Quantifying and mapping spatial variability in simulated forest plots
Gavin R. Corral; Harold E. Burkhart
2016-01-01
We used computer simulations to test the efficacy of multivariate statistical methods to detect, quantify, and map spatial variability of forest stands. Simulated stands were developed of regularly-spaced plantations of loblolly pine (Pinus taeda L.). We assumed no affects of competition or mortality, but random variability was added to individual tree characteristics...
Dripps, W.R.; Bradbury, K.R.
2010-01-01
Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.
Spatial patterns of throughfall isotopic composition at the event and seasonal timescales
Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell
2015-01-01
Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...
Zhen, Zonglei; Yang, Zetian; Huang, Lijie; Kong, Xiang-Zhen; Wang, Xu; Dang, Xiaobin; Huang, Yangyue; Song, Yiying; Liu, Jia
2015-06-01
Face-selective regions (FSRs) are among the most widely studied functional regions in the human brain. However, individual variability of the FSRs has not been well quantified. Here we use functional magnetic resonance imaging (fMRI) to localize the FSRs and quantify their spatial and functional variabilities in 202 healthy adults. The occipital face area (OFA), posterior and anterior fusiform face areas (pFFA and aFFA), posterior continuation of the superior temporal sulcus (pcSTS), and posterior and anterior STS (pSTS and aSTS) were delineated for each individual with a semi-automated procedure. A probabilistic atlas was constructed to characterize their interindividual variability, revealing that the FSRs were highly variable in location and extent across subjects. The variability of FSRs was further quantified on both functional (i.e., face selectivity) and spatial (i.e., volume, location of peak activation, and anatomical location) features. Considerable interindividual variability and rightward asymmetry were found in all FSRs on these features. Taken together, our work presents the first effort to characterize comprehensively the variability of FSRs in a large sample of healthy subjects, and invites future work on the origin of the variability and its relation to individual differences in behavioral performance. Moreover, the probabilistic functional atlas will provide an adequate spatial reference for mapping the face network. Copyright © 2015 Elsevier Inc. All rights reserved.
Predictor variable resolution governs modeled soil types
USDA-ARS?s Scientific Manuscript database
Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...
Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman
2013-01-01
Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...
Quantifying measurement uncertainty and spatial variability in the context of model evaluation
NASA Astrophysics Data System (ADS)
Choukulkar, A.; Brewer, A.; Pichugina, Y. L.; Bonin, T.; Banta, R. M.; Sandberg, S.; Weickmann, A. M.; Djalalova, I.; McCaffrey, K.; Bianco, L.; Wilczak, J. M.; Newman, J. F.; Draxl, C.; Lundquist, J. K.; Wharton, S.; Olson, J.; Kenyon, J.; Marquis, M.
2017-12-01
In an effort to improve wind forecasts for the wind energy sector, the Department of Energy and the NOAA funded the second Wind Forecast Improvement Project (WFIP2). As part of the WFIP2 field campaign, a large suite of in-situ and remote sensing instrumentation was deployed to the Columbia River Gorge in Oregon and Washington from October 2015 - March 2017. The array of instrumentation deployed included 915-MHz wind profiling radars, sodars, wind- profiling lidars, and scanning lidars. The role of these instruments was to provide wind measurements at high spatial and temporal resolution for model evaluation and improvement of model physics. To properly determine model errors, the uncertainties in instrument-model comparisons need to be quantified accurately. These uncertainties arise from several factors such as measurement uncertainty, spatial variability, and interpolation of model output to instrument locations, to name a few. In this presentation, we will introduce a formalism to quantify measurement uncertainty and spatial variability. The accuracy of this formalism will be tested using existing datasets such as the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign. Finally, the uncertainties in wind measurement and the spatial variability estimates from the WFIP2 field campaign will be discussed to understand the challenges involved in model evaluation.
Emma Vakili; Chad M. Hoffman; Robert E. Keane; Wade T. Tinkham; Yvette Dickinson
2016-01-01
There is growing consensus that spatial variability in fuel loading at scales down to 0.5 m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels treatment in the...
Quantifying Landscape Spatial Pattern: What Is the State of the Art?
Eric J. Gustafson
1998-01-01
Landscape ecology is based on the premise that there are strong links between ecological pattern and ecological function and process. Ecological systems are spatially heterogeneous, exhibiting consid-erable complexity and variability in time and space. This variability is typically represented by categorical maps or by a collection of samples taken at specific spatial...
Parsons, Jessica E; Cain, Charles A; Fowlkes, J Brian
2007-03-01
Spatial variability in acoustic backscatter is investigated as a potential feedback metric for assessment of lesion morphology during cavitation-mediated mechanical tissue disruption ("histotripsy"). A 750-kHz annular array was aligned confocally with a 4.5 MHz passive backscatter receiver during ex vivo insonation of porcine myocardium. Various exposure conditions were used to elicit a range of damage morphologies and backscatter characteristics [pulse duration = 14 micros, pulse repetition frequency (PRF) = 0.07-3.1 kHz, average I(SPPA) = 22-44 kW/cm2]. Variability in backscatter spatial localization was quantified by tracking the lag required to achieve peak correlation between sequential RF A-lines received. Mean spatial variability was observed to be significantly higher when damage morphology consisted of mechanically disrupted tissue homogenate versus mechanically intact coagulation necrosis (2.35 +/- 1.59 mm versus 0.067 +/- 0.054 mm, p < 0.025). Statistics from these variability distributions were used as the basis for selecting a threshold variability level to identify the onset of homogenate formation via an abrupt, sustained increase in spatially dynamic backscatter activity. Specific indices indicative of the state of the homogenization process were quantified as a function of acoustic input conditions. The prevalence of backscatter spatial variability was observed to scale with the amount of homogenate produced for various PRFs and acoustic intensities.
Nijhof, Carl O P; Huijbregts, Mark A J; Golsteijn, Laura; van Zelm, Rosalie
2016-04-01
We compared the influence of spatial variability in environmental characteristics and the uncertainty in measured substance properties of seven chemicals on freshwater fate factors (FFs), representing the residence time in the freshwater environment, and on exposure factors (XFs), representing the dissolved fraction of a chemical. The influence of spatial variability was quantified using the SimpleBox model in which Europe was divided in 100 × 100 km regions, nested in a regional (300 × 300 km) and supra-regional (500 × 500 km) scale. Uncertainty in substance properties was quantified by means of probabilistic modelling. Spatial variability and parameter uncertainty were expressed by the ratio k of the 95%ile and 5%ile of the FF and XF. Our analysis shows that spatial variability ranges in FFs of persistent chemicals that partition predominantly into one environmental compartment was up to 2 orders of magnitude larger compared to uncertainty. For the other (less persistent) chemicals, uncertainty in the FF was up to 1 order of magnitude larger than spatial variability. Variability and uncertainty in freshwater XFs of the seven chemicals was negligible (k < 1.5). We found that, depending on the chemical and emission scenario, accounting for region-specific environmental characteristics in multimedia fate modelling, as well as accounting for parameter uncertainty, can have a significant influence on freshwater fate factor predictions. Therefore, we conclude that it is important that fate factors should not only account for parameter uncertainty, but for spatial variability as well, as this further increases the reliability of ecotoxicological impacts in LCA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Probabilistic and spatially variable niches inferred from demography
Jeffrey M. Diez; Itamar Giladi; Robert Warren; H. Ronald Pulliam
2014-01-01
Summary 1. Mismatches between species distributions and habitat suitability are predicted by niche theory and have important implications for forecasting how species may respond to environmental changes. Quantifying these mismatches is challenging, however, due to the high dimensionality of species niches and the large spatial and temporal variability in population...
Variability of the raindrop size distribution at small spatial scales
NASA Astrophysics Data System (ADS)
Berne, A.; Jaffrain, J.
2010-12-01
Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.
The effect of short-range spatial variability on soil sampling uncertainty.
Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko
2008-11-01
This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.
Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models
Phillips, D.L.; Marks, D.G.
1996-01-01
In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated inputs.
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Owe, M.; Ormsby, J. P.; Chang, A. T. C.; Wang, J. R.; Goward, S. N.; Golus, R. E.
1987-01-01
Spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains are quantified in terms of vegetation and soil wetness. The brightness temperatures (TB) are the daytime observations from April to October for five years (1979 to 1983) obtained by the Nimbus-7 Scanning Multichannel Microwave Radiometer at 6.6 GHz frequency, horizontal polarization. The spatial and temporal variabilities of vegetation are assessed using visible and near-infrared observations by the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR), while an Antecedent Precipitation Index (API) model is used for soil wetness. The API model was able to account for more than 50 percent of the observed variability in TB, although linear correlations between TB and API were generally significant at the 1 percent level. The slope of the linear regression between TB and API is found to correlate linearly with an index for vegetation density derived from AVHRR data.
The need for spatially explicit quantification of benefits in invasive-species management.
Januchowski-Hartley, Stephanie R; Adams, Vanessa M; Hermoso, Virgilio
2018-04-01
Worldwide, invasive species are a leading driver of environmental change across terrestrial, marine, and freshwater environments and cost billions of dollars annually in ecological damages and economic losses. Resources limit invasive-species control, and planning processes are needed to identify cost-effective solutions. Thus, studies are increasingly considering spatially variable natural and socioeconomic assets (e.g., species persistence, recreational fishing) when planning the allocation of actions for invasive-species management. There is a need to improve understanding of how such assets are considered in invasive-species management. We reviewed over 1600 studies focused on management of invasive species, including flora and fauna. Eighty-four of these studies were included in our final analysis because they focused on the prioritization of actions for invasive species management. Forty-five percent (n = 38) of these studies were based on spatial optimization methods, and 35% (n = 13) accounted for spatially variable assets. Across all 84 optimization studies considered, 27% (n = 23) explicitly accounted for spatially variable assets. Based on our findings, we further explored the potential costs and benefits to invasive species management when spatially variable assets are explicitly considered or not. To include spatially variable assets in decision-making processes that guide invasive-species management there is a need to quantify environmental responses to invasive species and to enhance understanding of potential impacts of invasive species on different natural or socioeconomic assets. We suggest these gaps could be filled by systematic reviews, quantifying invasive species impacts on native species at different periods, and broadening sources and enhancing sharing of knowledge. © 2017 Society for Conservation Biology.
Development of a multispectral sensor for crop canopy temperature measurement
USDA-ARS?s Scientific Manuscript database
Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric...
F. Mauro; Vicente J. Monleon; H. Temesgen; L.A. Ruiz
2017-01-01
Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (
Quantifying Uncontrolled Air Emissions from Two Florida Landfills
Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...
Bernard R. Parresol
2011-01-01
Studies of spatial patterns of landscapes are useful to quantify human impact, predict wildlife effects, or describe variability of landscape features. A common approach to identify and quantify landscape structure is with a landscape scale model known as a contagion index. A contagion index quantifies two distinct components of landscape diversity: composition and...
Petrovskaya, Natalia B.; Forbes, Emily; Petrovskii, Sergei V.; Walters, Keith F. A.
2018-01-01
Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. PMID:29495513
Monitoring air quality in mountains: Designing an effective network
Peterson, D.L.
2000-01-01
A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.
A variance-decomposition approach to investigating multiscale habitat associations
Lawler, J.J.; Edwards, T.C.
2006-01-01
The recognition of the importance of spatial scale in ecology has led many researchers to take multiscale approaches to studying habitat associations. However, few of the studies that investigate habitat associations at multiple spatial scales have considered the potential effects of cross-scale correlations in measured habitat variables. When cross-scale correlations in such studies are strong, conclusions drawn about the relative strength of habitat associations at different spatial scales may be inaccurate. Here we adapt and demonstrate an analytical technique based on variance decomposition for quantifying the influence of cross-scale correlations on multiscale habitat associations. We used the technique to quantify the variation in nest-site locations of Red-naped Sapsuckers (Sphyrapicus nuchalis) and Northern Flickers (Colaptes auratus) associated with habitat descriptors at three spatial scales. We demonstrate how the method can be used to identify components of variation that are associated only with factors at a single spatial scale as well as shared components of variation that represent cross-scale correlations. Despite the fact that no explanatory variables in our models were highly correlated (r < 0.60), we found that shared components of variation reflecting cross-scale correlations accounted for roughly half of the deviance explained by the models. These results highlight the importance of both conducting habitat analyses at multiple spatial scales and of quantifying the effects of cross-scale correlations in such analyses. Given the limits of conventional analytical techniques, we recommend alternative methods, such as the variance-decomposition technique demonstrated here, for analyzing habitat associations at multiple spatial scales. ?? The Cooper Ornithological Society 2006.
NASA Astrophysics Data System (ADS)
Sullivan, R. C.; Pryor, S. C.
2014-06-01
Spatiotemporal variability of fine particle concentrations in Indianapolis, Indiana is quantified using a combination of high temporal resolution measurements at four fixed sites and mobile measurements with instruments attached to bicycles during transects of the city. Average urban PM2.5 concentrations are an average of ˜3.9-5.1 μg m-3 above the regional background. The influence of atmospheric conditions on ambient PM2.5 concentrations is evident with the greatest temporal variability occurring at periods of one day and 5-10 days corresponding to diurnal and synoptic meteorological processes, and lower mean wind speeds are associated with episodes of high PM2.5 concentrations. An anthropogenic signal is also evident. Higher PM2.5 concentrations coincide with morning rush hour, the frequencies of PM2.5 variability co-occur with those for carbon monoxide, and higher extreme concentrations were observed mid-week compared to weekends. On shorter time scales (
NASA Astrophysics Data System (ADS)
Hanke, John R.; Fischer, Mark P.; Pollyea, Ryan M.
2018-03-01
In this study, the directional semivariogram is deployed to investigate the spatial variability of map-scale fracture network attributes in the Paradox Basin, Utah. The relative variability ratio (R) is introduced as the ratio of integrated anisotropic semivariogram models, and R is shown to be an effective metric for quantifying the magnitude of spatial variability for any two azimuthal directions. R is applied to a GIS-based data set comprising roughly 1200 fractures, in an area which is bounded by a map-scale anticline and a km-scale normal fault. This analysis reveals that proximity to the fault strongly influences the magnitude of spatial variability for both fracture intensity and intersection density within 1-2 km. Additionally, there is significant anisotropy in the spatial variability, which is correlated with trends of the anticline and fault. The direction of minimum spatial correlation is normal to the fault at proximal distances, and gradually rotates and becomes subparallel to the fold axis over the same 1-2 km distance away from the fault. We interpret these changes to reflect varying scales of influence of the fault and the fold on fracture network development: the fault locally influences the magnitude and variability of fracture network attributes, whereas the fold sets the background level and structure of directional variability.
Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
2012-01-01
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.
Spatial Variance in Resting fMRI Networks of Schizophrenia Patients: An Independent Vector Analysis
Gopal, Shruti; Miller, Robyn L.; Michael, Andrew; Adali, Tulay; Cetin, Mustafa; Rachakonda, Srinivas; Bustillo, Juan R.; Cahill, Nathan; Baum, Stefi A.; Calhoun, Vince D.
2016-01-01
Spatial variability in resting functional MRI (fMRI) brain networks has not been well studied in schizophrenia, a disease known for both neurodevelopmental and widespread anatomic changes. Motivated by abundant evidence of neuroanatomical variability from previous studies of schizophrenia, we draw upon a relatively new approach called independent vector analysis (IVA) to assess this variability in resting fMRI networks. IVA is a blind-source separation algorithm, which segregates fMRI data into temporally coherent but spatially independent networks and has been shown to be especially good at capturing spatial variability among subjects in the extracted networks. We introduce several new ways to quantify differences in variability of IVA-derived networks between schizophrenia patients (SZs = 82) and healthy controls (HCs = 89). Voxelwise amplitude analyses showed significant group differences in the spatial maps of auditory cortex, the basal ganglia, the sensorimotor network, and visual cortex. Tests for differences (HC-SZ) in the spatial variability maps suggest, that at rest, SZs exhibit more activity within externally focused sensory and integrative network and less activity in the default mode network thought to be related to internal reflection. Additionally, tests for difference of variance between groups further emphasize that SZs exhibit greater network variability. These results, consistent with our prediction of increased spatial variability within SZs, enhance our understanding of the disease and suggest that it is not just the amplitude of connectivity that is different in schizophrenia, but also the consistency in spatial connectivity patterns across subjects. PMID:26106217
Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J
Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.
Spatial patterns of development drive water use
Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.
2018-01-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.
Spatial Patterns of Development Drive Water Use
NASA Astrophysics Data System (ADS)
Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.
2018-03-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.
Jamie M. Lydersen; Malcolm P. North; Eric E. Knapp; Brandon M. Collins
2013-01-01
Fire suppression and past logging have dramatically altered forest conditions in many areas, but changes to within-stand tree spatial patterns over time are not as well understood. The few studies available suggest that variability in tree spatial patterns is an important structural feature of forests with intact frequent fire regimes that should be incorporated in...
Phytoplankton plasticity drives large variability in carbon fixation efficiency
NASA Astrophysics Data System (ADS)
Ayata, Sakina-Dorothée.; Lévy, Marina; Aumont, Olivier; Resplandy, Laure; Tagliabue, Alessandro; Sciandra, Antoine; Bernard, Olivier
2014-12-01
Phytoplankton C:N stoichiometry is highly flexible due to physiological plasticity, which could lead to high variations in carbon fixation efficiency (carbon consumption relative to nitrogen). However, the magnitude, as well as the spatial and temporal scales of variability, remains poorly constrained. We used a high-resolution biogeochemical model resolving various scales from small to high, spatially and temporally, in order to quantify and better understand this variability. We find that phytoplankton C:N ratio is highly variable at all spatial and temporal scales (5-12 molC/molN), from mesoscale to regional scale, and is mainly driven by nitrogen supply. Carbon fixation efficiency varies accordingly at all scales (±30%), with higher values under oligotrophic conditions and lower values under eutrophic conditions. Hence, phytoplankton plasticity may act as a buffer by attenuating carbon sequestration variability. Our results have implications for in situ estimations of C:N ratios and for future predictions under high CO2 world.
NASA Astrophysics Data System (ADS)
Gibbes, C.; Southworth, J.; Waylen, P. R.
2013-05-01
How do climate variability and climate change influence vegetation cover and vegetation change in savannas? A landscape scale investigation of the effect of changes in precipitation on vegetation is undertaken through the employment of a time series analysis. The multi-national study region is located within the Kavango-Zambezi region, and is delineated by the Okavango, Kwando, and Zambezi watersheds. A mean-variance time-series analysis quantifies vegetation dynamics and characterizes vegetation response to climate. The spatially explicit approach used to quantify the persistence of vegetation productivity permits the extraction of information regarding long term climate-landscape dynamics. Results show a pattern of reduced mean annual precipitation and increased precipitation variability across key social and ecological areas within the study region. Despite decreased mean annual precipitation since the mid to late 1970's vegetation trends predominantly indicate increasing biomass. The limited areas which have diminished vegetative cover relate to specific vegetation types, and are associated with declines in precipitation variability. Results indicate that in addition to short term changes in vegetation cover, long term trends in productive biomass are apparent, relate to spatial differences in precipitation variability, and potentially represent shifts vegetation composition. This work highlights the importance of time-series analyses for examining climate-vegetation linkages in a spatially explicit manner within a highly vulnerable region of the world.
Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B
2013-01-01
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions.
Bourbonnais, Mathieu L.; Nelson, Trisalyn A.; Cattet, Marc R. L.; Darimont, Chris T.; Stenhouse, Gordon B.
2013-01-01
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions. PMID:24386273
D'Ambrosio, Jessica L; Williams, Lance R; Witter, Jonathan D; Ward, Andy
2009-01-01
In this paper, we evaluate relationships between in-stream habitat, water chemistry, spatial distribution within a predominantly agricultural Midwestern watershed and geomorphic features and fish assemblage attributes and abundances. Our specific objectives were to: (1) identify and quantify key environmental variables at reach and system wide (watershed) scales; and (2) evaluate the relative influence of those environmental factors in structuring and explaining fish assemblage attributes at reach scales to help prioritize stream monitoring efforts and better incorporate all factors that influence aquatic biology in watershed management programs. The original combined data set consisted of 31 variables measured at 32 sites, which was reduced to 9 variables through correlation and linear regression analysis: stream order, percent wooded riparian zone, drainage area, in-stream cover quality, substrate quality, gradient, cross-sectional area, width of the flood prone area, and average substrate size. Canonical correspondence analysis (CCA) and variance partitioning were used to relate environmental variables to fish species abundance and assemblage attributes. Fish assemblages and abundances were explained best by stream size, gradient, substrate size and quality, and percent wooded riparian zone. Further data are needed to investigate why water chemistry variables had insignificant relationships with IBI scores. Results suggest that more quantifiable variables and consideration of spatial location of a stream reach within a watershed system should be standard data incorporated into stream monitoring programs to identify impairments that, while biologically limiting, are not fully captured or elucidated using current bioassessment methods.
Defne, Zafer; Ganju, Neil K.
2015-01-01
Estuarine residence time is a major driver of eutrophication and water quality. Barnegat Bay-Little Egg Harbor (BB-LEH), New Jersey, is a lagoonal back-barrier estuary that is subject to anthropogenic pressures including nutrient loading, eutrophication, and subsequent declines in water quality. A combination of hydrodynamic and particle tracking modeling was used to identify the mechanisms controlling flushing, residence time, and spatial variability of particle retention. The models demonstrated a pronounced northward subtidal flow from Little Egg Inlet in the south to Pt. Pleasant Canal in the north due to frictional effects in the inlets, leading to better flushing of the southern half of the estuary and particle retention in the northern estuary. Mean residence time for BB-LEH was 13 days but spatial variability was between ∼0 and 30 days depending on the initial particle location. Mean residence time with tidal forcing alone was 24 days (spatial variability between ∼0 and 50 days); the tides were relatively inefficient in flushing the northern end of the Bay. Scenarios with successive exclusion of physical processes from the models revealed that meteorological and remote offshore forcing were stronger drivers of exchange than riverine inflow. Investigations of water quality and eutrophication should take into account spatial variability in hydrodynamics and residence time in order to better quantify the roles of nutrient loading, production, and flushing.
NASA Astrophysics Data System (ADS)
Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.
2017-12-01
Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially variable translation and deformation rates. Parameterization of cross-stream sediment transport could lead to accounting for ambiguities in bedload flux calculations caused by dune deformation, which in turn could significantly improve overall calculation of bedload and total load sediment transport in sand bedded rivers.
Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max
2014-01-01
Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377
Kyongho Son; Christina Tague; Carolyn Hunsaker
2016-01-01
The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in Californiaâs Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...
Dorji, Passang; Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.
Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059
NASA Astrophysics Data System (ADS)
Baker, Patrick; Oborne, Lisa
2015-04-01
Large, high-intensity fires have direct and long-lasting effects on forest ecosystems and present a serious threat to human life and property. However, even within the most catastrophic fires there is important variability in local-scale intensity that has important ramifications for forest mortality and regeneration. Quantifying this variability is difficult due to the rarity of catastrophic fire events, the extreme conditions at the time of the fires, and their large spatial extent. Instead fire severity is typically measured or estimated from observed patterns of vegetation mortality; however, differences in species- and size-specific responses to fires often makes fire severity a poor proxy for fire intensity. We developed a statistical method using simple, plot-based measurements of individual tree mortality to simultaneously estimate plot-level fire intensity and species-specific mortality patterns as a function of tree size. We applied our approach to an area of forest burned in the catastrophic Black Saturday fires that occurred near Melbourne, Australia, in February 2009. Despite being the most devastating fire in the past 70 years and our plots being located in the area that experienced some of the most intense fires in the 350,000 ha fire complex, we found that the estimated fire intensity was highly variable at multiple spatial scales. All eight tree species in our study differed in their susceptibility to fire-induced mortality, particularly among the largest size classes. We also found that seedling height and species richness of the post-fire seedling communities were both positively correlated with fire intensity. Spatial variability in disturbance intensity has important, but poorly understood, consequences for the short- and long-term dynamics of forests in the wake of catastrophic wildfires. Our study provides a tool to estimate fire intensity after a fire has passed, allowing new opportunities for linking spatial variability in fire intensity to forest ecosystem dynamics.
Controls on the variability of net infiltration to desert sandstone
Heilweil, Victor M.; McKinney, Tim S.; Zhdanov, Michael S.; Watt, Dennis E.
2007-01-01
As populations grow in arid climates and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration becomes critically important for accurately inventorying water resources and mapping contamination vulnerability. This paper presents a conceptual model of net infiltration to desert sandstone and then develops an empirical equation for its spatial quantification at the watershed scale using linear least squares inversion methods for evaluating controlling parameters (independent variables) based on estimated net infiltration rates (dependent variables). Net infiltration rates used for this regression analysis were calculated from environmental tracers in boreholes and more than 3000 linear meters of vadose zone excavations in an upland basin in southwestern Utah underlain by Navajo sandstone. Soil coarseness, distance to upgradient outcrop, and topographic slope were shown to be the primary physical parameters controlling the spatial variability of net infiltration. Although the method should be transferable to other desert sandstone settings for determining the relative spatial distribution of net infiltration, further study is needed to evaluate the effects of other potential parameters such as slope aspect, outcrop parameters, and climate on absolute net infiltration rates.
Patrick M.A. James; Barry Cooke; Bryan M.T. Brunet; Lisa M. Lumley; Felix A.H. Sperling; Marie-Josee Fortin; Vanessa S. Quinn; Brian R. Sturtevant
2015-01-01
Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio-temporal variability in genetic...
Prospects and pitfalls of occupational hazard mapping: 'between these lines there be dragons'.
Koehler, Kirsten A; Volckens, John
2011-10-01
Hazard data mapping is a promising new technique that can enhance the process of occupational exposure assessment and risk communication. Hazard maps have the potential to improve worker health by providing key input for the design of hazard intervention and control strategies. Hazard maps are developed with aid from direct-reading instruments, which can collect highly spatially and temporally resolved data in a relatively short period of time. However, quantifying spatial-temporal variability in the occupational environment is not a straightforward process, and our lack of understanding of how to ascertain and model spatial and temporal variability is a limiting factor in the use and interpretation of workplace hazard maps. We provide an example of how sources of and exposures to workplace hazards may be mischaracterized in a hazard map due to a lack of completeness and representativeness of collected measurement data. Based on this example, we believe that a major priority for research in this emerging area should focus on the development of a statistical framework to quantify uncertainty in spatially and temporally varying data. In conjunction with this need is one for the development of guidelines and procedures for the proper sampling, generation, and evaluation of workplace hazard maps.
Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique
2012-01-01
We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254
The Ocean's Role in Outlet Glacier Variability: A Case Study from Uummannaq, Greenland
NASA Astrophysics Data System (ADS)
Sutherland, D.; Catania, G. A.; Bartholomaus, T. C.; Nash, J. D.; Shroyer, E.; Walker, R. T.; Stearns, L. A.
2014-12-01
The dynamics controlling the coupling between fjord circulation and outlet glacier movement are poorly understood. Here, we use oceanographic data collected from 2013-2014 from two west Greenland fjords, Rink Isbrae and Kangerdlugssup Sermerssua, to constrain the spatial and temporal variability observed in fjord circulation. We aim to quantify the ocean's role, if any, in explaining the marked differences in glacier behavior from two systems that are in close proximity to one another. Combining time series data from a set of subsurface moorings with repeat transects in each fjord allows an unprecedented look at the temporal and spatial variability in circulation. We find significant differences in the variability in each fjord and discuss the implications for the glaciers.
Effects Of Spatial Variability In Marshes On Coastal Erosion Under Storm Conditions
NASA Astrophysics Data System (ADS)
Lunghino, B.; Suckale, J.; Fringer, O. B.; Maldonado, S.; Ferreira, C.; Marras, S.; Mandel, T.
2016-12-01
To quantify the contribution of marshes in protecting coastlines, engineers and planners need to evaluate how variability in marsh characteristics and storm conditions affect erosion in the inundation zone. Previous studies show that spatial patterns in marshes significantly affect flow and sediment transport under normal tidal conditions [1, 2]. This study investigates the effect of spatial variability on floodplain sediment transport under a range of extreme hydrodynamic conditions that occur during storm events. We model the hydrodynamics of storm surge conditions on an idealized coastal floodplain by solving the 2D shallow water equations. We approximate the effect of vegetation on hydrodynamics as a constant drag coefficient. The model calculates suspended sediment transport with the advection-diffusion equation and updates morphology with erosional and depositional fluxes. We conduct numerical experiments in which we vary both the scale of the storm event and the spatial patterns of vegetation and evaluate the impact on erosion and deposition on the floodplain. We find that the alongshore extent of the vegetation is the primary control on the net volume of sediment eroded. Scour occurs in narrow channels between vegetated areas, but this does not significantly alter the net volume of sediment transported. Deposition occurs in vegetated areas under the full range of flow velocities we test. These results suggest that resolving all variability in vegetation is not necessary to quantify net sediment transport volumes at the floodplain scale. Increasing the scale of the storm event does not alter the role of spatial variability. References [1] Meire, D. W., Kondziolka, J. M., and Nepf, H. M. Interaction between neighboring vegetation patches: Impact on flow and deposition. Water Resources Research 50, 5 (2014), 3809-3825. [2] Temmerman, S., Bouma, T., Govers, G., Wang, Z., De Vries, M., and Her- man, P. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface 110, F4 (2005).
Landscape patterns and soil organic carbon stocks in agricultural bocage landscapes
NASA Astrophysics Data System (ADS)
Viaud, Valérie; Lacoste, Marine; Michot, Didier; Walter, Christian
2014-05-01
Soil organic carbon (SOC) has a crucial impact on global carbon storage at world scale. SOC spatial variability is controlled by the landscape patterns resulting from the continuous interactions between the physical environment and the society. Natural and anthropogenic processes occurring and interplaying at the landscape scale, such as soil redistribution in the lateral and vertical dimensions by tillage and water erosion processes or spatial differentiation of land-use and land-management practices, strongly affect SOC dynamics. Inventories of SOC stocks, reflecting their spatial distribution, are thus key elements to develop relevant management strategies to improving carbon sequestration and mitigating climate change and soil degradation. This study aims to quantify SOC stocks and their spatial distribution in a 1,000-ha agricultural bocage landscape with dairy production as dominant farming system (Zone Atelier Armorique, LTER Europe, NW France). The site is characterized by high heterogeneity on short distance due to a high diversity of soils with varying waterlogging, soil parent material, topography, land-use and hedgerow density. SOC content and stocks were measured up to 105-cm depth in 200 sampling locations selected using conditioned Latin hypercube sampling. Additive sampling was designed to specifically explore SOC distribution near to hedges: 112 points were sampled at fixed distance on 14 transects perpendicular from hedges. We illustrate the heterogeneity of spatial and vertical distribution of SOC stocks at landscape scale, and quantify SOC stocks in the various landscape components. Using multivariate statistics, we discuss the variability and co-variability of existing spatial organization of cropping systems, environmental factors, and SOM stocks, over landscape. Ultimately, our results may contribute to improving regional or national digital soil mapping approaches, by considering the distribution of SOC stocks within each modeling unit and by accounting for the impact of sensitive ecosystems.
Spatial statistical analysis of tree deaths using airborne digital imagery
NASA Astrophysics Data System (ADS)
Chang, Ya-Mei; Baddeley, Adrian; Wallace, Jeremy; Canci, Michael
2013-04-01
High resolution digital airborne imagery offers unprecedented opportunities for observation and monitoring of vegetation, providing the potential to identify, locate and track individual vegetation objects over time. Analytical tools are required to quantify relevant information. In this paper, locations of trees over a large area of native woodland vegetation were identified using morphological image analysis techniques. Methods of spatial point process statistics were then applied to estimate the spatially-varying tree death risk, and to show that it is significantly non-uniform. [Tree deaths over the area were detected in our previous work (Wallace et al., 2008).] The study area is a major source of ground water for the city of Perth, and the work was motivated by the need to understand and quantify vegetation changes in the context of water extraction and drying climate. The influence of hydrological variables on tree death risk was investigated using spatial statistics (graphical exploratory methods, spatial point pattern modelling and diagnostics).
Spatial patterns of throughfall isotopic composition at the event and seasonal timescales
NASA Astrophysics Data System (ADS)
Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.
2015-03-01
Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.
Zhang, Fasheng; Yin, Guanghua; Wang, Zhenying; McLaughlin, Neil; Geng, Xiaoyuan; Liu, Zuoxin
2013-01-01
Multifractal techniques were utilized to quantify the spatial variability of selected soil trace elements and their scaling relationships in a 10.24-ha agricultural field in northeast China. 1024 soil samples were collected from the field and available Fe, Mn, Cu and Zn were measured in each sample. Descriptive results showed that Mn deficiencies were widespread throughout the field while Fe and Zn deficiencies tended to occur in patches. By estimating single multifractal spectra, we found that available Fe, Cu and Zn in the study soils exhibited high spatial variability and the existence of anomalies ([α(q)max−α(q)min]≥0.54), whereas available Mn had a relatively uniform distribution ([α(q)max−α(q)min]≈0.10). The joint multifractal spectra revealed that the strong positive relationships (r≥0.86, P<0.001) among available Fe, Cu and Zn were all valid across a wider range of scales and over the full range of data values, whereas available Mn was weakly related to available Fe and Zn (r≥0.18, P<0.01) but not related to available Cu (r = −0.03, P = 0.40). These results show that the variability and singularities of selected soil trace elements as well as their scaling relationships can be characterized by single and joint multifractal parameters. The findings presented in this study could be extended to predict selected soil trace elements at larger regional scales with the aid of geographic information systems. PMID:23874944
Quantifying bushfire penetration into urban areas in Australia
NASA Astrophysics Data System (ADS)
Chen, Keping; McAneney, John
2004-06-01
The extent and trajectory of bushfire penetration at the bushland-urban interface are quantified using data from major historical fires in Australia. We find that the maximum distance at which homes are destroyed is typically less than 700 m. The probability of home destruction emerges as a simple linear and decreasing function of distance from the bushland-urban boundary but with a variable slope that presumably depends upon fire regime and human intervention. The collective data suggest that the probability of home destruction at the forest edge is around 60%. Spatial patterns of destroyed homes display significant neighbourhood clustering. Our results provide revealing spatial evidence for estimating fire risk to properties and suggest an ember-attack model.
Quantifying Spatially Integrated Floodplain and Wetland Systems for the Conterminous US
Wetlands interact with other waters across a variable connectivity continuum, from permanent to transient, from fast to slow, and from primarily surface water to exclusively groundwater flows. Floodplain wetlands typically experience fast and frequent surface and near-surface gro...
NASA Astrophysics Data System (ADS)
Torres, A. D.; Keppel-Aleks, G.; Doney, S. C.; Feng, S.; Lauvaux, T.; Fendrock, M. A.; Rheuben, J.
2017-12-01
Remote sensing instruments provide an unprecedented density of observations of the atmospheric CO2 column average mole fraction (denoted as XCO2), which can be used to constrain regional scale carbon fluxes. Inferring fluxes from XCO2 observations is challenging, as measurements and inversion methods are sensitive to not only the imprint local and large-scale fluxes, but also mesoscale and synoptic-scale atmospheric transport. Quantifying the fine-scale variability in XCO2 from mesoscale and synoptic-scale atmospheric transport will likely improve overall error estimates from flux inversions by improving estimates of representation errors that occur when XCO2 observations are compared to modeled XCO2 in relatively coarse transport models. Here, we utilize various statistical methods to quantify the imprint of atmospheric transport on XCO2 observations. We compare spatial variations along Orbiting Carbon Observatory (OCO-2) satellite tracks to temporal variations observed by the Total Column Carbon Observing Network (TCCON). We observe a coherent seasonal cycle of both within-day temporal and fine-scale spatial variability (of order 10 km) of XCO2 from these two datasets, suggestive of the imprint of mesoscale systems. To account for other potential sources of error in XCO2 retrieval, we compare observed temporal and spatial variations of XCO2 to high-resolution output from the Weather Research and Forecasting (WRF) model run at 9 km resolution. In both simulations and observations, the Northern hemisphere mid-latitude XCO2 showed peak variability during the growing season when atmospheric gradients are largest. These results are qualitatively consistent with our expectations of seasonal variations of the imprint of synoptic and mesoscale atmospheric transport on XCO2 observations; suggesting that these statistical methods could be sensitive to the imprint of atmospheric transport on XCO2 observations.
On the spatial decorrelation of stochastic solar resource variability at long timescales
Perez, Marc J. R.; Fthenakis, Vasilis M.
2015-05-16
Understanding the spatial and temporal characteristics of solar resource variability is important because it helps inform the discussion surrounding the merits of geographic dispersion and subsequent electrical interconnection of photovoltaics as part of a portfolio of future solutions for coping with this variability. The unpredictable resource variability arising from the stochastic nature of meteorological phenomena (from the passage of clouds to the movement of weather systems) is of most concern for achieving high PV penetration because unlike the passage of seasons or the shift from day to night, the uncertainty makes planning a challenge. A suitable proxy for unpredictable solarmore » resource variability at any given location is the series of variations in the clearness index from one time period to the next because the clearness index is largely independent of the predictable influence of solar geometry. At timescales shorter than one day, the correlation between these variations in clearness index at pairs of distinct geographic locations decreases with spatial extent and with timescale. As the aggregate variability across N decorrelated locations decreases as 1/√N, identifying the distance required to achieve this decorrelation is critical to quantifying the expected reduction in variability from geographic dispersion.« less
Ground-based measurement of surface temperature and thermal emissivity
NASA Technical Reports Server (NTRS)
Owe, M.; Van De Griend, A. A.
1994-01-01
Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
NASA Astrophysics Data System (ADS)
Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald
2017-12-01
An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.
Spatial and temporal variability in the water column nutrients and pesticides of Jobos Bay
USDA-ARS?s Scientific Manuscript database
The Conservation Effects Assessment Project (CEAP) is a national, multi-agency effort to quantify the environmental benefits of best management practices used by agricultural producers participating in selected U.S. Department of Agriculture (USDA) conservation programs, including programs such as t...
Pattern detection in stream networks: Quantifying spatialvariability in fish distribution
Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.
2004-01-01
Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.
Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.
Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M
2018-05-30
Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.
NASA Astrophysics Data System (ADS)
Baker, Matthew R.; Hollowed, Anne B.
2014-11-01
Characterizing spatial structure and delineating meaningful spatial boundaries have useful applications to understanding regional dynamics in marine systems, and are integral to ecosystem approaches to fisheries management. Physical structure and drivers combine with biological responses and interactions to organize marine systems in unique ways at multiple scales. We apply multivariate statistical methods to define spatially coherent ecological units or ecoregions in the eastern Bering Sea. We also illustrate a practical approach to integrate data on species distribution, habitat structure and physical forcing mechanisms to distinguish areas with distinct biogeography as one means to define management units in large marine ecosystems. We use random forests to quantify the relative importance of habitat and environmental variables to the distribution of individual species, and to quantify shifts in multispecies assemblages or community composition along environmental gradients. Threshold shifts in community composition are used to identify regions with distinct physical and biological attributes, and to evaluate the relative importance of predictor variables to determining regional boundaries. Depth, bottom temperature and frontal boundaries were dominant factors delineating distinct biological communities in this system, with a latitudinal divide at approximately 60°N. Our results indicate that distinct climatic periods will shift habitat gradients and that dynamic physical variables such as temperature and stratification are important to understanding temporal stability of ecoregion boundaries. We note distinct distribution patterns among functional guilds and also evidence for resource partitioning among individual species within each guild. By integrating physical and biological data to determine spatial patterns in community composition, we partition ecosystems along ecologically significant gradients. This may provide a basis for defining spatial management units or serve as a baseline index for analyses of structural shifts in the physical environment, species abundance and distribution, and community dynamics over time.
NASA Astrophysics Data System (ADS)
Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun
2017-10-01
Monitoring of fine particulate matter with diameter <2.5 μm (PM2.5) started from 1999 in the US and even later in many other countries. The lack of historical PM2.5 data limits epidemiological studies of long-term exposure of PM2.5 and health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter <10 μm (PM10) and meteorological variables. Monitoring data of PM10, PM2.5, and meteorological variables covering the entire state of California were obtained from 1999 through 2013. We developed a spatiotemporal model that quantified non-linear associations between PM2.5 concentrations and the following predictor variables: spatiotemporal factors (PM10 and meteorological variables), spatial factors (land-use patterns, traffic, elevation, distance to shorelines, and spatial autocorrelation), and season. Our model accounted for regional-(county) scale spatial autocorrelation, using spatial weight matrix, and local-scale spatiotemporal variability, using local covariates in additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.
NASA Astrophysics Data System (ADS)
Koenig, W.
2016-12-01
The ecological impacts of modern global climate change are detectable in a wide variety of phenomena ranging from shifts in species ranges to changes in community composition and human disease dynamics. Thus far, however, little attention has been given to temporal changes in environmental spatial synchrony-the coincident change in abundance or value across the landscape-or environmental variability, despite the importance of these factors as drivers of population rescue and extinction and reproductive dynamics of both animal and plant populations. We quantified spatial synchrony of widespread North American wintering birds species using Audubon Christmas Bird Counts over the past 50 years and seed set variability (mast fruiting) among trees over the past century and found that both spatial synchrony of the birds and seed set variability have significantly increased over these time periods. The first of these results was mirrored by significant increases in spatial synchrony of mean maximum air temperature across North America, primarily during the summer, while the second is consistent with the hypothesis that climate change is resulting in greater seed set variability. These findings suggest the potential for temporal changes in envioronmental synchrony and variability to be affecting a wide range of ecological phenomena by influencing the probability of population rescue and extinction and by affecting ecosystem processes that rely on the resource pulses provided by mast fruiting plants.
This manuscript addresses the difficult issue of identifying the origin of particulate organic matter (POM) in estuaries . . . The objectives of this study were to quantify spatial and temporal variability of the C and N stable isotope composition of suspended POM, and to identif...
strengths, limitations, and uncertainties of these two approaches. Because US landfills are highly-engineered and composed of daily, intermediate, and final cover areas with differing thicknesses, composition, and implementation of gas recovery, we also expected different emissi...
USDA-ARS?s Scientific Manuscript database
Understanding the role of ecosystems in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. This study compares and contrasts the seasonal surface fluxes of sensible heat, latent heat and carbon fluxes measur...
Range and variation in landscape patch dynamics: Implications for ecosystem management
Robert E. Keane; Janice L. Garner; Casey Teske; Cathy Stewart; Paul Hessburg
2001-01-01
Northern Rocky Mountain landscape patterns are shaped primarily by fire and succession, and conversely, these vegetation patterns influence burning patterns and plant colonization processes. Historical range and variability (HRV) of landscape pattern can be quantified from three sources: (1) historical chronosequences, (2) spatial series, and (3) simulated...
Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios arc not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have ...
Envisioning, quantifying, and managing thermal regimes on river networks
E. Ashley Steel; Timothy J. Beechie; Christian E. Torgersen; Aimee H. Fullerton
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival....
Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability.
Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves
2015-12-01
This paper presents an unsupervised Bayesian algorithm for hyperspectral image unmixing, accounting for endmember variability. The pixels are modeled by a linear combination of endmembers weighted by their corresponding abundances. However, the endmembers are assumed random to consider their variability in the image. An additive noise is also considered in the proposed model, generalizing the normal compositional model. The proposed algorithm exploits the whole image to benefit from both spectral and spatial information. It estimates both the mean and the covariance matrix of each endmember in the image. This allows the behavior of each material to be analyzed and its variability to be quantified in the scene. A spatial segmentation is also obtained based on the estimated abundances. In order to estimate the parameters associated with the proposed Bayesian model, we propose to use a Hamiltonian Monte Carlo algorithm. The performance of the resulting unmixing strategy is evaluated through simulations conducted on both synthetic and real data.
Quantifying space-time dynamics of flood event types
NASA Astrophysics Data System (ADS)
Viglione, Alberto; Chirico, Giovanni Battista; Komma, Jürgen; Woods, Ross; Borga, Marco; Blöschl, Günter
2010-11-01
SummaryA generalised framework of space-time variability in flood response is used to characterise five flood events of different type in the Kamp area in Austria: one long-rain event, two short-rain events, one rain-on-snow event and one snowmelt event. Specifically, the framework quantifies the contributions of the space-time variability of rainfall/snowmelt, runoff coefficient, hillslope and channel routing to the flood runoff volume and the delay and spread of the resulting hydrograph. The results indicate that the components obtained by the framework clearly reflect the individual processes which characterise the event types. For the short-rain events, temporal, spatial and movement components can all be important in runoff generation and routing, which would be expected because of their local nature in time and, particularly, in space. For the long-rain event, the temporal components tend to be more important for runoff generation, because of the more uniform spatial coverage of rainfall, while for routing the spatial distribution of the produced runoff, which is not uniform, is also important. For the rain-on-snow and snowmelt events, the spatio-temporal variability terms typically do not play much role in runoff generation and the spread of the hydrograph is mainly due to the duration of the event. As an outcome of the framework, a dimensionless response number is proposed that represents the joint effect of runoff coefficient and hydrograph peakedness and captures the absolute magnitudes of the observed flood peaks.
NASA Astrophysics Data System (ADS)
Zhang, X.; Roman, M.; Kimmel, D.; McGilliard, C.; Boicourt, W.
2006-05-01
High-resolution, axial sampling surveys were conducted in Chesapeake Bay during April, July, and October from 1996 to 2000 using a towed sampling device equipped with sensors for depth, temperature, conductivity, oxygen, fluorescence, and an optical plankton counter (OPC). The results suggest that the axial distribution and variability of hydrographic and biological parameters in Chesapeake Bay were primarily influenced by the source and magnitude of freshwater input. Bay-wide spatial trends in the water column-averaged values of salinity were linear functions of distance from the main source of freshwater, the Susquehanna River, at the head of the bay. However, spatial trends in the water column-averaged values of temperature, dissolved oxygen, chlorophyll-a and zooplankton biomass were nonlinear along the axis of the bay. Autocorrelation analysis and the residuals of linear and quadratic regressions between each variable and latitude were used to quantify the patch sizes for each axial transect. The patch sizes of each variable depended on whether the data were detrended, and the detrending techniques applied. However, the patch size of each variable was generally larger using the original data compared to the detrended data. The patch sizes of salinity were larger than those for dissolved oxygen, chlorophyll-a and zooplankton biomass, suggesting that more localized processes influence the production and consumption of plankton. This high-resolution quantification of the zooplankton spatial variability and patch size can be used for more realistic assessments of the zooplankton forage base for larval fish species.
Bender, Christopher M; Ballard, Megan S; Wilson, Preston S
2014-06-01
The overall goal of this work is to quantify the effects of environmental variability and spatial sampling on the accuracy and uncertainty of estimates of the three-dimensional ocean sound-speed field. In this work, ocean sound speed estimates are obtained with acoustic data measured by a sparse autonomous observing system using a perturbative inversion scheme [Rajan, Lynch, and Frisk, J. Acoust. Soc. Am. 82, 998-1017 (1987)]. The vertical and horizontal resolution of the solution depends on the bandwidth of acoustic data and on the quantity of sources and receivers, respectively. Thus, for a simple, range-independent ocean sound speed profile, a single source-receiver pair is sufficient to estimate the water-column sound-speed field. On the other hand, an environment with significant variability may not be fully characterized by a large number of sources and receivers, resulting in uncertainty in the solution. This work explores the interrelated effects of environmental variability and spatial sampling on the accuracy and uncertainty of the inversion solution though a set of case studies. Synthetic data representative of the ocean variability on the New Jersey shelf are used.
The relationship between observational scale and explained variance in benthic communities
Flood, Roger D.; Frisk, Michael G.; Garza, Corey D.; Lopez, Glenn R.; Maher, Nicole P.
2018-01-01
This study addresses the impact of spatial scale on explaining variance in benthic communities. In particular, the analysis estimated the fraction of community variation that occurred at a spatial scale smaller than the sampling interval (i.e., the geographic distance between samples). This estimate is important because it sets a limit on the amount of community variation that can be explained based on the spatial configuration of a study area and sampling design. Six benthic data sets were examined that consisted of faunal abundances, common environmental variables (water depth, grain size, and surficial percent cover), and sonar backscatter treated as a habitat proxy (categorical acoustic provinces). Redundancy analysis was coupled with spatial variograms generated by multiscale ordination to quantify the explained and residual variance at different spatial scales and within and between acoustic provinces. The amount of community variation below the sampling interval of the surveys (< 100 m) was estimated to be 36–59% of the total. Once adjusted for this small-scale variation, > 71% of the remaining variance was explained by the environmental and province variables. Furthermore, these variables effectively explained the spatial structure present in the infaunal community. Overall, no scale problems remained to compromise inferences, and unexplained infaunal community variation had no apparent spatial structure within the observational scale of the surveys (> 100 m), although small-scale gradients (< 100 m) below the observational scale may be present. PMID:29324746
Lin, Guojun; Stralberg, Diana; Gong, Guiquan; Huang, Zhongliang; Ye, Wanhui; Wu, Linfang
2013-01-01
Quantifying the relative contributions of environmental conditions and spatial factors to species distribution can help improve our understanding of the processes that drive diversity patterns. In this study, based on tree inventory, topography and soil data from a 20-ha stem-mapped permanent forest plot in Guangdong Province, China, we evaluated the influence of different ecological processes at different spatial scales using canonical redundancy analysis (RDA) at the community level and multiple linear regression at the species level. At the community level, the proportion of explained variation in species distribution increased with grid-cell sizes, primarily due to a monotonic increase in the explanatory power of environmental variables. At the species level, neither environmental nor spatial factors were important determinants of overstory species' distributions at small cell sizes. However, purely spatial variables explained most of the variation in the distributions of understory species at fine and intermediate cell sizes. Midstory species showed patterns that were intermediate between those of overstory and understory species. At the 20-m cell size, the influence of spatial factors was stronger for more dispersal-limited species, suggesting that much of the spatial structuring in this community can be explained by dispersal limitation. Comparing environmental factors, soil variables had higher explanatory power than did topography for species distribution. However, both topographic and edaphic variables were highly spatial structured. Our results suggested that dispersal limitation has an important influence on fine-intermediate scale (from several to tens of meters) species distribution, while environmental variability facilitates species distribution at intermediate (from ten to tens of meters) and broad (from tens to hundreds of meters) scales.
Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo
2003-01-01
Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.
NASA Astrophysics Data System (ADS)
Sharma, T.; Chhabra, S., Jr.; Karmakar, S.; Ghosh, S.
2015-12-01
We have quantified the historical climate change and Land Use Land Cover (LULC) change impacts on the hydrologic variables of Indian subcontinent by using Variable Infiltration Capacity (VIC) mesoscale model at 0.5° spatial resolution and daily temporal resolution. The results indicate that the climate change in India has predominating effects on the basic water balance components such as water yield, evapotranspiration and soil moisture. This analysis is with the assumption of naturalised hydrologic cycle, i.e., the impacts of human interventions like construction of controlled (primarily dams, diversions and reservoirs) and water withdrawals structures are not taken into account. The assumption is unrealistic since there are numerous anthropogenic disturbances which result in large changes on vegetation composition and distribution patterns. These activities can directly or indirectly influence the dynamics of water cycle; subsequently affecting the hydrologic processes like plant transpiration, infiltration, evaporation, runoff and sublimation. Here, we have quantified the human interventions by using the reservoir and irrigation module of VIC model which incorporates the irrigation schemes, reservoir characteristics and water withdrawals. The impact of human interventions on hydrologic variables in many grids are found more predominant than climate change and might be detrimental to water resources at regional level. This spatial pattern of impacts will facilitate water manager and planners to design and station hydrologic structures for a sustainable water resources management.
Variability of furrow infiltration and irrigation performance in a macroporous soil
USDA-ARS?s Scientific Manuscript database
The study of spatial and temporal variations of infiltration in furrows is essential for the design and management of surface irrigation. A key difficulty in quantifying the process is that infiltration is dependent on the depth of flow, which varies along a furrow and with time. An additional diffi...
Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have conducted a...
Quantifying VOC emissions from East Asia using 10 years of satellite observations
NASA Astrophysics Data System (ADS)
Stavrakou, T.; Muller, J. F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; Boersma, F.; van der A, R. J.; Pierre-Francois, C.; Clerbaux, C.
2016-12-01
China's emissions are in the spotlight of efforts to mitigate climate change and improve regional and city-scale air quality. Despite growing efforts to better quantify China's emissions, the current estimates are often poor or inadequate. Complementary to bottom-up inventories, inverse modeling of fluxes has the potential to improve those estimates through the use of atmospheric observations of trace gas compounds. As formaldehyde (HCHO) is a high-yield product in the oxidation of most volatile organic compounds (VOCs) emitted by anthropogenic and natural sources, satellite observations of HCHO hold the potential to inform us on the spatial and temporal variability of the underlying VOC sources. The 10-year record of space-based HCHO column observations from the OMI instrument is used to constrain VOC emission fluxes in East Asia in a source inversion framework built on the IMAGES chemistry-transport model and its adjoint. The interannual and seasonal variability, spatial distribution and potential trends of the top-down VOC fluxes (anthropogenic, pyrogenic and biogenic) are presented and confronted to existing emission inventories, satellite observations of other species (e.g. glyoxal and nitrogen oxides), and past studies.
NASA Technical Reports Server (NTRS)
Pinder, Robert W.; Walker, John T.; Bash, Jesse O.; Cady-Pereira, Karen E.; Henze, Daven K.; Luo, Mingzhao; Osterman, Gregory B.; Shepard, Mark W.
2011-01-01
Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have conducted a field campaign combining co-located surface measurements and satellite special observations from the Tropospheric Emission Spectrometer (TES). Our study includes 25 surface monitoring sites spanning 350 km across eastern North Carolina, a region with large seasonal and spatial variability in NH3. From the TES spectra, we retrieve a NH3 representative volume mixing ratio (RVMR), and we restrict our analysis to times when the region of the atmosphere observed by TES is representative of the surface measurement. We find that the TES NH3 RVMR qualitatively captures the seasonal and spatial variability found in eastern North Carolina. Both surface measurements and TES NH3 show a strong correspondence with the number of livestock facilities within 10 km of the observation. Furthermore, we find that TES H3 RVMR captures the month-to-month variability present in the surface observations. The high correspondence with in situ measurements and vast spatial coverage make TES NH3 RVMR a valuable tool for understanding regional and global NH3 fluxes.
Batterman, Stuart
2015-01-01
Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity. PMID:26688671
Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance
Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.
2012-01-01
Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324
Using geostatistics to evaluate cleanup goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcon, M.F.; Hopkins, L.P.
1995-12-01
Geostatistical analysis is a powerful predictive tool typically used to define spatial variability in environmental data. The information from a geostatistical analysis using kriging, a geostatistical. tool, can be taken a step further to optimize sampling location and frequency and help quantify sampling uncertainty in both the remedial investigation and remedial design at a hazardous waste site. Geostatistics were used to quantify sampling uncertainty in attainment of a risk-based cleanup goal and determine the optimal sampling frequency necessary to delineate the horizontal extent of impacted soils at a Gulf Coast waste site.
Estimating recharge rates with analytic element models and parameter estimation
Dripps, W.R.; Hunt, R.J.; Anderson, M.P.
2006-01-01
Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).
Preisler, Haiganoush K; Hicke, Jeffrey A; Ager, Alan A; Hayes, Jane L
2012-11-01
Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process models that simulate climate suitability for mountain pine beetle outbreaks have advanced our understanding of beetle population dynamics; however, there are few studies that have assessed their accuracy across multiple outbreaks or at larger spatial scales. This study used the observed number of trees killed by mountain pine beetles per square kilometer in Oregon and Washington, USA, over the past three decades to quantify and assess the influence of climate and weather variables on beetle activity over longer time periods and larger scales than previously studied. Influences of temperature and precipitation in addition to process model output variables were assessed at annual and climatological time scales. The statistical analysis showed that new attacks are more likely to occur at locations with climatological mean August temperatures >15 degrees C. After controlling for beetle pressure, the variables with the largest effect on the odds of an outbreak exceeding a certain size were minimum winter temperature (positive relationship) and drought conditions in current and previous years. Precipitation levels in the year prior to the outbreak had a positive effect, possibly an indication of the influence of this driver on brood size. Two-year cumulative precipitation had a negative effect, a possible indication of the influence of drought on tree stress. Among the process model variables, cold tolerance was the strongest indicator of an outbreak increasing to epidemic size. A weather suitability index developed from the regression analysis indicated a 2.5x increase in the odds of outbreak at locations with highly suitable weather vs. locations with low suitability. The models were useful for estimating expected amounts of damage (total area with outbreaks) and for quantifying the contribution of climate to total damage. Overall, the results confirm the importance of climate and weather on the spatial expansion of bark beetle outbreaks over time.
NASA Astrophysics Data System (ADS)
McGuire, K. J.; Bailey, S. W.; Ross, D. S.
2017-12-01
Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.
Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.
2018-01-01
Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.
Exploring the spatial variability of soil properties in an Alfisol Catena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosemary, F.; Vitharana, U. W. A.; Indraratne, S. P.
Detailed digital soil maps showing the spatial heterogeneity of soil properties consistent with the landscape are required for site-specific management of plant nutrients, land use planning and process-based environmental modeling. We characterized the short-scale spatial heterogeneity of soil properties in an Alfisol catena in a tropical landscape of Sri Lanka. The impact of different land-uses (paddy, vegetable and un-cultivated) was examined to assess the impact of anthropogenic activities on the variability of soil properties at the catenary level. Conditioned Latin hypercube sampling was used to collect 58 geo-referenced topsoil samples (0–30 cm) from the study area. Soil samples were analyzedmore » for pH, electrical conductivity (EC), organic carbon (OC), cation exchange capacity (CEC) and texture. The spatial correlation between soil properties was analyzed by computing crossvariograms and subsequent fitting of theoretical model. Spatial distribution maps were developed using ordinary kriging. The range of soil properties, pH: 4.3–7.9; EC: 0.01–0.18 dS m –1 ; OC: 0.1–1.37%; CEC: 0.44– 11.51 cmol (+) kg –1 ; clay: 1.5–25% and sand: 59.1–84.4% and their coefficient of variations indicated a large variability in the study area. Electrical conductivity and pH showed a strong spatial correlation which was reflected by the cross-variogram close to the hull of the perfect correlation. Moreover, cross-variograms calculated for EC and Clay, CEC and OC, CEC and clay and CEC and pH indicated weak positive spatial correlation between these properties. Relative nugget effect (RNE) calculated from variograms showed strongly structured spatial variability for pH, EC and sand content (RNE < 25%) while CEC, organic carbon and clay content showed moderately structured spatial variability (25% < RNE < 75%). Spatial dependencies for examined soil properties ranged from 48 to 984 m. The mixed effects model fitting followed by Tukey's post-hoc test showed significant effect of land use on the spatial variability of EC. Our study revealed a structured variability of topsoil properties in the selected tropical Alfisol catena. Except for EC, observed variability was not modified by the land uses. Investigated soil properties showed distinct spatial structures at different scales and magnitudes of strength. Our results will be useful for digital soil mapping, site specific management of soil properties, developing appropriate land use plans and quantifying anthropogenic impacts on the soil system.« less
Ho, Hung Chak; Knudby, Anders; Walker, Blake Byron; Henderson, Sarah B
2017-01-01
Climate change has increased the frequency and intensity of extremely hot weather. The health risks associated with extemely hot weather are not uniform across affected areas owing to variability in heat exposure and social vulnerability, but these differences are challenging to map with precision. We developed a spatially and temporally stratified case-crossover approach for delineation of areas with higher and lower risks of mortality on extremely hot days and applied this approach in greater Vancouver, Canada. Records of all deaths with an extremely hot day as a case day or a control day were extracted from an administrative vital statistics database spanning the years of 1998-2014. Three heat exposure and 11 social vulnerability variables were assigned at the residential location of each decedent. Conditional logistic regression was used to estimate the odds ratio for a 1°C increase in daily mean temperature at a fixed site with an interaction term for decedents living above and below different values of the spatial variables. The heat exposure and social vulnerability variables with the strongest spatially stratified results were the apparent temperature and the labor nonparticipation rate, respectively. Areas at higher risk had values ≥ 34.4°C for the maximum apparent temperature and ≥ 60% of the population neither employed nor looking for work. These variables were combined in a composite index to quantify their interaction and to enhance visualization of high-risk areas. Our methods provide a data-driven framework for spatial delineation of the temperature--mortality relationship by heat exposure and social vulnerability. The results can be used to map and target the most vulnerable areas for public health intervention. Citation: Ho HC, Knudby A, Walker BB, Henderson SB. 2017. Delineation of spatial variability in the temperature-mortality relationship on extremely hot days in greater Vancouver, Canada. Environ Health Perspect 125:66-75; http://dx.doi.org/10.1289/EHP224.
Ho, Hung Chak; Knudby, Anders; Walker, Blake Byron; Henderson, Sarah B.
2016-01-01
Background: Climate change has increased the frequency and intensity of extremely hot weather. The health risks associated with extemely hot weather are not uniform across affected areas owing to variability in heat exposure and social vulnerability, but these differences are challenging to map with precision. Objectives: We developed a spatially and temporally stratified case-crossover approach for delineation of areas with higher and lower risks of mortality on extremely hot days and applied this approach in greater Vancouver, Canada. Methods: Records of all deaths with an extremely hot day as a case day or a control day were extracted from an administrative vital statistics database spanning the years of 1998–2014. Three heat exposure and 11 social vulnerability variables were assigned at the residential location of each decedent. Conditional logistic regression was used to estimate the odds ratio for a 1°C increase in daily mean temperature at a fixed site with an interaction term for decedents living above and below different values of the spatial variables. Results: The heat exposure and social vulnerability variables with the strongest spatially stratified results were the apparent temperature and the labor nonparticipation rate, respectively. Areas at higher risk had values ≥ 34.4°C for the maximum apparent temperature and ≥ 60% of the population neither employed nor looking for work. These variables were combined in a composite index to quantify their interaction and to enhance visualization of high-risk areas. Conclusions: Our methods provide a data-driven framework for spatial delineation of the temperature-–mortality relationship by heat exposure and social vulnerability. The results can be used to map and target the most vulnerable areas for public health intervention. Citation: Ho HC, Knudby A, Walker BB, Henderson SB. 2017. Delineation of spatial variability in the temperature–mortality relationship on extremely hot days in greater Vancouver, Canada. Environ Health Perspect 125:66–75; http://dx.doi.org/10.1289/EHP224 PMID:27346526
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas
2017-03-01
The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.
Effects of Topography-driven Micro-climatology on Evaporation
NASA Astrophysics Data System (ADS)
Adams, D. D.; Boll, J.; Wagenbrenner, N. S.
2017-12-01
The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.
Rood, Ente J J; Goris, Marga G A; Pijnacker, Roan; Bakker, Mirjam I; Hartskeerl, Rudy A
2017-01-01
Leptospirosis is a globally emerging zoonotic disease, associated with various climatic, biotic and abiotic factors. Mapping and quantifying geographical variations in the occurrence of leptospirosis and the surrounding environment offer innovative methods to study disease transmission and to identify associations between the disease and the environment. This study aims to investigate geographic variations in leptospirosis incidence in the Netherlands and to identify associations with environmental factors driving the emergence of the disease. Individual case data derived over the period 1995-2012 in the Netherlands were geocoded and aggregated by municipality. Environmental covariate data were extracted for each municipality and stored in a spatial database. Spatial clusters were identified using kernel density estimations and quantified using local autocorrelation statistics. Associations between the incidence of leptospirosis and the local environment were determined using Simultaneous Autoregressive Models (SAR) explicitly modelling spatial dependence of the model residuals. Leptospirosis incidence rates were found to be spatially clustered, showing a marked spatial pattern. Fitting a spatial autoregressive model significantly improved model fit and revealed significant association between leptospirosis and the coverage of arable land, built up area, grassland and sabulous clay soils. The incidence of leptospirosis in the Netherlands could effectively be modelled using a combination of soil and land-use variables accounting for spatial dependence of incidence rates per municipality. The resulting spatially explicit risk predictions provide an important source of information which will benefit clinical awareness on potential leptospirosis infections in endemic areas.
Goris, Marga G. A.; Pijnacker, Roan; Bakker, Mirjam I.; Hartskeerl, Rudy A.
2017-01-01
Leptospirosis is a globally emerging zoonotic disease, associated with various climatic, biotic and abiotic factors. Mapping and quantifying geographical variations in the occurrence of leptospirosis and the surrounding environment offer innovative methods to study disease transmission and to identify associations between the disease and the environment. This study aims to investigate geographic variations in leptospirosis incidence in the Netherlands and to identify associations with environmental factors driving the emergence of the disease. Individual case data derived over the period 1995–2012 in the Netherlands were geocoded and aggregated by municipality. Environmental covariate data were extracted for each municipality and stored in a spatial database. Spatial clusters were identified using kernel density estimations and quantified using local autocorrelation statistics. Associations between the incidence of leptospirosis and the local environment were determined using Simultaneous Autoregressive Models (SAR) explicitly modelling spatial dependence of the model residuals. Leptospirosis incidence rates were found to be spatially clustered, showing a marked spatial pattern. Fitting a spatial autoregressive model significantly improved model fit and revealed significant association between leptospirosis and the coverage of arable land, built up area, grassland and sabulous clay soils. The incidence of leptospirosis in the Netherlands could effectively be modelled using a combination of soil and land-use variables accounting for spatial dependence of incidence rates per municipality. The resulting spatially explicit risk predictions provide an important source of information which will benefit clinical awareness on potential leptospirosis infections in endemic areas. PMID:29065186
Pressey, Robert L.; Weeks, Rebecca; Andréfouët, Serge; Moloney, James
2016-01-01
Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors—planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs—on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs. PMID:27829042
Cheok, Jessica; Pressey, Robert L; Weeks, Rebecca; Andréfouët, Serge; Moloney, James
2016-01-01
Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors-planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs-on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs.
Uncertainties in the projection of species distributions related to general circulation models
Goberville, Eric; Beaugrand, Grégory; Hautekèete, Nina-Coralie; Piquot, Yves; Luczak, Christophe
2015-01-01
Ecological Niche Models (ENMs) are increasingly used by ecologists to project species potential future distribution. However, the application of such models may be challenging, and some caveats have already been identified. While studies have generally shown that projections may be sensitive to the ENM applied or the emission scenario, to name just a few, the sensitivity of ENM-based scenarios to General Circulation Models (GCMs) has been often underappreciated. Here, using a multi-GCM and multi-emission scenario approach, we evaluated the variability in projected distributions under future climate conditions. We modeled the ecological realized niche (sensu Hutchinson) and predicted the baseline distribution of species with contrasting spatial patterns and representative of two major functional groups of European trees: the dwarf birch and the sweet chestnut. Their future distributions were then projected onto future climatic conditions derived from seven GCMs and four emissions scenarios using the new Representative Concentration Pathways (RCPs) developed for the Intergovernmental Panel on Climate Change (IPCC) AR5 report. Uncertainties arising from GCMs and those resulting from emissions scenarios were quantified and compared. Our study reveals that scenarios of future species distribution exhibit broad differences, depending not only on emissions scenarios but also on GCMs. We found that the between-GCM variability was greater than the between-RCP variability for the next decades and both types of variability reached a similar level at the end of this century. Our result highlights that a combined multi-GCM and multi-RCP approach is needed to better consider potential trajectories and uncertainties in future species distributions. In all cases, between-GCM variability increases with the level of warming, and if nothing is done to alleviate global warming, future species spatial distribution may become more and more difficult to anticipate. When future species spatial distributions are examined, we propose to use a large number of GCMs and RCPs to better anticipate potential trajectories and quantify uncertainties. PMID:25798227
NASA Astrophysics Data System (ADS)
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-10-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7-27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity.
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-01-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7–27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity. PMID:27775021
Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK.
Rothwell, James J; Evans, Martin G; Lindsay, John B; Allott, Timothy E H
2007-01-01
Increasingly, within-site and regional comparisons of peatland lead pollution have been undertaken using the inventory approach. The peatlands of the Peak District, southern Pennines, UK, have received significant atmospheric inputs of lead over the last few hundred years. A multi-core study at three peatland sites in the Peak District demonstrates significant within-site spatial variability in industrial lead pollution. Stochastic simulations reveal that 15 peat cores are required to calculate reliable lead inventories at the within-site and within-region scale for this highly polluted area of the southern Pennines. Within-site variability in lead pollution is dominant at the within-region scale. The study demonstrates that significant errors may be associated with peatland lead inventories at sites where only a single peat core has been used to calculate an inventory. Meaningful comparisons of lead inventories at the regional or global scale can only be made if the within-site variability of lead pollution has been quantified reliably.
Chick, J.H.; Van Den Avyle, M.J.
1999-01-01
We quantified temporal and spatial variability of zooplankton in three potential nursery sites (river, transition zone, lake) for larval striped bass (Morone saxatilis) in Lake Marion, South Carolina, during April and May 1993-1995. In two of three years, microzooplankton (rotifers and copepod nauplii) density was significantly greater in the lake site than in the river or transition zone. Macrozooplankton (>200 ??m) composition varied among the three sites in all years with adult copepods and cladocerans dominant at the lake, and juvenile Corbicula fluminea dominant at the river and transition zone. Laboratory feeding experiments, simulating both among-site (site treatments) and within-site (density treatments) variability, were conducted in 1995 to quantify the effects of the observed zooplankton variability on foraging success of larval striped bass. A greater proportion of larvae fed in the lake than in the river or transition-zone treatments across all density treatments: mean (x), 10x and 100x. Larvae also ingested significantly more dry mass of prey in the lake treatment in both the mean and 10x density treatments. Field zooplankton and laboratory feeding data suggest that both spatial and temporal variability of zooplankton influence larval striped bass foraging. Prey density levels that supported successful foraging in our feeding experiments occurred in the lake during late April and May in 1994 and 1995 but were never observed in the river or transition zone. Because the rivers flowing into Lake Marion are regulated, it may be possible to devise flow management schemes that facilitate larval transport to the lake and thereby increase the proportion of larvae matched to suitable prey resources.
Using variance structure to quantify responses to perturbation in fish catches
Vidal, Tiffany E.; Irwin, Brian J.; Wagner, Tyler; Rudstam, Lars G.; Jackson, James R.; Bence, James R.
2017-01-01
We present a case study evaluation of gill-net catches of Walleye Sander vitreus to assess potential effects of large-scale changes in Oneida Lake, New York, including the disruption of trophic interactions by double-crested cormorants Phalacrocorax auritus and invasive dreissenid mussels. We used the empirical long-term gill-net time series and a negative binomial linear mixed model to partition the variability in catches into spatial and coherent temporal variance components, hypothesizing that variance partitioning can help quantify spatiotemporal variability and determine whether variance structure differs before and after large-scale perturbations. We found that the mean catch and the total variability of catches decreased following perturbation but that not all sampling locations responded in a consistent manner. There was also evidence of some spatial homogenization concurrent with a restructuring of the relative productivity of individual sites. Specifically, offshore sites generally became more productive following the estimated break point in the gill-net time series. These results provide support for the idea that variance structure is responsive to large-scale perturbations; therefore, variance components have potential utility as statistical indicators of response to a changing environment more broadly. The modeling approach described herein is flexible and would be transferable to other systems and metrics. For example, variance partitioning could be used to examine responses to alternative management regimes, to compare variability across physiographic regions, and to describe differences among climate zones. Understanding how individual variance components respond to perturbation may yield finer-scale insights into ecological shifts than focusing on patterns in the mean responses or total variability alone.
Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard
2009-01-01
Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.
Xu, Hongmei; Ho, Steven Sai Hang; Gao, Meiling; Cao, Junji; Guinot, Benjamin; Ho, Kin Fai; Long, Xin; Wang, Jingzhi; Shen, Zhenxing; Liu, Suixin; Zheng, Chunli; Zhang, Qian
2016-11-01
Spatial variability of polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matter (PM 2.5 ) was investigated in Xi'an, China, in summer of 2013. Sixteen priority PAHs were quantified in 24-h integrated air samples collected simultaneously at nine urban and suburban communities. The total quantified PAHs mass concentrations ranged from 32.4 to 104.7 ng m -3 , with an average value of 57.1 ± 23.0 ng m -3 . PAHs were observed higher concentrations at suburban communities (average: 86.3 ng m -3 ) than at urban ones (average: 48.8 ng m -3 ) due to a better enforcement of the pollution control policies at the urban scale, and meanwhile the disorganized management of motor vehicles and massive building constructions in the suburbs. Elevated PAH levels were observed in the industrialized regions (west and northwest of Xi'an) from Kriging interpolation analysis. Satellite-based visual interpretations of land use were also applied for the supporting the spatial distribution of PAHs among the communities. The average benzo[a]pyrene-equivalent toxicity (Σ[BaP] eq ) at the nine communities was 6.9 ± 2.2 ng m -3 during the sampling period, showing a generally similar spatial distribution to PAHs levels. On average, the excess inhalation lifetime cancer risk derived from Σ[BaP] eq indicated that eight persons per million of community residents would develop cancer due to PM 2.5 -bound PAHs exposure in Xi'an. The great in-city spatial variability of PAHs confirmed the importance of multiple points sampling to conduct exposure health risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.
2017-12-01
Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.
Spatial Distribution of Fate and Transport Parameters Using Cxtfit in a Karstified Limestone Model
NASA Astrophysics Data System (ADS)
Toro, J.; Padilla, I. Y.
2017-12-01
Karst environments have a high capacity to transport and store large amounts of water. This makes karst aquifers a productive resource for human consumption and ecological integrity, but also makes them vulnerable to potential contamination of hazardous chemical substances. High heterogeneity and anisotropy of karst aquifer properties make them very difficult to characterize for accurate prediction of contaminant mobility and persistence in groundwater. Current technologies to characterize and quantify flow and transport processes at field-scale is limited by low resolution of spatiotemporal data. To enhance this resolution and provide the essential knowledge of karst groundwater systems, studies at laboratory scale can be conducted. This work uses an intermediate karstified lab-scale physical model (IKLPM) to study fate and transport processes and assess viable tools to characterize heterogeneities in karst systems. Transport experiments are conducted in the IKLPM using step injections of calcium chloride, uranine, and rhodamine wt tracers. Temporal concentration distributions (TCDs) obtained from the experiments are analyzed using the method of moments and CXTFIT to quantify fate and transport parameters in the system at various flow rates. The spatial distribution of the estimated fate and transport parameters for the tracers revealed high variability related to preferential flow heterogeneities and scale dependence. Results are integrated to define spatially-variable transport regions within the system and assess their fate and transport characteristics.
NASA Astrophysics Data System (ADS)
Huret, M.; Petitgas, P.; Woillez, M.
2010-10-01
Dispersal of fish early life stages explains part of the recruitment success, through interannual variability in spawning, transport and survival. Dispersal results from a complex interaction between physical and biological processes acting at different temporal and spatial scales, and at the individual or population level. In this paper we quantify the response of anchovy egg and larval dispersal in the Bay of Biscay to the following sources of variability: vertical larval behaviour, drift duration, adult spawning location and timing, and spatio-temporal variability in the hydrodynamics. We use simulations of Lagrangian trajectories in a 3-dimensional hydrodynamic model, as well as spatial indices describing different properties of the dispersal kernel: the mean transport (distance, direction), its variance, occupation of space by particles and their aggregation. We show that larval drift duration has a major impact on the dispersion at scales of ˜100 km, but that vertical behaviour becomes dominant reducing dispersion at scales of ˜1-10 km. Spawning location plays a major role in explaining connectivity patterns, in conjunction with spawning temporal variability. Interannual variability in the circulation dominates over seasonal variability. However, seasonal patterns become predominant for coastal spawning locations, revealing a recurrent shift in the direction of dispersal during the anchovy spawning season.
Understanding thermal circulations and near-surface turbulence processes in a small mountain valley
NASA Astrophysics Data System (ADS)
Pardyjak, E.; Dupuy, F.; Durand, P.; Gunawardena, N.; Thierry, H.; Roubin, P.
2017-12-01
The interaction of turbulence and thermal circulations in complex terrain can be significantly different from idealized flat terrain. In particular, near-surface horizontal spatial and temporal variability of winds and thermodynamic variables can be significant event over very small spatial scales. The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 conducted from January through March 2017 was designed to address these issues and to ultimately improve prediction of dispersion in complex terrain, particularly during stable atmospheric conditions. We have used a relatively large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations and fourteen Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in southeastern France. The Cadarache Valley is a relatively small valley (5 km x 1 km) with modest slopes and relatively small elevation differences between the valley floor and nearby hilltops ( 100 m). During winter, winds in the valley are light and stably stratified at night leading to thermal circulations as well as complex near-surface atmospheric layering. In this presentation we present results quantifying spatial variability of thermodynamic and turbulence variables as a function of different large -scale forcing conditions (e.g., quiescent conditions, strong westerly flow, and Mistral flow). In addition, we attempt to characterize highly-regular nocturnal horizontal wind meandering and associated turbulence statistics.
Sullivan, M C; Wuenschel, M J; Able, K W
2009-06-01
The objective of this study was to quantify spatial and temporal variability of anguillid glass eel ingress within and between adjacent watersheds in order to help illuminate the mechanisms moderating annual recruitment. Because single fixed locations are often used to assess annual recruitment, the intra-annual dynamics of ingress across multiple sites often remains unresolved. To address this question, plankton nets and eel collectors were deployed weekly to synoptically quantify early stage Anguilla rostrata abundance at 12 sites across two New Jersey estuaries over an ingress season. Numbers of early-stage glass eels collected at the inlet mouths were moderately variable within and between estuaries over time and showed evidence for weak lunar phase and water temperature correlations. The relative condition of glass eels, although highly variable, declined significantly over the ingress season and indicated a tendency for lower condition A. rostrata to colonize sites in the lower estuary. Accumulations of glass eels and early-stage elvers retrieved from collectors (one to >1500 A. rostrata per collector) at lower estuary sites were highly variable over time, producing only weak correlations between estuaries. By way of contrast, development into late-stage elvers, coupled with the large-scale colonization of up-river sites, was highly synchronized between and within estuaries and contingent on water temperatures reaching c. 10-12 degrees C. Averaged over the ingress season, abundance estimates were remarkably consistent between paired sites across estuaries, indicating a low degree of interestuary variability. Within an estuary, however, abundance estimates varied considerably depending on location. These results and methodology have important implications for the planning and interpretation of early-stage anguillid eel surveys as well as the understanding of the dynamic nature of ingress and the spatial scales over which recruitment varies.
Law, Jane
2016-01-01
Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended. PMID:29546147
A novel principal component analysis for spatially misaligned multivariate air pollution data.
Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A
2017-01-01
We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.
Spatial trends in Pearson Type III statistical parameters
Lichty, R.W.; Karlinger, M.R.
1995-01-01
Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors
Monitoring urban tree cover using object-based image analysis and public domain remotely sensed data
L. Monika Moskal; Diane M. Styers; Meghan Halabisky
2011-01-01
Urban forest ecosystems provide a range of social and ecological services, but due to the heterogeneity of these canopies their spatial extent is difficult to quantify and monitor. Traditional per-pixel classification methods have been used to map urban canopies, however, such techniques are not generally appropriate for assessing these highly variable landscapes....
Quantifying clutter: A comparison of four methods and their relationship to bat detection
Joy M. O’Keefe; Susan C. Loeb; Hoke S. Hill Jr.; J. Drew Lanham
2014-01-01
The degree of spatial complexity in the environment, or clutter, affects the quality of foraging habitats for bats and their detection with acoustic systems. Clutter has been assessed in a variety of ways but there are no standardized methods for measuring clutter. We compared four methods (Visual Clutter, Cluster, Single Variable, and Clutter Index) and related these...
Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas
2013-07-15
Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.
2014-12-01
Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2 exchanges.
Yee, Susan Harrell; Barron, Mace G
2010-02-01
Coral reefs have experienced extensive mortality over the past few decades as a result of temperature-induced mass bleaching events. There is an increasing realization that other environmental factors, including water mixing, solar radiation, water depth, and water clarity, interact with temperature to either exacerbate bleaching or protect coral from mass bleaching. The relative contribution of these factors to variability in mass bleaching at a global scale has not been quantified, but can provide insights when making large-scale predictions of mass bleaching events. Using data from 708 bleaching surveys across the globe, a framework was developed to predict the probability of moderate or severe bleaching as a function of key environmental variables derived from global-scale remote-sensing data. The ability of models to explain spatial and temporal variability in mass bleaching events was quantified. Results indicated approximately 20% improved accuracy of predictions of bleaching when solar radiation and water mixing, in addition to elevated temperature, were incorporated into models, but predictive accuracy was variable among regions. Results provide insights into the effects of environmental parameters on bleaching at a global scale.
Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.
2015-01-01
Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.
NASA Astrophysics Data System (ADS)
Jian, S.; Li, J.; Guo, C.; Hui, D.; Deng, Q.; Yu, C. L.; Dzantor, K. E.; Lane, C.
2017-12-01
Nitrogen (N) fertilizers are widely used to increase bioenergy crop yield but intensive fertilizations on spatial distributions of soil microbial processes in bioenergy croplands remains unknown. To quantify N fertilization effect on spatial heterogeneity of soil microbial biomass carbon (MBC) and N (MBN), we sampled top mineral horizon soils (0-15cm) using a spatially explicit design within two 15-m2 plots under three fertilization treatments in two bioenergy croplands in a three-year long fertilization experiment in Middle Tennessee, USA. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha-1 in urea) and high N input (HN: 168 kg N ha-1 in urea). The two crops were switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.). Results showed that N fertilizations little altered central tendencies of microbial variables but relative to LN, HN significantly increased MBC and MBC:MBN (GG only). HN possessed the greatest within-plot variances except for MBN (GG only). Spatial patterns were generally evident under HN and LN plots and much less so under NN plots. Substantially contrasting spatial variations were also identified between croplands (GG>SG) and among variables (MBN, MBC:MBN > MBC). No significant correlations were identified between soil pH and microbial variables. This study demonstrated that spatial heterogeneity is elevated in microbial biomass of fertilized soils likely by uneven fertilizer application, the nature of soil microbial communities and bioenergy crops. Future researchers should better match sample sizes with the heterogeneity of soil microbial property (i.e. MBN) in bioenergy croplands.
Kumar, S.; Simonson, S.E.; Stohlgren, T.J.
2009-01-01
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.
Kalantari, Zahra; Cavalli, Marco; Cantone, Carolina; Crema, Stefano; Destouni, Georgia
2017-03-01
Climate-driven increase in the frequency of extreme hydrological events is expected to impose greater strain on the built environment and major transport infrastructure, such as roads and railways. This study develops a data-driven spatial-statistical approach to quantifying and mapping the probability of flooding at critical road-stream intersection locations, where water flow and sediment transport may accumulate and cause serious road damage. The approach is based on novel integration of key watershed and road characteristics, including also measures of sediment connectivity. The approach is concretely applied to and quantified for two specific study case examples in southwest Sweden, with documented road flooding effects of recorded extreme rainfall. The novel contributions of this study in combining a sediment connectivity account with that of soil type, land use, spatial precipitation-runoff variability and road drainage in catchments, and in extending the connectivity measure use for different types of catchments, improve the accuracy of model results for road flood probability. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ammann, Christof; Voglmeier, Karl; Jocher, Markus
2017-04-01
Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2015-04-01
Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.
Spatial variability of extreme rainfall at radar subpixel scale
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2018-01-01
Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.
An alternative way to evaluate chemistry-transport model variability
NASA Astrophysics Data System (ADS)
Menut, Laurent; Mailler, Sylvain; Bessagnet, Bertrand; Siour, Guillaume; Colette, Augustin; Couvidat, Florian; Meleux, Frédérik
2017-03-01
A simple and complementary model evaluation technique for regional chemistry transport is discussed. The methodology is based on the concept that we can learn about model performance by comparing the simulation results with observational data available for time periods other than the period originally targeted. First, the statistical indicators selected in this study (spatial and temporal correlations) are computed for a given time period, using colocated observation and simulation data in time and space. Second, the same indicators are used to calculate scores for several other years while conserving the spatial locations and Julian days of the year. The difference between the results provides useful insights on the model capability to reproduce the observed day-to-day and spatial variability. In order to synthesize the large amount of results, a new indicator is proposed, designed to compare several error statistics between all the years of validation and to quantify whether the period and area being studied were well captured by the model for the correct reasons.
Controls on Soil Organic Matter in Blue Carbon Ecosystems along the South Florida Coast
NASA Astrophysics Data System (ADS)
Smoak, J. M.; Rosenheim, B. E.; Moyer, R. P.; Radabaugh, K.; Chambers, L. G.; Lagomasino, D.; Lynch, J.; Cahoon, D. R.
2017-12-01
Coastal wetlands store disproportionately large amounts of carbon due to high rates of net primary productivity and slow microbial degradation of organic matter in water-saturated soils. Wide spatial and temporal variability in plant communities and soil biogeochemistry necessitate location-specific quantification of carbon stocks to improve current wetland carbon inventories and future projections. We apply field measurements, remote sensing technology, and spatiotemporal models to quantify regional carbon storage and to model future spatial variability of carbon stocks in mangroves and coastal marshes in Southwest Florida. We examine soil carbon accumulation and accretion rates on time scales ranging from decadal to millennial to project responses to climate change, including variations in inundation and salinity. Once freshwater and oligohaline wetlands are exposed to increased duration and spatial extent of inundation and salinity from seawater, soil redox potential, soil respiration, and the intensification of osmotic stress to vegetation and the soil microbial community can affect the soil C balance potentially increasing rates of mineralization.
Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy
2017-06-15
Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Van Loon, Anne F.; Kumar, Rohini; Mishra, Vimal
2017-04-01
In 2015, central and eastern Europe were affected by a severe drought. This event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater situation has been performed. One of the reasons is that real-time groundwater level observations often are not available. In this study, we evaluate two alternative approaches to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. The first approach is based on spatially explicit relationships between meteorological conditions and historic groundwater level observations. The second approach uses the Gravity Recovery Climate Experiment (GRACE) terrestrial water storage (TWS) and groundwater anomalies derived from GRACE-TWS and (near-)surface storage simulations by the Global Land Data Assimilation System (GLDAS) models. We combined the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardised Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.25° gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on the estimated optimal accumulation periods and available meteorological time series, we reconstructed the groundwater anomalies up to 2015 and found that in Germany a uniform severe groundwater drought persisted for several months during this year, whereas the Netherlands appeared to have relatively high groundwater levels. The differences between this event and the 2003 European benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany. This is because slowly responding wells (the ones with optimal accumulation periods of more than 12 months) still were above average from the wet year of 2002, which experienced severe flooding in central Europe. GRACE-TWS and GRACE-based groundwater anomalies did not capture the spatial variability of the 2003 and 2015 drought events satisfactorily. GRACE-TWS did show that both 2003 and 2015 were relatively dry, but the differences between Germany and the Netherlands in 2015 and the spatially variable groundwater drought pattern in 2003 were not captured. This could be associated with the coarse spatial scale of GRACE. The simulated groundwater anomalies based on GRACE-TWS deviated considerably from the GRACE-TWS signal and from observed groundwater anomalies. The uncertainty in the GRACE-based groundwater anomalies mainly results from uncertainties in the simulation of soil moisture by the different GLDAS models. The GRACE-based groundwater anomalies are therefore not suitable for use in real-time groundwater drought monitoring in our case study regions. The alternative approach based on the spatially variable relationship between meteorological conditions and groundwater levels is more suitable to quantify groundwater drought in near real-time. Compared to the meteorological drought and streamflow drought (described in previous studies), the groundwater drought of 2015 had a more pronounced spatial variability in its response to meteorological conditions, with some areas primarily influenced by short-term meteorological deficits and others influenced by meteorological deficits accumulated over the preceding 2 years or more. In drought management, this information is very useful and our approach to quantify groundwater drought can be used until real-time groundwater observations become readily available.
Modeling spatially-varying landscape change points in species occurrence thresholds
Wagner, Tyler; Midway, Stephen R.
2014-01-01
Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.
Post-heading heat stress and yield impact in winter wheat of China.
Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold
2014-02-01
Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.
Singer, Steve; Wang, Guangxing; Howard, Heidi; Anderson, Alan
2012-08-01
Environment functions in various aspects including soil and water conservation, biodiversity and habitats, and landscape aesthetics. Comprehensive assessment of environmental condition is thus a great challenge. The issues include how to assess individual environmental components such as landscape aesthetics and integrate them into an indicator that can comprehensively quantify environmental condition. In this study, a geographic information systems based spatial multi-criteria decision analysis was used to integrate environmental variables and create the indicator. This approach was applied to Fort Riley Military installation in which land condition and its dynamics due to military training activities were assessed. The indicator was derived by integrating soil erosion, water quality, landscape fragmentation, landscape aesthetics, and noise based on the weights from the experts by assessing and ranking the environmental variables in terms of their importance. The results showed that landscape level indicator well quantified the overall environmental condition and its dynamics, while the indicator at level of patch that is defined as a homogeneous area that is different from its surroundings detailed the spatiotemporal variability of environmental condition. The environmental condition was mostly determined by soil erosion, then landscape fragmentation, water quality, landscape aesthetics, and noise. Overall, environmental condition at both landscape and patch levels greatly varied depending on the degree of ground and canopy disturbance and their spatial patterns due to military training activities and being related to slope. It was also determined the environment itself could be recovered quickly once military training was halt or reduced. Thus, this study provided an effective tool for the army land managers to monitor environmental dynamics and plan military training activities. Its limitation lies at that the obtained values of the indicator vary and are subjective to the experts' knowledge and experience. Thus, further advancing this approach is needed by developing a scientific method to derive the weights of environmental variables.
Michael C. Stambaugh; Richard P. Guyette; Joseph M. Marschall; Daniel C. Dey
2016-01-01
Characterization of scale dependence of fire intervals could inform interpretations of fire history and improve fire prescriptions that aim to mimic historical fire regime conditions. We quantified the temporal variability in fire regimes and described the spatial dependence of fire intervals through the analysis of multi-century fire scar records (8 study sites, 332...
J.M. Warren; F.C. Meinzer; J.R. Brooks; J.-C. Domec; R. Coulombe
2006-01-01
We incorporated soil/plant biophysical properties into a simple model to predict seasonal trajectories of hydraulic redistribution (HR). We measured soil water content, water potential root conductivity, and climate across multiple years in two old-growth coniferous forests. The HR variability within sites (0 to 0.5 mm/d) was linked to spatial patterns of roots, soil...
NASA Astrophysics Data System (ADS)
Moslehi, M.; de Barros, F.
2017-12-01
Complexity of hydrogeological systems arises from the multi-scale heterogeneity and insufficient measurements of their underlying parameters such as hydraulic conductivity and porosity. An inadequate characterization of hydrogeological properties can significantly decrease the trustworthiness of numerical models that predict groundwater flow and solute transport. Therefore, a variety of data assimilation methods have been proposed in order to estimate hydrogeological parameters from spatially scarce data by incorporating the governing physical models. In this work, we propose a novel framework for evaluating the performance of these estimation methods. We focus on the Ensemble Kalman Filter (EnKF) approach that is a widely used data assimilation technique. It reconciles multiple sources of measurements to sequentially estimate model parameters such as the hydraulic conductivity. Several methods have been used in the literature to quantify the accuracy of the estimations obtained by EnKF, including Rank Histograms, RMSE and Ensemble Spread. However, these commonly used methods do not regard the spatial information and variability of geological formations. This can cause hydraulic conductivity fields with very different spatial structures to have similar histograms or RMSE. We propose a vision-based approach that can quantify the accuracy of estimations by considering the spatial structure embedded in the estimated fields. Our new approach consists of adapting a new metric, Color Coherent Vectors (CCV), to evaluate the accuracy of estimated fields achieved by EnKF. CCV is a histogram-based technique for comparing images that incorporate spatial information. We represent estimated fields as digital three-channel images and use CCV to compare and quantify the accuracy of estimations. The sensitivity of CCV to spatial information makes it a suitable metric for assessing the performance of spatial data assimilation techniques. Under various factors of data assimilation methods such as number, layout, and type of measurements, we compare the performance of CCV with other metrics such as RMSE. By simulating hydrogeological processes using estimated and true fields, we observe that CCV outperforms other existing evaluation metrics.
Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan
2016-11-15
Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R 2 = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope, while instream nitrate retention was positively correlated with nitrate concentration. By quantifying spatial and temporal variability in sources and sinks, the DPM provides new information to better target management actions to the most effective times and places. Given the wide use of ECMs as research and management tools, our approach can be broadly applied in other watersheds and to other materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McKay, N.
2017-12-01
As timescale increases from years to centuries, the spatial scale of covariability in the climate system is hypothesized to increase as well. Covarying spatial scales are larger for temperature than for hydroclimate, however, both aspects of the climate system show systematic changes on large-spatial scales on orbital to tectonic timescales. The extent to which this phenomenon is evident in temperature and hydroclimate at centennial timescales is largely unknown. Recent syntheses of multidecadal to century-scale variability in hydroclimate during the past 2k in the Arctic, North America, and Australasia show little spatial covariability in hydroclimate during the Common Era. To determine 1) the evidence for systematic relationships between the spatial scale of climate covariability as a function of timescale, and 2) whether century-scale hydroclimate variability deviates from the relationship between spatial covariability and timescale, we quantify this phenomenon during the Common Era by calculating the e-folding distance in large instrumental and paleoclimate datasets. We calculate this metric of spatial covariability, at different timescales (1, 10 and 100-yr), for a large network of temperature and precipitation observations from the Global Historical Climatology Network (n=2447), from v2.0.0 of the PAGES2k temperature database (n=692), and from moisture-sensitive paleoclimate records North America, the Arctic, and the Iso2k project (n = 328). Initial results support the hypothesis that the spatial scale of covariability is larger for temperature, than for precipitation or paleoclimate hydroclimate indicators. Spatially, e-folding distances for temperature are largest at low latitudes and over the ocean. Both instrumental and proxy temperature data show clear evidence for increasing spatial extent as a function of timescale, but this phenomenon is very weak in the hydroclimate data analyzed here. In the proxy hydroclimate data, which are predominantly indicators of effective moisture, e-folding distance increases from annual to decadal timescales, but does not continue to increase to centennial timescales. Future work includes examining additional instrumental and proxy datasets of moisture variability, and extending the analysis to millennial timescales of variability.
Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification
Pham, Tuan D.
2014-01-01
The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744
Describing spatial pattern in stream networks: A practical approach
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
A geostatistical approach for describing spatial pattern in stream networks
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
Strong Spatial Influence on Colonization Rates in a Pioneer Zooplankton Metacommunity
Frisch, Dagmar; Cottenie, Karl; Badosa, Anna; Green, Andy J.
2012-01-01
The magnitude of community-wide dispersal is central to metacommunity models, yet dispersal is notoriously difficult to quantify in passive and cryptic dispersers such as many freshwater invertebrates. By overcoming the problem of quantifying dispersal rates, colonization rates into new habitats can provide a useful estimate of the magnitude of effective dispersal. Here we study the influence of spatial and local processes on colonization rates into new ponds that indicate differential dispersal limitation of major zooplankton taxa, with important implications for metacommunity dynamics. We identify regional and local factors that affect zooplankton colonization rates and spatial patterns in a large-scale experimental system. Our study differs from others in the unique setup of the experimental pond area by which we were able to test spatial and environmental variables at a large spatial scale. We quantified colonization rates separately for the Copepoda, Cladocera and Rotifera from samples collected over a period of 21 months in 48 newly constructed temporary ponds of 0.18–2.95 ha distributed in a restored wetland area of 2,700 ha in Doñana National Park, Southern Spain. Species richness upon initial sampling of new ponds was about one third of that in reference ponds, although the rate of detection of new species from thereon were not significantly different, probably owing to high turnover in the dynamic, temporary reference ponds. Environmental heterogeneity had no detectable effect on colonization rates in new ponds. In contrast, connectivity, space (based on latitude and longitude) and surface area were key determinants of colonization rates for copepods and cladocerans. This suggests dispersal limitation in cladocerans and copepods, but not in rotifers, possibly due to differences in propagule size and abundance. PMID:22792241
Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity.
Frisch, Dagmar; Cottenie, Karl; Badosa, Anna; Green, Andy J
2012-01-01
The magnitude of community-wide dispersal is central to metacommunity models, yet dispersal is notoriously difficult to quantify in passive and cryptic dispersers such as many freshwater invertebrates. By overcoming the problem of quantifying dispersal rates, colonization rates into new habitats can provide a useful estimate of the magnitude of effective dispersal. Here we study the influence of spatial and local processes on colonization rates into new ponds that indicate differential dispersal limitation of major zooplankton taxa, with important implications for metacommunity dynamics. We identify regional and local factors that affect zooplankton colonization rates and spatial patterns in a large-scale experimental system. Our study differs from others in the unique setup of the experimental pond area by which we were able to test spatial and environmental variables at a large spatial scale. We quantified colonization rates separately for the Copepoda, Cladocera and Rotifera from samples collected over a period of 21 months in 48 newly constructed temporary ponds of 0.18-2.95 ha distributed in a restored wetland area of 2,700 ha in Doñana National Park, Southern Spain. Species richness upon initial sampling of new ponds was about one third of that in reference ponds, although the rate of detection of new species from thereon were not significantly different, probably owing to high turnover in the dynamic, temporary reference ponds. Environmental heterogeneity had no detectable effect on colonization rates in new ponds. In contrast, connectivity, space (based on latitude and longitude) and surface area were key determinants of colonization rates for copepods and cladocerans. This suggests dispersal limitation in cladocerans and copepods, but not in rotifers, possibly due to differences in propagule size and abundance.
Geographic dimensions of heat-related mortality in seven U.S. cities.
Hondula, David M; Davis, Robert E; Saha, Michael V; Wegner, Carleigh R; Veazey, Lindsay M
2015-04-01
Spatially targeted interventions may help protect the public when extreme heat occurs. Health outcome data are increasingly being used to map intra-urban variability in heat-health risks, but there has been little effort to compare patterns and risk factors between cities. We sought to identify places within large metropolitan areas where the mortality rate is highest on hot summer days and determine if characteristics of high-risk areas are consistent from one city to another. A Poisson regression model was adapted to quantify temperature-mortality relationships at the postal code scale based on 2.1 million records of daily all-cause mortality counts from seven U.S. cities. Multivariate spatial regression models were then used to determine the demographic and environmental variables most closely associated with intra-city variability in risk. Significant mortality increases on extreme heat days were confined to 12-44% of postal codes comprising each city. Places with greater risk had more developed land, young, elderly, and minority residents, and lower income and educational attainment, but the key explanatory variables varied from one city to another. Regression models accounted for 14-34% of the spatial variability in heat-related mortality. The results emphasize the need for public health plans for heat to be locally tailored and not assume that pre-identified vulnerability indicators are universally applicable. As known risk factors accounted for no more than one third of the spatial variability in heat-health outcomes, consideration of health outcome data is important in efforts to identify and protect residents of the places where the heat-related health risks are the highest. Copyright © 2015 Elsevier Inc. All rights reserved.
Sex differences in visual-spatial working memory: A meta-analysis.
Voyer, Daniel; Voyer, Susan D; Saint-Aubin, Jean
2017-04-01
Visual-spatial working memory measures are widely used in clinical and experimental settings. Furthermore, it has been argued that the male advantage in spatial abilities can be explained by a sex difference in visual-spatial working memory. Therefore, sex differences in visual-spatial working memory have important implication for research, theory, and practice, but they have yet to be quantified. The present meta-analysis quantified the magnitude of sex differences in visual-spatial working memory and examined variables that might moderate them. The analysis used a set of 180 effect sizes from healthy males and females drawn from 98 samples ranging in mean age from 3 to 86 years. Multilevel meta-analysis was used on the overall data set to account for non-independent effect sizes. The data also were analyzed in separate task subgroups by means of multilevel and mixed-effects models. Results showed a small but significant male advantage (mean d = 0.155, 95 % confidence interval = 0.087-0.223). All the tasks produced a male advantage, except for memory for location, where a female advantage emerged. Age of the participants was a significant moderator, indicating that sex differences in visual-spatial working memory appeared first in the 13-17 years age group. Removing memory for location tasks from the sample affected the pattern of significant moderators. The present results indicate a male advantage in visual-spatial working memory, although age and specific task modulate the magnitude and direction of the effects. Implications for clinical applications, cognitive model building, and experimental research are discussed.
Spatio-temporal variability of faunal and floral assemblages in Mediterranean temporary wetlands.
Rouissi, Maya; Boix, Dani; Muller, Serge D; Gascón, Stéphanie; Ruhí, Albert; Sala, Jordi; Bouattour, Ali; Ben Haj Jilani, Imtinen; Ghrabi-Gammar, Zeineb; Ben Saad-Limam, Samia; Daoud-Bouattour, Amina
2014-12-01
Six temporary wetlands in the region of Sejenane (Mogods, NW Tunisia) were studied in order to characterize the aquatic flora and fauna and to quantify their spatio-temporal variability. Samplings of aquatic fauna, phytosociological relevés, and measurements of the physicochemical parameters of water were taken during four different field visits carried out during the four seasons of the year (November 2009-July 2010). Despite the strong anthropic pressures on them, these temporary wetlands are home to rich and diversified biodiversity, including rare and endangered species. Spatial and temporal variations affect fauna and flora differently, as temporal variability influences the fauna rather more than the plants, which are relatively more dependent on spatial factors. These results demonstrate the interest of small water bodies for maintaining biodiversity at the regional level, and thus underscore the conservation issues of Mediterranean temporary wetlands that are declining on an ongoing basis currently. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Automatic Extraction of Small Spatial Plots from Geo-Registered UAS Imagery
NASA Astrophysics Data System (ADS)
Cherkauer, Keith; Hearst, Anthony
2015-04-01
Accurate extraction of spatial plots from high-resolution imagery acquired by Unmanned Aircraft Systems (UAS), is a prerequisite for accurate assessment of experimental plots in many geoscience fields. If the imagery is correctly geo-registered, then it may be possible to accurately extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. The methods developed are suitable for work in many fields where replicates across time and space are necessary to quantify variability.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2016-03-01
Spatial variations in soil properties affect key hydrological processes, yet their role in soil mechanical response to hydro-mechanical loading is rarely considered. This study aims to fill this gap by systematically quantifying effects of spatial variations in soil type and initial water content on rapid rainfall-induced shallow landslide predictions at the hillslope- and catchment-scales. We employed a physically-based landslide triggering model that considers mechanical interactions among soil columns governed by strength thresholds. At the hillslope scale, we found that the emergence of weak regions induced by spatial variations of soil type and initial water content resulted in early triggering of landslides with smaller volumes of released mass relative to a homogeneous slope. At the catchment scale, initial water content was linked to a topographic wetness index, whereas soil type varied deterministically with soil depth considering spatially correlated stochastic components. Results indicate that a strong spatial organization of initial water content delays landslide triggering, whereas spatially linked soil type with soil depth promoted landslide initiation. Increasing the standard deviation and correlation length of the stochastic component of soil type increases landslide volume and hastens onset of landslides. The study illustrates that for similar external boundary conditions and mean soil properties, landslide characteristics vary significantly with soil variability, hence it must be considered for improved landslide model predictions.
Innovating Big Data Computing Geoprocessing for Analysis of Engineered-Natural Systems
NASA Astrophysics Data System (ADS)
Rose, K.; Baker, V.; Bauer, J. R.; Vasylkivska, V.
2016-12-01
Big data computing and analytical techniques offer opportunities to improve predictions about subsurface systems while quantifying and characterizing associated uncertainties from these analyses. Spatial analysis, big data and otherwise, of subsurface natural and engineered systems are based on variable resolution, discontinuous, and often point-driven data to represent continuous phenomena. We will present examples from two spatio-temporal methods that have been adapted for use with big datasets and big data geo-processing capabilities. The first approach uses regional earthquake data to evaluate spatio-temporal trends associated with natural and induced seismicity. The second algorithm, the Variable Grid Method (VGM), is a flexible approach that presents spatial trends and patterns, such as those resulting from interpolation methods, while simultaneously visualizing and quantifying uncertainty in the underlying spatial datasets. In this presentation we will show how we are utilizing Hadoop to store and perform spatial analyses to efficiently consume and utilize large geospatial data in these custom analytical algorithms through the development of custom Spark and MapReduce applications that incorporate ESRI Hadoop libraries. The team will present custom `Big Data' geospatial applications that run on the Hadoop cluster and integrate with ESRI ArcMap with the team's probabilistic VGM approach. The VGM-Hadoop tool has been specially built as a multi-step MapReduce application running on the Hadoop cluster for the purpose of data reduction. This reduction is accomplished by generating multi-resolution, non-overlapping, attributed topology that is then further processed using ESRI's geostatistical analyst to convey a probabilistic model of a chosen study region. Finally, we will share our approach for implementation of data reduction and topology generation via custom multi-step Hadoop applications, performance benchmarking comparisons, and Hadoop-centric opportunities for greater parallelization of geospatial operations.
NASA Astrophysics Data System (ADS)
Cartier, V.; Claret, C.; Garnier, R.; Fayolle, S.; Franquet, E.
2010-03-01
The complexity of the relationships between environmental factors and organisms can be revealed by sampling designs which consider the contribution to variability of different temporal and spatial scales, compared to total variability. From a management perspective, a multi-scale approach can lead to time-saving. Identifying environmental patterns that help maintain patchy distribution is fundamental in studying coastal lagoons, transition zones between continental and marine waters characterised by great environmental variability on spatial and temporal scales. They often present organic enrichment inducing decreased species richness and increased densities of opportunist species like C hironomus salinarius, a common species that tends to swarm and thus constitutes a nuisance for human populations. This species is dominant in the Bolmon lagoon, a French Mediterranean coastal lagoon under eutrophication. Our objective was to quantify variability due to both spatial and temporal scales and identify the contribution of different environmental factors to this variability. The population of C. salinarius was sampled from June 2007 to June 2008 every two months at 12 sites located in two areas of the Bolmon lagoon, at two different depths, with three sites per area-depth combination. Environmental factors (temperature, dissolved oxygen both in sediment and under water surface, sediment organic matter content and grain size) and microbial activities (i.e. hydrolase activities) were also considered as explanatory factors of chironomid densities and distribution. ANOVA analysis reveals significant spatial differences regarding the distribution of chironomid larvae for the area and the depth scales and their interaction. The spatial effect is also revealed for dissolved oxygen (water), salinity and fine particles (area scale), and for water column depth. All factors but water column depth show a temporal effect. Spearman's correlations highlight the seasonal effect (temperature, dissolved oxygen in sediment and water) as well as the effect of microbial activities on chironomid larvae. Our results show that a multi-scale approach identifies patchy distribution, even when there is relative environmental homogeneity.
NASA Astrophysics Data System (ADS)
Kong, J.; Ryu, Y.
2017-12-01
Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.
Influence of estuarine processes on spatiotemporal variation in bioavailable selenium
Stewart, Robin; Luoma, Samuel N.; Elrick, Kent A.; Carter, James L.; van der Wegen, Mick
2013-01-01
Dynamic processes (physical, chemical and biological) challenge our ability to quantify and manage the ecological risk of chemical contaminants in estuarine environments. Selenium (Se) bioavailability (defined by bioaccumulation), stable isotopes and molar carbon-tonitrogen ratios in the benthic clam Potamocorbula amurensis, an important food source for predators, were determined monthly for 17 yr in northern San Francisco Bay. Se concentrations in the clams ranged from a low of 2 to a high of 22 μg g-1 over space and time. Little of that variability was stochastic, however. Statistical analyses and preliminary hydrodynamic modeling showed that a constant mid-estuarine input of Se, which was dispersed up- and down-estuary by tidal currents, explained the general spatial patterns in accumulated Se among stations. Regression of Se bioavailability against river inflows suggested that processes driven by inflows were the primary driver of seasonal variability. River inflow also appeared to explain interannual variability but within the range of Se enrichment established at each station by source inputs. Evaluation of risks from Se contamination in estuaries requires the consideration of spatial and temporal variability on multiple scales and of the processes that drive that variability.
The macro-structural variability of the human neocortex.
Kruggel, Frithjof
2018-05-15
The human neocortex shows a considerable individual structural variability. While primary gyri and sulci are found in all normally developed brains and bear clear-cut gross structural descriptions, secondary structures are highly variable and not present in all brains. The blend of common and individual structures poses challenges when comparing structural and functional results from quantitative neuroimaging studies across individuals, and sets limits on the precision of location information much above the spatial resolution of current neuroimaging methods. This work aimed at quantifying structural variability on the neocortex, and at assessing the spatial relationship between regions common to all brains and their individual structural variants. Based on structural MRI data provided as the "900 Subjects Release" of the Human Connectome Project, a data-driven analytic approach was employed here from which the definition of seven cortical "communities" emerged. Apparently, these communities comprise common regions of structural features, while the individual variability is confined within a community. Similarities between the community structure and the state of the brain development at gestation week 32 lead suggest that communities are segregated early. Subdividing the neocortex into communities is suggested as anatomically more meaningful than the traditional lobar structure. Copyright © 2018 Elsevier Inc. All rights reserved.
Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow
NASA Astrophysics Data System (ADS)
Ho, Michelle; Lall, Upmanu; Sun, Xun; Cook, Edward R.
2017-04-01
The development of paleoclimate streamflow reconstructions in the conterminous United States (CONUS) has provided water resource managers with improved insights into multidecadal and centennial scale variability that cannot be reliably detected using shorter instrumental records. Paleoclimate streamflow reconstructions have largely focused on individual catchments limiting the ability to quantify variability across the CONUS. The Living Blended Drought Atlas (LBDA), a spatially and temporally complete 555 year long paleoclimate record of summer drought across the CONUS, provides an opportunity to reconstruct and characterize streamflow variability at a continental scale. We explore the validity of the first paleoreconstructions of streamflow that span the CONUS informed by the LBDA targeting a set of U.S. Geological Survey streamflow sites. The reconstructions are skillful under cross validation across most of the country, but the variance explained is generally low. Spatial and temporal structures of streamflow variability are analyzed using hierarchical clustering, principal component analysis, and wavelet analyses. Nine spatially coherent clusters are identified. The reconstructions show signals of contemporary droughts such as the Dust Bowl (1930s) and 1950s droughts. Decadal-scale variability was detected in the late 1900s in the western U.S., however, similar modes of temporal variability were rarely present prior to the 1950s. The twentieth century featured longer wet spells and shorter dry spells compared with the preceding 450 years. Streamflows in the Pacific Northwest and Northeast are negatively correlated with the central U.S. suggesting the potential to mitigate some drought impacts by balancing economic activities and insurance pools across these regions during major droughts.
Cheadle, Lucy; Deanes, Lauren; Sadighi, Kira; Gordon Casey, Joanna; Collier-Oxandale, Ashley; Hannigan, Michael
2017-09-10
Recent advances in air pollution sensors have led to a new wave of low-cost measurement systems that can be deployed in dense networks to capture small-scale spatio-temporal variations in ozone, a pollutant known to cause negative human health impacts. This study deployed a network of seven low-cost ozone metal oxide sensor systems (UPods) in both an open space and an urban location in Boulder, Colorado during June and July of 2015, to quantify ozone variations on spatial scales ranging from 12 m between UPods to 6.7 km between open space and urban measurement sites with a measurement uncertainty of ~5 ppb. The results showed spatial variability of ozone at both deployment sites, with the largest differences between UPod measurements occurring during the afternoons. The peak median hourly difference between UPods was 6 ppb at 1:00 p.m. at the open space site, and 11 ppb at 4:00 p.m. at the urban site. Overall, the urban ozone measurements were higher than in the open space measurements. This study evaluates the effectiveness of using low-cost sensors to capture microscale spatial and temporal variation of ozone; additionally, it highlights the importance of field calibrations and measurement uncertainty quantification when deploying low-cost sensors.
NASA Astrophysics Data System (ADS)
French, N. H. F.; Prichard, S.; McKenzie, D.; Kennedy, M. C.; Billmire, M.; Ottmar, R. D.; Kasischke, E. S.
2016-12-01
Quantification of emissions of carbon during combustion relies on knowing three general variables: how much landscape is impacted by fire (burn area), how much carbon is in that landscape (fuel loading), and fuel properties that determine the fraction that is consumed (fuel condition). These variables also determine how much carbon remains at the site in the form of unburned organic material or char, and therefore drive post-fire carbon dynamics and pools. In this presentation we review the importance of understanding fuel type, fuel loading, and fuel condition for quantifying carbon dynamics properly during burning and for measuring and mapping fuels across landscapes, regions, and continents. Variability in fuels has been shown to be a major driver of uncertainty in fire emissions, but has had little attention until recently. We review the current state of fuel characterization for fire management and carbon accounting, and present a new approach to quantifying fuel loading for use in fire-emissions mapping and for improving fire-effects assessment. The latest results of a study funded by the Joint Fire Science Program (JFSP) are presented, where a fuel loading database is being built to quantify variation in fuel loadings, as represented in the Fuel Characteristic Classification System (FCCS), across the conterminous US and Alaska. Statistical assessments of these data at multiple spatial scales will improve tools used by fire managers and scientists to quantify fire's impact on the land, atmosphere, and carbon cycle.
Quantifying drivers of wild pig movement across multiple spatial and temporal scales.
Kay, Shannon L; Fischer, Justin W; Monaghan, Andrew J; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S; Hartley, Steve B; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; VerCauteren, Kurt C; Pepin, Kim M
2017-01-01
The movement behavior of an animal is determined by extrinsic and intrinsic factors that operate at multiple spatio-temporal scales, yet much of our knowledge of animal movement comes from studies that examine only one or two scales concurrently. Understanding the drivers of animal movement across multiple scales is crucial for understanding the fundamentals of movement ecology, predicting changes in distribution, describing disease dynamics, and identifying efficient methods of wildlife conservation and management. We obtained over 400,000 GPS locations of wild pigs from 13 different studies spanning six states in southern U.S.A., and quantified movement rates and home range size within a single analytical framework. We used a generalized additive mixed model framework to quantify the effects of five broad predictor categories on movement: individual-level attributes, geographic factors, landscape attributes, meteorological conditions, and temporal variables. We examined effects of predictors across three temporal scales: daily, monthly, and using all data during the study period. We considered both local environmental factors such as daily weather data and distance to various resources on the landscape, as well as factors acting at a broader spatial scale such as ecoregion and season. We found meteorological variables (temperature and pressure), landscape features (distance to water sources), a broad-scale geographic factor (ecoregion), and individual-level characteristics (sex-age class), drove wild pig movement across all scales, but both the magnitude and shape of covariate relationships to movement differed across temporal scales. The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc ) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.
Dechesne, Arnaud; Badawi, Nora; Aamand, Jens; Smets, Barth F.
2014-01-01
Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays non-random spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modeling and experimental systems that do not include soil's full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil. PMID:25538691
NASA Astrophysics Data System (ADS)
Pérez, Luis D.; Cumbrera, Ramiro; Mato, Juan; Millán, Humberto; Tarquis, Ana M.
2015-04-01
Spatial variability of soil properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns (Brouder et al., 2001; Millán et al., 2012). The objective of the present work was to quantify the spatial structure of soil penetrometer resistance (PR) collected from a transect data consisted of 221 points equidistant. In each sampling, readings were obtained from 0 cm till 70 cm of depth, with an interval of 5 cm (Pérez, 2012). The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years (Pérez et al., 2010). Recently, scaling approach has been applied on the determination of the scaling data properties (Tarquis et al., 2008; Millán et al., 2012; Pérez, 2012). We focus in the Hurst analysis to characterize the data variability for each depth. Previously a detrended analysis was conducted in order to better study de intrinsic variability of the series. The Hurst exponent (H) for each depth was estimated showing a characteristic pattern and differentiating PR evolution in depth. References Brouder, S., Hofmann, B., Reetz, H.F., 2001. Evaluating spatial variability of soil parameters for input management. Better Crops 85, 8-11. Millán, H; AM Tarquís, Luís D. Pérez, Juan Mato, Mario González-Posada, 2012. Spatial variability patterns of some Vertisol properties at a field scale using standardized data. Soil and Tillage Research, 120, 76-84. Pérez, Luís D. 2012. Influencia de la maquinaria agrícola sobre la variabilidad espacial de la compactación del suelo. Aplicación de la metodología geoestadística-fractal. PhD thesis, UPM (In Spanish). Pérez, Luís D., Humberto Millán, Mario González-Posada 2010. Spatial complexity of soil plow layer penetrometer resistance as influenced by sugarcane harvesting: A prefractal approach. Soil and Tillage Research, 110(1), 77-86. Tarquis, A.M., N. Bird, M.C. Cartagena, A. Whitmore and Y. Pachepsky, 2008. Multiscale entropy-based analyses of soil transect data. Vadose Zone Journal, 7(2), 563-569.
Spatial relationship of biomass and species distribution in an old-growth Pseudotsuga Tsuga forest.
Jiquan Chen; Bo Song; Mark Rudnicki; Melinda Moeur; Ken Bible; Malcolm North; Dave C. Shaw; Jerry F. Franklin; Dave M. Braun
2003-01-01
Old-growth forests are known for their complex and variable structure and function. In a 12-ha plot (300 m x 400 m) of an old-growth Douglas-fir forest within the T.T. Munger Research Natural Area in southern Washington, we mapped and recorded live/dead condition, species, and diameter at breast height to address the following objectives: (1) to quantify the...
Snyder, Keirith A; Wehan, Bryce L; Filippa, Gianluca; Huntington, Justin L; Stringham, Tamzen K; Snyder, Devon K
2016-11-18
Plant phenology is recognized as important for ecological dynamics. There has been a recent advent of phenology and camera networks worldwide. The established PhenoCam Network has sites in the United States, including the western states. However, there is a paucity of published research from semi-arid regions. In this study, we demonstrate the utility of camera-based repeat digital imagery and use of R statistical phenopix package to quantify plant phenology and phenophases in four plant communities in the semi-arid cold desert region of the Great Basin. We developed an automated variable snow/night filter for removing ephemeral snow events, which allowed fitting of phenophases with a double logistic algorithm. We were able to detect low amplitude seasonal variation in pinyon and juniper canopies and sagebrush steppe, and characterize wet and mesic meadows in area-averaged analyses. We used individual pixel-based spatial analyses to separate sagebrush shrub canopy pixels from interspace by determining differences in phenophases of sagebrush relative to interspace. The ability to monitor plant phenology with camera-based images fills spatial and temporal gaps in remotely sensed data and field based surveys, allowing species level relationships between environmental variables and phenology to be developed on a fine time scale thus providing powerful new tools for land management.
Neural Representation of Spatial Topology in the Rodent Hippocampus
Chen, Zhe; Gomperts, Stephen N.; Yamamoto, Jun; Wilson, Matthew A.
2014-01-01
Pyramidal cells in the rodent hippocampus often exhibit clear spatial tuning in navigation. Although it has been long suggested that pyramidal cell activity may underlie a topological code rather than a topographic code, it remains unclear whether an abstract spatial topology can be encoded in the ensemble spiking activity of hippocampal place cells. Using a statistical approach developed previously, we investigate this question and related issues in greater details. We recorded ensembles of hippocampal neurons as rodents freely foraged in one and two-dimensional spatial environments, and we used a “decode-to-uncover” strategy to examine the temporally structured patterns embedded in the ensemble spiking activity in the absence of observed spatial correlates during periods of rodent navigation or awake immobility. Specifically, the spatial environment was represented by a finite discrete state space. Trajectories across spatial locations (“states”) were associated with consistent hippocampal ensemble spiking patterns, which were characterized by a state transition matrix. From this state transition matrix, we inferred a topology graph that defined the connectivity in the state space. In both one and two-dimensional environments, the extracted behavior patterns from the rodent hippocampal population codes were compared against randomly shuffled spike data. In contrast to a topographic code, our results support the efficiency of topological coding in the presence of sparse sample size and fuzzy space mapping. This computational approach allows us to quantify the variability of ensemble spiking activity, to examine hippocampal population codes during off-line states, and to quantify the topological complexity of the environment. PMID:24102128
A priori discretization error metrics for distributed hydrologic modeling applications
NASA Astrophysics Data System (ADS)
Liu, Hongli; Tolson, Bryan A.; Craig, James R.; Shafii, Mahyar
2016-12-01
Watershed spatial discretization is an important step in developing a distributed hydrologic model. A key difficulty in the spatial discretization process is maintaining a balance between the aggregation-induced information loss and the increase in computational burden caused by the inclusion of additional computational units. Objective identification of an appropriate discretization scheme still remains a challenge, in part because of the lack of quantitative measures for assessing discretization quality, particularly prior to simulation. This study proposes a priori discretization error metrics to quantify the information loss of any candidate discretization scheme without having to run and calibrate a hydrologic model. These error metrics are applicable to multi-variable and multi-site discretization evaluation and provide directly interpretable information to the hydrologic modeler about discretization quality. The first metric, a subbasin error metric, quantifies the routing information loss from discretization, and the second, a hydrological response unit (HRU) error metric, improves upon existing a priori metrics by quantifying the information loss due to changes in land cover or soil type property aggregation. The metrics are straightforward to understand and easy to recode. Informed by the error metrics, a two-step discretization decision-making approach is proposed with the advantage of reducing extreme errors and meeting the user-specified discretization error targets. The metrics and decision-making approach are applied to the discretization of the Grand River watershed in Ontario, Canada. Results show that information loss increases as discretization gets coarser. Moreover, results help to explain the modeling difficulties associated with smaller upstream subbasins since the worst discretization errors and highest error variability appear in smaller upstream areas instead of larger downstream drainage areas. Hydrologic modeling experiments under candidate discretization schemes validate the strong correlation between the proposed discretization error metrics and hydrologic simulation responses. Discretization decision-making results show that the common and convenient approach of making uniform discretization decisions across the watershed performs worse than the proposed non-uniform discretization approach in terms of preserving spatial heterogeneity under the same computational cost.
NASA Astrophysics Data System (ADS)
Zhao, S.; Soltanzadeh, M.; Pappin, A. J.; Hakami, A.; Turner, M. D.; Capps, S.; Henze, D. K.; Percell, P.; Bash, J. O.; Napelenok, S. L.; Pinder, R. W.; Russell, A. G.; Nenes, A.; Baek, J.; Carmichael, G. R.; Stanier, C. O.; Chai, T.; Byun, D.; Fahey, K.; Resler, J.; Mashayekhi, R.
2016-12-01
Scenario-based studies evaluate air quality co-benefits by adopting collective measures introduced under a climate policy scenario cannot distinguish between benefits accrued from CO2 reductions among sources of different types and at different locations. Location and sector dependencies are important factors that can be captured in an adjoint-based analysis of CO2 reduction co-benefits. The present study aims to quantify how the ancillary benefits of reducing criteria co-pollutants vary spatially and by sector. The adjoint of USEPA's CMAQ was applied to quantify the health benefits associated with emission reduction of criteria pollutants (NOX) in on-road mobile, Electric Generation Units (EGUs), and other select sectors on a location-by-location basis across the US and Canada. These health benefits are then converted to CO2 emission reduction co-benefits by accounting for source-specific emission rates of criteria pollutants in comparison to CO2. We integrate the results from the adjoint of CMAQ with emission estimates from 2011 NEI at the county level, and point source data from EPA's Air Markets Program Data and National Pollutant Release Inventory (NPRI) for Canada. Our preliminary results show that the monetized health benefits (due to averted chronic mortality) associated with reductions of 1 ton of CO2 emissions is up to 65/ton in Canada and 200/ton in US for mobile on-road sector. For EGU sources, co-benefits are estimated at up to 100/ton and 10/ton for the US and Canada respectively. For Canada, the calculated co-benefits through gaseous pollutants including NOx is larger than those through PM2.5 due to the official association between NO2 exposure and chronic mortality. Calculated co-benefits show a great deal of spatial variability across emission locations for different sectors and sub-sectors. Implications of such spatial variability in devising control policy options that effectively address both climate and air quality objectives will be discussed.
Global Gradients of Coral Exposure to Environmental Stresses and Implications for Local Management
Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua
2011-01-01
Background The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions are achieved through global negotiations. PMID:21860667
Simulation of crop yield variability by improved root-soil-interaction modelling
NASA Astrophysics Data System (ADS)
Duan, X.; Gayler, S.; Priesack, E.
2009-04-01
Understanding the processes and factors that govern the within-field variability in crop yield has attached great importance due to applications in precision agriculture. Crop response to environment at field scale is a complex dynamic process involving the interactions of soil characteristics, weather conditions and crop management. The numerous static factors combined with temporal variations make it very difficult to identify and manage the variability pattern. Therefore, crop simulation models are considered to be useful tools in analyzing separately the effects of change in soil or weather conditions on the spatial variability, in order to identify the cause of yield variability and to quantify the spatial and temporal variation. However, tests showed that usual crop models such as CERES-Wheat and CERES-Maize were not able to quantify the observed within-field yield variability, while their performance on crop growth simulation under more homogeneous and mainly non-limiting conditions was sufficent to simulate average yields at the field-scale. On a study site in South Germany, within-field variability in crop growth has been documented since years. After detailed analysis and classification of the soil patterns, two site specific factors, the plant-available-water and the O2 deficiency, were considered as the main causes of the crop growth variability in this field. Based on our measurement of root distribution in the soil profile, we hypothesize that in our case the insufficiency of the applied crop models to simulate the yield variability can be due to the oversimplification of the involved root models which fail to be sensitive to different soil conditions. In this study, the root growth model described by Jones et al. (1991) was adapted by using data of root distributions in the field and linking the adapted root model to the CERES crop model. The ability of the new root model to increase the sensitivity of the CERES crop models to different enviromental conditions was then evaluated by means of comparison of the simualtion results with measured data and by scenario calculations.
Analysis of Alaskan burn severity patterns using remotely sensed data
Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.
2007-01-01
Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.
Nathan, Brian J; Golston, Levi M; O'Brien, Anthony S; Ross, Kevin; Harrison, William A; Tao, Lei; Lary, David J; Johnson, Derek R; Covington, April N; Clark, Nigel N; Zondlo, Mark A
2015-07-07
A model aircraft equipped with a custom laser-based, open-path methane sensor was deployed around a natural gas compressor station to quantify the methane leak rate and its variability at a compressor station in the Barnett Shale. The open-path, laser-based sensor provides fast (10 Hz) and precise (0.1 ppmv) measurements of methane in a compact package while the remote control aircraft provides nimble and safe operation around a local source. Emission rates were measured from 22 flights over a one-week period. Mean emission rates of 14 ± 8 g CH4 s(-1) (7.4 ± 4.2 g CH4 s(-1) median) from the station were observed or approximately 0.02% of the station throughput. Significant variability in emission rates (0.3-73 g CH4 s(-1) range) was observed on time scales of hours to days, and plumes showed high spatial variability in the horizontal and vertical dimensions. Given the high spatiotemporal variability of emissions, individual measurements taken over short durations and from ground-based platforms should be used with caution when examining compressor station emissions. More generally, our results demonstrate the unique advantages and challenges of platforms like small unmanned aerial vehicles for quantifying local emission sources to the atmosphere.
Temporal and spatial variation in pharmaceutical concentrations in an urban river system
Burns, Emily E.; Carter, Laura J.; Kolpin, Dana W.; Thomas-Oates, Jane; Boxall, Alistair B.A.
2018-01-01
Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse.
Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
NASA Astrophysics Data System (ADS)
Schlemmer, Alexander; Berg, Sebastian; Lilienkamp, Thomas; Luther, Stefan; Parlitz, Ulrich
2018-05-01
Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.
Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.
2013-01-01
Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.
Vanderhoof, Melanie; Alexander, Laurie C.; Todd, Jason
2016-01-01
Context. Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways. Objectives. We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region. Methods. Wetland extent was derived over a time series (1990-2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected. Results. Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland-wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density. Conclusions. Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of 1) climate-driven variation in wetness conditions and 2) within-region variation in wetland and stream spatial arrangements.
NASA Astrophysics Data System (ADS)
Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.
2014-12-01
Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features occupying the higher end of the range. Spatial variability in porosity distribution may affect ground water recharge, allowing zones of high porosity and thus enhanced infiltration to concentrate contaminants into the aquifer and may play a role in small and regional scale aquifer models.
Determination of riverbank erosion probability using Locally Weighted Logistic Regression
NASA Astrophysics Data System (ADS)
Ioannidou, Elena; Flori, Aikaterini; Varouchakis, Emmanouil A.; Giannakis, Georgios; Vozinaki, Anthi Eirini K.; Karatzas, George P.; Nikolaidis, Nikolaos
2015-04-01
Riverbank erosion is a natural geomorphologic process that affects the fluvial environment. The most important issue concerning riverbank erosion is the identification of the vulnerable locations. An alternative to the usual hydrodynamic models to predict vulnerable locations is to quantify the probability of erosion occurrence. This can be achieved by identifying the underlying relations between riverbank erosion and the geomorphological or hydrological variables that prevent or stimulate erosion. Thus, riverbank erosion can be determined by a regression model using independent variables that are considered to affect the erosion process. The impact of such variables may vary spatially, therefore, a non-stationary regression model is preferred instead of a stationary equivalent. Locally Weighted Regression (LWR) is proposed as a suitable choice. This method can be extended to predict the binary presence or absence of erosion based on a series of independent local variables by using the logistic regression model. It is referred to as Locally Weighted Logistic Regression (LWLR). Logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable (e.g. binary response) based on one or more predictor variables. The method can be combined with LWR to assign weights to local independent variables of the dependent one. LWR allows model parameters to vary over space in order to reflect spatial heterogeneity. The probabilities of the possible outcomes are modelled as a function of the independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. erosion presence or absence) for any value of the independent variables. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding the independent variables tested. The most straightforward measure for goodness of fit is the G statistic. It is a simple and effective way to study and evaluate the Logistic Regression model efficiency and the reliability of each independent variable. The developed statistical model is applied to the Koiliaris River Basin on the island of Crete, Greece. Two datasets of river bank slope, river cross-section width and indications of erosion were available for the analysis (12 and 8 locations). Two different types of spatial dependence functions, exponential and tricubic, were examined to determine the local spatial dependence of the independent variables at the measurement locations. The results show a significant improvement when the tricubic function is applied as the erosion probability is accurately predicted at all eight validation locations. Results for the model deviance show that cross-section width is more important than bank slope in the estimation of erosion probability along the Koiliaris riverbanks. The proposed statistical model is a useful tool that quantifies the erosion probability along the riverbanks and can be used to assist managing erosion and flooding events. Acknowledgements This work is part of an on-going THALES project (CYBERSENSORS - High Frequency Monitoring System for Integrated Water Resources Management of Rivers). The project has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.
Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)
NASA Astrophysics Data System (ADS)
Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.
2013-12-01
Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.
Natural trophic variability in a large, oligotrophic, near-pristine lake
Young, Talia; Jensen, Olaf P.; Weidel, Brian C.; Chandra, Sudeep
2015-01-01
Conclusions drawn from stable isotope data can be limited by an incomplete understanding of natural isotopic variability over time and space. We quantified spatial and temporal variability in fish carbon and nitrogen stable isotopes in Lake Hövsgöl, Mongolia, a large, remote, oligotrophic lake with an unusually species-poor fish community. The fish community demonstrated a high degree of trophic level overlap. Variability in δ13C was inversely related to littoral-benthic dependence, with pelagic species demonstrating more δ13C variability than littoral-benthic species. A mixed effects model suggested that space (sampling location) had a greater impact than time (collection year) on both δ13C and δ15N variability. The observed variability in Lake Hövsgöl was generally greater than isotopic variability documented in other large, oligotrophic lakes, similar to isotopic shifts attributed to introduced species, and less than isotopic shifts attributed to anthropogenic chemical changes such as eutrophication. This work complements studies on isotopic variability and changes in other lakes around the world.
Quantifying Temperature Effects on Snow, Plant and Streamflow Dynamics in Headwater Catchments
NASA Astrophysics Data System (ADS)
Wainwright, H. M.; Sarah, T.; Siirila-Woodburn, E. R.; Newcomer, M. E.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Carroll, R. W. H.
2017-12-01
Quantifying Temperature Effects on Snow, Plant and Streamflow Dynamics in Headwater Catchments Snow-dominated headwater catchments are critical for water resource throughout the world; particularly in Western US. Under climate change, temperature increases are expected to be amplified in mountainous regions. We use a data-driven approach to better understand the coupling among inter-annual variability in temperature, snow and plant community dynamics and stream discharge. We apply data mining methods (e.g., principal component analysis, random forest) to historical spatiotemporal datasets, including the SNOTEL data, Landsat-based normalized difference vegetation index (NDVI) and airborne LiDAR-based snow distribution. Although both snow distribution and NDVI are extremely heterogeneous spatially, the inter-annual variability and temporal responses are spatially consistent, providing an opportunity to quantify the effect of temperature in the catchment-scale. We demonstrate our approach in the East River Watershed of the Upper Colorado River Basin, including Rocky Mountain Biological Laboratory, where the changes in plant communities and their dynamics have been extensively documented. Results indicate that temperature - particularly spring temperature - has a significant control not only on the timing of snowmelt, plant NDVI and peak flow but also on the magnitude of peak NDVI, peak flow and annual discharge. Monthly temperature in spring explains the variability of snowmelt by the equivalent standard deviation of 3.4-4.4 days, and total discharge by 10-11%. In addition, the high correlation among June temperature, peak NDVI and annual discharge suggests a primary role of spring evapotranspiration on plant community phenology, productivity, and streamflow volume. On the other hand, summer monsoon precipitation does not contribute significantly to annual discharge, further emphasizing the importance of snowmelt. This approach is mostly based on a set of datasets typically available throughout the US, providing a powerful approach to link remote sensing techniques with long-term monitoring of temperature, snowfall, plant, and streamflow dynamics.
Massie, Danielle L.; Smith, Geoffrey; Bonvechio, Timothy F.; Bunch, Aaron J.; Lucchesi, David O.; Wagner, Tyler
2018-01-01
Quantifying spatial variability in fish growth and identifying large‐scale drivers of growth are fundamental to many conservation and management decisions. Although fish growth studies often focus on a single population, it is becoming increasingly clear that large‐scale studies are likely needed for addressing transboundary management needs. This is particularly true for species with high recreational value and for those with negative ecological consequences when introduced outside of their native range, such as the Flathead Catfish Pylodictis olivaris. This study quantified growth variability of the Flathead Catfish across a large portion of its contemporary range to determine whether growth differences existed between habitat types (i.e., reservoirs and rivers) and between native and introduced populations. Additionally, we investigated whether growth parameters varied as a function of latitude and time since introduction (for introduced populations). Length‐at‐age data from 26 populations across 11 states in the USA were modeled using a Bayesian hierarchical von Bertalanffy growth model. Population‐specific growth trajectories revealed large variation in Flathead Catfish growth and relatively high uncertainty in growth parameters for some populations. Relatively high uncertainty was also evident when comparing populations and when quantifying large‐scale patterns. Growth parameters (Brody growth coefficient [K] and theoretical maximum average length [L∞]) were not different (based on overlapping 90% credible intervals) between habitat types or between native and introduced populations. For populations within the introduced range of Flathead Catfish, latitude was negatively correlated with K. For native populations, we estimated an 85% probability that L∞ estimates were negatively correlated with latitude. Contrary to predictions, time since introduction was not correlated with growth parameters in introduced populations of Flathead Catfish. Results of this study suggest that Flathead Catfish growth patterns are likely shaped more strongly by finer‐scale processes (e.g., exploitation or prey abundances) as opposed to macro‐scale drivers.
Lee, Hyung Joo; Gent, Janneane F.; Leaderer, Brian P.; Koutrakis, Petros
2011-01-01
To protect public health from PM2.5 air pollution, it is critical to identify the source types of PM2.5 mass and chemical components associated with higher risks of adverse health outcomes. Source apportionment modeling using Positive Matrix Factorization (PMF), was used to identify PM2.5 source types and quantify the source contributions to PM2.5 in five cities of Connecticut and Massachusetts. Spatial and temporal variability of PM2.5 mass, components and source contributions were investigated. PMF analysis identified five source types: regional pollution as traced by sulfur, motor vehicle, road dust, oil combustion and sea salt. The sulfur-related regional pollution and traffic source type were major contributors to PM2.5. Due to sparse ground-level PM2.5 monitoring sites, current epidemiological studies are susceptible to exposure measurement errors. The higher correlations in concentrations and source contributions between different locations suggest less spatial variability, resulting in less exposure measurement errors. When concentrations and/or contributions were compared to regional averages, correlations were generally higher than between-site correlations. This suggests that for assigning exposures for health effects studies, using regional average concentrations or contributions from several PM2.5 monitors is more reliable than using data from the nearest central monitor. PMID:21429560
Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals
NASA Technical Reports Server (NTRS)
Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel
2014-01-01
To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.
Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.
2009-01-01
The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.
Albedo Spatial Variability and Causes on the Western Greenland Ice Sheet Percolation Zone
NASA Astrophysics Data System (ADS)
Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Koffman, B. G.; Marshall, H. P.; Birkel, S. D.; Dibb, J. E.
2016-12-01
Many recent studies have concluded that Greenland Ice Sheet (GIS) mass loss has been accelerating over recent decades, but spatial and temporal variations in GIS mass balance remain poorly understood due to a complex relationship among precipitation and temperature changes, increasing melt and runoff, ice discharge, and surface albedo. Satellite measurements from MODerate resolution Imaging Spectroradiometer (MODIS) indicate that albedo has been declining over the past decade, but the cause and extent of GIS albedo change remains poorly constrained by field data. As fresh snow (albedo > 0.85) warms and melts, its albedo decreases due to snow grain growth, promoting solar absorption, higher snowpack temperatures and further melt. However, dark impurities like soot and dust can also significantly reduce snow albedo, even in the dry snow zone. While many regional climate models (e.g. the Regional Atmospheric Climate MOdel - RACMO2) calculate albedo spatial resolutions on the order of 10-30 km, and MODIS averages albedo over 500 m, surface features like sastrugi can affect albedo on much smaller scales. Here we assess the relative importance of grain size and shape vs. impurity concentrations on albedo in the western GIS percolation zone. We collected broadband albedo measurements (300-2500 nm at 3-8 nm resolution) at 35 locations using an ASD FieldSpec4 spectroradiometer to simultaneously quantify radiative fluxes and spectral reflectance. Measurements were collected on 10 x 10 m, 1 x 1 km, 5 x 5 km, and 10 x 10 km grids to determine the spatial variability of albedo as part of the 850-km Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) traverse from Raven/Dye 2 to Summit. Additionally, we collected shallow (0-50 cm) snow pit samples every 5 cm at ASD measurement sites to quantify black carbon and mineral dust concentrations and size distributions using a Single Particle Soot Photometer and Coulter Counter, respectively. Preliminary results indicate larger albedo variability in the infrared than visible and near infrared. We compare our in situ field measurements with co-located albedo data from airplanes, satellites, and climate models, and discuss implications for GIS surface mass balance.
Accounting for Forest Harvest and Wildfire in a Spatially-distributed Carbon Cycle Process Model
NASA Astrophysics Data System (ADS)
Turner, D. P.; Ritts, W.; Kennedy, R. E.; Yang, Z.; Law, B. E.
2009-12-01
Forests are subject to natural disturbances in the form of wildfire, as well as management-related disturbances in the form of timber harvest. These disturbance events have strong impacts on local and regional carbon budgets, but quantifying the associated carbon fluxes remains challenging. The ORCA Project aims to quantify regional net ecosystem production (NEP) and net biome production (NBP) in Oregon, California, and Washington, and we have adopted an integrated approach based on Landsat imagery and ecosystem modeling. To account for stand-level carbon fluxes, the Biome-BGC model has been adapted to simulate multiple severities of fire and harvest. New variables include snags, direct fire emissions, and harvest removals. New parameters include fire-intensity-specific combustion factors for each carbon pool (based on field measurements) and proportional removal rates for harvest events. To quantify regional fluxes, the model is applied in a spatially-distributed mode over the domain of interest, with disturbance history derived from a time series of Landsat images. In stand-level simulations, the post disturbance transition from negative (source) to positive (sink) NEP is delayed approximately a decade in the case of high severity fire compared to harvest. Simulated direct pyrogenic emissions range from 11 to 25 % of total non-soil ecosystem carbon. In spatial mode application over Oregon and California, the sum of annual pyrogenic emissions and harvest removals was generally less that half of total NEP, resulting in significant carbon sequestration on the land base. Spatially and temporally explicit simulation of disturbance-related carbon fluxes will contribute to our ability to evaluate effects of management on regional carbon flux, and in our ability to assess potential biospheric feedbacks to climate change mediated by changing disturbance regimes.
Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer
2012-01-01
Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...
Li, Lianfa; Laurent, Olivier; Wu, Jun
2016-02-05
Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors on spatial variability of the air pollution's effects. This study aimed to examine spatial variability of the effects of air pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability. We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air pollution exposure was modeled at individual level for nitrogen dioxide (NO2) and nitrogen oxides (NOx) using spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations between air pollution and term birth weight. Higher air pollution exposure was associated with lower term birth weight (average posterior effects: -14.7 (95 % CI: -19.8, -9.7) g per 10 ppb increment in NO2 and -6.9 (95 % CI: -12.9, -0.9) g per 10 ppb increment in NOx). The variation of the association across Census tracts was significantly influenced by the tract-level socio-demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship between these factors and the associations between air pollution and term birth weight: we observed the thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating factors might reflect additional exposure to environmental insults or lower socio-economic status with higher vulnerability, whereas attenuating factors might indicate reduced exposure or higher socioeconomic status with lower vulnerability. Our Bayesian models effectively combined a priori knowledge with training data to infer the posterior association of air pollution with term birth weight and to evaluate the influence of the tract-level factors on spatial variability of such association. This study contributes new findings about non-linear influences of socio-demographic factors, land-use patterns, and unaccounted exposures on spatial variability of the effects of air pollution.
Janine Ruegg; Walter K. Dodds; Melinda D. Daniels; Ken R. Sheehan; Christina L. Baker; William B. Bowden; Kaitlin J. Farrell; Michael B. Flinn; Tamara K. Harms; Jeremy B. Jones; Lauren E. Koenig; John S. Kominoski; William H. McDowell; Samuel P. Parker; Amy D. Rosemond; Matt T. Trentman; Matt Whiles; Wilfred M. Wollheim
2016-01-01
ContextSpatial scaling of ecological processes is facilitated by quantifying underlying habitat attributes. Physical and ecological patterns are often measured at disparate spatial scales limiting our ability to quantify ecological processes at broader spatial scales using physical attributes.
Spatial contexts for temporal variability in alpine vegetation under ongoing climate change
Fagre, Daniel B.; ,; George P. Malanson,
2013-01-01
A framework to monitor mountain summit vegetation (The Global Observation Research Initiative in Alpine Environments, GLORIA) was initiated in 1997. GLORIA results should be taken within a regional context of the spatial variability of alpine tundra. Changes observed at GLORIA sites in Glacier National Park, Montana, USA are quantified within the context of the range of variability observed in alpine tundra across much of western North America. Dissimilarity is calculated and used in nonmetric multidimensional scaling for repeated measures of vascular species cover at 14 GLORIA sites with 525 nearby sites and with 436 sites in western North America. The lengths of the trajectories of the GLORIA sites in ordination space are compared to the dimensions of the space created by the larger datasets. The absolute amount of change on the GLORIA summits over 5 years is high, but the degree of change is small relative to the geographical context. The GLORIA sites are on the margin of the ordination volumes with the large datasets. The GLORIA summit vegetation appears to be specialized, arguing for the intrinsic value of early observed change in limited niche space.
Bierer, Julie Arenberg
2007-03-01
The efficacy of cochlear implants is limited by spatial and temporal interactions among channels. This study explores the spatially restricted tripolar electrode configuration and compares it to bipolar and monopolar stimulation. Measures of threshold and channel interaction were obtained from nine subjects implanted with the Clarion HiFocus-I electrode array. Stimuli were biphasic pulses delivered at 1020 pulses/s. Threshold increased from monopolar to bipolar to tripolar stimulation and was most variable across channels with the tripolar configuration. Channel interaction, quantified by the shift in threshold between single- and two-channel stimulation, occurred for all three configurations but was largest for the monopolar and simultaneous conditions. The threshold shifts with simultaneous tripolar stimulation were slightly smaller than with bipolar and were not as strongly affected by the timing of the two channel stimulation as was monopolar. The subjects' performances on clinical speech tests were correlated with channel-to-channel variability in tripolar threshold, such that greater variability was related to poorer performance. The data suggest that tripolar channels with high thresholds may reveal cochlear regions of low neuron survival or poor electrode placement.
Banerjee, Samiran
2012-01-01
Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation. PMID:22081570
Assessing spatial and temporal snowpack evolution and melt with time-lapse photography
NASA Astrophysics Data System (ADS)
Bush, C. E.; Ewers, B. E.; Beverly, D.; Speckman, H. N.; Hyde, K.; Ohara, N.
2015-12-01
Snowpack supplies and stores water for many ecosystems of the greater Rocky Mountain region. In Wyoming the snowpack supplies water to 18 states east and west of the Continental Divide. The spatial variability in physical and biological processes creates a heterogeneous pattern of snow evolution. Understanding these processes within individual plots and throughout the entire watershed increases the predictive power of snow distribution, melt rates and contribution to streamflow. However, on site sampling of snow can be an expensive and arduous process. The objective of this experiment was to quantify spatial and temporal patterns of snowpack evolution and melt rates while minimizing perturbations to snowpack through the use of time-lapse photography via trail cameras. Field cameras were assessed as a method to quantify snow depths throughout the 120 ha No Name watershed at approximately 3000 m elevation in central Wyoming. RGB trail cameras were installed at three systematically chosen sites within the watershed to correlate physical and biological drivers of snow distribution. Five stakes were placed in each site in heterogeneous spots that remained in the frame of the camera. Stakes were divided into five centimeter increments, alternating black and white bars, with red bars denoting each half meter. Images were then taken at two-hour intervals over a period of three-months and analyzed with the ImageJ program. Snowpack distributions, as well as melt rates, were variable at both the plot and watershed scales. Meteorological and physical drivers, primarily topography and radiation, accounted for the greatest variability when comparing among plot across the watershed; however, LAI and soil and air temperature were the most significant drivers within plots. Snow-melt rate increased as soils and course woody debris became exposed increasing ground and soil temperature. These data will improve process model predictions of streamflow from the watershed.
Noth, Elizabeth M.; Lurmann, Fred; Northcross, Amanda; Perrino, Charles; Vaughn, David; Hammond, S. Katharine
2016-01-01
Despite increasing evidence that airborne polycyclic aromatic hydrocarbon (PAH) exposures contribute to adverse health outcomes for sensitive populations, limited data are available on short-term intraurban spatial distributions for use in epidemiologic research. Exposure assessments for airborne PAHs are uncommon because air sampling for PAHs is a labor-, equipment-, and time-intensive task. To address this gap we measured wintertime PAH concentrations during 2010-2011 in Bakersfield, California, USA, a major city in the Southern San Joaquin Valley. Specifically, 58 96-hour integrated PAH samples were collected during 4 time periods at 14 locations from November 2010 to January 2011; duplicates were collected at two sites. We also collected elemental carbon (EC) at the same 14 sites and analyzed the two time periods with the highest ambient PAH pollution. We used linear regression models to quantify the relationship between potential spatial and temporal predictors of PAH concentrations. We found that wintertime PAH concentrations in Bakersfield, CA, are best predicted by meteorological variables and traffic proximity. Our model explains a moderate amount of the variability in the data (R2=0.58), likely reflecting the major sources of PAHs in Bakersfield. We also observed that PAH concentrations were more spatially variable than EC concentrations. Comparing our data to historical monitoring data at one location in Bakersfield showed that the relatively low PAH concentrations during the 2010-2011 winter in Bakersfield is part of a long-term trend in decreasing PAH concentrations. PMID:28083077
Phosphorus in agricultural soils: drivers of its distribution at the global scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringeval, Bruno; Augusto, Laurent; Monod, Herve
Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (P ILAB), a proxy of the pool involved in plant nutrition and themore » total soil P (P TOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between P TOT vs P ILAB. Indeed, 97% of the P TOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of P ILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.« less
Temporal and spatial variability of aeolian sand transport: Implications for field measurements
NASA Astrophysics Data System (ADS)
Ellis, Jean T.; Sherman, Douglas J.; Farrell, Eugene J.; Li, Bailiang
2012-01-01
Horizontal variability is often cited as one source of disparity between observed and predicted rates of aeolian mass flux, but few studies have quantified the magnitude of this variability. Two field projects were conducted to evaluate meter-scale spatial and temporal in the saltation field. In Shoalhaven Heads, NSW, Australia a horizontal array of passive-style sand traps were deployed on a beach for 600 or 1200 s across a horizontal span of 0.80 m. In Jericoacoara, Brazil, traps spanning 4 m were deployed for 180 and 240 s. Five saltation sensors (miniphones) spaced 1 m apart were also deployed at Jericoacoara. Spatial variation in aeolian transport rates over small spatial and short temporal scales was substantial. The measured transport rates ( Q) obtained from the passive traps ranged from 0.70 to 32.63 g/m/s. When considering all traps, the coefficient of variation ( CoV) values ranged from 16.6% to 67.8%, and minimum and maximum range of variation coefficient ( RVC) values were 106.1% to 152.5% and 75.1% to 90.8%, respectively. The miniphone Q and CoV averaged 47.1% and 4.1% for the 1260 s data series, which was subsequently sub-sampled at 60-630 s intervals to simulate shorter deployment times. A statistically significant ( p < 0.002), inverselinear relationship was found between sample duration and CoV and between Q and CoV, the latter relationship also considering data from previous studies.
NASA Astrophysics Data System (ADS)
Kang, K.; Duguay, C. R.
2014-12-01
Lakes encompass a large part of the surface cover in the northern boreal and tundra areas of northern Canada and are therefore a significant component of the terrestrial hydrological system. To understand the hydrologic cycle over subarctic and arctic landscapes, estimating surface parameters such as surface net radiation, soil moisture, and surface albedo is important. Although ground-based field measurements provide a good temporal resolution, these data provide a limited spatial representation and are often restricted to the summer period (from June to August), and few surface-based stations are located in high-latitude regions. In this respect, spaceborne remote sensing provides the means to monitor surface hydrology and to estimate components of the surface energy balance with reasonable spatial and temporal resolutions required for hydrological investigations, as well as for providing more spatially representative lake-relevant information than available from in situ measurements. The primary objective of this study is to quantify the sources of temporal and spatial variability in surface albedo over subarctic wetland from satellite derived albedo measurements in the Hudson Bay Lowlands near Churchill, Manitoba. The spatial variability in albedo within each land-cover type is investigated through optical satellite imagery from Landsat-5 Thematic Mapper, Landsat-7 Enhanced Thematic Mapper Plus, and Landsat-8 Operational Land Imager obtained in different seasons from spring into fall (April and October) over a 30-year period (1984-2013). These data allowed for an examination of the spatial variability of surface albedo under relatively dry and wet summer conditions (i.e. 1984, 1998 versus 1991, 2005). A detailed analysis of Landsat-derived surface albedo (ranging from 0.09 to 0.15) conducted in the Churchill region for August is inversely related to surface water fraction calculated from Landsat images. Preliminary analysis of surface albedo observed between July and August are 0.10 to 0.15, and vary due to differences in meteorological parameters such as rainfall, surface moisture and surface air temperature. Overall, spaceborne optical data are an invaluable source for investigating changes and variability in surface albedo in relation to surface hydrology over subarctic regions.
NASA Astrophysics Data System (ADS)
Schirmer, Michael; Harder, Phillip; Pomeroy, John
2016-04-01
The spatial and temporal dynamics of mountain snowmelt are controlled by the spatial distribution of snow accumulation and redistribution and the pattern of melt energy applied to this snowcover. In order to better quantify the spatial variations of accumulation and ablation, Structure-from-Motion techniques were applied to sequential aerial photographs of an alpine ridge in the Canadian Rocky Mountains taken from an Unmanned Aerial Vehicle (UAV). Seven spatial maps of snow depth and changes to depth during late melt (May-July) were generated at very high resolutions covering an area of 800 x 600 m. The accuracy was assessed with over 100 GPS measurements and RMSE were found to be less than 10 cm. Low resolution manual measurements of density permitted calculation of snow water equivalent (SWE) and change in SWE (ablation rate). The results indicate a highly variable initial SWE distribution, which was five times more variable than the spatial variation in ablation rate. Spatial variation in ablation rate was still substantial, with a factor of two difference between north and south aspects and small scale variations due to local dust deposition. However, the impact of spatial variations in ablation rate on the snowcover depletion curve could not be discerned. The reason for this is that only a weak spatial correlation developed between SWE and ablation rate. These findings suggest that despite substantial variations in ablation rate, snowcover depletion curve calculations should emphasize the spatial variation of initial SWE rather than the variation in ablation rate. While there is scientific evidence from other field studies that support this, there are also studies that suggest that spatial variations in ablation rate can influence snowcover depletion curves in complex terrain, particularly in early melt. The development of UAV photogrammetry has provided an opportunity for further detailed measurement of ablation rates, SWE and snowcover depletion over complex terrain and UAV field studies are recommended to clarify the relative importance of SWE and melt variability on snowcover depletion in various environmental conditions.
Liu, Yi; Li, Yuefen; Harris, Paul; Cardenas, Laura M; Dunn, Robert M; Sint, Hadewij; Murray, Phil J; Lee, Michael R F; Wu, Lianhai
2018-04-01
In this study, we evaluated the ability of the SPACSYS model to simulate water run-off, soil moisture, N 2 O fluxes and grass growth using data generated from a field of the North Wyke Farm Platform. The field-scale model is adapted via a linked and grid-based approach (grid-to-grid) to account for not only temporal dynamics but also the within-field spatial variation in these key ecosystem indicators. Spatial variability in nutrient and water presence at the field-scale is a key source of uncertainty when quantifying nutrient cycling and water movement in an agricultural system. Results demonstrated that the new spatially distributed version of SPACSYS provided a worthy improvement in accuracy over the standard (single-point) version for biomass productivity. No difference in model prediction performance was observed for water run-off, reflecting the closed-system nature of this variable. Similarly, no difference in model prediction performance was found for N 2 O fluxes, but here the N 2 O predictions were noticeably poor in both cases. Further developmental work, informed by this study's findings, is proposed to improve model predictions for N 2 O. Soil moisture results with the spatially distributed version appeared promising but this promise could not be objectively verified.
Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems
Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.
2013-01-01
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change. PMID:23637939
Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.
Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G
2013-01-01
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change.
NASA Astrophysics Data System (ADS)
Jarvis, S. K.; Harmon, R. E.; Barnard, H. R.; Randall, J.; Singha, K.
2017-12-01
The critical zone (CZ)—an open system extending from canopy top to the base of groundwater—is a highly dynamic and heterogeneous environment. In forested terrain, trees make up a large component of the CZ. This work aims to quantify the connection between vegetation and subsurface water storage at a hillslope scale within a forested watershed in the H.J. Andrews Experimental Forest, Oregon. To identify the mechanism(s) controlling the connection at the hillslope scale, we observe patterns in electrical conductivity using 2D-time lapse-DC resistivity. To compare inversions through time a representative error model was determined using L-curve criterion. Inverted data show high spatial variability in ground electrical conductivity and variation at both diel and seasonal timescales. These changes are most pronounced in areas corresponding to dense vegetation. The diel pattern in electrical conductivity is also observed in monitored sap flow sensors, water-level gauges, tensiometers, and sediment thermal probes. To quantify the temporal connection between these data over the course of the growing season a cross correlation analysis was conducted. Preliminary data show that over the course of the growing season transpiration becomes decoupled from both groundwater and soil moisture. Further decomposition of the inverted time lapse data will highlight spatial variability in electrical conductivity providing insight into the where, when, and how(s) of tree-modified subsurface storage.
NASA Astrophysics Data System (ADS)
Wiberg, Patricia L.; Law, Brent A.; Wheatcroft, Robert A.; Milligan, Timothy G.; Hill, Paul S.
2013-06-01
Measurements of erodibility, porosity and sediment size were made three times over the course of a year at sites within a muddy, mesotidal flat-channel complex in southern Willapa Bay, WA, to examine spatial and seasonal variations in sediment properties and transport potential. Average critical shear stress profiles, the metric we used for erodibility, were quantified using a power-law fit to cumulative eroded mass vs. shear stress for the flats and channel. Laboratory erosion measurements of deposits made from slurries of flat and channel sediment were used to quantify erodibility over consolidation time scales ranging from 6 to 96h. Erodibility of the tidal flats was consistently low, with spatial variability comparable to seasonal variability despite seasonal changes in biological activity. In contrast, channel-bed erodibility underwent large seasonal variations, with mobile sediment present in the channel thalweg during winter that was absent in the spring and summer, when channel-bed erodibility was low and comparable to that of the tidal flats. Sediment on the northern (left) channel flank was mobile in summer and winter, whereas sediment on the southern flank was not. Seasonal changes in channel-bed erodibility are sufficient to produce order-of-magnitude changes in suspended sediment concentrations during peak tidal flows. Porosity just below the sediment surface was the best predictor of erodibility in our study area.
Hytteborn, Julia K.; Temnerud, Johan; Alexander, Richard B.; Boyer, Elizabeth W.; Futter, Martyn N.; Fröberg, Mats; Dahné, Joel; Bishop, Kevin H.
2015-01-01
Factors affecting total organic carbon (TOC) concentrations in 215 watercourses across Sweden were investigated using parameter parsimonious regression approaches to explain spatial and temporal variabilities of the TOC water quality responses. We systematically quantified the effects of discharge, seasonality, and long-term trend as factors controlling intra-annual (among year) and inter-annual (within year) variabilities of TOC by evaluating the spatial variability in model coefficients and catchment characteristics (e.g. land cover, retention time, soil type).Catchment area (0.18–47,000 km2) and land cover types (forests, agriculture and alpine terrain) are typical for the boreal and hemiboreal zones across Fennoscandia. Watercourses had at least 6 years of monthly water quality observations between 1990 and 2010. Statistically significant models (p < 0.05) describing variation of TOC in streamflow were identified in 209 of 215 watercourses with a mean Nash-Sutcliffe efficiency index of 0.44. Increasing long-term trends were observed in 149 (70%) of the watercourses, and intra-annual variation in TOC far exceeded inter-annual variation. The average influences of the discharge and seasonality terms on intra-annual variations in daily TOC concentration were 1.4 and 1.3 mg l− 1 (13 and 12% of the mean annual TOC), respectively. The average increase in TOC was 0.17 mg l− 1 year− 1 (1.6% year− 1).Multivariate regression with over 90 different catchment characteristics explained 21% of the spatial variation in the linear trend coefficient, less than 20% of the variation in the discharge coefficient and 73% of the spatial variation in mean TOC. Specific discharge, water residence time, the variance of daily precipitation, and lake area, explained 45% of the spatial variation in the amplitude of the TOC seasonality.Because the main drivers of temporal variability in TOC are seasonality and discharge, first-order estimates of the influences of climatic variability and change on TOC concentration should be predictable if the studied catchments continue to respond similarly.
Qian, Hong; Chen, Shengbin; Zhang, Jin-Long
2017-07-17
Niche-based and neutrality-based theories are two major classes of theories explaining the assembly mechanisms of local communities. Both theories have been frequently used to explain species diversity and composition in local communities but their relative importance remains unclear. Here, we analyzed 57 assemblages of angiosperm trees in 0.1-ha forest plots across China to examine the effects of environmental heterogeneity (relevant to niche-based processes) and spatial contingency (relevant to neutrality-based processes) on phylogenetic structure of angiosperm tree assemblages distributed across a wide range of environment and space. Phylogenetic structure was quantified with six phylogenetic metrics (i.e., phylogenetic diversity, mean pairwise distance, mean nearest taxon distance, and the standardized effect sizes of these three metrics), which emphasize on different depths of evolutionary histories and account for different degrees of species richness effects. Our results showed that the variation in phylogenetic metrics explained independently by environmental variables was on average much greater than that explained independently by spatial structure, and the vast majority of the variation in phylogenetic metrics was explained by spatially structured environmental variables. We conclude that niche-based processes have played a more important role than neutrality-based processes in driving phylogenetic structure of angiosperm tree species in forest communities in China.
Keller, Virginie D J; Williams, Richard J; Lofthouse, Caryn; Johnson, Andrew C
2014-02-01
Dilution factors are a critical component in estimating concentrations of so-called "down-the-drain" chemicals (e.g., pharmaceuticals) in rivers. The present study estimated the temporal and spatial variability of dilution factors around the world using geographically referenced data sets at 0.5° × 0.5° resolution. Domestic wastewater effluents were derived from national per capita domestic water use estimates and gridded population. Monthly and annual river flows were estimated by accumulating runoff estimates using topographically derived flow directions. National statistics, including the median and interquartile range, were generated to quantify dilution factors. Spatial variability of the dilution factor was found to be considerable; for example, there are 4 orders of magnitude in annual median dilution factor between Canada and Morocco. Temporal variability within a country can also be substantial; in India, there are up to 9 orders of magnitude between median monthly dilution factors. These national statistics provide a global picture of the temporal and spatial variability of dilution factors and, hence, of the potential exposure to down-the-drain chemicals. The present methodology has potential for a wide international community (including decision makers and pharmaceutical companies) to assess relative exposure to down-the-drain chemicals released by human pollution in rivers and, thus, target areas of potentially high risk. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
The Nature of Antarctic Temperature Change
NASA Astrophysics Data System (ADS)
Markle, B. R.; Steig, E. J.
2017-12-01
The Antarctic is an important component of global climate. While the Arctic has warmed significantly in the last century, the Antarctic as a whole has shown considerably less variability. There is, however, a pronounced spatial pattern to modern Antarctic temperature change. The high East Antarctic Ice Sheet shows little to no warming over recent decades while West Antarctica and the Peninsula shows some of the largest rates of warming on the globe. Examining past climate variability can help reveal the physical processes governing this spatial pattern of Antarctic temperature change. Modern Antarctic temperature variability is known from satellite and weather station observations. Understanding changes in the past, however, requires paleoclimate-proxies such as ice-core water-isotope records. Here we assess the spatial pattern of Antarctic temperature changes across a range of timescales, from modern decadal changes to millennial and orbital-scale variability. We reconstruct past changes in absolute temperatures from a suite of deep ice core records and an improved isotope-temperature reconstruction method. We use δ18O and deuterium excess records to reconstruct both evaporation source and condensation site temperatures. In contrast to previous studies we use a novel method that accounts for nonlinearities in the water-isotope distillation process. We quantify past temperature changes over the Southern Ocean and Antarctic Continent and the magnitude of polar amplification. We identify patterns of Antarctic temperature change that are common across a wide range of timescales and independent of the source of forcing. We examine the nature of these changes and their relationship to atmospheric thermodynamics.
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2014-10-01
The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.
NASA Astrophysics Data System (ADS)
Jiang, H.; Lin, T.
2017-12-01
Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.
Temporal and spatial variation in pharmaceutical concentrations in an urban river system.
Burns, Emily E; Carter, Laura J; Kolpin, Dana W; Thomas-Oates, Jane; Boxall, Alistair B A
2018-06-15
Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fathalli, Bilel; Pohl, Benjamin; Castel, Thierry; Safi, Mohamed Jomâa
2018-02-01
Temporal and spatial variability of rainfall over Tunisia (at 12 km spatial resolution) is analyzed in a multi-year (1992-2011) ten-member ensemble simulation performed using the WRF model, and a sample of regional climate hindcast simulations from Euro-CORDEX. RCM errors and skills are evaluated against a dense network of local rain gauges. Uncertainties arising, on the one hand, from the different model configurations and, on the other hand, from internal variability are furthermore quantified and ranked at different timescales using simple spread metrics. Overall, the WRF simulation shows good skill for simulating spatial patterns of rainfall amounts over Tunisia, marked by strong altitudinal and latitudinal gradients, as well as the rainfall interannual variability, in spite of systematic errors. Mean rainfall biases are wet in both DJF and JJA seasons for the WRF ensemble, while they are dry in winter and wet in summer for most of the used Euro-CORDEX models. The sign of mean annual rainfall biases over Tunisia can also change from one member of the WRF ensemble to another. Skills in regionalizing precipitation over Tunisia are season dependent, with better correlations and weaker biases in winter. Larger inter-member spreads are observed in summer, likely because of (1) an attenuated large-scale control on Mediterranean and Tunisian climate, and (2) a larger contribution of local convective rainfall to the seasonal amounts. Inter-model uncertainties are globally stronger than those attributed to model's internal variability. However, inter-member spreads can be of the same magnitude in summer, emphasizing the important stochastic nature of the summertime rainfall variability over Tunisia.
NASA Astrophysics Data System (ADS)
Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.
2017-12-01
The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.
NASA Astrophysics Data System (ADS)
Seyfried, M. S.; Link, T. E.
2013-12-01
Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal trends in Ts variability controlled by snow cover and solar radiation as modified by topography. During periods of spatially continuous snow cover Ts was practically homogeneous throughout. In the absence of snow cover, Ts is highly variable, with most of the variability attributable to different topographic units defined by slope and aspect. During transition periods when snow melts out, Ts is highly variable within the watershed and within topographic units. The importance of accounting for these relatively small scale effects is underscored by the fact that the overall range of Ts in study area 600 m long is similar to that of the much large RCEW with 900 m elevation gradient.
Application of data fusion modeling (DFM) to site characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, D.W.; Gibbs, B.P.; Jones, W.F.
1996-01-01
Subsurface characterization is faced with substantial uncertainties because the earth is very heterogeneous, and typical data sets are fragmented and disparate. DFM removes many of the data limitations of current methods to quantify and reduce uncertainty for a variety of data types and models. DFM is a methodology to compute hydrogeological state estimates and their uncertainties from three sources of information: measured data, physical laws, and statistical models for spatial heterogeneities. The benefits of DFM are savings in time and cost through the following: the ability to update models in real time to help guide site assessment, improved quantification ofmore » uncertainty for risk assessment, and improved remedial design by quantifying the uncertainty in safety margins. A Bayesian inverse modeling approach is implemented with a Gauss Newton method where spatial heterogeneities are viewed as Markov random fields. Information from data, physical laws, and Markov models is combined in a Square Root Information Smoother (SRIS). Estimates and uncertainties can be computed for heterogeneous hydraulic conductivity fields in multiple geological layers from the usually sparse hydraulic conductivity data and the often more plentiful head data. An application of DFM to the Old Burial Ground at the DOE Savannah River Site will be presented. DFM estimates and quantifies uncertainty in hydrogeological parameters using variably saturated flow numerical modeling to constrain the estimation. Then uncertainties are propagated through the transport modeling to quantify the uncertainty in tritium breakthrough curves at compliance points.« less
Application of data fusion modeling (DFM) to site characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, D.W.; Gibbs, B.P.; Jones, W.F.
1996-12-31
Subsurface characterization is faced with substantial uncertainties because the earth is very heterogeneous, and typical data sets are fragmented and disparate. DFM removes many of the data limitations of current methods to quantify and reduce uncertainty for a variety of data types and models. DFM is a methodology to compute hydrogeological state estimates and their uncertainties from three sources of information: measured data, physical laws, and statistical models for spatial heterogeneities. The benefits of DFM are savings in time and cost through the following: the ability to update models in real time to help guide site assessment, improved quantification ofmore » uncertainty for risk assessment, and improved remedial design by quantifying the uncertainty in safety margins. A Bayesian inverse modeling approach is implemented with a Gauss Newton method where spatial heterogeneities are viewed as Markov random fields. Information from data, physical laws, and Markov models is combined in a Square Root Information Smoother (SRIS). Estimates and uncertainties can be computed for heterogeneous hydraulic conductivity fields in multiple geological layers from the usually sparse hydraulic conductivity data and the often more plentiful head data. An application of DFM to the Old Burial Ground at the DOE Savannah River Site will be presented. DFM estimates and quantifies uncertainty in hydrogeological parameters using variably saturated flow numerical modeling to constrain the estimation. Then uncertainties are propagated through the transport modeling to quantify the uncertainty in tritium breakthrough curves at compliance points.« less
Gay, Emilie; Senoussi, Rachid; Barnouin, Jacques
2007-01-01
Methods for spatial cluster detection dealing with diseases quantified by continuous variables are few, whereas several diseases are better approached by continuous indicators. For example, subclinical mastitis of the dairy cow is evaluated using a continuous marker of udder inflammation, the somatic cell score (SCS). Consequently, this study proposed to analyze spatialized risk and cluster components of herd SCS through a new method based on a spatial hazard model. The dataset included annual SCS for 34 142 French dairy herds for the year 2000, and important SCS risk factors: mean parity, percentage of winter and spring calvings, and herd size. The model allowed the simultaneous estimation of the effects of known risk factors and of potential spatial clusters on SCS, and the mapping of the estimated clusters and their range. Mean parity and winter and spring calvings were significantly associated with subclinical mastitis risk. The model with the presence of 3 clusters was highly significant, and the 3 clusters were attractive, i.e. closeness to cluster center increased the occurrence of high SCS. The three localizations were the following: close to the city of Troyes in the northeast of France; around the city of Limoges in the center-west; and in the southwest close to the city of Tarbes. The semi-parametric method based on spatial hazard modeling applies to continuous variables, and takes account of both risk factors and potential heterogeneity of the background population. This tool allows a quantitative detection but assumes a spatially specified form for clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Lopez, Anthony
This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurementmore » stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for DNI; however, the scatter (root mean square error [RMSE]) difference is higher for the hourly averages.« less
Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Lopez, Anthony
This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurementmore » stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for DNI; however, the scatter (root mean square error [RMSE]) difference is higher for the hourly averages.« less
NASA Astrophysics Data System (ADS)
Feyen, Luc; Caers, Jef
2006-06-01
In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport predictions.
Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M
2013-01-01
Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.
Wilson, Jono R; Kay, Matthew C; Colgate, John; Qi, Roy; Lenihan, Hunter S
2012-01-01
A major challenge for small-scale fisheries management is high spatial variability in the demography and life history characteristics of target species. Implementation of local management actions that can reduce overfishing and maximize yields requires quantifying ecological heterogeneity at small spatial scales and is therefore limited by available resources and data. Collaborative fisheries research (CFR) is an effective means to collect essential fishery information at local scales, and to develop the social, technical, and logistical framework for fisheries management innovation. We used a CFR approach with fishing partners to collect and analyze geographically precise demographic information for grass rockfish (Sebastes rastrelliger), a sedentary, nearshore species harvested in the live fish fishery on the West Coast of the USA. Data were used to estimate geographically distinct growth rates, ages, mortality, and length frequency distributions in two environmental subregions of the Santa Barbara Channel, CA, USA. Results indicated the existence of two subpopulations; one located in the relatively cold, high productivity western Channel, and another in the relatively warm, low productivity eastern Channel. We parameterized yield per recruit models, the results of which suggested nearly twice as much yield per recruit in the high productivity subregion relative to the low productivity subregion. The spatial distribution of fishing in the two environmental subregions demonstrated a similar pattern to the yield per recruit outputs with greater landings, effort, and catch per unit effort in the high productivity subregion relative to the low productivity subregion. Understanding how spatial variability in stock dynamics translates to variability in fishery yield and distribution of effort is important to developing management plans that maximize fishing opportunities and conservation benefits at local scales.
Forecasting seasonal hydrologic response in major river basins
NASA Astrophysics Data System (ADS)
Bhuiyan, A. M.
2014-05-01
Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.
NASA Astrophysics Data System (ADS)
Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.
2018-01-01
Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
NASA Astrophysics Data System (ADS)
Tecklenburg, Christina; Blume, Theresa
2017-10-01
Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.
Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E.; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.
2016-01-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C
2016-04-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Measuring floodplain spatial patterns using continuous surface metrics at multiple scales
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.
2015-01-01
Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.
NASA Astrophysics Data System (ADS)
Sirianni, M.; Comas, X.; Shoemaker, B.
2017-12-01
Wetland methane emissions are highly variable both in space and time, and are controlled by changes in certain biogeochemical controls (i.e. organic matter availability; redox potential) and/or other environmental factors (i.e. soil temperature; water level). Consequently, hot spots (areas with disproportionally high emissions) may develop where biogeochemical and environmental conditions are especially conducive for enhancing certain microbial processes such as methanogenesis. The Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. In addition to rainfall, hydroperiod, fire regime, elevation above mean sea level, dominant vegetation type and underlying geological controls contribute to the development and evolution of organic and calcitic soils found throughout the Preserve. Currently, the U.S. Geological Survey employs eddy covariance methods within the Preserve to quantify carbon and methane exchanges over several spatially extensive vegetation communities. While eddy covariance towers are a convenient tool for measuring gas exchanges at the ecosystem scale, their spatially extensive footprint (hundreds of meters) may mask smaller scale spatial variabilities that may be conducive to the development of hot spots. Similarly, temporal resolution (i.e. sampling effort) at scales smaller that the eddy covariance measurement footprint is important since low resolution data may overlook rapid emission events and the temporal variability of discrete hot spots. In this work, we intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a unique combination of ground penetrating radar (GPR), capacitance probes, gas traps, and time-lapse photography. By using an array of methods that vary in spatio-temporal resolution, we hope to better understand the uncertainties associated with measuring wetland methane fluxes across different spatial and temporal scales. Our results have implications for characterizing and refining methane flux estimates in subtropical peat soils that could be used for climate models.
NASA Technical Reports Server (NTRS)
Follette-Cook, M. B.; Pickering, K.; Crawford, J.; Duncan, B.; Loughner, C.; Diskin, G.; Fried, A.; Weinheimer, A.
2015-01-01
We quantify both the spatial and temporal variability of column integrated O3, NO2, CO, SO2, and HCHO over the Baltimore / Washington, DC area using output from the Weather Research and Forecasting model with on-line chemistry (WRF/Chem) for the entire month of July 2011, coinciding with the first deployment of the NASA Earth Venture program mission Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). Using structure function analyses, we find that the model reproduces the spatial variability observed during the campaign reasonably well, especially for O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument will be the first NASA mission to make atmospheric composition observations from geostationary orbit and partially fulfills the goals of the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. We relate the simulated variability to the precision requirements defined by the science traceability matrices of these space-borne missions. Results for O3 from 0- 2 km altitude indicate that the TEMPO instrument would be able to observe O3 air quality events over the Mid-Atlantic area, even on days when the violations of the air quality standard are not widespread. The results further indicated that horizontal gradients in CO from 0-2 km would be observable over moderate distances (= 20 km). The spatial and temporal results for tropospheric column NO2 indicate that TEMPO would be able to observe not only the large urban plumes at times of peak production, but also the weaker gradients between rush hours. This suggests that the proposed spatial and temporal resolutions for these satellites as well as their prospective precision requirements are sufficient to answer the science questions they are tasked to address.
Cicore, Pablo; Serrano, João; Shahidian, Shakib; Sousa, Adelia; Costa, José Luis; da Silva, José Rafael Marques
2016-09-01
Little information is available on the degree of within-field variability of potential production of Tall wheatgrass (Thinopyrum ponticum) forage under unirrigated conditions. The aim of this study was to characterize the spatial variability of the accumulated biomass (AB) without nutritional limitations through vegetation indexes, and then use this information to determine potential management zones. A 27-×-27-m grid cell size was chosen and 84 biomass sampling areas (BSA), each 2 m(2) in size, were georeferenced. Nitrogen and phosphorus fertilizers were applied after an initial cut at 3 cm height. At 500 °C day, the AB from each sampling area, was collected and evaluated. The spatial variability of AB was estimated more accurately using the Normalized Difference Vegetation Index (NDVI), calculated from LANDSAT 8 images obtained on 24 November 2014 (NDVInov) and 10 December 2014 (NDVIdec) because the potential AB was highly associated with NDVInov and NDVIdec (r (2) = 0.85 and 0.83, respectively). These models between the potential AB data and NDVI were evaluated by root mean squared error (RMSE) and relative root mean squared error (RRMSE). This last coefficient was 12 and 15 % for NDVInov and NDVIdec, respectively. Potential AB and NDVI spatial correlation were quantified with semivariograms. The spatial dependence of AB was low. Six classes of NDVI were analyzed for comparison, and two management zones (MZ) were established with them. In order to evaluate if the NDVI method allows us to delimit MZ with different attainable yields, the AB estimated for these MZ were compared through an ANOVA test. The potential AB had significant differences among MZ. Based on these findings, it can be concluded that NDVI obtained from LANDSAT 8 images can be reliably used for creating MZ in soils under permanent pastures dominated by Tall wheatgrass.
Environment and host as large-scale controls of ectomycorrhizal fungi.
van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I
2018-06-06
Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.
Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors.
Thurber, Greg M; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer H; Weissleder, Ralph
2014-04-01
The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging, given the complex tumor microenvironment including intra- and intertumor heterogeneity. The difficulty in studying this distribution is even more significant for small-molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small-molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model.
Effect of Small Molecule Modification on Single Cell Pharmacokinetics of PARP Inhibitors
Thurber, Greg M.; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer; Weissleder, Ralph
2014-01-01
The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging given the complex tumor microenvironment including intra- and inter-tumor heterogeneity. The difficulty in studying this distribution is even more significant for small molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model. PMID:24552776
Hurricane Sandy: observations and analysis of coastal change
Sopkin, Kristin L.; Stockdon, Hilary F.; Doran, Kara S.; Plant, Nathaniel G.; Morgan, Karen L.M.; Guy, Kristy K.; Smith, Kathryn E.L.
2014-01-01
Hurricane Sandy, the largest Atlantic hurricane on record, made landfall on October 29, 2012, and impacted a long swath of the U.S. Atlantic coastline. The barrier islands were breached in a number of places and beach and dune erosion occurred along most of the Mid-Atlantic coast. As a part of the National Assessment of Coastal Change Hazards project, the U.S. Geological Survey collected post-Hurricane Sandy oblique aerial photography and lidar topographic surveys to document the changes that occurred as a result of the storm. Comparisons of post-storm photographs to those collected prior to Sandy’s landfall were used to characterize the nature, magnitude, and spatial variability of hurricane-induced coastal changes. Analysis of pre- and post-storm lidar elevations was used to quantify magnitudes of change in shoreline position, dune elevation, and beach width. Erosion was observed along the coast from North Carolina to New York; however, as would be expected over such a large region, extensive spatial variability in storm response was observed.
NASA Astrophysics Data System (ADS)
Kahn, B. H.; Yue, Q.; Davis, S. M.; Fetzer, E. J.; Schreier, M. M.; Tian, B.; Wong, S.
2016-12-01
We will quantify the time and space dependence of ice cloud effective radius (CER), optical thickness (COT), cloud top temperature (CTT), effective cloud fraction (ECF), and cloud thermodynamic phase (ice, liquid, or unknown) with the Version 6 Atmospheric Infrared Sounder (AIRS) satellite observational data set from September 2002 until present. We show that cloud frequency, CTT, COT, and ECF have substantially different responses to ENSO variations. Large-scale changes in ice CER are also observed with a several micron tropics-wide increase during the 2015-2016 El Niño and similar decreases during the La Niña phase. We show that the ice CER variations reflect fundamental changes in the spatial distributions and relative frequencies of different ice cloud types. Lastly, the high spatial and temporal resolution variability of the cloud fields are explored and we show that these data capture a multitude of convectively coupled tropical waves such as Kelvin, westward and eastward intertio-gravity, equatorial Rossby, and mixed Rossby-gravity waves.
Spatial and seasonal dynamics of brook trout populations inhabiting a central Appalachian watershed
Petty, J.T.; Lamothe, P.J.; Mazik, P.M.
2005-01-01
We quantified the watershed-scale spatial population dynamics of brook trout Salvelinus fontinalis in the Second Fork, a third-order tributary of Shavers Fork in eastern West Virginia. We used visual surveys, electrofishing, and mark-recapture techniques to quantify brook trout spawning intensity, population density, size structure, and demographic rates (apparent survival and immigration) throughout the watershed. Our analyses produced the following results. Spawning by brook trout was concentrated in streams with small basin areas (i.e., segments draining less than 3 km2), relatively high alkalinity (>10 mg CaCO3/L), and high amounts of instream cover. The spatial distribution of juvenile and small-adult brook trout within the watershed was relatively stable and was significantly correlated with spawning intensity. However, no such relationship was observed for large adults, which exhibited highly variable distribution patterns related to seasonally important habitat features, including instream cover, stream depth and width, and riparian canopy cover. Brook trout survival and immigration rates varied seasonally, spatially, and among size-classes. Differential survival and immigration tended to concentrate juveniles and small adults in small, alkaline streams, whereas dispersal tended to redistribute large adults at the watershed scale. Our results suggest that spatial and temporal variations in spawning, survival, and movement interact to determine the distribution, abundance, and size structure of brook trout populations at a watershed scale. These results underscore the importance of small tributaries for the persistence of brook trout in this watershed and the need to consider watershed-scale processes when designing management plans for Appalachian brook trout populations. ?? Copyright by the American Fisheries Society 2005.
Characterisation of a reference site for quantifying uncertainties related to soil sampling.
Barbizzi, Sabrina; de Zorzi, Paolo; Belli, Maria; Pati, Alessandra; Sansone, Umberto; Stellato, Luisa; Barbina, Maria; Deluisa, Andrea; Menegon, Sandro; Coletti, Valter
2004-01-01
The paper reports a methodology adopted to face problems related to quality assurance in soil sampling. The SOILSAMP project, funded by the Environmental Protection Agency of Italy (APAT), is aimed at (i) establishing protocols for soil sampling in different environments; (ii) assessing uncertainties associated with different soil sampling methods in order to select the "fit-for-purpose" method; (iii) qualifying, in term of trace elements spatial variability, a reference site for national and international inter-comparison exercises. Preliminary results and considerations are illustrated.
Krstic, Nikolas; Yuchi, Weiran; Ho, Hung Chak; Walker, Blake B; Knudby, Anders J; Henderson, Sarah B
2017-12-01
Mortality attributable to extreme hot weather is a growing concern in many urban environments, and spatial heat vulnerability indexes are often used to identify areas at relatively higher and lower risk. Three indexes were developed for greater Vancouver, Canada using a pool of 20 potentially predictive variables categorized to reflect social vulnerability, population density, temperature exposure, and urban form. One variable was chosen from each category: an existing deprivation index, senior population density, apparent temperature, and road density, respectively. The three indexes were constructed from these variables using (1) unweighted, (2) weighted, and (3) data-driven Heat Exposure Integrated Deprivation Index (HEIDI) approaches. The performance of each index was assessed using mortality data from 1998-2014, and the maps were compared with respect to spatial patterns identified. The population-weighted spatial correlation between the three indexes ranged from 0.68-0.89. The HEIDI approach produced a graduated map of vulnerability, whereas the other approaches primarily identified areas of highest risk. All indexes performed best under extreme temperatures, but HEIDI was more useful at lower thresholds. Each of the indexes in isolation provides valuable information for public health protection, but combining the HEIDI approach with unweighted and weighted methods provides richer information about areas most vulnerable to heat. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lee, Hyung Joo; Gent, Janneane F; Leaderer, Brian P; Koutrakis, Petros
2011-05-01
To protect public health from PM(2.5) air pollution, it is critical to identify the source types of PM(2.5) mass and chemical components associated with higher risks of adverse health outcomes. Source apportionment modeling using Positive Matrix Factorization (PMF), was used to identify PM(2.5) source types and quantify the source contributions to PM(2.5) in five cities of Connecticut and Massachusetts. Spatial and temporal variability of PM(2.5) mass, components and source contributions were investigated. PMF analysis identified five source types: regional pollution as traced by sulfur, motor vehicle, road dust, oil combustion and sea salt. The sulfur-related regional pollution and traffic source type were major contributors to PM(2.5). Due to sparse ground-level PM(2.5) monitoring sites, current epidemiological studies are susceptible to exposure measurement errors. The higher correlations in concentrations and source contributions between different locations suggest less spatial variability, resulting in less exposure measurement errors. When concentrations and/or contributions were compared to regional averages, correlations were generally higher than between-site correlations. This suggests that for assigning exposures for health effects studies, using regional average concentrations or contributions from several PM(2.5) monitors is more reliable than using data from the nearest central monitor. Copyright © 2011 Elsevier B.V. All rights reserved.
An index of floodplain surface complexity
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.
2016-01-01
Floodplain surface topography is an important component of floodplain ecosystems. It is the primary physical template upon which ecosystem processes are acted out, and complexity in this template can contribute to the high biodiversity and productivity of floodplain ecosystems. There has been a limited appreciation of floodplain surface complexity because of the traditional focus on temporal variability in floodplains as well as limitations to quantifying spatial complexity. An index of floodplain surface complexity (FSC) is developed in this paper and applied to eight floodplains from different geographic settings. The index is based on two key indicators of complexity, variability in surface geometry (VSG) and the spatial organisation of surface conditions (SPO), and was determined at three sampling scales. FSC, VSG, and SPO varied between the eight floodplains and these differences depended upon sampling scale. Relationships between these measures of spatial complexity and seven geomorphological and hydrological drivers were investigated. There was a significant decline in all complexity measures with increasing floodplain width, which was explained by either a power, logarithmic, or exponential function. There was an initial rapid decline in surface complexity as floodplain width increased from 1.5 to 5 km, followed by little change in floodplains wider than 10 km. VSG also increased significantly with increasing sediment yield. No significant relationships were determined between any of the four hydrological variables and floodplain surface complexity.
Wehrhan, Marc; Rauneker, Philipp; Sommer, Michael
2016-01-01
The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band b899. The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability at field- and plot-scale could be attributed to small-scale soil heterogeneity in part. PMID:26907284
Wehrhan, Marc; Rauneker, Philipp; Sommer, Michael
2016-02-19
The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band b899. The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability at field- and plot-scale could be attributed to small-scale soil heterogeneity in part.
NASA Astrophysics Data System (ADS)
Rose, K.; Glosser, D.; Bauer, J. R.; Barkhurst, A.
2015-12-01
The products of spatial analyses that leverage the interpolation of sparse, point data to represent continuous phenomena are often presented without clear explanations of the uncertainty associated with the interpolated values. As a result, there is frequently insufficient information provided to effectively support advanced computational analyses and individual research and policy decisions utilizing these results. This highlights the need for a reliable approach capable of quantitatively producing and communicating spatial data analyses and their inherent uncertainties for a broad range of uses. To address this need, we have developed the Variable Grid Method (VGM), and associated Python tool, which is a flexible approach that can be applied to a variety of analyses and use case scenarios where users need a method to effectively study, evaluate, and analyze spatial trends and patterns while communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations, etc. We will present examples of our research utilizing the VGM to quantify key spatial trends and patterns for subsurface data interpolations and their uncertainties and leverage these results to evaluate storage estimates and potential impacts associated with underground injection for CO2 storage and unconventional resource production and development. The insights provided by these examples identify how the VGM can provide critical information about the relationship between uncertainty and spatial data that is necessary to better support their use in advance computation analyses and informing research, management and policy decisions.
Heino, Jani; Melo, Adriano S; Bini, Luis Mauricio; Altermatt, Florian; Al-Shami, Salman A; Angeler, David G; Bonada, Núria; Brand, Cecilia; Callisto, Marcos; Cottenie, Karl; Dangles, Olivier; Dudgeon, David; Encalada, Andrea; Göthe, Emma; Grönroos, Mira; Hamada, Neusa; Jacobsen, Dean; Landeiro, Victor L; Ligeiro, Raphael; Martins, Renato T; Miserendino, María Laura; Md Rawi, Che Salmah; Rodrigues, Marciel E; Roque, Fabio de Oliveira; Sandin, Leonard; Schmera, Denes; Sgarbi, Luciano F; Simaika, John P; Siqueira, Tadeu; Thompson, Ross M; Townsend, Colin R
2015-03-01
The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai Lijun; Wei Haiyan; Wang Lingqing
2007-06-15
Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq})more » higher than the threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, L.J.; Wei, H.Y.; Wang, L.Q.
2007-06-15
Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of Ra-226, Th-232, and K-40 in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq}) higher than themore » threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less
Luan, Hui; Law, Jane; Lysy, Martin
2018-02-01
Neighborhood restaurant environment (NRE) plays a vital role in shaping residents' eating behaviors. While NRE 'healthfulness' is a multi-facet concept, most studies evaluate it based only on restaurant type, thus largely ignoring variations of in-restaurant features. In the few studies that do account for such features, healthfulness scores are simply averaged over accessible restaurants, thereby concealing any uncertainty that attributed to neighborhoods' size or spatial correlation. To address these limitations, this paper presents a Bayesian Spatial Factor Analysis for assessing NRE healthfulness in the city of Kitchener, Canada. Several in-restaurant characteristics are included. By treating NRE healthfulness as a spatially correlated latent variable, the adopted modeling approach can: (i) identify specific indicators most relevant to NRE healthfulness, (ii) provide healthfulness estimates for neighborhoods without accessible restaurants, and (iii) readily quantify uncertainties in the healthfulness index. Implications of the analysis for intervention program development and community food planning are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia
2016-06-01
Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.
Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology
NASA Technical Reports Server (NTRS)
Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus
2013-01-01
Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.
Sources of Uncertainty in the Prediction of LAI / fPAR from MODIS
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Ganapol, Barry D.; Brass, James A. (Technical Monitor)
2002-01-01
To explicate the sources of uncertainty in the prediction of biophysical variables over space, consider the general equation: where z is a variable with values on some nominal, ordinal, interval or ratio scale; y is a vector of input variables; u is the spatial support of y and z ; x and u are the spatial locations of y and z , respectively; f is a model and B is the vector of the parameters of this model. Any y or z has a value and a spatial extent which is called its support. Viewed in this way, categories of uncertainty are from variable (e.g. measurement), parameter, positional. support and model (e.g. structural) sources. The prediction of Leaf Area Index (LAI) and the fraction of absorbed photosynthetically active radiation (fPAR) are examples of z variables predicted using model(s) as a function of y variables and spatially constant parameters. The MOD15 algorithm is an example of f, called f(sub 1), with parameters including those defined by one of six biome types and solar and view angles. The Leaf Canopy Model (LCM)2, a nested model that combines leaf radiative transfer with a full canopy reflectance model through the phase function, is a simpler though similar radiative transfer approach to f(sub 1). In a previous study, MOD15 and LCM2 gave similar results for the broadleaf forest biome. Differences between these two models can be used to consider the structural uncertainty in prediction results. In an effort to quantify each of the five sources of uncertainty and rank their relative importance for the LAI/fPAR prediction problem, we used recent data for an EOS Core Validation Site in the broadleaf biome with coincident surface reflectance, vegetation index, fPAR and LAI products from the Moderate Resolution Imaging Spectrometer (MODIS). Uncertainty due to support on the input reflectance variable was characterized using Landsat ETM+ data. Input uncertainties were propagated through the LCM2 model and compared with published uncertainties from the MOD15 algorithm.
Scales of Spatial Heterogeneity of Plastic Marine Debris in the Northeast Pacific Ocean
Goldstein, Miriam C.; Titmus, Andrew J.; Ford, Michael
2013-01-01
Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the “Great Pacific Garbage Patch,” has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20–40°N, 120–155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m−2 and in Fall 2010 was 0.021 particles m−2, but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm2. Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability, particularly in regards to the evaluation of initiatives designed to reduce marine debris. PMID:24278233
Scales of spatial heterogeneity of plastic marine debris in the northeast pacific ocean.
Goldstein, Miriam C; Titmus, Andrew J; Ford, Michael
2013-01-01
Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the "Great Pacific Garbage Patch," has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20-40°N, 120-155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m(-2) and in Fall 2010 was 0.021 particles m(-2), but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm(2). Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability, particularly in regards to the evaluation of initiatives designed to reduce marine debris.
SU-G-IeP4-13: PET Image Noise Variability and Its Consequences for Quantifying Tumor Hypoxia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueng, R; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Manser, P
Purpose: The values in a PET image which represent activity concentrations of a radioactive tracer are influenced by a large number of parameters including patient conditions as well as image acquisition and reconstruction. This work investigates noise characteristics in PET images for various image acquisition and image reconstruction parameters. Methods: Different phantoms with homogeneous activity distributions were scanned using several acquisition parameters and reconstructed with numerous sets of reconstruction parameters. Images from six PET scanners from different vendors were analyzed and compared with respect to quantitative noise characteristics. Local noise metrics, which give rise to a threshold value defining themore » metric of hypoxic fraction, as well as global noise measures in terms of noise power spectra (NPS) were computed. In addition to variability due to different reconstruction parameters, spatial variability of activity distribution and its noise metrics were investigated. Patient data from clinical trials were mapped onto phantom scans to explore the impact of the scanner’s intrinsic noise variability on quantitative clinical analysis. Results: Local noise metrics showed substantial variability up to an order of magnitude for different reconstruction parameters. Investigations of corresponding NPS revealed reconstruction dependent structural noise characteristics. For the acquisition parameters, noise metrics were guided by Poisson statistics. Large spatial non-uniformity of the noise was observed in both axial and radial direction of a PET image. In addition, activity concentrations in PET images of homogeneous phantom scans showed intriguing spatial fluctuations for most scanners. The clinical metric of the hypoxic fraction was shown to be considerably influenced by the PET scanner’s spatial noise characteristics. Conclusion: We showed that a hypoxic fraction metric based on noise characteristics requires careful consideration of the various dependencies in order to justify its quantitative validity. This work may result in recommendations for harmonizing QA of PET imaging for multi-institutional clinical trials.« less
Education And Gender Bias in the Sex Ratio At Birth: Evidence From India
ECHÁVARRI, REBECA A.; EZCURRA, ROBERTO
2010-01-01
This article investigates the possible existence of a nonlinear link between female disadvantage in natality and education. To this end, we devise a theoretical model based on the key role of social interaction in explaining people’s acquisition of preferences, which justifies the existence of a nonmonotonic relationship between female disadvantage in natality and education. The empirical validity of the proposed model is examined for the case of India, using district-level data. In this context, our econometric analysis pays particular attention to the role of spatial dependence to avoid any potential problems of misspecification. The results confirm that the relationship between the sex ratio at birth and education in India follows an inverted U-shape. This finding is robust to the inclusion of additional explanatory variables in the analysis, and to the choice of the spatial weight matrix used to quantify the spatial interdependence between the sample districts. PMID:20355693
Education and gender bias in the sex ratio at birth: evidence from India.
Echávarri, Rebeca A; Ezcurra, Roberto
2010-02-01
This article investigates the possible existence of a nonlinear link between female disadvantage in natality and education. To this end, we devise a theoretical model based on the key role of social interaction in explaining people's acquisition of preferences, which justifies the existence of a nonmonotonic relationship between female disadvantage in natality and education. The empirical validity of the proposed model is examined for the case of India, using district-level data. In this context, our econometric analysis pays particular attention to the role of spatial dependence to avoid any potential problems of misspecification. The results confirm that the relationship between the sex ratio at birth and education in India follows an inverted U-shape. This finding is robust to the inclusion of additional explanatory variables in the analysis, and to the choice of the spatial weight matrix used to quantify the spatial interdependence between the sample districts.
Quantifying the Temporal Inequality of Nutrient Loads with a Novel Metric
NASA Astrophysics Data System (ADS)
Gall, H. E.; Schultz, D.; Rao, P. S.; Jawitz, J. W.; Royer, M.
2015-12-01
Inequality is an emergent property of many complex systems. For a given series of stochastic events, some events generate a disproportionately large contribution to system responses compared to other events. In catchments, such responses cause streamflow and solute loads to exhibit strong temporal inequality, with the vast majority of discharge and solute loads exported during short periods of time during which high-flow events occur. These periods of time are commonly referred to as "hot moments". Although this temporal inequality is widely recognized, there is currently no uniform metric for assessing it. We used a novel application of Lorenz Inequality, a method commonly used in economics to quantify income inequality, to quantify the spatial and temporal inequality of streamflow and nutrient (nitrogen and phosphorus) loads exported to the Chesapeake Bay. Lorenz Inequality and the corresponding Gini Coefficient provide an analytical tool for quantifying inequality that can be applied at any temporal or spatial scale. The Gini coefficient (G) is a formal measure of inequality that varies from 0 to 1, with a value of 0 indicating perfect equality (i.e., fluxes and loads are constant in time) and 1 indicating perfect inequality (i.e., all of the discharge and solute loads are exported during one instant in time). Therefore, G is a simple yet powerful tool for providing insight into the temporal inequality of nutrient transport. We will present the results of our detailed analysis of streamflow and nutrient time series data collected since the early 1980's at 30 USGS gauging stations in the Chesapeake Bay watershed. The analysis is conducted at an annual time scale, enabling trends and patterns to be assessed both temporally (over time at each station) and spatially (for the same period of time across stations). The results of this analysis have the potential to create a transformative new framework for identifying "hot moments", improving our ability to temporally and spatially target implementation of best management practices to ultimately improve water quality in the Chesapeake Bay. This method also provides insight into the temporal scales at which hydrologic and biogeochemical variability dominate nutrient export dynamics.
Boosted Regression Tree Models to Explain Watershed ...
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed-use and heavily impacted watershed
Spatial variability of harmful algal blooms in Milford Lake, Kansas, July and August 2015
Foster, Guy M.; Graham, Jennifer L.; Stiles, Tom C.; Boyer, Marvin G.; King, Lindsey R.; Loftin, Keith A.
2017-01-09
Cyanobacterial harmful algal blooms (CyanoHABs) tend to be spatially variable vertically in the water column and horizontally across the lake surface because of in-lake and weather-driven processes and can vary by orders of magnitude in concentration across relatively short distances (meters or less). Extreme spatial variability in cyanobacteria and associated compounds poses unique challenges to collecting representative samples for scientific study and public-health protection. The objective of this study was to assess the spatial variability of cyanobacteria and microcystin in Milford Lake, Kansas, using data collected on July 27 and August 31, 2015. Spatially dense near-surface data were collected by the U.S. Geological Survey, nearshore data were collected by the Kansas Department of Health and Environment, and open-water data were collected by U.S. Army Corps of Engineers. CyanoHABs are known to be spatially variable, but that variability is rarely quantified. A better understanding of the spatial variability of cyanobacteria and microcystin will inform sampling and management strategies for Milford Lake and for other lakes with CyanoHAB issues throughout the Nation.The CyanoHABs in Milford Lake during July and August 2015 displayed the extreme spatial variability characteristic of cyanobacterial blooms. The phytoplankton community was almost exclusively cyanobacteria (greater than 90 percent) during July and August. Cyanobacteria (measured directly by cell counts and indirectly by regression-estimated chlorophyll) and microcystin (measured directly by enzyme-linked immunosorbent assay [ELISA] and indirectly by regression estimates) concentrations varied by orders of magnitude throughout the lake. During July and August 2015, cyanobacteria and microcystin concentrations decreased in the downlake (towards the outlet) direction.Nearshore and open-water surface grabs were collected and analyzed for microcystin as part of this study. Samples were collected in the uplake (Zone C), midlake (Zone B), and downlake (Zone A) parts of the lake. Overall, no consistent pattern was indicated as to which sample location (nearshore or open water) had the highest microcystin concentrations. In July, the maximum microcystin concentration observed in each zone was detected at a nearshore site, and in August, maximum microcystin concentrations in each zone were detected at an open-water site.The Kansas Department of Health and Environment uses two guidance levels (a watch and a warning level) to issue recreational public-health advisories for CyanoHABs in Kansas lakes. The levels are based on concentrations of microcystin and numbers of cyanobacteria. In July and August, discrete water-quality samples were predominantly indicative of warning status in Zone C, watch status in Zone B, and no advisories in Zone A. Regression-estimated microcystin concentrations, which provided more thorough coverage of Milford Lake (n=683–720) than discrete samples (n=21–24), generally indicated the same overall pattern. Regardless of the individual agencies sampling approach, the overall public-health advisory status of each zone in Milford Lake was similar according to the Kansas Department of Health and Environment guidance levels.
Sommerfreund, J; Arhonditsis, G B; Diamond, M L; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L; Giuliani, S; Mugnai, C
2010-03-01
A Monte Carlo analysis is used to quantify environmental parametric uncertainty in a multi-segment, multi-chemical model of the Venice Lagoon. Scientific knowledge, expert judgment and observational data are used to formulate prior probability distributions that characterize the uncertainty pertaining to 43 environmental system parameters. The propagation of this uncertainty through the model is then assessed by a comparative analysis of the moments (central tendency, dispersion) of the model output distributions. We also apply principal component analysis in combination with correlation analysis to identify the most influential parameters, thereby gaining mechanistic insights into the ecosystem functioning. We found that modeled concentrations of Cu, Pb, OCDD/F and PCB-180 varied by up to an order of magnitude, exhibiting both contaminant- and site-specific variability. These distributions generally overlapped with the measured concentration ranges. We also found that the uncertainty of the contaminant concentrations in the Venice Lagoon was characterized by two modes of spatial variability, mainly driven by the local hydrodynamic regime, which separate the northern and central parts of the lagoon and the more isolated southern basin. While spatial contaminant gradients in the lagoon were primarily shaped by hydrology, our analysis also shows that the interplay amongst the in-place historical pollution in the central lagoon, the local suspended sediment concentrations and the sediment burial rates exerts significant control on the variability of the contaminant concentrations. We conclude that the probabilistic analysis presented herein is valuable for quantifying uncertainty and probing its cause in over-parameterized models, while some of our results can be used to dictate where additional data collection efforts should focus on and the directions that future model refinement should follow. (c) 2009 Elsevier Inc. All rights reserved.
Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.
Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary
2016-11-01
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R 2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates. © 2016, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick
2018-01-01
In many regions of the world, intensive livestock farming has become a significant source of organic river pollution. As the international meat trade is growing rapidly, the environmental impacts of meat production within one country can occur either domestically or internationally. The goal of this paper is to quantify the impacts of the international meat trade on global organic river pollution at multiple scales (national, regional and gridded). Using the biological oxygen demand (BOD) as an overall indicator of organic river pollution, we compute the spatially distributed organic pollution in global river networks with and without a meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis reveals a reduction in the livestock population and production of organic pollutants at the global scale as a result of the international meat trade. However, the actual environmental impact of trade, as quantified by in-stream BOD concentrations, is negative; i.e. we find a slight increase in polluted river segments. More importantly, our results show large spatial variability in local (grid-scale) impacts that do not correlate with local changes in BOD loading, which illustrates: (1) the significance of accounting for the spatial heterogeneity of hydrological processes along river networks, and (2) the limited value of looking at country-level or global averages when estimating the actual impacts of trade on the environment.
NASA Astrophysics Data System (ADS)
Kang, Peter K.; Dentz, Marco; Le Borgne, Tanguy; Lee, Seunghak; Juanes, Ruben
2017-08-01
We investigate tracer transport on random discrete fracture networks that are characterized by the statistics of the fracture geometry and hydraulic conductivity. While it is well known that tracer transport through fractured media can be anomalous and particle injection modes can have major impact on dispersion, the incorporation of injection modes into effective transport modeling has remained an open issue. The fundamental reason behind this challenge is that-even if the Eulerian fluid velocity is steady-the Lagrangian velocity distribution experienced by tracer particles evolves with time from its initial distribution, which is dictated by the injection mode, to a stationary velocity distribution. We quantify this evolution by a Markov model for particle velocities that are equidistantly sampled along trajectories. This stochastic approach allows for the systematic incorporation of the initial velocity distribution and quantifies the interplay between velocity distribution and spatial and temporal correlation. The proposed spatial Markov model is characterized by the initial velocity distribution, which is determined by the particle injection mode, the stationary Lagrangian velocity distribution, which is derived from the Eulerian velocity distribution, and the spatial velocity correlation length, which is related to the characteristic fracture length. This effective model leads to a time-domain random walk for the evolution of particle positions and velocities, whose joint distribution follows a Boltzmann equation. Finally, we demonstrate that the proposed model can successfully predict anomalous transport through discrete fracture networks with different levels of heterogeneity and arbitrary tracer injection modes.
Spatial and Temporal Variability and Trends in 2001-2016 Global Fire Activity
NASA Astrophysics Data System (ADS)
Earl, Nick; Simmonds, Ian
2018-03-01
Fire regimes across the globe have great spatial and temporal variability, and these are influence by many factors including anthropogenic management, climate, and vegetation types. Here we utilize the satellite-based "active fire" product, from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, to statistically analyze variability and trends in fire activity from the global to regional scales. We split up the regions by economic development, region/geographical land use, clusters of fire-abundant areas, or by religious/cultural influence. Weekly cycle tests are conducted to highlight and quantify part of the anthropogenic influence on fire regime across the world. We find that there is a strong statistically significant decline in 2001-2016 active fires globally linked to an increase in net primary productivity observed in northern Africa, along with global agricultural expansion and intensification, which generally reduces fire activity. There are high levels of variability, however. The large-scale regions exhibit either little change or decreasing in fire activity except for strong increasing trends in India and China, where rapid population increase is occurring, leading to agricultural intensification and increased crop residue burning. Variability in Canada has been linked to a warming global climate leading to a longer growing season and higher fuel loads. Areas with a strong weekly cycle give a good indication of where fire management is being applied most extensively, for example, the United States, where few areas retain a natural fire regime.
Hugo, Sanet; Altwegg, Res
2017-09-01
Using the Southern African Bird Atlas Project (SABAP2) as a case study, we examine the possible determinants of spatial bias in volunteer sampling effort and how well such biased data represent environmental gradients across the area covered by the atlas. For each province in South Africa, we used generalized linear mixed models to determine the combination of variables that explain spatial variation in sampling effort (number of visits per 5' × 5' grid cell, or "pentad"). The explanatory variables were distance to major road and exceptional birding locations or "sampling hubs," percentage cover of protected, urban, and cultivated area, and the climate variables mean annual precipitation, winter temperatures, and summer temperatures. Further, we used the climate variables and plant biomes to define subsets of pentads representing environmental zones across South Africa, Lesotho, and Swaziland. For each environmental zone, we quantified sampling intensity, and we assessed sampling completeness with species accumulation curves fitted to the asymptotic Lomolino model. Sampling effort was highest close to sampling hubs, major roads, urban areas, and protected areas. Cultivated area and the climate variables were less important. Further, environmental zones were not evenly represented by current data and the zones varied in the amount of sampling required representing the species that are present. SABAP2 volunteers' preferences in birding locations cause spatial bias in the dataset that should be taken into account when analyzing these data. Large parts of South Africa remain underrepresented, which may restrict the kind of ecological questions that may be addressed. However, sampling bias may be improved by directing volunteers toward undersampled regions while taking into account volunteer preferences.
Forereef and backreef corals exhibit different responses to anthropogenic stressors in Belize
NASA Astrophysics Data System (ADS)
Fowell, S.; Foster, G. L.; Castillo, K.; Ries, J. B.; Tyrrell, T.
2016-02-01
The health of coral reefs is threatened by simultaneous anthropogenic impacts, namely ocean acidification, ocean warming, elevated nutrients (nutrification) and sedimentation. These processes have been shown to reduce the ability of corals to grow, but culturing experiments have previously demonstrated this response to vary across different reef environments and between different taxa. The absence of in-situ pH data, records of nutrient evolution and limited sea surface temperature (SST) measurements prior to the 1980s, has prevented the extent of either ocean acidification, nutrification or ocean warming to be quantified in Belize. Here, we have applied a multi-proxy approach (Li/Mg, Sr/Ca, Ba/Ca, δ11B, δ13C) to reconstruct these variables in corals from across the southern Mesoamerican Barrier Reef System over the last 100 years. We find that although the warming signal is spatially coherent, significant spatial variability exists in the extent of acidification and sediment input. Further investigations into the impact of such variability, and possible changes in net primary production must be conducted before we can conclude which anthropogenic stressor is responsible for the decline in forereef coral extension rates.
Incorporating climate change and morphological uncertainty into coastal change hazard assessments
Baron, Heather M.; Ruggiero, Peter; Wood, Nathan J.; Harris, Erica L.; Allan, Jonathan; Komar, Paul D.; Corcoran, Patrick
2015-01-01
Documented and forecasted trends in rising sea levels and changes in storminess patterns have the potential to increase the frequency, magnitude, and spatial extent of coastal change hazards. To develop realistic adaptation strategies, coastal planners need information about coastal change hazards that recognizes the dynamic temporal and spatial scales of beach morphology, the climate controls on coastal change hazards, and the uncertainties surrounding the drivers and impacts of climate change. We present a probabilistic approach for quantifying and mapping coastal change hazards that incorporates the uncertainty associated with both climate change and morphological variability. To demonstrate the approach, coastal change hazard zones of arbitrary confidence levels are developed for the Tillamook County (State of Oregon, USA) coastline using a suite of simple models and a range of possible climate futures related to wave climate, sea-level rise projections, and the frequency of major El Niño events. Extreme total water levels are more influenced by wave height variability, whereas the magnitude of erosion is more influenced by sea-level rise scenarios. Morphological variability has a stronger influence on the width of coastal hazard zones than the uncertainty associated with the range of climate change scenarios.
NASA Astrophysics Data System (ADS)
Marshall, Hans-Peter
The distribution of water in the snow-covered areas of the world is an important climate change indicator, and it is a vital component of the water cycle. At local and regional scales, the snow water equivalent (SWE), the amount of liquid water a given area of the snowpack represents, is very important for water resource management, flood forecasting, and prediction of available hydropower energy. Measurements from only a few automatic weather stations, such as the SNOTEL network, or sparse manual snowpack measurements are typically extrapolated for estimating SWE over an entire basin. Widespread spatial variability in the distribution of SWE and snowpack stratigraphy at local scales causes large errors in these basin estimates. Remote sensing measurements offer a promising alternative, due to their large spatial coverage and high temporal resolution. Although snow cover extent can currently be estimated from remote sensing data, accurately quantifying SWE from remote sensing measurements has remained difficult, due to a high sensitivity to variations in grain size and stratigraphy. In alpine snowpacks, the large degree of spatial variability of snowpack properties and geometry, caused by topographic, vegetative, and microclimatic effects, also makes prediction of snow avalanches very difficult. Ground-based radar and penetrometer measurements can quickly and accurately characterize snowpack properties and SWE in the field. A portable lightweight radar was developed, and allows a real-time estimate of SWE to within 10%, as well as measurements of depths of all major density transitions within the snowpack. New analysis techniques developed in this thesis allow accurate estimates of mechanical properties and an index of grain size to be retrieved from the SnowMicroPenetrometer. These two tools together allow rapid characterization of the snowpack's geometry, mechanical properties, and SWE, and are used to guide a finite element model to study the stress distribution on a slope. The ability to accurately characterize snowpack properties at much higher resolutions and spatial extent than previously possible will hopefully help lead to a more complete understanding of spatial variability, its effect on remote sensing measurements and snow slope stability, and result in improvements in avalanche prediction and accuracy of SWE estimates from space.
Can we quantify the variability of soil moisture across scales using Electromagnetic Induction ?
NASA Astrophysics Data System (ADS)
Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan
2017-04-01
Soil moisture is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of soil moisture. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the soil apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of soil moisture on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on soil moisture in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the soil moisture using TDR probes installed within soil pits. We found that the temporal variability of the soil moisture could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in soil moisture content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the soil moisture, while a single non-linear model for all the slopes could explain 55% of the soil moisture variability. We eventually showed that combining a specific relationship for the most degraded slope (steep slope under agriculture) and a single relationship for all the other slopes, both non-linear relations, yielded the best results with an overall explained variance of 90%. We applied the latter model to measurements of the ECa along transects at the different slopes, which allowed us to highlight the strong control of topography on the soil moisture content. We also observed a significant impact of the land use with higher moisture content on the agricultural slopes, probably due to a reduced evapotranspiration.
Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William
2014-08-01
Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.
Retrospective Analysis of Low Flows at Headwater Watersheds in Wyoming
NASA Astrophysics Data System (ADS)
Voutchkova, D. D.; Miller, S. N.
2016-12-01
Understanding summer low-flow variability and change in the mountainous West has important implications for water allocations downstream and for maintaining water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs. Wildfires and insect infestations are classical disturbance hydrology topics. It is unclear, however, what are their effects on streamflow and in particular low-flows, when vegetation disturbances are overlapping in time and combined with highly variable and potentially changing local climate. The purpose of this study, therefore, is to quantify changes in low-flows resulting from disturbance in headwater streams. Here we present a retrospective analysis based on: (1) 49-75 complete water years (wy) of daily streamflow data (USGS) for 14 high-elevation headwater watersheds with varying areas (60-1730 km2, 86-100% of watershed area >2000masl) and evergreen forest cover (15-82%), (2) 25-36 complete wy of daily snow-water equivalent accumulation (SWE) and precipitation data from Wyoming SNOTEL stations, (3) burned area boundaries for 20wy (MTBS project), (4) aerial surveys by R1, R2, R4 Forest Service Regions for 18wy (data on tree mortality). We quantify the change in various low-flow characteristics (e.g. post-snowmelt baseflow, Q90 and Q95, 3-,7-, 30- and 90-day annual minima etc.) while accounting for local inter- and multi-annual climate variability by using SWE accumulation data, as it integrates both temperature and precipitation changes. Our approach differs from typical before-after field-based investigation for paired watersheds, as it provides a synthesis over large temporal and spatial scales, resulting in spectrum of possible hydrologic responses due to varying disturbance severity. Quantifying the changes in low-flows and low-flow variability will improve our understanding and will facilitate water management and planning at local state-wide level.
NASA Astrophysics Data System (ADS)
Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.
2018-04-01
River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.
Assessing TCE source bioremediation by geostatistical analysis of a flux fence.
Cai, Zuansi; Wilson, Ryan D; Lerner, David N
2012-01-01
Mass discharge across transect planes is increasingly used as a metric for performance assessment of in situ groundwater remediation systems. Mass discharge estimates using concentrations measured in multilevel transects are often made by assuming a uniform flow field, and uncertainty contributions from spatial concentration and flow field variability are often overlooked. We extend our recently developed geostatistical approach to estimate mass discharge using transect data of concentration and hydraulic conductivity, so accounting for the spatial variability of both datasets. The magnitude and uncertainty of mass discharge were quantified by conditional simulation. An important benefit of the approach is that uncertainty is quantified as an integral part of the mass discharge estimate. We use this approach for performance assessment of a bioremediation experiment of a trichloroethene (TCE) source zone. Analyses of dissolved parent and daughter compounds demonstrated that the engineered bioremediation has elevated the degradation rate of TCE, resulting in a two-thirds reduction in the TCE mass discharge from the source zone. The biologically enhanced dissolution of TCE was not significant (~5%), and was less than expected. However, the discharges of the daughter products cis-1,2, dichloroethene (cDCE) and vinyl chloride (VC) increased, probably because of the rapid transformation of TCE from the source zone to the measurement transect. This suggests that enhancing the biodegradation of cDCE and VC will be crucial to successful engineered bioremediation of TCE source zones. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Loria Salazar, S. M.; Holmes, H.
2015-12-01
Health effects studies of aerosol pollution have been extended spatially using data assimilation techniques that combine surface PM2.5 concentrations and Aerosol Optical Depth (AOD) from satellite retrievals. While most of these models were developed for the dark-vegetated eastern U.S. they are being used in the semi-arid western U.S. to remotely sense atmospheric aerosol concentrations. These models are helpful to understand the spatial variability of surface PM2.5concentrations in the western U.S. because of the sparse network of surface monitoring stations. However, the models developed for the eastern U.S. are not robust in the western U.S. due to different aerosol formation mechanisms, transport phenomena, and optical properties. This region is a challenge because of complex terrain, anthropogenic and biogenic emissions, secondary organic aerosol formation, smoke from wildfires, and low background aerosol concentrations. This research concentrates on the use and evaluation of satellite remote sensing to estimate surface PM2.5 concentrations from AOD satellite retrievals over California and Nevada during the summer months of 2012 and 2013. The aim of this investigation is to incorporate a spatial statistical model that uses AOD from AERONET as well as MODIS, surface PM2.5 concentrations, and land-use regression to characterize spatial surface PM2.5 concentrations. The land use regression model uses traditional inputs (e.g. meteorology, population density, terrain) and non-traditional variables (e.g. FIre Inventory from NCAR (FINN) emissions and MODIS albedo product) to account for variability related to smoke plume trajectories and land use. The results will be used in a spatially resolved health study to determine the association between wildfire smoke exposure and cardiorespiratory health endpoints. This relationship can be used with future projections of wildfire emissions related to climate change and droughts to quantify the expected health impact.
Mapping the Risk of Soil-Transmitted Helminthic Infections in the Philippines
Leonardo, Lydia; Gray, Darren J.; Carabin, Hélène; Halton, Kate; McManus, Donald P.; Williams, Gail M.; Rivera, Pilarita; Saniel, Ofelia; Hernandez, Leda; Yakob, Laith; McGarvey, Stephen T.; Clements, Archie C. A.
2015-01-01
Background In order to increase the efficient allocation of soil-transmitted helminth (STH) disease control resources in the Philippines, we aimed to describe for the first time the spatial variation in the prevalence of A. lumbricoides, T. trichiura and hookworm across the country, quantify the association between the physical environment and spatial variation of STH infection and develop predictive risk maps for each infection. Methodology/Principal Findings Data on STH infection from 35,573 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was stratified geographically in two major regions: 1) Luzon and the Visayas and 2) Mindanao. Bayesian geostatistical models of STH prevalence were developed, including age and sex of individuals and environmental variables (rainfall, land surface temperature and distance to inland water bodies) as predictors, and diagnostic uncertainty was incorporated. The role of environmental variables was different between regions of the Philippines. This analysis revealed that while A. lumbricoides and T. trichiura infections were widespread and highly endemic, hookworm infections were more circumscribed to smaller foci in the Visayas and Mindanao. Conclusions/Significance This analysis revealed significant spatial variation in STH infection prevalence within provinces of the Philippines. This suggests that a spatially targeted approach to STH interventions, including mass drug administration, is warranted. When financially possible, additional STH surveys should be prioritized to high-risk areas identified by our study in Luzon. PMID:26368819
Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.
Ulanowski, T A; Branfireun, B A
2013-06-01
The Hudson Bay Lowland (HBL) of northern Ontario, Manitoba and Quebec, Canada is the second largest contiguous peatland complex in the world, currently containing more than half of Canada's soil carbon. Recent concerns about the ecohydrological impacts to these large northern peatlands resulting from climate change and resource extraction have catalyzed a resurgence in scientific research into this ecologically important region. However, the sheer size, heterogeneity and elaborate landscape arrangements of this ecosystem raise important questions concerning representative sampling of environmental media for chemical or physical characterization. To begin to quantify such variability, this study assessed the small-scale spatial (1m) and short temporal (21 day) variability of surface pore-water biogeochemistry (pH, dissolved organic carbon, and major ions) in a Sphagnum spp.-dominated, ombrotrophic raised bog, and a Carex spp.-dominated intermediate fen in the HBL. In general, pore-water pH and concentrations of dissolved solutes were similar to previously reported literature values from this region. However, systematic sampling revealed consistent statistically significant differences in pore-water chemistries between the bog and fen peatland types, and large within-site spatiotemporal variability. We found that microtopography in the bog was associated with consistent differences in most biogeochemical variables. Temporal changes in dissolved solute chemistry, particularly base cations (Na(+), Ca(2+) and Mg(2+)), were statistically significant in the intermediate fen, likely a result of a dynamic connection between surficial waters and mineral-rich deep groundwater. In both the bog and fen, concentrations of SO4(2-) showed considerable spatial variability, and a significant decrease in concentrations over the study period. The observed variability in peatland pore-water biogeochemistry over such small spatial and temporal scales suggests that under-sampling in northern peatland environments could lead to erroneous conclusions concerning the abundance and distribution of natural elements and pollutants alike. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas
2014-05-01
In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.
Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B
2018-08-01
Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.
Measuring Community Resilience to Coastal Hazards along the Northern Gulf of Mexico
Lam, Nina S. N.; Reams, Margaret; Li, Kenan; Li, Chi; Mata, Lillian P.
2016-01-01
The abundant research examining aspects of social-ecological resilience, vulnerability, and hazards and risk assessment has yielded insights into these concepts and suggested the importance of quantifying them. Quantifying resilience is complicated by several factors including the varying definitions of the term applied in the research, difficulties involved in selecting and aggregating indicators of resilience, and the lack of empirical validation for the indices derived. This paper applies a new model, called the resilience inference measurement (RIM) model, to quantify resilience to climate-related hazards for 52 U.S. counties along the northern Gulf of Mexico. The RIM model uses three elements (exposure, damage, and recovery indicators) to denote two relationships (vulnerability and adaptability), and employs both K-means clustering and discriminant analysis to derive the resilience rankings, thus enabling validation and inference. The results yielded a classification accuracy of 94.2% with 28 predictor variables. The approach is theoretically sound and can be applied to derive resilience indices for other study areas at different spatial and temporal scales. PMID:27499707
Measuring Community Resilience to Coastal Hazards along the Northern Gulf of Mexico.
Lam, Nina S N; Reams, Margaret; Li, Kenan; Li, Chi; Mata, Lillian P
2016-02-01
The abundant research examining aspects of social-ecological resilience, vulnerability, and hazards and risk assessment has yielded insights into these concepts and suggested the importance of quantifying them. Quantifying resilience is complicated by several factors including the varying definitions of the term applied in the research, difficulties involved in selecting and aggregating indicators of resilience, and the lack of empirical validation for the indices derived. This paper applies a new model, called the resilience inference measurement (RIM) model, to quantify resilience to climate-related hazards for 52 U.S. counties along the northern Gulf of Mexico. The RIM model uses three elements (exposure, damage, and recovery indicators) to denote two relationships (vulnerability and adaptability), and employs both K-means clustering and discriminant analysis to derive the resilience rankings, thus enabling validation and inference. The results yielded a classification accuracy of 94.2% with 28 predictor variables. The approach is theoretically sound and can be applied to derive resilience indices for other study areas at different spatial and temporal scales.
Identification and ranking of environmental threats with ecosystem vulnerability distributions.
Zijp, Michiel C; Huijbregts, Mark A J; Schipper, Aafke M; Mulder, Christian; Posthuma, Leo
2017-08-24
Responses of ecosystems to human-induced stress vary in space and time, because both stressors and ecosystem vulnerabilities vary in space and time. Presently, ecosystem impact assessments mainly take into account variation in stressors, without considering variation in ecosystem vulnerability. We developed a method to address ecosystem vulnerability variation by quantifying ecosystem vulnerability distributions (EVDs) based on monitoring data of local species compositions and environmental conditions. The method incorporates spatial variation of both abiotic and biotic variables to quantify variation in responses among species and ecosystems. We show that EVDs can be derived based on a selection of locations, existing monitoring data and a selected impact boundary, and can be used in stressor identification and ranking for a region. A case study on Ohio's freshwater ecosystems, with freshwater fish as target species group, showed that physical habitat impairment and nutrient loads ranked highest as current stressors, with species losses higher than 5% for at least 6% of the locations. EVDs complement existing approaches of stressor assessment and management, which typically account only for variability in stressors, by accounting for variation in the vulnerability of the responding ecosystems.
NASA Astrophysics Data System (ADS)
Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.
2016-12-01
Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.
Hancke, Kasper; Dalsgaard, Tage; Sejr, Mikael Kristian; Markager, Stiig; Glud, Ronnie Nøhr
2015-01-01
Accurate quantification of pelagic primary production is essential for quantifying the marine carbon turnover and the energy supply to the food web. Knowing the electron requirement (Κ) for carbon (C) fixation (Κ C) and oxygen (O2) production (Κ O2), variable fluorescence has the potential to quantify primary production in microalgae, and hereby increasing spatial and temporal resolution of measurements compared to traditional methods. Here we quantify Κ C and Κ O2 through measures of Pulse Amplitude Modulated (PAM) fluorometry, C fixation and O2 production in an Arctic fjord (Godthåbsfjorden, W Greenland). Through short- (2h) and long-term (24h) experiments, rates of electron transfer (ETRPSII), C fixation and/or O2 production were quantified and compared. Absolute rates of ETR were derived by accounting for Photosystem II light absorption and spectral light composition. Two-hour incubations revealed a linear relationship between ETRPSII and gross 14C fixation (R2 = 0.81) during light-limited photosynthesis, giving a Κ C of 7.6 ± 0.6 (mean ± S.E.) mol é (mol C)−1. Diel net rates also demonstrated a linear relationship between ETRPSII and C fixation giving a Κ C of 11.2 ± 1.3 mol é (mol C)−1 (R2 = 0.86). For net O2 production the electron requirement was lower than for net C fixation giving 6.5 ± 0.9 mol é (mol O2)−1 (R2 = 0.94). This, however, still is an electron requirement 1.6 times higher than the theoretical minimum for O2 production [i.e. 4 mol é (mol O2)−1]. The discrepancy is explained by respiratory activity and non-photochemical electron requirements and the variability is discussed. In conclusion, the bio-optical method and derived electron requirement support conversion of ETR to units of C or O2, paving the road for improved spatial and temporal resolution of primary production estimates. PMID:26218096
Spatial Variability of CCN Sized Aerosol Particles
NASA Astrophysics Data System (ADS)
Asmi, A.; Väänänen, R.
2014-12-01
The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.
NASA Astrophysics Data System (ADS)
Yan, D.; Scott, R. L.; Moore, D. J.; Biederman, J. A.; Smith, W. K.
2017-12-01
Land surface phenology (LSP) - defined as remotely sensed seasonal variations in vegetation greenness - is intrinsically linked to seasonal carbon uptake, and is thus commonly used as a proxy for vegetation productivity (gross primary productivity; GPP). Yet, the relationship between LSP and GPP remains uncertain, particularly for understudied dryland ecosystems characterized by relatively large spatial and temporal variability. Here, we explored the relationship between LSP and the phenology of GPP for three dominant dryland ecosystem types, and we evaluated how these relationships change as a function of spatial and temporal scale. We focused on three long-term dryland eddy covariance flux tower sites: Walnut Gulch Lucky Hills Shrubland (WHS), Walnut Gulch Kendall Grassland (WKG), and Santa Rita Mesquite (SRM). We analyzed daily canopy-level, 16-day 30m, and 8-day 500m time series of greenness indices from PhenoCam, Landsat 7 ETM+/Landsat 8 OLI, and MODIS, respectively. We first quantified the impact of spatial scale by temporally resampling canopy-level PhenoCam, 30m Landsat, and 500m MODIS to 16-day intervals and then comparing against flux tower GPP estimates. We next quantified the impact of temporal scale by spatially resampling daily PhenoCam, 16-day Landsat, and 8-day MODIS to 500m time series and then comparing against flux tower GPP estimates. We find evidence of critical periods of decoupling between LSP and the phenology of GPP that vary according to the spatial and temporal scale, and as a function of ecosystem type. Our results provide key insight into dryland LSP and GPP dynamics that can be used in future efforts to improve ecosystem process models and satellite-based vegetation productivity algorithms.
Climate-mediated spatiotemporal variability in the terrestrial productivity across Europe
NASA Astrophysics Data System (ADS)
Wu, X.; Mahecha, M. D.; Reichstein, M.; Ciais, P.; Wattenbach, M.; Babst, F.; Frank, D.; Zang, C.
2013-11-01
Quantifying the interannual variability (IAV) of the terrestrial productivity and its sensitivity to climate is crucial for improving carbon budget predictions. However, the influence of climate and other mechanisms underlying the spatiotemporal patterns of IAV of productivity are not well understood. In this study we investigated the spatiotemporal patterns of IAV of historical observations of crop yields, tree ring width, remote sensing retrievals of FAPAR and NDVI, and other variables relevant to the terrestrial productivity in Europe in tandem with a set of climate variables. Our results reveal distinct spatial patterns in the IAV of most variables linked to terrestrial productivity. In particular, we find higher IAV in water-limited regions of Europe (Mediterranean and temperate continental Europe) compared to other regions. Our results further indicate that variations in the water balance during active growing season exert a more pronounced and direct effect than variations of temperature on explaining the spatial patterns in IAV of productivity related variables in temperate Europe. We also observe a~temporally increasing trend in the IAV of terrestrial productivity and an increasing sensitivity of productivity to water availability in dry regions of Europe, which is likely attributable to the recently increased IAV of water availability in these regions. These findings suggest nonlinear responses of carbon fluxes to climate variability in Europe and that the IAV of terrestrial productivity has become more sensitive and more vulnerable to changes in water availability in the dry regions in Europe. The changing climate sensitivity of terrestrial productivity accompanied by the changing IAV of climate could impact carbon stocks and the net carbon balance of European ecosystems.
NASA Astrophysics Data System (ADS)
Faulk, Sean P.; Mitchell, Jonathan L.; Moon, Seulgi; Lora, Juan Manuel
2016-10-01
Titan's zonal-mean precipitation behavior has been widely investigated using general circulation models (GCMs), but the spatial and temporal variability of rainfall in Titan's active hydrologic cycle is less well understood. We conduct statistical analyses of rainfall, diagnosed from GCM simulations of Titan's atmosphere, to determine storm intensity and frequency. Intense storms of methane have been proposed to be critical for enabling mechanical erosion of Titan's surface, as indicated by observations of dendritic valley networks. Using precipitation outputs from the Titan Atmospheric Model (TAM), a GCM shown to realistically simulate many features of Titan's atmosphere, we quantify the precipitation variability within eight separate latitude bins for a variety of initial surface liquid distributions. We find that while the overall wettest regions are indeed the poles, the most intense rainfall generally occurs in the high mid-latitudes, between 45-67.5 degrees, consistent with recent geomorphological observations of alluvial fans concentrated at those latitudes. We also find that precipitation rates necessary for surface erosion, as estimated by Perron et al. (2006) J. Geophys. Res. 111, E11001, frequently occur at all latitudes, with recurrence intervals of less than one Titan year. Such analysis is crucial towards understanding the complex interaction between Titan's atmosphere and surface and defining the influence of precipitation on observed geomorphology.
A New Metric for Land-Atmosphere Coupling Strength: Applications on Observations and Modeling
NASA Astrophysics Data System (ADS)
Tang, Q.; Xie, S.; Zhang, Y.; Phillips, T. J.; Santanello, J. A., Jr.; Cook, D. R.; Riihimaki, L.; Gaustad, K.
2017-12-01
A new metric is proposed to quantify the land-atmosphere (LA) coupling strength and is elaborated by correlating the surface evaporative fraction and impacting land and atmosphere variables (e.g., soil moisture, vegetation, and radiation). Based upon multiple linear regression, this approach simultaneously considers multiple factors and thus represents complex LA coupling mechanisms better than existing single variable metrics. The standardized regression coefficients quantify the relative contributions from individual drivers in a consistent manner, avoiding the potential inconsistency in relative influence of conventional metrics. Moreover, the unique expendable feature of the new method allows us to verify and explore potentially important coupling mechanisms. Our observation-based application of the new metric shows moderate coupling with large spatial variations at the U.S. Southern Great Plains. The relative importance of soil moisture vs. vegetation varies by location. We also show that LA coupling strength is generally underestimated by single variable methods due to their incompleteness. We also apply this new metric to evaluate the representation of LA coupling in the Accelerated Climate Modeling for Energy (ACME) V1 Contiguous United States (CONUS) regionally refined model (RRM). This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734201
Investigation of Influential Factors for Bicycle Crashes Using a Spatiotemporal Model
NASA Astrophysics Data System (ADS)
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Despite the numerous potential advantages of indulging in bicycling, such as elevation of health and environment along with mitigation of congestion, the cyclists are a vulnerable group of commuters which is exposed to safety risks. This study aims to investigate the explanatory variables at transportation planning level which have a significant impact on the bicycle crashes. To account for the serial changes around the built environment, the linear time trend as well as time-varying coefficients are utilized for the covariates. These model modifications help account for the variations in the environment which may escape the incorporated variables due to lack of robustness in data. Also, to incorporate the interaction of roadway, demographic, and socioeconomic features within a Traffic Analysis Zone (TAZ), with the bicycle crashes of that area, a spatial correlation is integrated. This spatial correlation accounts for the spatially structured random effects which capture the unobserved heterogeneity and add towards building more comprehensive model with relatively precise estimates. Two different age groups, the student population in the TAZs, the presence of arterial roads and bike lanes, were observed to be statistically significant variables related with bicycle crashes. These observations will guide the transportation planning organizations which focus on the entity of TAZ while developing policies. The results of the current study establish a quantifies relationship between the significant factors and the crash count which will enable the planners to choose the most cost-efficient, yet most productive, factors which needs to be addressed for mitigation of crashes.
Generalised synthesis of space-time variability in flood response: Dynamics of flood event types
NASA Astrophysics Data System (ADS)
Viglione, Alberto; Battista Chirico, Giovanni; Komma, Jürgen; Woods, Ross; Borga, Marco; Blöschl, Günter
2010-05-01
A analytical framework is used to characterise five flood events of different type in the Kamp area in Austria: one long-rain event, two short-rain events, one rain-on-snow event and one snowmelt event. Specifically, the framework quantifies the contributions of the space-time variability of rainfall/snowmelt, runoff coefficient, hillslope and channel routing to the flood runoff volume and the delay and spread of the resulting hydrograph. The results indicate that the components obtained by the framework clearly reflect the individual processes which characterise the event types. For the short-rain events, temporal, spatial and movement components can all be important in runoff generation and routing, which would be expected because of their local nature in time and, particularly, in space. For the long-rain event, the temporal components tend to be more important for runoff generation, because of the more uniform spatial coverage of rainfall, while for routing the spatial distribution of the produced runoff, which is not uniform, is also important. For the rain-on-snow and snowmelt events, the spatio-temporal variability terms typically do not play much role in runoff generation and the spread of the hydrograph is mainly due to the duration of the event. As an outcome of the framework, a dimensionless response number is proposed that represents the joint effect of runoff coefficient and hydrograph peakedness and captures the absolute magnitudes of the observed flood peaks.
Drivers and Spatio-Temporal Extent of Hyporheic Patch Variation: Implications for Sampling
Braun, Alexander; Auerswald, Karl; Geist, Juergen
2012-01-01
The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking. Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches, after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance) and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved oxygen) increased with macrophyte cover (r2 = 0.95, p<0.001), while patch size of hyporheic parameters decreased from 6 to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p<0.001), irrespective of the time of year. Since the spatial variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity, while the number of samples should be related to macrophyte cover. PMID:22860053
Recent advances in catchment hydrology
NASA Astrophysics Data System (ADS)
van Meerveld, I. H. J.
2017-12-01
Despite the consensus that field observations and catchment studies are imperative to understand hydrological processes, to determine the impacts of global change, to quantify the spatial and temporal variability in hydrological fluxes, and to refine and test hydrological models, there is a decline in the number of field studies. This decline and the importance of fieldwork for catchment hydrology have been described in several recent opinion papers. This presentation will summarize these commentaries, describe how catchment studies have evolved over time, and highlight the findings from selected recent studies published in Water Resources Research.
The European 2015 drought from a groundwater perspective
NASA Astrophysics Data System (ADS)
Van Loon, Anne; Kumar, Rohini; Mishra, Vimal
2017-04-01
In 2015 central and eastern Europe were affected by severe drought. Impacts of the drought were felt across many sectors, incl. agriculture, drinking water supply, electricity production, navigation, fisheries, and recreation. This drought event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater drought has been performed. This is not surprising because real-time groundwater level observations often are not available. In this study we use previously established spatially-explicit relationships between meteorological drought and groundwater drought to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. We also tested the applicability of the Gravity Recovery Climate Experiment (GRACE) Terrestrial Water Storage (TWS) and GRACE-based groundwater anomalies to capture the spatial variability of the 2003 and 2015 drought events. We use the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardized Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.250 gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on these optimal accumulation periods, we found that in Germany a uniform severe groundwater drought persisted for several months (i.e. SGI below the drought threshold of 20th percentile for almost all grid cells in August, September and October 2015), whereas the Netherlands appeared to have relatively high groundwater levels (never below the drought threshold of 20th percentile). The differences between this event and the European 2003 benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany, with the regional averaged SGI above the 50th percentile. This is because slowly responding wells still were above average from the wet year of 2002-2003, which experienced severe flooding in central Europe. GRACE-TWS does show that both 2003 and 2015 were relatively dry, but the difference between Germany and the Netherlands in 2015 and the spatially-variable groundwater drought pattern in 2003 were not captured. This could be associated to the coarse spatial scale of GRACE. The simulated groundwater anomalies based on GRACE-TWS deviated considerably from the GRACE-TWS signal and from observed groundwater anomalies. These are therefore not suitable for use in real-time groundwater drought monitoring in our case study regions. Our study shows that the relationship between meteorological drought and groundwater drought can be used to quantify groundwater drought and that the 2015 groundwater drought in southern Germany was more severe than the 2003 drought, because of preconditions in slowly responding groundwater wells. For sustainable groundwater drought management strategies the use of groundwater level monitoring is needed to study the spatial variability of local groundwater drought, which mostly coincides with drought impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenes, Athanasios
The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated newmore » parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.« less
Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region
Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate
2015-01-01
Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi
2014-04-01
Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m -2 yr -1 and total NPP in the range of 318–490more » Tg C yr -1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m -2 yr -1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m -2 yr -1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. Finally, we suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.« less
Bernal, Nicholas A.; DeAngelis, Donald L.; Schofield, Pamela J.; Sullivan Sealey, Kathleen
2014-01-01
Invasive species may exhibit higher levels of growth and reproduction when environmental conditions are most suitable, and thus their effects on native fauna may be intensified. Understanding potential impacts of these species, especially in the nascent stages of a biological invasion, requires critical information concerning spatial and temporal distributions of habitat suitability. Using empirically supported environmental variables (e.g., temperature, salinity, dissolved oxygen, rugosity, and benthic substrate), our models predicted habitat suitability for the invasive lionfish (Pterois volitans) in Biscayne Bay, Florida. The use of Geographic Information Systems (GIS) as a platform for the modeling process allowed us to quantify correlations between temporal (seasonal) fluctuations in the above variables and the spatial distribution of five discrete habitat quality classes, whose ranges are supported by statistical deviations from the apparent best conditions described in prior studies. Analysis of the resulting models revealed little fluctuation in spatial extent of the five habitat classes on a monthly basis. Class 5, which represented the area with environmental variables closest to the best conditions for lionfish, occupied approximately one-third of Biscayne Bay, with subsequent habitats declining in area. A key finding from this study was that habitat suitability increased eastward from the coastline, where higher quality habitats were adjacent to the Atlantic Ocean and displayed marine levels of ambient water quality. Corroboration of the models with sightings from the USGS-NAS database appeared to support our findings by nesting 79 % of values within habitat class 5; however, field testing (i.e., lionfish surveys) is necessary to confirm the relationship between habitat classes and lionfish distribution.
Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region
Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate
2015-01-01
Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales. PMID:26267813
Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, Norman B.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen M.
2014-01-01
Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m−2 yr−1and total NPP in the range of 318–490 Tg C yr−1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m−2 yr−1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m−2 yr−1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. We suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.
Using TRMM Data To Understand Interannual Variations In the Tropical Water Balance
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Fitzjarrald, Dan; Arnold, James E. (Technical Monitor)
2002-01-01
A significant element of the science rationale for TRMM centered on assembling rainfall data needed to validate climate models-- climatological estimates of precipitation, its spatial and temporal variability, and vertical modes of latent heat release. Since the launch of TRMM, a great interest in the science community has emerged for quantifying interannual variability (IAV) of precipitation and its relationship to sea-surface temperature (SST) changes. The fact that TRMM has sampled one strong warm/ cold ENSO couplet, together with the prospect for a mission lifetime approaching ten years, has bolstered this interest in these longer time scales. Variability on a regional basis as well as for the tropics as a whole is of concern. Our analysis of TRMM results so far has shown surprising lack of concordance between various algorithms in quantifying IAV of precipitation. The first objective of this talk is to quantify the sensitivity of tropical precipitation to changes in SSTs. We analyze performance of the 3A11, 3A25, and 3B31 algorithms and investigate their relationship to scattering-- based algorithms constructed from SSM/I and TRMM 85 kHz data. The physical basis for the differences (and similarities) in depicting tropical oceanic and land rainfall will be discussed. We argue that scattering-based estimates of variability constitute a useful upper bound for precipitation variations. These results lead to the second question addressed in this talk-- How do TRMM precipitation / SST sensitivities compare to estimates of oceanic evaporation and what are the implications of these uncertainties in determining interannual changes in large-scale moisture transport? We summarize results of an analysis performed using COADS data supplemented by SSM/I estimates of near-surface variables to assess evaporation sensitivity to SST. The response of near 5 W sq m/K is compared to various TRMM precipitation sensitivities. Implied moisture convergence over the tropics and its sensitivity to errors of these algorithms is discussed.
NASA Astrophysics Data System (ADS)
Gou, Faxiang; Liu, Xinfeng; Ren, Xiaowei; Liu, Dongpeng; Liu, Haixia; Wei, Kongfu; Yang, Xiaoting; Cheng, Yao; Zheng, Yunhe; Jiang, Xiaojuan; Li, Juansheng; Meng, Lei; Hu, Wenbiao
2017-01-01
The influence of socio-ecological factors on hand, foot and mouth disease (HFMD) were explored in this study using Bayesian spatial modeling and spatial patterns identified in dry regions of Gansu, China. Notified HFMD cases and socio-ecological data were obtained from the China Information System for Disease Control and Prevention, Gansu Yearbook and Gansu Meteorological Bureau. A Bayesian spatial conditional autoregressive model was used to quantify the effects of socio-ecological factors on the HFMD and explore spatial patterns, with the consideration of its socio-ecological effects. Our non-spatial model suggests temperature (relative risk (RR) 1.15, 95 % CI 1.01-1.31), GDP per capita (RR 1.19, 95 % CI 1.01-1.39) and population density (RR 1.98, 95 % CI 1.19-3.17) to have a significant effect on HFMD transmission. However, after controlling for spatial random effects, only temperature (RR 1.25, 95 % CI 1.04-1.53) showed significant association with HFMD. The spatial model demonstrates temperature to play a major role in the transmission of HFMD in dry regions. Estimated residual variation after taking into account the socio-ecological variables indicated that high incidences of HFMD were mainly clustered in the northwest of Gansu. And, spatial structure showed a unique distribution after taking account of socio-ecological effects.
NASA Astrophysics Data System (ADS)
Sirianni, M.; Comas, X.; Shoemaker, B.; Job, M. J.; Cooper, H.
2016-12-01
Globally, wetland soils play an important role in regulating climate change by functioning as a source or sink for atmospheric carbon, particularly in terms of methane and carbon dioxide. While many historic studies defined the function of wetland soils in the global carbon budget, the gas-flux dynamics of subtropical wetlands is largely unknown. Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. The U.S. Geological Survey employs eddy covariance methods at several locations within the Preserve to quantify carbon and methane exchanges at ecosystem scales. While eddy covariance towers are a convenient tool for measuring gas fluxes, their footprint is spatially extensive (hundreds of meters); and thus spatial variability at smaller scales is masked by averaging or even overlooked. We intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a combination of geophysical, hydrologic and ecologic techniques. Preliminary results suggest that gas releases from flooded calcitic soils are much greater than organic soils. These results - and others - will help build a better understanding of the role of subtropical wetlands in the global carbon budget.
NASA Astrophysics Data System (ADS)
Maleki, Mohammad; Emery, Xavier
2017-12-01
In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an intrinsic random field of order k with Gaussian generalized increments. The proposals concern both the inference of the model parameters and the construction of realizations conditioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock type.
Ji, Lei; Peters, Albert J.
2004-01-01
The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.
Drought Patterns Forecasting using an Auto-Regressive Logistic Model
NASA Astrophysics Data System (ADS)
del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.
2014-12-01
Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.
Quantification of spatial distribution and spread of bacteria in soil at microscale
NASA Astrophysics Data System (ADS)
Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Baveye, Philippe; Otten, Wilfred
2015-04-01
Soil bacteria play an essential role in functioning of ecosystems and maintaining of biogeochemical cycles. Soil is a complex heterogeneous environment comprising of highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of resident microbiota including bacteria and fungi. Bacteria occupy a very small portion of available pore space in soil which demonstrates that their spatial arrangement in soil has a huge impact on the contact to their target and on the way they interact to carry out their functions. Due to limitation of techniques, there is scant information on spatial distribution of indigenous or introduced bacteria at microhabitat scale. There is a need to understand the interaction between soil structure and microorganisms including fungi for ecosystem-level processes such as carbon sequestration and improving the predictive models for soil management. In this work, a combination of techniques was used including X-ray CT to characterize the soil structure and in-situ detection via fluorescence microscopy to visualize and quantify bacteria in soil thin sections. Pseudomonas fluorescens bacteria were introduced in sterilized soil of aggregate size 1-2 mm and packed at bulk-densities 1.3 g cm-3 and 1.5 g cm-3. A subset of samples was fixed with paraformaldehyde and subsequently impregnated with resin. DAPI and fluorescence in situ hybridization (FISH) were used to visualize bacteria in thin sections of soil cores by epifluorescence microscopy to enumerate spatial distribution of bacteria in soil. The pore geometry of soil was quantified after X-ray microtomography scanning. The distribution of bacteria introduced locally reduced significantly (P
NASA Technical Reports Server (NTRS)
Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro
2013-01-01
Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.
Within-Event and Between-Events Ground Motion Variability from Earthquake Rupture Scenarios
NASA Astrophysics Data System (ADS)
Crempien, Jorge G. F.; Archuleta, Ralph J.
2017-09-01
Measurement of ground motion variability is essential to estimate seismic hazard. Over-estimation of variability can lead to extremely high annual hazard estimates of ground motion exceedance. We explore different parameters that affect the variability of ground motion such as the spatial correlations of kinematic rupture parameters on a finite fault and the corner frequency of the moment-rate spectra. To quantify the variability of ground motion, we simulate kinematic rupture scenarios on several vertical strike-slip faults and compute ground motion using the representation theorem. In particular, for the entire suite of rupture scenarios, we quantify the within-event and the between-events ground motion variability of peak ground acceleration (PGA) and response spectra at several periods, at 40 stations—all approximately at an equal distance of 20 and 50 km from the fault. Both within-event and between-events ground motion variability increase when the slip correlation length on the fault increases. The probability density functions of ground motion tend to truncate at a finite value when the correlation length of slip decreases on the fault, therefore, we do not observe any long-tail distribution of peak ground acceleration when performing several rupture simulations for small correlation lengths. Finally, for a correlation length of 6 km, the within-event and between-events PGA log-normal standard deviations are 0.58 and 0.19, respectively, values slightly smaller than those reported by Boore et al. (Earthq Spectra, 30(3):1057-1085, 2014). The between-events standard deviation is consistently smaller than the within-event for all correlations lengths, a feature that agrees with recent ground motion prediction equations.
Characterizing regional soil mineral composition using spectroscopyand geostatistics
Mulder, V.L.; de Bruin, S.; Weyermann, J.; Kokaly, Raymond F.; Schaepman, M.E.
2013-01-01
This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD)was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We testedwhether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was donewith Fixed Rank Kriging (FRK) to represent the mediumand long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial variability of soil and environmental properties at regional scale.
Quantifying the energy required for groundwater pumping across a regional aquifer system
NASA Astrophysics Data System (ADS)
Ronayne, M. J.; Shugert, D. T.
2017-12-01
Groundwater pumping can be a substantial source of energy expenditure, particularly in semiarid regions with large depths to water. In this study we assessed the energy required for groundwater pumping in the Denver Basin aquifer system, a group of sedimentary rock aquifers used for municipal water supply in Colorado. In recent decades, declining water levels in the Denver Basin aquifers has resulted in increased pumping lifts and higher energy use rates. We quantified the spatially variable energy intensity for groundwater pumping by analyzing spatial variations in the lift requirement. The median energy intensities for two major aquifers were 1.2 and 1.8 kWh m-3. Considering typical municipal well production rates and household water use in the study area, these results indicate that the energy cost associated with groundwater pumping can be a significant fraction (>20%) of the total electricity consumption for all household end uses. Pumping at this scale (hundreds of municipal wells producing from deep aquifers) also generates substantial greenhouse gas emissions. Analytical wellfield modeling conducted as part of this study clearly demonstrates how multiple components of the lift impact the energy requirement. Results provide guidance for water management strategies that reduce energy expenditure.
In vivo wide-field multispectral dosimeter for use in ALA-PpIX based photodynamic therapy of skin
NASA Astrophysics Data System (ADS)
LaRochelle, Ethan P. M.; Davis, Scott C.; de Souza, Ana Luiza Ribeiro; Pogue, Brian W.
2017-02-01
Photodynamic therapy (PDT) for Actinic Kertoses (AK) using aminoluvelinic acid (ALA) is an FDA-approved treatment, which is generally effective, yet response rates vary. The origin of the variability is not well characterized, but may be related to inter-patient variability in the production of protoporphyrin IX (PpIX). While fiber-based point probe systems provide a method for measuring PpIX production, these measurements have demonstrated large spatial and inter-operator variability. Thus, in an effort to improve patient-specific dosimetry and treatment it is important to develop a robust system that accounts for spatial variability and reduces the chance of operator errors. To address this need, a wide-field multispectral imaging system was developed that is capable of quantifying maps of PpIX in both liquid phantoms and in vivo experiments, focusing on high sensitivity light signals. The system uses both red and blue excitation to elicit a fluorescent response at varying skin depths. A ten-position filter wheel with bandpass filters ranging from 635nm to 710nm are used to capture images along the emission band. A linear least-square spectral fitting algorithm provides the ability to decouple background autofluorescence from PpIX fluorescence, which has improved the system sensitivity by an order of magnitude, detecting nanomolar PpIX concentrations in liquid phantoms in the presence of 2% whole blood and 2% intralipid.
NASA Astrophysics Data System (ADS)
Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.
2013-12-01
Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.
A Biophysical Modeling Framework for Assessing the Environmental Impact of Biofuel Production
NASA Astrophysics Data System (ADS)
Zhang, X.; Izaurradle, C.; Manowitz, D.; West, T. O.; Post, W. M.; Thomson, A. M.; Nichols, J.; Bandaru, V.; Williams, J. R.
2009-12-01
Long-term sustainability of a biofuel economy necessitates environmentally friendly biofuel production systems. We describe a biophysical modeling framework developed to understand and quantify the environmental value and impact (e.g. water balance, nutrients balance, carbon balance, and soil quality) of different biomass cropping systems. This modeling framework consists of three major components: 1) a Geographic Information System (GIS) based data processing system, 2) a spatially-explicit biophysical modeling approach, and 3) a user friendly information distribution system. First, we developed a GIS to manage the large amount of geospatial data (e.g. climate, land use, soil, and hydrograhy) and extract input information for the biophysical model. Second, the Environmental Policy Integrated Climate (EPIC) biophysical model is used to predict the impact of various cropping systems and management intensities on productivity, water balance, and biogeochemical variables. Finally, a geo-database is developed to distribute the results of ecosystem service variables (e.g. net primary productivity, soil carbon balance, soil erosion, nitrogen and phosphorus losses, and N2O fluxes) simulated by EPIC for each spatial modeling unit online using PostgreSQL. We applied this framework in a Regional Intensive Management Area (RIMA) of 9 counties in Michigan. A total of 4,833 spatial units with relatively homogeneous biophysical properties were derived using SSURGO, Crop Data Layer, County, and 10-digit watershed boundaries. For each unit, EPIC was executed from 1980 to 2003 under 54 cropping scenarios (eg. corn, switchgrass, and hybrid poplar). The simulation results were compared with historical crop yields from USDA NASS. Spatial mapping of the results show high variability among different cropping scenarios in terms of the simulated ecosystem services variables. Overall, the framework developed in this study enables the incorporation of environmental factors into economic and life-cycle analysis in order to optimize biomass cropping production scenarios.
Angle-Beam Shear Wave Scattering from Buried Crack-like Defects in Bonded Specimens (Postprint)
2017-02-01
wavenumber filtering and spatial windowing is proposed and implemented as an alternative approach to quantify scattering from damage. 15. SUBJECT...TERMS Backscattering . Ultrasonography . Spatial filtering . Ultrasonic scattering . Scattering measurement 16. SECURITY CLASSIFICATION OF: 17...of frequency- wavenumber filtering and spatial windowing is proposed and implemented as an alternative approach to quantify scattering from damage
Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.
2015-01-01
Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997
Two-point spectral model for variable density homogeneous turbulence
NASA Astrophysics Data System (ADS)
Pal, Nairita; Kurien, Susan; Clark, Timothy; Aslangil, Denis; Livescu, Daniel
2017-11-01
We present a comparison between a two-point spectral closure model for buoyancy-driven variable density homogeneous turbulence, with Direct Numerical Simulation (DNS) data of the same system. We wish to understand how well a suitable spectral model might capture variable density effects and the transition to turbulence from an initially quiescent state. Following the BHRZ model developed by Besnard et al. (1990), the spectral model calculation computes the time evolution of two-point correlations of the density fluctuations with the momentum and the specific-volume. These spatial correlations are expressed as function of wavenumber k and denoted by a (k) and b (k) , quantifying mass flux and turbulent mixing respectively. We assess the accuracy of the model, relative to a full DNS of the complete hydrodynamical equations, using a and b as metrics. Work at LANL was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396.
NASA Technical Reports Server (NTRS)
Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga
2016-01-01
Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.
Jiang, Yueyang; Kim, John B.; Still, Christopher J.; Kerns, Becky K.; Kline, Jeffrey D.; Cunningham, Patrick G.
2018-01-01
Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies. PMID:29461513
Gastmans, Didier; Santos, Vinícius; Galhardi, Juliana Aparecida; Gromboni, João Felipe; Batista, Ludmila Vianna; Miotlinski, Konrad; Chang, Hung Kiang; Govone, José Silvio
2017-10-01
Based on Global Network Isotopes in Precipitation (GNIP) isotopic data set, a review of the spatial and temporal variability of δ 18 O and δ 2 H in precipitation was conducted throughout central and eastern Brazil, indicating that dynamic interactions between Intertropical and South Atlantic Convergence Zones, Amazon rainforest, and Atlantic Ocean determine the variations on the isotopic composition of precipitation over this area. Despite the seasonality and latitude effects observed, a fair correlation with precipitation amount was found. In addition, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories were used to quantify the factors controlling daily variability in stable isotopes in precipitation. Through a linear multiple regression analysis, it was observed that temporal variations were consistent with the meteorological parameters derived from HYSPLIT, particularly precipitation amount along the trajectory and mix depth, but are not dependent on vapour residence time in the atmosphere. These findings also indicate the importance of convective systems to control the isotopic composition of precipitation in tropical and subtropical regions.
Barbeau, Myriam A.
2016-01-01
Top-down, bottom-up, middle-out and abiotic factors are usually viewed as main forces structuring biological communities, although assessment of their relative importance, in a single study, is rarely done. We quantified, using multivariate methods, associations between abiotic and biotic (top-down, bottom-up and middle-out) variables and infaunal population/community variation on intertidal mudflats in the Bay of Fundy, Canada, over two years. Our analysis indicated that spatial structural factors like site and plot accounted for most of the community and population variation. Although we observed a significant relationship between the community/populations and the biotic and abiotic variables, most were of minor importance relative to the structural factors. We suggest that community and population structure were relatively uncoupled from the structuring influences of biotic and abiotic factors in this system because of high concentrations of resources that sustain high densities of infauna and limit exploitative competition. Furthermore, we hypothesize that the infaunal community primarily reflects stochastic spatial events, namely a “first come, first served” process. PMID:26790098
Oyler-Yaniv, Alon; Oyler-Yaniv, Jennifer; Whitlock, Benjamin M; Liu, Zhiduo; Germain, Ronald N; Huse, Morgan; Altan-Bonnet, Grégoire; Krichevsky, Oleg
2017-04-18
Immune cells communicate by exchanging cytokines to achieve a context-appropriate response, but the distances over which such communication happens are not known. Here, we used theoretical considerations and experimental models of immune responses in vitro and in vivo to quantify the spatial extent of cytokine communications in dense tissues. We established that competition between cytokine diffusion and consumption generated spatial niches of high cytokine concentrations with sharp boundaries. The size of these self-assembled niches scaled with the density of cytokine-consuming cells, a parameter that gets tuned during immune responses. In vivo, we measured interactions on length scales of 80-120 μm, which resulted in a high degree of cell-to-cell variance in cytokine exposure. Such heterogeneous distributions of cytokines were a source of non-genetic cell-to-cell variability that is often overlooked in single-cell studies. Our findings thus provide a basis for understanding variability in the patterning of immune responses by diffusible factors. Published by Elsevier Inc.
Jiang, Yueyang; Kim, John B; Still, Christopher J; Kerns, Becky K; Kline, Jeffrey D; Cunningham, Patrick G
2018-02-20
Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies.
NASA Astrophysics Data System (ADS)
Virk, Ravinder
Areas with relatively high spatial heterogeneity generally have more biodiversity than spatially homogeneous areas due to increased potential habitat. Management practices such as controlled grazing also affect the biodiversity in grasslands, but the nature of this impact is not well understood. Therefore this thesis studies the impacts of variation in grazing on soil moisture and biomass heterogeneity. These are not only important in terms of management of protected grasslands, but also for designing an effective grazing system from a livestock management point of view. This research is a part of the cattle grazing experiment underway in Grasslands National Park (GNP) of Canada since 2006, as part of the adaptive management process for restoring ecological integrity of the northern mixed-grass prairie region. An experimental approach using field measurements and remote sensing (Landsat) was combined with modelling (CENTURY) to examine and predict the impacts of grazing intensity on the spatial heterogeneity and patterns of above-ground live plant biomass (ALB) in experimental pastures in a mixed grassland ecosystem. The field-based research quantified the temporal patterns and spatial variability in both soil moisture (SM) and ALB, and the influence of local intra-seasonal weather variability and slope location on the spatio-temporal variability of SM and ALB at field plot scales. Significant impacts of intra-seasonal weather variability, slope position and grazing pressure on SM and ALB across a range of scales (plot and local (within pasture)) were found. Grazing intensity significantly affected the ALB even after controlling for the effect of slope position. Satellite-based analysis extended the scale of interest to full pastures and the surrounding region to assess the effects of grazing intensity on the spatio-temporal pattern of ALB in mixed grasslands. Overall, low to moderate grazing intensity showed increase in ALB heterogeneity whereas no change in ALB heterogeneity over time was observed for heavy grazing intensity. All grazing intensities showed decrease in spatial range (patch size) over time indicating that grazing is a patchy process. The study demonstrates that cattle grazing with variable intensity can maintain and change the spatial patterns of vegetation in the studied region. Using a modelling approach, the relative degrees to which grazing intensity and soil properties affect grassland productivity and carbon dynamics at longer time-periods were investigated. Both grass productivity and carbon dynamics are sensitive to variability in soil texture and grazing intensity. Moderate grazing is predicted to be the best option in terms of maintaining sufficient heterogeneity to support species diversity, as well as for carbon management in the mixed grassland ecosystem.
Introducing Co-Activation Pattern Metrics to Quantify Spontaneous Brain Network Dynamics
Chen, Jingyuan E.; Chang, Catie; Greicius, Michael D.; Glover, Gary H.
2015-01-01
Recently, fMRI researchers have begun to realize that the brain's intrinsic network patterns may undergo substantial changes during a single resting state (RS) scan. However, despite the growing interest in brain dynamics, metrics that can quantify the variability of network patterns are still quite limited. Here, we first introduce various quantification metrics based on the extension of co-activation pattern (CAP) analysis, a recently proposed point-process analysis that tracks state alternations at each individual time frame and relies on very few assumptions; then apply these proposed metrics to quantify changes of brain dynamics during a sustained 2-back working memory (WM) task compared to rest. We focus on the functional connectivity of two prominent RS networks, the default-mode network (DMN) and executive control network (ECN). We first demonstrate less variability of global Pearson correlations with respect to the two chosen networks using a sliding-window approach during WM task compared to rest; then we show that the macroscopic decrease in variations in correlations during a WM task is also well characterized by the combined effect of a reduced number of dominant CAPs, increased spatial consistency across CAPs, and increased fractional contributions of a few dominant CAPs. These CAP metrics may provide alternative and more straightforward quantitative means of characterizing brain network dynamics than time-windowed correlation analyses. PMID:25662866
NASA Astrophysics Data System (ADS)
Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca
2017-04-01
The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.
NASA Astrophysics Data System (ADS)
Posner, A. J.
2017-12-01
The Middle Rio Grande River (MRG) traverses New Mexico from Cochiti to Elephant Butte reservoirs. Since the 1100s, cultivating and inhabiting the valley of this alluvial river has required various river training works. The mid-20th century saw a concerted effort to tame the river through channelization, Jetty Jacks, and dam construction. A challenge for river managers is to better understand the interactions between a river training works, dam construction, and the geomorphic adjustments of a desert river driven by spring snowmelt and summer thunderstorms carrying water and large sediment inputs from upstream and ephemeral tributaries. Due to its importance to the region, a vast wealth of data exists for conditions along the MRG. The investigation presented herein builds upon previous efforts by combining hydraulic model results, digitized planforms, and stream gage records in various statistical and conceptual models in order to test our understanding of this complex system. Spatially continuous variables were clipped by a set of river cross section data that is collected at decadal intervals since the early 1960s, creating a spatially homogenous database upon which various statistical testing was implemented. Conceptual models relate forcing variables and response variables to estimate river planform changes. The developed database, represents a unique opportunity to quantify and test geomorphic conceptual models in the unique characteristics of the MRG. The results of this investigation provides a spatially distributed characterization of planform variable changes, permitting managers to predict planform at a much higher resolution than previously available, and a better understanding of the relationship between flow regime and planform changes such as changes to longitudinal slope, sinuosity, and width. Lastly, data analysis and model interpretation led to the development of a new conceptual model for the impact of ephemeral tributaries in alluvial rivers.
NASA Astrophysics Data System (ADS)
Tissot, P.; Reisinger, A. S.; Besonen, M. R.
2017-12-01
While our understanding of global sea level rise and its budget has made great progress over the past decade, the spatial and temporal variability of relative sea level rise along the coasts still needs to be better understood and quantified. We developed a technique to reduce the confidence intervals associated with relative sea level rise (RSLR) estimates for 15 tide gauges located along the Texas coast for the period 1993-2016. Seasonally detrended monthly mean water levels are highly correlated after removal of station-specific RSLR trends, which allows for the quantification of a common, low frequency oceanic signal. RSLR confidence intervals are reduced from over 1.9 mm/yr, on average 2.3mm, to less than 1.1 mm/yr, on average 0.7 mm/yr after removing this common signal. The resulting RSLR rates range from 3.0 to 8.4 mm/yr. The range is wider than the longer-term rates of 5.3, 3.8 and 1.9 mm/yr measured from north to south by the three National Water Level Observation Network (NWLON) stations covering the study area (over different and longer time spans). The results emphasize the importance of the spatial variability of the vertical land motion component of RSLR. The temporal variability of the coherent oceanic signal is not significantly correlated to the ENSO signal for the study period and is only weakly correlated to the AMO and PDO climate indices. The coherence of the signal is further investigated by comparison with other locations along the Gulf of Mexico and along the Northeast Atlantic coast. The results are discussed while considering strong local processes along the Northwest Gulf of Mexico, such as wind forcing and intermittent eddies and the spatially broader influence of the Gulf Stream. The local significance of the RSLR spatial and temporal differences are discussed in terms of the differences in inundation frequency for nuisance type flooding including comparing the time span to reach a probability of at least one nuisance flood event per year.
Evaluating Variability and Uncertainty of Geological Strength Index at a Specific Site
NASA Astrophysics Data System (ADS)
Wang, Yu; Aladejare, Adeyemi Emman
2016-09-01
Geological Strength Index (GSI) is an important parameter for estimating rock mass properties. GSI can be estimated from quantitative GSI chart, as an alternative to the direct observational method which requires vast geological experience of rock. GSI chart was developed from past observations and engineering experience, with either empiricism or some theoretical simplifications. The GSI chart thereby contains model uncertainty which arises from its development. The presence of such model uncertainty affects the GSI estimated from GSI chart at a specific site; it is, therefore, imperative to quantify and incorporate the model uncertainty during GSI estimation from the GSI chart. A major challenge for quantifying the GSI chart model uncertainty is a lack of the original datasets that have been used to develop the GSI chart, since the GSI chart was developed from past experience without referring to specific datasets. This paper intends to tackle this problem by developing a Bayesian approach for quantifying the model uncertainty in GSI chart when using it to estimate GSI at a specific site. The model uncertainty in the GSI chart and the inherent spatial variability in GSI are modeled explicitly in the Bayesian approach. The Bayesian approach generates equivalent samples of GSI from the integrated knowledge of GSI chart, prior knowledge and observation data available from site investigation. Equations are derived for the Bayesian approach, and the proposed approach is illustrated using data from a drill and blast tunnel project. The proposed approach effectively tackles the problem of how to quantify the model uncertainty that arises from using GSI chart for characterization of site-specific GSI in a transparent manner.
NASA Astrophysics Data System (ADS)
Bernhardt, Jase; Carleton, Andrew M.
2018-05-01
The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.
Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.
2003-01-01
This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp
Monthly Rainfall Erosivity Assessment for Switzerland
NASA Astrophysics Data System (ADS)
Schmidt, Simon; Meusburger, Katrin; Alewell, Christine
2016-04-01
Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation cover (C-factor) maps would enable the assessment of seasonal dynamics of erosion processes in Switzerland.
NASA Astrophysics Data System (ADS)
Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William
2017-10-01
We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.
Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil.
Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole
2015-09-01
The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0-30 and the 0-100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km(2) and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m(-2), respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. Copyright © 2015 Elsevier B.V. All rights reserved.
Neighbourhood-scale urban forest ecosystem classification.
Steenberg, James W N; Millward, Andrew A; Duinker, Peter N; Nowak, David J; Robinson, Pamela J
2015-11-01
Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape ecosystem conditions into logical and relatively homogeneous management units, making the potential for ecosystem-based decision support available to urban planners. The purpose of this study is to develop and propose a framework for urban forest ecosystem classification (UFEC). The multifactor framework integrates 12 ecosystem components that characterize the biophysical landscape, built environment, and human population. This framework is then applied at the neighbourhood scale in Toronto, Canada, using hierarchical cluster analysis. The analysis used 27 spatially-explicit variables to quantify the ecosystem components in Toronto. Twelve ecosystem classes were identified in this UFEC application. Across the ecosystem classes, tree canopy cover was positively related to economic wealth, especially income. However, education levels and homeownership were occasionally inconsistent with the expected positive relationship with canopy cover. Open green space and stocking had variable relationships with economic wealth and were more closely related to population density, building intensity, and land use. The UFEC can provide ecosystem-based information for greening initiatives, tree planting, and the maintenance of the existing canopy. Moreover, its use has the potential to inform the prioritization of limited municipal resources according to ecological conditions and to concerns of social equity in the access to nature and distribution of ecosystem service supply. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Davis, K. A.; Reid, E. C.; Cohen, A. L.
2016-02-01
Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.
SSS variability inferred from recent SMOS reprocessing at CATDS
NASA Astrophysics Data System (ADS)
Boutin, Jacqueline; Vergely, Jean-Luc; Marchand, Stéphane; Tarot, Stéphane; Hasson, Audrey; Reverdin, Gilles
2017-04-01
The Soil Moisture and Ocean Salinity (SMOS) satellite mission has monitored sea surface salinity (SSS) over the global ocean for over 7 years. In this poster, we present results obtained at the LOCEAN/ACRI-st expertise center using recent CATDS (Centre Aval de Traitement des Données) SMOS RE05 reprocessing., We find that correction for systematic errors and removal of data contaminated by ice and radio frequency interferences in fresh regions (river mouths, high latitudes) has been improved with respect to SMOS CATDS RE04 reprocessing. We analyze SSS variability as observed by SMOS on a wide range of spatial and temporal scales using various statistical indicators such as mean, median, standard deviation, minimum, maximum values and spectral analysis. We compare them with ARGO interpolated fields (In Situ Analysis System fields) at global scale and with ship SSS transects from the GOSUD and ORE SSS data base. This allows us 1) to demonstrate and quantify the improvement of SMOS SSS fields with respect to earlier versions and 2) to study SSS variability, especially at spatial scales between 50km and 600km not well covered globally by in situ network. The complementarity of this information with respect to SMAP (Soil Moisture Active Passive) SSS fields will be discussed.
Imhof, Hannes K; Sigl, Robert; Brauer, Emilia; Feyl, Sabine; Giesemann, Philipp; Klink, Saskia; Leupolz, Kathrin; Löder, Martin G J; Löschel, Lena A; Missun, Jan; Muszynski, Sarah; Ramsperger, Anja F R M; Schrank, Isabella; Speck, Susan; Steibl, Sebastian; Trotter, Benjamin; Winter, Isabel; Laforsch, Christian
2017-03-15
Plastic debris is ubiquitous in the marine environment and the world's shores represent a major sink. However, knowledge about plastic abundance in remote areas is scarce. Therefore, plastic abundance was investigated on a small island of the Maldives. Plastic debris (>1mm) was sampled once in natural long-term accumulation zones at the north shore and at the high tide drift line of the south shore on seven consecutive days to quantify daily plastic accumulation. Reliable identification of plastic debris was ensured by FTIR spectroscopy. Despite the remoteness of the island a considerable amount of plastic debris was present. At both sites a high variability in plastic abundance on a spatial and temporal scale was observed, which may be best explained by environmental factors. In addition, our results show that snapshot sampling may deliver biased results and indicate that future monitoring programs should consider spatial and temporal variation of plastic deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of a distributed air pollutant dry deposition modeling framework.
Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J
2012-12-01
A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. Copyright © 2012 Elsevier Ltd. All rights reserved.
SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign
NASA Astrophysics Data System (ADS)
Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.
2010-12-01
We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.
Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis.
Lessels, Jason S; Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris
2016-01-01
Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high-resolution Digital Elevation Model (DEM) with repeated spatially high-resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed.
Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure
McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.
2017-01-01
Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p < 0.0001) was observed between the ratio of shortwave infrared and near infrared reflectance (d74) and LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.
NASA Astrophysics Data System (ADS)
Desai, A. R.; Reed, D. E.; Dugan, H. A.; Loken, L. C.; Schramm, P.; Golub, M.; Huerd, H.; Baldocchi, A. K.; Roberts, R.; Taebel, Z.; Hart, J.; Hanson, P. C.; Stanley, E. H.; Cartwright, E.
2017-12-01
Freshwater ecosystems are hotspots of regional to global carbon cycling. However, significant sample biases limit our ability to quantify and predict these fluxes. For lakes, scaled flux estimates suffer biased sampling toward 1) low-nutrient pristine lakes, 2) infrequent temporal sampling, 3) field campaigns limited to the growing season, and 4) replicates limited to near the center of the lake. While these biases partly reflect the realities of ecological sampling, there is a need to extend observations towards the large fraction of freshwater systems worldwide that are impaired by human activities and those facing significant interannual variability owing to climatic change. Also, for seasonally ice-covered lakes, much of the annual budget of carbon fluxes is thought to be explained by variation in the shoulder seasons of spring ice melt and fall turnover. Recent advances in automated, continuous multi-year temporal sampling coupled with rapid methods for spatial mapping of CO2 fluxes has strong potential to rectify these sampling biases. Here, we demonstrate these advances in an eutrophic seasonally-ice covered lake with an urban shoreline and agricultural watershed. Multiple years of half-hourly eddy covariance flux tower observations from two locations are coupled with frequent spatial samples of these fluxes and drivers by speedboat, floating chamber fluxes, automated buoy-based monitoring of lake nutrient and physical profiles, and ensemble of physical-ecosystem models. High primary productivity in the water column leads to an average net carbon sink during the growing season in much of the lake, but annual net carbon fluxes show the lake can act as an annual source or a sink of carbon depending the timing of spring and fall turnover. Trophic interactions and internal waves drive shorter-term variation while nutrients and biology drive seasonal variation. However, discrepancies remain among methods to quantify fluxes, requiring further investigation.
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor
2016-04-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, S.
2015-12-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
Social values for ecosystem services (SolVES): Documentation and user manual, version 2.0
Sherrouse, Benson C.; Semmens, Darius J.
2012-01-01
In response to the need for incorporating quantified and spatially explicit measures of social values into ecosystem services assessments, the Rocky Mountain Geographic Science Center (RMGSC), in collaboration with Colorado State University, developed a geographic information system (GIS) application, Social Values for Ecosystem Services (SolVES). With version 2.0 (SolVES 2.0), RMGSC has improved and extended the functionality of SolVES, which was designed to assess, map, and quantify the perceived social values of ecosystem services. Social values such as aesthetics, biodiversity, and recreation can be evaluated for various stakeholder groups as distinguished by their attitudes and preferences regarding public uses, such as motorized recreation and logging. As with the previous version, SolVES 2.0 derives a quantitative, 10-point, social-values metric, the Value Index, from a combination of spatial and nonspatial responses to public attitude and preference surveys and calculates metrics characterizing the underlying environment, such as average distance to water and dominant landcover. Additionally, SolVES 2.0 integrates Maxent maximum entropy modeling software to generate more complete social value maps and to produce robust statistical models describing the relationship between the social values maps and explanatory environmental variables. The performance of these models can be evaluated for a primary study area, as well as for similar areas where primary survey data are not available but where social value mapping could potentially be completed using value-transfer methodology. SolVES 2.0 also introduces the flexibility for users to define their own social values and public uses, model any number and type of environmental variable, and modify the spatial resolution of analysis. With these enhancements, SolVES 2.0 provides an improved public domain tool for decisionmakers and researchers to evaluate the social values of ecosystem services and to facilitate discussions among diverse stakeholders regarding the tradeoffs among different ecosystem services in a variety of physical and social contexts ranging from forest and rangeland to coastal and marine.
Interannual rainfall variability and SOM-based circulation classification
NASA Astrophysics Data System (ADS)
Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher
2018-01-01
Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.
Long, Xin; Li, Nan; Tie, Xuexi; Cao, Junji; Zhao, Shuyu; Huang, Rujin; Zhao, Mudan; Li, Guohui; Feng, Tian
2016-01-15
Urban dust pollution has been becoming an outstanding environmental problem due to rapid urbanization in China. However, it is very difficult to construct an urban dust inventory, owing to its small horizontal scale and strong temporal/spatial variability. With the analysis of visual interpretation, maximum likelihood classification, extrapolation and spatial overlaying, we quantified dust source distributions of urban constructions, barrens and croplands in the Guanzhong Basin using various satellite data, including VHR (0.5m), Lansat-8 OLI (30 m) and MCD12Q1 (500 m). The croplands were the dominant dust sources, accounting for 40% (17,913 km(2)) of the study area in summer and 36% (17,913 km(2)) in winter, followed by barrens, accounting for 5% in summer and 10% in winter. Moreover, the total constructions were 126 km(2), including 84% of active and 16% inactive. In addition, 59% of the constructions aggregated on the only megacity of the study area, Xi'an. With high accuracy exceeding 88%, the proposed satellite-data based method is feasible and valuable to quantify distributions of dust sources. This study provides a new perspective to evaluate regional urban dust, which is seldom quantified and reported. In a companied paper (Part-2 of the study), the detailed distribution of the urban dust sources is applied in a dynamical/aerosol model (WRF-Dust) to assess the effect of dust sources on aerosol pollution. Copyright © 2015 Elsevier B.V. All rights reserved.
Thomazini, A; Francelino, M R; Pereira, A B; Schünemann, A L; Mendonça, E S; Almeida, P H A; Schaefer, C E G R
2016-08-15
Soils and vegetation play an important role in the carbon exchange in Maritime Antarctica but little is known on the spatial variability of carbon processes in Antarctic terrestrial environments. The objective of the current study was to investigate (i) the soil development and (ii) spatial variability of ecosystem respiration (ER), net ecosystem CO2 exchange (NEE), gross primary production (GPP), soil temperature (ST) and soil moisture (SM) under four distinct vegetation types and a bare soil in Keller Peninsula, King George Island, Maritime Antarctica, as follows: site 1: moss-turf community; site 2: moss-carpet community; site 3: phanerogamic antarctic community; site 4: moss-carpet community (predominantly colonized by Sanionia uncinata); site 5: bare soil. Soils were sampled at different layers. A regular 40-point (5×8 m) grid, with a minimum separation distance of 1m, was installed at each site to quantify the spatial variability of carbon exchange, soil moisture and temperature. Vegetation characteristics showed closer relation with soil development across the studied sites. ER reached 2.26μmolCO2m(-2)s(-1) in site 3, where ST was higher (7.53°C). A greater sink effect was revealed in site 4 (net uptake of 1.54μmolCO2m(-2)s(-1)) associated with higher SM (0.32m(3)m(-3)). Spherical models were fitted to describe all experimental semivariograms. Results indicate that ST and SM are directly related to the spatial variability of CO2 exchange. Heterogeneous vegetation patches showed smaller range values. Overall, poorly drained terrestrial ecosystems act as CO2 sink. Conversely, where ER is more pronounced, they are associated with intense soil carbon mineralization. The formations of new ice-free areas, depending on the local soil drainage condition, have an important effect on CO2 exchange. With increasing ice/snow melting, and resulting widespread waterlogging, increasing CO2 sink in terrestrial ecosystems is expected for Maritime Antarctica. Copyright © 2016 Elsevier B.V. All rights reserved.
Locally adaptive, spatially explicit projection of US population for 2030 and 2050.
McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.
NASA Astrophysics Data System (ADS)
Gaughan, D. J.; Pearce, A. F.; Lewis, P. D.
2009-08-01
A transect that extended 40 km offshore across the continental shelf off Perth, Western Australia, was sampled monthly during 1997 and 1998. Zooplankton was sampled at 5 km intervals with a 300 micron-mesh bongo net deployed vertically to within 3 m of the bottom, or to a maximum depth of 70 m. Numbers of species of chaetognaths and siphonores were quantified, as were abundances of the common species from these groups and of the hydromedusae Auglaura hemistoma. The potential influences of four environmental variables (sea-level, sea surface temperature, salinity and chlorophyll concentration) on variability in diversity and abundance were assessed using generalized additive modeling. A combination of factors were found to influence the seasonal and spatial biological variability and, of these factors, non-linear relationships always contributed to the best fitting models. In all but one case, each of the environmental variables was included in the final model. The seasonally variable Leeuwin Current, whose strength is measured as variations in local sea-level, is the dominant mesoscale oceanographic feature in the study region but was not found to have an overriding influence on the shelf zooplankton. This contrasts a previous hypothesis that subjectively attributed seasonal variability of the same taxa examined in this study to seasonal variations in the Leeuwin Current. There remains a poor understanding of shelf zooplankton off Western Australia and, in particular, of the processes that influence seasonal and spatial variability. A more complete understanding of potential causative influences of the Leeuwin Current on the shelf plankton community of south-western Australia must be cognizant of a range of biophysical factors operating at both the broader mesoscale and at smaller scales within the shelf pelagic ecosystem.
Brandt, Christian; Dasilva, Miguel; Gotthardt, Sascha; Chicharro, Daniel; Panzeri, Stefano; Distler, Claudia
2016-01-01
Top-down attention increases coding abilities by altering firing rates and rate variability. In the frontal eye field (FEF), a key area enabling top-down attention, attention induced firing rate changes are profound, but its effect on different cell types is unknown. Moreover, FEF is the only cortical area investigated in which attention does not affect rate variability, as assessed by the Fano factor, suggesting that task engagement affects cortical state nonuniformly. We show that putative interneurons in FEF of Macaca mulatta show stronger attentional rate modulation than putative pyramidal cells. Partitioning rate variability reveals that both cell types reduce rate variability with attention, but more strongly so in narrow-spiking cells. The effects are captured by a model in which attention stabilizes neuronal excitability, thereby reducing the expansive nonlinearity that links firing rate and variance. These results show that the effect of attention on different cell classes and different coding properties are consistent across the cortical hierarchy, acting through increased and stabilized neuronal excitability. SIGNIFICANCE STATEMENT Cortical processing is critically modulated by attention. A key feature of this influence is a modulation of “cortical state,” resulting in increased neuronal excitability and resilience of the network against perturbations, lower rate variability, and an increased signal-to-noise ratio. In the frontal eye field (FEF), an area assumed to control spatial attention in human and nonhuman primates, firing rate changes with attention occur, but rate variability, quantified by the Fano factor, appears to be unaffected by attention. Using recently developed analysis tools and models to quantify attention effects on narrow- and broad-spiking cell activity, we show that attention alters cortical state strongly in the FEF, demonstrating that its effect on the neuronal network is consistent across the cortical hierarchy. PMID:27445139
Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm
Wedding, L.M.; Christopher, L.A.; Pittman, S.J.; Friedlander, A.M.; Jorgensen, S.
2011-01-01
Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change. ?? Inter-Research 2011.
Dong, Xiaoli; Grimm, Nancy B.
2017-01-01
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326
Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B
2017-06-13
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.
Satellite remote sensing assessment of climate impact on forest vegetation dynamics
NASA Astrophysics Data System (ADS)
Zoran, M.
2009-04-01
Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2007 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.
NASA Astrophysics Data System (ADS)
Ahmadalipour, Ali; Moradkhani, Hamid; Rana, Arun
2017-04-01
Uncertainty is an inevitable feature of climate change impact assessments. Understanding and quantifying different sources of uncertainty is of high importance, which can help modeling agencies improve the current models and scenarios. In this study, we have assessed the future changes in three climate variables (i.e. precipitation, maximum temperature, and minimum temperature) over 10 sub-basins across the Pacific Northwest US. To conduct the study, 10 statistically downscaled CMIP5 GCMs from two downscaling methods (i.e. BCSD and MACA) were utilized at 1/16 degree spatial resolution for the historical period of 1970-2000 and future period of 2010-2099. For the future projections, two future scenarios of RCP4.5 and RCP8.5 were used. Furthermore, Bayesian Model Averaging (BMA) was employed to develop a probabilistic future projection for each climate variable. Results indicate superiority of BMA simulations compared to individual models. Increasing temperature and precipitation are projected at annual timescale. However, the changes are not uniform among different seasons. Model uncertainty shows to be the major source of uncertainty, while downscaling uncertainty significantly contributes to the total uncertainty, especially in summer.
NASA Astrophysics Data System (ADS)
Molinario, G.; Hansen, M.; Potapov, P.
2016-12-01
High resolution satellite imagery obtained from the National Geospatial Intelligence Agency through NASA was used to photo-interpret sample areas within the DRC. The area sampled is a stratifcation of the forest cover loss from circa 2014 that either occurred completely within the previosly mapped homogenous area of the Rural Complex, at it's interface with primary forest, or in isolated forest perforations. Previous research resulted in a map of these areas that contextualizes forest loss depending on where it occurs and with what spatial density, leading to a better understading of the real impacts on forest degradation of livelihood shifting cultivation. The stratified random sampling approach of these areas allows the characterization of the constituent land cover types within these areas, and their variability throughout the DRC. Shifting cultivation has a variable forest degradation footprint in the DRC depending on many factors that drive it, but it's role in forest degradation and deforestation had been disputed, leading us to investigate and quantify the clearing and reuse rates within the strata throughout the country.
Comprehensive atmospheric modeling of reactive cyclic siloxanes and their oxidation products
NASA Astrophysics Data System (ADS)
Janechek, Nathan J.; Hansen, Kaj M.; Stanier, Charles O.
2017-07-01
Cyclic volatile methyl siloxanes (cVMSs) are important components in personal care products that transport and react in the atmosphere. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and their gas-phase oxidation products have been incorporated into the Community Multiscale Air Quality (CMAQ) model. Gas-phase oxidation products, as the precursor to secondary organic aerosol from this compound class, were included to quantify the maximum potential for aerosol formation from gas-phase reactions with OH. Four 1-month periods were modeled to quantify typical concentrations, seasonal variability, spatial patterns, and vertical profiles. Typical model concentrations showed parent compounds were highly dependent on population density as cities had monthly averaged peak D5 concentrations up to 432 ng m-3. Peak oxidized D5 concentrations were significantly less, up to 9 ng m-3, and were located downwind of major urban areas. Model results were compared to available measurements and previous simulation results. Seasonal variation was analyzed and differences in seasonal influences were observed between urban and rural locations. Parent compound concentrations in urban and peri-urban locations were sensitive to transport factors, while parent compounds in rural areas and oxidized product concentrations were influenced by large-scale seasonal variability in OH.
Land motion due to 20th century mass balance of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Kjeldsen, K. K.; Khan, S. A.
2017-12-01
Quantifying the contribution from ice sheets and glaciers to past sea level change is of great value for understanding sea level projections into the 21st century. However, quantifying and understanding past changes are equally important, in particular understanding the impact in the near-field where the signal is highest. We assess the impact of 20th century mass balance of the Greenland Ice Sheet on land motion using results from Kjeldsen et al, 2015. These results suggest that the ice sheet on average lost a minimum of 75 Gt/yr, but also show that the mass balance was highly spatial- and temporal variable, and moreover that on a centennial time scale changes were driven by a decreasing surface mass balance. Based on preliminary results we discuss land motion during the 20th century due to mass balance changes and the driving components surface mass balance and ice dynamics.
Premixed autoignition in compressible turbulence
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Snapshot science: new research possibilities facilitated by spatially dense data sets in limnology
NASA Astrophysics Data System (ADS)
Stanley, E. H.; Loken, L. C.; Crawford, J.; Butitta, V.; Schramm, P.
2017-12-01
The recent increase in availability of high frequency sensors is transforming the study of inland aquatic ecosystems, allowing the detection of rare or difficult-to-capture events, revealing previously unappreciated temporal dynamics, and providing rich data sets that can be used to calibrate or inform process-based models in ways that have not previously been possible. Yet sensor deployment is typically a 1-D practice, so insights are tempered by device placement. Limnologists have long known that there can be substantial spatial variability in physical, chemical, and biological features within water bodies, but in most cases, logistical difficulties limit our ability to quantify this heterogeneity. Recent improvements in remote sensing are helping to overcome this deficit for a subset of variables. Alternatively, devices such as the Fast Limnology Automated Measurement platform that deploy sensors on watercraft can be used to quickly generate spatially-rich data sets. This expanded capacity leads to new questions about what can be seen and learned about underlying processes. Surveys of multiple Wisconsin lakes reveal both homogeneity and heterogeneity among sites and variables, indicating that the limnological tradition of sampling at a single fixed point is unlikely to represent the entire lake area. Initial inferences drawn from surface water maps include identification of biogeochemical hotspots or areas of elevated loading. At a more sophisticated level, evaluation of changes in spatial structure among sites or dates is commonly used to infer process by landscape ecologists, and these same practices can now be applied to lakes and rivers. For example, a recent study documented significant changes in spatial variance and the magnitude of spatial autocorrelation of phycocyanin prior to the onset of a cyanobacterial bloom. This may provide information on population growth dynamics of cyanobacteria, and be used as early warnings of impending algal blooms. As the application of aquatic mapping tools expands in limnology, both by themselves and complemented by Lagrangian and traditional measurement approaches, we expect that the questions and insights they provide will again expand and shift our understanding of pattern and process in inland waters.
Deadwood stocks increase with selective logging and large tree frequency in Gabon.
Carlson, Ben S; Koerner, Sally E; Medjibe, Vincent P; White, Lee J T; Poulsen, John R
2017-04-01
Deadwood is a major component of aboveground biomass (AGB) in tropical forests and is important as habitat and for nutrient cycling and carbon storage. With deforestation and degradation taking place throughout the tropics, improved understanding of the magnitude and spatial variation in deadwood is vital for the development of regional and global carbon budgets. However, this potentially important carbon pool is poorly quantified in Afrotropical forests and the regional drivers of deadwood stocks are unknown. In the first large-scale study of deadwood in Central Africa, we quantified stocks in 47 forest sites across Gabon and evaluated the effects of disturbance (logging), forest structure variables (live AGB, wood density, abundance of large trees), and abiotic variables (temperature, precipitation, seasonality). Average deadwood stocks (measured as necromass, the biomass of deadwood) were 65 Mg ha -1 or 23% of live AGB. Deadwood stocks varied spatially with disturbance and forest structure, but not abiotic variables. Deadwood stocks increased significantly with logging (+38 Mg ha -1 ) and the abundance of large trees (+2.4 Mg ha -1 for every tree >60 cm dbh). Gabon holds 0.74 Pg C, or 21% of total aboveground carbon in deadwood, a threefold increase over previous estimates. Importantly, deadwood densities in Gabon are comparable to those in the Neotropics and respond similarly to logging, but represent a lower proportion of live AGB (median of 18% in Gabon compared to 26% in the Neotropics). In forest carbon accounting, necromass is often assumed to be a constant proportion (9%) of biomass, but in humid tropical forests this ratio varies from 2% in undisturbed forest to 300% in logged forest. Because logging significantly increases the deadwood carbon pool, estimates of tropical forest carbon should at a minimum use different ratios for logged (mean of 30%) and unlogged forests (mean of 18%). © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dowtin, A. L.; Levia, D. F., Jr.
2017-12-01
Throughfall and stemflow are important inputs of water and solutes to forest soils in both rural and urban forests. In metropolitan wooded ecosystems, a number of factors can affect flux-based enrichment ratios, including combustion of fossil fuels and proximity to industry. Use of flux-based enrichment ratios provides a means by which this modification of net precipitation chemistry can be quantified for both throughfall and stemflow, and allows for a characterization of the relative contributions of stemflow and throughfall in the delivery of nutrients and pollutants to forest soils. This study utilizes five mixed deciduous forest stands along an urban-to-rural gradient (3 urban fragments, 1 suburban fragment, and a portion of 1 contiguous rural forest) within a medium-sized metropolitan region of the United States' Northeast megalopolis, to determine how the size, shape, structure, and geographic context of remnant forest fragments determine hydrologic and solute fluxes within them. In situ observations of throughfall and stemflow (the latter of which is limited to Quercus rubra and Quercus alba) within each study plot allow for an identification and characterization of the spatial variability in solute fluxes within and between the respective sites. Preliminary observations indicate significant intra-site variability in solute concentrations as observed in both throughfall and stemflow, with higher concentrations along the respective windward edges of the study plots than at greater depths into their interiors. Higher flux-based stemflow enrichment ratios, for both Q. rubra and Q. alba, were also evident for certain ions (i.e., S2-, NO3-) in the urban forest fragments, with significantly lower ratios observed at the suburban and rural sites. Findings from this research are intended to aid in quantifying the spatial variability of the hydrologic and hydrochemical ecosystem service provisions of remnant metropolitan forest fragments. This research is supported in part by National Science Foundation grant Reference Number BCS-1459116.
From fields to objects: A review of geographic boundary analysis
NASA Astrophysics Data System (ADS)
Jacquez, G. M.; Maruca, S.; Fortin, M.-J.
Geographic boundary analysis is a relatively new approach unfamiliar to many spatial analysts. It is best viewed as a technique for defining objects - geographic boundaries - on spatial fields, and for evaluating the statistical significance of characteristics of those boundary objects. This is accomplished using null spatial models representative of the spatial processes expected in the absence of boundary-generating phenomena. Close ties to the object-field dialectic eminently suit boundary analysis to GIS data. The majority of existing spatial methods are field-based in that they describe, estimate, or predict how attributes (variables defining the field) vary through geographic space. Such methods are appropriate for field representations but not object representations. As the object-field paradigm gains currency in geographic information science, appropriate techniques for the statistical analysis of objects are required. The methods reviewed in this paper are a promising foundation. Geographic boundary analysis is clearly a valuable addition to the spatial statistical toolbox. This paper presents the philosophy of, and motivations for geographic boundary analysis. It defines commonly used statistics for quantifying boundaries and their characteristics, as well as simulation procedures for evaluating their significance. We review applications of these techniques, with the objective of making this promising approach accessible to the GIS-spatial analysis community. We also describe the implementation of these methods within geographic boundary analysis software: GEM.
NASA Astrophysics Data System (ADS)
Wu, Q.; Song, J.; Wang, J.; Chen, S.; Yu, B.; Liao, L.
2016-12-01
Monitoring the dynamics of leaf area index (LAI) throughout the life-cycle of forests (from seeding to maturity) is vital for simulating forest growth and quantifying carbon sequestration. However, all current global LAI produts show extremely low accuracy in forests and the coarse spatial resolution(nearly 1-km) mismatch with the spatial scale of forest inventory plots (nearly 26m*26m). To date, several studies have explored the possibility of satellite data to classify forest succession or predict stand age. And a few studies have explored the potential of using long term Landsat data to monitor the growing trend of forests, but no studies have quantified the inter-annual and intra-annual LAI dynamics along with forest succession. Vegetation indexes are not perfect variables in quantifying forest foliage dynamics. Hallet (1995) suggested remote sensing of biophysical characteristics should shift away from direct inference from vegetation indices toward more physically based algorithms. This work intends to be a pioneer example for improving the accuracy of forests LAI and providing temporal-spatial matching LAI datasets for monitoring forest processes. We integrates the Geometric-Optical and Radiative Transfer (GORT) model with the Physiological Principles Predicting Growth (3-PG) model to improve the estimation of the forest canopy LAI dynamics. Reflectance time-series data from 1987 to 2015 were collected and preprocessed for forests in southern China, using all available Landsat data (with <80% cloud). Effective LAI and true LAI were field measured to validate our results using various instruments, including digital hemispheric photographs (DHP), LAI-2000 Plant Canopy Analyzer (LI-COR), and Tracing radiation and Architecture of Canopies (TRAC). Results show that the relationship between spectral metrics of satellite images and forest LAI is clear in early stages before maturity. 3-PG provide accurate inter-annual trend of forest LAI, while satellite images provide clear intra-annual LAI dynamics. We concluded that the GORT-3PG model improved the LAI estimation significantly of forest stands. Improving forest LAI estimates will help inform forest management policy and such methods may be applied in other similar forests.
NASA Astrophysics Data System (ADS)
Faulk, S.; Moon, S.; Mitchell, J.; Lora, J. M.
2016-12-01
Titan's zonal-mean precipitation behavior has been widely investigated using general circulation models (GCMs), but the spatial and temporal variability of rainfall in Titan's active hydrologic cycle is less well understood. We conduct statistical analyses of rainfall, diagnosed from GCM simulations of Titan's atmosphere, to determine storm intensity and frequency. Intense storms of methane have been proposed to be critical for enabling mechanical erosion of Titan's surface, as indicated by extensive observations of dendritic valley networks. Using precipitation outputs from the Titan Atmospheric Model (TAM), a GCM shown to realistically simulate many features of Titan's atmosphere, we quantify the precipitation variability and resulting relative erosion rates within eight separate latitude bins for a variety of initial surface liquid distributions. We find that while the overall wettest regions are indeed the poles, the most intense rainfall generally occurs in the high mid-latitudes, between 45-67.5 degrees, consistent with recent geomorphological observations of alluvial fans concentrated at those latitudes. We also find that precipitation rates necessary for surface erosion, as estimated by Perron et al. (2006) J. Geophys. Res. 111, E11001, frequently occur at all latitudes, with recurrence intervals of less than one Titan year. Such analysis is crucial towards understanding the complex interaction between Titan's atmosphere and surface and defining the influence of precipitation on observed geomorphology.
Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).
Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G
2016-01-01
Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatial variability in plant species composition and peatland carbon exchange
NASA Astrophysics Data System (ADS)
Goud, E.; Moore, T. R.; Roulet, N. T.
2015-12-01
Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.
Using excess 4He to quantify variability in aquitard leakage
NASA Astrophysics Data System (ADS)
Gardner, W. Payton; Harrington, Glenn A.; Smerdon, Brian D.
2012-10-01
SummaryFluid flux through aquitards controls the rate of recharge, discharge, cross-formational fluid flow and contaminant transport in subsurface systems. In this paper, concentrations of 4He are used to investigate the spatial distribution of vertical fluid flux through the regionally extensive Great Artesian Basin aquitard system in northern South Australia. Two vertical profiles of 4He concentration in aquitard pore water, augmented with regional sampling of aquifers above and below the aquitard were used to estimate fluid flux at multiple locations over a large spatial area. 4He concentrations in the shallow aquifer above the Great Artesian Basin range from atmospheric equilibrium to 1000 times enriched over atmosphere. Fluid flux through the aquitard was estimated by fitting observed helium concentrations at each sampling site with a 1-D model of helium transport through the aquitard. Estimated fluid fluxes through the aquitard vary over three orders of magnitude across the study area. In areas of competent aquitard, fluid fluxes are less than 0.003 mm/yr, and mass transport of helium is dominated by molecular diffusion. Preferential discharge zones are clearly identifiable with fluid fluxes up to 3 mm/yr. Our results show that fluid flux through a regionally extensive aquitard can be highly variable at large spatial scales, and that 4He concentrations in aquifers bounding the aquitard system provide a convenient and sensitive method for investigating aquitard flux at the regional scale.
Evrendilek, Fatih
2007-12-12
This study aims at quantifying spatio-temporal dynamics of monthly mean dailyincident photosynthetically active radiation (PAR) over a vast and complex terrain such asTurkey. The spatial interpolation method of universal kriging, and the combination ofmultiple linear regression (MLR) models and map algebra techniques were implemented togenerate surface maps of PAR with a grid resolution of 500 x 500 m as a function of fivegeographical and 14 climatic variables. Performance of the geostatistical and MLR modelswas compared using mean prediction error (MPE), root-mean-square prediction error(RMSPE), average standard prediction error (ASE), mean standardized prediction error(MSPE), root-mean-square standardized prediction error (RMSSPE), and adjustedcoefficient of determination (R² adj. ). The best-fit MLR- and universal kriging-generatedmodels of monthly mean daily PAR were validated against an independent 37-year observeddataset of 35 climate stations derived from 160 stations across Turkey by the Jackknifingmethod. The spatial variability patterns of monthly mean daily incident PAR were moreaccurately reflected in the surface maps created by the MLR-based models than in thosecreated by the universal kriging method, in particular, for spring (May) and autumn(November). The MLR-based spatial interpolation algorithms of PAR described in thisstudy indicated the significance of the multifactor approach to understanding and mappingspatio-temporal dynamics of PAR for a complex terrain over meso-scales.
Precipitable Water Variability Using SSM/I and GOES VAS Pathfinder Data Sets
NASA Technical Reports Server (NTRS)
Lerner, Jeffrey A.; Jedlovec, Gary J.; Kidder, Stanley Q.
1996-01-01
Determining moisture variability for all weather scenes is critical to understanding the earth's hydrologic cycle and global climate changes. Remote sensing from geostationary satellites provides the necessary temporal and spatial resolutions necessary for global change studies. Due to antenna size constraints imposed with the use of microwave radiometers, geostationary satellites have carried instruments passively measuring radiation at infrared wavelengths or shorter. The shortfall of using infrared instruments in moisture studies lies in its inability to sense terrestrial radiation through clouds. Microwave emissions, on the other hand, are mostly unaffected by cloudy atmospheres. Land surface emissivity at microwave frequencies exhibit both high temporal and spatial variability thus confining moisture retrievals at microwave frequencies to over marine atmospheres (a near uniform cold background). This study intercompares the total column integrated water content Precipitable Water, (PW) as derived from both the Special Sensor Microwave Imager (SSM/I) and the Geostationary Operational Environmental Satellite (GOES) VISSR Atmospheric Sounder (VAS) pathfinder data sets. PW is a bulk parameter often used to quantify moisture variability and is important to understanding the earth's hydrologic cycle and climate system. This research has been spawned in an effort to combine two different algorithms which together can lead to a more comprehensive quantification of global water vapor. The approach taken here is to intercompare two independent PW retrieval algorithms and to validate the resultant retrievals against an existing data set, namely the European Center for Medium range Weather Forecasts (ECMWF) model analysis data.
Mykrä, Heikki; Heino, Jani; Muotka, Timo
2004-09-01
Streams are naturally hierarchical systems, and their biota are affected by factors effective at regional to local scales. However, there have been only a few attempts to quantify variation in ecological attributes across multiple spatial scales. We examined the variation in several macroinvertebrate metrics and environmental variables at three hierarchical scales (ecoregions, drainage systems, streams) in boreal headwater streams. In nested analyses of variance, significant spatial variability was observed for most of the macroinvertebrate metrics and environmental variables examined. For most metrics, ecoregions explained more variation than did drainage systems. There was, however, much variation attributable to residuals, suggesting high among-stream variation in macroinvertebrate assemblage characteristics. Nonmetric multidimensional scaling (NMDS) and multiresponse permutation procedure (MRPP) showed that assemblage composition differed significantly among both drainage systems and ecoregions. The associated R-statistics were, however, very low, indicating wide variation among sites within the defined landscape classifications. Regional delineations explained most of the variation in stream water chemistry, ecoregions being clearly more influential than drainage systems. For physical habitat characteristics, by contrast, the among-stream component was the major source of variation. Distinct differences attributable to stream size were observed for several metrics, especially total number of taxa and abundance of algae-scraping invertebrates. Although ecoregions clearly account for a considerable amount of variation in macroinvertebrate assemblage characteristics, we suggest that a three-tiered classification system (stratification through ecoregion and habitat type, followed by assemblage prediction within these ecologically meaningful units) will be needed for effective bioassessment of boreal running waters.
Stability of hand force production. I. Hand level control variables and multifinger synergies.
Reschechtko, Sasha; Latash, Mark L
2017-12-01
We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies, those among the four fingers and those within a pair of control variables, stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The "inverse piano" device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Intertrial analysis of variance within the finger force space was used to quantify multifinger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control variable synergies. The indexes of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. NEW & NOTEWORTHY We extended the idea of hierarchical control with referent spatial coordinates for the effectors and explored two types of synergies stabilizing multifinger force production tasks. We observed synergies among finger forces and synergies between hypothetical control variables that stabilized performance under visual feedback but failed to stabilize it after visual feedback had been removed. Indexes of two types of synergies correlated with each other. The data suggest the existence of multiple mechanisms stabilizing motor actions. Copyright © 2017 the American Physiological Society.
Preferential flow from pore to landscape scales
NASA Astrophysics Data System (ADS)
Koestel, J. K.; Jarvis, N.; Larsbo, M.
2017-12-01
In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).
Analysing the impact of urban areas patterns on the mean annual flow of 43 urbanized catchments
NASA Astrophysics Data System (ADS)
Salavati, B.; Oudin, L.; Furusho, C.; Ribstein, P.
2015-06-01
It is often argued that urban areas play a significant role in catchment hydrology, but previous studies reported disparate results of urbanization impacts on stream flow. This might stem either from the difficulty to quantify the historical flow changes attributed to urbanization only (and not climate variability) or from the inability to decipher what type of urban planning is more critical for flows. In this study, we applied a hydrological model on 43 urban catchments in the United States to quantify the flow changes attributable to urbanization. Then, we tried to relate these flow changes to the changes of urban/impervious areas of the catchments. We argue that these spatial changes of urban areas can be more precisely characterized by landscape metrics, which enable analysing the patterns of historical urban growth. Landscape metrics combine the richness (the number) and evenness (the spatial distribution) of patch types represented on the landscape. Urbanization patterns within the framework of patch analysis have been widely studied but, to our knowledge, previous research works had not linked them to catchments hydrological behaviours. Our results showed that the catchments with larger impervious areas and larger mean patch areas are likely to have larger increase of runoff yield.
NASA Astrophysics Data System (ADS)
Kukal, M.; Irmak, S.
2016-11-01
Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development of holistic strategies to address water supply and demand challenges under changing climate. These strategies can consist of, but not limited to, advancing water, crop and soil management, and genetic improvements and their relationships with the climatic variables on large scales.
Roberti, Joshua A.; SanClements, Michael D.; Loescher, Henry W.; Ayres, Edward
2014-01-01
Even though fine-root turnover is a highly studied topic, it is often poorly understood as a result of uncertainties inherent in its sampling, e.g., quantifying spatial and temporal variability. While many methods exist to quantify fine-root turnover, use of minirhizotrons has increased over the last two decades, making sensor errors another source of uncertainty. Currently, no standardized methodology exists to test and compare minirhizotron camera capability, imagery, and performance. This paper presents a reproducible, laboratory-based method by which minirhizotron cameras can be tested and validated in a traceable manner. The performance of camera characteristics was identified and test criteria were developed: we quantified the precision of camera location for successive images, estimated the trueness and precision of each camera's ability to quantify root diameter and root color, and also assessed the influence of heat dissipation introduced by the minirhizotron cameras and electrical components. We report detailed and defensible metrology analyses that examine the performance of two commercially available minirhizotron cameras. These cameras performed differently with regard to the various test criteria and uncertainty analyses. We recommend a defensible metrology approach to quantify the performance of minirhizotron camera characteristics and determine sensor-related measurement uncertainties prior to field use. This approach is also extensible to other digital imagery technologies. In turn, these approaches facilitate a greater understanding of measurement uncertainties (signal-to-noise ratio) inherent in the camera performance and allow such uncertainties to be quantified and mitigated so that estimates of fine-root turnover can be more confidently quantified. PMID:25391023
Estimates of reservoir methane emissions based on a spatially ...
Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; however, error and bias associated with this approach can be large and difficult to quantify. Here we use a generalized random tessellation survey (GRTS) design to generate estimates of central tendency and variance at multiple spatial scales in a reservoir. GRTS survey designs are probabilistic and spatially balanced which eliminates bias associated with expert judgment in site selection. GRTS surveys also allow for variance estimates that account for spatial pattern in emission rates. Total CH4 emission rates (i.e. sum of ebullition and diffusive emissions) were 4.8 (±2.1), 33.0 (±10.7), and 8.3 (±2.2) mg CH4 m-2 h-1 in open-waters, tributary associated areas, and the entire reservoir for the period in August 2014 during which 115 sites were sampled across an 7.98 km2 reservoir in Southwestern, Ohio, USA. Tributary areas occupy 12% of the reservoir surface, but were the source of 41% of total CH4 emissions, highlighting the importance of riverine-lacustrine transition zones. Ebullition accounted for >90% of CH4 emission at all spatial scales. Confidence interval estimates that incorporated spatial pattern in CH4 emissions were up to 29% narrower than when spatial independence
Quantifying the lag time to detect barriers in landscape genetics
E. L. Landguth; S. A Cushman; M. K. Schwartz; K. S. McKelvey; M. Murphy; G. Luikart
2010-01-01
Understanding how spatial genetic patterns respond to landscape change is crucial for advancing the emerging field of landscape genetics. We quantified the number of generations for new landscape barrier signatures to become detectable and for old signatures to disappear after barrier removal. We used spatially explicit, individualbased simulations to examine the...
Gouge, Brian; Ries, Francis J; Dowlatabadi, Hadi
2010-09-15
Macroscale emissions modeling approaches have been widely applied in impact assessments of mobile source emissions. However, these approaches poorly characterize the spatial distribution of emissions and have been shown to underestimate emissions of some pollutants. To quantify the implications of these limitations on exposure assessments, CO, NO(X), and HC emissions from diesel transit buses were estimated at 50 m intervals along a bus rapid transit route using a microscale emissions modeling approach. The impacted population around the route was estimated using census, pedestrian count and transit ridership data. Emissions exhibited significant spatial variability. In intervals near major intersections and bus stops, emissions were 1.6-3.0 times higher than average. The coincidence of these emission hot spots and peaks in pedestrian populations resulted in a 20-40% increase in exposure compared to estimates that assumed homogeneous spatial distributions of emissions and/or populations along the route. An additional 19-30% increase in exposure resulted from the underestimate of CO and NO(X) emissions by macroscale modeling approaches. The results of this study indicate that macroscale modeling approaches underestimate exposure due to poor characterization of the influence of vehicle activity on the spatial distribution of emissions and total emissions.
NASA Astrophysics Data System (ADS)
Schurgers, G.; Arneth, A.; Hickler, T.
2011-11-01
Regional or global modeling studies of dynamic vegetation often represent vegetation by large functional units (plant functional types (PFTs)). For simulation of biogenic volatile organic compounds (BVOC) in these models, emission capacities, which give the emission under standardized conditions, are provided as an average value for a PFT. These emission capacities thus hide the known heterogeneity in emission characteristics that are not straightforwardly related to functional characteristics of plants. Here we study the effects of the aggregation of species-level information on emission characteristics at PFT level. The roles of temporal and spatial variability are assessed for Europe by comparing simulations that represent vegetation by dominant tree species on the one hand and by plant functional types on the other. We compare a number of time slices between the Last Glacial Maximum (21,000 years ago) and the present day to quantify the effects of dynamically changing vegetation on BVOC emissions. Spatial heterogeneity of emission factors is studied with present-day simulations. We show that isoprene and monoterpene emissions are of similar magnitude in Europe when the simulation represents dominant European tree species, which indicates that simulations applying typical global-scale emission capacities for PFTs tend to overestimate isoprene and underestimate monoterpene emissions. Moreover, both spatial and temporal variability affect emission capacities considerably, and by aggregating these to PFT level averages, one loses the information on local heterogeneity. Given the reactive nature of these compounds, accounting for spatial and temporal heterogeneity can be important for studies of their fate in the atmosphere.
NASA Astrophysics Data System (ADS)
Martin, Adrian P.; Lévy, Marina; van Gennip, Simon; Pardo, Silvia; Srokosz, Meric; Allen, John; Painter, Stuart C.; Pidcock, Roz
2015-09-01
Numerous observations demonstrate that considerable spatial variability exists in components of the marine planktonic ecosystem at the mesoscale and submesoscale (100 km-1 km). The causes and consequences of physical processes at these scales ("eddy advection") influencing biogeochemistry have received much attention. Less studied, the nonlinear nature of most ecological and biogeochemical interactions means that such spatial variability has consequences for regional estimates of processes including primary production and grazing, independent of the physical processes. This effect has been termed "eddy reactions." Models remain our most powerful tools for extrapolating hypotheses for biogeochemistry to global scales and to permit future projections. The spatial resolution of most climate and global biogeochemical models means that processes at the mesoscale and submesoscale are poorly resolved. Modeling work has previously suggested that the neglected eddy reactions may be almost as large as the mean field estimates in some cases. This study seeks to quantify the relative size of eddy and mean reactions observationally, using in situ and satellite data. For primary production, grazing, and zooplankton mortality the eddy reactions are between 7% and 15% of the mean reactions. These should be regarded as preliminary estimates to encourage further observational estimates and not taken as a justification for ignoring eddy reactions. Compared to modeling estimates, there are inconsistencies in the relative magnitude of eddy reactions and in correlations which are a major control on their magnitude. One possibility is that models exhibit much stronger spatial correlations than are found in reality, effectively amplifying the magnitude of eddy reactions.
Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C
2013-01-01
We quantify spatial turnover in communities of 1939 plant and 59 mammal species at 2.5 km resolution across a topographically heterogeneous region in south-eastern Australia to identify distributional breaks and low turnover zones where multiple species distributions overlap. Environmental turnover is measured to determine how climate, topography and geology influence biotic turnover differently across a variety of biogeographic breaks and overlaps. We identify the genera driving turnover and confirm the versatility of this approach across spatial scales and locations. Directional moving window analyses, rotated through 360°, were used to measure spatial turnover variation in different directions between gridded cells containing georeferenced plant and mammal occurrences and environmental variables. Generalised linear models were used to compare taxic turnover results with equivalent analyses for geology, regolith weathering, elevation, slope, solar radiation, annual precipitation and annual mean temperature, both uniformly across the entire study area and by stratifying it into zones of high and low turnover. Identified breaks and transitions were compared to a conservation bioregionalisation framework widely used in Australia. Detailed delineations of plant and mammal turnover zones with gradational boundaries denoted subtle variation in species assemblages. Turnover patterns often diverged from bioregion boundaries, though plant turnover adhered most closely. A prominent break zone contained either comparable or greater numbers of unique genera than adjacent overlaps, but these were concentrated in a small subsection relatively under-protected by conservation reserves. The environmental correlates of biotic turnover varied for different turnover zones in different subsections of the study area. Topography and temperature showed much stronger relationships with plant turnover in a topographically complex overlap, relative to a lowland overlap where weathering was most predictive. This method can quantify transitional turnover patterns from small to broad extents, at different resolutions for any location, and complements broad-scale bioregionalisation schemes in conservation planning.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Scott, R. L.; Goulden, M.
2014-12-01
Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved prediction of terrestrial carbon balance. We will also present results of ongoing work to quantify fast and slow contributions to the relationship between evapotranspiration and precipitation across a precipitation gradient.
Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.
Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D
2014-11-15
The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ(18)OH2O and δ(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns. Copyright © 2014 Elsevier B.V. All rights reserved.
Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G
2016-01-01
Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2015 John Wiley & Sons Ltd.
Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.
2013-01-01
Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on throughfall chemical flux in summer and autumn.
Field Scale Spatial Modelling of Surface Soil Quality Attributes in Controlled Traffic Farming
NASA Astrophysics Data System (ADS)
Guenette, Kris; Hernandez-Ramirez, Guillermo
2017-04-01
The employment of controlled traffic farming (CTF) can yield improvements to soil quality attributes through the confinement of equipment traffic to tramlines with the field. There is a need to quantify and explain the spatial heterogeneity of soil quality attributes affected by CTF to further improve our understanding and modelling ability of field scale soil dynamics. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. We contrasted standard geostatistical methods such as ordinary kriging (OK) and covariate kriging (COK) as well as the hybrid method of regression kriging (ROK) to predict the spatial distribution of soil properties across two annual cropland sites actively employing CTF in Alberta, Canada. Field scale variability was quantified more accurately through the inclusion of covariates; however, the use of ROK was shown to improve model accuracy despite the regression model composition limiting the robustness of the ROK method. The exclusion of traffic from the un-trafficked areas displayed significant improvements to bulk density, macroporosity and Km while subsequently enhancing AN, STN and SOC. The ability of the regression models and the ROK method to account for spatial trends led to the highest goodness-of-fit and lowest error achieved for the soil physical properties, as the rigid traffic regime of CTF altered their spatial distribution at the field scale. Conversely, the COK method produced the most optimal predictions for the soil nutrient properties and Km. The use of terrain covariates derived from light ranging and detection (LiDAR), such as of elevation and topographic position index (TPI), yielded the best models in the COK method at the field scale.
Climate and soil attributes determine plant species turnover in global drylands.
Ulrich, Werner; Soliveres, Santiago; Maestre, Fernando T; Gotelli, Nicholas J; Quero, José L; Delgado-Baquerizo, Manuel; Bowker, Matthew A; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A; Raveh, Eran; Romão, Roberto L; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli
2014-12-01
Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R 2 )), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R 2 )) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.
Path suppression of strongly collapsing bubbles at finite and low Reynolds numbers.
Rechiman, Ludmila M; Dellavale, Damián; Bonetto, Fabián J
2013-06-01
We study, numerically and experimentally, three different methods to suppress the trajectories of strongly collapsing and sonoluminescent bubbles in a highly viscous sulfuric acid solution. A new numerical scheme based on the window method is proposed to account for the history force acting on a spherical bubble with variable radius. We could quantify the history force, which is not negligible in comparison with the primary Bjerknes force in this type of problem, and results are in agreement with the classical primary Bjerknes force trapping threshold analysis. Moreover, the present numerical implementation reproduces the spatial behavior associated with the positional and path instability of sonoluminescent argon bubbles in strongly gassed and highly degassed sulfuric acid solutions. Finally, the model allows us to demonstrate that spatially stationary bubbles driven by biharmonic excitation could be obtained with a different mode from the one used in previous reported experiments.
Squid as nutrient vectors linking Southwest Atlantic marine ecosystems
NASA Astrophysics Data System (ADS)
Arkhipkin, Alexander I.
2013-10-01
Long-term investigations of three abundant nektonic squid species from the Southwest Atlantic, Illex argentinus, Doryteuthis gahi and Onykia ingens, permitted to estimate important population parameters including individual growth rates, duration of ontogenetic phases and mortalities. Using production model, the productivity of squid populations at different phases of their life cycle was assessed and the amount of biomass they convey between marine ecosystems as a result of their ontogenetic migrations was quantified. It was found that squid are major nutrient vectors and play a key role as transient 'biological pumps' linking spatially distinct marine ecosystems. I. argentinus has the largest impact in all three ecosystems it encounters due to its high abundance and productivity. The variable nature of squid populations increases the vulnerability of these biological conveyers to overfishing and environmental change. Failure of these critical biological pathways may induce irreversible long-term consequences for biodiversity, resource abundance and spatial availability in the world ocean.
NO2 DOAS Measurements of Traffic Emissions by Chasing Cars
NASA Astrophysics Data System (ADS)
Zhu, Ying; Lipkowitsch, Ivo; Chan, Ka Lok; Bräu, Melanie; Wenig, Mark
2016-04-01
On this poster we present NO2 measurements using a Cavity-Enhanced DOAS on a measurement bus which we used to chase other vehicles to measure their NO2 emissions. Emissions of nitrogen oxides from on-road vehicles have received highly attention recently due to the increasing trend of ambient NOx level. It is particularly important to identify and quantify the direct emission and secondary formation of NO2 contributed by traffic emissions, in order to study the impact to the local air quality. We sampled on-road emissions in different environments and different driving conditions (e.g. urban, highway, different speeds). We analyse the data set in terms of spatial and temporal variability to search for temporal and spatial patterns. We present mean values sorted for different vehicle types, distance to the target car and travelling speeds to provide an emission data base from this measurement study.
Variability of Upper-Tropospheric Precipitable from Satellite and Model Reanalysis Datasets
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Iwai, Hisaki
1999-01-01
Numerous datasets have been used to quantify water vapor and its variability in the upper-troposphere from satellite and model reanalysis data. These investigations have shown some usefulness in monitoring seasonal and inter-annual variations in moisture either globally, with polar orbiting satellite data or global model output analysis, or regionally, with the higher spatial and temporal resolution geostationary measurements. The datasets are not without limitations, however, due to coverage or limited temporal sampling, and may also contain bias in their representation of moisture processes. The research presented in this conference paper inter-compares the NVAP, NCEP/NCAR and DAO reanalysis models, and GOES satellite measurements of upper-tropospheric,precipitable water for the period from 1988-1994. This period captures several dramatic swings in climate events associated with ENSO events. The data are evaluated for temporal and spatial continuity, inter-compared to assess reliability and potential bias, and analyzed in light of expected trends due to changes in precipitation and synoptic-scale weather features. This work is the follow-on to previous research which evaluated total precipitable water over the same period. The relationship between total and upper-level precipitable water in the datasets will be discussed as well.
Jacob, Benjamin J; Krapp, Fiorella; Ponce, Mario; Gottuzzo, Eduardo; Griffith, Daniel A; Novak, Robert J
2010-05-01
Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.
Baskin, Tobias I.; Beemster, Gerrit T.S.; Judy-March, Jan E.; Marga, Françoise
2004-01-01
To test the role of cortical microtubules in aligning cellulose microfibrils and controlling anisotropic expansion, we exposed Arabidopsis thaliana roots to moderate levels of the microtubule inhibitor, oryzalin. After 2 d of treatment, roots grow at approximately steady state. At that time, the spatial profiles of relative expansion rate in length and diameter were quantified, and roots were cryofixed, freeze-substituted, embedded in plastic, and sectioned. The angular distribution of microtubules as a function of distance from the tip was quantified from antitubulin immunofluorescence images. In alternate sections, the overall amount of alignment among microfibrils and their mean orientation as a function of position was quantified with polarized-light microscopy. The spatial profiles of relative expansion show that the drug affects relative elongation and tangential expansion rates independently. The microtubule distributions averaged to transverse in the growth zone for all treatments, but on oryzalin the distributions became broad, indicating poorly organized arrays. At a subcellular scale, cellulose microfibrils in oryzalin-treated roots were as well aligned as in controls; however, the mean alignment direction, while consistently transverse in the controls, was increasingly variable with oryzalin concentration, meaning that microfibril orientation in one location tended to differ from that of a neighboring location. This conclusion was confirmed by direct observations of microfibrils with field-emission scanning electron microscopy. Taken together, these results suggest that cortical microtubules ensure microfibrils are aligned consistently across the organ, thereby endowing the organ with a uniform mechanical structure. PMID:15299138
Quantifying Contemporary Terrestrial Carbon Sources and Sinks in the Conterminous United States
NASA Astrophysics Data System (ADS)
Liu, S.; Loveland, T.
2003-12-01
U.S. land likely accounts for a significant portion of the unidentified global carbon sink, although the magnitude is highly uncertain. The ultimate goal of this study is to quantify the contemporary temporal and spatial patterns of carbon sources and sinks in the conterminous United States from the early 1970s to 2000, and to explain the mechanisms that cause the variability and changes. Because of the difficulty and massive cost for developing land cover change databases for the conterminous United States, we adopt an ecoregion-based sampling approach. Carbon dynamics within thousands of 20 km by 20 km or 10 km by 10 km sampling blocks, stratified by Omernik Level III ecoregions, are simulated using the General Ensemble Biogeochemical Modeling System at the spatial resolution of 60 m by 60 m. The land use change data, providing unprecedented accuracy and consistency, are derived from Landsat imagery for five time points (nominally 1972, 1980, 1986, 1992, and 2000). Mechanisms have been implemented to assimilate data from key national benchmark databases (including the USDA Forest Service_s Forest Inventory and Analysis data and the USDA_s agricultural census data). The dynamics of carbon stocks in vegetation, soil, and harvested wood materials are quantified. Results from three ecoregions (i.e., Southeastern Plains, Piedmont, and Northern Piedmont) indicated that the carbon sink strength has been decreasing from the 1970s to 2000. The relative contribution of biomass accumulation to the sink decreased during this period, while those of soil organic carbon and harvested wood materials increased.
NASA Astrophysics Data System (ADS)
Xu, Feng; Davis, Anthony B.; Diner, David J.
2016-11-01
A Markov chain formalism is developed for computing the transport of polarized radiation according to Generalized Radiative Transfer (GRT) theory, which was developed recently to account for unresolved random fluctuations of scattering particle density and can also be applied to unresolved spectral variability of gaseous absorption as an improvement over the standard correlated-k method. Using Gamma distribution to describe the probability density function of the extinction or absorption coefficient, a shape parameter a that quantifies the variability is introduced, defined as the mean extinction or absorption coefficient squared divided by its variance. It controls the decay rate of a power-law transmission that replaces the usual exponential Beer-Lambert-Bouguer law. Exponential transmission, hence classic RT, is recovered when a→∞. The new approach is verified to high accuracy against numerical benchmark results obtained with a custom Monte Carlo method. For a<∞, angular reciprocity is violated to a degree that increases with the spatial variability, as observed for finite portions of real-world cloudy scenes. While the degree of linear polarization in liquid water cloudbows, supernumerary bows, and glories is affected by spatial heterogeneity, the positions in scattering angle of these features are relatively unchanged. As a result, a single-scattering model based on the assumption of subpixel homogeneity can still be used to derive droplet size distributions from polarimetric measurements of extended stratocumulus clouds.
Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef
Luter, Heidi M.; Duckworth, Alan R.; Wolff, Carsten W.; Evans-Illidge, Elizabeth; Whalan, Steve
2016-01-01
One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15–30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m—among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs. PMID:27049650
O'Connor, B.L.; Hondzo, Miki; Dobraca, D.; LaPara, T.M.; Finlay, J.A.; Brezonik, P.L.
2006-01-01
The spatial variability of subreach denitrification rates in streams was evaluated with respect to controlling environmental conditions, molecular examination of denitrifying bacteria, and dimensional analysis. Denitrification activities ranged from 0 and 800 ng-N gsed-1 d-1 with large variations observed within short distances (<50 m) along stream reaches. A log-normal probability distribution described the range in denitrification activities and was used to define low (16% of the probability distributibn), medium (68%), and high (16%) denitrification potential groups. Denitrifying bacteria were quantified using a competitive polymerase chain reaction (cPCR) technique that amplified the nirK gene that encodes for nitrite reductase. Results showed a range of nirK quantities from 103 to 107 gene-copy-number gsed.-1 A nonparametric statistical test showed no significant difference in nirK quantifies among stream reaches, but revealed that samples with a high denitrification potential had significantly higher nirK quantities. Denitrification activity was positively correlated with nirK quantities with scatter in the data that can be attributed to varying environmental conditions along stream reaches. Dimensional analysis was used to evaluate denitrification activities according to environmental variables that describe fluid-flow properties, nitrate and organic material quantities, and dissolved oxygen flux. Buckingham's pi theorem was used to generate dimensionless groupings and field data were used to determine scaling parameters. The resulting expressions between dimensionless NO3- flux and dimensionless groupings of environmental variables showed consistent scaling, which indicates that the subreach variability in denitrification rates can be predicted by the controlling physical, chemical, and microbiological conditions. Copyright 2006 by the American Geophysical Union.
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Velo-Antón, G; Parra, J L; Parra-Olea, G; Zamudio, K R
2013-06-01
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico. © 2013 John Wiley & Sons Ltd.
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Forecasting conditional climate-change using a hybrid approach
Esfahani, Akbar Akbari; Friedel, Michael J.
2014-01-01
A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.
Čabanová, Viktória; Miterpáková, Martina; Druga, Michal; Hurníková, Zuzana; Valentová, Daniela
2018-02-01
Over a period of intervening years, the distribution of two canine cardiopulmonary metastrongylid nematodes, Angiostrongylus vasorum and Crenosoma vulpis, has been recognised in Central Europe. Here, we report the first epidemiological research conducted in red foxes from Slovakia and the potential influence of selected environmental variables on the parasites' occurrence, quantified by logistic regression. The environmental models revealed that distribution of C. vulpis is not significantly influenced by any environmental variables, and the parasite is present in the whole area under study. Models for A. vasorum revealed some weak influence of environmental variables, as it tends to occur in drier areas with lower proportion of forest. Moreover, A. vasorum shows a typical spatial clustering and occurs in endemic foci identified mainly in the eastern part of Slovakia. A cluster of A. vasorum infection foci was also found in the north-eastern region, where the average winter air temperature regularly falls below - 10 °C.
Interannual stability of organic to inorganic carbon production on a coral atoll
NASA Astrophysics Data System (ADS)
Kwiatkowski, Lester; Albright, Rebecca; Hosfelt, Jessica; Nebuchina, Yana; Ninokawa, Aaron; Rivlin, Tanya; Sesboüé, Marine; Wolfe, Kennedy; Caldeira, Ken
2016-04-01
Ocean acidification has the potential to adversely affect marine calcifying organisms, with substantial ocean ecosystem impacts projected over the 21st century. Characterizing the in situ sensitivity of calcifying ecosystems to natural variability in carbonate chemistry may improve our understanding of the long-term impacts of ocean acidification. We explore the potential for intensive temporal sampling to isolate the influence of carbonate chemistry on community calcification rates of a coral reef and compare the ratio of organic to inorganic carbon production to previous studies at the same location. Even with intensive temporal sampling, community calcification displays only a weak dependence on carbonate chemistry variability. However, across three years of sampling, the ratio of organic to inorganic carbon production is highly consistent. Although further work is required to quantify the spatial variability associated with such ratios, this suggests that these measurements have the potential to indicate the response of coral reefs to ongoing disturbance, ocean acidification, and climate change.
Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes
NASA Astrophysics Data System (ADS)
Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.
2016-09-01
Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.
NASA Astrophysics Data System (ADS)
Romo Rios, J. A.; Aguíñiga-García, S.; Sanchez, A.; Zetina-Rejón, M.; Arreguín-Sánchez, F.; Tripp-Valdéz, A.; Galeana-Cortazár, A.
2013-05-01
Human activities have strong impacts on coastal ecosystems functioning through their effect on primary organic sources distributions and resulting biodiversity. Hence, it appears to be of utmost importance to quantify contribution of primary producers to sediment organic matter (SOM) spatial variability and its associated ichthyofauna. The Terminos lagoon (Gulf of Mexico) is a tropical estuary severely impacted by human activities even though of primary concern for its biodiversity, its habitats, and its resource supply. Stable isotope data (d13C, d15N) from mangrove, seaweed, seagrass, phytoplankton, ichthyofauna and SOM were sampled in four zones of the lagoon and the continental shelf through windy (November to February), dry (March to June) and rainy (July to October) seasons. Stable Isotope Analysis in R (SIAR) mixing model were used to determine relative contributions of the autotrophic sources to the ichthyofauna and SOM. Analysis of variance of ichthyofauna isotopic values showed significant differences (P < 0.001) in the four zones of lagoon despite the variability introduced by the windy, dry and rainy seasons. In lagoons rivers discharge zone, the mangrove contribution to ichthyofauna was 40% and 84% to SOM. Alternative use of habitat by ichthyofauna was evidenced since in the deep area of the lagoon (4 m), the contribution of mangrove to fish is 50%, and meanwhile contribution to SOM is only 77%. Although phytoplankton (43%) and seaweed (41%) contributions to the adjacent continental shelf ichthyofauna were the main organic sources, there was 37% mangrove contribution to SOM, demonstrating conspicuous terrigenous influence from lagoon ecosystem. Our results point toward organic sources spatial variations that regulate fish distribution. In Terminos lagoon, significant correlation (p-value = 0.2141 and r=0.79) of Ariopsis felis and Sphoeroides testudineus abundances and seaweed and seagrasses contributions (30-35%) during both dry and rainy seasons, evidence that spatial variability organic sources could be central for the state of equilibrium of ecosystems. Keywords: sediment organic matter, mangrove, ecosystems, mixing model, trophic structure
The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields
NASA Astrophysics Data System (ADS)
Zhao, Y.; Estes, L. D.; Vergopolan, N.
2017-12-01
Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water stress. Understanding the relationships between soil moisture spatiotemporal variability and yields can help to improve agricultural drought risk assessment and seasonal crop yield forecasting as well as early season warning of potential famines.
Effects of biotic and abiotic factors on resistance versus resilience of Douglas fir to drought.
Carnwath, Gunnar; Nelson, Cara
2017-01-01
Significant increases in tree mortality due to drought-induced physiological stress have been documented worldwide. This trend is likely to continue with increased frequency and severity of extreme drought events in the future. Therefore, understanding the factors that influence variability in drought responses among trees will be critical to predicting ecosystem responses to climate change and developing effective management actions. In this study, we used hierarchical mixed-effects models to analyze drought responses of Pseudotsuga menziesii in 20 unmanaged forests stands across a broad range of environmental conditions in northeastern Washington, USA. We aimed to 1) identify the biotic and abiotic attributes most closely associated with the responses of individual trees to drought and 2) quantify the variability in drought responses at different spatial scales. We found that growth rates and competition for resources significantly affected resistance to a severe drought event in 2001: slow-growing trees and trees growing in subordinate canopy positions and/or with more neighbors suffered greater declines in radial growth during the drought event. In contrast, the ability of a tree to return to normal growth when climatic conditions improved (resilience) was unaffected by competition or relative growth rates. Drought responses were significantly influenced by tree age: older trees were more resistant but less resilient than younger trees. Finally, we found differences between resistance and resilience in spatial scale: a significant proportion (approximately 50%) of the variability in drought resistance across the study area was at broad spatial scales (i.e. among different forest types), most likely due to differences in the total amount of precipitation received at different elevations; in contrast, variation in resilience was overwhelmingly (82%) at the level of individual trees within stands and there was no difference in drought resilience among forest types. Our results suggest that for Pseudotsuga menziesii resistance and resilience to drought are driven by different factors and vary at different spatial scales.
SST Variation Due to Interactive Convective-Radiative Processes
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D.; Simpson, J.; Li, X.; Sui, C.-H.
2000-01-01
The recent linking of Cloud-Resolving Models (CRMs) to Ocean-Mixed Layer (OML) models has provided a powerful new means of quantifying the role of cloud systems in ocean-atmosphere coupling. This is due to the fact that the CRM can better resolve clouds and cloud systems and allow for explicit cloud-radiation interaction. For example, Anderson (1997) applied an atmospheric forcing associated with a CRM simulated squall line to a 3-D OML model (one way or passive interaction). His results suggested that the spatial variability resulting from the squall forcing can last at least 24 hours when forced with otherwise spatially uniform fluxes. In addition, the sea surface salinity (SSS) variability continuously decreased following the forcing, while some of the SST variability remained when a diurnal mixed layer capped off the surface structure. The forcing used in the OML model, however, focused on shorter time (8 h) and smaller spatial scales (100-120 km). In this study, the 3-D Goddard Cumulus Ensemble Model (GCE; 512 x 512 x 23 cu km, 2-km horizontal resolution) is used to simulate convective active episodes occurring in the Western Pacific warm pool and Eastern Atlantic regions. The model is integrated for seven days, and the simulated results are coupled to an OML model to better understand the impact of precipitation and changes in the planetary boundary layer upon SST variation. We will specifically examine and compare the results of linking the OML model with various spatially-averaged outputs from GCE simulations (i.e., 2 km vs. 10-50 km horizontal resolutions), in order to help understand the SST sensitivity to multi-scale influences. This will allow us to assess the importance of explicitly simulated deep and shallow clouds, as well as the subgrid-scale effects (in coarse-model runs) upon SST variation. Results using both 1-D and 2-D OML models will be evaluated to assess the effects of horizontal advection.
Landscape genetic approaches to guide native plant restoration in the Mojave Desert
Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.
2016-01-01
Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially-explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive divergence in Sphaeralcea. We describe multivariate statistical approaches for interpolating spatial patterns of adaptive divergence while accounting for potential bias due to neutral genetic structure. Through a spatial bootstrapping procedure, we also visualize patterns in the magnitude of model uncertainty. Finally, we introduce an interactive, distance-based mapping approach that explicitly links marker-based models of adaptive divergence with local or admixture seed sourcing strategies, promoting effective native plant restoration.
Effects of biotic and abiotic factors on resistance versus resilience of Douglas fir to drought
Nelson, Cara
2017-01-01
Significant increases in tree mortality due to drought-induced physiological stress have been documented worldwide. This trend is likely to continue with increased frequency and severity of extreme drought events in the future. Therefore, understanding the factors that influence variability in drought responses among trees will be critical to predicting ecosystem responses to climate change and developing effective management actions. In this study, we used hierarchical mixed-effects models to analyze drought responses of Pseudotsuga menziesii in 20 unmanaged forests stands across a broad range of environmental conditions in northeastern Washington, USA. We aimed to 1) identify the biotic and abiotic attributes most closely associated with the responses of individual trees to drought and 2) quantify the variability in drought responses at different spatial scales. We found that growth rates and competition for resources significantly affected resistance to a severe drought event in 2001: slow-growing trees and trees growing in subordinate canopy positions and/or with more neighbors suffered greater declines in radial growth during the drought event. In contrast, the ability of a tree to return to normal growth when climatic conditions improved (resilience) was unaffected by competition or relative growth rates. Drought responses were significantly influenced by tree age: older trees were more resistant but less resilient than younger trees. Finally, we found differences between resistance and resilience in spatial scale: a significant proportion (approximately 50%) of the variability in drought resistance across the study area was at broad spatial scales (i.e. among different forest types), most likely due to differences in the total amount of precipitation received at different elevations; in contrast, variation in resilience was overwhelmingly (82%) at the level of individual trees within stands and there was no difference in drought resilience among forest types. Our results suggest that for Pseudotsuga menziesii resistance and resilience to drought are driven by different factors and vary at different spatial scales. PMID:28973008
Climate limits across space and time on European forest structure
NASA Astrophysics Data System (ADS)
Moreno, A. L. S.; Neumann, M.; Hasenauer, H.
2017-12-01
The impact climate has on forests has been extensively studied. However, the large scale effect climate has on forest structures, such as average diameters, heights and basal area are understudied in a spatially explicit manner. The limits, tipping points and thresholds that climate places on forest structures dictate the services a forest may provide, the vulnerability of a forest to mortality and the potential value of the timber there within. The majority of current research either investigates climate impacts on forest pools and fluxes, on a tree physiological scale or on case studies that are used to extrapolate results and potential impacts. A spatially explicit study on how climate affects forest structure over a large region would give valuable information to stakeholders who are more concerned with ecosystem services that cannot be described by pools and fluxes but require spatially explicit information - such as biodiversity, habitat suitability, and market values. In this study, we quantified the limits that climate (maximum, minimum temperature and precipitation) places on 3 forest structures, diameter at breast height, height, and basal area throughout Europe. Our results show clear climatic zones of high and low upper limits for each forest structure variable studied. We also spatially analyzed how climate restricts the potential bio-physical upper limits and creates tipping points of each forest structure variable and which climate factors are most limiting. Further, we demonstrated how the climate change has affected 8 individual forests across Europe and then the continent as a whole. We find that diameter, height and basal area are limited by climate in different ways and that areas may have high upper limits in one structure and low upper limits in another limitted by different climate variables. We also found that even though individual forests may have increased their potential upper limit forest structure values, European forests as a whole have lost, on average, 5.0%, 1.7% and 6.5% in potential mean forest diameter, height and basal area, respectively.
NASA Astrophysics Data System (ADS)
Gavilan, C.; Grunwald, S.; Quiroz, R.; Zhu, L.
2015-12-01
The Andes represent the largest and highest mountain range in the tropics. Geological and climatic differentiation favored landscape and soil diversity, resulting in ecosystems adapted to very different climatic patterns. Although several studies support the fact that the Andes are a vast sink of soil organic carbon (SOC) only few have quantified this variable in situ. Estimating the spatial distribution of SOC stocks in data-poor and/or poorly accessible areas, like the Andean region, is challenging due to the lack of recent soil data at high spatial resolution and the wide range of coexistent ecosystems. Thus, the sampling strategy is vital in order to ensure the whole range of environmental covariates (EC) controlling SOC dynamics is represented. This approach allows grasping the variability of the area, which leads to more efficient statistical estimates and improves the modeling process. The objectives of this study were to i) characterize and model the spatial distribution of SOC stocks in the Central Andean region using soil-landscape modeling techniques, and to ii) validate and evaluate the model for predicting SOC content in the area. For that purpose, three representative study areas were identified and a suite of variables including elevation, mean annual temperature, annual precipitation and Normalized Difference Vegetation Index (NDVI), among others, was selected as EC. A stratified random sampling (namely conditioned Latin Hypercube) was implemented and a total of 400 sampling locations were identified. At all sites, four composite topsoil samples (0-30 cm) were collected within a 2 m radius. SOC content was measured using dry combustion and SOC stocks were estimated using bulk density measurements. Regression Kriging was used to map the spatial variation of SOC stocks. The accuracy, fit and bias of SOC models was assessed using a rigorous validation assessment. This study produced the first comprehensive, geospatial SOC stock assessment in this undersampled region that serves as a baseline reference to assess potential impacts of climate and land use change.
NASA Astrophysics Data System (ADS)
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.
2014-01-01
Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugar cane cultivation in Australia and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting climate-mediated different sensitivities of modeled sugar cane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.
NASA Astrophysics Data System (ADS)
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.
2014-06-01
Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugarcane cultivation in Australia and Brazil. The ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting different climate-mediated sensitivities of modeled sugarcane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.
Radinger, Johannes; Hölker, Franz; Horký, Pavel; Slavík, Ondřej; Dendoncker, Nicolas; Wolter, Christian
2016-04-01
River ecosystems are threatened by future changes in land use and climatic conditions. However, little is known of the influence of interactions of these two dominant global drivers of change on ecosystems. Does the interaction amplify (synergistic interaction) or buffer (antagonistic interaction) the impacts and does their interaction effect differ in magnitude, direction and spatial extent compared to single independent pressures. In this study, we model the impact of single and interacting effects of land use and climate change on the spatial distribution of 33 fish species in the Elbe River. The varying effects were modeled using step-wise boosted regression trees based on 250 m raster grid cells. Species-specific models were built for both 'moderate' and 'extreme' future land use and climate change scenarios to assess synergistic, additive and antagonistic interaction effects on species losses, species gains and diversity indices and to quantify their spatial distribution within the Elbe River network. Our results revealed species richness is predicted to increase by 0.7-2.9 species by 2050 across the entire river network. Changes in species richness are likely to be spatially variable with significant changes predicted for 56-85% of the river network. Antagonistic interactions would dominate species losses and gains in up to 75% of the river network. In contrast, synergistic and additive effects would occur in only 20% and 16% of the river network, respectively. The magnitude of the interaction was negatively correlated with the magnitudes of the single independent effects of land use and climate change. Evidence is provided to show that future land use and climate change effects are highly interactive resulting in species range shifts that would be spatially variable in size and characteristic. These findings emphasize the importance of adaptive river management and the design of spatially connected conservation areas to compensate for these high species turnovers and range shifts. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Baroni, Gabriele; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine
2017-04-01
The advances in computer science and the availability of new detailed data-sets have led to a growing number of distributed hydrological models applied to finer and finer grid resolutions for larger and larger catchment areas. It was argued, however, that this trend does not necessarily guarantee better understanding of the hydrological processes or it is even not necessary for specific modelling applications. In the present study, this topic is further discussed in relation to the soil spatial heterogeneity and its effect on simulated hydrological state and fluxes. To this end, three methods are developed and used for the characterization of the soil heterogeneity at different spatial scales. The methods are applied at the soil map of the upper Neckar catchment (Germany), as example. The different soil realizations are assessed regarding their impact on simulated state and fluxes using the distributed hydrological model mHM. The results are analysed by aggregating the model outputs at different spatial scales based on the Representative Elementary Scale concept (RES) proposed by Refsgaard et al. (2016). The analysis is further extended in the present study by aggregating the model output also at different temporal scales. The results show that small scale soil variabilities are not relevant when the integrated hydrological responses are considered e.g., simulated streamflow or average soil moisture over sub-catchments. On the contrary, these small scale soil variabilities strongly affect locally simulated states and fluxes i.e., soil moisture and evapotranspiration simulated at the grid resolution. A clear trade-off is also detected by aggregating the model output by spatial and temporal scales. Despite the scale at which the soil variabilities are (or are not) relevant is not universal, the RES concept provides a simple and effective framework to quantify the predictive capability of distributed models and to identify the need for further model improvements e.g., finer resolution input. For this reason, the integration in this analysis of all the relevant input factors (e.g., precipitation, vegetation, geology) could provide a strong support for the definition of the right scale for each specific model application. In this context, however, the main challenge for a proper model assessment will be the correct characterization of the spatio- temporal variability of each input factor. Refsgaard, J.C., Højberg, A.L., He, X., Hansen, A.L., Rasmussen, S.H., Stisen, S., 2016. Where are the limits of model predictive capabilities?: Representative Elementary Scale - RES. Hydrol. Process. doi:10.1002/hyp.11029
Kennedy, Christina G.; Mather, Martha E.; Smith, Joseph M.; Finn, John T.; Deegan, Linda A.
2016-01-01
Understanding environmental drivers of spatial patterns is an enduring ecological problem that is critical for effective biological conservation. Discontinuities (ecologically meaningful habitat breaks), both naturally occurring (e.g., river confluence, forest edge, drop-off) and anthropogenic (e.g., dams, roads), can influence the distribution of highly mobile organisms that have land- or seascape scale ranges. A geomorphic discontinuity framework, expanded to include ecological patterns, provides a way to incorporate important but irregularly distributed physical features into organism–environment relationships. Here, we test if migratory striped bass (Morone saxatilis) are consistently concentrated by spatial discontinuities and why. We quantified the distribution of 50 acoustically tagged striped bass at 40 sites within Plum Island Estuary, Massachusetts during four-monthly surveys relative to four physical discontinuities (sandbar, confluence, channel network, drop-off), one continuous physical feature (depth variation), and a geographic location variable (region). Despite moving throughout the estuary, striped bass were consistently clustered in the middle geographic region at sites with high sandbar area, close to channel networks, adjacent to complex confluences, with intermediate levels of bottom unevenness, and medium sized drop-offs. In addition, the highest striped bass concentrations occurred at sites with the greatest additive physical heterogeneity (i.e., where multiple discontinuities co-occurred). The need to incorporate irregularly distributed features in organism–environment relationships will increase as high-quality telemetry and GIS data accumulate for mobile organisms. The spatially explicit approach we used to address this challenge can aid both researchers who seek to understand the impact of predators on ecosystems and resource managers who require new approaches for biological conservation.
Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi
2016-02-15
Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessing the impact of future climate extremes on the US corn and soybean production
NASA Astrophysics Data System (ADS)
Jin, Z.
2015-12-01
Future climate changes will place big challenges to the US agricultural system, among which increasing heat stress and precipitation variability were the two major concerns. Reliable prediction of crop productions in response to the increasingly frequent and severe extreme climate is a prerequisite for developing adaptive strategies on agricultural risk management. However, the progress has been slow on quantifying the uncertainty of computational predictions at high spatial resolutions. Here we assessed the risks of future climate extremes on the US corn and soybean production using the Agricultural Production System sIMulator (APSIM) model under different climate scenarios. To quantify the uncertainty due to conceptual representations of heat, drought and flooding stress in crop models, we proposed a new strategy of algorithm ensemble in which different methods for simulating crop responses to those extreme climatic events were incorporated into the APSIM. This strategy allowed us to isolate irrelevant structure differences among existing crop models but only focus on the process of interest. Future climate inputs were derived from high-spatial-resolution (12km × 12km) Weather Research and Forecasting (WRF) simulations under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). Based on crop model simulations, we analyzed the magnitude and frequency of heat, drought and flooding stress for the 21st century. We also evaluated the water use efficiency and water deficit on regional scales if farmers were to boost their yield by applying more fertilizers. Finally we proposed spatially explicit adaptation strategies of irrigation and fertilizing for different management zones.
NASA Astrophysics Data System (ADS)
Rella, C.; Jacobson, G. A.; Crosson, E.
2011-12-01
The ability to take inventory of critical greenhouse gases such as carbon dioxide and methane and quantify their sources and sinks is essential for understanding the atmospheric drivers to global climate change. "Top down" inversion measurements and models are used to quantify net carbon fluxes into the atmosphere. The overall carbon fluxes are determined by combining remote measurements of carbon dioxide concentrations with complex atmospheric transport models, and these emissions measurements are compared to "bottoms-up" predictions based on detailed inventories of the sources and sinks of carbon, both anthropogenic and biogenic in nature. At smaller distance scales, such as that of a city or even smaller, the basic framework underpinning the inversion modeling technique begins to break down: atmospheric transport models, which are well understood at a length scale of 100 km, work poorly or not at all at a 100m distance scale. Furthermore, the variability of the emissions sources in space (e.g., factories, highways, residences) and time (rush hours, factory shifts and shutdowns, residential energy usage variability during the day and over the year) complicate the interpretation of the measured signals. In this paper we present detailed, high spatial- and temporal-resolution greenhouse gas measurements in Silicon Valley, CA. The results of two experimental campaigns are presented: a 10m urban 'tower' and ground-based mobile mapping measurements. In both campaigns, real-time carbon dioxide data are combined with real-time carbon monoxide measurements to partition the observed CO2 concentrations between anthropogenic and biogenic sources . The urban tower measurements are made continuously over a period of many weeks. The mobile maps of the vicinity of the urban tower are taken repeatedly over a period of several days, and at different times of the day and under different atmospheric conditions, to assess the robustness and repeatability of the maps. Initial interpretation of the data is provided, using simple atmospheric models. These methods show great promise for quantifying and partitioning emissions in an urban setting with unprecedented detail.
NASA Astrophysics Data System (ADS)
Thenoux, M.; Gironas, J. A.; Mejia, A.
2013-12-01
Cities and urban growth have relevant environmental and social impacts, which could eventually be enhanced or reduced during the urban planning process. From the point of view of hydrology, impermeability and natural soil compaction are one of the main problems that urbanization brings to watershed. Previous studies demonstrate and quantify the impacts of the distribution of imperviousness in a watershed, both on runoff volumes and flow, and the quality and integrity of streams and receiving bodies. Moreover, some studies have investigated the optimal distribution of imperviousness, based on simulating different scenarios of land use change and its effects on runoff, mostly at the outlet of the watershed. However, these studies typically do not address the impact of artificial drainage system associated with the imperviousness scenarios, despite it is known that storm sewer coverage affects the flow accumulation and generation of flow hydrographs. This study seeks to quantify the effects and relevance of the artificial system when it comes to assess the hydrological impacts of the spatial distribution of imperviousness and to determine the characteristics of this influence. For this purpose, an existing model to generate imperviousness distribution scenarios is coupled with a model developed to automatically generate artificial drainage networks. These models are applied to a natural watershed to generate a variety of imperviousness and storm sewer layout scenarios, which are evaluate with a morphoclimatic instantaneous unit hydrograph model. We first tested the ability of this approach to represent the joint effects of imperviousness (i.e. level and distribution) and storm sewer coverage. We then quantified the effects of these variables on the hydrological response, considering also different return period in order to take into account the variability of the precipitation regime. Overall, we show that the layout and spatial coverage of the storm sewer system affect the hydrologic response, and that these effects depend on the degree of imperviousness and the characteristics of the precipitation. Results of this research improve our understanding on how urban planning decisions can contribute to minimize the hydrologic and environmental impacts of urban development.
Saracco, J.F.; Collazo, J.A.; Groom, Martha J.
2004-01-01
Frugivores often track ripe fruit abundance closely across local areas despite the ephemeral and typically patchy distributions of this resource. We use spatial auto- and cross-correlation analyses to quantify spatial patterns of fruit abundance and avian frugivory across a 4-month period within a forested 4.05-ha study grid in Puerto Rico. Analyses focused on two tanager species, Spindalis portoricensis and Nesospingus speculiferus, and their principal food plants. Three broad questions are addressed: (1) at what spatial scales is fruit abundance and frugivory patchy; (2) at what spatial scales do frugivores respond to fruit abundance; and (3) to what extent do spatial patterns of frugivory overlap between bird species? Fruit patch size, species composition, and heterogeneity was variable among months, despite fruit patch locations remaining relatively consistent between months. Positive correlations between frugivory and fruit abundance suggested tanagers successfully tracked fruit abundance. Frugivory was, however, more localized than fruit abundance. Scales of spatial overlap in frugivory and monthly variation in the foraging locations of the two tanager species suggested that interspecific facilitation may have been important in determining bird foraging locations. In particular, S. portoricensis, a specialist frugivore, may have relied on the loud calls of the gregarious generalist, N. speculiferus, to find new foraging areas. Such a mechanism could help explain the formation of mixed species feeding flocks and highlights the potential importance of facilitation between species that share resources. ?? Springer-Verlag 2004.
The relationship between the spatial scaling of biodiversity and ecosystem stability
Delsol, Robin; Loreau, Michel; Haegeman, Bart
2018-01-01
Aim Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability. PMID:29651225
Howard, Daniel M.; Wylie, Bruce K.; Tieszen, Larry L.
2012-01-01
With an ever expanding population, potential climate variability and an increasing demand for agriculture-based alternative fuels, accurate agricultural land-cover classification for specific crops and their spatial distributions are becoming critical to researchers, policymakers, land managers and farmers. It is important to ensure the sustainability of these and other land uses and to quantify the net impacts that certain management practices have on the environment. Although other quality crop classification products are often available, temporal and spatial coverage gaps can create complications for certain regional or time-specific applications. Our goal was to develop a model capable of classifying major crops in the Greater Platte River Basin (GPRB) for the post-2000 era to supplement existing crop classification products. This study identifies annual spatial distributions and area totals of corn, soybeans, wheat and other crops across the GPRB from 2000 to 2009. We developed a regression tree classification model based on 2.5 million training data points derived from the National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) in relation to a variety of other relevant input environmental variables. The primary input variables included the weekly 250 m US Geological Survey Earth Observing System Moderate Resolution Imaging Spectroradiometer normalized differential vegetation index, average long-term growing season temperature, average long-term growing season precipitation and yearly start of growing season. An overall model accuracy rating of 78% was achieved for a test sample of roughly 215 000 independent points that were withheld from model training. Ten 250 m resolution annual crop classification maps were produced and evaluated for the GPRB region, one for each year from 2000 to 2009. In addition to the model accuracy assessment, our validation focused on spatial distribution and county-level crop area totals in comparison with the NASS CDL and county statistics from the US Department of Agriculture (USDA) Census of Agriculture. The results showed that our model produced crop classification maps that closely resembled the spatial distribution trends observed in the NASS CDL and exhibited a close linear agreement with county-by-county crop area totals from USDA census data (R 2 = 0.90).
NASA Astrophysics Data System (ADS)
Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao
2016-08-01
Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely the result of heterogeneous streambed hydraulic characteristics in these areas. Our results have significant implications for hyporheic micro-habitats, fish spawning and other wildlife incubation, regional flow and hyporheic solute transport models in the Heihe River Basin, as well as in other similar hydrologic settings.
Cook, B.D.; Bolstad, P.V.; Naesset, E.; Anderson, R. Scott; Garrigues, S.; Morisette, J.T.; Nickeson, J.; Davis, K.J.
2009-01-01
Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30??m to 1??km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600??ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400??m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
Climate and Edaphic Controls on Humid Tropical Forest Tree Height
NASA Astrophysics Data System (ADS)
Yang, Y.; Saatchi, S. S.; Xu, L.
2014-12-01
Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.
NASA Technical Reports Server (NTRS)
Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.
2009-01-01
Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
Kalkhan, M.A.; Stafford, E.J.; Woodly, P.J.; Stohlgren, T.J.
2007-01-01
Rocky Mountain National Park (RMNP), Colorado, USA, contains a diversity of plant species. However, many exotic plant species have become established, potentially impacting the structure and function of native plant communities. Our goal was to quantify patterns of exotic plant species in relation to native plant species, soil characteristics, and other abiotic factors that may indicate or predict their establishment and success. Our research approach for field data collection was based on a field plot design called the pixel nested plot. The pixel nested plot provides a link to multi-phase and multi-scale spatial modeling-mapping techniques that can be used to estimate total species richness and patterns of plant diversity at finer landscape scales. Within the eastern region of RMNP, in an area of approximately 35,000 ha, we established a total of 60 pixel nested plots in 9 vegetation types. We used canonical correspondence analysis (CCA) and multiple linear regressions to quantify relationships between soil characteristics and native and exotic plant species richness and cover. We also used linear correlation, spatial autocorrelation and cross correlation statistics to test for the spatial patterns of variables of interest. CCA showed that exotic species were significantly (P < 0.05) associated with photosynthetically active radiation (r = 0.55), soil nitrogen (r = 0.58) and bare ground (r = -0.66). Pearson's correlation statistic showed significant linear relationships between exotic species, organic carbon, soil nitrogen, and bare ground. While spatial autocorrelations indicated that our 60 pixel nested plots were spatially independent, the cross correlation statistics indicated that exotic plant species were spatially associated with bare ground, in general, exotic plant species were most abundant in areas of high native species richness. This indicates that resource managers should focus on the protection of relatively rare native rich sites with little canopy cover, and fertile soils. Using the pixel nested plot approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and cost-effective manner. ?? 2006 Elsevier B.V. All rights reserved.
den Besten, Heidy M W; Berendsen, Erwin M; Wells-Bennik, Marjon H J; Straatsma, Han; Zwietering, Marcel H
2017-07-17
Realistic prediction of microbial inactivation in food requires quantitative information on variability introduced by the microorganisms. Bacillus subtilis forms heat resistant spores and in this study the impact of strain variability on spore heat resistance was quantified using 20 strains. In addition, experimental variability was quantified by using technical replicates per heat treatment experiment, and reproduction variability was quantified by using two biologically independent spore crops for each strain that were heat treated on different days. The fourth-decimal reduction times and z-values were estimated by a one-step and two-step model fitting procedure. Grouping of the 20 B. subtilis strains into two statistically distinguishable groups could be confirmed based on their spore heat resistance. The reproduction variability was higher than experimental variability, but both variabilities were much lower than strain variability. The model fitting approach did not significantly affect the quantification of variability. Remarkably, when strain variability in spore heat resistance was quantified using only the strains producing low-level heat resistant spores, then this strain variability was comparable with the previously reported strain variability in heat resistance of vegetative cells of Listeria monocytogenes, although in a totally other temperature range. Strains that produced spores with high-level heat resistance showed similar temperature range for growth as strains that produced low-level heat resistance. Strain variability affected heat resistance of spores most, and therefore integration of this variability factor in modelling of spore heat resistance will make predictions more realistic. Copyright © 2017. Published by Elsevier B.V.
Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummon, M.; Weekley, A.; Searight, K.
2013-10-01
High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less
Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummon, M.; Weekley, A.; Searight, K.
2013-10-01
High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less
Climate-mediated spatiotemporal variability in terrestrial productivity across Europe
NASA Astrophysics Data System (ADS)
Wu, X.; Babst, F.; Ciais, P.; Frank, D.; Reichstein, M.; Wattenbach, M.; Zang, C.; Mahecha, M. D.
2014-06-01
Quantifying the interannual variability (IAV) of the terrestrial ecosystem productivity and its sensitivity to climate is crucial for improving carbon budget predictions. In this context it is necessary to disentangle the influence of climate from impacts of other mechanisms underlying the spatiotemporal patterns of IAV of the ecosystem productivity. In this study we investigated the spatiotemporal patterns of IAV of historical observations of European crop yields in tandem with a set of climate variables. We further evaluated if relevant remote-sensing retrievals of NDVI (normalized difference vegetation index) and FAPAR (fraction of absorbed photosynthetically active radiation) depict a similar behaviour. Our results reveal distinct spatial patterns in the IAV of the analysed proxies linked to terrestrial productivity. In particular, we find higher IAV in water-limited regions of Europe (Mediterranean and temperate continental Europe) compared to other regions in both crop yield and remote-sensing observations. Our results further indicate that variations in the water balance during the active growing season exert a more pronounced and direct effect than variations of temperature on explaining the spatial patterns in IAV of productivity-related variables in temperate Europe. Overall, we observe a temporally increasing trend in the IAV of terrestrial productivity and an increasing sensitivity of productivity to water availability in dry regions of Europe during the 1975-2009 period. In the same regions, a simultaneous increase in the IAV of water availability was detected. These findings suggest intricate responses of carbon fluxes to climate variability in Europe and that the IAV of terrestrial productivity has become potentially more sensitive to changes in water availability in the dry regions in Europe. The changing sensitivity of terrestrial productivity accompanied by the changing IAV of climate is expected to impact carbon stocks and the net carbon balance of European ecosystems.
NASA Astrophysics Data System (ADS)
Guihou, K.; Polton, J.; Harle, J.; Wakelin, S.; O'Dea, E.; Holt, J.
2018-01-01
The North West European Shelf break acts as a barrier to the transport and exchange between the open ocean and the shelf seas. The strong spatial variability of these exchange processes is hard to fully explore using observations, and simulations generally are too coarse to simulate the fine-scale processes over the whole region. In this context, under the FASTNEt program, a new NEMO configuration of the North West European Shelf and Atlantic Margin at 1/60° (˜1.8 km) has been developed, with the objective to better understand and quantify the seasonal and interannual variability of shelf break processes. The capability of this configuration to reproduce the seasonal cycle in SST, the barotropic tide, and fine-resolution temperature profiles is assessed against a basin-scale (1/12°, ˜9 km) configuration and a standard regional configuration (7 km resolution). The seasonal cycle is well reproduced in all configurations though the fine-resolution allows the simulation of smaller scale processes. Time series of temperature at various locations on the shelf show the presence of internal waves with a strong spatiotemporal variability. Spectral analysis of the internal waves reveals peaks at the diurnal, semidiurnal, inertial, and quarter-diurnal bands, which are only realistically reproduced in the new configuration. Tidally induced pycnocline variability is diagnosed in the model and shown to vary with the spring neap cycle with mean displacement amplitudes in excess of 2 m for 30% of the stratified domain. With sufficiently fine resolution, internal tides are shown to be generated at numerous bathymetric features resulting in a complex pycnocline displacement superposition pattern.
NASA Astrophysics Data System (ADS)
De Baets, S. L.; Meersmans, J.; Vanacker, V.; Quine, T. A.; van oost, K.
2013-12-01
This research focuses on understanding the impact of human activities on C dynamics in a mountainous and semi-arid environment. Despite the low C status of drylands, soil organic carbon (SOC) is the largest C pool in these systems and hence possess a large restoration capacity. Still, regional estimates of SOC stocks and insights in their determining factors are lacking. This study therefore aims 1) to interpret the variability of soil organic carbon in relation to key soil, topographical and land use variables and 2) to quantify the effects of land regeneration following abandonment on SOC stocks. Soil profiles were taken in the Sierra de los Filabres (SE Spain) in different land units along geomorphic and degradation gradients. SOC contents were modelled using recovery period, soil and topographical variables. Sample depth, topographical position, altitude, recovery period and stone content are identified as the main factors for predicting SOC concentrations. SOC stocks in 1 m depth of soil vary between 3.16 and 76.44 t ha-1. Recovery period (years since abandonment), topographical position and altitude were used to predict and map SOC stocks in the top 0.2 m. The results show that C accumulates fast during the first 10-50 years following abandonment, whereafter the stocks evolve towards a steady state level. The erosion zones in the study area demonstrate a higher potential to increase their SOC stocks when abandoned. Deposition zones have higher SOC stocks, although their C accumulation rate is lower compared to erosion dominated landscapes in the first 10-50 years following abandonment. Therefore, full understanding of the C sequestration potential of land use change in areas of complex topography requires knowledge of spatial variability in soil properties and in particular SOC.
NASA Astrophysics Data System (ADS)
Strand, E. K.; Bunting, S. C.; Smith, A. M.
2006-12-01
Expansion of woody plant cover in semi-arid ecosystems previously occupied primarily by grasses and forbs has been identified as an important land cover change process affecting the global carbon budget. Although woody encroachment occurs worldwide, quantifying changes in carbon pools and fluxes related to this phenomenon via remote sensing is challenging because large areas are affected at a fine spatial resolution (1- 10 m) and, in many cases, at slow temporal rates. Two-dimensional spatial wavelet analysis (SWA) represents a novel image processing technique that has been successful in automatically and objectively quantifying ecologically relevant features at multiple scales. We apply SWA to current and historic 1-m resolution black and white aerial photography to quantify changes in above ground woody biomass and carbon stock of western juniper (Juniperus occidentalis subsp. occidentalis) expanding into sagebrush (Artemisia spp.) steppe on the Owyhee Plateau in southwestern Idaho. Due to the large land area (330,000 ha) and variable availability of historical photography, we sampled forty-eight 100-ha blocks situated across the area, stratified using topographic, soil, and land stewardship variables. The average juniper plant cover increased one-fold (from 5.3% to 10.4% total cover) at the site during the time period of 1939-1946 to 1998-2004. Juniper plant density has increased by 128% with a higher percentage of the plant population in the smaller size classes compared to the size distribution 60 years ago. After image-based SWA delineation of tree crown sizes, we computed the change in above ground woody plant biomass and carbon stock between the two time periods using allometry. Areas where the shrub steppe is dominated by low sagebrush (Artemisia arbuscula) has experienced little to no expansion of western juniper. However, on deeper, more well drained soils capable of supporting mountain big sagebrush (Artemisia tridentata subsp. vaseyana), the above ground carbon stock has increased on average 4.1 ±0.6 gCm-2yr-1, with rates varying spatially from 0.3 to 9.9 gCm- 2yr-1. Within the sampled elevation range (1500-1900 m) we found no significant effect of altitude or topographic position on the accumulation of biomass and carbon over the time period of investigation. The research presented here demonstrates the considerable potential for this remote sensing technique in decadal- scale monitoring of change in vegetation structure, cover, and biogeochemical properties from the scale of the plant to the landscape.
Topography significantly influencing low flows in snow-dominated watersheds
NASA Astrophysics Data System (ADS)
Li, Qiang; Wei, Xiaohua; Yang, Xin; Giles-Hansen, Krysta; Zhang, Mingfang; Liu, Wenfei
2018-03-01
Watershed topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Few studies have quantified the role of topography in various flow variables. In this study, 28 watersheds with snow-dominated hydrological regimes were selected with daily flow records from 1989 to 1996. These watersheds are located in the Southern Interior of British Columbia, Canada, and range in size from 2.6 to 1780 km2. For each watershed, 22 topographic indices (TIs) were derived, including those commonly used in hydrology and other environmental fields. Flow variables include annual mean flow (Qmean), Q10 %, Q25 %, Q50 %, Q75 %, Q90 %, and annual minimum flow (Qmin), where Qx % is defined as the daily flow that occurred each year at a given percentage (x). Factor analysis (FA) was first adopted to exclude some redundant or repetitive TIs. Then, multiple linear regression models were employed to quantify the relative contributions of TIs to each flow variable in each year. Our results show that topography plays a more important role in low flows (flow magnitudes ≤ Q75 %) than high flows. However, the effects of TIs on different flow magnitudes are not consistent. Our analysis also determined five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions with the watershed size less than several thousand square kilometres.
Estimating Ecosystem Carbon Stock Change in the Conterminous United States from 1971 to 2010
NASA Astrophysics Data System (ADS)
Liu, J.; Sleeter, B. M.; Zhu, Z.; Loveland, T. R.; Sohl, T.; Howard, S. M.; Hawbaker, T. J.; Liu, S.; Heath, L. S.; Cochrane, M. A.; Key, C. H.; Jiang, H.; Price, D. T.; Chen, J. M.
2015-12-01
There is significant geographic variability in U.S. ecosystem carbon sequestration due to natural and human environmental conditions. Climate change, natural disturbance and human land use are the major driving forces that can alter local and regional carbon sequestration rates. In this study, a comprehensive environmental input dataset (1-km resolution) was developed and used in the process-based Integrated Biosphere Simulator (IBIS) to quantify the U.S. carbon stock changes from 1971-2010, which potentially forms a baseline for future U.S. carbon scenarios. The key environmental data sources include land cover change information from more than 2,600 sample blocks across U.S. (10-km by 10-km in size, 60-m resolution, 1973-2000), wildland fire scar and burn severity information (30-m resolution, 1984-2010), vegetation canopy percentage and live biomass level (30-m resolution, ~2000), spatially heterogeneous atmospheric carbon dioxide and nitrogen deposition (~50-km resolution, 2003-2009), and newly available climate (4-km resolution, 1895-2010) and soil variables (1-km resolution, ~2000). The IBIS simulated the effects of atmospheric CO2 fertilization, nitrogen deposition, climate change, fire, logging, and deforestation/devegetation on ecosystem carbon changes. Multiple comparable simulations were implemented to quantify the contributions of key environmental drivers.
McCauley, Lisa A.; Ribic, Christine; Pomara, Lars Y.; Zuckerberg, Benjamin
2017-01-01
ContextTemperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.ObjectivesThe goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.MethodsWe conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.ResultsWe uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.ConclusionsFuture distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.
NASA Astrophysics Data System (ADS)
Gaertner, B. A.; Zegre, N.
2015-12-01
Climate change is surfacing as one of the most important environmental and social issues of the 21st century. Over the last 100 years, observations show increasing trends in global temperatures and intensity and frequency of precipitation events such as flooding, drought, and extreme storms. Global circulation models (GCM) show similar trends for historic and future climate indicators, albeit with geographic and topographic variability at regional and local scale. In order to assess the utility of GCM projections for hydrologic modeling, it is important to quantify how robust GCM outputs are compared to robust historical observations at finer spatial scales. Previous research in the United States has primarily focused on the Western and Northeastern regions due to dominance of snow melt for runoff and aquifer recharge but the impact of climate warming in the mountainous central Appalachian Region is poorly understood. In this research, we assess the performance of GCM-generated historical climate compared to historical observations primarily in the context of forcing data for macro-scale hydrologic modeling. Our results show significant spatial heterogeneity of modeled climate indices when compared to observational trends at the watershed scale. Observational data is showing considerable variability within maximum temperature and precipitation trends, with consistent increases in minimum temperature. The geographic, temperature, and complex topographic gradient throughout the central Appalachian region is likely the contributing factor in temperature and precipitation variability. Variable climate changes are leading to more severe and frequent climate events such as temperature extremes and storm events, which can have significant impacts on our drinking water supply, infrastructure, and health of all downstream communities.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Baetz, B. W.; Ancell, B. C.
2017-05-01
The particle filtering techniques have been receiving increasing attention from the hydrologic community due to its ability to properly estimate model parameters and states of nonlinear and non-Gaussian systems. To facilitate a robust quantification of uncertainty in hydrologic predictions, it is necessary to explicitly examine the forward propagation and evolution of parameter uncertainties and their interactions that affect the predictive performance. This paper presents a unified probabilistic framework that merges the strengths of particle Markov chain Monte Carlo (PMCMC) and factorial polynomial chaos expansion (FPCE) algorithms to robustly quantify and reduce uncertainties in hydrologic predictions. A Gaussian anamorphosis technique is used to establish a seamless bridge between the data assimilation using the PMCMC and the uncertainty propagation using the FPCE through a straightforward transformation of posterior distributions of model parameters. The unified probabilistic framework is applied to the Xiangxi River watershed of the Three Gorges Reservoir (TGR) region in China to demonstrate its validity and applicability. Results reveal that the degree of spatial variability of soil moisture capacity is the most identifiable model parameter with the fastest convergence through the streamflow assimilation process. The potential interaction between the spatial variability in soil moisture conditions and the maximum soil moisture capacity has the most significant effect on the performance of streamflow predictions. In addition, parameter sensitivities and interactions vary in magnitude and direction over time due to temporal and spatial dynamics of hydrologic processes.
Treml, Eric A; Ford, John R; Black, Kerry P; Swearer, Stephen E
2015-01-01
Population connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival. Although we have made significant advances in our understanding of the spatial and temporal dynamics of these individual processes, developing an approach that integrates the entire population connectivity process from reproduction, through dispersal, and to the recruitment of individuals has been difficult. We present a population connectivity modelling framework and diagnostic approach for quantifying the impact of i) life histories, ii) demographics, iii) larval dispersal, and iv) the physical seascape, on the structure of connectivity and metapopulation dynamics. We illustrate this approach using the subtidal rocky reef ecosystem of Port Phillip Bay, were we provide a broadly-applicable framework of population connectivity and quantitative methodology for evaluating the relative importance of individual factors in determining local and system outcomes. The spatial characteristics of marine population connectivity are primarily influenced by larval mortality, the duration of the pelagic larval stage, and the settlement competency characteristics, with significant variability imposed by the geographic setting and the timing of larval release. The relative influence and the direction and strength of the main effects were strongly consistent among 10 connectivity-based metrics. These important intrinsic factors (mortality, length of the pelagic larval stage, and the extent of the precompetency window) and the spatial and temporal variability represent key research priorities for advancing our understanding of the connectivity process and metapopulation outcomes.
Soil organic carbon dynamics as related to land use history in the northwestern Great Plains
Tan, Z.; Liu, S.; Johnston, C.A.; Loveland, Thomas R.; Tieszen, L.L.; Liu, J.; Kurtz, R.
2005-01-01
Strategies for mitigating the global greenhouse effect must account for soil organic carbon (SOC) dynamics at both spatial and temporal scales, which is usually challenging owing to limitations in data and approach. This study was conducted to characterize the SOC dynamics associated with land use change history in the northwestern Great Plains ecoregion. A sampling framework (40 sample blocks of 10 × 10 km2 randomly located in the ecoregion) and the General Ensemble Biogeochemical Modeling System (GEMS) were used to quantify the spatial and temporal variability in the SOC stock from 1972 to 2001. Results indicate that C source and sink areas coexisted within the ecoregion, and the SOC stock in the upper 20-cm depth increased by 3.93 Mg ha−1 over the 29 years. About 17.5% of the area was evaluated as a C source at 122 kg C ha−1 yr−1. The spatial variability of SOC stock was attributed to the dynamics of both slow and passive fractions, while the temporal variation depended on the slow fraction only. The SOC change at the block scale was positively related to either grassland proportion or negatively related to cropland proportion. We concluded that the slow C pool determined whether soils behaved as sources or sinks of atmospheric CO2, but the strength depended on antecedent SOC contents, land cover type, and land use change history in the ecoregion.
Determining the soil hydraulic conductivity by means of a field scale internal drainage
NASA Astrophysics Data System (ADS)
Severino, Gerardo; Santini, Alessandro; Sommella, Angelo
2003-03-01
Spatial variations of water content in large extents soils (vadose zone) are highly affected by the natural heterogeneity of the porous medium. This implies that the magnitude of the hydraulic properties, especially the conductivity, varies in an irregular manner with scale. Determining mean values of hydraulic properties will not suffice to accurately quantify water flow in the vadose zone. At field scale proper field measurements have to be carried out, similar to standard laboratory methods that also characterize the spatial variability of the hydraulic properties. Toward this aim an internal drainage test has been conducted at Ponticelli site near Naples (Italy) where water content and pressure head were monitored at 50 locations of a 2×50 m 2 plot. The present paper illustrates a method to quantify the mean value and the spatial variability of the hydraulic parameters needed to calibrate the soil conductivity curve at field scale (hereafter defined as field scale hydraulic conductivity). A stochastic model that regards the hydraulic parameters as random space functions (RSFs) is derived by adopting the stream tube approach of Dagan and Bresler (1979). Owing to the randomness of the hydraulic parameters, even the water content θ will be a RSF whose mean value (hereafter termed field scale water content) is obtained as an ensemble average over all the realizations of a local analytical solution of Richards' equation. It is shown that the most frequent data collection should be carried out in the initial stage of the internal drainage experiment, when the most significant changes in water content occur. The model parameters are obtained by a standard least square optimization procedure using water content data at a certain depth (z=30 cm) for several times ( t=5, 24, 48, 96, 144, 216, 312, 408, 576, 744, 912 h). The reliability of the proposed method is then evaluated by comparing the predicted water content with observations at different depths ( z=45, 60, 75, and 90 cm). The calibration procedure is further verified by comparing the cumulative distribution of measured water content at different times with corresponding distribution obtained from the calibrated model.
Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing
NASA Astrophysics Data System (ADS)
Zoran, Maria
Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2008 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and to-pography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.
McKenna, James E.; Schaeffer, Jeffrey S.; Stewart, Jana S.; Slattery, Michael T.
2015-01-01
Classifications are typically specific to particular issues or areas, leading to patchworks of subjectively defined spatial units. Stream conservation is hindered by the lack of a universal habitat classification system and would benefit from an independent hydrology-guided spatial framework of units encompassing all aquatic habitats at multiple spatial scales within large regions. We present a system that explicitly separates the spatial framework from any particular classification developed from the framework. The framework was constructed from landscape variables that are hydrologically and biologically relevant, covered all space within the study area, and was nested hierarchically and spatially related at scales ranging from the stream reach to the entire region; classifications may be developed from any subset of the 9 basins, 107 watersheds, 459 subwatersheds, or 10,000s of valley segments or stream reaches. To illustrate the advantages of this approach, we developed a fish-guided classification generated from a framework for the Great Lakes region that produced a mosaic of habitat units which, when aggregated, formed larger patches of more general conditions at progressively broader spatial scales. We identified greater than 1,200 distinct fish habitat types at the valley segment scale, most of which were rare. Comparisons of biodiversity and species assemblages are easily examined at any scale. This system can identify and quantify habitat types, evaluate habitat quality for conservation and/or restoration, and assist managers and policymakers with prioritization of protection and restoration efforts. Similar spatial frameworks and habitat classifications can be developed for any organism in any riverine ecosystem.
NASA Astrophysics Data System (ADS)
Tang, Carol M.; Roopnarine, Peter D.
2003-11-01
Thermal springs in evaporitic environments provide a unique biological laboratory in which to study natural selection and evolutionary diversification. These isolated systems may be an analogue for conditions in early Earth or Mars history. One modern example of such a system can be found in the Chihuahuan Desert of north-central Mexico. The Cuatro Cienegas basin hosts a series of thermal springs that form a complex of aquatic ecosystems under a range of environmental conditions. Using landmark-based morphometric techniques, we have quantified an unusually high level of morphological variability in the endemic gastropod Mexipyrgus from Cuatro Cienegas. The differentiation is seen both within and between hydrological systems. Our results suggest that this type of environmental system is capable of producing and maintaining a high level of morphological diversity on small spatial scales, and thus should be a target for future astrobiological research.
Greenland ice sheet albedo variability and feedback: 2000-2015
NASA Astrophysics Data System (ADS)
Box, J. E.; van As, D.; Fausto, R. S.; Mottram, R.; Langen, P. P.; Steffen, K.
2015-12-01
Absorbed solar irradiance represents the dominant source of surface melt energy for Greenland ice. Surface melting has increased as part of a positive feedback amplifier due to surface darkening. The 16 most recent summers of observations from the NASA MODIS sensor indicate a darkening exceeding 6% in July when most melting occurs. Without the darkening, the increase in surface melting would be roughly half as large. A minority of the albedo decline signal may be from sensor degradation. So, in this study, MOD10A1 and MCD43 albedo products from MODIS are evaluated for sensor degradation and anisotropic reflectance errors. Errors are minimized through calibration to GC-Net and PROMICE Greenland snow and ice ground control data. The seasonal and spatial variability in Greenland snow and ice albedo over a 16 year period is presented, including quantifying changing absorbed solar irradiance and melt enhancement due to albedo feedback using the DMI HIRHAM5 5 km model.
Envisioning, quantifying, and managing thermal regimes on river networks
Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.
Haas, Jessica R.; Thompson, Matthew P.; Tillery, Anne C.; Scott, Joe H.
2017-01-01
Wildfires can increase the frequency and magnitude of catastrophic debris flows. Integrated, proactive natural hazard assessment would therefore characterize landscapes based on the potential for the occurrence and interactions of wildfires and postwildfire debris flows. This chapter presents a new modeling effort that can quantify the variability surrounding a key input to postwildfire debris-flow modeling, the amount of watershed burned at moderate to high severity, in a prewildfire context. The use of stochastic wildfire simulation captures variability surrounding the timing and location of ignitions, fire weather patterns, and ultimately the spatial patterns of watershed area burned. Model results provide for enhanced estimates of postwildfire debris-flow hazard in a prewildfire context, and multiple hazard metrics are generated to characterize and contrast hazards across watersheds. Results can guide mitigation efforts by allowing planners to identify which factors may be contributing the most to the hazard rankings of watersheds.
NASA Technical Reports Server (NTRS)
Choi, Yonghoon; Yang, Melissa; Kooi, Susan A.; Browell, Edward V.; DiGangi, Joshua P.
2015-01-01
High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaigns during July 2011 over Washington DC/Baltimore, MD; January-February 2013 over the San Joaquin Valley, CA; September 2013 over Houston, TX; and July-August 2014 over Denver, CO. Each of these campaigns have approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 kilometers) at 6-8 different sites in each of the urban areas. In this study, we used structure function analysis, which is a useful way to quantify spatial and temporal variability, by displaying differences with average observations, to evaluate the variability of CO2 in the 0-2 kilometers range (representative of the planetary boundary layer). These results can then be used to provide guidance in the development of science requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission to measure near-surface CO2 variability in different urban areas. We also compare the observed in-situ CO2 variability with the variability of the CO2 column-averaged optical depths in the 0-1 kilometer and 0-3.5 kilometers altitude ranges in the four geographically different urban areas, using vertical weighting functions for potential future ASCENDS lidar CO2 sensors operating in the 1.57 and 2.05 millimeter measurement regions. In addition to determining the natural variability of CO2 near the surface and in the column, radiocarbon method using continuous CO2 and CO measurements are used to examine the variation of emission quantification between anthropogenic and biogenic sources in the DC/Maryland urban site.
Spatial Variability of Snowpack Properties On Small Slopes
NASA Astrophysics Data System (ADS)
Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.
The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.
Magalhães, Ricardo J Soares; Salamat, Maria Sonia; Leonardo, Lydia; Gray, Darren J; Carabin, Hélène; Halton, Kate; McManus, Donald P; Williams, Gail M; Rivera, Pilarita; Saniel, Ofelia; Hernandez, Leda; Yakob, Laith; McGarvey, Stephen; Clements, Archie
2015-01-01
Schistosoma japonicum infection is believed to be endemic in 28 of the 80 provinces of The Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small-scale spatial variation in S. japonicum prevalence across The Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was then stratified geographically for the regions of Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ≥ 20 years had significantly higher prevalence of S. japonicum compared with females and children < 5 years. The role of the environmental variables differed between regions of The Philippines. Schistosoma japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in the prevalence of S. japonicum infection in The Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritized for areas identified to be at high risk but which were under-represented in our dataset. PMID:25128879
Soares Magalhães, Ricardo J; Salamat, Maria Sonia; Leonardo, Lydia; Gray, Darren J; Carabin, Hélène; Halton, Kate; McManus, Donald P; Williams, Gail M; Rivera, Pilarita; Saniel, Ofelia; Hernandez, Leda; Yakob, Laith; McGarvey, Stephen; Clements, Archie
2014-11-01
Schistosoma japonicum infection is believed to be endemic in 28 of the 80 provinces of The Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small-scale spatial variation in S. japonicum prevalence across The Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for the regions of Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ⩾20years had significantly higher prevalence of S. japonicum compared with females and children <5years. The role of the environmental variables differed between regions of The Philippines. Schistosoma japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in the prevalence of S. japonicum infection in The Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritised for areas identified to be at high risk but which were under-represented in our dataset. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Modeling and measuring snow for assessing climate change impacts in Glacier National Park, Montana
Fagre, Daniel B.; Selkowitz, David J.; Reardon, Blase; Holzer, Karen; Mckeon, Lisa L.
2002-01-01
A 12-year program of global change research at Glacier National Park by the U.S. Geological Survey and numerous collaborators has made progress in quantifying the role of snow as a driver of mountain ecosystem processes. Spatially extensive snow surveys during the annual accumulation/ablation cycle covered two mountain watersheds and approximately 1,000 km2 . Over 7,000 snow depth and snow water equivalent (SWE) measurements have been made through spring 2002. These augment two SNOTEL sites, 9 NRCS snow courses, and approximately 150 snow pit analyses. Snow data were used to establish spatially-explicit interannual variability in snowpack SWE. East of the Continental Divide, snowpack SWE was lower but also less variable than west of the Divide. Analysis of snowpacks suggest downward trends in SWE, a reduction in snow cover duration, and earlier melt-out dates during the past 52 years. Concurrently, high elevation forests and treelines have responded with increased growth. However, the 80 year record of snow from 3 NRCS snow courses reflects a strong influence from the Pacific Decadal Oscillation, resulting in 20-30 year phases of greater or lesser mean SWE. Coupled with the fine-resolution spatial snow data from the two watersheds, the ecological consequences of changes in snowpack can be empirically assessed at a habitat patch scale. This will be required because snow distribution models have had varied success in simulating snowpack accumulation/ablation dynamics in these mountain watersheds, ranging from R2=0.38 for individual south-facing forested snow survey routes to R2=0.95 when aggregated to the watershed scale. Key ecological responses to snowpack changes occur below the watershed scale, such as snow-mediated expansion of forest into subalpine meadows, making continued spatially-explicit snow surveys a necessity.
Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery
NASA Astrophysics Data System (ADS)
Moharana, Shreedevi; Dutta, Subashisa
2016-12-01
Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.
NASA Astrophysics Data System (ADS)
Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish
2018-06-01
Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.
Intraspecific genotypic variability determines concentrations of key truffle volatiles
Splivallo, Richard; Valdez, Nayuf; Kirchhoff, Nina; Ona, Marta Castiella; Schmidt, Jean-Pierre; Feussner, Ivo; Karlovsky, Petr
2012-01-01
Aroma variability in truffles has been attributed to maturation (Tuber borchii), linked to environmental factors (Tuber magnatum), but the involvement of genetic factors has been ignored. We investigated aroma variability in Tuber uncinatum, a species with wide distribution. Our aim was to assess aroma variability at different spatial scales (i.e. trees, countries) and to quantify how aroma was affected by genotype, fruiting body maturity, and geographical origin. A volatile fingerprinting method was used to analyze the aroma of 223 T. uncinatum fruiting bodies from seven European countries. Maturity was estimated from spore melanization. Genotypic fingerprinting was performed by amplified fragment length polymorphism (AFLP). Discriminant analysis revealed that, regardless of the geographical origin of the truffles, most of the aroma variability was caused by eight-carbon-containing volatiles (C8-VOCs). In an orchard of T. uncinatum, truffles producing different concentrations of C8-VOCs clustered around distinct host trees. This clustering was not associated with maturity, but was associated with fungal genotype. These results indicate that the variation in C8-VOCs in truffles is most likely under genetic control. They exemplify that understanding the factors behind aroma variability requires a holistic approach. Furthermore, they also raise new questions regarding the ecological role of 1-octen-3-ol in truffles. PMID:22394027
Phenological sensitivity to climate across taxa and trophic levels.
Thackeray, Stephen J; Henrys, Peter A; Hemming, Deborah; Bell, James R; Botham, Marc S; Burthe, Sarah; Helaouet, Pierre; Johns, David G; Jones, Ian D; Leech, David I; Mackay, Eleanor B; Massimino, Dario; Atkinson, Sian; Bacon, Philip J; Brereton, Tom M; Carvalho, Laurence; Clutton-Brock, Tim H; Duck, Callan; Edwards, Martin; Elliott, J Malcolm; Hall, Stephen J G; Harrington, Richard; Pearce-Higgins, James W; Høye, Toke T; Kruuk, Loeske E B; Pemberton, Josephine M; Sparks, Tim H; Thompson, Paul M; White, Ian; Winfield, Ian J; Wanless, Sarah
2016-07-14
Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).
The carbon cycle and hurricanes in the United States between 1900 and 2011.
Dahal, Devendra; Liu, Shuguang; Oeding, Jennifer
2014-06-06
Hurricanes cause severe impacts on forest ecosystems in the United States. These events can substantially alter the carbon biogeochemical cycle at local to regional scales. We selected all tropical storms and more severe events that made U.S. landfall between 1900 and 2011 and used hurricane best track database, a meteorological model (HURRECON), National Land Cover Database (NLCD), U. S. Department of Agirculture Forest Service biomass dataset, and pre- and post-MODIS data to quantify individual event and annual biomass mortality. Our estimates show an average of 18.2 TgC/yr of live biomass mortality for 1900-2011 in the US with strong spatial and inter-annual variability. Results show Hurricane Camille in 1969 caused the highest aboveground biomass mortality with 59.5 TgC. Similarly 1954 had the highest annual mortality with 68.4 TgC attributed to landfalling hurricanes. The results presented are deemed useful to further investigate historical events, and the methods outlined are potentially beneficial to quantify biomass loss in future events.
Transport and radiative impacts of atmospheric pollen using online, observation-based emissions
NASA Astrophysics Data System (ADS)
Wozniak, M. C.; Steiner, A. L.; Solmon, F.; Li, Y.
2015-12-01
Atmospheric pollen emitted from trees and grasses exhibits both a high temporal variability and a highly localized spatial distribution that has been difficult to quantify in the atmosphere. Pollen's radiative impact is also not quantified because it is neglected in climate modeling studies. Here we couple an online, meteorological active pollen emissions model guided by observations of airborne pollen to understand the role of pollen in the atmosphere. We use existing pollen counts from 2003-2008 across the continental U.S. in conjunction with a tree database and historical meteorological data to create an observation-based phenological model that produces accurately scaled and timed emissions. These emissions are emitted and transported within the regional climate model (RegCM4) and the direct radiative effect is calculated. Additionally, we simulate the rupture of coarse pollen grains into finer particles by adding a second size mode for pollen emissions, which contributes to the shortwave radiative forcing and also has an indirect effect on climate.
Spatial Patterns of NLCD Land Cover Change Thematic Accuracy (2001 - 2011)
Research on spatial non-stationarity of land cover classification accuracy has been ongoing for over two decades. We extend the understanding of thematic map accuracy spatial patterns by: 1) quantifying spatial patterns of map-reference agreement for class-specific land cover c...
Age, state, environment, and season dependence of senescence in body mass.
Kroeger, Svenja B; Blumstein, Daniel T; Armitage, Kenneth B; Reid, Jane M; Martin, Julien G A
2018-02-01
Senescence is a highly variable process that comprises both age-dependent and state-dependent components and can be greatly affected by environmental conditions. However, few studies have quantified the magnitude of age-dependent and state-dependent senescence in key life-history traits across individuals inhabiting different spatially structured and seasonal environments. We used longitudinal data from wild female yellow-bellied marmots ( Marmota flaviventer ), living in two adjacent environments that differ in elevation and associated phenology, to quantify how age and individual state, measured as "time to death," affect body mass senescence in different environments. Further, we quantified how patterns of senescence differed between two biologically distinct seasons, spring, and late summer. Body mass senescence had an age-dependent component, expressed as a decrease in mass in old age. Overall, estimated age-dependent senescence was greater in females living in the more favorable lower elevation environment, than in the harsher higher elevation environment, and greater in late summer than in spring. Body mass senescence also had a state-dependent component, captured by effects of time to death, but only in the more favorable lower elevation environment. In spring, body mass gradually decreased from 2 years before death, whereas in late summer, state-dependent effects were expressed as a terminal decrease in body mass in the last year of life. Contrary to expectations, we found that senescence was more likely to be observed under more favorable environmental conditions, rather than under harsher conditions. By further demonstrating that senescence patterns differ among seasons, our results imply that within-year temporal environmental variation must be considered alongside spatial environmental variation in order to characterize and understand the pattern and magnitude of senescence in wild populations.
Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Harder, Phillip; Schirmer, Michael; Pomeroy, John; Helgason, Warren
2016-11-01
Quantifying the spatial distribution of snow is crucial to predict and assess its water resource potential and understand land-atmosphere interactions. High-resolution remote sensing of snow depth has been limited to terrestrial and airborne laser scanning and more recently with application of structure from motion (SfM) techniques to airborne (manned and unmanned) imagery. In this study, photography from a small unmanned aerial vehicle (UAV) was used to generate digital surface models (DSMs) and orthomosaics for snow cover at a cultivated agricultural Canadian prairie and a sparsely vegetated Rocky Mountain alpine ridgetop site using SfM. The accuracy and repeatability of this method to quantify snow depth, changes in depth and its spatial variability was assessed for different terrain types over time. Root mean square errors in snow depth estimation from differencing snow-covered and non-snow-covered DSMs were 8.8 cm for a short prairie grain stubble surface, 13.7 cm for a tall prairie grain stubble surface and 8.5 cm for an alpine mountain surface. This technique provided useful information on maximum snow accumulation and snow-covered area depletion at all sites, while temporal changes in snow depth could also be quantified at the alpine site due to the deeper snowpack and consequent higher signal-to-noise ratio. The application of SfM to UAV photographs returns meaningful information in areas with mean snow depth > 30 cm, but the direct observation of snow depth depletion of shallow snowpacks with this method is not feasible. Accuracy varied with surface characteristics, sunlight and wind speed during the flight, with the most consistent performance found for wind speeds < 10 m s-1, clear skies, high sun angles and surfaces with negligible vegetation cover.
A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure
NASA Astrophysics Data System (ADS)
Duvall, M. S.; Hench, J. L.
2016-02-01
The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.
Drivers for spatial variability in agricultural soil organic carbon stocks in Germany
NASA Astrophysics Data System (ADS)
Vos, Cora; Don, Axel; Hobley, Eleanor; Prietz, Roland; Heidkamp, Arne; Freibauer, Annette
2017-04-01
Soil organic carbon is one of the largest components of the global carbon cycle. It has recently gained importance in global efforts to mitigate climate change through carbon sequestration. In order to find locations suitable for carbon sequestration, and estimate the sequestration potential, however, it is necessary to understand the factors influencing the high spatial variability of soil organic carbon stocks. Due to numerous interacting factors that influence its dynamics, soil organic carbon stocks are difficult to predict. In the course of the German Agricultural Soil Inventory over 2500 agricultural sites were sampled and their soil organic carbon stocks determined. Data relating to more than 200 potential drivers of SOC stocks were compiled from laboratory measurements, farmer questionnaires and climate stations. The aims of this study were to 1) give an overview of soil organic carbon stocks in Germany's agricultural soils, 2) to quantify and explain the influence of explanatory variables on soil organic carbon stocks. Two different machine learning algorithms were used to identify the most important variables and multiple regression models were used to explore the influence of those variables. Models for predicting carbon stocks in different depth increments between 0-100 cm were developed, explaining up to 62% (validation, 98% calibration) of total variance. Land-use, land-use history, clay content and electrical conductivity were main predictors in the topsoil, while bedrock material, relief and electrical conductivity governed the variability of subsoil carbon stocks. We found 32% of all soils to be deeply anthropogenically transformed. The influence of climate related variables was surprisingly small (≤5% of explained variance), while site variables explained a large share of soil carbon variability (46-100% of explained variance), in particular in the subsoil. Thus, the understanding of SOC dynamics at regional scale requires a thorough description of the variability in soil physical parameters. Agronomic management impact on SOC stocks is important near the soil surface, but is mainly attributable to land-use and not to other management factors on this large regional scale. The importance of historical land-use practices as well as anthropogenic soil transformations to SOC stocks highlights the need for prudent soil management and conservation policies.
Interannual variability: a crucial component of space use at the territory level.
Uboni, Alessia; Vucetich, John A; Stahler, Daniel R; Smith, Douglas W
2015-01-01
Interannual variability in space use and how that variation is influenced by density-dependent and density-independent factors are important processes in population ecology. Nevertheless, interannual variability has been neglected by the majority of space use studies. We assessed that variation for wolves living in 15 different packs within Yellowstone National Park during a 13-year period (1996-2008). We estimated utilization distributions to quantify the intensity of space use within each pack's territory each year in summer and winter. Then, we used the volume of intersection index (VI) to quantify the extent to which space use varied from year to year. This index accounts for both the area of overlap and differences in the intensity of use throughout a territory and ranges between 0 and 1. The mean VI index was 0.49, and varied considerably, with approximately 20% of observations (n = 230) being <0.3 or >0.7. In summer, 42% of the variation was attributable to differences between packs. These differences can be attributable to learned behaviors and had never been thought to have such an influence on space use. In winter, 34% of the variation in overlap between years was attributable to interannual differences in precipitation and pack size. This result reveals the strong influence of climate on predator space use and underlies the importance of understanding how climatic factors are going to affect predator populations in the occurrence of climate change. We did not find any significant association between overlap and variables representing density-dependent processes (elk and wolf densities) or intraspecific competition (ratio of wolves to elk). This last result poses a challenge to the classic view of predator-prey systems. On a small spatial scale, predator space use may be driven by factors other than prey distribution.
NASA Astrophysics Data System (ADS)
Whitney, K. M.; Bohn, T. J.; Vivoni, E. R.
2017-12-01
Over the past century, the Colorado River Basin (CRB) has experienced substantial warming and interannual climate variations, including prolonged drought periods. These patterns are projected to accelerate in the 21st century, with major consequences for water resources in the southwestern U.S. and northwestern Mexico. To evaluate future projections appropriately, however, it is important to first quantify the regional hydrologic response to historical climate variability in the CRB. In the current effort, we force the Variable Infiltration Capacity (VIC) land surface hydrology model and a river routing model with historical meteorological data to estimate water balance components and naturalized streamflow response in the CRB at 1/16o spatial resolution and at an hourly time step over the period 1950-2013. We utilize data products from satellite remote sensing to specify spatiotemporal variations in vegetation parameters and include an irrigation scheme to account for evapotranspiration from croplands in the CRB. Furthermore, we apply recent modifications in VIC to more properly account for bare soil evaporation in arid and semiarid ecosystems. Analyses of the historical model simulations are focused on quantifying the spatiotemporal variability of the soil moisture, evapotranspiration, streamflow and snowmelt response and their linkages to extreme meteorological events. Here we characterize the annual and monthly distributions, trends, and statistical extremes and central tendencies of water balance terms averaged over the CRB and its sub-basins for the entire study period 1950-2013. By building a model-based hydrologic climatology and catalog of historical extreme events for the CRB, we aim to construct a basis for future activities that analyze the impact of statistically downscaled climate change projections on the hydrology of the CRB and its urban areas.
NASA Astrophysics Data System (ADS)
Wei, Xiaohua; Zhang, Mingfang
2010-12-01
Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50 years) are available.
Can trait patterns along gradients predict plant community responses to climate change?
Guittar, John; Goldberg, Deborah; Klanderud, Kari; Telford, Richard J; Vandvik, Vigdis
2016-10-01
Plant functional traits vary consistently along climate gradients and are therefore potential predictors of plant community response to climate change. We test this space-for-time assumption by combining a spatial gradient study with whole-community turf transplantation along temperature and precipitation gradients in a network of 12 grassland sites in Southern Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs over 5 yr, we quantify trait-based responses to climate change by comparing observed community dynamics in transplanted turfs to field-parameterized null model simulations. Three traits related to species architecture (maximum height, number of dormant meristems, and ramet-ramet connection persistence) varied consistently along spatial temperature gradients and also correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature gradients but did not correlate to changes in species abundances following warming. No traits correlated consistently with precipitation. Our study supports the hypothesis that spatial associations between plant traits and broad-scale climate variables can be predictive of community response to climate change, but it also suggests that not all traits with clear patterns along climate gradients will necessarily influence community response to an equal degree. © 2016 by the Ecological Society of America.
Spatial configuration trends in coastal Louisiana from 1985 to 2010
Couvillion, Brady; Fischer, Michelle; Beck, Holly J.; Sleavin, William J.
2016-01-01
From 1932 to 2010, coastal Louisiana has experienced a net loss of 4877 km2 of wetlands. As the area of these wetlands has changed, so too has the spatial configuration of the landscape. The resulting landscape is a mosaic of patches of wetlands and open water. This study examined the spatial and temporal variability of trajectories of landscape configuration and the relation of those patterns to the trajectories of land change in wetlands during a 1985–2010 observation period. Spatial configuration was quantified using multi-temporal satellite imagery and an aggregation index (AI). The results of this analysis indicate that coastal Louisiana experienced a reduction in the AI of coastal wetlands of 1.07 %. In general, forested wetland and fresh marsh types displayed the highest aggregation and stability. The remaining marsh types, (intermediate, brackish, and saline) all experienced disaggregation during the time period, with increasing severity of disaggregation along an increasing salinity gradient. Finally, a correlation (r 2 = 0.5562) was found between AI and the land change rate for the subsequent period, indicating that fragmentation can increase the vulnerability of wetlands to further wetland loss. These results can help identify coastal areas which are susceptible to future wetland loss.
Spatial Downscaling of Alien Species Presences using Machine Learning
NASA Astrophysics Data System (ADS)
Daliakopoulos, Ioannis N.; Katsanevakis, Stelios; Moustakas, Aristides
2017-07-01
Large scale, high-resolution data on alien species distributions are essential for spatially explicit assessments of their environmental and socio-economic impacts, and management interventions for mitigation. However, these data are often unavailable. This paper presents a method that relies on Random Forest (RF) models to distribute alien species presence counts at a finer resolution grid, thus achieving spatial downscaling. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The method is tested with an approximately 8×8 km2 grid containing floral alien species presence and several indices of climatic, habitat, land use covariates for the Mediterranean island of Crete, Greece. Alien species presence is aggregated at 16×16 km2 and used as a predictor of presence at the original resolution, thus simulating spatial downscaling. Potential explanatory variables included habitat types, land cover richness, endemic species richness, soil type, temperature, precipitation, and freshwater availability. Uncertainty assessment of the spatial downscaling of alien species’ occurrences was also performed and true/false presences and absences were quantified. The approach is promising for downscaling alien species datasets of larger spatial scale but coarse resolution, where the underlying environmental information is available at a finer resolution than the alien species data. Furthermore, the RF architecture allows for tuning towards operationally optimal sensitivity and specificity, thus providing a decision support tool for designing a resource efficient alien species census.
Using Remote Sensing to Determine the Spatial Scales of Estuaries
NASA Astrophysics Data System (ADS)
Davis, C. O.; Tufillaro, N.; Nahorniak, J.
2016-02-01
One challenge facing Earth system science is to understand and quantify the complexity of rivers, estuaries, and coastal zone regions. Earlier studies using data from airborne hyperspectral imagers (Bissett et al., 2004, Davis et al., 2007) demonstrated from a very limited data set that the spatial scales of the coastal ocean could be resolved with spatial sampling of 100 m Ground Sample Distance (GSD) or better. To develop a much larger data set (Aurin et al., 2013) used MODIS 250 m data for a wide range of coastal regions. Their conclusion was that farther offshore 500 m GSD was adequate to resolve large river plume features while nearshore regions (a few kilometers from the coast) needed higher spatial resolution data not available from MODIS. Building on our airborne experience, the Hyperspectral Imager for the Coastal Ocean (HICO, Lucke et al., 2011) was designed to provide hyperspectral data for the coastal ocean at 100 m GSD. HICO operated on the International Space Station for 5 years and collected over 10,000 scenes of the coastal ocean and other regions around the world. Here we analyze HICO data from an example set of major river delta regions to assess the spatial scales of variability in those systems. In one system, the San Francisco Bay and Delta, we also analyze Landsat 8 OLI data at 30 m and 15 m to validate the 100 m GSD sampling scale for the Bay and assess spatial sampling needed as you move up river.
NASA Astrophysics Data System (ADS)
Mbabazi, D.; Mohanty, B.; Gaur, N.
2017-12-01
Evapotranspiration (ET) is an important component of the water and energy balance and accounts for 60 -70% of precipitation losses. However, accurate estimates of ET are difficult to quantify at varying spatial and temporal scales. Eddy covariance methods estimate ET at high temporal resolutions but without capturing the spatial variation in ET within its footprint. On the other hand, remote sensing methods using Landsat imagery provide ET with high spatial resolution but low temporal resolution (16 days). In this study, we used both eddy covariance and remote sensing methods to generate high space-time resolution ET. Daily, monthly and seasonal ET estimates were obtained using the eddy covariance (EC) method, Penman-Monteith (PM) and Mapping Evapotranspiration with Internalized Calibration (METRIC) models to determine cotton and native prairie ET dynamics in the Brazos river basin characterized by varying hydro-climatic and geological gradients. Daily estimates of spatially distributed ET (30 m resolution) were generated using spatial autocorrelation and temporal interpolations between the EC flux variable footprints and METRIC ET for the 2016 and 2017 growing seasons. A comparison of the 2016 and 2017 preliminary daily ET estimates showed similar ET dynamics/trends among the EC, PM and METRIC methods, and 5-20% differences in seasonal ET estimates. This study will improve the spatial estimates of EC ET and temporal resolution of satellite derived ET thus providing better ET data for water use management.
Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.
Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy
2016-05-15
Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat heterogeneity. Copyright © 2016 Elsevier B.V. All rights reserved.
Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.
2016-01-01
India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092
Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S
2016-01-01
India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.
NASA Astrophysics Data System (ADS)
Schaap, Martijn; Segers, Arjo; Curier, Lyana; Timmermans, Renske
2016-04-01
Consistent and long time series of remotely sensed trace gas levels may provide a useful tool to estimate surface emissions and emission trends. We use the OMI-NO2 product in conjunction with the LOTOS-EUROS CTM to estimate European emission trends through correction of the OMI-time series for meteorological variability as well as through assimilation using an ensemble kalman filter system (EnKF). The chemistry transport model captures a large fraction of the variability in NO2 columns at a synoptic timescale, although a seasonal signal in the bias between the modeled and retrieved column data remains. Prior to the assimilation, the OMI-NO2 data have been analyzed to establish the spatially variable temporal and spatial correlation lengths, required for the settings in the EnKF system. The assimilation run for 2005-2013 was performed using constant 2005 emissions to be able to quantify the emission change. The assimilation reduces the model-observation differences considerably. Significant negative trends of 2-3 % per year (as compared to 2005) were found in highly industrialized areas across Western Europe. The assimilation system also identifies the areas with major emission reductions in e.g. northern Spain as identified in earlier studies. Comparison of the trends derived from the assimilation and the data itself shows a high level of agreement, both the trends found in this way are smaller than those reported.
NASA Astrophysics Data System (ADS)
Chasmer, L.; Flade, L.; Virk, R.; Montgomery, J. S.; Hopkinson, C.; Thompson, D. K.; Petrone, R. M.; Devito, K.
2017-12-01
Landscape changes in the hydrological characteristics of wetlands in some parts of the Boreal region of Canada are occurring as a result of climate-induced feedbacks and anthropogenic disturbance. Wetlands are largely resilient to wildfire, however, natural, climatic and anthropogenic disturbances can change surface water regimes and predispose wetlands to greater depth of peat burn. Over broad areas, peat loss contributes to significant pollution emissions, which can affect community health. In this study, we a) quantify depth of peat burn and relationships to antecedent conditions (species type, topography, surficial geology) within three classified wetlands found in the Boreal Plains ecoregion of western Canada; and b) examine the impacts of wildfire on post-fire ground surface energy balance to determine how peat loss might affect local hydro-climatology and surface water feedbacks. High-resolution optical imagery, pre- and post-burn multi-spectral Light Detection And Ranging (LiDAR), airborne thermal infrared imagery, and field validation data products are integrated to identify multiple complex interactions within the study wetlands. LiDAR-derived depth of peat burn is within 1 cm (average) compared with measured (RMSE = 9 cm over the control surface), demonstrating the utility of LiDAR with high point return density. Depth of burn also correlates strongly with variations in Normalised Burn Ratio (NBR) determined for ground surfaces only. Antecedent conditions including topographic position, soil moisture, soil type and wetland species also have complex interactions with depth of peat loss within wetlands observed in other studies. However, while field measurements are important for validation and understanding eco-hydrological processes, results from remote sensing are spatially continuous. Temporal LiDAR data illustrate the full range of variability in depth of burn and wetland characteristics following fire. Finally, measurements of instantaneous surface temperature indicate that the temperatures of burned wetlands are significantly warmer by up to 10oC compared to non-burned wetlands, altering locally variable sensible vs. latent energy exchanges and implications for further post-fire evaporative losses.
NASA Astrophysics Data System (ADS)
Diao, M.; D'Alessandro, J.; Wu, C.; Liu, X.; Jensen, J. B.
2016-12-01
Large spatial coverage of ice and mixed-phase clouds is frequently observed in the higher latitudinal regions, especially over the Arctic and Antarctica. However, because the microphysical properties in the ice and mixed-phase clouds are highly variable in space, major challenges still remain in understanding the characteristics of ice and mixed-phase clouds on the microscale, as well as representing the sub-grid scale variabilities of relative humidity in the General Circulation Models. In this work, we use the in-situ, airborne observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study (January - February 2016) to analyze the microphysical and macrophysical characteristics of ice and mixed-phase clouds over the Southern Ocean. A total of 18 flights onboard the NSF Gulfstream-V research aircraft are used to quantify the cloud properties and relative humidity distributions at various temperatures, pressures and aerosol background. New QC/QA water vapor data of the Vertical Cavity Surface Emitting Laser based on the laboratory calibration in summer 2016 will be presented. The statistical distributions of cloud microphysical properties and relative humidity with respect to ice (RHi) derived from in-situ observations will be compared with the NCAR Community Atmospheric Model Version 5 (CAM5). The horizontal extent of ice and mixed-phase clouds, and their formation and evolution will be derived based on the method of Diao et al. (2013). The occurrence frequency of ice supersaturation (i.e., RHi > 100%) will be examined in relation to various chemical tracers (i.e., O3 and CO) and total aerosol number concentrations (e.g., aerosols > 0.1 μm and > 0.5 μm) at clear-sky and in-cloud conditions. We will quantify whether these characteristics of ISS are scale-dependent from the microscale to the mesoscale. Overall, our work will evaluate the spatial variabilities of RHi inside/outside of ice and mixed-phase clouds, the frequency and magnitude of ice supersaturation, as well as the correlations between ice water content and liquid water content in the CAM5 simulations.
Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies
NASA Astrophysics Data System (ADS)
Jonkers, Lukas; Kučera, Michal
2017-06-01
The composition of planktonic foraminiferal (PF) calcite is routinely used to reconstruct climate variability. However, PF ecology leaves a large imprint on the proxy signal: seasonal and vertical habitats of PF species vary spatially, causing variable offsets from annual mean surface conditions recorded by sedimentary assemblages. PF seasonality changes with temperature in a way that minimises the environmental change that individual species experience and it is not unlikely that changes in depth habitat also result from such habitat tracking. While this behaviour could lead to an underestimation of spatial or temporal trends as well as of variability in proxy records, most palaeoceanographic studies are (implicitly) based on the assumption of a constant habitat. Up to now, the effect of habitat tracking on foraminifera proxy records has not yet been formally quantified on a global scale. Here we attempt to characterise this effect on the amplitude of environmental change recorded in sedimentary PF using core top δ18O data from six species. We find that the offset from mean annual near-surface δ18O values varies with temperature, with PF δ18O indicating warmer than mean conditions in colder waters (on average by -0.1 ‰ (equivalent to 0.4 °C) per °C), thus providing a first-order quantification of the degree of underestimation due to habitat tracking. We use an empirical model to estimate the contribution of seasonality to the observed difference between PF and annual mean δ18O and use the residual Δδ18O to assess trends in calcification depth. Our analysis indicates that given an observation-based model parametrisation calcification depth increases with temperature in all species and sensitivity analysis suggests that a temperature-related seasonal habitat adjustment is essential to explain the observed isotope signal. Habitat tracking can thus lead to a significant reduction in the amplitude of recorded environmental change. However, we show that this behaviour is predictable. This allows accounting for habitat tracking, enabling more meaningful reconstructions and improved data-model comparison.
NASA Astrophysics Data System (ADS)
Archambault, B.; Rivot, E.; Savina, M.; Le Pape, O.
2018-02-01
Exploited coastal-nursery-dependent fish species are subject to various stressors occurring at specific stages of the life cycle: climate-driven variability in hydrography determines the success of the first eggs/larvae stages; coastal nursery habitat suitability controls juvenile growth and survival; and fisheries target mostly adults. A life cycle approach was used to quantify the relative influence of these stressors on the Eastern English Channel (EEC) population of the common sole (Solea solea), a coastal-nursery-dependent flatfish population which sustains important fisheries. The common sole has a complex life cycle: after eggs hatch, larvae spend several weeks drifting in open water. Survivors go on to metamorphose into benthic fish. Juveniles spend the first two years of their life in coastal and estuarine nurseries. Close to maturation, they migrate to deeper areas, where different subpopulations supplied by different nurseries reproduce and are exploited by fisheries. A spatially structured age-and stage-based hierarchical Bayesian model integrating various aspects of ecological knowledge, data sources and expert knowledge was built to quantitatively describe this complex life cycle. The model included the low connectivity among three subpopulations in the EEC, the influence of hydrographic variability, the availability of suitable juvenile habitat and fisheries. Scenarios were designed to quantify the effects of interacting stressors on population renewal. Results emphasized the importance of coastal nursery habitat availability and quality for the population renewal. Realistic restoration scenarios of the highly degraded Seine estuary produced a two-third increase in catch potential for the adjacent subpopulation. Fisheries, however, remained the main source of population depletion. Setting fishing mortality to the maximum sustainable yield led to substantial increases in biomass (+100%) and catch (+33%) at the EEC scale. The approach also showed how climate-driven variability in hydrography is likely to interact with human pressures, e.g., overfishing increased the sensitivity to unfavourable conditions. Our results provided insights into the dynamics of numerous exploited coastal-nursery-dependent species while paving the way toward more robust advice for sustainable management of these resources.
NASA Astrophysics Data System (ADS)
Martins, Inês; Cosson, Richard P.; Riou, Virginie; Sarradin, Pierre-Marie; Sarrazin, Jozée; Santos, Ricardo S.; Colaço, Ana
2011-03-01
The turbulent mixing of hydrothermal hot fluid with cold seawater creates large chemical gradients at a small spatial scale that may induce variable physiological and biochemical adaptations within the vent fauna. The adaptation to such a variable environment by the vent mussel Bathymodiolus azoricus relies on a dual symbiosis hosted in the gills, and digestion of particulate organic matter. The surrounding environment not only provides the necessary energy sources and suspended organic particles for the vent mussel nutrition, but also potentially toxic compounds such as metals. Our main goal was to see if there is a relation between metal accumulation in mussel organs and the chemical characteristics of their close environment. Mussels were collected at six locations in a cold part of the Eiffel Tower fluid-seawater mixing zone, characterized by distinct chemical compositions. Metals (Cd, Cu, Fe and Zn) and metallothioneins were quantified in the gills and digestive gland. The physiological condition of the sampled mussels was also evaluated using tissues and gill indices. Our study indicates that the accumulation of metals in B. azoricus is related to their spatial distribution and linked to fine scale environmental conditions that influence the physiological status of the organism.
The Dynamics of Laurentian Great Lakes Surface Energy Budgets
NASA Astrophysics Data System (ADS)
Spence, C.; Blanken, P.; Lenters, J. D.; Gronewold, A.; Kerkez, B.; Xue, P.; Froelich, N.
2015-12-01
The Laurentian Great Lakes constitute the largest freshwater surface in the world and are a valuable North American natural and socio-economic resource. In response to calls for improved monitoring and research on the energy and water budgets of the lakes, there has been a growing ensemble of in situ measurements - including offshore eddy flux towers, buoy-based sensors, and vessel-based platforms -deployed through an ongoing, bi-national collaboration known as the Great Lakes Evaporation Network (GLEN). The objective of GLEN is to reduce uncertainty in Great Lakes seasonal and 6-month water level forecasts, as well as climate change projections of the surface energy balance and water level fluctuations. Although It remains challenging to quantify and scale energy budgets and fluxes over such large water bodies, this presentation will report on recent successes in three areas: First, in estimating evaporation rates over each of the Great Lakes; Second, defining evaporation variability among the lakes, especially in winter and; Third, explaining the interaction between ice cover, water temperature, and evaporation across a variety of temporal and spatial scales. Research gaps remain, particularly those related to spatial variability and scaling of turbulent fluxes, so the presentation will also describe how this will be addressed with enhanced instrument and platform arrays.
Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics
NASA Astrophysics Data System (ADS)
Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.
2015-07-01
Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.
An updated stress map of the continental United States reveals heterogeneous intraplate stress
NASA Astrophysics Data System (ADS)
Levandowski, Will; Herrmann, Robert B.; Briggs, Rich; Boyd, Oliver; Gold, Ryan
2018-06-01
Knowledge of the state of stress in Earth's crust is key to understanding the forces and processes responsible for earthquakes. Historically, low rates of natural seismicity in the central and eastern United States have complicated efforts to understand intraplate stress, but recent improvements in seismic networks and the spread of human-induced seismicity have greatly improved data coverage. Here, we compile a nationwide stress map based on formal inversions of focal mechanisms that challenges the idea that deformation in continental interiors is driven primarily by broad, uniform stress fields derived from distant plate boundaries. Despite plate-boundary compression, extension dominates roughly half of the continent, and second-order forces related to lithospheric structure appear to control extension directions. We also show that the states of stress in several active eastern United States seismic zones differ significantly from those of surrounding areas and that these anomalies cannot be explained by transient processes, suggesting that earthquakes are focused by persistent, locally derived sources of stress. Such spatially variable intraplate stress appears to justify the current, spatially variable estimates of seismic hazard. Future work to quantify sources of stress, stressing-rate magnitudes and their relationship with strain and earthquake rates could allow prospective mapping of intraplate hazard.
Bunting, Daniel P.; Kurc, Shirley A.; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.
2014-01-01
Water resource managers aim to ensure long-term water supplies for increasing human populations. Evapotranspiration (ET) is a key component of the water balance and accurate estimates are important to quantify safe allocations to humans while supporting environmental needs. Scaling up ET measurements from small spatial scales has been problematic due to spatiotemporal variability. Remote sensing products provide spatially distributed data that account for seasonal climate and vegetation variability. We used MODIS products [i.e., Enhanced Vegetation Index (EVI) and nighttime land surface temperatures (LSTn)] to create empirical ET models calibrated using measured ET from three riparian-influenced and two upland, water-limited flux tower sites. Results showed that combining all sites introduced systematic bias, so we developed separate models to estimate riparian and upland ET. While EVI and LSTn were the main drivers for ET in riparian sites, precipitation replaced LSTn as the secondary driver of ET in upland sites. Riparian ET was successfully modeled using an inverse exponential approach (r2 = 0.92) while upland ET was adequately modeled using a multiple linear regression approach (r2 = 0.77). These models can be used in combination to estimate ET at basin scales provided each region is classified and precipitation data is available.
Solute plumes mean velocity in aquifer transport: Impact of injection and detection modes
NASA Astrophysics Data System (ADS)
Dagan, Gedeon
2017-08-01
Flow of mean velocity U takes place in a heterogeneous aquifer of random spatially variable conductivity K. A solute plume is injected instantaneously along a plane normal to U, over a large area relative to the logconductivity integral scale I (ergodic plume). Transport is by advection by the spatially variable Eulerian velocity. The study is focused on the derivation of the mean plume velocity in the four modes set forth by Kreft and Zuber [1978] for one dimensional flow in a homogeneous medium. In the resident injection mode the mass is initially distributed uniformly in space while in the flux mode it is proportional to the local velocity. In the resident detection mode the mean velocity pertains to the plume centroid, whereas in flux detection it is quantified with the aid of the BTC and the corresponding mean arrival time. In agreement with the literature, it is shown that URR and UFF, pertaining to same injection and detection modes, either resident or flux, are equal to U. In contrast, in the mixed modes the solute velocity may differ significantly from U near the injection plane, approaching it at large distances relative to I. These effects are explained qualitatively with the aid of the exact solution for stratified aquifers.
Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature
NASA Astrophysics Data System (ADS)
Wu, Chih-Da; Lung, Shih-Chun Candice
2016-04-01
The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.
Utility of Satellite Remote Sensing for Land-Atmosphere Coupling and Drought Metrics
NASA Technical Reports Server (NTRS)
Roundy, Joshua K.; Santanello, Joseph A.
2017-01-01
Feedbacks between the land and the atmosphere can play an important role in the water cycle and a number of studies have quantified Land-Atmosphere (L-A) interactions and feedbacks through observations and prediction models. Due to the complex nature of L-A interactions, the observed variables are not always available at the needed temporal and spatial scales. This work derives the Coupling Drought Index (CDI) solely from satellite data and evaluates the input variables and the resultant CDI against in-situ data and reanalysis products. NASA's AQUA satellite and retrievals of soil moisture and lower tropospheric temperature and humidity properties are used as input. Overall, the AQUA-based CDI and its inputs perform well at a point, spatially, and in time (trends) compared to in-situ and reanalysis products. In addition, this work represents the first time that in-situ observations were utilized for the coupling classification and CDI. The combination of in-situ and satellite remote sensing CDI is unique and provides an observational tool for evaluating models at local and large scales. Overall, results indicate that there is sufficient information in the signal from simultaneous measurements of the land and atmosphere from satellite remote sensing to provide useful information for applications of drought monitoring and coupling metrics.
Utility of Satellite Remote Sensing for Land-Atmosphere Coupling and Drought Metrics
Roundy, Joshua K.; Santanello, Joseph A.
2018-01-01
Feedbacks between the land and the atmosphere can play an important role in the water cycle and a number of studies have quantified Land-Atmosphere (L-A) interactions and feedbacks through observations and prediction models. Due to the complex nature of L-A interactions, the observed variables are not always available at the needed temporal and spatial scales. This work derives the Coupling Drought Index (CDI) solely from satellite data and evaluates the input variables and the resultant CDI against in-situ data and reanalysis products. NASA’s AQUA satellite and retrievals of soil moisture and lower tropospheric temperature and humidity properties are used as input. Overall, the AQUA-based CDI and its inputs perform well at a point, spatially, and in time (trends) compared to in-situ and reanalysis products. In addition, this work represents the first time that in-situ observations were utilized for the coupling classification and CDI. The combination of in-situ and satellite remote sensing CDI is unique and provides an observational tool for evaluating models at local and large scales. Overall, results indicate that there is sufficient information in the signal from simultaneous measurements of the land and atmosphere from satellite remote sensing to provide useful information for applications of drought monitoring and coupling metrics. PMID:29645012
Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature
Wu, Chih-Da; Lung, Shih-Chun Candice
2016-01-01
The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537
Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M
2014-01-01
The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.
Wiens, David; Kolar, Patrick; Hunt, W. Grainger; Hunt, Teresa; Fuller, Mark R.; Bell, Douglas A.
2018-01-01
We used a broad-scale sampling design to investigate spatial patterns in occupancy and breeding success of territorial pairs of Golden Eagles (Aquila chrysaetos) in the Diablo Range, California, USA, during a period of exceptional drought (2014–2016). We surveyed 138 randomly selected sample sites over 4 occasions each year and identified 199 pairs of eagles, 100 of which were detected in focal sample sites. We then used dynamic multistate modeling to identify relationships between site occupancy and reproduction of Golden Eagles relative to spatial variability in landscape composition and drought conditions. We observed little variability among years in site occupancy (3-yr mean = 0.74), but the estimated annual probability of successful reproduction was relatively low during the study period and declined from 0.39 (± 0.08 SE) to 0.18 (± 0.07 SE). Probabilities of site occupancy and reproduction were substantially greater at sample sites that were occupied by successful breeders in the previous year, indicating the presence of sites that were consistently used by successfully reproducing eagles. We found strong evidence for nonrandom spatial distribution in both occupancy and reproduction: Sites with the greatest potential for occupancy were characterized by rugged terrain conditions with intermediate amounts of grassland interspersed with patches of oak woodland and coniferous forest, whereas successful reproduction was most strongly associated with the amount of precipitation that a site received during the nesting period. Our findings highlight the contribution of consistently occupied and productive breeding sites to overall productivity of the local breeding population, and show that both occupancy and reproduction at these sites were maintained even during a period of exceptional drought. Our approach to quantifying and mapping site quality should be especially useful for the spatial prioritization of compensation measures intended to help offset the impacts of increasing human land use and development on Golden Eagles and their habitats.
NASA Astrophysics Data System (ADS)
Nanus, Leora; Clow, David; Saros, Jasmine; McMurray, Jill; Blett, Tamara; Sickman, James
2017-04-01
High-elevation aquatic ecosystems in Wilderness areas of the western United States are impacted by current and historic atmospheric nitrogen (N) deposition associated with local and regional air pollution. Documented effects include elevated surface water nitrate concentrations, increased algal productivity, and changes in diatom species assemblages. A predictive framework was developed for sensitive high-elevation basins across the western United States at multiple spatial scales including the Rocky Mountain Region (Rockies), the Greater Yellowstone Area (GYA), and Yosemite (YOSE) and Sequoia & Kings Canyon (SEKI) National Parks. Spatial trends in critical loads of N deposition for nutrient enrichment of aquatic ecosystems were quantified and mapped using a geostatistical approach, with modeled N deposition, topography, vegetation, geology, and climate as potential explanatory variables. Multiple predictive models were created using various combinations of explanatory variables; this approach allowed for better quantification of uncertainty and identification of areas most sensitive to high atmospheric N deposition (> 3 kg N ha-1 yr-1). For multiple spatial scales, the lowest critical loads estimates (<1.5 + 1 kg N ha-1 yr-1) occurred in high-elevation basins with steep slopes, sparse vegetation, and exposed bedrock and talus. Based on a nitrate threshold of 1 μmol L-1, estimated critical load exceedances (>1.5 + 1 kg N ha-1 yr-1) correspond with areas of high N deposition and vary spatially ranging from less than 20% to over 40% of the study area for the Rockies, GYA, YOSE, and SEKI. These predictive models and maps identify sensitive aquatic ecosystems that may be impacted by excess atmospheric N deposition and can be used to help protect against future anthropogenic disturbance. The approach presented here may be transferable to other remote and protected high-elevation ecosystems at multiple spatial scales that are sensitive to adverse effects of pollutant loading in the US and around the world.
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib
2011-03-01
The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.
NASA Astrophysics Data System (ADS)
Kloog, Itai; Koutrakis, Petros; Coull, Brent A.; Lee, Hyung Joo; Schwartz, Joel
2011-11-01
Land use regression (LUR) models provide good estimates of spatially resolved long-term exposures, but are poor at capturing short term exposures. Satellite-derived Aerosol Optical Depth (AOD) measurements have the potential to provide spatio-temporally resolved predictions of both long and short term exposures, but previous studies have generally showed relatively low predictive power. Our objective was to extend our previous work on day-specific calibrations of AOD data using ground PM 2.5 measurements by incorporating commonly used LUR variables and meteorological variables, thus benefiting from both the spatial resolution from the LUR models and the spatio-temporal resolution from the satellite models. Later we use spatial smoothing to predict PM 2.5 concentrations for day/locations with missing AOD measures. We used mixed models with random slopes for day to calibrate AOD data for 2000-2008 across New-England with monitored PM 2.5 measurements. We then used a generalized additive mixed model with spatial smoothing to estimate PM 2.5 in location-day pairs with missing AOD, using regional measured PM 2.5, AOD values in neighboring cells, and land use. Finally, local (100 m) land use terms were used to model the difference between grid cell prediction and monitored value to capture very local traffic particles. Out-of-sample ten-fold cross-validation was used to quantify the accuracy of our predictions. For days with available AOD data we found high out-of-sample R2 (mean out-of-sample R2 = 0.830, year to year variation 0.725-0.904). For days without AOD values, our model performance was also excellent (mean out-of-sample R2 = 0.810, year to year variation 0.692-0.887). Importantly, these R2 are for daily, rather than monthly or yearly, values. Our model allows one to assess short term and long-term human exposures in order to investigate both the acute and chronic effects of ambient particles, respectively.
Quantifying biological integrity of California sage scrub communities using plant life-form cover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Y.; Stow, D. A.; Franklin, J.
2010-01-01
The California sage scrub (CSS) community type in California's Mediterranean-type ecosystems supports a large number of rare, threatened, and endangered species, and is critically degraded and endangered. Monitoring ecological variables that provide information about community integrity is vital to conserving these biologically diverse communities. Fractional cover of true shrub, subshrub, herbaceous vegetation, and bare ground should fill information gaps between generalized vegetation type maps and detailed field-based plot measurements of species composition and provide an effective means for quantifying CSS community integrity. Remote sensing is the only tool available for estimating spatially comprehensive fractional cover over large extent, and fractionalmore » cover of plant life-form types is one of the measures of vegetation state that is most amenable to remote sensing. The use of remote sensing does not eliminate the need for either field surveying or vegetation type mapping; rather it will likely require a combination of approaches to reliably estimate life-form cover and to provide comprehensive information for communities. According to our review and synthesis, life-form fractional cover has strong potential for providing ecologically meaningful intermediate-scale information, which is unattainable from vegetation type maps and species-level field measurements. Thus, we strongly recommend incorporating fractional cover of true shrub, subshrub, herb, and bare ground in CSS community monitoring methods. Estimating life-form cover at a 25 m x 25 m spatial scale using remote sensing would be an appropriate approach for initial implementation. Investigation of remote sensing techniques and an appropriate spatial scale; collaboration of resource managers, biologists, and remote sensing specialists, and refinement of protocols are essential for integrating life-form fractional cover mapping into strategies for sustainable long-term CSS community management.« less
In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.
Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta
2008-10-01
Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.