of a specific environmental role of acetylation in prokaryotes. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    PubMed Central

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  5. Mechanisms and Dynamics of Protein Acetylation in Mitochondria

    PubMed Central

    Baeza, Josue; Smallegan, Michael J.; Denu, John M.

    2016-01-01

    Reversible protein acetylation is a major regulatory mechanism for controlling protein function. Through genetic manipulations, dietary perturbations, and new proteomic technologies, the diverse functions of protein acetylation are coming into focus. Protein acetylation in mitochondria has taken center stage, revealing that 63% of mitochondrially localized proteins contain lysine acetylation sites. Here we summarize the field, and discuss salient topics that cover spurious versus targeted acetylation, the role of SIRT3 deacetylation, nonenzymatic acetylation, and molecular models for regulatory acetylations that display high and low stoichiometry. PMID:26822488

  6. Fluorescent monitoring of copper-occupancy in His-ended catalytic oligo-peptides

    PubMed Central

    Inokuchi, Reina; Kawano, Tomonori

    2016-01-01

    ABSTRACT Controlled generation of reactive oxygen species (ROS) is widely beneficial to various medical, environmental, and agricultural studies. As inspired by the functional motifs in natural proteins, our group has been engaged in development of catalytically active oligo-peptides as minimum-sized metalloenzymes for generation of superoxide anion, an active member of ROS. In such candidate molecules, catalytically active metal-binding minimal motif was determined to be X-X-H, where X can be most amino acids followed by His. Based on above knowledge, we have designed a series of minimal copper-binding peptides designated as GnH series peptides, which are composed of oligo-glycyl chains ended with C-terminal His residue such as GGGGGH sequence (G5H). In order to further study the role of copper binding to the peptidic catalysts sharing the X-X-H motif such as G5H-conjugated peptides, we should be able to score the occupancy of the peptide population by copper ion in the reaction mixture. Here, model peptides with Cu-binding affinity which show intrinsic fluorescence due to tyrosyl residue (Y) in the UV region (excitation at ca. 230 and 280 nm, and emission at ca. 320 nm) were synthesized to score the effect of copper occupancy. Synthesized peptides include GFP-derived fluorophore sequence, TFSYGVQ (designated as Gfp), and Gfp sequence fused to C-terminal G5H (Gfp-G5H). In addition, two Y-containing tri-peptides derived from natural GFP fluorophores, namely, TYG and SYG were fused to the G5H (TYG-G5H and SYG-G5H). Conjugation of metal-binding G5H sequence to GFP-fluorophore peptide enhanced the action of Cu2+ on quenching of intrinsic fluorescence due to Y residue. Two other Y-containing peptides, TYG-G5H and SYG-G5H, also showed intrinsic fluorescence which is sensitive to addition of Cu2+. There was linear relationship between the loading of Cu2+ and the quenching of fluorescence in these peptide, suggesting that Cu2+-dependent quenching of Y

  7. Fluorescent monitoring of copper-occupancy in His-ended catalytic oligo-peptides.

    PubMed

    Inokuchi, Reina; Kawano, Tomonori

    2016-01-01

    Controlled generation of reactive oxygen species (ROS) is widely beneficial to various medical, environmental, and agricultural studies. As inspired by the functional motifs in natural proteins, our group has been engaged in development of catalytically active oligo-peptides as minimum-sized metalloenzymes for generation of superoxide anion, an active member of ROS. In such candidate molecules, catalytically active metal-binding minimal motif was determined to be X-X-H, where X can be most amino acids followed by His. Based on above knowledge, we have designed a series of minimal copper-binding peptides designated as G n H series peptides, which are composed of oligo-glycyl chains ended with C-terminal His residue such as GGGGGH sequence (G5H). In order to further study the role of copper binding to the peptidic catalysts sharing the X-X-H motif such as G5H-conjugated peptides, we should be able to score the occupancy of the peptide population by copper ion in the reaction mixture. Here, model peptides with Cu-binding affinity which show intrinsic fluorescence due to tyrosyl residue (Y) in the UV region (excitation at ca. 230 and 280 nm, and emission at ca. 320 nm) were synthesized to score the effect of copper occupancy. Synthesized peptides include GFP-derived fluorophore sequence, TFSYGVQ (designated as Gfp), and Gfp sequence fused to C-terminal G5H (Gfp-G5H). In addition, two Y-containing tri-peptides derived from natural GFP fluorophores, namely, TYG and SYG were fused to the G5H (TYG-G5H and SYG-G5H). Conjugation of metal-binding G5H sequence to GFP-fluorophore peptide enhanced the action of Cu(2+) on quenching of intrinsic fluorescence due to Y residue. Two other Y-containing peptides, TYG-G5H and SYG-G5H, also showed intrinsic fluorescence which is sensitive to addition of Cu(2+). There was linear relationship between the loading of Cu(2+) and the quenching of fluorescence in these peptide, suggesting that Cu(2+)-dependent quenching of Y

  8. [The immune-enzyme analysis based on chimeric molecule and oligopeptide fragmentations to detect autoantibodies to beta-adrenergic receptor in patients with dilation cardiomyopathy].

    PubMed

    Afanas'eva, O I; Klesareva, E A; Efremov, E E; Sidorova, M V; Bespalova, Zh D; Levashov, P A; Ezhov, M V; Adamova, I Iu; Pokrovskiĭ, S N

    2013-04-01

    The article deals with specification of technique of immune-enzyme analysis to detect autoantibodies to beta-adrenergic receptors (beta1-AP) using compound of oligopeptids representing the fragmentations of extracellular sites beta1-AP and chimeric molecule of extracellular section of receptor This technique significantly exceeds the analogues defined in publications by its sensitivity and correlation with diagnosis.

  9. The multiple conformational charge states of zinc(II) coordination by 2His-2Cys oligopeptide investigated by ion mobility-mass spectrometry, density functional theory and theoretical collision cross sections.

    PubMed

    Wagoner, Stephanie M; Deeconda, Manogna; Cumpian, Kayleah L; Ortiz, Rafael; Chinthala, Swetha; Angel, Laurence A

    2016-12-01

    Whether traveling wave ion mobility-mass spectrometry (IM-MS), B3LYP/LanL2DZ density functional theory, and ion size scaled Lennard-Jones (LJ) collision cross sections (CCS) from the B3LYP optimized structures could be used to determine the type of Zn(II) coordination by the oligopeptide acetyl-His1 -Cys2 -Gly3 -Pro4 -Tyr5 -His6 -Cys7 (amb5 ) was investigated. The IM-MS analyses of a pH titration of molar equivalents of Zn(II):amb5 showed that both negatively and positively charged complexes formed and coordination of Zn(II) increased as the His and Cys deprotonated near their pKa values. The B3LYP method was used to generate a series of alternative coordination structures to compare with the experimental results. The method predicted that the single negatively charged complex coordinated Zn(II) in a distorted tetrahedral geometry via the 2His-2Cys substituent groups, whereas, the double negatively charged and positively charged complexes coordinated Zn(II) via His, carbonyl oxygens and the C-terminus. The CCS of the B3LYP complexes were calculated using the LJ method and compared with those measured by IM-MS for the various charge state complexes. The LJ method provided CCS that agreed with five of the alternative distorted tetrahedral and trigonal bipyramidal coordinations for the doubly charged complexes, but provided CCS that were 15 to 31 Å(2) larger than those measured by IM-MS for the singly charged complexes. Collision-induced dissociation of the Zn(II) complexes and a further pH titration study of amb5B , which included amidation of the C-terminus, suggested that the 2His-2Cys coordination was more significant than coordinations that included the C-terminus. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Structural, Kinetic and Proteomic Characterization of Acetyl Phosphate-Dependent Bacterial Protein Acetylation

    PubMed Central

    Sahu, Alexandria; Sorensen, Dylan; Minasov, George; Lima, Bruno P.; Scholle, Michael; Mrksich, Milan; Anderson, Wayne F.; Gibson, Bradford W.; Schilling, Birgit; Wolfe, Alan J.

    2014-01-01

    The emerging view of Nε-lysine acetylation in eukaryotes is of a relatively abundant post-translational modification (PTM) that has a major impact on the function, structure, stability and/or location of thousands of proteins involved in diverse cellular processes. This PTM is typically considered to arise by the donation of the acetyl group from acetyl-coenzyme A (acCoA) to the ε-amino group of a lysine residue that is reversibly catalyzed by lysine acetyltransferases and deacetylases. Here, we provide genetic, mass spectrometric, biochemical and structural evidence that Nε-lysine acetylation is an equally abundant and important PTM in bacteria. Applying a recently developed, label-free and global mass spectrometric approach to an isogenic set of mutants, we detected acetylation of thousands of lysine residues on hundreds of Escherichia coli proteins that participate in diverse and often essential cellular processes, including translation, transcription and central metabolism. Many of these acetylations were regulated in an acetyl phosphate (acP)-dependent manner, providing compelling evidence for a recently reported mechanism of bacterial Nε-lysine acetylation. These mass spectrometric data, coupled with observations made by crystallography, biochemistry, and additional mass spectrometry showed that this acP-dependent acetylation is both non-enzymatic and specific, with specificity determined by the accessibility, reactivity and three-dimensional microenvironment of the target lysine. Crystallographic evidence shows acP can bind to proteins in active sites and cofactor binding sites, but also potentially anywhere molecules with a phosphate moiety could bind. Finally, we provide evidence that acP-dependent acetylation can impact the function of critical enzymes, including glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, and RNA polymerase. PMID:24756028

  11. Acetyl-L-carnitine in hepatic encephalopathy.

    PubMed

    Malaguarnera, Michele

    2013-06-01

    Hepatic encephalopathy is a common complication of hepatic cirrhosis. The clinical diagnosis is based on two concurrent types of symptoms: impaired mental status and impaired neuromotor function. Impaired mental status is characterized by deterioration in mental status with psychomotor dysfunction, impaired memory, and increased reaction time, sensory abnormalities, poor concentration, disorientation and coma. Impaired neuromotor function include hyperreflexia, rigidity, myoclonus and asterixis. The pathogenesis of hepatic encephalopathy has not been clearly defined. The general consensus is that elevated levels of ammonia and an inflammatory response work in synergy to cause astrocyte to swell and fluid to accumulate in the brain which is thought to explain the symptoms of hepatic encephalopathy. Acetyl-L-carnitine, the short-chain ester of carnitine is endogenously produced within mitochondria and peroxisomes and is involved in the transport of acetyl-moieties across the membranes of these organelles. Acetyl-L-carnitine administration has shown the recovery of neuropsychological activities related to attention/concentration, visual scanning and tracking, psychomotor speed and mental flexibility, language short-term memory, attention, and computing ability. In fact, Acetyl-L-carnitine induces ureagenesis leading to decreased blood and brain ammonia levels. Acetyl-L-carnitine treatment decreases the severity of mental and physical fatigue, depression cognitive impairment and improves health-related quality of life. The aim of this review was to provide an explanation on the possible toxic effects of ammonia in HE and evaluate the potential clinical benefits of ALC.

  12. Separation of basic oligopeptides by ion-pairing reversed-phase chromatography

    NASA Astrophysics Data System (ADS)

    Xie, Wenchun

    The present thesis consist of five chapters. Chapter I introduces background information on the ion-pairing reversed-phase chromatography and liquid chromatography in the critical condition. Chapter II decribes our study on the isocratic separation of oligolysine (dp = 2 to 8) using a fixed content of acetonitrile (ACN) (23%) and different concentrations of HFBA in the mobile phase (0.6-30.6 mM) on a Waters XBridge Shield RP18® column. We found that the retention time of oligolysine increases as the dp increases, because of an increased number of HFBA bound to the peptides. Furthermore, when [HFBA] increased, the retention time increased at different rates. The greater the dp, the faster the rate. Based on a closed pairing model that presumes an equilibrium between an unpaired state and the paired state with a fixed number of HFBA molecules, an equation was derived for the retention factor of oligolysine. In Chapter III, we compare retention behaviors of oligolysine (dp = 2 to 8) and oligoarginine (dp = 2 to 8) when they are separated on the Waters XBridge Shield RP18® using fixed a ACN content (23%) and difference concentrations of HFBA (0.4-30.6 mM) in the mobile phase. The retention time of oligoarginine also increased at different rates as [HFBA] increased. The greater the dp, the faster the rate. The retention time of oligolysine is shorter than that of oligarginine having the dame dp. We applied Eq.1 to analyze the plot of ln k as a function of [HFBA] for each oligopeptide component to obtain the values for n, Kip,m, and βKd,ip. For oligolysine, n increases linearly as dp increase and oligoarginine exhibits an accelerated increase in n as dp rises. The plot of ln βKd,ip against dp followed a linear relationship for both peptides. In Chapter IV, we study the effect of mobile phase composition on the retention of oligolysine (dp = 2 to 8) on the Waters XBridge Shield RP18 ®. The ACN content was changed from 20% to 33% and the HFBA concentration from 0.7 to

  13. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    PubMed

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Spasmogenic activity of chemotactic N-formylated oligopeptides: identity of structure--function relationships for chemotactic and spasmogenic activities.

    PubMed

    Marasco, W A; Fantone, J C; Ward, P A

    1982-12-01

    The chemotactic N-formylated oligopeptides are potent spasmogenic agents for guinea pig ileum. Structure-activity studies with various N-formylated peptides suggest the presence of a specific receptor that resembles in specificity the formyl peptide receptor on leukocytes. A competitive antagonist of the formyl peptide receptor on leukocytes also inhibits formyl peptide-induced ileum contraction, whereas the antihistamine diphenhydramine is without effect. The contractile response caused by the synthetic N-formylated peptides differs from those induced by acetylcholine, histamine, and substance P. In particular, a latent period after treatment with the N-formyl peptides is seen before the onset of the response, and a sustained contractile response is not maintained. In addition, tachyphylaxis does occur, but complete recovery of activity is seen after a 20- to 30-min rest period. These observations suggest broad biological roles of prokaryotic signal peptides from bacteria as acute inflammatory mediators.

  15. Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures.

    PubMed

    Mondal, Prakash Chandra; Roy, Partha; Kim, Dokyun; Fullerton, Eric E; Cohen, Hagai; Naaman, Ron

    2016-04-13

    The combination of photonics and spintronics opens new ways to transfer and process information. It is shown here that in systems in which organic molecules and semiconductor nanoparticles are combined, matching these technologies results in interesting new phenomena. We report on light induced and spin-dependent charge transfer process through helical oligopeptide-CdSe nanoparticles' (NPs) architectures deposited on ferromagnetic substrates with small coercive force (∼100-200 Oe). The spin control is achieved by the application of the chirality-induced spin-dependent electron transfer effect and is probed by two different methods: spin-controlled electrochemichemistry and photoluminescence (PL) at room temperature. The injected spin could be controlled by excitation of the nanoparticles. By switching the direction of the magnetic field of the substrate, the PL intensity could be alternated.

  16. The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9.

    PubMed

    Gardan, Rozenn; Besset, Colette; Guillot, Alain; Gitton, Christophe; Monnet, Véronique

    2009-07-01

    In gram-positive bacteria, oligopeptide transport systems, called Opp or Ami, play a role in nutrition but are also involved in the internalization of signaling peptides that take part in the functioning of quorum-sensing pathways. Our objective was to reveal functions that are controlled by Ami via quorum-sensing mechanisms in Streptococcus thermophilus, a nonpathogenic bacterium widely used in dairy technology in association with other bacteria. Using a label-free proteomic approach combining one-dimensional electrophoresis with liquid chromatography-tandem mass spectrometry analysis, we compared the proteome of the S. thermophilus LMD-9 to that of a mutant deleted for the subunits C, D, and E of the ami operon. Both strains were grown in a chemically defined medium (CDM) without peptides. We focused our attention on proteins that were no more detected in the ami deletion mutant. In addition to the three subunits of the Ami transporter, 17 proteins fulfilled this criterion and, among them, 7 were similar to proteins that have been identified as essential for transformation in S. pneumoniae. These results led us to find a condition of growth, the early exponential state in CDM, that allows natural transformation in S. thermophilus LMD-9 to turn on spontaneously. Cells were not competent in M17 rich medium. Furthermore, we demonstrated that the Ami transporter controls the triggering of the competence state through the control of the transcription of comX, itself controlling the transcription of late competence genes. We also showed that one of the two oligopeptide-binding proteins of strain LMD-9 plays the predominant role in the control of competence.

  17. Anti-Fatigue Effects of Small Molecule Oligopeptides Isolated from Panax ginseng C. A. Meyer in Mice

    PubMed Central

    Bao, Lei; Cai, Xiaxia; Wang, Junbo; Zhang, Yuan; Sun, Bin; Li, Yong

    2016-01-01

    Panax ginseng C. A. Meyer (ginseng) is an edible and medicinal Chinese herb, which is often used in Asian countries for physical fitness. Ginseng is reported to have a wide range of biological activity and pharmaceutical properties. There were more studies on ginsenosides and polysaccharides, but fewer studies on ginseng oligopeptides (GOP), which are small molecule oligopeptides isolated from ginseng. The present study was designed to evaluate the anti-fatigue effects of GOP in mice and explore the possible underlying mechanism. Mice were randomly divided into four experimental sets for the detection of different indicators. Each set of mice were then divided into four groups. The control group was administered distilled water, and three GOP intervention groups were administered 125, 250, and 500 mg/kg of body weight, respectively, of GOP by gavage each day. After 30 days of GOP treatment, it was observed that GOP could significantly increase the forced swimming time, enhance lactate dehydrogenase (LDH) activity and hepatic glycogen levels, and retard the accumulation of serum urea nitrogen (SUN) and blood lactic acid (BLA) in mice. GOP also markedly ameliorated fatigue-induced alterations of inoxidative stress biomarkers and antioxidant enzymes. Notably, GOP increased the mRNA expression of mitochondrial biogenesis factors and mitochondrial DNA content in skeletal muscles of mice. These results suggest that GOP possess anti-fatigue effects, which may be attributed to the inhibition of oxidative stress and the improvement of mitochondrial function in skeletal muscles. GOP could be a novel natural agent for relieving exercise fatigue. PMID:27983571

  18. Crosstalk among the proteome, lysine phosphorylation, and acetylation in romidepsin-treated colon cancer cells

    PubMed Central

    Wang, Tian-Yun; Chai, Yu-Rong; Jia, Yan-Long; Gao, Jian-Hui; Peng, Xiao-Jun; Han, Hua-Feng

    2016-01-01

    Romidepsin (FK228) is one of the most promising histone-deacetylase inhibitors due to its potent antitumor activity, and has been used as a practical option for cancer therapy. However, FK228-induced changes in protein modifications and the crosstalk between different modifications has not been reported. To better understand the underlying mechanisms of FK228-related cancer therapy, we investigated the acetylome, phosphorylation, and crosstalk between modification datasets in colon cancer cells treated with FK228 by using stable-isotope labeling with amino acids in cell culture and affinity enrichment, followed by high-resolution liquid chromatography tandem mass spectrometry analysis. In total, 2728 protein groups, 1175 lysine-acetylation sites, and 4119 lysine-phosphorylation sites were quantified. When the quantification ratio thresholds were set to > 2.0 and < 0.5, respectively, a total of 115 and 38 lysine-acetylation sites in 85 and 32 proteins were quantified as increased and decreased targets, respectively, and 889 and 370 lysine-phosphorylation sites in 599 and 289 proteins were quantified as increased and decreased targets, respectively. Furthermore, we identified 274 proteins exhibiting both acetylation and phosphorylation modifications. These findings indicated possible involvement of these proteins in FK228-related treatment of colon cancer, and provided insight for further analysis of their biological function. PMID:27472459

  19. Preliminary toxicological study of ferric acetyl acetonate

    SciTech Connect

    London, J.E.; Smith, D.M.

    1983-01-01

    The calculated acute oral LD/sub 50//sup 30/ (lethal does for 50% of the animals occuring with 30 days after compound administration) values for ferric acetyl acetonate were 584 mg/kg in mice and 995 mg/kg in rats. According to classical guidelines, this compound would be considered slightly toxic in both species. Skin application studies in the rabbit demonstrated the compound to be irritating. The eye irritation study disclosed the compound to be a severe irritant causing permanent damage to the cornea (inflammation and scarring resulting in blindness). The sensitization study in the guinea pig did not show ferric acetyl acetonate to be deleterious in this regard.

  20. Structural Basis for Phosphorylation and Lysine Acetylation Cross-talk in a Kinase Motif Associated with Myocardial Ischemia and Cardioprotection*

    PubMed Central

    Parker, Benjamin L.; Shepherd, Nicholas E.; Trefely, Sophie; Hoffman, Nolan J.; White, Melanie Y.; Engholm-Keller, Kasper; Hambly, Brett D.; Larsen, Martin R.; James, David E.; Cordwell, Stuart J.

    2014-01-01

    Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility. PMID:25008320

  1. Lysine Acetylation and Succinylation in HeLa Cells and their Essential Roles in Response to UV-induced Stress

    PubMed Central

    Xu, Hong; Chen, Xuanyi; Xu, Xiaoli; Shi, Rongyi; Suo, Shasha; Cheng, Kaiying; Zheng, Zhiguo; Wang, Meixia; Wang, Liangyan; Zhao, Ye; Tian, Bing; Hua, Yuejin

    2016-01-01

    Lysine acetylation and succinylation are major types of protein acylation that are important in many cellular processes including gene transcription, cellular metabolism, DNA damage response. Malfunctions in these post-translational modifications are associated with genome instability and disease in higher organisms. In this study, we used high-resolution nano liquid chromatography-tandem mass spectrometry combined with affinity purification to quantify the dynamic changes of protein acetylation and succinylation in response to ultraviolet (UV)-induced cell stress. A total of 3345 acetylation sites in 1440 proteins and 567 succinylation sites in 246 proteins were identified, many of which have not been reported previously. Bioinformatics analysis revealed that these proteins are involved in many important biological processes, including cell signalling transduction, protein localization and cell metabolism. Crosstalk analysis between these two modifications indicated that modification switches might regulate protein function in response to UV-induced DNA damage. We further illustrated that FEN1 acetylation at different sites could lead to different cellular phenotypes, suggesting the multiple function involvement of FEN1 acetylation under DNA damage stress. These systematic analyses provided valuable resources and new insight into the potential role of lysine acetylation and succinylation under physiological and pathological conditions. PMID:27452117

  2. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  3. Gene encoding acetyl-coenzyme A carboxylase

    SciTech Connect

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  4. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  5. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  6. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  7. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  8. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  9. H3K9 acetylation change patterns in rats after exposure to traffic-related air pollution.

    PubMed

    Ding, Rui; Jin, Yongtang; Liu, Xinneng; Zhu, Ziyi; Zhang, Yuan; Wang, Ting; Xu, Yinchun

    2016-03-01

    Traffic-related air pollution (TRAP) has been acknowledged as a potential risk factor for numerous respiratory disorders including lung cancer; however, the exact mechanisms involved are still unclear. Here we investigated the effects of TRAP exposure on the H3K9 acetylation in rats. The exposure was performed in both spring and autumn with identical study procedures. In each season, 48 healthy Wistar rats were exposed to different levels of TRAP for 4 h, 7 d, 14 d, and 28 d, respectively. H3K9 acetylation levels in both the peripheral blood mononuclear cells (PBMCs) and lung tissues were quantified. Multiple linear regression was applied to assess the influence of air pollutants on H3K9 acetylation levels. The levels of PM2.5, PM10, and NO2 in the tunnel and crossroad groups were significantly higher than in the control group. The H3K9 acetylation levels were not significantly different between spring and autumn. When spring and autumn data were analyzed together, no significant association between the TRAP and H3K9 acetylation was found in 4h exposure window. However, in the 7 d exposure window, PM2.5 and PM10 exposures were associated with changes in H3K9 acetylation ranging from 0.276 (0.053, 0.498) to 0.475 (0.103, 0.848) per 1 μg/m(3) increase in the pollutant concentration. In addition, prolonged exposure of the rats in the tunnel showed that both PM2.5 and PM10 concentrations were positively associated with H3k9 acetylation in both PBMCs and lung tissues. The findings showed that 7-d and prolonged TRAP exposure could effectively increase the H3K9 acetylation level in both PBMCs and lung tissues of rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Acetyl diacylglycerol produced by modified camelina (Camelina sativa)

    USDA-ARS?s Scientific Manuscript database

    Acetyl diacylglyceride (Acetyl-TAG) is a component of a commercial product, ACETEM, manufactured by transesterification reaction of triglycerides, glycerol, and triacetin or by acetylation of mono- and diglycerides with acetic acid anhydride. ACETEM is commonly used as foaming agents and coatings in...

  11. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  12. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  13. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.

    PubMed

    Weaver, A J; Kemple, M D; Prendergast, F G

    1988-07-01

    Two oligopeptides, t-boc-LAWAL-OMe and t-boc-LALALW-OMe, were synthesized for the purpose of examining the sidechain dynamics of the tryptophan residue in hydrophobic environments by 13C nuclear magnetic resonance and fluorescence spectroscopy. In both peptides, the tryptophan sidechain was greater than 95% enriched with 13C at the C delta 1 position. Spin-lattice relaxation time (T1) and steady-state nuclear Overhauser effect (NOE) data were obtained at 50.3 and 75.4 MHz for both peptides in CD3OD, and at 75.4 MHz for t-boc-LALALW-OMe in lysolecithin-D2O micelles. We have adapted the model-free approach of G. Lipari and A. Szabo (1982, J. Am. Chem. Soc. 104:4546) to interpret the 13C-NMR data. Computer-generated curves based on experimental data obtained at a single frequency demonstrate relationships between an effective correlation time for tryptophan sidechain motion (tau e), a generalized order parameter (sigma) describing the extent of motional restriction, and an overall correlation time for the peptide (tau m). Assuming predominantly dipolar relaxation, least-squares fits of the dual frequency relaxation data provide values for these parameters for both peptides. The contribution of chemical shift anisotropy (CSA), however, is also explicitly assessed in the data analysis, and is shown to perturb the predicted sigma, tau e, and tau m values and to decrease chi(2) values observed in nonlinear least-squares analysis of the data. Because of uncertainty in the contribution of CSA to the relaxation of the indole ring 13C delta 1 atom, nonlinear least-squares analysis of the relaxation data were performed with and without inclusion of a CSA term in the appropriate relaxation equations. Neglecting CSA, an overall peptide correlation time of 0.69 ns is predicted for t-boc-LAWAL-OMe in CD3OD at 20 degrees C compared with 1.28 ns for t-boc-LALALW-OMe. Given these tau m values and taking into account the effect of measurement error in the T1 and NOE data, the internal

  14. Vibrational Raman optical activity characterization of poly(l-proline) II helix in alanine oligopeptides.

    PubMed

    McColl, Iain H; Blanch, Ewan W; Hecht, Lutz; Kallenbach, Neville R; Barron, Laurence D

    2004-04-28

    A vibrational Raman optical activity (ROA) study of a series of alanine peptides in aqueous solution is presented. The seven-alanine peptide Acetyl-OOAAAAAAAOO-Amide (OAO), recently shown by NMR and UVCD to adopt a predominantly poly(l-proline II) (PPII) helical conformation in aqueous solution, gave an ROA spectrum very similar to that of disordered poly(l-glutamic acid) which has long been considered to adopt the PPII conformation, both being dominated by a strong positive extended amide III ROA band at approximately 1319 cm-1 together with weak positive amide I ROA intensity at approximately 1675 cm-1. A series of alanine peptides Ala2-Ala6 studied in their cationic states in aqueous solution at low pH displayed ROA spectra which steadily evolved toward that of OAO with increasing chain length. As well as confirming that alanine peptides can support the PPII conformation in aqueous solution, our results also confirm the previous ROA band assignments for PPII structure, thereby reinforcing the foundation for ongoing ROA studies of unfolded and partially folded proteins.

  15. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  16. Critical role of the proton-dependent oligopeptide transporter (POT) in the cellular uptake of the peptidyl nucleoside antibiotic, blasticidin S.

    PubMed

    Kitamura, Kenji; Kinsui, Eldaa Zefany Banami; Abe, Fumiyoshi

    2017-02-01

    Blasticidin S (BlaS) interferes in the cell growth of both eukaryotes and prokaryotes. Its mode of action as a protein synthesis inhibitor has been investigated extensively. However, the mechanism of BlaS transport into the target cells is not understood well. Here, we show that Ptr2, a member of the proton-dependent oligopeptide transporter (POT) family, is responsible for the uptake of BlaS in yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae. Notably, some mutants of Ptr2 that are dysfunctional in dipeptide uptake were still competent to transport BlaS. Mouse-derived oligopeptide transporter PepT1 conferred BlaS sensitivity in the S. cerevisiae ptr2∆ mutant. Furthermore, bacterial POT family proteins also potentiated the BlaS sensitivity of E. coli. The role of the POT family oligopeptide transporters in the uptake of BlaS is conserved across species from bacteria to mammals. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. High-performance liquid chromatography of N-terminal tyrosine-containing oligopeptides by pre-column fluorescence derivatization with hydroxylamine, cobalt (II) and borate reagents.

    PubMed

    Nakano, M; Kai, M; Ohno, M; Ohkura, Y

    1987-12-18

    A pre-column fluorescence derivatization method is described for the high-performance liquid chromatographic determination of N-terminal tyrosine-containing oligopeptides involving methionine-enkephalin and leucine-enkephalin. The peptides are converted into fluorescent derivatives by heating in a weakly alkaline medium (pH 8.5) containing hydroxylamine, cobalt(II) ion and borate. The derivatives are separated on a reversed-phase column (TSKgel ODS-120T) by gradient elution of acetonitrile in a mobile phase containing borate buffer (pH 8.5) and tetra-n-butylammonium chloride, and then determined by fluorimetry. The derivatization provides a single fluorescent product for each N-terminal tyrosine-containing oligopeptide, but does not allow the production of fluorescent derivatives for peptides having no tyrosyl residue at the N-terminal. The method is selective and sensitive; the lower limits of detection for the N-terminal tyrosine-containing oligopeptides tested were 140-310 fmol per 100 microliters injected.

  18. Diesel Emissions Quantifier (DEQ)

    EPA Pesticide Factsheets

    .The Diesel Emissions Quantifier (Quantifier) is an interactive tool to estimate emission reductions and cost effectiveness. Publications EPA-420-F-13-008a (420f13008a), EPA-420-B-10-035 (420b10023), EPA-420-B-10-034 (420b10034)

  19. Comparison of the acetylation of proteins and nucleic acids

    PubMed Central

    Paik, Woon Ki; Kim, Sangduk

    1970-01-01

    The possibility of acetylation of nucleic acids was examined. Although protein is actively acetylated with [1-14C]acetic acid in rat liver systems in vivo and in vitro and in a frog liver system in vivo, nucleic acids are not acetylated under these conditions; nucleic acids purified from these sources are without radioactivity. Requirements for acetylation in vitro of protein in rat liver are different from those in frog liver; GSH has no effect in the rat liver system and is inhibitory in the frog liver system. Among various acetylated proteins, proteins insoluble in 0.1m-sulphuric acid have the highest radioactivity. PMID:5435491

  20. N-acetyl endorphin in rat spermatogonia and primary spermatocytes.

    PubMed Central

    Cheng, M C; Clements, J A; Smith, A I; Lolait, S J; Funder, J W

    1985-01-01

    In previous reports modest levels of beta-endorphin have been found by radioimmunoassay in rat testis, and localized by immunofluorescence to the interstitial cells. We have confirmed these previous reports and extended them by showing that the majority of testicular endorphins are acetylated forms, N-acetyl gamma-endorphin, N-acetyl alpha-endorphin, and N-acetyl beta-endorphin1-27. In addition, N-acetylated endorphins are not found in interstitial cells, but are confined to spermatogonia and primary spermatocytes. Images PMID:3156881

  1. Regulation, Function, and Detection of Protein Acetylation in Bacteria.

    PubMed

    Carabetta, Valerie J; Cristea, Ileana M

    2017-08-15

    N(ε)-Lysine acetylation is now recognized as an abundant posttranslational modification (PTM) that influences many essential biological pathways. Advancements in mass spectrometry-based proteomics have led to the discovery that bacteria contain hundreds of acetylated proteins, contrary to the prior notion of acetylation events being rare in bacteria. Although the mechanisms that regulate protein acetylation are still not fully defined, it is understood that this modification is finely tuned via both enzymatic and nonenzymatic mechanisms. The opposing actions of Gcn5-related N-acetyltransferases (GNATs) and deacetylases, including sirtuins, provide the enzymatic control of lysine acetylation. A nonenzymatic mechanism of acetylation has also been demonstrated and proven to be prominent in bacteria, as well as in mitochondria. The functional consequences of the vast majority of the identified acetylation sites remain unknown. From studies in mammalian systems, acetylation of critical lysine residues was shown to impact protein function by altering its structure, subcellular localization, and interactions. It is becoming apparent that the same diversity of functions can be found in bacteria. Here, we review current knowledge of the mechanisms and the functional consequences of acetylation in bacteria. Additionally, we discuss the methods available for detecting acetylation sites, including quantitative mass spectrometry-based methods, which promise to promote this field of research. We conclude with possible future directions and broader implications of the study of protein acetylation in bacteria. Copyright © 2017 American Society for Microbiology.

  2. Synthesis and characterization of bactericidal oligopeptides designed on the basis of an insect anti-bacterial peptide.

    PubMed Central

    Saido-Sakanaka, H; Ishibashi, J; Sagisaka, A; Momotani, E; Yamakawa, M

    1999-01-01

    Defensin from a beetle, Allomyrina dichotoma, is known to have anti-bacterial activity against Gram-positive bacteria. This peptide, which comprises 43 amino acid residues, was effective against methicillin-resistant Staphylococcus aureus. We identified the active site of beetle defensin by measuring anti-bacterial activity against S. aureus of 64 overlapping 12-mer peptides with either a free carboxylate or a free amide group at their C-termini. An LCAAHCLAIGRR-NH2 (19L-30R-NH2) fragment showed the greatest activity of the synthetic oligopeptides. The 19L-30R-NH2 fragment was effective against both Gram-positive and Gram-negative bacteria. CD spectra showed that the 19L-30R-NH2 fragment formed an alpha-helical structure in the lipidic environment. The anti-bacterial effect of the 19L-30R-NH2 fragment was due to its interaction with bacterial membranes, judging from the leakage of liposome-entrapped glucose. Its anti-bacterial activity was increased when certain amino acid residues were replaced. Truncated peptides having had some amino acids removed from the N-terminus of the 19L-30R-NH2 fragment (8-10-mer peptides) still had strong anti-bacterial activity. Deleting some amino acids from the C-terminal region of the fragment dramatically reduced activity, indicating that the C-terminal region of the 19L-30R-NH2 fragment, i.e. RR-NH2, is important for exerting anti-bacterial activity. The AHCLAIGRR-NH2 (22A-30R-NH2) fragment and its analogues exhibited about 3-fold and 9-12-fold higher activity against S. aureus than did the 19L-30R-NH2 fragment, and these analogues were effective against methicillin-resistant S. aureus and Pseudomonas aeruginosa isolated from patients. These oligopeptides showed no haemolytic activity and did not inhibit the growth of murine fibroblast cells. PMID:9931294

  3. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    PubMed Central

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  4. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  5. Acetylation of prostaglandin synthetase by aspirin. Purification and properties of the acetylated protein from sheep vesicular gland.

    PubMed

    Roth, G J; Stanford, N; Jacobs, J W; Majerus, P W

    1977-09-20

    We previously presented evidence that aspirin (acetylsalicylic acid) inhibits prostaglandin synthetase by acetylating and active site of the enzyme. In the current work, we have labeled the enzyme from an aceton-pentane powder of sheep vesicular gland using [acetyl-3H]aspirin and purified the [3H]acetyl-protein to near homogeneity. The final preparation contains protein of a single molecular weight (85 000) and an amino-terminal sequence of Asp-Ala-Gly-Arg-Ala. The [3H]acetyl-protein contained 0.5 mol of acetyl residues per mol of protein based on amino acid composition but only a single sequence was found.

  6. Fragrance material review on acetyl carene.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl carene when used as a fragrance ingredient is presented. Acetyl carene is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl carene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013A Toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients. (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013. Published by Elsevier Ltd.

  7. The neurobiology of acetyl-L-carnitine.

    PubMed

    Traina, Giovanna

    2016-06-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system.

  8. CDKN1A histone acetylation and gene expression relationship in gastric adenocarcinomas.

    PubMed

    Wisnieski, Fernanda; Calcagno, Danielle Queiroz; Leal, Mariana Ferreira; Santos, Leonardo Caires; Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Demachki, Sâmia; Artigiani, Ricardo; Assumpção, Paulo Pimentel; Lourenço, Laércio Gomes; Burbano, Rommel Rodríguez; Smith, Marília Cardoso

    2017-02-01

    CDKN1A is a tumor suppressor gene involved in gastric carcinogenesis and is a potential target for histone deacetylase inhibitor-based therapies. Upregulation of CDKN1A is generally observed in several cell lines after histone deacetylase inhibitor treatment; however, little is known about the histone acetylation status associated with this gene in clinical samples, including gastric tumor tissue samples. Therefore, our goal was to quantify the H3K9 and H4K16 acetylation levels associated with three CDKN1A regions in 21 matched pairs of gastric adenocarcinoma and corresponding adjacent non-tumor samples by chromatin immunoprecipitation and to correlate these data with the gene expression. Our results demonstrated that the -402, -20, and +182 CDKN1A regions showed a significantly increased acetylation level in at least one of the histones evaluated (p < 0.05, for all comparisons), and these levels were positively correlated in gastric tumors. However, an inverse correlation was detected between both H3K9 and H4K16 acetylation at the -402 CDKN1A region and mRNA levels in gastric tumors (r = -0.51, p = 0.02; r = -0.60, p < 0.01, respectively). Furthermore, increased H4K16 acetylation at the -20 CDKN1A region was associated with gastric tumors of patients without lymph node metastasis (p = 0.04). These results highlight the complexity of these processes in gastric adenocarcinoma and contribute to a better understanding of CDKN1A regulation in carcinogenesis.

  9. Rapid quantification of O-acetyl and O-methyl residues in pectin extracts.

    PubMed

    Bédouet, Laurent; Courtois, Bernard; Courtois, Josiane

    2003-02-07

    A rapid method for the determination of the degrees of methylation (DM) and acetylation (DA) of pectins was developed. The polymer substitution degree as determined after saponification at 80 degrees C with NaOD during 1H NMR analysis. Under alkaline conditions, the cleavage of O-acetyl and O-methyl linkages allows the detection and the integration of the H-4 signal from galacturonic acid residues in the newly unesterified pectins. So, after a 10-min NMR recording, sodium acetate and sodium methanolate can be easily quantified relative to the clearly identified H-4 signal in galacturonic acid residues. Protons signals from pectin neutral sugars do not interfere with H-4. During the analysis, a limited (<3%) methanol evaporation leading to a weak reduced signal from the methanolate protons was observed. The proposed method allows in few minutes an accurate simultaneous quantification of DM and DA from few mg of pectin extracts, without the need of external standards.

  10. Antibodies specific to acetylated histones document the existence of deposition- and transcription-related histone acetylation in Tetrahymena

    PubMed Central

    1989-01-01

    In this study, we have constructed synthetic peptides which are identical to hyperacetylated amino termini of two Tetrahymena core histones (tetra-acetylated H4 and penta-acetylated hv1) and used them to generate polyclonal antibodies specific for acetylated forms (mono-, di-, tri-, etc.) of these histones. Neither of these antisera recognizes histone that is unacetylated. Immunoblotting analyses demonstrate that both transcription-related and deposition-related acetate groups on H4 are recognized by both antisera. In addition, the antiserum raised against penta-acetylated hv1 also recognizes acetylated forms of this variant. Immunofluorescent analyses with both antisera demonstrate that, as expected, histone acetylation is specific to macronuclei (or new macronuclei) at all stages of the life cycle except when micronuclei undergo periods of rapid replication and chromatin assembly. During this time micronuclear staining is also detected. Our results also suggest that transcription-related acetylation begins selectively in new macronuclei immediately after the second postzygotic division. Acetylated histone is not observed in new micronuclei during stages corresponding to anlagen development and, therefore, histone acetylation can be distributed asymmetrically in development. Equally striking is the rapid turnover of acetylated histone in parental macronuclei during the time of their inactivation and elimination from the cell. Taken together, these data lend strong support to the idea that modulation of histone acetylation plays an important role in gene activation and in chromatin assembly. PMID:2654136

  11. Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies.

    PubMed

    Rothbart, Scott B; Lin, Shu; Britton, Laura-Mae; Krajewski, Krzysztof; Keogh, Michael-C; Garcia, Benjamin A; Strahl, Brian D

    2012-01-01

    Antibodies specific for histone post-translational modifications (PTMs) have been central to our understanding of chromatin biology. Here, we describe an unexpected and novel property of histone H4 site-specific acetyl antibodies in that they prefer poly-acetylated histone substrates. By all current criteria, these antibodies have passed specificity standards. However, we find these site-specific histone antibodies preferentially recognize chromatin signatures containing two or more adjacent acetylated lysines. Significantly, we find that the poly-acetylated epitopes these antibodies prefer are evolutionarily conserved and are present at levels that compete for these antibodies over the intended individual acetylation sites. This alarming property of acetyl-specific antibodies has far-reaching implications for data interpretation and may present a challenge for the future study of acetylated histone and non-histone proteins.

  12. Quantitative determination of sulfisoxazole and its three N-acetylated metabolites using HPLC-MS/MS, and the saturable pharmacokinetics of sulfisoxazole in mice.

    PubMed

    Oh, Kyungsoo; Baek, Moon-Chang; Kang, Wonku

    2016-09-10

    Sulfisoxazole (SFX) is still used in combination with trimethoprim in cattle despite adverse drug reactions (e.g., urolithiasis). Recently, SFX is known to be a promising repositioned drug candidate for pulmonary hypertension and cancer. We developed a simultaneous determination method of SFX and its N-acetylated metabolites (N(1)-acetyl SFX, N1AS; N(4)-acetyl SFX, N4AS; diacetyl SFX, DAS) using HPLC-MS/MS for the first time, and examined the pharmacokinetics of SFX in mice. N1AS and DAS were converted rapidly to SFX and N4AS, respectively, in mouse plasma. The time courses of plasma SFX and N4AS concentrations were well-characterised following the oral administration of SFX to mice. The absorption, metabolism, and/or excretion of SFX given at >700mg/kg may be saturable, and in contrast to humans and rats, the extent of systemic exposure of mice to N4AS was much greater than that of SFX. Interestingly, the acetyl groups at both N1- and N4-positions were degraded during the ionisation required to generate precursor ions. In additional experiments the carboxyl group of N-acetyl-5-aminosalicylic acid (NA5AS) was lost instead of the acetyl group during the ionisation, and acetaminophen (AAP) appeared. As the acetyl and carboxyl groups of some substances can be degraded during ionisation in the mass spectrometer, caution is appropriate when it is sought to simultaneously quantify similar structures containing these moieties; chromatographic separation is essential.

  13. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    SciTech Connect

    Manzi, A.E.; Sjoberg, E.R.; Diaz, S.; Varki, A.

    1990-08-05

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with (3H)acetate and (14C)glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with (acetyl-3H)acetyl-coenzyme A, the major labeled products were disialogangliosides. (Acetyl-3H)O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in (3H)N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from (3H)acetate was exclusively in the form of (3H)N-acetyl groups, whereas the 14C-label was at the 4-position.

  14. Antioxidant effect of a marine oligopeptide preparation from chum salmon (Oncorhynchus keta) by enzymatic hydrolysis in radiation injured mice.

    PubMed

    Yang, Ruiyue; Wang, Junbo; Liu, Zhigang; Pei, Xinrong; Han, Xiaolong; Li, Yong

    2011-01-01

    Marine oligopeptide preparation (MOP) obtained from Chum Salmon (Oncorhynchus keta) by the method of enzymatic hydrolysis, has been found to possess a radioprotective property through stimulation of the radiation-induced immunosuppression. The current study aimed to further investigate the free radicals scavenging and antioxidant effects of MOP in radiation injured mice. Female ICR mice (6-8 weeks old) were randomly divided into 5 groups, i.e., blank control, irradiation control and MOP (0.225, 0.450 and 1.350 g/kg body weight) plus an irradiation-treated group. The result revealed that MOP significantly increased the white blood cell counts after irradiation, and lessened the radiation-induced oxidative damage. These effects may be caused by augmentation of the activities of antioxidant enzymes, such as SOD and GSH-Px, reduction of the lipid peroxidation (MDA level) in liver, and protection against radiation-induced apoptosis. Therefore, we propose that MOP be used as an ideal antioxidant to alleviate radiation-induced oxidation damage in cancer patients.

  15. Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters.

    PubMed

    Ho, Cheng-Hsun; Frommer, Wolf B

    2014-03-12

    To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4, and 5 into fluorescence activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate interaction, proton coupling, and regulation. We observed a striking correlation between transport activity and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is applicable in plant and medical research. DOI: http://dx.doi.org/10.7554/eLife.01917.001.

  16. Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters

    PubMed Central

    Ho, Cheng-Hsun; Frommer, Wolf B

    2014-01-01

    To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4, and 5 into fluorescence activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate interaction, proton coupling, and regulation. We observed a striking correlation between transport activity and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is applicable in plant and medical research. DOI: http://dx.doi.org/10.7554/eLife.01917.001 PMID:24623305

  17. Influence of Free Amino Acids, Oligopeptides, and Polypeptides on the Formation of Pyrazines in Maillard Model Systems.

    PubMed

    Scalone, Gustavo Luis Leonardo; Cucu, Tatiana; De Kimpe, Norbert; De Meulenaer, Bruno

    2015-06-10

    Pyrazines are specific Maillard reaction compounds known to contribute to the unique aroma of many products. Most studies concerning the generation of pyrazines in the Maillard reaction have focused on amino acids, while little information is available on the impact of peptides and proteins. The present study investigated the generation of pyrazines in model systems containing whey protein, hydrolyzed whey protein, amino acids, and glucose. The impact of thermal conditions, ratio of reagents, and water activity (a(w)) on pyrazine formation was measured by headspace solid-phase microextraction with gas chromatography/mass spectrometry (HS-SPME-GC/MS. The presence of oligopeptides from hydrolyzed whey protein contributed significantly to an increased amount of pyrazines, while in contrast free amino acids generated during protein hydrolysis contributed to a lesser extent. The generation of pyrazines was enhanced at low a(w) (0.33) and high temperatures (>120 °C). This study showed that the role of peptides in the generation of pyrazines in Maillard reaction systems has been dramatically underestimated.

  18. Pilot-scale production of soybean oligopeptides and antioxidant and antihypertensive effects in vitro and in vivo.

    PubMed

    Cai, Mu-Yi; Gu, Rui-Zeng; Li, Chen-Yue; Ma, Yong; Dong, Zhe; Liu, Wen-Ying; Jin, Zhen-Tao; Lu, Jun; Yi, Wei-Xue

    2014-09-01

    Soybean oligopeptides (SOP) with low molecular weights were prepared by two-step enzymatic hydrolysis on a pilot-scale. Peptide and free amino acid contents of SOP were 82.5 ± 1.13 % and 3.7 ± 0.28 % respectively. The molecular weight distribution of SOP was mainly bellow 1,000 Da (85.4 %), 56.7 % of which were 140-500 Da. SOP showed strong stability to proteolytic digestion by pepsin and trypsin. The antioxidant activities and in vitro and in vivo antihypertensive effects of SOP were evaluated. Results showed that SOP exhibited 1,1-diphenyl-2-picrylhydrazyl radical scavenging effect (IC50 = 4.5 ± 0.13 mg/mL), and significantly inhibited lipid peroxidation in linoleic acid oxidation system (IC50 = 1.2 ± 0.09 mg/mL). SOP had potent angiotensin I-converting enzyme inhibitory activity (IC50 = 1.1 ± 0.06 mg/mL), and antihypertensive effect in spontaneously hypertensive rats at a dose of 200 mg/kg. This study indicated that SOP could be a natural antioxidative or antihypertensive compound in the medicine and food industries.

  19. Multi-responsive Hydrogels Derived from the Self-assembly of Tethered Allyl-functionalized Racemic Oligopeptides

    PubMed Central

    He, Xun; Fan, Jingwei; Zhang, Fuwu; Li, Richen; Pollack, Kevin A.; Raymond, Jeffery E.; Zou, Jiong; Wooley, Karen L.

    2014-01-01

    A multi-responsive triblock hydrogelator oligo(dl-allylglycine)-block-poly(ethylene glycol)-block-oligo(dl-allylglycine) (ODLAG-b-PEG-b-ODLAG) was synthesized facilely by ring-opening polymerization (ROP) of DLAG N-carboxyanhydride (NCA) with a diamino-terminated PEG as the macroinitiator. This system exhibited heat-induced sol-to-gel transitions and either sonication- or enzyme-induced gel-to-sol transitions. The β-sheeting of the oligopeptide segments was confirmed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and wide-angle X-ray scattering (WAXS). The β-sheets further displayed tertiary ordering into fibrillar structures that, in turn generated a porous and interconnected hydrogel matrix, as observed via transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The reversible macroscopic sol-to-gel transitions triggered by heat and gel-to-sol transitions triggered by sonication were correlated with the transformation of nanostructural morphologies, with fibrillar structures observed in gel and spherical aggregates in sol, respectively. The enzymatic breakdown of the hydrogels was also investigated. This allyl-functionalized hydrogelator can serve as a platform for the design of smart hydrogels, appropriate for expansion into biological systems as bio-functional and bio-responsive materials. PMID:25485113

  20. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity

    PubMed Central

    2009-01-01

    Background The fungus Colletotrichum gloeosporioides f. sp. aeschynomene produces high levels of indole-3-acetic acid (IAA) in axenic cultures and during plant infection. We generated a suppression subtractive hybridization library enriched for IAA-induced genes and identified a clone, which was highly expressed in IAA-containing medium. Results The corresponding gene showed similarity to oligopeptide transporters of the OPT family and was therefore named CgOPT1. Expression of CgOPT1 in mycelia was low, and was enhanced by external application of IAA. cgopt1-silenced mutants produced less spores, had reduced pigmentation, and were less pathogenic to plants than the wild-type strain. IAA enhanced spore formation and caused changes in colony morphology in the wild-type strain, but had no effect on spore formation or colony morphology of the cgopt1-silenced mutants. Conclusion Our results show that IAA induces developmental changes in C. gloeosporioides. These changes are blocked in cgopt1-silenced mutants, suggesting that this protein is involved in regulation of fungal response to IAA. CgOPT1 is also necessary for full virulence, but it is unclear whether this phenotype is related to auxin. PMID:19698103

  1. Isolation and purification of oligopeptides from Ruditapes philippinarum and its inhibition on the growth of DU‑145 cells in vitro.

    PubMed

    Yang, Zuisu; Zhao, Yuqin; Yan, Haiqiang; Xu, Lv; Ding, Guofang; Yu, Di; Sun, Yu

    2015-02-01

    Ruditapes philippinarum is a member of the Veneridae family of marine bivalve molluscs. RPOI‑1 (Ruditapes philippinarum oligopeptide) is a tetrapeptide that can be extracted from Ruditapes philippinarum by means of enzymolysis. This study showed that RPOI‑1 strongly inhibits proliferation and induces apoptosis in DU‑145 human prostate cancer cells. When cells were treated with varying concentrations of RPOI‑1, significant inhibition of proliferation was detected by an MTT assay, and sub‑G1 and G2/M phase cell cycle arrest was observed using flow cytometric (FCM) analysis. Furthermore, morphological changes characteristic of apoptosis and an increase in the proportion of apoptotic cells were observed using double sequential acridine orange/ethidium bromide staining, FCM analysis and transmission election microscopy. FCM studies showed that exposing DU‑145 cells to 10, 20 and 30 mg/ml RPOI‑1 for 24 h increased the percentage of cells in the early‑stages of apoptotis in a dose‑dependent manner, with the numbers rising from 3.01% in the control group to 13.40% in the group treated with the highest dose.

  2. P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells

    PubMed Central

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity. PMID:23940597

  3. Effect of tryptophan oligopeptides on the size distribution of POPC liposomes: a dynamic light scattering and turbidimetric study.

    PubMed

    Stano, Pasquale; Bufali, Simone; Domazou, Anastasia S; Luisi, Pier Luigi

    2005-01-01

    A chemical regulation of POPC liposome size distribution was investigated, based on the affinity of indole-containing compounds for phosphocholine membranes. In particular, tryptophan oligopeptides have shown interesting properties of size regulation, both when liposomes were formed in their presence and when the peptides were added to a preformed liposome suspension. Combining dynamic light scattering (DLS) and turbidimetric data, it was possible to show how such peptides had an influence on the size distribution of spontaneously formed liposomes prepared by the thin film hydration, reverse-phase evaporation and ethanol (or methanol) injection methods. In the presence of Trp-Trp or Trp-Trp-Trp, a disappearance of large vesicle aggregates was observed, as suggested also by light microscopy analysis. On the contrary, no effect was detected using extruded vesicles. Turbidimetric titration allowed the determination of the relative efficacy of the size regulators, Trp-Trp-Trp being about 20 times more powerful than the dimer, while the monomer had no effect. In addition, other indole-containing compounds and the antimicrobial peptide indolicidin were tested, showing similar behaviours. Discussing the results according to the current knowledge about the preference of Trp residues for interfacial regions in lecithin bilayers, this study confirms the relevant role of tryptophan in the biomembrane binding properties of many peptides and introduces a new behavior in the field of liposomes-peptides interactions.

  4. Oligopeptides impairing the Myc-Max heterodimerization inhibit lung cancer cell proliferation by reducing Myc transcriptional activity.

    PubMed

    D'Agnano, Igea; Valentini, Alessandra; Gatti, Giuliana; Chersi, Alberto; Felsani, Armando

    2007-01-01

    Deregulated CMYC gene causes cell transformation and is often correlated with tumor progression and a worse clinical outcome of cancer patients. The transcription factor Myc functions by heterodimerizing with its partner, Max. As a strategy to inhibit Myc activity, we have synthesized three small peptides corresponding to segments of the leucine zipper (LZ) region of Max. The purpose of these peptides is to occupy the site of recognition between Myc and Max located in the LZ and inhibit-specific heterodimerization between these proteins. We have used the synthesized oligopeptides in two lung cancer cell lines with different levels of Myc expression. Results demonstrate that: (i) the three peptides resulted equally effective in competing the interaction between Myc and Max in vitro; (ii) they were efficiently internalized into the cells and significantly inhibited cell growth in the cells showing the highest Myc expression; (iii) one specific peptide, only nine aminoacids long, efficiently impaired the transcriptional activity of Myc in vivo, showing a more stable interaction with this protein. Our results are relevant to the development of novel anti-tumoral therapeutic strategies, directed to Myc-overexpressing tumors.

  5. Inhibition of IGF receptor signaling and hepatoma cell growth by an antibody to ligand oligopeptide of receptor.

    PubMed

    Kong, Jing; Diao, Zhenyu; Deng, Xiaozhao

    2008-02-01

    Research on insulin-like growth factor (IGF) system have shown it to be potent mitogen for hepatoma cells and made it an attractive therapeutic target. But little strategy has been reported to date on targeting and sequestrating IGF against hepatoma. This study is based on the capability of ligand oligopeptide (LOP) to recognize IGF receptor with high efficiency, which is over-expressed on some hepatoma cells. We have been hypothesizing that antibody to LOP would mimic the extracellular ligand-binding domain of IGF receptor and inhibit receptor signaling and cell proliferation. Gene encoding for LOP [E5 (EPFRSPDLALETYG)] of IGF receptor was inserted into HBc carrier for expression in Escherichia coli. The monoclonal antibody (mAb) specific LOP potently inhibited signal transduction mediated by the IGF-IR interaction with IGF-I. Furthermore, it exhibited 47% inhibitory rate of soft agar colony formation and also induced apoptosis. These results indicate an anti-hepatoma potential of the mAb to an LOP of IGF receptor could block the activation of receptor and downstream signaling pathways, and suppress the biological effects mediated by receptor.

  6. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    PubMed

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-04-15

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  7. Wireless quantified reflex device

    NASA Astrophysics Data System (ADS)

    Lemoyne, Robert Charles

    The deep tendon reflex is a fundamental aspect of a neurological examination. The two major parameters of the tendon reflex are response and latency, which are presently evaluated qualitatively during a neurological examination. The reflex loop is capable of providing insight for the status and therapy response of both upper and lower motor neuron syndromes. Attempts have been made to ascertain reflex response and latency, however these systems are relatively complex, resource intensive, with issues of consistent and reliable accuracy. The solution presented is a wireless quantified reflex device using tandem three dimensional wireless accelerometers to obtain response based on acceleration waveform amplitude and latency derived from temporal acceleration waveform disparity. Three specific aims have been established for the proposed wireless quantified reflex device: 1. Demonstrate the wireless quantified reflex device is reliably capable of ascertaining quantified reflex response and latency using a quantified input. 2. Evaluate the precision of the device using an artificial reflex system. 3.Conduct a longitudinal study respective of subjects with healthy patellar tendon reflexes, using the wireless quantified reflex evaluation device to obtain quantified reflex response and latency. Aim 1 has led to the steady evolution of the wireless quantified reflex device from a singular two dimensional wireless accelerometer capable of measuring reflex response to a tandem three dimensional wireless accelerometer capable of reliably measuring reflex response and latency. The hypothesis for aim 1 is that a reflex quantification device can be established for reliably measuring reflex response and latency for the patellar tendon reflex, comprised of an integrated system of wireless three dimensional MEMS accelerometers. Aim 2 further emphasized the reliability of the wireless quantified reflex device by evaluating an artificial reflex system. The hypothesis for aim 2 is that

  8. Synthesis of acetylated konjac glucomannan and effect of degree of acetylation on water absorbency.

    PubMed

    Koroskenyi, B; McCarthy, S P

    2001-01-01

    Konjac glucomannan was acetylated with acetic anhydride under different conditions to reduce the unusually high water absorbency of native konjac. The dependence of the degree of substitution (DS) on the reaction conditions and the influence of the DS on the water absorbency were investigated. The most efficient method for the acetylation was refluxing konjac in acetic anhydride in the presence of sodium hydroxide catalyst. The water absorbency rapidly decreased with increasing DS. Fully acetylated product was obtained within 12 h, which exhibited 1.0 g/g water absorbency vs the 105.4 g/g absorbency of native konjac. Because of the exponential decrease of water absorbency with increasing DS, a relatively small DS is sufficient to significantly suppress the absorption of water.

  9. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy

    PubMed Central

    Trzeciakiewicz, Hanna; Tseng, Jui-Heng; Wander, Connor M.; Madden, Victoria; Tripathy, Ashutosh; Yuan, Chao-Xing; Cohen, Todd J.

    2017-01-01

    Tau acetylation has recently emerged as a dominant post-translational modification (PTM) in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule (MT)-binding region (MTBR), suggesting acetylation could regulate both normal and pathological tau functions. Here, we combined biochemical and cell-based approaches to uncover a dual pathogenic mechanism mediated by tau acetylation. We show that acetylation specifically at residues K280/K281 impairs tau-mediated MT stabilization, and enhances the formation of fibrillar tau aggregates, highlighting both loss and gain of tau function. Full-length acetylation-mimic tau showed increased propensity to undergo seed-dependent aggregation, revealing a potential role for tau acetylation in the propagation of tau pathology. We also demonstrate that methylene blue, a reported tau aggregation inhibitor, modulates tau acetylation, a novel mechanism of action for this class of compounds. Our study identifies a potential “two-hit” mechanism in which tau acetylation disengages tau from MTs and also promotes tau aggregation. Thus, therapeutic approaches to limit tau K280/K281 acetylation could simultaneously restore MT stability and ameliorate tau pathology in AD and related tauopathies. PMID:28287136

  10. SWI/SNF Displaces SAGA-Acetylated Nucleosomes

    PubMed Central

    Chandy, Mark; Gutiérrez, José L.; Prochasson, Philippe; Workman, Jerry L.

    2006-01-01

    SWI/SNF is a well-characterized chromatin remodeling complex that remodels chromatin by sliding nucleosomes in cis and/or displacing nucleosomes in trans. The latter mechanism has the potential to remove promoter nucleosomes, allowing access to transcription factors and RNA polymerase. In vivo, histone acetylation often precedes apparent nucleosome loss; therefore, we sought to determine whether nucleosomes containing acetylated histones could be displaced by the SWI/SNF chromatin remodeling complex. We found that SAGA-acetylated histones were lost from an immobilized nucleosome array when treated with the SWI/SNF complex. When the nucleosome array was acetylated by SAGA in the presence of bound transcription activators, it generated a peak of acetylation surrounding the activator binding sites. Subsequent SWI/SNF treatment suppressed this acetylation peak. Immunoblots indicated that SWI/SNF preferentially displaced acetylated histones from the array relative to total histones. Moreover, the Swi2/Snf2 bromodomain, an acetyl-lysine binding domain, played a role in the displacement of acetylated histones. These data indicate that targeted histone acetylation by the SAGA complex predisposes promoter nucleosomes for displacement by the SWI/SNF complex. PMID:17030999

  11. Importance of acetylator phenotype in the identity of Asian populations.

    PubMed

    Zaid, R B; Nargis, M; Neelotpol, S; Sayeed, M A; Banu, A; Shurovi, S; Hassan, K N; Salimullah, M; Ali, L; Azad Khan, A K

    2007-06-01

    The Marma, Tripura, and Chakma are tribal populations of South Asian countries such as Bangladesh. The populations are thought to be immigrants who started moving from their original home in the Far East toward the west and south. We randomly selected 80 Marma, 53 Tripura, and 43 Chakma to determine acetylation capacity and acetylator phenotype. The mean acetylation capacities were 63% in the Marma, 65% in the Tripura, and 70% in the Chakma. The acetylator phenotype was bimodally distributed as fast and slow acetylator. The frequencies of fast acetylator were 83% in the Marma, 89% in the Tripura, and 88% in the Chakma. According to acetylation capacity, the tribes are different from the founder nontribal populations of Bangladesh. They identify themselves as having a separate single population origin. The frequency of fast acetylator predicted served as the acetylator status of the Far East Asian population. The segregation of populations by acetylator phenotype on geographic longitude might be appropriate for geonational identification of Asian populations.

  12. Global Analysis of Lysine Acetylation Suggests the Involvement of Protein Acetylation in Diverse Biological Processes in Rice (Oryza sativa)

    PubMed Central

    Zhong, Xiaoxian; Tan, Feng; Mujahid, Hana; Zhang, Jian; Nanduri, Bindu; Peng, Zhaohua

    2014-01-01

    Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions. PMID:24586658

  13. Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa).

    PubMed

    Nallamilli, Babi Ramesh Reddy; Edelmann, Mariola J; Zhong, Xiaoxian; Tan, Feng; Mujahid, Hana; Zhang, Jian; Nanduri, Bindu; Peng, Zhaohua

    2014-01-01

    Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions.

  14. Coordination of a transcriptional switch by HMGI(Y) acetylation.

    PubMed

    Munshi, N; Agalioti, T; Lomvardas, S; Merika, M; Chen, G; Thanos, D

    2001-08-10

    Dynamic control of interferon-beta (IFN-beta) gene expression requires the regulated assembly and disassembly of the enhanceosome, a higher-order nucleoprotein complex formed in response to virus infection. The enhanceosome activates transcription by recruiting the histone acetyltransferase proteins CREB binding protein (CBP) and p300/CBP-associated factors (PCAF)/GCN5, which, in addition to modifying histones, acetylate HMGI(Y), the architectural component required for enhanceosome assembly. We show that the accurate execution of the IFN-beta transcriptional switch depends on the ordered acetylation of the high-mobility group I protein HMGI(Y) by PCAF/GCN5 and CBP, which acetylate HMGI(Y) at distinct lysine residues on endogenous promoters. Whereas acetylation of HMGI(Y) by CBP at lysine-65 destabilizes the enhanceosome, acetylation of HMGI(Y) by PCAF/GCN5 at lysine-71 potentiates transcription by stabilizing the enhanceosome and preventing acetylation by CBP.

  15. Preparation, physicochemical characterization and application of acetylated lotus rhizome starches.

    PubMed

    Sun, Suling; Zhang, Ganwei; Ma, Chaoyang

    2016-01-01

    Acetylated lotus rhizome starches were prepared, physicochemically characterized and used as food additives in puddings. The percentage content of the acetyl groups and degree of substitution increased linearly with the amount of acetic anhydride used. The introduction of acetyl groups was confirmed via Fourier transform infrared (FT-IR) spectroscopy. The values of the pasting parameters were lower for acetylated starch than for native starch. Acetylation was found to increase the light transmittance (%), the freeze-thaw stability, the swelling power and the solubility of the starch. Sensorial scores for puddings prepared using native and acetylated lotus rhizome starches as food additives indicated that puddings produced from the modified starches with superior properties over those prepared from native starch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fragrance material review on acetyl cedrene.

    PubMed

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013. Published by Elsevier Ltd.

  17. Acetylation unleashes protein demons of dementia.

    PubMed

    Mattson, Mark P

    2010-09-23

    Aberrant posttranslational modifications of proteins can impair synaptic plasticity and may render neurons vulnerable to degeneration during aging. In this issue of Neuron, Min et al. show that acetylation of the amino acid lysine in the microtubule-associated protein tau prevents its ubiquitin-mediated degradation, resulting in "tau tangles" similar to those of dementias. Other recent studies suggest that lysine hyperacetylation contributes to the accumulation of amyloid β-peptide in Alzheimer's disease and to impaired cognitive function resulting from a trophic factor deficit. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Survey of the human acetylator polymorphism in spontaneous disorders.

    PubMed Central

    Evans, D A

    1984-01-01

    There is ample evidence that the human acetylator phenotypes are associated with drug induced phenomena. It is principally the slow acetylators who exhibit toxic adverse effects because of their relative inability to detoxify the original drug compounds. In rare instances, however, it is the rapid acetylators who are at a disadvantage. In the matter of association of spontaneous disease with either acetylator phenotype, there are two groups of disorders to consider. First, disorders in which carcinogenic amines are known to be an aetiological factor. This is because these amines are substrates for the polymorphic N-acetyltransferase activity and hence there is a possible rational basis for searching for an association. Secondly, other disorders where searches for associations are based more on hunches. In the first group there is a definite statistical association between cancer of the bladder and the slow acetylator phenotype. In prevalence studies the slow phenotype is 39% more associated with bladder cancer than is the rapid phenotype. On the basis of the evidence now available it is not possible to say whether this association is because slow acetylators develop the disease more frequently or whether they survive longer. In the second group the relevant studies show (1) a greatly increased prevalence of slow acetylators in Gilbert's disease; (2) a confirmed association between the rapid acetylator phenotype and diabetes; (3) a possible association between the rapid acetylator phenotype and breast cancer; (4) a possible association between the slow acetylator phenotype and leprosy in Chinese patients; (5) an earlier age of onset of thyrotoxicosis (Graves' disease) in slow acetylators than in rapid acetylators; (6) no evidence of an association between either phenotype and spontaneous systemic lupus erythematosus. PMID:6387123

  19. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    USDA-ARS?s Scientific Manuscript database

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  20. Interindividual and intraindividual variability in acetylation: characterization with caffeine.

    PubMed

    Hardy, B G; Lemieux, C; Walker, S E; Bartle, W R

    1988-08-01

    The degree of interindividual and intraindividual variability in acetylator activity was investigated with caffeine used as a probe of enzyme activity. Acetylator phenotype and relative N-acetyltransferase activity were estimated in 46 subjects by measuring the urinary ratio of two metabolites, AFMU/1-MX, after a single 300 mg oral dose of caffeine on five separate occasions. Thirty homozygous slow (rr) and 15 heterozygous rapid (Rr) acetylators were identified. The degree of interindividual variability in acetylator activity was observed to be a mean of 32% (range 27% to 36%) and 20% (range 11% to 29%) in the rr and Rr groups, respectively. The mean intraindividual variation on repetitive measurement was 19% (range 6% to 49%) in the rr and 14% (range 7% to 24%) in the Rr acetylator group. Four subjects had apparent changes in acetylator activity with time such that they were unable to be assigned to any one acetylator group. Two of these four subjects exhibited apparent homozygous rapid acetylator activity intermittently during the 5-week trial. This variability may explain, in part, some of the high degree of patient variability observed in the toxicity, efficacy, and drug-related disease associated with acetylated drugs and environmental toxins.

  1. Tubulin acetylation protects long-lived microtubules against mechanical ageing.

    PubMed

    Portran, Didier; Schaedel, Laura; Xu, Zhenjie; Théry, Manuel; Nachury, Maxence V

    2017-04-01

    Long-lived microtubules endow the eukaryotic cell with long-range transport abilities. While long-lived microtubules are acetylated on Lys40 of α-tubulin (αK40), acetylation takes place after stabilization and does not protect against depolymerization. Instead, αK40 acetylation has been proposed to mechanically stabilize microtubules. Yet how modification of αK40, a residue exposed to the microtubule lumen and inaccessible to microtubule-associated proteins and motors, could affect microtubule mechanics remains an open question. Here we develop FRET-based assays that report on the lateral interactions between protofilaments and find that αK40 acetylation directly weakens inter-protofilament interactions. Congruently, αK40 acetylation affects two processes largely governed by inter-protofilament interactions, reducing the nucleation frequency and accelerating the shrinkage rate. Most relevant to the biological function of acetylation, microfluidics manipulations demonstrate that αK40 acetylation enhances flexibility and confers resilience against repeated mechanical stresses. Thus, unlike deacetylated microtubules that accumulate damage when subjected to repeated stresses, long-lived microtubules are protected from mechanical ageing through their acquisition of αK40 acetylation. In contrast to other tubulin post-translational modifications that act through microtubule-associated proteins, motors and severing enzymes, intraluminal acetylation directly tunes the compliance and resilience of microtubules.

  2. Acetylation of Stat1 modulates NF-κB activity

    PubMed Central

    Krämer, Oliver H.; Baus, Daniela; Knauer, Shirley K.; Stein, Stefan; Jäger, Elke; Stauber, Roland H.; Grez, Manuel; Pfitzner, Edith; Heinzel, Thorsten

    2006-01-01

    Acetylation of signaling molecules can lead to apoptosis or differentiation of carcinoma cells. The molecular mechanisms underlying these processes and the biological role of enzymes mediating the transfer or removal of an acetyl-group are currently under intense investigation. Our study shows that Stat1 is an acetylated protein. Stat1 acetylation depends on the balance between Stat1-associated histone deacetylases (HDACs) and histone acetyltransferases (HATs) such as CBP. Remarkably both inhibitors of HDACs and the cytokine interferon α alter this equilibrium and induce Stat1 acetylation. The analysis of Stat1 mutants reveals Lys 410 and Lys 413 as acetylation sites. Experiments with Stat1 mutants mimicking either constitutively acetylated or nonacetylated states show that only acetylated Stat1 is able to interact with NF-κB p65. As a consequence, p65 DNA binding, nuclear localization, and expression of anti-apoptotic NF-κB target genes decrease. These findings show how the acetylation of Stat1 regulates NF-κB activity and thus ultimately apoptosis. PMID:16481475

  3. Structure, morphology and functionality of acetylated and oxidised barley starches.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. N-ACETYL-β-GLUCOSAMINIDASE ACTIVITY IN SERUM DURING PREGNANCY

    PubMed Central

    Walker, P. G.; Woollen, Mary E.; Pugh, Doreen

    1960-01-01

    A spectrophotometric method for the estimation of N-acetyl-β-glucosaminidase in serum has been devised. Sera from normal adult males and females showed similar levels of activity. The activity in serum rose progressively during pregnancy and fell rapidly after parturition to normal levels. This change resembled closely that which occurs in serum β-glucuronidase. Placenta showed a moderate and chorion a high level of N-acetyl-β-glucosaminidase. High N-acetyl-β-glucosaminidase activity was demonstrated histochemically in decidual cells. The functions of N-acetyl-β-glucosaminidase and β-glucuronidase and factors influencing their activity are discussed. Images PMID:13782743

  5. Catalysis: Quantifying charge transfer

    NASA Astrophysics Data System (ADS)

    James, Trevor E.; Campbell, Charles T.

    2016-02-01

    Improving the design of catalytic materials for clean energy production requires a better understanding of their electronic properties, which remains experimentally challenging. Researchers now quantify the number of electrons transferred from metal nanoparticles to an oxide support as a function of particle size.

  6. A Porphyromonas gingivalis Periplasmic Novel Exopeptidase, Acylpeptidyl Oligopeptidase, Releases N-Acylated Di- and Tripeptides from Oligopeptides.

    PubMed

    Nemoto, Takayuki K; Ohara-Nemoto, Yuko; Bezerra, Gustavo Arruda; Shimoyama, Yu; Kimura, Shigenobu

    2016-03-11

    Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser(615) and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 μm(-1) s(-1), optimal pH was 7-8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met(16)-Glu(101)). Three-dimensional modeling revealed the three domain structures (residues Met(16)-Ala(126), which has no similar homologue with known structure; residues Leu(127)-Met(495) (β-propeller domain); and residues Ala(496)-Phe(736) (α/β-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides.

  7. Proton-coupled oligopeptide transporter (POT) family expression in human nasal epithelium and their drug transport potential.

    PubMed

    Agu, Remigius; Cowley, Elizabeth; Shao, Di; Macdonald, Christopher; Kirkpatrick, David; Renton, Ken; Massoud, Emad

    2011-06-06

    The molecular and functional expression of peptide transporters (PEPT1 and PEPT2, PHT1, PHT2) in human nasal epithelium was investigated. Quantitative/reverse transcriptase polymerase chain reaction (qPCR/RT-PCR), Western blotting and indirect immuno-histochemistry were used to investigate the functional gene and protein expression for the transporters. Uptake and transport studies were performed using metabolically stable peptides [β-alanyl-L-lysyl-Nε-7-amino-4-methyl-coumarin-3-acetic acid (β-Ala-Lys-AMCA) and β-alanyl-L-histidine (carnosine)]. The effects of concentration, temperature, polarity, competing peptides, and inhibitors on peptide uptake and transport were investigated. PCR products corresponding to PEPT1 (150 bp), PEPT2 (127 bp), PHT1 (110 bp) and PHT2 (198 bp) were detected. Immunohistochemistry and Western blotting confirmed the functional expression of PEPT1 and PEPT2 genes. The uptake of β-Ala-Lys-AMCA was concentration-dependent and saturable (Vmax =4.1 ( 0.07 μmol/min/mg protein, Km = 0.6 ( 0.07 μM). The optimal pH for intracellular accumulation of β-Ala-Lys-AMCA was 6.5. Whereas dipeptides and carbonyl cyanide m-chlorophenylhydrazone (CCCP) significantly inhibited peptide uptake and transport, L-Phe had no effect on peptide transport. The permeation of β-alanyl-L-histidine was concentration-, direction-, and temperature-dependent. The uptake, permeation, qPCR/RT-PCR and protein expression data showed that the human nasal epithelium functionally expresses proton-coupled oligopeptide transporters.

  8. Role of the Oligopeptide Permease ABC Transporter of Moraxella catarrhalis in Nutrient Acquisition and Persistence in the Respiratory Tract

    PubMed Central

    Jones, Megan M.; Johnson, Antoinette; Koszelak-Rosenblum, Mary; Kirkham, Charmaine; Brauer, Aimee L.; Malkowski, Michael G.

    2014-01-01

    Moraxella catarrhalis is a strict human pathogen that causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, resulting in significant worldwide morbidity and mortality. M. catarrhalis has a growth requirement for arginine; thus, acquiring arginine is important for fitness and survival. M. catarrhalis has a putative oligopeptide permease ABC transport operon (opp) consisting of five genes (oppB, oppC, oppD, oppF, and oppA), encoding two permeases, two ATPases, and a substrate binding protein. Thermal shift assays showed that the purified recombinant substrate binding protein OppA binds to peptides 3 to 16 amino acid residues in length regardless of the amino acid composition. A mutant in which the oppBCDFA gene cluster is knocked out showed impaired growth in minimal medium where the only source of arginine came from a peptide 5 to 10 amino acid residues in length. Whether methylated arginine supports growth of M. catarrhalis is important in understanding fitness in the respiratory tract because methylated arginine is abundant in host tissues. No growth of wild-type M. catarrhalis was observed in minimal medium in which arginine was present only in methylated form, indicating that the bacterium requires l-arginine. An oppA knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the Opp system mediates both uptake of peptides and fitness in the respiratory tract. PMID:25156736

  9. Combinatorial peptide libraries reveal the ligand-binding mechanism of the oligopeptide receptor OppA of Lactococcus lactis

    PubMed Central

    Detmers, Frank J. M.; Lanfermeijer, Frank C.; Abele, Rupert; Jack, Ralph W.; Tampé, Robert; Konings, Wil N.; Poolman, Bert

    2000-01-01

    The oligopeptide transport system (Opp) of Lactococcus lactis has the unique capacity to mediate the transport of peptides from 4 up to at least 18 residues. The substrate specificity of this binding protein-dependent ATP-binding cassette transporter is determined mainly by the receptor protein OppA. To study the specificity and ligand-binding mechanism of OppA, the following strategy was used: (i) OppA was purified and anchored via the lipid moiety to the surface of liposomes; (ii) the proteoliposomes were used in a rapid filtration-based binding assay with radiolabeled nonameric bradykinin as a reporter peptide; and (iii) combinatorial peptide libraries were used to determine the specificity and selectivity of OppA. The studies show that (i) OppA is able to bind peptides up to at least 35 residues, but there is a clear optimum in affinity for nonameric peptides; (ii) the specificity for nonameric peptides is not equally distributed over the whole peptide, because positions 4, 5, and 6 in the binding site are more selective; and (iii) the differences in affinity for given side chains is relatively small, but overall hydrophobic residues are favored—whereas glycine, proline, and negatively charged residues lower the binding affinity. The data indicate that not only the first six residues (enclosed by the protein) but also the C-terminal three residues interact in a nonopportunistic manner with (the surface of) OppA. This binding mechanism is different from the one generally accepted for receptors of ATP-binding cassette-transporter systems. PMID:11050157

  10. Interaction of the Hydrophobic Tip of an Atomic Force Microscope with Oligopeptides Immobilized Using Short and Long Tethers.

    PubMed

    Ma, C Derek; Acevedo-Vélez, Claribel; Wang, Chenxuan; Gellman, Samuel H; Abbott, Nicholas L

    2016-03-29

    We report an investigation of the adhesive force generated between the hydrophobic tip of an atomic force microscope (AFM) and surfaces presenting oligopeptides immobilized using either short (∼1 nm) or long (∼60 nm) tethers. Specifically, we used either sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SSMCC) or 10 kDa polyethylene glycol (PEG) end-functionalized with maleimide and N-hydroxysuccinimide groups to immobilize helical oligomers of β-amino acids (β-peptides) to mixed monolayers presenting tetraethylene glycol (EG4) and amine-terminated EG4 (EG4N) groups. When SSMCC was used to immobilize the β-peptides, we measured the adhesive interaction between the AFM tip and surface to rupture through a single event with magnitude consistent with the interaction of a single β-peptide with the AFM tip. Surprisingly, this occurred even when, on average, multiple β-peptides were located within the interaction area between the AFM tip and surface. In contrast, when using the long 10 kDa PEG tether, we observed the magnitude of the adhesive interaction as well as the dynamics of the rupture events to unmask the presence of the multiple β-peptides within the interaction area. To provide insight into these observations, we formulated a simple mechanical model of the interaction of the AFM tip with the immobilized β-peptides and used the model to demonstrate that adhesion measurements performed using short tethers (but not long tethers) are dominated by the interaction of single β-peptides because (i) the mechanical properties of the short tether are highly nonlinear, thus causing one β-peptide to dominate the adhesion force at the point of rupture, and (ii) the AFM cantilever is mechanically unstable following the rupture of the adhesive interaction with a single β-peptide. Overall, our study reveals that short tethers offer the basis of an approach that facilitates measurement of adhesive interactions with single molecules presented at

  11. A Porphyromonas gingivalis Periplasmic Novel Exopeptidase, Acylpeptidyl Oligopeptidase, Releases N-Acylated Di- and Tripeptides from Oligopeptides*

    PubMed Central

    Nemoto, Takayuki K.; Ohara-Nemoto, Yuko; Bezerra, Gustavo Arruda; Shimoyama, Yu; Kimura, Shigenobu

    2016-01-01

    Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser615 and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 μm−1 s−1, optimal pH was 7–8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met16–Glu101). Three-dimensional modeling revealed the three domain structures (residues Met16–Ala126, which has no similar homologue with known structure; residues Leu127–Met495 (β-propeller domain); and residues Ala496–Phe736 (α/β-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides. PMID:26733202

  12. First observation of N-acetyl leucine and N-acetyl isoleucine in diabetic patient hair and quantitative analysis by UPLC-ESI-MS/MS.

    PubMed

    Min, Jun Zhe; Tomiyasu, Yuki; Morotomi, Takashi; Jiang, Ying-Zi; Li, Gao; Shi, Qing; Yu, Hai-Fu; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2015-04-15

    Type 2 diabetes patients (DP) have significantly higher plasma levels of valine, leucine, isoleucine and alanine than the controls. Specific amino acids may acutely and chronically regulate insulin secretion from the pancreatic β-cells. We recently identified a metabolic signature of N-acetyl leucine (Ac-Leu) that strongly predicts diabetes development in mice hair. The Ac-Leu appears to be a potential biomarker candidate related to diabetes. However, the determination of Ac-Leu in human hair has not been reported. We measured the Ac-Leu, and its structure is similar to N-acetyl isoleucine (Ac-Ile) in human hair by ultra-performance liquid chromatography (UPLC) with electrospray ionization tandem mass spectrometry (ESI-MS/MS). The developed method was applied to the determination of Ac-Leu and Ac-Ile in the hair of healthy volunteers (HV) and DP. Ac-Leu, Ac-Ile and N-acetyl norleucine (Ac-Nle, IS) were extracted from human hair samples by a micropulverized extraction procedure, then separated on a C18 column by isocratic elution of acetonitrile-0.1% formic acid in water:0.1% formic acid (14:86, vol./vol.). MRM using the fragmentation transitions of m/z 174.1→86.1 in the positive ESI mode was performed to quantify the N-acetyl leucine, N-acetyl isoleucine and IS. Ac-Leu, Ac-Ile and Ac-Nle in the human hair samples were completely separated by isocratic elution of a 5.0 min duration wash program using a reversed-phase column, and sensitively detected by LC-MS/MS in the ESI(+) MRM mode. The amounts of Ac-Leu and Ac-Ile in the hairs of HV and DP were determined. When comparing the concentrations between DP and those from HV, a statistically significant correlation was observed for the Ac-Leu (p<0.001) and Ac-Ile (p<0.01). The proposed method is useful for the determination of Ac-Leu and Ac-Ile in the hairs of DP and HV. Human hair may serve as a noninvasive biosample for the diagnosis of diabetes. Crown Copyright © 2015. Published by Elsevier B.V. All rights

  13. Stability of acetyl-1-carnitine in 5% dextrose using a high-performance liquid chromatography-mass spectrometry times 2 method.

    PubMed

    Zhang, Yang; Jiang, Hongliang; Hutson, Paul

    2012-01-01

    A stability-indicating high-performance liquid chromatography-mass spectrometry times 2 method was developed to establish the stability of acetyl-l-carnitine dissolved in 5% dextrose in water; quantitation of acetyl-l-carnitine and its hydrolysis product I-carnitine was performed using this method. Acetyl-l-carnitine dissolved in water was stress-degraded at a pH range of 3 to 12, and conversion to l-carnitine was quantified over 18 hours. The method was further validated by stressing the acetyl-l-carnitine solution at 68 degrees C, 82 degrees C, and 90 degrees C for up to 10 days, yielding a temperature-dependent hydrolysis rate constant. Acetyl-l-carnitine solutions were stored at 25 degrees C and 4 degrees C to 8 degrees C for 33 days to validate the kinetics prediction. The liquid chromatography-mass spectrometry times 2 method was sensitive and specific, allowing rapid separation and simultaneous quantitation of acetyl-l-carnitine and l-carnitine. Acetyl-l-carnitine dissolved in aqueous solutions is stable at neutral to acidic pH, but unstable at pH > 9. After 1 hour storage at room temperature, only 72.6% of acetyl-l-carnitine was left at pH 11 and 4.2% left at pH 12. The kinetics relationship between temperature and rate constant was In(k) = -8650.1 /T + 20.344 (r2 = 0.9851) at pH 5.2. The time required to degrade 15% of acetyl-I-carnitine was estimated to be 38 days at 25 degrees C or 234 days at 8 degrees C, and was confirmed with actual storage stability testing. Acetyl-l-carnitine dissolved in water (pH 5.2) at concentrations of 1 and 10 mg/mL was found stable at room temperature or refrigerated for at least 33 days using the established stability-indicating method. Acetyl-l-carnitine solutions are not stable at basic pH. When reconstituted in water, acetyl-l-carnitine is stable for over 30 days at room temperature or under refrigeration.

  14. Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.

    PubMed

    Simon, Gabriel M; Cheng, Jiye; Gordon, Jeffrey I

    2012-07-10

    The gut microbiota influences numerous aspects of human biology. One facet that has not been thoroughly explored is its impact on the host proteome. We hypothesized that the microbiota may produce certain of its effects through covalent modification of host proteins. We focused on protein lysine ε-acetylation because of its recently discovered roles in regulation of cell metabolism, and the potential for products of microbial fermentation to interact with the lysine acetylation machinery of host cells. Germ-free mice, fed a (15)N-labeled diet for two generations, were colonized as adults with a microbiota harvested from conventionally raised mouse donors. Using high-resolution mass spectrometry, we quantified 3,891 liver and proximal colonic proteins, 558 of which contained 1,602 sites of lysine acetylation, 43% not previously described. Multiple proteins from multiple subcellular compartments underwent microbiota-associated increases in their levels of lysine acetylation at one or more residues, in one or both tissues. Acetylated proteins were enriched in functions related to energy production, respiration, and primary metabolism. A number of the acetylation events affect lysine residues at or near the active sites of enzymes, whereas others occur at locations that may affect other facets of protein function. One of these modifications, affecting Lys292 in mouse α-1-antitrypsin, was detected in the corresponding lysine of the human serum protein. Methods described in this report can be applied to other co- or posttranslational modifications, and add quantitation of protein expression and covalent modification to the arsenal of techniques for characterizing the dynamic, important interactions between gut symbionts and their hosts.

  15. Quantifying Ubiquitin Signaling

    PubMed Central

    Ordureau, Alban; Münch, Christian; Harper, J. Wade

    2015-01-01

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850

  16. Histone H4 lysine 16 acetylation breaks the genome's silence

    PubMed Central

    Shia, Wei-Jong; Pattenden, Samantha G; Workman, Jerry L

    2006-01-01

    Acetylation at histone H4 lysine 16 is involved in many cellular processes in organisms as diverse as yeast and humans. A recent biochemical study pinpoints this particular acetylation mark as a switch for changing chromatin from a repressive to a transcriptionally active state. PMID:16689998

  17. Lysine acetylation in mitochondria: From inventory to function.

    PubMed

    Hosp, Fabian; Lassowskat, Ines; Santoro, Valeria; De Vleesschauwer, David; Fliegner, Daniela; Redestig, Henning; Mann, Matthias; Christian, Sven; Hannah, Matthew A; Finkemeier, Iris

    2017-03-01

    Cellular signaling pathways are regulated in a highly dynamic fashion in order to quickly adapt to distinct environmental conditions. Acetylation of lysine residues represents a central process that orchestrates cellular metabolism and signaling. In mitochondria, acetylation seems to be the most prevalent post-translational modification, presumably linked to the compartmentation and high turnover of acetyl-CoA in this organelle. Similarly, the elevated pH and the higher concentration of metabolites in mitochondria seem to favor non-enzymatic lysine modifications, as well as other acylations. Hence, elucidating the mechanisms for metabolic control of protein acetylation is crucial for our understanding of cellular processes. Recent advances in mass spectrometry-based proteomics have considerably increased our knowledge of the regulatory scope of acetylation. Here, we review the current knowledge and functional impact of mitochondrial protein acetylation across species. We first cover the experimental approaches to identify and analyze lysine acetylation on a global scale, we then explore both commonalities and specific differences of plant and animal acetylomes and the evolutionary conservation of protein acetylation, as well as its particular impact on metabolism and diseases. Important future directions and technical challenges are discussed, and it is pointed out that the transfer of knowledge between species and diseases, both in technology and biology, is of particular importance for further advancements in this field. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  18. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies.

  19. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.

  20. Global analysis of lysine acetylation in strawberry leaves

    PubMed Central

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  1. How to quantify ripple

    NASA Astrophysics Data System (ADS)

    Geib, H.; Kuehne, C.; Morgenbrod, E.

    In the present attempt to render the small area errors in large telescope mirror manufacture, known as 'ripple', numerically quantifiable, two-dimensional regularity is omitted, yielding greater clarity and comparability of results. In the measurement of the interference fringe, the central fringe is photometered in equidistant steps. Application of Fourier analysis to the average value obtained is followed by a power spectrum calculation. The test method is evaluated through the numerical examination of a ripple structure of known size and period length.

  2. Quantifying concordance in cosmology

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Grandis, Sebastian; Amara, Adam; Refregier, Alexandre

    2016-05-01

    Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between data sets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13, and Planck 15 constraints on the Λ CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S =17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Planck 15 constraints deviate from the Planck 13 results (S =56.3 bits), primarily due to a shift in the same direction. The Surprise between WMAP and Planck consequently disappears when moving to Planck 15 (S =-5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.

  3. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    PubMed

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle. Copyright © 2016. Published by Elsevier Ltd.

  4. Acetylated triterpene saponins from the Thai medicinal plant, Sapindus emarginatus.

    PubMed

    Kanchanapoom, T; Kasai, R; Yamasaki, K

    2001-09-01

    From the pericarps of Sapindus emarginatus (Sapindaceae), three new acetylated triterpene saponins were isolated together with hederagenin and five known triterpene saponins, as well as one known sweet acyclic sesquiterpene glycoside, mukurozioside IIb. The structures of new compounds were elucidated as hederagenin 3-O-(2-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside, 23-O-acetyl-hederagenin 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside and oleanolic acid 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside by chemical and spectroscopic data.

  5. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  6. Staphylococcus aureus NorD, a putative efflux pump coregulated with the Opp1 oligopeptide permease, contributes selectively to fitness in vivo.

    PubMed

    Ding, Yanpeng; Fu, Yingmei; Lee, Jean C; Hooper, David C

    2012-12-01

    Staphylococcus aureus readily infects humans, causing infections from mild superficial skin infections to lethal bacteremia and endocarditis. Transporters produced by S. aureus allow the pathogen to adapt to a variety of settings, including survival at sites of infection and in the presence of antibiotics. The native functions of many transporters are unknown, but their potential dual contribution to fitness and antimicrobial resistance highlights their importance in staphylococcal infections. Here, we show that S. aureus NorD, a newly recognized efflux pump of the major facilitator superfamily, contributes to fitness in a murine subcutaneous abscess model. In community-associated methicillin-resistant S. aureus (CA-MRSA) strain MW2, norD was selectively upregulated 36-fold at the infection site relative to growth in vitro, and the norD mutant demonstrated significant fitness impairment in abscesses, with fitness 20- to 40-fold lower than that of the parent MW2 strain. Plasmid-encoded NorD could complement the fitness defect of the MW2 norD mutant. Chromosomal norD expression is polycistronic with the upstream oligopeptide permease genes (opp1ABCDF), which encode an ABC oligopeptide transporter. Both norD and opp1 were upregulated in abscesses and iron-restricted culture medium and negatively regulated by Fur, but only NorD contributed to fitness in the murine abscess model.

  7. Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins.

    PubMed

    Kawasaki, Hideya; Akira, Tarui; Watanabe, Takehiro; Nozaki, Kazuyoshi; Yonezawa, Tetsu; Arakawa, Ryuichi

    2009-11-01

    Bare FePtCu nanoparticles (NPs) are first prepared for laser desorption/ionization mass spectroscopy (LDI-MS) analysis as affinity probes to selectively trap oppositely charged analytes from a sample solution. Our present results demonstrate bare FePtCu NPs to be a potentially useful matrix for surface-assisted laser desorption/ionization mass spectroscopy (SALDI-MS), for the analysis of small proteins and peptides. The upper detectable mass range of peptides was approximately 5 kDa, and the detection limit for peptides approximately 5 fmol. Sulfonate group-modified FePtCu nanoparticles (FePtCu-SO(3)(-) NPs), with ionization being independent of the solution pH, can interact with a positively charged analyte, and the analyte-bound NPs can be separated from the reaction supernatant by centrifugation or an external magnetic field. An oligopeptide, Gly-Gly-Tyr-Arg (GGYR) from an oligopeptide mixture containing Asp-Asp-Asp-Asp (DDDD), Gly-Gly-Gly-Gly (GGGG) and GGYR, was detected using SALDI-MS with FePtCu-SO(3)(-) NPs employing electrostatic interaction. Furthermore, FePtCu-SO(3)(-) NPs can detect lysozyme (Lyz) in human serum through the electrostatic attraction between positively charged Lyz and FePtCu-SO(3)(-) NPs at pH 8, while detection of negatively charged albumin in human serum is not possible.

  8. Co-delivery of paclitaxel and anti-survivin siRNA via redox-sensitive oligopeptide liposomes for the synergistic treatment of breast cancer and metastasis.

    PubMed

    Chen, Xinyan; Zhang, Yidi; Tang, Chunming; Tian, Chunli; Sun, Qiong; Su, Zhigui; Xue, Lingjing; Yin, Yifan; Ju, Caoyun; Zhang, Can

    2017-08-30

    The overexpression of survivin in breast cancer cells is an important factor of paclitaxel (PTX) resistance in breast cancer. To overcome PTX resistance and improve the antitumor effect of PTX, we developed a novel liposome-based nanosystem (PTX/siRNA/SS-L), composed of a redox-sensitive cationic oligopeptide lipid (LHSSG2C14) with a proton sponge effect, natural soybean phosphatidylcholine (SPC), and cholesterol for co-delivery of PTX and anti-survivin siRNA, which could specifically downregulate survivin overexpression. PTX/siRNA/SS-L exhibited high encapsulation efficiency and rapid redox-responsive release of both PTX and siRNA. Moreover, in vitro studies on the 4T1 breast cancer cells revealed that PTX/siRNA/SS-L offered significant advantages over other experimental groups, such as higher cellular uptake, successful endolysosomal escape, reduced survivin expression, the lowest cell viability and wound healing rate, as well as the highest apoptosis rate. In particular, in vivo evaluation of 4T1 tumor-bearing mice showed that PTX/siRNA/SS-L had lower toxicity and induced a synergistic inhibitory effect on tumor growth and pulmonary metastasis. Collectively, the collaboration of anti-survivin siRNA and PTX via redox-sensitive oligopeptide liposomes provides a promising strategy for the treatment of breast cancer and metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects.

  10. The Repetitive Oligopeptide Sequences Modulate Cytopathic Potency but Are Not Crucial for Cellular Uptake of Clostridium difficile Toxin A

    PubMed Central

    Olling, Alexandra; Goy, Sebastian; Hoffmann, Florian; Tatge, Helma; Just, Ingo; Gerhard, Ralf

    2011-01-01

    The pathogenicity of Clostridium difficile is primarily linked to secretion of the intracellular acting toxins A (TcdA) and B (TcdB) which monoglucosylate and thereby inactivate Rho GTPases of host cells. Although the molecular mode of action of TcdA and TcdB is well understood, far less is known about toxin binding and uptake. It is acknowledged that the C-terminally combined repetitive oligopeptides (CROPs) of the toxins function as receptor binding domain. The current study evaluates the role of the CROP domain with respect to functionality of TcdA and TcdB. Therefore, we generated truncated TcdA devoid of the CROPs (TcdA1–1874) and found that this mutant was still cytopathic. However, TcdA1–1874 possesses about 5 to 10-fold less potency towards 3T3 and HT29 cells compared to the full length toxin. Interestingly, CHO-C6 cells even showed almost identical susceptibility towards truncated and full length TcdA concerning Rac1 glucosylation or cell rounding, respectively. FACS and Western blot analyses elucidated these differences and revealed a correlation between CROP-binding to the cell surface and toxin potency. These findings refute the accepted opinion of solely CROP- mediated toxin internalization. Competition experiments demonstrated that presence neither of TcdA CROPs nor of full length TcdA reduced binding of truncated TcdA1–1874 to HT29 cells. We assume that toxin uptake might additionally occur through alternative receptor structures and/or other associated endocytotic pathways. The second assumption was substantiated by TER measurements showing that basolaterally applied TcdA1–1874 exhibits considerably higher cytotoxic potency than apically applied mutant or even full length TcdA, the latter being almost independent of the side of application. Thus, different routes for cellular uptake might enable the toxins to enter a broader repertoire of cell types leading to the observed multifarious pathogenesis of C. difficile. PMID:21445253

  11. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Benjamin, Kirsten R; Wu, Liang; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS reaction constrains maximum yields of acetyl-CoA-derived products, this study explores replacement of ACS by two ATP-independent pathways for acetyl-CoA synthesis. After evaluating expression of different bacterial genes encoding acetylating acetaldehyde dehydrogenase (A-ALD) and pyruvate-formate lyase (PFL), acs1Δ acs2Δ S. cerevisiae strains were constructed in which A-ALD or PFL successfully replaced ACS. In A-ALD-dependent strains, aerobic growth rates of up to 0.27 h(-1) were observed, while anaerobic growth rates of PFL-dependent S. cerevisiae (0.20 h(-1)) were stoichiometrically coupled to formate production. In glucose-limited chemostat cultures, intracellular metabolite analysis did not reveal major differences between A-ALD-dependent and reference strains. However, biomass yields on glucose of A-ALD- and PFL-dependent strains were lower than those of the reference strain. Transcriptome analysis suggested that reduced biomass yields were caused by acetaldehyde and formate in A-ALD- and PFL-dependent strains, respectively. Transcript profiles also indicated that a previously proposed role of Acs2 in histone acetylation is probably linked to cytosolic acetyl-CoA levels rather than to direct involvement of Acs2 in histone acetylation. While demonstrating that yeast ACS can be fully replaced, this study demonstrates that further modifications are needed to achieve optimal in vivo performance of the alternative reactions for supply of cytosolic acetyl-CoA as a product precursor. © 2013 The Authors. Published by International Metabolic Engineering Society on behalf of International Metabolic Engineering Society All rights

  12. Postmortem Tissue Distribution of Acetyl Fentanyl, Fentanyl and their Respective Nor-Metabolites Analyzed by Ultrahigh Performance Liquid Chromatography with Tandem Mass Spectrometry

    PubMed Central

    Poklis, Justin; Poklis, Alphonse; Wolf, Carl; Mainland, Mary; Hair, Laura; Devers, Kelly; Chrostowski, Leszek; Arbefeville, Elise; Merves, Michele; Pearson, Julia

    2015-01-01

    In the last two years, an epidemic of fatal narcotic overdose cases has occurred in the Tampa area of Florida. Fourteen of these deaths involved fentanyl and/or the new designer drug, acetyl fentanyl. Victim demographics, case histories, toxicology findings and causes and manners of death, as well as, disposition of fentanyl derivatives and their nor-metabolites in postmortem heart blood, peripheral blood, bile, brain, liver, urine and vitreous humor are presented. In the cases involving only acetyl fentanyl (without fentanyl, n=4), the average peripheral blood acetyl fentanyl concentration was 0.467 mg/L (range 0.31 to .60 mg/L) and average acetyl norfentanyl concentration was 0.053 mg/L (range 0.002 to 0.086 mg/L). In the cases involving fentanyl (without acetyl fentanyl, n=7), the average peripheral blood fentanyl concentration was 0.012 mg/L (range 0.004 to 0.027 mg/L) and average norfentanyl blood concentration was 0.001 mg/L (range 0.0002 to 0.003 mg/L). In the cases involving both acetyl fentanyl and fentanyl (n=3), the average peripheral blood acetyl fentanyl concentration was 0.008 mg/L (range 0.006 to 0.012 mg/L), the average peripheral blood acetyl norfentanyl concentration was 0.001 mg/L (range 0.001 to 0.002 mg/L), the average peripheral blood fentanyl concentration was 0.018 mg/L (range 0.015 to 0.021 mg/L) and the average peripheral blood norfentanyl concentration was 0.002 mg/L (range 0.001 mg/L to 0.003 mg/L). Based on the toxicology results, it is evident that when fentanyl and/or acetyl fentanyl were present, they contributed to the cause of death. A novel ultrahigh performance liquid chromatography (UPLC) tandem mass spectrometry (MS/MS) method to identify and quantify acetyl fentanyl, acetyl norfentanyl, fentanyl and norfentanyl in postmortem fluids and tissues is also presented. PMID:26583960

  13. Postmortem tissue distribution of acetyl fentanyl, fentanyl and their respective nor-metabolites analyzed by ultrahigh performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Poklis, Justin; Poklis, Alphonse; Wolf, Carl; Mainland, Mary; Hair, Laura; Devers, Kelly; Chrostowski, Leszek; Arbefeville, Elise; Merves, Michele; Pearson, Julia

    2015-12-01

    In the last two years, an epidemic of fatal narcotic overdose cases has occurred in the Tampa area of Florida. Fourteen of these deaths involved fentanyl and/or the new designer drug, acetyl fentanyl. Victim demographics, case histories, toxicology findings and causes and manners of death, as well as, disposition of fentanyl derivatives and their nor-metabolites in postmortem heart blood, peripheral blood, bile, brain, liver, urine and vitreous humor are presented. In the cases involving only acetyl fentanyl (without fentanyl, n=4), the average peripheral blood acetyl fentanyl concentration was 0.467 mg/L (range 0.31 to 0.60 mg/L) and average acetyl norfentanyl concentration was 0.053 mg/L (range 0.002 to 0.086 mg/L). In the cases involving fentanyl (without acetyl fentanyl, n=7), the average peripheral blood fentanyl concentration was 0.012 mg/L (range 0.004 to 0.027 mg/L) and average norfentanyl blood concentration was 0.001 mg/L (range 0.0002 to 0.003 mg/L). In the cases involving both acetyl fentanyl and fentanyl (n=3), the average peripheral blood acetyl fentanyl concentration was 0.008 mg/L (range 0.006 to 0.012 mg/L), the average peripheral blood acetyl norfentanyl concentration was 0.001 mg/L (range 0.001 to 0.002 mg/L), the average peripheral blood fentanyl concentration was 0.018 mg/L (range 0.015 to 0.021mg/L) and the average peripheral blood norfentanyl concentration was 0.002 mg/L (range 0.001 mg/L to 0.003 mg/L). Based on the toxicology results, it is evident that when fentanyl and/or acetyl fentanyl were present, they contributed to the cause of death. A novel ultrahigh performance liquid chromatography (UPLC) tandem mass spectrometry (MS/MS) method to identify and quantify acetyl fentanyl, acetyl norfentanyl, fentanyl and norfentanyl in postmortem fluids and tissues is also presented.

  14. Quantifying surface normal estimation

    NASA Astrophysics Data System (ADS)

    Reid, Robert B.; Oxley, Mark E.; Eismann, Michael T.; Goda, Matthew E.

    2006-05-01

    An inverse algorithm for surface normal estimation from thermal polarimetric imagery was developed and used to quantify the requirements on a priori information. Building on existing knowledge that calculates the degree of linear polarization (DOLP) and the angle of polarization (AOP) for a given surface normal in a forward model (from an object's characteristics to calculation of the DOLP and AOP), this research quantifies the impact of a priori information with the development of an inverse algorithm to estimate surface normals from thermal polarimetric emissions in long-wave infrared (LWIR). The inverse algorithm assumes a polarized infrared focal plane array capturing LWIR intensity images which are then converted to Stokes vectors. Next, the DOLP and AOP are calculated from the Stokes vectors. Last, the viewing angles, θ v, to the surface normals are estimated assuming perfect material information about the imaged scene. A sensitivity analysis is presented to quantitatively describe the a priori information's impact on the amount of error in the estimation of surface normals, and a bound is determined given perfect information about an object. Simulations explored the impact of surface roughness (σ) and the real component (n) of a dielectric's complex index of refraction across a range of viewing angles (θ v) for a given wavelength of observation.

  15. Determination of the distributions of degrees of acetylation of chitosan.

    PubMed

    Thevarajah, Joel Jerushan; Van Leeuwen, Matthew Paul; Cottet, Herve; Castignolles, Patrice; Gaborieau, Marianne

    2017-02-01

    Chitosan is often characterized by its average degree of acetylation. To increase chitosan's use in various industries, a more thorough characterization is necessary as the acetylation of chitosan affects properties such as dissolution and mechanical properties of chitosan films. Despite the poor solubility of chitosan, free solution capillary electrophoresis (CE) allows a robust separation of chitosan by the degree of acetylation. The distribution of degrees of acetylation of various chitosan samples was characterized through their distributions of electrophoretic mobilities. These distributions can be obtained easily and with high precision. The heterogeneity of the chitosan chains in terms of acetylation was characterized through the dispersity of the electrophoretic mobility distributions obtained. The relationship between the number-average degree of acetylation obtained by solid-state NMR spectroscopy and the weight-average electrophoretic mobilities was established. The distribution of degrees of acetylation was determined using capillary electrophoresis in the critical conditions (CE-CC). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy

    PubMed Central

    Min, Sang-Won; Cho, Seo-Hyun; Zhou, Yungui; Schroeder, Sebastian; Haroutunian, Vahram; Seeley, William W.; Huang, Eric J.; Shen, Yong; Masliah, Eliezer; Mukherjee, Chandrani; Meyers, David; Cole, Philip A.; Ott, Melanie; Gan, Li

    2011-01-01

    Summary Neurodegenerative tauopathies characterized by hyperphosphorylated tau include frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and Alzheimer's disease (AD). Reducing tau levels improves cognitive function in mouse models of AD and FTDP-17, but the mechanisms regulating the turnover of pathogenic tau are unknown. We found that tau is acetylated and that tau acetylation prevents degradation of phosphorylated tau (p-tau). Using two antibodies specific for acetylated tau, we showed that tau acetylation is elevated in patients at early and moderate Braak stages of tauopathy. Histone acetyltransferase p300 was involved in tau acetylation and the class III protein deacetylase SIRT1 in deacetylation. Deleting SIRT1 enhanced levels of acetylated-tau and pathogenic forms of p-tau in vivo, likely by blocking proteasome-mediated degradation. Inhibiting p300 with a small molecule promoted tau deacetylation and eliminated p-tau associated with tauopathy. Modulating tau acetylation could be a new therapeutic strategy to reduce tau-mediated neurodegeneration. PMID:20869593

  17. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  18. Histone Acetylation Inhibitors Promote Axon Growth in Adult DRG neurons

    PubMed Central

    Lin, Shen; Nazif, Kutaiba; Smith, Alexander; Baas, Peter W; Smith, George M

    2015-01-01

    Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could re-invigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families acting in opposition, the Histone Deacetylases (HDACs) and the Histone Acetyl Transferases (HATs). While acetylated histones in the nucleus is associated with upregulation of growth promoting genes, de-acetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. In this study we investigated the effects of HAT inhibitors and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons. We found that inhibition of HATs, using Anacardic Acid or CPTH2, improved axon outgrowth, while inhibition of HDACs using TSA or Tubacin, inhibited axon growth. Furthermore, Anacardic Acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan (CSPG) border. Histone acetylation, but not tubulin acetylation levels, was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of HDAC inhibitor Tubacin. Although microtubule stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. While the mechanistic basis will require future studies, our data show that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar. PMID:25702820

  19. Quantifying Groundwater Model Uncertainty

    NASA Astrophysics Data System (ADS)

    Hill, M. C.; Poeter, E.; Foglia, L.

    2007-12-01

    Groundwater models are characterized by the (a) processes simulated, (b) boundary conditions, (c) initial conditions, (d) method of solving the equation, (e) parameterization, and (f) parameter values. Models are related to the system of concern using data, some of which form the basis of observations used most directly, through objective functions, to estimate parameter values. Here we consider situations in which parameter values are determined by minimizing an objective function. Other methods of model development are not considered because their ad hoc nature generally prohibits clear quantification of uncertainty. Quantifying prediction uncertainty ideally includes contributions from (a) to (f). The parameter values of (f) tend to be continuous with respect to both the simulated equivalents of the observations and the predictions, while many aspects of (a) through (e) are discrete. This fundamental difference means that there are options for evaluating the uncertainty related to parameter values that generally do not exist for other aspects of a model. While the methods available for (a) to (e) can be used for the parameter values (f), the inferential methods uniquely available for (f) generally are less computationally intensive and often can be used to considerable advantage. However, inferential approaches require calculation of sensitivities. Whether the numerical accuracy and stability of the model solution required for accurate sensitivities is more broadly important to other model uses is an issue that needs to be addressed. Alternative global methods can require 100 or even 1,000 times the number of runs needed by inferential methods, though methods of reducing the number of needed runs are being developed and tested. Here we present three approaches for quantifying model uncertainty and investigate their strengths and weaknesses. (1) Represent more aspects as parameters so that the computationally efficient methods can be broadly applied. This

  20. Obesity, cancer, and acetyl-CoA metabolism

    PubMed Central

    Lee, Joyce V.; Shah, Supriya A.; Wellen, Kathryn E.

    2013-01-01

    As rates of obesity soar in the Unites States and around the world, cancer attributed to obesity has emerged as major threat to public health. The link between obesity and cancer can be attributed in part to the state of chronic inflammation that develops in obesity. Acetyl-CoA production and protein acetylation patterns are highly sensitive to metabolic state and are significantly altered in obesity. In this article, we explore the potential role of nutrient-sensitive lysine acetylation in regulating inflammatory processes in obesity-linked cancer. PMID:23878588

  1. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  2. Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions.

    PubMed

    Cetin, Nihat Sami; Tingaut, Philippe; Ozmen, Nilgül; Henry, Nathan; Harper, David; Dadmun, Mark; Sèbe, Gilles

    2009-10-08

    A novel and straightforward method for the surface acetylation of cellulose nanowhiskers by transesterification of vinyl acetate is proposed. The reaction of vinyl acetate with the hydroxyl groups of cellulose nanowhiskers obtained from cotton linters was examined with potassium carbonate as catalyst. Results indicate that during the first stage of the reaction, only the surface of the nanowhiskers was modified, while their dimensions and crystallinity remained unchanged. With increasing reaction time, diffusion mechanisms controlled the rate, leading to nanowhiskers with higher levels of acetylation, smaller dimensions, and lower crystallinity. In THF, a solvent of low polarity, the suspensions from modified nanowhiskers showed improved stability with increased acetylation.

  3. Structural Basis of Eco1-Mediated Cohesin Acetylation

    PubMed Central

    Chao, William C. H.; Wade, Benjamin O.; Bouchoux, Céline; Jones, Andrew W.; Purkiss, Andrew G.; Federico, Stefania; O’Reilly, Nicola; Snijders, Ambrosius P.; Uhlmann, Frank; Singleton, Martin R.

    2017-01-01

    Sister-chromatid cohesion is established by Eco1-mediated acetylation on two conserved tandem lysines in the cohesin Smc3 subunit. However, the molecular basis of Eco1 substrate recognition and acetylation in cohesion is not fully understood. Here, we discover and rationalize the substrate specificity of Eco1 using mass spectrometry coupled with in-vitro acetylation assays and crystallography. Our structures of the X. laevis Eco2 (xEco2) bound to its primary and secondary Smc3 substrates demonstrate the plasticity of the substrate-binding site, which confers substrate specificity by concerted conformational changes of the central β hairpin and the C-terminal extension. PMID:28290497

  4. Nε- and O-Acetylation in Mycobacterium tuberculosis Lineage 7 and Lineage 4 strains: Proteins Involved in Bioenergetics, Virulence and Antimicrobial Resistance are Acetylated.

    PubMed

    Birhanu, Alemayehu Godana; Yimer, Solomon Abebe; Holm-Hansen, Carol; Norheim, Gunnstein; Aseffa, Abraham; Abebe, Markos; Tønjum, Tone

    2017-09-18

    Increasing evidence demonstrates that lysine acetylation is involved in Mycobacterium tuberculosis (Mtb) virulence and pathogenesis. However, previous investigations in Mtb have only monitored acetylation at lysine residues using selected reference strains. We analyzed the global Nε- and O-acetylation of 3 Mtb isolates; 2 lineage 7 clinical isolates and the lineage 4 H37Rv reference strain. Quantitative acetylome analysis resulted in identification of 2490 class-I acetylation sites, among them 2349 O-acetylation and 141 Nε-acetylation sites, derived from 953 unique proteins. Mtb O-acetylation was thereby significantly more abundant than Nε-acetylation. The acetylated proteins were found to be involved in central metabolism, translation, stress responses and antimicrobial drug resistance. Notably, 261 acetylation sites on 165 proteins were differentially regulated between lineage 7 and lineage 4 strains. A total of 257 acetylation sites on 161 proteins were hypoacetylated in lineage 7 strains. These proteins are involved in Mtb growth, virulence, bioenergetics, host-pathogen interaction and stress responses. This study provides the first global analysis of O-acetylated proteins in Mtb. This quantitative acetylome data expand the current understanding regarding the nature and diversity of acetylated proteins in Mtb, and opens a new avenue of research for exploring the role of protein acetylation in Mtb physiology.

  5. On quantifying insect movements

    SciTech Connect

    Wiens, J.A.; Crist, T.O. ); Milne, B.T. )

    1993-08-01

    We elaborate on methods described by Turchin, Odendaal Rausher for quantifying insect movement pathways. We note the need to scale measurement resolution to the study insects and the questions being asked, and we discuss the use of surveying instrumentation for recording sequential positions of individuals on pathways. We itemize several measures that may be used to characterize movement pathways and illustrate these by comparisons among several Eleodes beetles occurring in shortgrass steppe. The fractal dimension of pathways may provide insights not available from absolute measures of pathway configuration. Finally, we describe a renormalization procedure that may be used to remove sequential interdependence among locations of moving individuals while preserving the basic attributes of the pathway.

  6. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  7. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    PubMed

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation.

  8. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation

    PubMed Central

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid

    2016-01-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442–29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. PMID:27402865

  9. Diverse incidences of individual oligopeptides (dipeptidic to hexapeptidic) in proteins of human, bakers' yeast, and Escherichia coli origin registered in the Swiss-Prot data base.

    PubMed Central

    Doi, H; Kitajima, M; Watanabe, I; Kikuchi, Y; Matsuzawa, F; Aikawa, S; Takiguchi, K; Ohno, S

    1995-01-01

    Oligopeptidic permutations of the 20 amino acid residues give rise to proteins of diverse functions. Our long-term goal is to produce a lexicon of oligopeptides, classifying them into at least five categories: (i) ubiquitous, (ii) function specific, (iii) group specific, (iv) species specific, and (v) nonexistent. To begin with, we report on the varying frequencies of individual oligopeptides (dipeptidic to hexapeptidic in length) found among 2862 human proteins, 1942 Saccharomyces cerevisiae proteins, and 2672 Escherichia coli proteins registered in the Swiss-Prot data base (version 29.0, released in June 1994). At all lengths (dipeptides to hexapeptides), homooligopeptides were very prominent among the most frequently occurring varieties in proteins of human and bakers' yeast origins. However, this was not the case with E. coli. While all of the expected 20(3) varieties of tripeptides were found among human proteins, three tripeptides (Cys-Cys-Trp, Trp-Trp-Cys, and Trp-Trp-His) were missing from the bakers' yeast proteins. Three tripeptides (Cys-Ile-Trp, Cys-Met-Tyr, and Cys-Trp-Trp) were also absent from E. coli proteins. Inasmuch as the Swiss-Prot data base already contained 67% of the expected total of 4000 E. coli proteins, it is virtually certain that 96,000 varieties of hexapeptides containing at least one or another of the three missing tripeptides noted above shall be nonexistent in E. coli. Furthermore, the observation of missing tripeptides in the bakers' yeast proteins suggests that nonexistent hexapeptides shall be highly phylum specific. Because of the sample size, only a small fraction of the 20(6) varieties of hexapeptides were expected to be encountered in the present survey. Indeed, only 1.2-1.5% of the possible hexapeptides were found, and the average copy number of observed hexapeptides varied between 1.06 and 1.25. Nevertheless, 33 varieties of hexapeptides occurred in 102-169 copies among human proteins. Furthermore, 15 of the 33 varieties

  10. Peptidyl prolyl cis/trans-isomerases: comparative reactivities of cyclophilins, FK506-binding proteins, and parvulins with fluorinated oligopeptide and protein substrates.

    PubMed

    Golbik, Ralph; Yu, Chao; Weyher-Stingl, Elisabeth; Huber, Robert; Moroder, Luis; Budisa, Nediljko; Schiene-Fischer, Cordelia

    2005-12-13

    Peptidyl prolyl cis/trans-isomerases catalyze the cis-trans isomerization of prolyl bonds in oligopeptides and various folding states of proteins. The proline residue in PPIase substrates at the P1' subsite, which follows the isomerizing peptide bond, appears to be the common recognition element for all subfamilies of this enzyme class. The molecular principles that govern substrate specificity at the P1' subsite were analyzed using 4-fluoroproline-containing tetrapeptide 4-nitroanilides and barstar Cys40Ala/Cys82Ala/Pro27Ala/Pro48-->4-fluoroproline quadruple variants. Generally, PPIase catalysis demonstrated stereospecificity for monofluoro substitutions at the 4-position of the pyrrolidine ring. However, the replacement of hydrogens with fluoro atoms did not impair productive interactions for the majority of PPIase-substrate complexes. Comparison of specificity constants for oligopeptide and protein substrates revealed striking differences in the 4-fluoroproline substituent effects between members of the PPIase families. Introduction of 4(R)-fluoroproline resulted in an oligopeptide substrate completely resistant to catalytic effects of FKBP-like PPIases. By contrast, the 4(R)-fluoroproline barstar variant demonstrated only slightly reduced or even better catalytic susceptibility when compared to the parent barstar Cys40Ala/Cys82Ala/Pro27Ala/Pro48 substrate. On the other hand, Suc-Ala-Ser-4(S)-FPro-Phe-pNA exhibits a discriminating specificity toward the prototypic parvulin, the Escherichia coli Par10. The E. coli trigger factor, in the extreme, catalyzes Cys40Ala/Cys82Ala/Pro27Ala/4-F(2)Pro48 with a more than 20-fold higher efficiency when compared to the proline-containing congener. These findings support the combined subsite concept for PPIase catalysis in which the positioning of a substrate in the active cleft must activate a still unknown number of remote subsites in the transition state of the reaction. The number of critical subsites was shown to vary

  11. Improvement of osteogenesis in dental pulp pluripotent-like stem cells by oligopeptide-modified poly(β-amino ester)s.

    PubMed

    Núñez-Toldrà, Raquel; Dosta, Pere; Montori, Sheyla; Ramos, Víctor; Atari, Maher; Borrós, Salvador

    2017-04-15

    Controlling pluripotent stem cell differentiation via genetic manipulation is a promising technique in regenerative medicine. However, the lack of safe and efficient delivery vehicles limits this application. Recently, a new family of poly(β-amino ester)s (pBAEs) with oligopeptide-modified termini showing high transfection efficiency of both siRNA and DNA plasmid has been developed. In this study, oligopeptide-modified pBAEs were used to simultaneously deliver anti-OCT3/4 siRNA, anti-NANOG siRNA, and RUNX2 plasmid to cells from the dental pulp with pluripotent-like characteristics (DPPSC) in order to promote their osteogenic differentiation. Results indicate that transient inhibition of the pluripotency marker OCT3/4 and the overexpression of RUNX2 at day 7 of differentiation markedly increased and accelerated the expression of osteogenic markers. Furthermore, terminally-differentiated cells exhibited higher matrix mineralization and alkaline phosphatase activity. Finally, cell viability and genetic stability assays indicate that this co-delivery system has high chromosomal stability and minimal cytotoxicity. Therefore, we conclude that such co-delivery strategy is a safe and a quick option for the improvement of DPPSC osteogenic differentiation. Controlling pluripotent stem cell differentiation via genetic manipulation is a promising technique in regenerative medicine. However, the lack of safe and efficient delivery vehicles limits this application. In this study, we propose the use of a new family of oligopeptide-modified pBAEs developed in our group to control the differentiation of dental pulp pluripotential stem cells (DPPSC). In order to promote their osteogenic differentiation. The strategy proposed markedly increased and accelerated the expression of osteogenic markers, cell mineralization and alkaline phosphatase activity. Finally, cell viability and genetic stability assays indicated that this co-delivery system has high chromosomal stability and

  12. Rapid test for acetyl-methyl-carbinol formation by Enterobacteriaceae.

    PubMed Central

    Qadri, S M; Nichols, C W; Qadri, S G; Villarreal, A

    1978-01-01

    A modified Voges-Proskauer test is described which distinguishes within 4 to 8 hours between organisms that can produce acetyl-methyl-carbinol (acetoin) from glucose fermentation and those that cannot. PMID:363745

  13. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332.

  14. Acetylation of C/EBPα inhibits its granulopoietic function

    PubMed Central

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S.; Numata, Akihiko; Sárosi, Menyhárt B.; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K.; Gunaratne, Jayantha; Tenen, Daniel G.

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  15. Acetylation of banana fibre to improve oil absorbency.

    PubMed

    Teli, M D; Valia, Sanket P

    2013-01-30

    Oil spill leaves detrimental effects on the environment, living organisms and economy. In the present work, an attempt is made to provide an efficient, easily deployable method of cleaning up oil spills and recovering of the oil. The work reports the use of banana fibres which were acetylated for oil spill recovery. The product so formed was characterized by FT-IR, TG, SEM and its degree of acetylation was also evaluated. The extent of acetylation was measured by weight percent gain. The oil sorption capacity of the acetylated fibre was higher than that of the commercial synthetic oil sorbents such as polypropylene fibres as well as un-modified fibre. Therefore, these oil sorption-active materials which are also biodegradable can be used to substitute non-biodegradable synthetic materials in oil spill cleanup. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue.

    PubMed

    Zhou, Shui-Rong; Guo, Liang; Wang, Xu; Liu, Yang; Peng, Wan-Qiu; Liu, Yuan; Wei, Xiang-Bo; Dou, Xin; Ding, Meng; Lei, Qun-Ying; Qian, Shu-Wen; Li, Xi; Tang, Qi-Qun

    2017-08-15

    White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood. Here, we showed that cavin-1 was acetylated at lysines 291, 293, and 298 (3K), which were under nutritional regulation in WAT. We further identified GCN5 as the acetyltransferase and Sirt1 as the deacetylase of cavin-1. Acetylation-mimetic 3Q mutants of cavin-1 augmented fat mobilization in 3T3-L1 adipocytes and zebrafish. Mechanistically, acetylated cavin-1 preferentially interacted with hormone-sensitive lipase and recruited it to the caveolae, thereby promoting lipolysis. Our findings shed light on the essential role of cavin-1 in regulating lipolysis in an acetylation-dependent manner in WAT. Copyright © 2017 American Society for Microbiology.

  17. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  18. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  19. Recognition Imaging of Acetylated Chromatin Using a DNA Aptamer

    PubMed Central

    Lin, Liyun; Fu, Qiang; Williams, Berea A.R.; Azzaz, Abdelhamid M.; Shogren-Knaak, Michael A.; Chaput, John C.; Lindsay, Stuart

    2009-01-01

    Histone acetylation plays an important role in the regulation of gene expression. A DNA aptamer generated by in vitro selection to be highly specific for histone H4 protein acetylated at lysine 16 was used as a recognition element for atomic force microscopy-based recognition imaging of synthetic nucleosomal arrays with precisely controlled acetylation. The aptamer proved to be reasonably specific at recognizing acetylated histones, with recognition efficiencies of 60% on-target and 12% off-target. Though this selectivity is much poorer than the >2000:1 equilibrium specificity of the aptamer, it is a large improvement on the performance of a ChIP-quality antibody, which is not selective at all in this application, and it should permit high-fidelity recognition with repeated imaging. The ability to image the precise location of posttranslational modifications may permit nanometer-scale investigation of their effect on chromatin structure. PMID:19751687

  20. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  1. Quantifier Comprehension in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    McMillan, Corey T.; Clark, Robin; Moore, Peachie; Grossman, Murray

    2006-01-01

    In this study, we investigated patients with focal neurodegenerative diseases to examine a formal linguistic distinction between classes of generalized quantifiers, like "some X" and "less than half of X." Our model of quantifier comprehension proposes that number knowledge is required to understand both first-order and higher-order quantifiers.…

  2. Quantifier Comprehension in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    McMillan, Corey T.; Clark, Robin; Moore, Peachie; Grossman, Murray

    2006-01-01

    In this study, we investigated patients with focal neurodegenerative diseases to examine a formal linguistic distinction between classes of generalized quantifiers, like "some X" and "less than half of X." Our model of quantifier comprehension proposes that number knowledge is required to understand both first-order and higher-order quantifiers.…

  3. Quantifying economic fluctuations

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Nunes Amaral, Luis A.; Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki

    2001-12-01

    This manuscript is a brief summary of a talk designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena-scale invariance and universality-can be useful in guiding research on interpreting empirical data on economic fluctuations. Using this conceptual framework as a guide, we empirically quantify the relation between trading activity-measured by the number of transactions N-and the price change G( t) for a given stock, over a time interval [ t, t+Δ t]. We relate the time-dependent standard deviation of price changes-volatility-to two microscopic quantities: the number of transactions N( t) in Δ t and the variance W2( t) of the price changes for all transactions in Δ t. We find that the long-ranged volatility correlations are largely due to those of N. We then argue that the tail-exponent of the distribution of N is insufficient to account for the tail-exponent of P{ G> x}. Since N and W display only weak inter-dependency, our results show that the fat tails of the distribution P{ G> x} arises from W. Finally, we review recent work on quantifying collective behavior among stocks by applying the conceptual framework of random matrix theory (RMT). RMT makes predictions for “universal” properties that do not depend on the interactions between the elements comprising the system, and deviations from RMT provide clues regarding system-specific properties. We compare the statistics of the cross-correlation matrix C-whose elements Cij are the correlation coefficients of price fluctuations of stock i and j-against a random matrix having the same symmetry properties. It is found that RMT methods can distinguish random and non-random parts of C. The non-random part of C which deviates from RMT results, provides information regarding genuine collective behavior among stocks. We also discuss results that are reminiscent of phase transitions in spin systems, where the divergent behavior of the response function at

  4. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development

    PubMed Central

    Dai, Jinxiang; Bercury, Kathryn K.; Jin, Weilin

    2015-01-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. SIGNIFICANCE STATEMENT The nuclear to cytoplasmic translocation of Olig1 protein has been observed during mouse and human brain development and in multiple sclerosis in several studies, but the detailed molecular mechanism of this translocation remains elusive. Here, we provide insight into the mechanism by which acetylation of Olig1 regulates its unique nuclear-cytoplasmic shuttling during oligodendrocyte development and how the acetylation status of Olig1 modulates its distinct function in the nucleus versus the cytoplasm. The current study provides a unique example of a lineage-specific transcription factor that is actively translocated from the nucleus to the cytoplasm as the cell differentiates. Importantly, we demonstrate that this process is tightly controlled by acetylation at a single

  5. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    PubMed Central

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  6. A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate.

    PubMed

    Martínez-Martínez, Irene; Montoro-García, Silvia; Lozada-Ramírez, José Daniel; Sánchez-Ferrer, Alvaro; García-Carmona, Francisco

    2007-10-15

    A bromothymol blue-based colorimetric assay has been devised to screen for acetyl xylan esterase or cephalosporin C (CPC) deacetylase activities using 7-amino cephalosporanic acid (7-ACA), CPC, or acetylated xylan as substrate. These enzymes are not screened with their natural substrates because of the tedious procedures available previously. Acetyl xylan esterase from Bacillus pumilus CECT 5072 was cloned, expressed in Escherichia coli Rosetta (DE3), and characterized using this assay. Similar K(M) values for 7-ACA and CPC were obtained when compared with those described using HPLC methods. The assay is easy to perform and can be carried out in robotic high-throughput colorimetric devices normally used in directed evolution experiments. The assay allowed us to detect improvements in activity at a minimum of twofold with a very low coefficient of variance in 96-well plates. This method is significantly faster and more convenient to use than are known HPLC and pH-stat procedures.

  7. An acetylation switch controls TDP-43 function and aggregation propensity

    PubMed Central

    Cohen, Todd J.; Hwang, Andrew W.; Restrepo, Clark R.; Yuan, Chao-Xing; Trojanowski, John Q.; Lee, Virginia M.Y.

    2015-01-01

    TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA-binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signaling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies. PMID:25556531

  8. Regulation of S-Adenosylhomocysteine Hydrolase by Lysine Acetylation*

    PubMed Central

    Wang, Yun; Kavran, Jennifer M.; Chen, Zan; Karukurichi, Kannan R.; Leahy, Daniel J.; Cole, Philip A.

    2014-01-01

    S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns. PMID:25248746

  9. Kinetic studies on enzymatic acetylation of chloramphenicol in Streptococcus faecalis.

    PubMed Central

    Nakagawa, Y; Nitahara, Y; Miyamura, S

    1979-01-01

    The kinetics of chloramphenicol (CP) acetylation by CP acetyltransferase from Streptococcus faecalis was studied. CP was shown to be acetylated enzymatically to its 3-O-acetyl derivative (3-AcCP) in the presence of acetyl coenzyme A, after which 3-AcCP was converted nonenzymatically to its 1-O-acetyl isomer, 1-O-acetyl CP (1-AcCP). At equilibrium, the 1-AcCP and 3-AcCP were present in a 1:4 ratio. Subsequently the diacetylated product, 1,3-O-O-diacetyl CP [1,3-(Ac)2CP], was enzymatically produced from 1-AcCP by the same enzyme. Theoretical calculation of rate constants (k1, k2, k3) for each successive reaction is as follows: (Formula: see text). This calculation gave k1 = 0.4 min-1, k2 = 0.002 min-1, and k3 = 0.016 min-1. Experimental results agreed closely with these calculated values. Images PMID:119483

  10. Quantifying innovation in surgery.

    PubMed

    Hughes-Hallett, Archie; Mayer, Erik K; Marcus, Hani J; Cundy, Thomas P; Pratt, Philip J; Parston, Greg; Vale, Justin A; Darzi, Ara W

    2014-08-01

    The objectives of this study were to assess the applicability of patents and publications as metrics of surgical technology and innovation; evaluate the historical relationship between patents and publications; develop a methodology that can be used to determine the rate of innovation growth in any given health care technology. The study of health care innovation represents an emerging academic field, yet it is limited by a lack of valid scientific methods for quantitative analysis. This article explores and cross-validates 2 innovation metrics using surgical technology as an exemplar. Electronic patenting databases and the MEDLINE database were searched between 1980 and 2010 for "surgeon" OR "surgical" OR "surgery." Resulting patent codes were grouped into technology clusters. Growth curves were plotted for these technology clusters to establish the rate and characteristics of growth. The initial search retrieved 52,046 patents and 1,801,075 publications. The top performing technology cluster of the last 30 years was minimally invasive surgery. Robotic surgery, surgical staplers, and image guidance were the most emergent technology clusters. When examining the growth curves for these clusters they were found to follow an S-shaped pattern of growth, with the emergent technologies lying on the exponential phases of their respective growth curves. In addition, publication and patent counts were closely correlated in areas of technology expansion. This article demonstrates the utility of publically available patent and publication data to quantify innovations within surgical technology and proposes a novel methodology for assessing and forecasting areas of technological innovation.

  11. Quantifying T Lymphocyte Turnover

    PubMed Central

    De Boer, Rob J.; Perelson, Alan S.

    2013-01-01

    Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-2′-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling. We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD4+ and CD8+ T cell pools in mice and men. PMID:23313150

  12. Quantifying the adaptive cycle

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  13. Uncertainty quantified trait predictions

    NASA Astrophysics Data System (ADS)

    Fazayeli, Farideh; Kattge, Jens; Banerjee, Arindam; Schrodt, Franziska; Reich, Peter

    2015-04-01

    Functional traits of organisms are key to understanding and predicting biodiversity and ecological change, which motivates continuous collection of traits and their integration into global databases. Such composite trait matrices are inherently sparse, severely limiting their usefulness for further analyses. On the other hand, traits are characterized by the phylogenetic trait signal, trait-trait correlations and environmental constraints, all of which provide information that could be used to statistically fill gaps. We propose the application of probabilistic models which, for the first time, utilize all three characteristics to fill gaps in trait databases and predict trait values at larger spatial scales. For this purpose we introduce BHPMF, a hierarchical Bayesian extension of Probabilistic Matrix Factorization (PMF). PMF is a machine learning technique which exploits the correlation structure of sparse matrices to impute missing entries. BHPMF additionally utilizes the taxonomic hierarchy for trait prediction. Implemented in the context of a Gibbs Sampler MCMC approach BHPMF provides uncertainty estimates for each trait prediction. We present comprehensive experimental results on the problem of plant trait prediction using the largest database of plant traits, where BHPMF shows strong empirical performance in uncertainty quantified trait prediction, outperforming the state-of-the-art based on point estimates. Further, we show that BHPMF is more accurate when it is confident, whereas the error is high when the uncertainty is high.

  14. Quantifying traffic exposure.

    PubMed

    Pratt, Gregory C; Parson, Kris; Shinoda, Naomi; Lindgren, Paula; Dunlap, Sara; Yawn, Barbara; Wollan, Peter; Johnson, Jean

    2014-01-01

    Living near traffic adversely affects health outcomes. Traffic exposure metrics include distance to high-traffic roads, traffic volume on nearby roads, traffic within buffer distances, measured pollutant concentrations, land-use regression estimates of pollution concentrations, and others. We used Geographic Information System software to explore a new approach using traffic count data and a kernel density calculation to generate a traffic density surface with a resolution of 50 m. The density value in each cell reflects all the traffic on all the roads within the distance specified in the kernel density algorithm. The effect of a given roadway on the raster cell value depends on the amount of traffic on the road segment, its distance from the raster cell, and the form of the algorithm. We used a Gaussian algorithm in which traffic influence became insignificant beyond 300 m. This metric integrates the deleterious effects of traffic rather than focusing on one pollutant. The density surface can be used to impute exposure at any point, and it can be used to quantify integrated exposure along a global positioning system route. The traffic density calculation compares favorably with other metrics for assessing traffic exposure and can be used in a variety of applications.

  15. Quantifying the Adaptive Cycle.

    PubMed

    Angeler, David G; Allen, Craig R; Garmestani, Ahjond S; Gunderson, Lance H; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  16. Understanding the Structure-Function Relationship of Lysozyme Resistance in Staphylococcus aureus by Peptidoglycan O-Acetylation Using Molecular Docking, Dynamics, and Lysis Assay.

    PubMed

    Pushkaran, Anju C; Nataraj, Namrata; Nair, Nisha; Götz, Friedrich; Biswas, Raja; Mohan, C Gopi

    2015-04-27

    Lysozyme is an important component of the host innate defense system. It cleaves the β-1,4 glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine of bacterial peptidoglycan and induce bacterial lysis. Staphylococcus aureus (S. aureus), an opportunistic commensal pathogen, is highly resistant to lysozyme, because of the O-acetylation of peptidoglycan by O-acetyl transferase (oatA). To understand the structure-function relationship of lysozyme resistance in S. aureus by peptidoglycan O-acetylation, we adapted an integrated approach to (i) understand the effect of lysozyme on the growth of S. aureus parental and the oatA mutant strain, (ii) study the lysozyme induced lysis of exponentially grown and stationary phase of both the S. aureus parental and oatA mutant strain, (iii) investigate the dynamic interaction mechanism between normal (de-O-acetylated) and O-acetylated peptidoglycan substrate in complex with lysozyme using molecular docking and molecular dynamics simulations, and (iv) quantify lysozyme resistance of S. aureus parental and the oatA mutant in different human biological fluids. The results indicated for the first time that the active site cleft of lysozyme binding with O-acetylated peptidoglycan in S. aureus was sterically hindered and the structural stability was higher for the lysozyme in complex with normal peptidoglycan. This could have conferred reduced survival of the S. aureus oatA mutant in different human biological fluids. Consistent with this computational analysis, the experimental data confirmed decrease in the growth, lysozyme induced lysis, and lysozyme resistance, due to peptidoglycan O-acetylation in S. aureus.

  17. Hexavalent chromium-induced differential disruption of cortical microtubules in some Fabaceae species is correlated with acetylation of α-tubulin.

    PubMed

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Michalopoulou, Vasiliki A

    2016-03-01

    The effects of hexavalent chromium [Cr(VI)] on the cortical microtubules (MTs) of five species of the Fabaceae family (Vicia faba, Pisum sativum, Vigna sinensis, Vigna angularis, and Medicago sativa) were investigated by confocal laser scanning microscopy after immunolocalization of total tubulin with conventional immunofluorescence techniques and of acetylated α-tubulin with the specific 6-11B-1 monoclonal antibody. Moreover, total α-tubulin and acetylated α-tubulin were quantified by Western immunoblotting and scanning densitometry. Results showed the universality of Cr(VI) detrimental effects to cortical MTs, which proved to be a sensitive and reliable subcellular marker for monitoring Cr(VI) toxicity in plant cells. However, a species-specific response was recorded, and a correlation of MT disturbance with the acetylation status of α-tubulin was demonstrated. In V. faba, MTs were depolymerized at the gain of cytoplasmic tubulin background and displayed low α-tubulin acetylation, while in P. sativum, V. sinensis, V. angularis, and M. sativa, MTs became bundled and changed orientation from perpendicular to oblique or longitudinal. Bundled MTs were highly acetylated as determined by both immunofluorescence and Western immunoblotting. Tubulin acetylation in P. sativum and M. sativa preceded MT bundling; in V. sinensis it followed MT derangement, while in V. angularis the two phenomena coincided. Total α-tubulin remained constant in all treatments. Should acetylation be an indicator of MT stabilization, it is deduced that bundled MTs became stabilized, lost their dynamic properties, and were rendered inactive. Results of this report allow the conclusion that Cr(VI) toxicity disrupts MTs and deranges the MT-mediated functions either by depolymerizing or stabilizing them.

  18. New insights into the substrate specificities of proton-coupled oligopeptide transporters from E. coli by a pH sensitive assay.

    PubMed

    Prabhala, Bala K; Aduri, Nanda G; Jensen, Johanne M; Ernst, Heidi A; Iram, Nida; Rahman, Moazur; Mirza, Osman

    2014-02-14

    Proton-coupled oligopeptide transporters (POTs) are secondary active transporters that facilitate di- and tripeptide uptake by coupling it to an inward directed proton electrochemical gradient. Here the substrate specificities of Escherichia coli POTs YdgR, YhiP and YjdL were investigated by means of a label free transport assay using the hydrophilic pH sensitive dye pyranine and POT overexpressing E. coli cells. The results confirm and extend the functional knowledge on E. coli POTs. In contrast to previous assumptions, alanine and trialanine appears to be substrates of YjdL, albeit poor compared to dipeptides. Similarly tetraalanine apparently is a substrate of both YdgR and YhiP.

  19. Effects of acetyl-L-carnitine on lamb oocyte blastocyst rate, ultrastructure, and mitochondrial DNA copy number.

    PubMed

    Reader, Karen L; Cox, Neil R; Stanton, Jo-Ann L; Juengel, Jennifer L

    2015-06-01

    Viable lambs can be produced after transfer of in vitro-derived embryos from oocytes harvested from prepubertal lambs. However, this occurs at a much lower efficiency than from adult ewe oocyte donors. The reduced competence of prepubertal oocytes is believed to be due, at least in part, to deficiencies in cytoplasmic maturation. Differences in the cytoplasmic ultrastructure between prepubertal and adult oocytes have been described in the sheep, pig, and cow. Prepubertal lamb oocytes have been shown to have a different distribution of mitochondria and lipid droplets, and less mitochondria and storage vesicles than their adult counterparts. L-carnitine plays a role in supplying energy to the cell by transporting long-chain fatty acids into mitochondria for β-oxidation to produce ATP. Both L-carnitine and its derivative acetyl-L-carnitine have been reported to increase the blastocyst rate of oocytes from mice, cows, and pigs, treated during IVM. L-carnitine has also been shown to increase mitochondrial biogenesis in adipose cells. Therefore, the aims of this study were to determine if treatment of oocytes from prepubertal lambs with acetyl-L-carnitine during IVM could increase the blastocyst rate and alter mitochondria, vesicle, or lipid droplet number, volume, or distribution. The blastocyst rate was doubled in prepubertal lamb oocytes treated with acetyl-L-carnitine when compared to untreated oocytes (10.0% and 4.6%, respectively; P = 0.028). Light microscopy, scanning electron microscopy, and stereology techniques were used to quantify organelles in untreated and acetyl-L-carnitine-treated lamb oocytes, and quantitative polymerase chain reaction methods were used to measure the mitochondrial DNA copy number. There were no differences in mitochondrial volume, number, or mitochondrial DNA copy number. Acetyl-L-carnitine treatment increased the cytoplasmic volume (P = 0.015) of the oocytes, and there were trends toward an increase in the vesicle volume (P = 0

  20. Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging.

    PubMed

    Sforza, S; Cavatorta, V; Lambertini, F; Galaverna, G; Dossena, A; Marchelli, R

    2012-07-01

    In this work, we performed a detailed evaluation of the evolution of the oligopeptide fractions in samples of Parmigiano-Reggiano cheese from the curd up to 24 mo of aging. The samples were taken from wheels produced the same day, in the same factory, from the same milk, during the same caseification process, thus simplifying the natural variability of a whey-based starter fermentation. This unique and homogeneous sampling plan, never reported before in the literature, provided a detailed study of the peptides produced by enzymatic events during Parmigiano-Reggiano aging. Given the large dimensions of the 35-kg wheels of Parmigiano-Reggiano, samples were taken from both the internal and external parts of the cheese, to evidence eventual differences in the oligopeptide composition of the different parts. Fifty-seven peptides were considered, being among the most abundant during at least one of the periods of ripening considered, and their semiquantification indicated that the peptide fraction of Parmigiano-Reggiano cheese constantly evolves during the aging period. Five trends in its evolution were outlined, which could be clearly correlated to the enzymatic activities present in the cheese, making it possible to discriminate cheeses according to their aging time. Several known bioactive peptides were also found to be present in Parmigiano-Reggiano cheese samples, and for the first time, the age at which they are most abundant has been identified. Aged cheeses have been shown to be dominated by nonproteolytic aminoacyl derivatives, a new class of peptide-like molecules recently reported. Finally, the changing peptide pattern may be related to the changing enzymatic activities occurring inside the cheeses during the aging period, which, in turn, are also related to the microbiological composition.

  1. Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1.

    PubMed

    Liou, Alice P; Chavez, Diana I; Espero, Elvis; Hao, Shuzhen; Wank, Stephen A; Raybould, Helen E

    2011-05-01

    Dietary protein is a major stimulant for cholecystokinin (CCK) secretion by the intestinal I cell, however, the mechanism by which protein is detected is unknown. Indirect functional evidence suggests that PepT1 may play a role in CCK-mediated changes in gastric motor function. However, it is unclear whether this oligopeptide transporter directly or indirectly activates the I cell. Using both the CCK-expressing enteroendocrine STC-1 cell and acutely isolated native I cells from CCK-enhanced green fluorescent protein (eGFP) mice, we aimed to determine whether PepT1 directly activates the enteroendocrine cell to elicit CCK secretion in response to oligopeptides. Both STC-1 cells and isolated CCK-eGFP cells expressed PepT1 transcripts. STC-1 cells were activated, as measured by ERK(1/2) phosphorylation, by both peptone and the PepT1 substrate Cefaclor; however, the PepT1 inhibitor 4-aminomethyl benzoic acid (AMBA) had no effect on STC-1 cell activity. The PepT1-transportable substrate glycyl-sarcosine dose-dependently decreased gastric motility in anesthetized rats but had no affect on activation of STC-1 cells or on CCK secretion by CCK-eGFP cells. CCK secretion was significantly increased in response to peptone but not to Cefaclor, cephalexin, or Phe-Ala in CCK-eGFP cells. Taken together, the data suggest that PepT1 does not directly mediate CCK secretion in response to PepT1 specific substrates. PepT1, instead, may have an indirect role in protein sensing in the intestine.

  2. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  3. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC1-alpha

    DTIC Science & Technology

    2009-02-01

    highlight that PGC-1α chemical acetylation is directly controlled by two enzymes: GCN5 and SIRT1 ; this strengths the possibility to use small...acetylated through GCN5 acetyltransferase activity, however under low nutrient conditions Sirt1 deacetylase will keep PGC-1α de-acetylated in an active form...acetylated by GCN5, we decided to use R13 because it did not respond to low glucose levels or Sirt1 activators. We think that the additional acetylation

  4. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    SciTech Connect

    Higa, H.; Varki, A.

    1986-05-01

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1/sup +/ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-(/sup 3/H)acetyl groups from (/sup 3/H)acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified approx. 600-fold using a single affinity chromatography step with Procion Red-A Agarose. The enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 ..mu..M), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1/sup +/ E.coli.

  5. Modification of oil palm wood using acetylation and impregnation process

    NASA Astrophysics Data System (ADS)

    Subagiyo, Lambang; Rosamah, Enih; Hesim

    2017-03-01

    The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.

  6. Somatic mutations, acetylator status, and prognosis in colorectal cancer

    PubMed Central

    Hardingham, J; Butler, W; Roder, D; Dobrovic, A; Dymock, R; Sage, R; Roberts-Thomson, I

    1998-01-01

    Background—Somatic mutations in K-ras and TP53 may be associated with both acetylator status and prognosis in colorectal cancer. 
Aims—To determine whether cancers with somatic mutations are more frequent in fast acetylators and whether mutations or acetylator status influence prognosis after colorectal surgery. 
Patients—One hundred consecutive subjects undergoing elective surgery for colorectal cancer. 
Methods—Acetylator status was determined by polymerase chain reaction (PCR) genotyping for polymorphism in the N-acetyltransferase 2 (NAT2) gene. Mutations in K-ras (codon 12) and TP53 were determined by PCR analysis using restriction enzyme digestion and single strand conformation polymorphism respectively. Survival from colorectal cancer for up to five years after diagnosis was analysed using the Kaplan-Meier product limit estimator. Cox proportional hazards regression was used to compare survival rates after adjusting for tumour stage. 
Results—Mutations in K-ras and TP53 were independent of acetylator status. By log rank test, survival was significantly reduced in subjects with TP53 mutations (p=0.003) but was not significantly related to acetylator status or the presence of K-ras mutations. After adjustment for tumour stage, subjects with both TP53 and K-ras mutations had a 4.2-fold case fatality (95% confidence interval 1.5 to 11.6) when compared with that of a TP53 negative reference group. 
Conclusion—The presence of both TP53 and K-ras mutations in colorectal tumours is an adverse prognostic marker which is independent of tumour stage. 

 Keywords: colorectal cancer; TP53 and K-ras mutations; acetylator status; prognosis PMID:9659162

  7. Acetylated pectins in raw and heat processed carrots.

    PubMed

    Broxterman, Suzanne E; Picouet, Pierre; Schols, Henk A

    2017-12-01

    Heat processing results in softening of carrots, changing the pectin structure. The effect of heat processing on pectin was studied, showing that the amount of pectin in water soluble solids (WSS) and chelating agent soluble solids (ChSS) increased substantially upon heat processing of the carrots. Pectin in WSS from both unprocessed and heat processed carrot had a degree of methyl-esterification (DM) of ≈60% and a degree of acetylation (DA) of ≈20%. Enzymatic degradation released methyl-esterified galacturonic acid oligomers of degree of polymerisation ≥6 carrying acetyl groups. Mass spectrometry confirmed acetylation in highly methyl-esterified homogalacturonan (HG) regions, next to known rhamnogalacturonan (RG-I) acetylation. ChSS HGs were un-acetylated. RG-I levels of both heat processed carrot WSS and ChSS increased. Digestion of WSS with RG-I degrading enzymes showed that WSS arabinan became more linear upon heat processing resulting in the release of oligosaccharides, while in ChSS galactan became more linear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy

    PubMed Central

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included. PMID:28154831

  9. Lysine Acetylation and Deacetylation in Brain Development and Neuropathies.

    PubMed

    Tapias, Alicia; Wang, Zhao-Qi

    2017-02-01

    Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling. Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine (de)acetylation machineries. Copyright © 2017 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  10. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy.

    PubMed

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras; Birklé, Stéphane

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.

  11. Relationship of histone acetylation to DNA topology and transcription.

    PubMed

    Krajewski, W A; Luchnik, A N

    1991-12-01

    An autonomously replicating plasmid constructed from bovine papiloma virus (BPV) and pBR322 was stably maintained as a nuclear episome in a mouse cell culture. Addition to a cell culture of sodium butyrate (5 mM) induced an increase in plasmid DNA supercoiling of 3-5 turns, an increase in acetylation of cellular histones, and a decrease in plasmid transcription by 2- to 4-fold. After withdrawal of butyrate, DNA supercoiling began to fluctuate in a wave-like manner with an amplitude of up to 3 turns and a period of 3-4 h. These waves gradually faded by 24 h. The transcription of the plasmid and acetylation of cellular histones also oscillated with the same period. The wave-like alterations were not correlated with the cell cycle, for there was no resumption of DNA replication after butyrate withdrawal for at least 24 h. In vitro chemical acetylation of histones with acetyl adenylate also led to an increase in the superhelical density of plasmid DNA. The parallel changes in transcription, histone acetylation, and DNA supercoiling in vivo may indicate a functional innerconnection. Also, the observed in vivo variation in the level of DNA supercoiling directly indicates the possibility of its natural regulation in eukaryotic cells.

  12. N-Acetylation of Glucosamine-6-Phosphate in Leuconostoc mesenteroides

    PubMed Central

    DeMoss, R. D.; Moser, K.

    1969-01-01

    A partially purified enzyme (120-fold) from Leuconostoc mesenteroides catalyzed the reversible N-acetylation of d-glucosamine-6-phosphate. Coenzyme A was not required and inhibited the reaction rate. Neither d-glucosamine nor N-acetyl-d-glucosamine served as a substrate for the reversible reaction. The enzyme preparation retained 50% of its original activity after 5 min at 100 C. The Km for acetate was 7.7 × 10−2m in the presence of 2 × 10−2md-glucosamine-6-phosphate. The Km for d-glucosamine-6-phosphate was 5.0 × 10−3m in the presence of 0.64 m acetate. The product of the reaction was characterized by comparison with N-acetyl-d-glucosamine-6-phosphate prepared by enzymatic phosphorylation of N-acetyl-d-glusamine. The characterization tests were: chromatographic migration, acid hydrolysis, enzymatic dephosphorylation, sodium borohydride reduction, and periodate oxidation. The equilibrium constant for the reaction was about 7.5 m for the expression K = (d-glucosamine-6-phosphate)(acetate)/N-acetyl-d-glucosamine-6-phosphate. The standard free energy of the reaction was approximately 1,200 cal per mole. PMID:5781575

  13. Quantification of Lysosomal Membrane Permeabilization by Cytosolic Cathepsin and β-N-Acetyl-Glucosaminidase Activity Measurements.

    PubMed

    Jäättelä, Marja; Nylandsted, Jesper

    2015-11-02

    Programmed cell death involving lysosomal membrane permeabilization (LMP) is an alternative cell death pathway induced under various cellular conditions and by numerous cytotoxic stimuli. The method presented here to quantify LMP takes advantage of the detergent digitonin, which creates pores in cellular membranes by replacing cholesterol. The difference in cholesterol content between the plasma membrane (high) and lysosomal membrane (low) allows titration of digitonin to a concentration that permeabilizes the plasma membrane but leaves lysosomal membranes intact. The extent of LMP is determined by measuring the cytosolic activity of lysosomal hydrolases (e.g., cysteine cathepsins) and/or β-N-acetyl-glucosaminidase in the digitonin-extracted cytoplasm and comparing it to the total cellular enzyme activity. Digitonin extraction of the cytosol can be combined with precipitation of protein and/or western blot analysis for detection of lysosomal proteins (e.g., cathepsins).

  14. An acetylation rheostat for the control of muscle energy homeostasis

    PubMed Central

    Menzies, Keir; Auwerx, Johan

    2013-01-01

    In recent years the role of acetylation has gained ground as an essential modulator of intermediary metabolism in skeletal muscle. Imbalance in energy homeostasis or chronic cellular stress, due to diet, aging or disease, translate into alterations in the acetylation levels of key proteins which governs bioenergetics, cellular substrate use and/or changes in mitochondrial content and function. For example, cellular stress induced by exercise or caloric restriction can alter the coordinated activity of acetyltransferases and deacetylases to increase mitochondrial biogenesis and function in order to adapt to low energetic levels. The natural duality of these enzymes, as metabolic sensors and effector proteins, have helped biologists understand how the body can integrate seemingly distinct signaling pathways to control mitochondrial biogenesis, insulin sensitivity, glucose transport, reactive oxygen species handling, angiogenesis and muscle satellite cell proliferation/differentiation. Our review will summarize the recent developments related to acetylation dependent responses following metabolic stress in skeletal muscle. PMID:23999889

  15. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    PubMed

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Assays for Acetylation and Other Acylations of Lysine Residues.

    PubMed

    Pelletier, Nadine; Grégoire, Serge; Yang, Xiang-Jiao

    2017-02-02

    Lysine acetylation refers to addition of an acetyl moiety to the epsilon-amino group of a lysine residue and is important for regulating protein functions in various organisms from bacteria to humans. This is a reversible and precisely controlled covalent modification that either serves as an on/off switch or participates in a codified manner with other post-translational modifications to regulate different cellular and developmental processes in normal and pathological states. This unit describes methods for in vitro and in vivo determination of lysine acetylation. Such methods can be easily extended for analysis of other acylations (such as propionylation, butyrylation, crotonylation, and succinylation) that are also present in histones and many other proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast

    PubMed Central

    2014-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  18. An acetylation rheostat for the control of muscle energy homeostasis.

    PubMed

    Menzies, Keir; Auwerx, Johan

    2013-12-01

    In recent years, the role of acetylation has gained ground as an essential modulator of intermediary metabolism in skeletal muscle. Imbalance in energy homeostasis or chronic cellular stress, due to diet, aging, or disease, translate into alterations in the acetylation levels of key proteins which govern bioenergetics, cellular substrate use, and/or changes in mitochondrial content and function. For example, cellular stress induced by exercise or caloric restriction can alter the coordinated activity of acetyltransferases and deacetylases to increase mitochondrial biogenesis and function in order to adapt to low energetic levels. The natural duality of these enzymes, as metabolic sensors and effector proteins, has helped biologists to understand how the body can integrate seemingly distinct signaling pathways to control mitochondrial biogenesis, insulin sensitivity, glucose transport, reactive oxygen species handling, angiogenesis, and muscle satellite cell proliferation/differentiation. Our review will summarize the recent developments related to acetylation-dependent responses following metabolic stress in skeletal muscle.

  19. Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation

    PubMed Central

    Drogaris, Paul; Villeneuve, Valérie; Pomiès, Christelle; Lee, Eun-Hye; Bourdeau, Véronique; Bonneil, Éric; Ferbeyre, Gerardo; Verreault, Alain; Thibault, Pierre

    2012-01-01

    Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56. PMID:22355734

  20. Complex N-Acetylation of TriethylenetetramineS⃞

    PubMed Central

    Cerrada-Gimenez, Marc; Weisell, Janne; Hyvönen, Mervi T.; Hee Park, Myung; Alhonen, Leena; Vepsäläinen, Jouko

    2011-01-01

    Triethylenetetramine (TETA) is an efficient copper chelator that has versatile clinical potential. We have recently shown that spermidine/spermine-N1-acetyltransferase (SSAT1), the key polyamine catabolic enzyme, acetylates TETA in vitro. Here, we studied the metabolism of TETA in three different mouse lines: syngenic, SSAT1-overexpressing, and SSAT1-deficient (SSAT1-KO) mice. The mice were sacrificed at 1, 2, or 4 h after TETA injection (300 mg/kg i.p.). We found only N1-acetyltriethylenetetramine (N1AcTETA) and/or TETA in the liver, kidney, and plasma samples. As expected, SSAT1-overexpressing mice acetylated TETA at an accelerated rate compared with syngenic and SSAT1-KO mice. It is noteworthy that SSAT1-KO mice metabolized TETA as syngenic mice did, probably by thialysine acetyltransferase, which had a Km value of 2.5 ± 0.3 mM and a kcat value of 1.3 s−1 for TETA when tested in vitro with the human recombinant enzyme. Thus, the present results suggest that there are at least two N-acetylases potentially metabolizing TETA. However, their physiological significance for TETA acetylation requires further studies. Furthermore, we detected chemical intramolecular N-acetyl migration from the N1 to N3 position of N1AcTETA and N1,N8-diacetyltriethylenetetramine in an acidified high-performance liquid chromatography sample matrix. The complex metabolism of TETA together with the intramolecular N-acetyl migration may explain the huge individual variations in the acetylation rate of TETA reported earlier. PMID:21878558

  1. Toxicology of deoxynivalenol and its acetylated and modified forms.

    PubMed

    Payros, Delphine; Alassane-Kpembi, Imourana; Pierron, Alix; Loiseau, Nicolas; Pinton, Philippe; Oswald, Isabelle P

    2016-12-01

    Mycotoxins are the most frequently occurring natural contaminants in human and animal diet. Among them, deoxynivalenol (DON), produced by Fusarium, is one of the most prevalent and thus represents an important health risk. Recent detection methods revealed new mycotoxins and new molecules derivated from the "native" mycotoxins. The main derivates of DON are the acetylated forms produced by the fungi (3- and 15-acetyl-DON), the biologically "modified" forms produced by the plant (deoxynivalenol-3-β-D-glucopyranoside), or after bacteria transformation (de-epoxy DON, 3-epi-DON and 3-keto-DON) as well as the chemically "modified" forms (norDON A-C and DON-sulfonates). High proportions of acetylated and modified forms of DON co-occur with DON, increasing the exposure and the health risk. DON and its acetylated and modified forms are rapidly absorbed following ingestion. At the molecular level, DON binds to the ribosome, induces a ribotoxic stress leading to the activation of MAP kinases, cellular cell-cycle arrest and apoptosis. The toxic effects of DON include emesis and anorexia, alteration of intestinal and immune functions, reduced absorption of the nutrients as well as increased susceptibility to infection and chronic diseases. In contrast to DON, very little information exists concerning the acetylated and modified forms; some can be converted back to DON, their ability to bind to the ribosome and to induce cellular effects varies according to the toxin. Except for the acetylated forms, their toxicity and impact on human and animal health are poorly documented.

  2. Comparative specificities of Calreticulin Transacetylase to O-acetyl, N-acetyl and S-acetyl derivative of 4-methylcoumarins and their inhibitory effect on AFB1-induced genotoxicity in vitro and in vivo.

    PubMed

    Kumar, Ajit; Ponnan, Prija; Raj, Hanumantharao G; Parmar, Virinder S; Saso, Luciano

    2013-02-01

    We have earlier conclusively established the Calreticulin Transacetylase (CRTAase) catalyzed modifications of functional proteins such as cytochrome-P450-linked mixed function oxidases (Cyt-P450-linked MFOs), NADPH cytochrome c reductase, and glutathione S-transferase by acetoxy derivatives of polyphenols. In this study, we have investigated the comparative specificities of CRTAase to N-acetyl derivative, 7-acetamido-4-methylcoumarin (7-N-AMC), O-acetyl derivative, 7-acetoxy-4-methylcoumarin (7-AMC), S-acetyl derivative, 7-thioacetyl-4-methycoumarin (7-S-AMC) and their parent compounds in the modulation of catalytic activities of aforesaid proteins. Special attention concentrated on the comparative inhibitory effect of aforesaid acetyl moiety on Cyt-P450-linked MFOs such as 7-ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD) and aflatoxin B(1) (AFB(1))-induced genotoxicity in vitro and in vivo. The results clearly indicated that N-acetyl and O-acetyl derivatives were better substrates for CRTAase while the S-acetyl was found to be a poorer substrate. Our study involving atomic charge, charge density and molecular electrostatic potential (MEP) calculations indicated the pivotal role of electronegativity and charge distribution values of O, N and S atoms of the acetyl group at C-7 position of the 4-methylcoumarins in CRTAase activity. These facts reinforce our hypothesis that the CRTAase catalyzed modifications of the catalytic activities of aforesaid proteins by acetyl derivative of 4-methylcoumarins is probably due to acetylation of these proteins.

  3. Assessing an impulsive model for rotational energy partitioning to acetyl radicals from the photodissociation of acetyl chloride at 235 nm.

    PubMed

    Womack, Caroline C; Fang, Wei-Hai; Straus, Daniel B; Butler, Laurie J

    2010-12-23

    This work uses the photodissociation of acetyl chloride to assess the utility of a recently proposed impulsive model when the dissociation occurs on an excited electronic state that is not repulsive in the Franck-Condon region. The impulsive model explicitly includes an average over the vibrational quantum states of acetyl chloride when it calculates an impact parameter for fission of the C-Cl bond, as well as the distribution of thermal energy in the photolytic precursor. The experimentally determined stability of the resulting acetyl radical to subsequent dissociation is the key observable that allows us to test the model's ability to predict the partitioning of energy between rotation and vibration of the radical. We compare the model's predictions for three different assumed geometries at which the impulsive force might act, generating the relative kinetic energy and the concomitant rotational energy in the acetyl radical. Assuming that the impulsive force acts at the transition state for C-Cl fission on the S(1) excited state gives a poor prediction; the model predicts far more energy in rotation of the acetyl radical than is consistent with the measured velocity map imaging spectrum of the stable radicals. The best prediction results from using a geometry derived from the classical trajectory calculations on the excited state potential energy surface. We discuss the insight gained into the excited state dissociation dynamics of acetyl chloride and, more generally, the utility of using the impulsive model in conjunction with excited state trajectory calculations to predict the partitioning of internal energy between rotation and vibration for radicals produced from the photolysis of halogenated precursors.

  4. Children's interpretations of general quantifiers, specific quantifiers, and generics

    PubMed Central

    Gelman, Susan A.; Leslie, Sarah-Jane; Was, Alexandra M.; Koch, Christina M.

    2014-01-01

    Recently, several scholars have hypothesized that generics are a default mode of generalization, and thus that young children may at first treat quantifiers as if they were generic in meaning. To address this issue, the present experiment provides the first in-depth, controlled examination of the interpretation of generics compared to both general quantifiers ("all Xs", "some Xs") and specific quantifiers ("all of these Xs", "some of these Xs"). We provided children (3 and 5 years) and adults with explicit frequency information regarding properties of novel categories, to chart when "some", "all", and generics are deemed appropriate. The data reveal three main findings. First, even 3-year-olds distinguish generics from quantifiers. Second, when children make errors, they tend to be in the direction of treating quantifiers like generics. Third, children were more accurate when interpreting specific versus general quantifiers. We interpret these data as providing evidence for the position that generics are a default mode of generalization, especially when reasoning about kinds. PMID:25893205

  5. Attenuation of hemorrhage-associated lung injury by adjuvant treatment with C23, an oligopeptide derived from cold-inducible RNA-binding protein.

    PubMed

    Zhang, Fangming; Yang, Weng-Lang; Brenner, Max; Wang, Ping

    2017-10-01

    Hemorrhagic shock (HS) is an important cause of mortality. HS is associated with an elevated incidence of acute lung injury and acute respiratory distress syndrome, significantly contributing to HS morbidity and mortality. Cold-inducible RNA-binding protein (CIRP) is released into the circulation during HS and can cause lung injury. C23 is a CIRP-derived oligopeptide that binds with high affinity to the CIRP receptor and inhibits CIRP-induced phagocyte secretion of TNF-α. This study was designed to determine whether C23 is able to attenuate HS-associated lung injury. C57BL/6 mice were subjected to controlled hemorrhage leading to a mean arterial pressure of 25 ± 3 mm Hg for 90 minutes. Mice were then volume-resuscitated for 30 minutes with normal saline solution alone (vehicle) or plus adjuvant treatment with C23 (8 mg/kg BW). At 4.5 hours after resuscitation, the blood and lungs were harvested. Serum levels of organ injury markers lactate dehydrogenase, aspartate aminotransferase were significantly elevated in hemorrhaged mice receiving vehicle and were reduced by 51.3% and 52.2% in mice adjuvantly treated with C23, respectively. Similarly, lung mRNA levels of IL-1β, TNF-α, and IL-6, and lung myeloperoxidase activity were elevated after HS and reduced by 66.1%, 54.4%, 69.7%, and 24.3%, respectively, in mice treated with C23. Adjuvant treatment with C23 also decreased the lung histology score by 33.9%, lung extravasation of albumin carrying Evans blue dye by 36.8%, and the protein level of intercellular adhesion molecule-1, and indicator of vascular endothelial cell activation, by 40.3%. Together, these results indicate that adjuvant treatment with the CIRP-derived oligopeptide C23 is able to improve lung inflammation and vascular endothelial activation secondary to HS, lending support to the development of CIRP-targeting adjuvant treatments to minimize lung injury after HS.

  6. Acetylation mediates Cx43 reduction caused by electrical stimulation

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra

    2015-01-01

    Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759

  7. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in any...

  8. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in any...

  9. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in any...

  10. Acetylation regulates DNA repair mechanisms in human cells.

    PubMed

    Piekna-Przybylska, Dorota; Bambara, Robert A; Balakrishnan, Lata

    2016-06-02

    The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.

  11. [N-ACETYL-β-D-GLUCOSAMINIDASE OF VIBRIO CHOLERAE].

    PubMed

    Duvanova, O V; Mishankin, B N; Vodopianov, A S; Sorokin, V M

    2016-01-01

    Study N-acetyl-β-D-glucosaminidase (chitobiase) (EC 3.2.1.30) in strains of Vibrio cholerae of O1/non-O1 serogroups of various origin, that is a component of chitinolytic complex taking into account object of isolation and epidemiologic significance of strains. Cultures of V. cholerae O1/non-O1 serogroup strains were obtained from the museum of live culture of Rostov RIPC. Enzymatic activity analysis was carried out in Hitachi F-2500 fluorescent spectrophotometer using FL Solutions licensed software. NCBI databases were used during enzyme characteristics. N-acetyl-β-D-glucosaminidase in Vcholerae O1/non-O1 serogroup strains was detected, purified by column chromatography, studied and characterized by a number of physical-chemical and biological properties. Comparative computer analysis of amino acid sequence of N-acetyl-β-D-glucosaminidases of V. cholerae (VC2217 gene), Serratia marcescens etc. has allowed. to attribute the enzyme from V. cholerae to glycosyl-hydrolases (chitobiases) of family 20 and classify it according to enzyme nomenclature as EC 3.2.1.30. N-acetyl-β-D-glucosaminidase in V. cholerae of O1/non-O1 serogroups of various origin and epidemiologic significance, participating in chitin utilization was studied and characterized for the first time, and its possible role in biology of cholera causative agent was shown.

  12. Causal role of histone acetylations in enhancer function

    PubMed Central

    Pradeepa, Madapura M.

    2017-01-01

    ABSTRACT Enhancers control development and cellular function by spatiotemporal regulation of gene expression. Co-occurrence of acetylation of histone H3 at lysine 27 (H3K27ac) and mono methylation of histone H3 at lysine 4 (H3K4me1) has been widely used for identification of active enhancers. However, increasing evidence suggests that using this combination of marks alone for enhancer identification gives an incomplete picture of the active enhancer repertoire. We have shown that the H3 globular domain acetylations, H3K64ac and H3K122ac, and an H4 tail acetylation, H4K16ac, are enriched at active enhancers together with H3K27ac, and also at a large number of enhancers without detectable H3K27ac. We propose that acetylations at these lysine residues of histones H3 and H4 might function by directly affecting chromatin structure, nucleosome–nucleosome interactions, nucleosome stability, and transcription factor accessibility. PMID:27792455

  13. Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill.

    PubMed

    Evtuguin, Dmitry V; Tomás, Jorge L; Silva, Artur M S; Neto, Carlos Pascoal

    2003-03-28

    A heteroxylan was isolated from Eucalyptus globulus wood by extraction of peracetic acid delignified holocellulose with dimethyl sulfoxide. Besides (1-->4)-linked beta-D-xylopyranosyl units of the backbone and short side chains of terminal (1-->2)-linked 4-O-methyl-alpha-D-glucuronosyl residues (MeGlcA) in a 1:10 molar ratio, this hemicellulose contained galactosyl and glucosyl units attached at O-2 of MeGlcA originating from rhamnoarabinogalactan and glucan backbones, respectively. About 30% of MeGlcA units were branched at O-2. The O-acetyl-(4-O-methylglucurono)xylan showed an acetylation degree of 0.61, as determined by 1H NMR spectroscopy, and a weight-average molecular weight (M(w)) of about 36 kDa (P=1.05) as revealed from size-exclusion chromatography (SEC) analysis. About half of the beta-D-xylopyranosyl units of the backbone were found as acetylated moieties at O-3 (34 mol%), O-2 (15 mol%) or O-2,3 (6 mol%). Practically, all beta-D-xylopyranosyl units linked at O-2 with MeGlcA residues were 3-O-acetylated (10 mol%).

  14. Methylene blue decreases mitochondrial lysine acetylation in the diabetic heart.

    PubMed

    Berthiaume, Jessica M; Hsiung, Chia-Heng; Austin, Alison B; McBrayer, Sean P; Depuydt, Mikayla M; Chandler, Margaret P; Miyagi, Masaru; Rosca, Mariana G

    2017-08-01

    Diabetic cardiomyopathy is preceded by mitochondrial alterations, and progresses to heart failure. We studied whether treatment with methylene blue (MB), a compound that was reported to serve as an alternate electron carrier within the mitochondrial electron transport chain (ETC), improves mitochondrial metabolism and cardiac function in type 1 diabetes. MB was administered at 10 mg/kg/day to control and diabetic rats. Both echocardiography and hemodynamic studies were performed to assess cardiac function. Mitochondrial studies comprised the measurement of oxidative phosphorylation and specific activities of fatty acid oxidation enzymes. Proteomic studies were employed to compare the level of lysine acetylation on cardiac mitochondrial proteins between the experimental groups. We found that MB facilitates NADH oxidation, increases NAD(+), and the activity of deacetylase Sirtuin 3, and reduces protein lysine acetylation in diabetic cardiac mitochondria. We identified that lysine acetylation on 83 sites in 34 proteins is lower in the MB-treated diabetic group compared to the same sites in the untreated diabetic group. These changes occur across critical mitochondrial metabolic pathways including fatty acid transport and oxidation, amino acid metabolism, tricarboxylic acid cycle, ETC, transport, and regulatory proteins. While the MB treatment has no effect on the activities of acyl-CoA dehydrogenases, it decreases 3-hydroxyacyl-CoA dehydrogenase activity and long-chain fatty acid oxidation, and improves cardiac function. Providing an alternative route for mitochondrial electron transport is a novel therapeutic approach to decrease lysine acetylation, alleviate cardiac metabolic inflexibility, and improve cardiac function in diabetes.

  15. Stimulation of V(D)J recombination by histone acetylation.

    PubMed

    McBlane, F; Boyes, J

    2000-04-20

    V(D)J recombination assembles functional immunoglobulin and T cell receptor genes from individual gene segments [1]. A common recombination mechanism, initiated by the proteins RAG1 and RAG2 at conserved recombination signal sequences (RSSs), operates at all rearranging loci [2] [3]. It has been proposed that the key regulator of the reaction is 'accessibility' of the RSS within chromatin [4]. Recently, the packaging of RSSs into nucleosomes was shown to inhibit initiation of V(D)J recombination [5] [6]. Nevertheless, the tight tissue specificity of regulation cannot be explained by nucleosome-mediated repression alone because a significant fraction of RSSs would be predicted to lie in linker regions between nucleosomes. Therefore, some aspect of the regulation of the recombination reaction must rely on the disruption of higher-order chromatin structure. Here, we report that histone acetylation directly stimulates the recombination reaction in vivo in the correct cell- and stage-specific manner. Neither expression of RAG genes nor activity of RAG proteins was increased by acetylation. Furthermore, histone acetylation failed to overcome nucleosome-mediated repression of RSS recognition and cleavage in vitro. Our data suggest a role for histone acetylation in stimulating recombination in vivo through disruption of higher-order chromatin structures.

  16. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions.

    PubMed

    Yuan, Jifeng; Ching, Chi-Bun

    2016-11-01

    Acetyl-CoA is a central molecule in the metabolism of the cell, which is also a precursor molecule to a variety of value-added products such as terpenoids and fatty acid derived molecules. Considering subcellular compartmentalization of metabolic pathways allows higher concentrations of enzymes, substrates and intermediates, and bypasses competing pathways, mitochondrion-compartmentalized acetyl-CoA utilization pathways might offer better pathway activities with improved product yields. As a proof-of-concept, we sought to explore a mitochondrial farnesyl pyrophosphate (FPP) biosynthetic pathway for the biosynthesis of amorpha-4,11-diene in budding yeast. In the present study, the eight-gene FPP biosynthetic pathway was successfully expressed inside yeast mitochondria to enable high-level amorpha-4,11-diene production. In addition, we also found the mitochondrial compartment serves as a partial barrier for the translocation of FPP from mitochondria into the cytosol, which would potentially allow minimized loss of FPP to cytosolic competing pathways. To our best knowledge, this is the first report to harness yeast mitochondria for terpenoid productions from the mitochondrial acetyl-CoA pool. We envision subcellular metabolic engineering might also be employed for an efficient production of other bio-products from the mitochondrial acetyl-CoA in other eukaryotic organisms. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Two new acetylated flavonoid glycosides from Centaurium spicatum L.

    PubMed

    Allam, Ahmed E; El-Shanawany, Mohamed A; Backheet, Enaam Y; Nafady, Alaa M; Takano, Fumihide; Ohta, Tomihisa

    2012-04-01

    Two new acetylated flavonol glycosides, quercetin 3-O-[(2,4-diacetyl-α-L-rhamnopyranosyl)-(1→6)]-2,4-diacetyl-β-D-galactopyranoside (1) and quercetin 3-O-[(2,4-diacetyl-α-L-rhamnopyranosyl)-(1→6)]-3,4-diacetyl-β-D-galactopyranoside (2), in addition to two known acetylated quercetin glycosides quercetin 3-O-[(2,3,4-triacetyl-α-L-rhamnopyranosyl)-(1→6)-β-D-galactopyranoside (3) and quercetin 3-O-[(2,3,4-triacetyl-α-L-rhamnopyranosyl)-(1→6)-3-acetyl-β-D-galactopyranoside (4), were isolated from the aerial part of Centaurium spicatum (L.) Fritsch (Gentianaceae). Structure elucidation, especially the localization of the acetyl groups, and complete (1)H and (13)C NMR assignments of these biologically active compounds were carried out using one- and two-dimensional NMR measurements, including (1)H- and (13)C-NMR, DEPT-135, H-H COSY, HMQC and HMBC, in addition to HR-FAB/MS experiments.

  18. Analysis to Quantify Significant Contribution

    EPA Pesticide Factsheets

    This Technical Support Document provides information that supports EPA’s analysis to quantify upwind state emissions that significantly contribute to nonattainment or interfere with maintenance of National Ambient Air Quality Standards in downwind states.

  19. Nucleosome competition reveals processive acetylation by the SAGA HAT module

    PubMed Central

    Ringel, Alison E.; Cieniewicz, Anne M.; Taverna, Sean D.; Wolberger, Cynthia

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  20. Use of lignin extracted from different plant sources as standards in the spectrophotometric acetyl bromide lignin method.

    PubMed

    Fukushima, Romualdo S; Kerley, Monty S

    2011-04-27

    A nongravimetric acetyl bromide lignin (ABL) method was evaluated to quantify lignin concentration in a variety of plant materials. The traditional approach to lignin quantification required extraction of lignin with acidic dioxane and its isolation from each plant sample to construct a standard curve via spectrophotometric analysis. Lignin concentration was then measured in pre-extracted plant cell walls. However, this presented a methodological complexity because extraction and isolation procedures are lengthy and tedious, particularly if there are many samples involved. This work was targeted to simplify lignin quantification. Our hypothesis was that any lignin, regardless of its botanical origin, could be used to construct a standard curve for the purpose of determining lignin concentration in a variety of plants. To test our hypothesis, lignins were isolated from a range of diverse plants and, along with three commercial lignins, standard curves were built and compared among them. Slopes and intercepts derived from these standard curves were close enough to allow utilization of a mean extinction coefficient in the regression equation to estimate lignin concentration in any plant, independent of its botanical origin. Lignin quantification by use of a common regression equation obviates the steps of lignin extraction, isolation, and standard curve construction, which substantially expedites the ABL method. Acetyl bromide lignin method is a fast, convenient analytical procedure that may routinely be used to quantify lignin.

  1. Treating Colon Cancer Cells with FK228 Reveals a Link between Histone Lysine Acetylation and Extensive Changes in the Cellular Proteome

    PubMed Central

    Wang, Tian-yun; Jia, Yan-long; Zhang, Xi; Sun, Qiu-li; Li, Yi-Chun; Zhang, Jun-he; Zhao, Chun-peng; Wang, Xiao-yin; Wang, Li

    2015-01-01

    The therapeutic value of FK228 as a cancer treatment option is well known, and various types of cancer have been shown to respond to this drug. However, the complete mechanism of FK228 and the affect it has on histone lysine acetylation and the colon cancer cell proteome are largely unknown. In the present study, we used stable isotope labeling by amino acids in cell culture (SILAC) and affinity enrichment followed by high-resolution liquid chromatograph-mass spectrometer (LC-MS)/MS analysis to quantitate the changes in the lysine acetylome in HCT-8 cells after FK228 treatment. A total of 1,194 lysine acetylation sites in 751 proteins were quantified, with 115 of the sites in 85 proteins being significantly upregulated and 38 of the sites in 32 proteins being significantly downregulated in response to FK228 treatment. Interestingly, 47 histone lysine acetylation sites were identified in the core histone proteins. We also found a novel lysine acetylation site on H2BK121. These significantly altered proteins are involved in multiple biological functions as well as a myriad of metabolic and enzyme-regulated pathways. Taken together, the link between FK228 function and the downstream changes in the HCT-8 cell proteome observed in response to FK228 treatment is established. PMID:26675280

  2. Treating Colon Cancer Cells with FK228 Reveals a Link between Histone Lysine Acetylation and Extensive Changes in the Cellular Proteome.

    PubMed

    Wang, Tian-yun; Jia, Yan-long; Zhang, Xi; Sun, Qiu-li; Li, Yi-chun; Zhang, Jun-he; Zhao, Chun-peng; Wang, Xiao-yin; Wang, Li

    2015-12-17

    The therapeutic value of FK228 as a cancer treatment option is well known, and various types of cancer have been shown to respond to this drug. However, the complete mechanism of FK228 and the affect it has on histone lysine acetylation and the colon cancer cell proteome are largely unknown. In the present study, we used stable isotope labeling by amino acids in cell culture (SILAC) and affinity enrichment followed by high-resolution liquid chromatograph-mass spectrometer (LC-MS)/MS analysis to quantitate the changes in the lysine acetylome in HCT-8 cells after FK228 treatment. A total of 1,194 lysine acetylation sites in 751 proteins were quantified, with 115 of the sites in 85 proteins being significantly upregulated and 38 of the sites in 32 proteins being significantly downregulated in response to FK228 treatment. Interestingly, 47 histone lysine acetylation sites were identified in the core histone proteins. We also found a novel lysine acetylation site on H2BK121. These significantly altered proteins are involved in multiple biological functions as well as a myriad of metabolic and enzyme-regulated pathways. Taken together, the link between FK228 function and the downstream changes in the HCT-8 cell proteome observed in response to FK228 treatment is established.

  3. Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila

    PubMed Central

    1995-01-01

    In Tetrahymena, at least 17 distinct microtubule structures are assembled from a single primary sequence type of alpha- and beta- tubulin heterodimer, precluding distinctions among microtubular systems based on tubulin primary sequence isotypes. Tetrahymena tubulins also are modified by several types of posttranslational reactions including acetylation of alpha-tubulin at lysine 40, a modification found in most eukaryotes. In Tetrahymena, axonemal alpha-tubulin and numerous other microtubules are acetylated. We completely replaced the single type of alpha-tubulin gene in the macronucleus with a version encoding arginine instead of lysine 40 and therefore cannot be acetylated at this position. No acetylated tubulin was detectable in these transformants using a monoclonal antibody specific for acetylated lysine 40. Surprisingly, mutants lacking detectable acetylated tubulin are indistinguishable from wild-type cells. Thus, acetylation of alpha- tubulin at lysine 40 is non-essential in Tetrahymena. In addition, isoelectric focusing gel analysis of axonemal tubulin from cells unable to acetylate alpha-tubulin leads us to conclude that: (a) most or all ciliary alpha-tubulin is acetylated, (b) other lysines cannot be acetylated to compensate for loss of acetylation at lysine 40, and (c) acetylated alpha-tubulin molecules in wild-type cells contain one or more additional charge-altering modifications. PMID:7775576

  4. Oral Administration of N-Acetyl-D-Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2007-03-01

    AD_________________ Award Number: DAMD17-03-1-0004 TITLE: Oral Administration of N- Acetyl -D...Oral Administration of N- Acetyl -D-Glucosamine Polymer Particles Down-Regulates 5a. CONTRACT NUMBER Airway Allergic Responses...TERMS Childhood asthma, N- acetyl -D-glucosamine polymer, IL-12, GATA-3, T-bet, macrophages, airway hyperreactivity 16. SECURITY CLASSIFICATION OF

  5. Glucose-6-phosphate dehydrogenase deficiency and sulfadimidin acetylation phenotypes in Egyptian oases.

    PubMed

    Hussein, L; Yamamah, G; Saleh, A

    1992-04-01

    Screening of 1315 males from two Egyptian oases for glucose-6-phosphate dehydrogenase deficiency (G-6PD) found an incidence of 5.9%. The rate of acetylation of sulfadimidin was also studied, and a bimodal distribution was found with 73% rapid acetylators. There is a correlation between high frequency of G-6PD deficiency and high frequency of slow acetylation rate.

  6. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    NASA Astrophysics Data System (ADS)

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  7. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    PubMed Central

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-01-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water. PMID:26394759

  8. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.

    PubMed

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-23

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  9. Beneficial Effects of Small Molecule Oligopeptides Isolated from Panax ginseng Meyer on Pancreatic Beta-Cell Dysfunction and Death in Diabetic Rats.

    PubMed

    Xu, Meihong; Sun, Bin; Li, Di; Mao, Ruixue; Li, Hui; Li, Yong; Wang, Junbo

    2017-09-26

    To determine whether treatment with ginseng oligopeptides (GOPs) could modulate hyperglycemia related to type 2 diabetes mellitus (T2DM) in rats induced by high-fat diet and low doses of alloxan, type 2 diabetes was induced in male Sprague-Dawley (SD) rats by injecting them once with 105 mg/kg alloxan and feeding them high-carbohydrate/high-fat diet with or without GOP administration (0.125, 0.5, and 2.0 g/kg Body Weight) for 7, 24, and 52 weeks. Oral glucose test tolerance (OGTT), plasma glucose, serum insulin, level of antioxidant, and beta cell function were measured. Morphological observation and immunohistochemistry study of insulin of islets was performed by light microscopy. The insulin level and the expression of NF-κB and Bcl-2 family in pancreatic islets were also detected by Western blot analysis. In addition, survival time and survival rate were observed. After the treatment, the abnormal OGTT were partially reversed by GOPs treatment in diabetic rats. The efficacy of GOPs was manifested in the amelioration of pancreatic damage, as determined by microscopy analysis. Moreover, GOPs treatment increased the normal insulin content and decreased the expression of the NF-κB-signaling pathway. Compared with those in the control model, the survival time and rate were significantly longer. It is suggested that GOPs exhibit auxiliary therapeutic potential for diabetes.

  10. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions.

    PubMed

    Kuroda, K; Shibasaki, S; Ueda, M; Tanaka, A

    2001-12-01

    A histidine oligopeptide (hexa-His) with the ability to chelate divalent heavy metal ions was displayed on the yeast cell surface for the purpose of enhanced adsorption of heavy metal ions. We genetically fused a hexa-His-encoding gene with the gene encoding the C-terminal half of alpha-agglutinin that includes a glycosylphosphatidylinositol anchor attachment signal sequence and attached the hexa-His peptide on the cell wall of Saccharomyces cerevisiae. This surface-engineered yeast adsorbed three to eight times more copper ions than the parent strain and was more resistant to copper (4 mM) than the parent (below 1 mM at pH 7.8). It was possible to recover about a half of the copper ions adsorbed by whole cells with EDTA treatment without disintegrating the cells. Thus, we succeeded in constructing a novel yeast cell with both tolerance to toxic contaminants and enhanced adsorption of metal ions onto the cell surface.

  11. Molecular cloning, distribution and ontogenetic expression of the oligopeptide transporter PepT1 mRNA in Tibetan suckling piglets.

    PubMed

    Wang, Wence; Shi, Changyou; Zhang, Jianshe; Gu, Wanting; Li, Tiejun; Gen, Meimei; Chu, Wuying; Huang, Ruilin; Liu, Yulan; Hou, Yongqing; Li, Peng; Yin, Yulong

    2009-10-01

    The gene encoding the oligopeptide transporter PepT1 (HGMW-approved gene symbol SLC15A1) from Tibetan porcine intestine was cloned. The open reading frame of this cDNA encodes 708 deduced amino acid residues that show high sequence similarity with its ovine and bovine counterparts. The putative protein has 12 putative transmembrane domains, including many structural features that are highly conserved among the vertebrate orthologs. PepT1 mRNA expression can be detected in duodenum, jejunum and ileum from Tibetan pigs at 28 days by RT-PCR. Real-time PCR analysis indicated that the jejunum had the highest expression of PepT1 when compared with the duodenum and ileum. PepT1 mRNA expression in the duodenum and proximal jejunum increases continuously from day 1 to day 14: expression was highest at day14 (P < 0.01) and then decreased gradually from day 21 to day 35. Our findings show that PepT1 mRNA expression in the distal jejunum increased gradually with age in suckling Tibetan piglet, and this may have important implications for amino acid and protein nutrition in young animals.

  12. The effects of synthetic oligopeptide derived from enamel matrix derivative on cell proliferation and osteoblastic differentiation of human mesenchymal stem cells.

    PubMed

    Katayama, Nobuhito; Kato, Hirohito; Taguchi, Yoichiro; Tanaka, Akio; Umeda, Makoto

    2014-08-13

    Enamel matrix derivative (EMD) is widely used in periodontal tissue regeneration therapy. However, because the bioactivity of EMD varies from batch to batch, and the use of a synthetic peptide could avoid use from an animal source, a completely synthetic peptide (SP) containing the active component of EMD would be useful. In this study an oligopeptide synthesized derived from EMD was evaluated for whether it contributes to periodontal tissue regeneration. We investigated the effects of the SP on cell proliferation and osteoblast differentiation of human mesenchymal stem cells (MSCs), which are involved in tissue regeneration. MSCs were treated with SP (0 to 1000 ng/mL), to determine the optimal concentration. We examined the effects of SP on cell proliferation and osteoblastic differentiation indicators such as alkaline phosphatase activity, the production of procollagen type 1 C-peptide and osteocalcin, and on mineralization. Additionally, we investigated the role of extracellular signal-related kinases (ERK) in cell proliferation and osteoblastic differentiation induced by SP. Our results suggest that SP promotes these processes in human MSCs, and that ERK inhibitors suppress these effects. In conclusion, SP promotes cell proliferation and osteoblastic differentiation of human MSCs, probably through the ERK pathway.

  13. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  14. Quantifying errors without random sampling.

    PubMed

    Phillips, Carl V; LaPole, Luwanna M

    2003-06-12

    All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling, error is almost never quantified and results are often reported in ways that dramatically overstate their precision. We argue that the precision implicit in typical reporting is problematic and sketch methods for quantifying the various sources of error, building up from simple examples that can be solved analytically to more complex cases. There are straightforward ways to partially quantify the uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting reported significant figures. We present simple methods for doing such quantifications, and for incorporating them into calculations. More complicated methods become necessary when multiple sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using available software, can estimate the uncertainty resulting from complicated calculations with many sources of uncertainty. We apply the method to the current estimate of the annual incidence of foodborne illness in the United States. Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty would more honestly represent study results, help show the probability that estimated values fall within some critical range, and facilitate better targeting of further research.

  15. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  16. Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis.

    PubMed

    Xie, Longxiang; Wang, Xiaobo; Zeng, Jie; Zhou, Mingliang; Duan, Xiangke; Li, Qiming; Zhang, Zhen; Luo, Hongping; Pang, Lei; Li, Wu; Liao, Guojian; Yu, Xia; Li, Yunxu; Huang, Hairong; Xie, Jianping

    2015-02-01

    N(ɛ)-Acetylation of lysine residues represents a pivotal post-translational modification used by both eukaryotes and prokaryotes to modulate diverse biological processes. Mycobacterium tuberculosis is the causative agent of tuberculosis, one of the most formidable public health threats. Many aspects of the biology of M. tuberculosis remain elusive, in particular the extent and function of N(ɛ)-lysine acetylation. With a combination of anti-acetyllysine antibody-based immunoaffinity enrichment with high-resolution mass spectrometry, we identified 1128 acetylation sites on 658 acetylated M. tuberculosis proteins. GO analysis of the acetylome showed that acetylated proteins are involved in the regulation of diverse cellular processes including metabolism and protein synthesis. Six types of acetylated peptide sequence motif were revealed from the acetylome. Twenty lysine-acetylated proteins showed homology with acetylated proteins previously identified from Escherichia coli, Salmonella enterica, Bacillus subtilis and Streptomyces roseosporus, with several acetylation sites highly conserved among four or five bacteria, suggesting that acetylated proteins are more conserved. Notably, several proteins including isocitrate lyase involved in the persistence, virulence and antibiotic resistance are acetylated, and site-directed mutagenesis of isocitrate lyase acetylation site to glutamine led to a decrease of the enzyme activity, indicating major roles of KAc in these proteins engaged cellular processes. Our data firstly provides a global survey of M. tuberculosis acetylation, and implicates extensive regulatory role of acetylation in this pathogen. This may serve as an important basis to address the roles of lysine acetylation in M. tuberculosis metabolism, persistence and virulence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties.

    PubMed

    Orfila, Caroline; Dal Degan, Florence; Jørgensen, Bodil; Scheller, Henrik Vibe; Ray, Peter M; Ulvskov, Peter

    2012-07-01

    A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.

  18. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    PubMed Central

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  19. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation.

    PubMed

    Bailey, Zachary S; Grinter, Michael B; VandeVord, Pamela J

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  20. Quantifying the uncertainty in heritability.

    PubMed

    Furlotte, Nicholas A; Heckerman, David; Lippert, Christoph

    2014-05-01

    The use of mixed models to determine narrow-sense heritability and related quantities such as SNP heritability has received much recent attention. Less attention has been paid to the inherent variability in these estimates. One approach for quantifying variability in estimates of heritability is a frequentist approach, in which heritability is estimated using maximum likelihood and its variance is quantified through an asymptotic normal approximation. An alternative approach is to quantify the uncertainty in heritability through its Bayesian posterior distribution. In this paper, we develop the latter approach, make it computationally efficient and compare it to the frequentist approach. We show theoretically that, for a sufficiently large sample size and intermediate values of heritability, the two approaches provide similar results. Using the Atherosclerosis Risk in Communities cohort, we show empirically that the two approaches can give different results and that the variance/uncertainty can remain large.

  1. Quantifying forces in cell biology.

    PubMed

    Roca-Cusachs, Pere; Conte, Vito; Trepat, Xavier

    2017-07-01

    Cells exert, sense, and respond to physical forces through an astounding diversity of mechanisms. Here we review recently developed tools to quantify the forces generated by cells. We first review technologies based on sensors of known or assumed mechanical properties, and discuss their applicability and limitations. We then proceed to draw an analogy between these human-made sensors and force sensing in the cell. As mechanics is increasingly revealed to play a fundamental role in cell function we envisage that tools to quantify physical forces may soon become widely applied in life-sciences laboratories.

  2. Multiple Mass Isotopomer Tracing of Acetyl-CoA Metabolism in Langendorff-perfused Rat Hearts

    PubMed Central

    Li, Qingling; Deng, Shuang; Ibarra, Rafael A.; Anderson, Vernon E.; Brunengraber, Henri; Zhang, Guo-Fang

    2015-01-01

    We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA. PMID:25645937

  3. αTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities

    PubMed Central

    Ly, Nathalie; Elkhatib, Nadia; Bresteau, Enzo; Piétrement, Olivier; Khaled, Mehdi; Magiera, Maria M.; Janke, Carsten; Le Cam, Eric; Rutenberg, Andrew D.; Montagnac, Guillaume

    2016-01-01

    Acetylation of the lysine 40 of α-tubulin (K40) is a post-translational modification occurring in the lumen of microtubules (MTs) and is controlled by the α-tubulin acetyl-transferase αTAT1. How αTAT1 accesses the lumen and acetylates α-tubulin there has been an open question. Here, we report that acetylation starts at open ends of MTs and progressively spreads longitudinally from there. We observed acetylation marks at the open ends of in vivo MTs re-growing after a Nocodazole block, and acetylated segments growing in length with time. Bias for MTs extremities was even more pronounced when using non-dynamic MTs extracted from HeLa cells. In contrast, K40 acetylation was mostly uniform along the length of MTs reconstituted from purified tubulin in vitro. Quantitative modelling of luminal diffusion of αTAT1 suggested that the uniform acetylation pattern observed in vitro is consistent with defects in the MT lattice providing lateral access to the lumen. Indeed, we observed that in vitro MTs are permeable to macromolecules along their shaft while cellular MTs are not. Our results demonstrate αTAT1 enters the lumen from open extremities and spreads K40 acetylation marks longitudinally along cellular MTs. This mode of tip-directed microtubule acetylation may allow for selective acetylation of subsets of microtubules. PMID:27752143

  4. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics.

    PubMed

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2013-04-09

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme-to-substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. This article is part of a Special Issue entitled: From protein structures to clinical applications.

  5. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics

    PubMed Central

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2014-01-01

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme to substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. PMID:23036725

  6. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    PubMed Central

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  7. Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton

    NASA Astrophysics Data System (ADS)

    Adebajo, Moses O.; Frost, Ray L.

    2004-01-01

    The acetylation of commercial cotton samples with acetic anhydride without solvents in the presence of about 5% 4-dimethylaminopyridine (DMAP) catalyst was followed using Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy. This preliminary investigation was conducted in an effort to develop hydrophobic, biodegradable, cellulosic materials for subsequent application in oil spill cleanup. The FTIR results provide clear evidence for successful acetylation though the NMR results indicate that the level of acetylation is low. Nevertheless, the overall results indicate that cotton fibres are potential candidates suitable for further development via acetylation into hydrophobic sorbent materials for subsequent oil spill cleanup application. The results also indicate that de-acetylation, the reverse of the equilibrium acetylation reaction, occurred when the acetylation reaction was prolonged beyond 3 h.

  8. [Effect of acetylation and oxidation on some properties of breadfruit (Artocarpus altilis) seed starch].

    PubMed

    Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny

    2007-09-01

    Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.

  9. N-Terminal Acetylation Acts as an Avidity Enhancer Within an Interconnected Multiprotein Complex

    SciTech Connect

    Scott, Daniel C.; Monda, Julie K.; Bennett, Eric J.; Harper, J. Wade; Schulman, Brenda A.

    2012-10-25

    Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.

  10. Metabolic actions of some sympathomimetic amines and their acetyl derivatives in the rabbit.

    PubMed

    Marvola, M

    1977-01-01

    To study how acetylation affects the activity of sympathomimetic amines the effects of tyramine, amphetamine, ephedrine, phenylephrine, orciprenaline and salbutamol and of their O- and N-acetyl derivatives on blood glucose and free fatty acid concentrations were studied in the rabbit. Hyperglycemia was induced by all parent compounds except amphetamine which tended to have a weak hypoglycaemic action. Hyperlipaemia in the doses used was induced by ephedrine and orciprenaline but not by the other parent compounds. Usually acetylation decreased the metabolic effects of the compounds but O-acetylation of tyramine and salbutamol caused hyperlipaemia and O-acetylation of ephedrine increased its fatty acid-mobilizing action, perhaps as a consequence of increased lipid solubility of the compounds. The ultimate effects of the O-acetyl derivatives were probably at least partly due to deacetylation at their sites of action. However O-acetylation of sympathomimetics could perhaps be used to induce drug latentiation.

  11. Flexibility of backbone fibrils in α-chitin crystals with different degree of acetylation.

    PubMed

    Yu, Zechuan; Lau, Denvid

    2017-10-15

    Acetyl groups are backbone outreaches that enhance inter-fibril connection in chitin and chitosan fibril bundle. Removal of acetyl groups affects flexibility of chitosan fibril bundle, thereby affecting mechanical strength of chitosan-based products. Understandings of relationship between degree of acetylation and flexibility of chitin fibril bundle conduce to optimization of synthetic chitin materials. Here, the relationship is examined by performing molecular dynamics simulations. Coiling of chitin and chitosan fibril bundle with different degree of acetylation is observed and flexibility of fibrils is measured. Number and alignment of acetyl groups are found to be important factors determining the flexibility of chitin and chitosan fibril bundle. Structural instability can be caused by incompatible alignment of acetyl groups. Our findings on synthetic chitin-based materials indicate that adding a small amount of acetyl groups to chitosan can significantly enhance the integrity of fibril bundle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Structures of aminoacylase 3 in complex with acetylated substrates

    PubMed Central

    Hsieh, Jennifer M.; Tsirulnikov, Kirill; Sawaya, Michael R.; Magilnick, Nathaniel; Abuladze, Natalia; Kurtz, Ira; Abramson, Jeff; Pushkin, Alexander

    2010-01-01

    Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-l-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: Nα-acetyl-l-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates. PMID:20921362

  13. Structures of aminoacylase 3 in complex with acetylated substrates.

    PubMed

    Hsieh, Jennifer M; Tsirulnikov, Kirill; Sawaya, Michael R; Magilnick, Nathaniel; Abuladze, Natalia; Kurtz, Ira; Abramson, Jeff; Pushkin, Alexander

    2010-10-19

    Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-L-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: N(α)-acetyl-L-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates.

  14. Acetyl-L-carnitine improves aged brain function.

    PubMed

    Kobayashi, Satoru; Iwamoto, Machiko; Kon, Kazuo; Waki, Hatsue; Ando, Susumu; Tanaka, Yasukazu

    2010-07-01

    The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.

  15. Acetylated tubulin is essential for touch sensation in mice.

    PubMed

    Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A

    2016-12-13

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.

  16. Visualizing and quantifying Fusarium oxysporum in the plant host.

    PubMed

    Diener, Andrew

    2012-12-01

    Host-specific forms of Fusarium oxysporum infect the roots of numerous plant species. I present a novel application of familiar methodology to visualize and quantify F. oxysporum in roots. Infection in the roots of Arabidopsis thaliana, tomato, and cotton was detected with colorimetric reagents that are substrates for Fusarium spp.-derived arabinofuranosidase and N-acetyl-glucosaminidase activities and without the need for genetic modification of either plant host or fungal pathogen. Similar patterns of blue precipitation were produced by treatment with 5-bromo-4-chloro-3-indoxyl-α-l-arabinofuranoside and 5-bromo-4-chloro-3-indoxyl-2-acetamido-2-deoxy-β-d-glucopyranoside, and these patterns were consistent with prior histological descriptions of F. oxysporum in roots. Infection was quantified in roots of wild-type and mutant Arabidopsis using 4-nitrophenyl-α-l-arabinofuranoside. In keeping with an expectation that disease severity above ground is correlated with F. oxysporum infection below ground, elevated levels of arabinofuranosidase activity were measured in the roots of susceptible agb1 and rfo1 while a reduced level was detected in the resistant eir1. In contrast, disease severity and F. oxysporum infection were uncoupled in tir3. The distribution of staining patterns in roots suggests that AGB1 and RFO1 restrict colonization of the vascular cylinder by F. oxysporum whereas EIR1 promotes colonization of root apices.

  17. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  18. Acetyl-coenzyme A deacylase activity in liver is not an artifact. Subcellular distribution and substrate specificity of acetyl-coenzyme A deacylase activities in rat liver

    PubMed Central

    Grigat, Klaus-P.; Koppe, Klaus; Seufert, Claus-D.; Söling, Hans-D

    1979-01-01

    Whole liver and isolated liver mitochondria are able to release free acetate, especially under conditions of increased fatty acid oxidation. In the present paper it is shown that rat liver contains acetyl-CoA deacylase (EC 3.1.2.1) activity (0.72μmol/min per g wet wt. of liver at 30°C and 0.5mm-acetyl-CoA). At 0.5mm-acetyl-CoA 73% of total enzyme activity was found in the mitochondria, 8% in the lysosomal fraction and 19% in the postmicrosomal supernatant. Mitochondrial subfractionation shows that mitochondrial acetyl-CoA deacylase activity is restricted to the matrix space. Mitochondrial acetyl-CoA deacylase showed almost no activity with either butyryl- or hexanoyl-CoA. Acetyl-CoA hydrolase activity from purified rat liver lysosomes exhibited a very low affinity for acetyl-CoA (apparent Km>15mm compared with an apparent Km value of 0.5mm for the mitochondrial enzyme) and reacted at about the same rate with acetyl-, n-butyryl- and hexanoyl-CoA. We could not confirm the findings of Costa & Snoswell [(1975) Biochem. J. 152, 167–172] according to which mitochondrial acetyl-CoA deacylase was considered to be an artifact resulting from the combined actions of acetyl-CoA–l-carnitine acetyltransferase (EC 2.3.1.7) and acetylcarnitine hydrolase. The results are in line with the concept that free acetate released by the liver under physiological conditions stems from the intramitochondrial deacylation of acetyl-CoA. PMID:34392

  19. The p53-SET Interplays Reveal A New Mode of Acetylation-dependent Regulation

    PubMed Central

    Lasso, Gorka; Jiang, Le; Leng, Wenchuan; Zhu, Wei-Guo; Qin, Jun; Honig, Barry; Gu, Wei

    2016-01-01

    Summary Although lysine acetylation is now recognized as a general protein modification for both histones and non-histone proteins1-3, the mechanisms of acetylation mediated actions are not completely understood. Acetylation of the C-terminal domain (CTD) of p53 was the first example for non-histone protein acetylation4. Yet the precise role of the CTD acetylation remains elusive. Lysine acetylation often creates binding sites for bromodomain-containing “reader” proteins5,6; surprisingly, in a proteomic screen, we identified SET as a major cellular factor whose binding with p53 is totally dependent on the CTD acetylation status. SET profoundly inhibits p53 transcriptional activity in unstressed cells but SET-mediated repression is completely abolished by stress-induced p53 CTD acetylation. Moreover, loss of the interaction with SET activates p53, resulting in tumor regression in mouse xenograft models. Notably, the acidic domain of SET acts as a “reader” for unacetylated CTD of p53 and this mechanism of acetylation-dependent regulation is widespread in nature. For example, p53 acetylation also modulates its interactions with similar acidic domains found in other p53 regulators including VPRBP, DAXX and PELP1 (refs. 7-9), and computational analysis of the proteome identified numerous proteins with the potential to serve as the acidic domain readers and lysine-rich ligands. Unlike bromodomain readers, which preferentially bind the acetylated forms of their cognate ligands, the acidic domain readers specifically recognize the unacetylated forms of their ligands. Finally, the acetylation-dependent regulation of p53 was further validated in vivo by using a knockin mouse model expressing an acetylation-mimicking form of p53. These results reveal that the acidic domain-containing factors act as a new class of acetylation-dependent regulators by targeting p53 and potentially, beyond. PMID:27626385

  20. Acetylation modification regulates GRP78 secretion in colon cancer cells

    PubMed Central

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  1. Regulation of Histone Acetylation by Autophagy in Parkinson Disease.

    PubMed

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-02-12

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP(+))-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP(+)-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP(+)-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.

  2. Regulation of Histone Acetylation by Autophagy in Parkinson Disease*

    PubMed Central

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-01-01

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP+)-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP+-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP+-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis. PMID:26699403

  3. Modulation of histone acetylation by garlic sulfur compounds.

    PubMed

    Druesne-Pecollo, Nathalie; Latino-Martel, Paule

    2011-03-01

    Preclinical studies have shown that fresh garlic extracts, aged garlic, garlic oil and specific organosulfur compounds generated by processing garlic could alter carcinogen metabolism, inhibit tumor cell growth through induction of cell cycle arrest or apoptosis, or angiogenesis. In particular, recent studies have suggested that anticarcinogenic effects of certain garlic compounds may implicate at least in part a modulation of histone acetylation, a process involved in the regulation of gene expression, resulting from the inhibition of histone deacetylase activity. The aim of this review is to describe available data on sulfur compounds from garlic and histone acetylation and to discuss their potential for cancer prevention. Available data indicate that garlic compounds could inhibit histone deacetylase activity and induce histone hyperacetylation in vitro as well as in vivo. Sparse studies provide evidence of an involvement of histone acetylation in modulation of gene expression by diallyl disulfide and allyl mercaptan. These effects were observed at high concentrations. Further investigations are needed to determine if the HDAC inhibitory effects of garlic organosulfur compounds might play a role in primary cancer prevention at doses achievable by human diet.

  4. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    PubMed

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  5. Selected properties of acetylated adipate of retrograded starch.

    PubMed

    Zięba, T; Gryszkin, A; Kapelko, M

    2014-01-01

    Native potato starch (NS) and retrograded starch (R - obtained via freezing and defrosting of a starch paste) were used to prepare starch acetates: NS-A and R-A, and then acetylated distarch adipates: NS-ADA and R-ADA. The chemically-modified preparations produced from retrograded starch (R-A; R-ADA) were characterized by a higher degree of esterification compared to the modified preparations produced under the same conditions from native potato starch (NS-A; NS-ADA). Starch resistance to amylolysis was observed to increase (to 30-40 g/100 g) as a result of starch retrogradation and acetylation. Starch cross-linking had a significant impact on the increased viscosity of the paste in the entire course of pasting characteristics and on the increased values of rheological coefficients determined from the equations describing flow curves. The produced preparation of acetylated retrograded starch cross-linked with adipic acid (R-ADA) may be deemed an RS3/4 preparation to be used as a food thickening agent.

  6. Regulation of Acetyl Coenzyme A Synthetase in Escherichia coli

    PubMed Central

    Kumari, Suman; Beatty, Christine M.; Browning, Douglas F.; Busby, Stephen J. W.; Simel, Erica J.; Hovel-Miner, Galadriel; Wolfe, Alan J.

    2000-01-01

    Cells of Escherichia coli growing on sugars that result in catabolite repression or amino acids that feed into glycolysis undergo a metabolic switch associated with the production and utilization of acetate. As they divide exponentially, these cells excrete acetate via the phosphotransacetylase-acetate kinase pathway. As they begin the transition to stationary phase, they instead resorb acetate, activate it to acetyl coenzyme A (acetyl-CoA) by means of the enzyme acetyl-CoA synthetase (Acs) and utilize it to generate energy and biosynthetic components via the tricarboxylic acid cycle and the glyoxylate shunt, respectively. Here, we present evidence that this switch occurs primarily through the induction of acs and that the timing and magnitude of this induction depend, in part, on the direct action of the carbon regulator cyclic AMP receptor protein (CRP) and the oxygen regulator FNR. It also depends, probably indirectly, upon the glyoxylate shunt repressor IclR, its activator FadR, and many enzymes involved in acetate metabolism. On the basis of these results, we propose that cells induce acs, and thus their ability to assimilate acetate, in response to rising cyclic AMP levels, falling oxygen partial pressure, and the flux of carbon through acetate-associated pathways. PMID:10894724

  7. Carbon isotope fractionation and the acetyl-CoA pathway

    NASA Astrophysics Data System (ADS)

    Blaser, Martin; Conrad, Ralf

    2010-05-01

    Homoacetogenic bacteria can catalyze the reductive synthesis of acetate from CO2 via the acetyl-CoA pathway. Besides this unifying property homoacetogenic bacteria constitute a metabolically and phylogenetically diverse bacteriological group. Therefore their environmental role is difficult to address. It has been recognized that in methanogenic environments homoacetogenic bacteria contribute to the degradation of organic matter. The natural abundance of 13C may be used to understand the functional impact of homoacetogenic bacteria in the soil environment. To distinguish the acetyl-CoA pathway from other dominant processes, the isotopic composition of acetate and CO2 can be determined and the fractionation factors of the individual processes may be used to discriminate between the dominant pathways. To characterize the fractionation factor associated with the acetyl-CoA pathway the phylogenetic and metabolic diversity needs to be considered. Therefore the fractionation factor of substrate utilization and product formation of different homoacetogens (Acetobacterium woodii, Sporomusa ovata, Thermoanaerobacter kivui, Morella thermoautotrophica) has been studied under pure culture conditions in two defined minimal medium with H2/CO2 as sole source of carbon and energy. It became obvious that the cultivation conditions have a major impact on the obtained fractionation factors.

  8. Getting a Knack for NAC: N-Acetyl-Cysteine.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2011-01-01

    N-acetyl-cysteine, N-acetylcysteine, N-acetyl cysteine, and N-acetyl-L-cysteine are all designations for the same compound, which is abbreviated as NAC. NAC is a precursor to the amino acid cysteine, which ultimately plays two key metabolic roles. Through its metabolic contribution to glutathione production, cysteine participates in the general antioxidant activities of the body. Through its role as a modulator of the glutamatergic system, cysteine influences the reward-reinforcement pathway. Because of these functions, NAC may exert a therapeutic effect on psychiatric disorders allegedly related to oxidative stress (e.g., schizophrenia, bipolar disorder) as well as psychiatric syndromes characterized by impulsive/compulsive symptoms (e.g., trichotillomania, pathological nail biting, gambling, substance misuse). While the dosages, pharmacological strategies (monotherapy versus augmentation), and long-term risks are not fully evident, NAC appears to be a promising, relatively low-risk intervention. If so, NAC might be an ideal treatment strategy for a variety of psychiatric conditions in both psychiatric and primary care settings.

  9. O-Acetyl Side-Chains in Monosaccharides: Redundant NMR Spin-Couplings and Statistical Models for Acetate Ester Conformational Analysis.

    PubMed

    Turney, Toby; Pan, Qingfeng; Sernau, Luke; Carmichael, Ian; Zhang, Wenhui; Wang, Xiaocong; Woods, Robert J; Serianni, Anthony S

    2017-01-12

    α- and β-d-glucopyranose monoacetates 1-3 were prepared with selective (13)C enrichment in the O-acetyl side-chain, and ensembles of (13)C-(1)H and (13)C-(13)C NMR spin-couplings (J-couplings) were measured involving the labeled carbons. Density functional theory (DFT) was applied to a set of model structures to determine which J-couplings are sensitive to rotation of the ester bond θ. Eight J-couplings ((1)JCC, (2)JCH, (2)JCC, (3)JCH, and (3)JCC) were found to be sensitive to θ, and four equations were parametrized to allow quantitative interpretations of experimental J-values. Inspection of J-coupling ensembles in 1-3 showed that O-acetyl side-chain conformation depends on molecular context, with flanking groups playing a dominant role in determining the properties of θ in solution. To quantify these effects, ensembles of J-couplings containing four values were used to determine the precision and accuracy of several 2-parameter statistical models of rotamer distributions across θ in 1-3. The statistical method used to generate these models has been encoded in a newly developed program, MA'AT, which is available for public use. These models were compared to O-acetyl side-chain behavior observed in a representative sample of crystal structures, and in molecular dynamics (MD) simulations of O-acetylated model structures. While the functional form of the model had little effect on the precision of the calculated mean of θ in 1-3, platykurtic models were found to give more precise estimates of the width of the distribution about the mean (expressed as circular standard deviations). Validation of these 2-parameter models to interpret ensembles of redundant J-couplings using the O-acetyl system as a test case enables future extension of the approach to other flexible elements in saccharides, such as glycosidic linkage conformation.

  10. Effects of fasting and refeeding on gene expression of slc15a1a, a gene encoding an oligopeptide transporter (PepT1), in the intestine of Mozambique tilapia.

    PubMed

    Orozco, Zenith Gaye A; Soma, Satoshi; Kaneko, Toyoji; Watanabe, Soichi

    2017-01-01

    The tissue distribution of slc15a1a, a gene that encodes an oligopeptide transporter, PepT1, and its response to fasting and refeeding were investigated in the intestinal epithelium of Mozambique tilapia for a better understanding of its role on nutrient absorption. The slc15a1a was predominantly expressed in the absorptive epithelia of the anterior part of the intestine, suggesting that digested oligopeptides are primarily absorbed in the anterior intestine. The response of slc15a1a to fasting was evaluated at 1, 2, 4, 7 and 14days after the last feeding. Fasting revealed a biphasic effect, where short-term fasting significantly upregulated slc15a1a expression and long-term fasting resulted in downregulation. The expression level continued to decrease and fell below the pre-fasted level from day 4 to 14. Proximal (the hepatic loop, HL) and distal parts (the proximal major coil, PMC) of the anterior intestine showed different magnitudes of responses to fasting; slc15a1a expression in the PMC showed greater upregulation and downregulation than that in the HL. Refeeding significantly stimulated slc15a1a expression at day 3, although the expression did not exceed the pre-fasted level. Observed responses of slc15a1a to fasting and refeeding suggest that the expression level of this gene can serve as a sensitive indicator of the changes that may occur in altering nutritional conditions. These findings contribute to a better understanding of the role of PepT1 in nutrition and of the complex mechanisms underlying the absorption of oligopeptides and amino acids in the intestine, and may lead to development of possible means to manipulate the absorption processes for the improvement of growth and other metabolic and physiological conditions in fish. Copyright © 2016. Published by Elsevier Inc.

  11. Fusion of an Oligopeptide to the N Terminus of an Alkaline α-Amylase from Alkalimonas amylolytica Simultaneously Improves the Enzyme's Catalytic Efficiency, Thermal Stability, and Resistance to Oxidation

    PubMed Central

    Yang, Haiquan; Lu, Xinyao; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R.; Du, Guocheng

    2013-01-01

    In this study, we constructed and expressed six fusion proteins composed of oligopeptides attached to the N terminus of the alkaline α-amylase (AmyK) from Alkalimonas amylolytica. The oligopeptides had various effects on the functional and structural characteristics of AmyK. AmyK-p1, the fusion protein containing peptide 1 (AEAEAKAKAEAEAKAK), exhibited improved specific activity, catalytic efficiency, alkaline stability, thermal stability, and oxidative stability compared with AmyK. Compared with AmyK, the specific activity and catalytic constant (kcat) of AmyK-p1 were increased by 4.1-fold and 3.5-fold, respectively. The following properties were also improved in AmyK-p1 compared with AmyK: kcat/Km increased from 1.8 liter/(g·min) to 9.7 liter/(g·min), stable pH range was extended from 7.0 to 11.0 to 7.0 to 12.0, optimal temperature increased from 50°C to 55°C, and the half-life at 60°C increased by ∼2-fold. Moreover, AmyK-p1 showed improved resistance to oxidation and retained 54% of its activity after incubation with H2O2, compared with 20% activity retained by AmyK. Finally, AmyK-p1 was more compatible than AmyK with the commercial solid detergents tested. The mechanisms responsible for these changes were analyzed by comparing the three-dimensional (3-D) structural models of AmyK and AmyK-p1. The significantly enhanced catalytic efficiency and stability of AmyK-p1 suggests its potential as a detergent ingredient. In addition, the oligopeptide fusion strategy described here may be useful for improving the catalytic efficiency and stability of other industrial enzymes. PMID:23455344

  12. Probing the dynamic reversibility and generation of dynamic combinatorial libraries in the presence of bacterial model oligopeptides as templating guests of tetra-carbohydrazide macrocycles using electrospray mass spectrometry.

    PubMed

    Nour, Hany F; Islam, Tuhidul; Fernández-Lahore, Marcelo; Kuhnert, Nikolai

    2012-12-30

    Over the past few decades, bacterial resistance to antibiotics has emerged as a real threat to human health. Accordingly, there is an urgent demand for the development of innovative strategies for discovering new antibiotics. We present the first use of tetra-carbohydrazide cyclophane macrocycles in dynamic combinatorial chemistry (DCC) and molecular recognition as chiral hosts binding oligopeptides, which mimic bacterial cell wall. This study introduces an innovative application of electrospray ionisation time-of-flight mass spectrometry (ESI-TOF MS) to oligopeptides recognition using DCC. A small dynamic library composed of eight functionalised macrocycles has been generated in solution and all members were characterised by ESI-TOF MS. We also probed the dynamic reversibility and mechanism of formation of tetra-carbohydrazide cyclophanes in real-time using ESI-TOF MS. Dynamic reversibility of tetra-carbohydrazide cyclophanes is favored under thermodynamic control. The mechanism of formation of tetra-carbohydrazide cyclophanes involves key dialdehyde intermediates, which have been detected and assigned according to their high-resolution m/z values. Three members of the dynamic library bind efficiently in the gas phase to a selection of oligopeptides, unique to bacteria, allowing observation of host/guest complex ions in the gas phase. We probed the mechanism of the [2+2]-cyclocondensation reaction forming library members, proved dynamic reversibility of tetra-carbohydrazide cyclophanes and showed that complex ions formed between library members and hosts can be observed in the gas phase, allowing the solution of an important problem of biological interest. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    SciTech Connect

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  14. The proton-coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5-aminolevulinic acid.

    PubMed

    Xie, Yehua; Hu, Yongjun; Smith, David E

    2016-01-01

    5-Aminolevulinic acid (5-ALA) has been widely used in photodynamic therapy and immunofluorescence of tumours. In the present study, the intestinal permeability and oral pharmacokinetics of 5-ALA were evaluated to probe the contribution of the proton-coupled oligopeptide transporter 1 (PEPT1) to the oral absorption and systemic exposure of this substrate. In situ single-pass intestinal perfusions and in vivo oral pharmacokinetic studies were performed in wildtype and Pept1 knockout mice. Perfusion studies were performed as a function of concentration dependence, specificity and permeability of 5-ALA in different intestinal segments. Pharmacokinetic studies were performed after 0.2 and 2.0 μmoL·g(-1) doses of 5-ALA. The permeability of 5-ALA was substantial in duodenal, jejunal and ileal regions of wildtype mice, but the residual permeability of 5-ALA in the small intestine from Pept1 knockout mice was only about 10% of that in wildtype animals. The permeability of 5-ALA in jejunum was specific for PEPT1 with no apparent contribution of other transporters, including the proton-coupled amino acid transporter 1 (PAT1). After oral dosing, the systemic exposure of 5-ALA was reduced by about twofold during PEPT1 ablation, and the pharmacokinetics were dose-proportional after the 0.2 and 2.0 µmol·g(-1) doses. PEPT1 had a minor effect on the disposition and peripheral tissue distribution of 5-ALA. Our findings suggested a major role of PEPT1 in the intestinal permeability and oral absorption of 5-ALA. In contrast, another proton-coupled transporter, PAT1, appeared to play a limited role, at best. © 2015 The British Pharmacological Society.

  15. The multicopy sRNA LhrC controls expression of the oligopeptide-binding protein OppA in Listeria monocytogenes

    PubMed Central

    Sievers, Susanne; Lund, Anja; Menendez-Gil, Pilar; Nielsen, Aaraby; Storm Mollerup, Maria; Lambert Nielsen, Stine; Buch Larsson, Pernille; Borch-Jensen, Jonas; Johansson, Jörgen; Kallipolitis, Birgitte Haahr

    2015-01-01

    Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. During infection, L. monocytogenes produces an array of non-coding RNAs, including the multicopy sRNA LhrC. These five, nearly identical sRNAs are highly induced in response to cell envelope stress and target the virulence adhesin lapB at the post-transcriptional level. Here, we demonstrate that LhrC controls expression of additional genes encoding cell envelope-associated proteins with virulence function. Using transcriptomics and proteomics, we identified a set of genes affected by LhrC in response to cell envelope stress. Three targets were significantly down-regulated by LhrC at both the RNA and protein level: lmo2349, tcsA and oppA. All three genes encode membrane-associated proteins: A putative substrate binding protein of an amino acid ABC transporter (Lmo2349); the CD4+ T cell-stimulating antigen TcsA, and the oligopeptide binding protein OppA, of which the latter 2 are required for full virulence of L. monocytogenes. For OppA, we show that LhrC acts by direct base paring to the ribosome binding site of the oppA mRNA, leading to an impediment of its translation and a decreased mRNA level. The sRNA-mRNA interaction depends on 2 of 3 CU-rich regions in LhrC allowing binding of 2 oppA mRNAs to a single LhrC molecule. Finally, we found that LhrC contributes to infection in macrophage-like cells. These findings demonstrate a central role for LhrC in controlling the level of OppA and other virulence-associated cell envelope proteins in response to cell envelope stress. PMID:26176322

  16. Expression of proton-coupled oligopeptide transporter (POTs) in prostate of mice and patients with benign prostatic hyperplasia (BPH) and prostate cancer (PCa).

    PubMed

    Sun, Dongli; Tan, Fuqing; Fang, Danbo; Wang, Yuqing; Zeng, Su; Jiang, Huidi

    2013-02-15

    Proton-coupled oligopeptide transporters (POTs) serve as integral membrane protein for the cellular uptake of di/tripeptide. Prostate has a large requirement of nutriment for its function to produce and secrete prostatic fluid. Besides, prostate suffered from limited therapy effect of drug treatment. Thus present study was performed to evaluate the expression of POTs in prostate of mice and human with the aim to provide information for potential role of POTs in absorption of nutriment and peptidomimetic drugs in prostate. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot methods were applied to study the mRNA, protein expression of POTs in prostate, human prostate cancer cells (PC-3), and human prostate epithelial cells (RWPE-1). qRT-PCR study showed different characteristic of POTs mRNA expression in mouse prostate. Among these transporters, protein expression of PepT2 was detected and increasing during the development of mouse prostate, while PepT1, PHT1, and PHT2 protein was not detected. Furthermore, different characteristic of regulation by inflammation on POTs mRNA expression was found in RWPE-1 and PC-3. In addition, mRNA expression of PepT2 and PHT1 in prostate of patients with PCa was demonstrated be lower compared with BPH. These findings provide the first evidence for the expression of POTs in prostate of mice and patients with BPH or PCa and suggest that POTs are likely to play a role in the transport of di/tripeptides and peptidomimetics in prostate. Copyright © 2012 Wiley Periodicals, Inc.

  17. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion.

    PubMed

    He, Li-Xia; Ren, Jin-Wei; Liu, Rui; Chen, Qi-He; Zhao, Jian; Wu, Xin; Zhang, Zhao-Feng; Wang, Jun-Bo; Pettinato, Giuseppe; Li, Yong

    2017-09-06

    Traditionally used as a restorative medicine, ginseng (Panax ginseng Meyer) has been the most widely used and acclaimed herb in Chinese communities for thousands of years. To investigate the immune-modulating activity of ginseng oligopeptides (GOP), 420 healthy female BALB/c mice were intragastrically administered distilled water (control), whey protein (0.15 g per kg body weight (BW)), and GOP 0.0375, 0.075, 0.15, 0.3 and 0.6 g per kg BW for 30 days. Blood samples from mice were collected from the ophthalmic venous plexus and then sacrificed by cervical dislocation. Seven assays were conducted to determine the immunomodulatory effects of GOP on innate and adaptive immune responses, followed by flow cytometry to investigate spleen T lymphocyte sub-populations, multiplex sandwich immunoassays to investigate serum cytokine and immunoglobulin levels, and ELISA to investigate intestinally secreted immunoglobulin to study the mechanism of GOP affecting the immune system. Our results showed that GOP was able to enhance innate and adaptive immune responses in mice by improving cell-mediated and humoral immunity, macrophage phagocytosis capacity and NK cell activity. Notably, the use of GOP revealed a better immune-modulating activity compared to whey protein. We conclude that the immune-modulating activity might be due to the increased macrophage phagocytosis capacity and NK cell activity, and the enhancement of T and Th cells, as well as IL-2, IL-6 and IL-12 secretion and IgA, IgG1 and IgG2b production. These results indicate that GOP could be considered a good candidate that may improve immune functions if used as a dietary supplement, with a dosage that ranges from 0.3 to 0.6 g per kg BW.

  18. Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+–oligopeptide transporter as a case study

    PubMed Central

    Romano, Alessandro; Barca, Amilcare; Storelli, Carlo; Verri, Tiziano

    2014-01-01

    Human genes for passive, ion-coupled transporters and exchangers are included in the so-called solute carrier (SLC) gene series, to date consisting of 52 families and 398 genes. Teleost fish genes for SLC proteins have also been described in the last two decades, and catalogued in preliminary SLC-like form in 50 families and at least 338 genes after systematic GenBank database mining (December 2010–March 2011). When the kinetic properties of the expressed proteins are studied in detail, teleost fish SLC transporters always reveal extraordinary ‘molecular diversity’ with respect to the mammalian counterparts, which reflects peculiar adaptation of the protein to the physiology of the species and/or to the environment where the species lives. In the case of the H+–oligopeptide transporter PEPT1(SLC15A1), comparative analysis of diverse teleost fish orthologs has shown that the protein may exhibit very eccentric properties in terms of pH dependence (e.g. the adaptation of zebrafish PEPT1 to alkaline pH), temperature dependence (e.g. the adaptation of icefish PEPT1 to sub-zero temperatures) and/or substrate specificity (e.g. the species-specificity of PEPT1 for the uptake of l-lysine-containing peptides). The revelation of such peculiarities is providing new contributions to the discussion on PEPT1 in both basic (e.g. molecular structure–function analyses) and applied research (e.g. optimizing diets to enhance growth of commercially valuable fish). PMID:23981715

  19. Chitosan/nHAC/PLGA microsphere vehicle for sustained release of rhBMP-2 and its derived synthetic oligopeptide for bone regeneration.

    PubMed

    Ji, Yanhui; Wang, Mingbo; Liu, Weiqiang; Chen, Changsheng; Cui, Wei; Sun, Tingfang; Feng, Qingling; Guo, Xiaodong

    2016-11-10

    Both of the osteogenic factor and the suitable delivery system in bone tissue engineering are essential for bone regeneration. In this study, we manufactured two kinds of composite vehicles for sustained release of rhBMP-2 and its derived synthetic oligopeptide (Peptide-24, abbreviated as P24) for osteogenesis and bone defect repair. The composite vehicle was based on cross-linked chitosan, nano-hydroxyapatite/collagen (nHAC), and poly (lactide-co-glycolide) acid microsphere. The physicochemical properties of the composite vehicles (abbreviated as CS/nHAC/PLGA-MS) were investigated. The rhBMP-2 and P24 release kinetics from the vehicles were examined and the secondary structure of rhBMP-2 and P24 after 28 days' release process was analyzed. In vitro cell proliferation, osteogenic differentiation and rat calvarial defect repair were evaluated. The results proved that the composite vehicle had favorable compressive strength, elastic modulus, the porosity, and the bulk density. The secondary structures of rhBMP-2 and P24 kept stability during microencapsulation and release process. P24 from the vehicle kept a geared-up release and rhBMP-2 from the vehicle kept a three-stage mode release process. The results of in vitro cell detection showed that the composite vehicle had good biocompatibility and osteoinduction. In vivo rat calvarial defect repair demonstrated that both groups of vehicles with rhBMP2 and P24 exhibited satisfied bone defect repair. This research showed that the composite vehicle could exhibit sustained release of osteogenic factors. CS/nHAC/PLGA-MS loading rhBMP-2 or P24 could be a novel and ideal scaffold for bone regeneration. This article is protected by copyright. All rights reserved.

  20. A novel pineal-specific product of the oligopeptide transporter PepT1 gene: circadian expression mediated by cAMP activation of an intronic promoter.

    PubMed

    Gaildrat, Pascaline; Møller, Morten; Mukda, Sujira; Humphries, Ann; Carter, David A; Ganapathy, Vadivel; Klein, David C

    2005-04-29

    The oligopeptide transporter 1, PepT1, is a member of the Slc15 family of 12 membrane-spanning domain transporters; PepT1 has proton/peptide cotransport activity and is selectively expressed in intestinal epithelial cells, where it is responsible for the nutritional absorption of di- and tri-peptides. Here, a novel PepT1 gene product has been identified in the rat pineal gland, termed pgPepT1. It encodes a 150-amino acid protein encompassing the C-terminal 3 membrane-spanning domains of intestinal PepT1 protein, with 3 additional N-terminal residues. Expression of pgPepT1 appears to be restricted to the pineal gland and follows a marked circadian pattern with >100-fold higher levels of mRNA occurring at night; this is accompanied by an accumulation of membrane-associated pgPepT1 protein ( approximately 16 kDa). The daily rhythm in pgPepT1 mRNA is regulated by the well described neural pathway that controls pineal melatonin production. This includes the retina, the circadian clock in the suprachiasmatic nucleus, central structures, and projections from the superior cervical ganglia; activation of this pathway results in the release of norepinephrine. Here it was found that pgPepT1 expression is mediated by a norepinephrine-->cyclic AMP mechanism that activates an alternative promoter located in intron 20 of the gene. pgPepT1 protein was found to have transporter-modulator activity; it could contribute to circadian changes in pineal function through this mechanism.

  1. Quantifying PV power Output Variability

    SciTech Connect

    Hoff, Thomas E.; Perez, Richard

    2010-10-15

    This paper presents a novel approach to rigorously quantify power Output Variability from a fleet of photovoltaic (PV) systems, ranging from a single central station to a set of distributed PV systems. The approach demonstrates that the relative power Output Variability for a fleet of identical PV systems (same size, orientation, and spacing) can be quantified by identifying the number of PV systems and their Dispersion Factor. The Dispersion Factor is a new variable that captures the relationship between PV Fleet configuration, Cloud Transit Speed, and the Time Interval over which variability is evaluated. Results indicate that Relative Output Variability: (1) equals the inverse of the square root of the number of systems for fully dispersed PV systems; and (2) could be further minimized for optimally-spaced PV systems. (author)

  2. Quantifying tumour heterogeneity with CT

    PubMed Central

    Miles, Kenneth A.

    2013-01-01

    Abstract Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response. PMID:23545171

  3. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo

    PubMed Central

    Gorsky, Marianna Karina; Burnouf, Sylvie; Dols, Jacqueline; Mandelkow, Eckhard; Partridge, Linda

    2016-01-01

    Dysfunction and accumulation of the microtubule-associated human Tau (hTau) protein into intraneuronal aggregates is observed in many neurodegenerative disorders including Alzheimer’s disease (AD). Reversible lysine acetylation has recently emerged as a post-translational modification that may play an important role in the modulation of hTau pathology. Acetylated hTau species have been observed within hTau aggregates in human AD brains and multi-acetylation of hTau in vitro regulates its propensity to aggregate. However, whether lysine acetylation at position 280 (K280) modulates hTau-induced toxicity in vivo is unknown. We generated new Drosophila transgenic models of hTau pathology to evaluate the contribution of K280 acetylation to hTau toxicity, by analysing the respective toxicity of pseudo-acetylated (K280Q) and pseudo-de-acetylated (K280R) mutant forms of hTau. We observed that mis-expression of pseudo-acetylated K280Q-hTau in the adult fly nervous system potently exacerbated fly locomotion defects and photoreceptor neurodegeneration. In addition, modulation of K280 influenced total hTau levels and phosphorylation without changing hTau solubility. Altogether, our results indicate that pseudo-acetylation of the single K280 residue is sufficient to exacerbate hTau neurotoxicity in vivo, suggesting that acetylated K280-hTau species contribute to the pathological events leading to neurodegeneration in AD. PMID:26940749

  4. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities.

    PubMed

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K

    2014-08-01

    Loss of Werner syndrome protein function causes Werner syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN's DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor HU. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency.

  5. Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite

    PubMed Central

    Cobbold, Simon A.; Santos, Joana M.; Ochoa, Alejandro; Perlman, David H.; Llinás, Manuel

    2016-01-01

    Lysine acetylation is a ubiquitous post-translational modification in many organisms including the malaria parasite Plasmodium falciparum, yet the full extent of acetylation across the parasite proteome remains unresolved. Moreover, the functional significance of acetylation or how specific acetyl-lysine sites are regulated is largely unknown. Here we report a seven-fold expansion of the known parasite ‘acetylome’, characterizing 2,876 acetylation sites on 1,146 proteins. We observe that lysine acetylation targets a diverse range of protein complexes and is particularly enriched within the Apicomplexan AP2 (ApiAP2) DNA-binding protein family. Using quantitative proteomics we determined that artificial perturbation of the acetate/acetyl-CoA balance alters the acetyl-lysine occupancy of several ApiAP2 DNA-binding proteins and related transcriptional proteins. This metabolic signaling could mediate significant downstream transcriptional responses, as we show that acetylation of an ApiAP2 DNA-binding domain ablates its DNA-binding propensity. Lastly, we investigated the acetyl-lysine targets of each class of lysine deacetylase in order to begin to explore how each class of enzyme contributes to regulating the P. falciparum acetylome. PMID:26813983

  6. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase.

    PubMed

    Aboalroub, Adam A; Bachman, Ashleigh B; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J; Gelis, Ioannis

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle.

  7. Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos.

    PubMed

    Kwon, Oh Kwang; Kim, Sunjoo; Lee, Sangkyu

    2016-12-01

    Lysine acetylation is an important post-translational modification (PTM). Since the development of MS-based proteomics technology, important roles of lysine acetylation beyond histones have focused on chromatin remodeling during the cell cycle and regulation of nuclear transport, metabolism, and translation. Zebrafish (Danio rerio) is a widely used vertebrate model in genetics and biologic studies. Although studies in several mammalian species have been performed, the mechanism of lysine acetylation in D. rerio embryos is incompletely understood. Here, we investigated the global acetylome in D. rerio embryos by using an MS-based proteomics approach. We identified 351 acetylated peptides and 377 nonredundant acetylation sites on 189 lysine-acetylated proteins in 5-day postfertilization (hpf) embryos of D. rerio. Among lysine-acetylated peptides, 40.2% indicated three motifs: (ac)KxxxK, (ac)KxxxxK, and Lx(ac)K. Of 190 acetylated proteins, 81 (42.6%) were mainly distributed in the cytoplasm. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that lysine acetylation in D. rerio was enriched in metabolic pathways. Additionally, 17 of 30 acetylated ribosomal proteins were evolutionarily conserved between zebrafish and humans. Our results indicate that acetyllysine might have regulatory effects on ribosomal proteins involved in protein biosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.

    PubMed

    Legartová, Soňa; Kozubek, Stanislav; Franek, Michal; Zdráhal, Zbyněk; Lochmanová, Gabriela; Martinet, Nadine; Bártová, Eva

    2014-04-01

    Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.

  9. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  10. Quantifying the quantumness of ensembles

    NASA Astrophysics Data System (ADS)

    Li, Nan; Luo, Shunlong; Mao, Yuanyuan

    2017-08-01

    We quantify the quantumness of quantum ensembles in terms of noncommutativity between pairs of the square root of the constituent states. We prove that this measure satisfies desirable and intuitive properties required naturally for a measure of quantumness, such as positivity, unitary invariance, subadditivity, concavity under probabilistic union, convexity under state decomposition, decreasing under coarse graining, and increasing under fine graining. Some applications and implications are indicated.

  11. Quantifying and measuring cyber resiliency

    NASA Astrophysics Data System (ADS)

    Cybenko, George

    2016-05-01

    Cyber resliency has become an increasingly attractive research and operational concept in cyber security. While several metrics have been proposed for quantifying cyber resiliency, a considerable gap remains between those metrics and operationally measurable and meaningful concepts that can be empirically determined in a scientific manner. This paper describes a concrete notion of cyber resiliency that can be tailored to meet specific needs of organizations that seek to introduce resiliency into their assessment of their cyber security posture.

  12. Role of Histone Acetylation in the Stimulatory Effect of Valproic Acid on Vascular Endothelial Tissue-Type Plasminogen Activator Expression

    PubMed Central

    Magnusson, Mia; Bergh, Niklas; Lunke, Sebastian; El-Osta, Assam; Medcalf, Robert L.; Svensson, Per-Arne; Karlsson, Lena; Jern, Sverker

    2012-01-01

    Aims Stimulated release of tissue-type plasminogen activator (t-PA) is pivotal for an intravascular fibrinolytic response and protects the circulation from occluding thrombosis. Hence, an impaired t-PA production is associated with increased risk for atherothrombotic events. A pharmacological means to stimulate the production of this enzyme may thus be desirable. We investigated if the anti-epileptic drug valproic acid (VPA) is capable of enhancing t-PA expression in vitro in vascular endothelial cells, and further examined if its histone deacetylase (HDAC)-inhibitory activity is of importance for regulating t-PA expression. Methods and Results Human endothelial cells were exposed to valproic acid and t-PA mRNA and protein levels were quantified. Potential changes in histone acetylation status globally and at the t-PA promoter were examined by western blot and chromatin immunoprecipitation. Valproic acid dose-dependently stimulated t-PA mRNA and protein expression in endothelial cells reaching a 2–4-fold increase at clinically relevant concentrations and 10-fold increase at maximal concentrations. Transcription profiling analysis revealed that t-PA is selectively targeted by this agent. Augmented histone acetylation was detected at the t-PA transcription start site, and an attenuated VPA-response was observed with siRNA knock of HDAC3, HDAC5 and HDAC7. Conclusions Valproic acid induces t-PA expression in cultured endothelial cells, and this is associated with increased histone acetylation at the t-PA promoter. Given the apparent potency of valproic acid in stimulating t-PA expression in vitro this substance may be a candidate for pharmacological modulation of endogenous fibrinolysis in man. PMID:22363677

  13. Simultaneous measurement of N-Acetyl-S-(2-cyanoethyl)-cysteine and N-acetyl-S-(2-hydroxyethyl)-cysteine in human urine by liquid chromatography-tandem mass spectrometry.

    PubMed

    Xiaotao, Zhang; Hongwei, Hou; Wei, Xiong; Qingyuan, Hu

    2014-08-01

    Acrylonitrile, possibly carcinogenic to humans, is mainly present in tobacco smoke and undergoes metabolism to form N-acetyl-S-(2-cyanoethyl)-cysteine (CEMA) and N-acetyl-S-(2-hydroxyethyl)-cysteine (HEMA). A method based on the direct dilution to simultaneously identify and quantify CEMA and HEMA in human urine by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry (RRLC-MS-MS) was validated for assessing smoking-related acrylonitrile exposure. The recovery rates of the whole analytical procedure were 98.2-106.0% and 97.1-112.7% for HEMA and CEMA, respectively. The linear range of standard solutions was 0.5-100.0 ng/mL for CEMA and was 0.2-40.0 ng/mL for HEMA. RRLC using a small particle size column was combined with a tandem mass spectrometry system, which lowered the detection limit of analytes, reduced the ion suppression of mass and shortened the analysis time. The proposed method was successfully applied for the analysis of 126 urine samples from smokers and nonsmokers.

  14. O-acetylated oligosaccharides from pectins of potato tuber cell walls.

    PubMed

    Ishii, T

    1997-04-01

    Acetylated trigalacturonides and rhamnogalacturonan I (RG-I)-derived oligosaccharides were isolated from a Driselase digest of potato tuber cell walls by ion-exchange and size-exclusion chromatography. The oligosaccharides were structurally characterized by fast atom bombardment-mass spectroscopy, nuclear magnetic resonance spectroscopy, and glycosyl-linkage composition analysis. One trigalacturonide contained a single acetyl group at O-3 of the reducing galacturonic acid residue. A second trigalacturonide contained two acetyl substituents, which were located on O-3 or O-4 of the nonreducing galacturonic acid residue and O-3 of the reducing galacturonic acid residue. RG-I backbone-derived oligomers had acetyl groups at O-2 of the galacturonic acid residues. Some of these galacturonic acid residues were O-acetylated at both O-2 and O-3 positions. Rhamnosyl residues of RG-I oligomers were not acetylated.

  15. O-acetylated oligosaccharides from pectins of potato tuber cell walls.

    PubMed Central

    Ishii, T

    1997-01-01

    Acetylated trigalacturonides and rhamnogalacturonan I (RG-I)-derived oligosaccharides were isolated from a Driselase digest of potato tuber cell walls by ion-exchange and size-exclusion chromatography. The oligosaccharides were structurally characterized by fast atom bombardment-mass spectroscopy, nuclear magnetic resonance spectroscopy, and glycosyl-linkage composition analysis. One trigalacturonide contained a single acetyl group at O-3 of the reducing galacturonic acid residue. A second trigalacturonide contained two acetyl substituents, which were located on O-3 or O-4 of the nonreducing galacturonic acid residue and O-3 of the reducing galacturonic acid residue. RG-I backbone-derived oligomers had acetyl groups at O-2 of the galacturonic acid residues. Some of these galacturonic acid residues were O-acetylated at both O-2 and O-3 positions. Rhamnosyl residues of RG-I oligomers were not acetylated. PMID:9112775

  16. In silico analysis of protein Lys-N𝜀-acetylation in plants

    PubMed Central

    Rao, R. Shyama Prasad; Thelen, Jay J.; Miernyk, Ján A.

    2014-01-01

    Among post-translational modifications, there are some conceptual similarities between Lys-N𝜀-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. The study of Lys-acetylation of plant proteins has lagged behind studies of mammalian and microbial cells; 1000s of acetylation sites have been identified in mammalian proteins compared with only hundreds of sites in plant proteins. While most previous emphasis was focused on post-translational modifications of histones, more recent studies have addressed metabolic regulation. Being directly coupled with cellular CoA/acetyl-CoA and NAD/NADH, reversible Lys-N𝜀-acetylation has the potential to control, or contribute to control, of primary metabolism, signaling, and growth and development. PMID:25136347

  17. ENL links histone acetylation to oncogenic gene expression in AML

    PubMed Central

    Wan, Liling; Wen, Hong; Li, Yuanyuan; Lyu, Jie; Xi, Yuanxin; Hoshii, Takayuki; Joseph, Julia; Wang, Xiaolu; Loh, Yong-Hwee E.; Erb, Michael A.; Souza, Amanda L.; Bradner, James E.; Shen, Li; Li, Wei; Li, Haitao; Allis, C. David; Armstrong, Scott A.; Shi, Xiaobing

    2017-01-01

    Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs1. Recognition of modified histones by “reader” proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of BET bromodomain inhibitors2, 3. We recently identified the YEATS domain as a novel acetyllysine-binding module4, yet its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralog AF9, is required for disease maintenance in acute myeloid leukaemia (AML). CRISPR-Cas9 mediated depletion of ENL led to anti-leukemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies and ChIP-seq analyses revealed that ENL binds to acetylated histone H3, and colocalizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemias. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced RNA polymerase II recruitment to ENL target genes, leading to suppression of oncogenic gene expression programs. Importantly, disruption of ENL’s functionality further sensitized leukaemia cells to BET inhibitors. Together, our study identifies ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in AML and suggests that displacement of ENL from chromatin may be a promising epigenetic therapy alone or in combination with BET inhibitors for AML. PMID:28241141

  18. Piperazine oxadiazole inhibitors of acetyl-CoA carboxylase.

    PubMed

    Bourbeau, Matthew P; Siegmund, Aaron; Allen, John G; Shu, Hong; Fotsch, Christopher; Bartberger, Michael D; Kim, Ki-Won; Komorowski, Renee; Graham, Melissa; Busby, James; Wang, Minghan; Meyer, James; Xu, Yang; Salyers, Kevin; Fielden, Mark; Véniant, Murielle M; Gu, Wei

    2013-12-27

    Acetyl-CoA carboxylase (ACC) is a target of interest for the treatment of metabolic syndrome. Starting from a biphenyloxadiazole screening hit, a series of piperazine oxadiazole ACC inhibitors was developed. Initial pharmacokinetic liabilities of the piperazine oxadiazoles were overcome by blocking predicted sites of metabolism, resulting in compounds with suitable properties for further in vivo studies. Compound 26 was shown to inhibit malonyl-CoA production in an in vivo pharmacodynamic assay and was advanced to a long-term efficacy study. Prolonged dosing with compound 26 resulted in impaired glucose tolerance in diet-induced obese (DIO) C57BL6 mice, an unexpected finding.

  19. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    PubMed Central

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  20. Transglutaminase 5 is acetylated at the N-terminal end.

    PubMed

    Rufini, A; Vilbois, F; Paradisi, A; Oddi, S; Tartaglione, R; Leta, A; Bagetta, G; Guerrieri, P; Finazzi-Agro', A; Melino, G; Candi, E

    2004-07-01

    Transglutaminases (TGases) are calcium-dependent enzymes that catalyse cross-linking between proteins by acyl transfer reaction; they are involved in many biological processes including coagulation, differentiation, and tissue repair. Transglutaminase 5 was originally cloned from keratinocytes, and a partial biochemical characterisation showed its involvement in skin differentiation, in parallel to TGase 1 and TGase 3. Here, we demonstrate, by electrospray tandem mass spectrometry that TGase 5 is acetylated at the N-terminal end. Moreover, in situ measurement of TGase activity shows that endogenous TGase 5 is active upon treatment with phorbol acetate, and the enzyme co-localises with vimentin intermediate filaments.

  1. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    SciTech Connect

    Saare, Mario; Rebane, Ana; Rajashekar, Balaji; Vilo, Jaak; Peterson, Paert

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  2. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling

    DTIC Science & Technology

    2007-07-01

    AD_________________ Award Number: W81XWH-04-1-0357 TITLE: Smad Acetylation : A New Level of...TYPE Annual Summary 3. DATES COVERED (From - To) 1 JUL 2004 - 30 JUN 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Smad Acetylation : A New...proposal suggests a series of experiments designed to study the acetylation of Smad proteins. We have determined that Smad2 can be efficiently

  3. Progressive mitochondrial protein lysine acetylation and heart failure in a model of Friedreich's ataxia cardiomyopathy.

    PubMed

    Stram, Amanda R; Wagner, Gregory R; Fogler, Brian D; Pride, P Melanie; Hirschey, Matthew D; Payne, R Mark

    2017-01-01

    The childhood heart disease of Friedreich's Ataxia (FRDA) is characterized by hypertrophy and failure. It is caused by loss of frataxin (FXN), a mitochondrial protein involved in energy homeostasis. FRDA model hearts have increased mitochondrial protein acetylation and impaired sirtuin 3 (SIRT3) deacetylase activity. Protein acetylation is an important regulator of cardiac metabolism and loss of SIRT3 increases susceptibility of the heart to stress-induced cardiac hypertrophy and ischemic injury. The underlying pathophysiology of heart failure in FRDA is unclear. The purpose of this study was to examine in detail the physiologic and acetylation changes of the heart that occur over time in a model of FRDA heart failure. We predicted that increased mitochondrial protein acetylation would be associated with a decrease in heart function in a model of FRDA. A conditional mouse model of FRDA cardiomyopathy with ablation of FXN (FXN KO) in the heart was compared to healthy controls at postnatal days 30, 45 and 65. We evaluated hearts using echocardiography, cardiac catheterization, histology, protein acetylation and expression. Acetylation was temporally progressive and paralleled evolution of heart failure in the FXN KO model. Increased acetylation preceded detectable abnormalities in cardiac function and progressed rapidly with age in the FXN KO mouse. Acetylation was also associated with cardiac fibrosis, mitochondrial damage, impaired fat metabolism, and diastolic and systolic dysfunction leading to heart failure. There was a strong inverse correlation between level of protein acetylation and heart function. These results demonstrate a close relationship between mitochondrial protein acetylation, physiologic dysfunction and metabolic disruption in FRDA hypertrophic cardiomyopathy and suggest that abnormal acetylation contributes to the pathophysiology of heart disease in FRDA. Mitochondrial protein acetylation may represent a therapeutic target for early intervention.

  4. A redox-sensitive, oligopeptide-guided, self-assembling, and efficiency-enhanced (ROSE) system for functional delivery of microRNA therapeutics for treatment of hepatocellular carcinoma.

    PubMed

    Hu, Qida; Wang, Kai; Sun, Xu; Li, Yang; Fu, Qihan; Liang, Tingbo; Tang, Guping

    2016-10-01

    Lack of efficient adjuvant therapy contributes to a high incidence of recurrence and metastasis of hepatocellular carcinoma (HCC). A novel therapeutic is required for adjuvant treatment of HCC. We developed a polymer-based nanosystem (ROSE) for functional gene therapy by synthesizing a supramolecular complex self-assembled from polycations and functional adamantyl modules. The ROSE system condensing tumor suppressor microRNA-34a (miR-34a) therapeutics becomes ROSE/miR-34a nanoparticles that could facilitate gene transfection in HCC cells with satisfied stability and efficiency, possibly due to proton sponge effect by polycations, PEGlyation protection, and controlled release by breakdown of disulfide bonds. Meanwhile, modification with a targeting oligopeptide SP94 in ROSE/miR-34a enables approximately higher affinity for LM3 HCC cells than hepatocytes in vitro and greater HCC specificity in vivo. Furthermore, ROSE/miR-34a nanoparticles significantly inhibits HCC cell proliferation and in vivo tumor growth, representing a notable effect improvement over conventional gene delivery strategies. ROSE/miR-34a, featuring redox-responsiveness, oligopeptide-guided specificity, self-assembly, and enhanced transfection, is therefore a potential therapeutic agent in future adjuvant therapy for HCC treatment.

  5. Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold

    SciTech Connect

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.

    2010-05-25

    Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T. maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.

  6. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin.

  7. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  8. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism.

    PubMed

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu; Zhang, Kezhong

    2015-12-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    PubMed Central

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  10. Functional Interplay between CBP and PCAF in Acetylation and Regulation of Transcription Factor KLF13 Activity

    PubMed Central

    Song, Chao-Zhong; Keller, Kimberly; Chen, Yangchao; Stamatoyannopoulos, George

    2010-01-01

    The transcriptional co-activators CBP/p300 and PCAF participate in transcriptional activation by many factors. We have shown that both CBP/p300 and PCAF stimulate the transcriptional activation by KLF13, a member of the KLF/Sp1 family, either individually or cooperatively. Here we further investigated how CBP and PCAF acetylation regulate KLF13 activity, and how these two co-activators functionally interplay in the regulation of KLF13 activity. We found that CBP and PCAF acetylated KLF13 at specific lysine residues in the zinc finger domain of KLF13. The acetylation by CBP, however, resulted in disruption of KLF13 DNA binding. Although the acetyltransferase activity of CBP is not required for stimulating the DNA binding activity of all of the transcription factors that we have examined, the disruption of factor DNA binding by CBP acetylation is factor-specific. We further showed that PCAF and CBP act synergistically and antagonistically to regulate KLF13 DNA binding depending on the status of acetylation. PCAF blocked CBP acetylation and disruption of KLF13 DNA binding. Conversely, acetylation of KLF13 by CBP prevented PCAF stimulation of KLF13 DNA binding. PCAF blocked CBP disruption of KLF13 DNA binding by preventing CBP acetylation of KLF13. These results demonstrate that acetylation by CBP has distinct effects on transcription factor DNA binding, and that CBP and PCAF regulate each other functionally in their regulation of transcription factor DNA binding. PMID:12758070

  11. Peptidoglycan O Acetylation and Autolysin Profile of Enterococcus faecalis in the Viable but Nonculturable State

    PubMed Central

    Pfeffer, John M.; Strating, Hendrik; Weadge, Joel T.; Clarke, Anthony J.

    2006-01-01

    The O acetylation of peptidoglycan occurs specifically at the C-6 hydroxyl group of muramoyl residues. Using a combination of high-performance liquid chromatography-based organic acid analysis and carbohydrate analysis by high-pH anion-exchange chromatography, we determined that strains of Entercoccus durans, E. faecalis, E. faecium, and E. hirae produce O-acetylated peptidoglycan. The levels of O acetylation ranged from 19% to 72% relative to the muramic acid content, and they were found to vary with the growth phase of the culture. Increases of 10 to 40% in O acetylation were observed with cultures entering the stationary phase. Cells of E. faecalis in the viable but nonculturable (VBNC) state had the highest levels of peptidoglycan O acetylation. The presence of this modification to peptidoglycan was shown to inhibit the action of hen egg white lysozyme in a concentration-dependent manner. Zymography using sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels containing either O-acetylated or chemically de-O-acetylated peptidoglycan was used to monitor the production of specific autolysins in E. faecalis. Differences in the expression of specific autolysins were observed with the age of the culture, and VBNC E. faecalis produced the highest levels of these enzymes. This technique also permitted classification of the enterococcal autolysins into enzymes that preferentially hydrolyze either O-acetylated or non-O-acetylated peptidoglycan and enzymes that show no apparent preference for either substrate type. PMID:16428393

  12. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea

    PubMed Central

    Lv, Binna; Yang, Qianqian; Li, Delong; Liang, Wenxing; Song, Limin

    2016-01-01

    Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in diverse cellular processes. Botrytis cinerea is the most thoroughly studied necrotrophic species due to its broad host range and huge economic impact. However, to date, little is known about the functions of lysine acetylation in this plant pathogen. In this study, we determined the lysine acetylome of B. cinerea through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Overall, 1582 lysine acetylation sites in 954 proteins were identified. Bioinformatics analysis shows that the acetylated proteins are involved in diverse biological functions and show multiple cellular localizations. Several particular amino acids preferred near acetylation sites, including KacY, KacH, Kac***R, KacF, FKac and Kac***K, were identified in this organism. Protein interaction network analysis demonstrates that a variety of interactions are modulated by protein acetylation. Interestingly, 6 proteins involved in virulence of B. cinerea, including 3 key components of the high-osmolarity glycerol pathway, were found to be acetylated, suggesting that lysine acetylation plays regulatory roles in pathogenesis. These data provides the first comprehensive view of the acetylome of B. cinerea and serves as a rich resource for functional analysis of lysine acetylation in this plant pathogen. PMID:27381557

  13. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members

    PubMed Central

    Hwang, Andrew W.; Trzeciakiewicz, Hanna; Friedmann, Dave; Yuan, Chao-Xing; Marmorstein, Ronen; Lee, Virginia M. Y.; Cohen, Todd J.

    2016-01-01

    Lysine acetylation has emerged as a dominant post-translational modification (PTM) regulating tau proteins in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule-binding region (MTBR), a region that is highly conserved among tau, MAP2, and MAP4 family members, implying that acetylation could represent a conserved regulatory mechanism for MAPs beyond tau. Here, we combined mass spectrometry, biochemical assays, and cell-based approaches to demonstrate that the tau family members MAP2 and MAP4 are also subject to reversible acetylation. We identify a cluster of lysines in the MAP2 and MAP4 MTBR that undergo CBP-catalyzed acetylation, many of which are conserved in tau. Similar to tau, MAP2 acetylation can occur in a cysteine-dependent auto-regulatory manner in the presence of acetyl-CoA. Furthermore, tubulin reduced MAP2 acetylation, suggesting tubulin binding dictates MAP acetylation status. Taken together, these results uncover a striking conservation of MAP2/Tau family post-translational modifications that could expand our understanding of the dynamic mechanisms regulating microtubules. PMID:28002468

  14. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism

    PubMed Central

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-01-01

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR–DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  15. Infectious Salmon Anemia Virus Specifically Binds to and Hydrolyzes 4-O-Acetylated Sialic Acids

    PubMed Central

    Hellebø, Audny; Vilas, Ulrike; Falk, Knut; Vlasak, Reinhard

    2004-01-01

    Infectious salmon anemia virus (ISAV) is the causative agent of infections in farmed Atlantic salmon. ISAV presumably represents a new genus within the Orthomyxoviridae. ISAV has been shown earlier to exhibit a receptor-destroying activity, which was defined as an acetylesterase with unknown specificity. We have analyzed the substrate specificity of the ISAV esterase in detail. Purified ISAV hydrolyzed free 5-N-acetyl-4-O-acetyl neuraminic acid. In addition, the purified 9-O-acetylated sialic acid derivative was also hydrolyzed, but at lower rates. When we used a glycosidically bound substrate, ISAV was unable to hydrolyze 9-O-acetylated sialic acid, which represents the major substrate for the influenza C virus esterase. ISAV completely de-O-acetylated glycoprotein-bound 5-N-acetyl-4-O-acetyl neuraminic acid. Thus, the enzymatic activity of the hemagglutinin-esterase of ISAV is comparable to that of the sialate-4-O-esterases of murine coronaviruses and related group 2 coronaviruses. In addition, we found that ISAV specifically binds to glycoproteins containing 4-O-acetylated sialic acids. Both the ISAV esterase and recombinant rat coronavirus esterase specific for 4-O-acetylated sialic acids hydrolyzed ISAV receptors on horse and rabbit erythrocytes, indicating that this sialic acid represents a receptor determinant for ISAV. PMID:14990724

  16. First Comprehensive Proteome Analyses of Lysine Acetylation and Succinylation in Seedling Leaves of Brachypodium distachyon L.

    PubMed Central

    Zhen, Shoumin; Deng, Xiong; Wang, Jian; Zhu, Gengrui; Cao, Hui; Yuan, Linlin; Yan, Yueming

    2016-01-01

    Protein acetylation and succinylation are the most crucial protein post-translational modifications (PTMs) involved in the regulation of plant growth and development. In this study, we present the first lysine-acetylation and lysine-succinylation proteome analysis of seedling leaves in Brachypodium distachyon L (Bd). Using high accuracy nano LC-MS/MS combined with affinity purification, we identified a total of 636 lysine-acetylated sites in 353 proteins and 605 lysine-succinylated sites in 262 proteins. These proteins participated in many biology processes, with various molecular functions. In particular, 119 proteins and 115 sites were found to be both acetylated and succinylated, simultaneously. Among the 353 acetylated proteins, 148 had acetylation orthologs in Oryza sativa L., Arabidopsis thaliana, Synechocystis sp. PCC 6803, and Glycine max L. Among the 262 succinylated proteins, 170 of them were found to have homologous proteins in Oryza sativa L., Escherichia coli, Sacchayromyces cerevisiae, or Homo sapiens. Motif-X analysis of the acetylated and succinylated sites identified two new acetylated motifs (K---K and K-I-K) and twelve significantly enriched succinylated motifs for the first time, which could serve as possible binding loci for future studies in plants. Our comprehensive dataset provides a promising starting point for further functional analysis of acetylation and succinylation in Bd and other plant species. PMID:27515067

  17. Inhibition of N-acetylneuraminate lyase by N-acetyl-4-oxo-D-neuraminic acid.

    PubMed

    Gross, H J; Brossmer, R

    1988-05-09

    We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.

  18. Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin.

    PubMed

    Yousefi, Reza; Taheri, Behnaz; Alavi, Parnian; Shahsavani, Mohammad Bagher; Asadi, Zahra; Ghahramani, Maryam; Niazi, Ali; Alavianmehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    The simple aggregation of insulin under various chemical and physical stresses is still an important challenge for both pharmaceutical production and clinical formulation. In the storage form, this protein is subjected to various chemical modifications which alter its physicochemical and aggregation properties. Aspirin (acetylsalicylic acid) which is the most widely used medicine worldwide has been indicated to acetylate a large number of proteins both in vitro and in vivo. In this study, as insulin treated with aspirin at 37°C, a significant level of acetylation was observed by flourescamine and o-phthalaldehyde assay. Also, different spectroscopic techniques, gel electrophoresis, and microscopic assessment were applied to compare the structural variation and aggregation/fibrillation propensity among acetylated and non-acetylated insulin samples. The results of spectroscopic assessments elucidate that acetylation induces insulin unfolding which is accompanied with the exposure of protein hydrophobic patches, a transition from alpha-helix to beta-sheet and increased propensity of the protein for aggregation. The kinetic studies propose that acetylation increases aggregation rate of insulin under both thermal and chemical stresses. Also, gel electrophoresis and dynamic light scattering experiments suggest that acetylation induces insulin oligomerization. Additionally, the results of Thioflavin T fluorescence study, Congo red absorption assessment, and microscopic analysis suggest that acetylation with aspirin enhances the process of insulin fibrillation. Overall, the increased susceptibility of acetylated insulin for aggregation may reflect the fact that this type of modification has significant structural destabilizing effect which finally makes the protein more vulnerable for pathogenic aggregation/fibrillation.

  19. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    SciTech Connect

    Emaus, R.; Bieber, L.L.

    1982-01-15

    A rapid method for the preparation of (1-/sup 14/C)acetyl-L-carnitine is described. The method involves exchange of (1-/sup 14/C)acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1/sup -/) anion exchange resin. One of the procedures used to verify the product (1-/sup 14/C)acetyl-L-carnitine can be used to synthesize (3S)-(5-/sup 14/C)citric acid.

  20. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members.

    PubMed

    Hwang, Andrew W; Trzeciakiewicz, Hanna; Friedmann, Dave; Yuan, Chao-Xing; Marmorstein, Ronen; Lee, Virginia M Y; Cohen, Todd J

    2016-01-01

    Lysine acetylation has emerged as a dominant post-translational modification (PTM) regulating tau proteins in Alzheimer's disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule-binding region (MTBR), a region that is highly conserved among tau, MAP2, and MAP4 family members, implying that acetylation could represent a conserved regulatory mechanism for MAPs beyond tau. Here, we combined mass spectrometry, biochemical assays, and cell-based approaches to demonstrate that the tau family members MAP2 and MAP4 are also subject to reversible acetylation. We identify a cluster of lysines in the MAP2 and MAP4 MTBR that undergo CBP-catalyzed acetylation, many of which are conserved in tau. Similar to tau, MAP2 acetylation can occur in a cysteine-dependent auto-regulatory manner in the presence of acetyl-CoA. Furthermore, tubulin reduced MAP2 acetylation, suggesting tubulin binding dictates MAP acetylation status. Taken together, these results uncover a striking conservation of MAP2/Tau family post-translational modifications that could expand our understanding of the dynamic mechanisms regulating microtubules.

  1. The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules

    PubMed Central

    1986-01-01

    A tight association between Chlamydomonas alpha-tubulin acetyltransferase (TAT) and flagellar axonemes, and the cytoplasmic localization of both tubulin deacetylase (TDA) and an inhibitor of tubulin acetylation have been demonstrated by the use of calf brain tubulin as substrate for these enzymes. A major axonemal TAT of 130 kD has been solubilized by high salt treatment, purified, and characterized. Using the Chlamydomonas TAT with brain tubulin as substrate, we have studied the effects of acetylation on the assembly and disassembly of microtubules in vitro. We also determined the relative rates of acetylation of tubulin dimers and polymers. The acetylation does not significantly affect the temperature-dependent polymerization or depolymerization of tubulin in vitro. Furthermore, polymerization of tubulin is not a prerequisite for the acetylation, although the polymer is a better substrate for TAT than the dimer. The acetylation is sensitive to calcium ions which completely inhibit the acetylation of both dimers and polymers of tubulin. Acetylation of the dimer is not inhibited by colchicine; the effect of colchicine on acetylation of the polymer can be explained by its depolymerizing effect on the polymer. PMID:3733880

  2. Quantifying torso deformity in scoliosis

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter O.; Kumar, Anish; Durdle, Nelson G.; Raso, V. James

    2006-03-01

    Scoliosis affects the alignment of the spine and the shape of the torso. Most scoliosis patients and their families are more concerned about the effect of scoliosis on the torso than its effect on the spine. There is a need to develop robust techniques for quantifying torso deformity based on full torso scans. In this paper, deformation indices obtained from orthogonal maps of full torso scans are used to quantify torso deformity in scoliosis. 'Orthogonal maps' are obtained by applying orthogonal transforms to 3D surface maps. (An 'orthogonal transform' maps a cylindrical coordinate system to a Cartesian coordinate system.) The technique was tested on 361 deformed computer models of the human torso and on 22 scans of volunteers (8 normal and 14 scoliosis). Deformation indices from the orthogonal maps correctly classified up to 95% of the volunteers with a specificity of 1.00 and a sensitivity of 0.91. In addition to classifying scoliosis, the system gives a visual representation of the entire torso in one view and is viable for use in a clinical environment for managing scoliosis.

  3. Quantifying mixing using equilibrium reactions

    NASA Astrophysics Data System (ADS)

    Wheat, Philip M.; Posner, Jonathan D.

    2009-03-01

    A method of quantifying equilibrium reactions in a microchannel using a fluorometric reaction of Fluo-4 and Ca2+ ions is presented. Under the proper conditions, equilibrium reactions can be used to quantify fluid mixing without the challenges associated with constituent mixing measures such as limited imaging spatial resolution and viewing angle coupled with three-dimensional structure. Quantitative measurements of CaCl and calcium-indicating fluorescent dye Fluo-4 mixing are measured in Y-shaped microchannels. Reactant and product concentration distributions are modeled using Green's function solutions and a numerical solution to the advection-diffusion equation. Equilibrium reactions provide for an unambiguous, quantitative measure of mixing when the reactant concentrations are greater than 100 times their dissociation constant and the diffusivities are equal. At lower concentrations and for dissimilar diffusivities, the area averaged fluorescence signal reaches a maximum before the species have interdiffused, suggesting that reactant concentrations and diffusivities must be carefully selected to provide unambiguous, quantitative mixing measures. Fluorometric equilibrium reactions work over a wide range of pH and background concentrations such that they can be used for a wide variety of fluid mixing measures including industrial or microscale flows.

  4. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array*

    PubMed Central

    Shinkai-Ouchi, Fumiko; Koyama, Suguru; Ono, Yasuko; Hata, Shoji; Ojima, Koichi; Shindo, Mayumi; duVerle, David; Ueno, Mika; Kitamura, Fujiko; Doi, Naoko; Takigawa, Ichigaku; Mamitsuka, Hiroshi; Sorimachi, Hiroyuki

    2016-01-01

    Calpains are intracellular Ca2+-regulated cysteine proteases that are essential for various cellular functions. Mammalian conventional calpains (calpain-1 and calpain-2) modulate the structure and function of their substrates by limited proteolysis. Thus, it is critically important to determine the site(s) in proteins at which calpains cleave. However, the calpains' substrate specificity remains unclear, because the amino acid (aa) sequences around their cleavage sites are very diverse. To clarify calpains' substrate specificities, 84 20-mer oligopeptides, corresponding to P10-P10′ of reported cleavage site sequences, were proteolyzed by calpains, and the catalytic efficiencies (kcat/Km) were globally determined by LC/MS. This analysis revealed 483 cleavage site sequences, including 360 novel ones. The kcat/Kms for 119 sites ranged from 12.5–1,710 M−1s−1. Although most sites were cleaved by both calpain-1 and −2 with a similar kcat/Km, sequence comparisons revealed distinct aa preferences at P9-P7/P2/P5′. The aa compositions of the novel sites were not statistically different from those of previously reported sites as a whole, suggesting calpains have a strict implicit rule for sequence specificity, and that the limited proteolysis of intact substrates is because of substrates' higher-order structures. Cleavage position frequencies indicated that longer sequences N-terminal to the cleavage site (P-sites) were preferred for proteolysis over C-terminal (P′-sites). Quantitative structure-activity relationship (QSAR) analyses using partial least-squares regression and >1,300 aa descriptors achieved kcat/Km prediction with r = 0.834, and binary-QSAR modeling attained an 87.5% positive prediction value for 132 reported calpain cleavage sites independent of our model construction. These results outperformed previous calpain cleavage predictors, and revealed the importance of the P2, P3′, and P4′ sites, and P1-P2 cooperativity. Furthermore, using our

  6. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate.

    PubMed

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-08-12

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  7. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    SciTech Connect

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-05-23

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation.

  8. The dynamic organization of fungal acetyl-CoA carboxylase

    NASA Astrophysics Data System (ADS)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  9. Microtubule acetylation promotes kinesin-1 binding and transport.

    PubMed

    Reed, Nathan A; Cai, Dawen; Blasius, T Lynne; Jih, Gloria T; Meyhofer, Edgar; Gaertig, Jacek; Verhey, Kristen J

    2006-11-07

    Long-distance intracellular delivery is driven by kinesin and dynein motor proteins that ferry cargoes along microtubule tracks . Current models postulate that directional trafficking is governed by known biophysical properties of these motors-kinesins generally move to the plus ends of microtubules in the cell periphery, whereas cytoplasmic dynein moves to the minus ends in the cell center. However, these models are insufficient to explain how polarized protein trafficking to subcellular domains is accomplished. We show that the kinesin-1 cargo protein JNK-interacting protein 1 (JIP1) is localized to only a subset of neurites in cultured neuronal cells. The mechanism of polarized trafficking appears to involve the preferential recognition of microtubules containing specific posttranslational modifications (PTMs) by the kinesin-1 motor domain. Using a genetic approach to eliminate specific PTMs, we show that the loss of a single modification, alpha-tubulin acetylation at Lys-40, influences the binding and motility of kinesin-1 in vitro. In addition, pharmacological treatments that increase microtubule acetylation cause a redirection of kinesin-1 transport of JIP1 to nearly all neurite tips in vivo. These results suggest that microtubule PTMs are important markers of distinct microtubule populations and that they act to control motor-protein trafficking.

  10. Constituents of cinnamon inhibit bacterial acetyl CoA carboxylase.

    PubMed

    Meades, Glen; Henken, Rachel L; Waldrop, Grover L; Rahman, Md Mukhlesur; Gilman, S Douglass; Kamatou, Guy P P; Viljoen, Alvaro M; Gibbons, Simon

    2010-10-01

    Cinnamon bark ( CINNAMOMUM ZEYLANICUM) is used extensively as an antimicrobial material and currently is being increasingly used in Europe by people with type II diabetes to control their glucose levels. In this paper we describe the action of cinnamon oil, its major component, TRANS-cinnamaldehyde, and an analogue, 4-hydroxy-3-methoxy- TRANS-cinnamaldehyde against bacterial acetyl-CoA carboxylase in an attempt to elucidate the mechanism of action of this well-known antimicrobial material. These natural products inhibited the carboxyltransferase component of ESCHERICHIA COLI acetyl-CoA carboxylase but had no effect on the activity of the biotin carboxylase component. The inhibition patterns indicated that these products bound to the biotin binding site of carboxyltransferase with TRANS-cinnamaldehyde having a K (i) value of 3.8 ± 0.6 mM. The inhibition of carboxyltransferase by 4-hydroxy-3-methoxy- TRANS-cinnamaldehyde was analyzed with a new assay for this enzyme based on capillary electrophoresis. These results explain, in part, the antibacterial activity of this well-known antimicrobial material. © Georg Thieme Verlag KG Stuttgart · New York.

  11. RAPID SEMISYNTHESIS OF ACETYLATED AND SUMOYLATED HISTONE ANALOGS

    PubMed Central

    Dhall, Abhinav; Weller, Caroline E.

    2016-01-01

    The density and diversity of post-translational modifications (PTMs) observed in histone proteins typically limits their purification to homogeneity from biological sources. Access to quantities of uniformly modified histones is, however, critical for investigating the downstream effects of histone PTMs on chromatin-templated processes. Therefore, a number of semisynthetic methodologies have been developed to generate histones bearing precisely defined PTMs or close analogs thereof. In this chapter, we present two optimized and rapid strategies for generating functional analogs of site-specifically acetylated and sumoylated histones. First, we describe a convergent strategy to site-specifically attach the small ubiquitin-like modifier-3 (SUMO-3) protein to the site of Lys12 in histone H4 by means of a disulfide linkage. We then describe the generation of thialysine analogs of histone H3 acetylated at Lys 14 or Lys 56, using thiol-ene coupling chemistry. Both strategies afford multi-milligram quantities of uniformly modified histones that are easily incorporated into mononucleosomes and nucleosome arrays for biophysical and biochemical investigations. These methods are readily extendable to any desired sites in the four core nucleosomal histones and their variant forms. PMID:27423861

  12. Two Arabidopsis Proteins Synthesize Acetylated Xylan in Vitro

    PubMed Central

    Urbanowicz, Breeanna R.; Peña, Maria J.; Moniz, Heather A.; Moremen, Kelley W.; York, William S.

    2014-01-01

    SUMMARY Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally due to collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis. However, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/ TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways utilized by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties. PMID:25141999

  13. The dynamic organization of fungal acetyl-CoA carboxylase

    PubMed Central

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-01-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control. PMID:27073141

  14. Acetylated tubulin is essential for touch sensation in mice

    PubMed Central

    Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A

    2016-01-01

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch. DOI: http://dx.doi.org/10.7554/eLife.20813.001 PMID:27976998

  15. Characterization of acetylated corn starch prepared under ultrahigh pressure (UHP).

    PubMed

    Kim, Hyun-Seok; Choi, Hyun-Shik; Kim, Byung-Yong; Baik, Moo-Yeol

    2010-03-24

    To investigate the impact of ultrahigh pressure (UHP) on the physicochemical properties of the UHP-assisted starch acetate, common corn starch was subjected to either conventional (0.1 MPa, 30 degrees C, 60 min) or UHP-assisted (400 MPa, 25 degrees C, 15 min) acetylation reactions at three levels (4, 8, or 12%) of acetic anhydride. Without significant changes in starch granule crystal structure, UHP-assisted reaction exhibited lower degree of substitution values than conventional reaction across reagent addition levels. An increase in reagent addition levels exhibited common trends in starch solubility/swelling power, gelatinization, and pasting properties for the conventional and UHP-assisted starch acetates relative to native starch. Within an equivalent derivatization level, however, the UHP-assisted (relative to conventional) starch acetates revealed restricted starch solubility/swelling power, reduced gelatinization temperatures, and lower pasting viscosities. Overall, this result suggested that UHP treatment in acetylation reaction might influence the physicochemical properties of starch acetate by facilitating the formation of lipid-complexed amylose or altering granular reaction patterns to acetic anhydride.

  16. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis.

    PubMed Central

    Shieh, J; Whitman, W B

    1988-01-01

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation. PMID:3133359

  17. Preparation and characterization of N-benzoyl-O-acetyl-chitosan.

    PubMed

    Cai, Jinping; Dang, Qifeng; Liu, Chengsheng; Fan, Bing; Yan, Jingquan; Xu, Yanyan; Li, Jingjing

    2015-01-01

    A novel amphipathic chitosan derivative, N-benzoyl-O-acetyl-chitosan (BACS), was prepared by using the selective partial acylation of chitosan (CS), benzoyl chloride, and acetic acid under high-intensity ultrasound. The chemical structure and physical properties of BACS were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degrees of substitution of benzoyl and acetyl for the chitosan derivatives were 0.26 and 1.15, respectively, which were calculated from the peak areas in NMR spectra by using the combined integral methods. The foaming properties of CS and BACS were determined and the results suggested BACS had better foam capacity and stability than those of chitosan. In addition, the antimicrobial activities of CS and BACS were also investigated against two species of bacteria (Escherichia coli and Staphylococcus aureus) and a fungus (Aspergillus niger), the results indicated that the antibacterial and antifungal activities of BACS were much stronger than those of the parent chitosan. These findings suggested that BACS was preferable for use as a food additive with a dual role of both foaming agent and food preservative.

  18. Characterization of nucleolin K88 acetylation defines a new pool of nucleolin colocalizing with pre-mRNA splicing factors.

    PubMed

    Das, Sadhan; Cong, Rong; Shandilya, Jayasha; Senapati, Parijat; Moindrot, Benoit; Monier, Karine; Delage, Hélène; Mongelard, Fabien; Kumar, Sanjeev; Kundu, Tapas K; Bouvet, Philippe

    2013-03-01

    Nucleolin is a multifunctional protein that carries several post-translational modifications. We characterized nucleolin acetylation and developed antibodies specific to nucleolin K88 acetylation. Using this antibody we show that nucleolin is acetylated in vivo and is not localized in the nucleoli, but instead is distributed throughout the nucleoplasm. Immunofluorescence studies indicate that acetylated nucleolin is co-localized with the splicing factor SC35 and partially with Y12. Acetylated nucleolin is expressed in all tested proliferating cell types. Our findings show that acetylation defines a new pool of nucleolin which support a role for nucleolin in the regulation of mRNA maturation and transcription by RNA polymerase II.

  19. Quantifying protein by bicinchoninic Acid.

    PubMed

    Simpson, Richard J

    2008-08-01

    INTRODUCTIONThis protocol describes a method of quantifying protein that is a variation of the Lowry assay. It uses bicinchoninic acid (BCA) to enhance the detection of Cu(+) generated under alkaline conditions at sites of complexes between Cu(2+) and protein. The resulting chromophore absorbs at 562 nm. This technique is divided into three parts: Standard Procedure, Microprocedure, and 96-Well Microtiter Plate Procedure. For each procedure, test samples are assayed in parallel with protein standards that are used to generate a calibration curve, and the exact concentration of protein in the test samples is interpolated. The standard BCA assay uses large volumes of both reagents and samples and cannot easily be automated. If these issues are important, the Microprocedure is recommended. This in turn can be adapted for use with a microplate reader in the 96-Well Microtiter Plate Procedure. If the microplate reader is interfaced with a computer, more than 1000 samples can be read per hour.

  20. Quantifying Aggressive Behavior in Zebrafish.

    PubMed

    Teles, Magda C; Oliveira, Rui F

    2016-01-01

    Aggression is a complex behavior that influences social relationships and can be seen as adaptive or maladaptive depending on the context and intensity of expression. A model organism suitable for genetic dissection of the underlying neural mechanisms of aggressive behavior is still needed. Zebrafish has already proven to be a powerful vertebrate model organism for the study of normal and pathological brain function. Despite the fact that zebrafish is a gregarious species that forms shoals, when allowed to interact in pairs, both males and females express aggressive behavior and establish dominance hierarchies. Here, we describe two protocols that can be used to quantify aggressive behavior in zebrafish, using two different paradigms: (1) staged fights between real opponents and (2) mirror-elicited fights. We also discuss the methodology for the behavior analysis, the expected results for both paradigms, and the advantages and disadvantages of each paradigm in face of the specific goals of the study.

  1. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    DOE PAGES

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; ...

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less

  2. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm).

    PubMed

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-04-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  3. Acetylation of loofa (Luffa cylindrica) sponge as immobilization carrier for bioprocesses involving cellulase.

    PubMed

    Hideno, Akihiro; Ogbonna, James C; Aoyagi, Hideki; Tanaka, Hideo

    2007-04-01

    The feasibility of using loofa sponge for immobilization of cellulase-producing microorganisms was investigated by acetylating loofa sponge. Acetylation was achieved by autoclaving process of loofa sponge immersed in acetic anhydride at various temperatures for var