Sample records for quantifying constant flow

  1. Calibration of the k- ɛ model constants for use in CFD applications

    NASA Astrophysics Data System (ADS)

    Glover, Nina; Guillias, Serge; Malki-Epshtein, Liora

    2011-11-01

    The k- ɛ turbulence model is a popular choice in CFD modelling due to its robust nature and the fact that it has been well validated. However it has been noted in previous research that the k- ɛ model has problems predicting flow separation as well as unconfined and transient flows. The model contains five empirical model constants whose values were found through data fitting for a wide range of flows (Launder 1972) but ad-hoc adjustments are often made to these values depending on the situation being modeled. Here we use the example of flow within a regular street canyon to perform a Bayesian calibration of the model constants against wind tunnel data. This allows us to assess the sensitivity of the CFD model to changes in these constants, find the most suitable values for the constants as well as quantifying the uncertainty related to the constants and the CFD model as a whole.

  2. Theoretical Evaluation of the Transient Response of Constant Head and Constant Flow-Rate Permeability Tests

    USGS Publications Warehouse

    Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T.

    1998-01-01

    A theoretical analysis is presented that compares the response characteristics of the constant head and the constant flowrate (flow pump) laboratory techniques for quantifying the hydraulic properties of geologic materials having permeabilities less than 10-10 m/s. Rigorous analytical solutions that describe the transient distributions of hydraulic gradient within a specimen are developed, and equations are derived for each method. Expressions simulating the inflow and outflow rates across the specimen boundaries during a constant-head permeability test are also presented. These solutions illustrate the advantages and disadvantages of each method, including insights into measurement accuracy and the validity of using Darcy's law under certain conditions. The resulting observations offer practical considerations in the selection of an appropriate laboratory test method for the reliable measurement of permeability in low-permeability geologic materials.

  3. Identification of internal flow dynamics in two experimental catchments

    USGS Publications Warehouse

    Hansen, D.P.; Jakeman, A.J.; Kendall, C.; Weizu, G.

    1997-01-01

    Identification of the internal flow dynamics in catchments is difficult because of the lack of information in precipitation -stream discharge time series alone. Two experimental catchments, Hydrohill and Nandadish, near Nanjing in China, have been set up to monitor internal flows reaching the catchment stream at various depths, from the surface runoff to the bedrock. With analysis of the precipitation against these internal discharges, it is possible to quantify the time constants and volumes associated with various flowpaths in both catchments.

  4. Quantifying the Effects of Biofilm on the Hydraulic Properties of Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Volk, E.; Iden, S.; Furman, A.; Durner, W.; Rosenzweig, R.

    2017-12-01

    Quantifying the effects of biofilms on hydraulic properties of unsaturated soils is necessary for predicting water and solute flow in soil with extensive microbial presence. This can be relevant to bioremediation processes, soil aquifer treatment and effluent irrigation. Previous works showed a reduction in the hydraulic conductivity and an increase in water content due to the addition of biofilm analogue materials. The objective of this research is to quantify soil hydraulic properties of unsaturated soil (water retention and hydraulic conductivity) using real soil biofilm. In this work, Hamra soil was incubated with Luria Broth (LB) and biofilm-producing bacteria (Pseudomonas Putida F1). Hydraulic conductivity and water retention were measured by the evaporation method, Dewpoint method and a constant head permeameter. Biofilm was quantified using viable counts and the deficit of TOC. The results show that the presence of biofilms increases soil retention in the `dry' range of the curve and reduces the hydraulic conductivity (see figure). This research shows that biofilms may have a non-negligible effect on flow and transport in unsaturated soils. These findings contribute to modeling water flow in biofilm amended soil.

  5. Quantifying the flow efficiency in constant-current capacitive deionization.

    PubMed

    Hawks, Steven A; Knipe, Jennifer M; Campbell, Patrick G; Loeb, Colin K; Hubert, McKenzie A; Santiago, Juan G; Stadermann, Michael

    2018-02-01

    Here we detail a previously unappreciated loss mechanism inherent to capacitive deionization (CDI) cycling operation that has a substantial role determining performance. This mechanism reflects the fact that desalinated water inside a cell is partially lost to re-salination if desorption is carried out immediately after adsorption. We describe such effects by a parameter called the flow efficiency, and show that this efficiency is distinct from and yet multiplicative with other highly-studied adsorption efficiencies. Flow losses can be minimized by flowing more feed solution through the cell during desalination; however, this also results in less effluent concentration reduction. While the rationale outlined here is applicable to all CDI cell architectures that rely on cycling, we validate our model with a flow-through electrode CDI device operated in constant-current mode. We find excellent agreement between flow efficiency model predictions and experimental results, thus giving researchers simple equations by which they can estimate this distinct loss process for their operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Spike Code Flow in Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  7. Conformal mapping in optical biosensor applications.

    PubMed

    Zumbrum, Matthew E; Edwards, David A

    2015-09-01

    Optical biosensors are devices used to investigate surface-volume reaction kinetics. Current mathematical models for reaction dynamics rely on the assumption of unidirectional flow within these devices. However, new devices, such as the Flexchip, include a geometry that introduces two-dimensional flow, complicating the depletion of the volume reactant. To account for this, a previous mathematical model is extended to include two-dimensional flow, and the Schwarz-Christoffel mapping is used to relate the physical device geometry to that for a device with unidirectional flow. Mappings for several Flexchip dimensions are considered, and the ligand depletion effect is investigated for one of these mappings. Estimated rate constants are produced for simulated data to quantify the inclusion of two-dimensional flow in the mathematical model.

  8. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  9. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations

    PubMed Central

    Wall, Mark J.

    2016-01-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. PMID:27927788

  10. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.

    PubMed

    Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E

    2017-03-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. Copyright © 2017 the American Physiological Society.

  11. Squeezing flow viscometry for nonelastic semiliquid foods--theory and applications.

    PubMed

    Campanella, Osvaldo H; Peleg, Micha

    2002-01-01

    In most conventional rheometers, notably the coaxial cylinders and capillary viscometers, the food specimen is pressed into a narrow gap and its structure is altered by uncontrolled shear. Also, most semiliquid foods exhibit slip, and consequently the measurements do not always reflect their true rheological properties. A feasible solution to these two problems is squeezing flow viscometry where the specimen, practically intact and with or without suspended particles, is squeezed between parallel plates. The outward flow pattern mainly depends on the friction between the fluid and plates or its absence ("lubricated squeezing flow"). Among the possible test geometries, the one of constant area and changing volume is the most practical for foods. The test can be performed at a constant displacement rate using common Universal Testing Machines or under constant loads (creep array). The tests output is in the form of a force-height, force-time, or height-time relationship, from which several rheological parameters can be derived. With the current state of the art, the method can only be applied at small displacement rates. Despite the method's crudeness, its results are remarkably reproducible and sensitive to textural differences among semiliquid food products. The flow patterns observed in foods do not always follow the predictions of rheological models originally developed for polymer melts because of the foods' unique microstructures. The implications of these discrepancies and the role that artifacts may play are evaluated in light of theoretical and practical considerations. The use of squeezing flow viscometry to quantify rheological changes that occur during a product's handling and to determine whether they are perceived sensorily is suggested.

  12. Fouling resilient perforated feed spacers for membrane filtration.

    PubMed

    Kerdi, Sarah; Qamar, Adnan; Vrouwenvelder, Johannes S; Ghaffour, Noreddine

    2018-04-24

    The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50%-61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L m -2 .h -1 and 6.6 L m -2 .h -1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those observed with other perforated spacers, resulting in the cleanest membrane surface. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The effect of inlet boundary conditions in image-based CFD modeling of aortic flow

    NASA Astrophysics Data System (ADS)

    Madhavan, Sudharsan; Kemmerling, Erica Cherry

    2016-11-01

    CFD of cardiovascular flow is a growing and useful field, but simulations are subject to a number of sources of uncertainty which must be quantified. Our work focuses on the uncertainty introduced by the selection of inlet boundary conditions in an image-based, patient-specific model of the aorta. Specifically, we examined the differences between plug flow, fully developed parabolic flow, linear shear flows, skewed parabolic flow profiles, and Womersley flow. Only the shape of the inlet velocity profile was varied-all other parameters were held constant between simulations, including the physiologically realistic inlet flow rate waveform and outlet flow resistance. We found that flow solutions with different inlet conditions did not exhibit significant differences beyond 1 . 75 inlet diameters from the aortic root. Time averaged wall shear stress (TAWSS) was also calculated. The linear shear velocity boundary condition solution exhibited the highest spatially averaged TAWSS, about 2 . 5 % higher than the fully developed parabolic velocity boundary condition, which had the lowest spatially averaged TAWSS.

  14. Electroosmotic Flow Rectification in Membranes with Asymmetrically Shaped Pores: Effects of Current and Pore Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Gregory W.; Lopez, Marcos M.; Ramiah Rajasekaran, Pradeep

    2015-07-09

    We have recently demonstrated a new electrokinetic phenomenon—electroosmotic flow rectification in membranes with asymmetrically shaped pores. Flow rectification means that at constant driving force the flow rate in one direction through the membrane is faster than the flow rate in the opposite direction. EOF rectification could be of practical use in microfluidic devices incorporating porous membranes, but additional research is required. We explore here the effects of two key experimental variables—current density used to drive flow through the membrane and membrane pore density—on EOF rectification. We have found that the extent of EOF rectification, as quantified by the rectification ratio,more » increases with increasing current density. In contrast, the rectification ratio decreases with increasing membrane pore density. We propose explanations for these results based on simple EOF and membrane-transport theories.« less

  15. Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition.

    PubMed

    Butcher, Jonathan T; McQuinn, Tim C; Sedmera, David; Turner, Debi; Markwald, Roger R

    2007-05-25

    Endocardial cushions are critical to maintain unidirectional blood flow under constantly increasing hemodynamic forces, but the interrelationship between endocardial cushion structure and the mechanics of atrioventricular junction function is poorly understood. Atrioventricular (AV) canal motions and blood velocities of embryonic chicks at Hamburger and Hamilton (HH) stages 17, 21, and 25 were quantified using ultrasonography. Similar to the embryonic zebrafish heart, the HH17 AV segment functions like a suction pump, with the cushions expanding in a wave during peak myocardial contraction and becoming undetectable during the relaxation phase. By HH25, the AV canal contributes almost nothing to the piston-like propulsion of blood, but the cushions function as stoppers apposing blood flow with near constant thickness. Using a custom built mesomechanical testing system, we quantified the nonlinear pseudoelastic biomechanics of developing AV cushions, and found that both AV cushions increased in effective modulus between HH17 and HH25. Enzymatic digestion of major structural constituent collagens or glycosaminoglycans resulted in distinctly different stress-strain curves suggestive of their individual contributions. Mixture theory using histologically determined volume fractions of cells, collagen, and glycosaminoglycans showed good prediction of cushion material properties regardless of stage and cushion position. These results have important implications in valvular development, as biomechanics may play a larger role in stimulating valvulogenic events than previously thought.

  16. Noninvasive quantitative measurement of colloid transport in mesoscale porous media using time lapse fluorescence imaging.

    PubMed

    Bridge, Jonathan W; Banwart, Steven A; Heathwaite, A Louise

    2006-10-01

    We demonstrate noninvasive quantitative imaging of colloid and solute transport at millimeter to decimeter (meso-) scale. Ultraviolet (UV) excited fluorescent solute and colloid tracers were independently measured simultaneously during co-advection through saturated quartz sand. Pulse-input experiments were conducted at constant flow rates and ionic strengths 10(-3), 10(-2) and 10(-1) M NaCl. Tracers were 1.9 microm carboxylate latex microspheres and disodium fluorescein. Spatial moments analysis was used to quantify relative changes in mass distribution of the colloid and solute tracers over time. The solute advected through the sand at a constant velocity proportional to flow rate and was described well by a conservative transport model (CXTFIT). In unfavorable deposition conditions increasing ionic strength produced significant reduction in colloid center of mass transport velocity over time. Velocity trends correlated with the increasing fraction of colloid mass retained along the flowpath. Attachment efficiencies (defined by colloid filtration theory) calculated from nondestructive retained mass data were 0.013 +/- 0.03, 0.09 +/- 0.02, and 0.22 +/- 0.05 at 10(-3), 10(-2), and 10(-1) M ionic strength, respectively, which compared well with previously published data from breakthrough curves and destructive sampling. Mesoscale imaging of colloid mass dynamics can quantify key deposition and transport parameters based on noninvasive, nondestructive, spatially high-resolution data.

  17. Dynamic modeling for flow-activated chloride-selective membrane current in vascular endothelial cells.

    PubMed

    Qin, Kai-Rong; Xiang, Cheng; Cao, Ling-Ling

    2011-10-01

    In this paper, a dynamic model is proposed to quantify the relationship between fluid flow and Cl(-)-selective membrane current in vascular endothelial cells (VECs). It is assumed that the external shear stress would first induce channel deformation in VECs. This deformation could activate the Cl(-) channels on the membrane, thus allowing Cl(-) transport across the membrane. A modified Hodgkin-Huxley model is embedded into our dynamic system to describe the electrophysiological properties of the membrane, such as the Cl(-)-selective membrane current (I), voltage (V) and conductance. Three flow patterns, i. e., steady flow, oscillatory flow, and pulsatile flow, are applied in our simulation studies. When the extracellular Cl(-) concentration is constant, the I-V characteristics predicted by our dynamic model shows strong consistency with the experimental observations. It is also interesting to note that the Cl(-) currents under different flow patterns show some differences, indicating that VECs distinguish among and respond differently to different types of flows. When the extracellular Cl(-) concentration keeps constant or varies slowly with time (i.e. oscillates at 0.02 Hz), the convection and diffusion of Cl(-) in extracellular space can be ignored and the Cl(-) current is well captured by the modified Hodgkin-Huxley model alone. However, when the extracellular Cl(-) varies fast (i.e., oscillates at 0.2 Hz), the convection and diffusion effect should be considered because the Cl(-) current dynamics is different from the case where the convection-diffusion effect is simply ignored. The proposed dynamic model along with the simulation results could not only provide more insights into the flow-regulated electrophysiological behavior of the cell membrane but also help to reveal new findings in the electrophysiological experimental investigations of VECs in response to dynamic flow and biochemical stimuli.

  18. Estimating recharge rates with analytic element models and parameter estimation

    USGS Publications Warehouse

    Dripps, W.R.; Hunt, R.J.; Anderson, M.P.

    2006-01-01

    Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).

  19. Hyporheic zone denitrification: controls on effective reaction depth and contribution to whole-stream mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Böhlke, John Karl; Voytek, Mary A.; Scott, Durelle; Tobias, Craig R.

    2013-01-01

    Stream denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field. To demonstrate at a field site, we injected 15NO3−, Br (conservative tracer), and SF6 (gas exchange tracer) and compared measured whole-stream denitrification with in situ hyporheic denitrification in shallow and deeper flow paths of contrasting geomorphic units. Hyporheic denitrification accounted for between 1 and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (greater substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance (nirS), and measures of granular surface area and presence of anoxic microzones. The dimensionless product of the reaction rate constant and hyporheic residence time, λhzτhz define a Damköhler number, Daden-hz that was optimal in the subset of hyporheic flow paths where Daden-hz ≈ 1. Optimal conditions exclude inefficient deep pathways transport where substrates are used up and also exclude inefficient shallow pathways that require repeated hyporheic entries and exits to complete the reaction. The whole-stream reaction significance, Rs (dimensionless), was quantified by multiplying Daden-hz by the proportion of stream discharge passing through the hyporheic zone. Together these two dimensionless metrics, one flow-path scale and the other reach-scale, quantify the whole-stream significance of hyporheic denitrification. One consequence is that the effective zone of significant denitrification often differs from the full depth of the hyporheic zone, which is one reason why whole-stream denitrification rates have not previously been explained based on total hyporheic-zone metrics such as hyporheic-zone size or residence time.

  20. Microvascular flow estimation by contrast-assisted ultrasound B-scan and statistical parametric images.

    PubMed

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng

    2009-05-01

    The microbubbles destruction/replenishment technique has been previously applied to estimating blood flow in the microcirculation. The rate of increase of the time-intensity curve (TIC) due to microbubbles flowing into the region of interest (ROI), as measured from B-mode images, closely reflects the flow velocity. In previous studies, we proposed a new approach called the time-Nakagami-parameter curve (TNC) obtained from Nakagami images to monitor microbubble replenishment for quantifying the microvascular flow velocity. This study aimed to further explore some effects that may affect the TNC to estimate the microflow, including microbubble concentration, ultrasound transmitting energy, attenuation, intrinsic noise, and tissue clutter. In order to well control each effect production, we applied a typical simulation method to investigate the TIC and TNC. The rates of increase of the TIC and TNC were expressed by the rate constants beta(I) and beta(N), respectively, of a monoexponential model. The results show that beta(N) quantifies the microvascular flow velocity similarly to the conventional beta(I) . Moreover, the measures of beta(I) and beta(N) are not influenced by microbubble concentration, transducer excitation energy, and attenuation effect. Although the effect of intrinsic signals contributed by noise and blood would influence the TNC behavior, the TNC method has a better tolerance of tissue clutter than the TIC does, allowing the presence of some clutter components in the ROI. The results suggest that the TNC method can be used as a complementary tool for the conventional TIC to reduce the wall filter requirements for blood flow measurement in the microcirculation.

  1. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion

    PubMed Central

    Niehorster, Diederick C.

    2017-01-01

    How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272

  2. Potential for saltwater intrusion into the lower Tamiami aquifer near Bonita Springs, southwestern Florida

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Edwards, K. Michelle

    2003-01-01

    A study was conducted to examine the potential for saltwater intrusion into the lower Tamiami aquifer beneath Bonita Springs in southwestern Florida. Field data were collected, and constant- and variable-density ground-water flow simulations were performed that: (1) spatially quantified modern and seasonal stresses, (2) identified potential mechanisms of saltwater intrusion, and (3) estimated the potential extent of saltwater intrusion for the area of concern. MODFLOW and the inverse modeling routine UCODE were used to spatially quantify modern and seasonal stresses by calibrating a constant-density ground-water flow model to field data collected in 1996. The model was calibrated by assuming hydraulic conductivity parameters were accurate and by estimating unmonitored ground-water pumpage and potential evapotranspiration with UCODE. Uncertainty in these estimated parameters was quantified with 95-percent confidence intervals. These confidence intervals indicate more uncertainty (or less reliability) in the estimates of unmonitored ground-water pumpage than estimates of pan-evaporation multipliers, because of the nature and distribution of observations used during calibration. Comparison of simulated water levels, streamflows, and net recharge with field data suggests the model is a good representation of field conditions. Potential mechanisms of saltwater intrusion into the lower Tamiami aquifer include: (1) lateral inland movement of the freshwater-saltwater interface from the southwestern coast of Florida; (2) upward leakage from deeper saline water-bearing zones through natural upwelling and upconing, both of which could occur as diffuse upward flow through semiconfining layers, conduit flow through karst features, or pipe flow through leaky artesian wells; (3) downward leakage of saltwater from surface-water channels; and (4) movement of unflushed pockets of relict seawater. Of the many potential mechanisms of saltwater intrusion, field data and variable-density ground-water flow simulations suggest that upconing is of utmost concern, and lateral encroachment is of second-most concern. This interpretation is uncertain, however, because the predominance of saltwater intrusion through leaky artesian wells with connection to deeper, more saline, and higher pressure aquifers was difficult to establish. Effective management of ground-water resources in southwestern Florida requires an understanding of the potential extent of saltwater intrusion in the lower Tamiami aquifer near Bonita Springs. Variable-density, ground-water flow simulations suggest that when saltwater is at dynamic equilibrium with 1996 seasonal stresses, the extent of saltwater intrusion is about 100 square kilometers areally and 70,000 hectare-meters volumetrically. The volumetric extent of saltwater intrusion was most sensitive to changes in recharge, ground-water pumpage, sea level, salinity of the Gulf of Mexico, and the potentiometric surface of the sandstone aquifer, respectively.

  3. Dynamic Characteristics of The DSI-Type Constant-Flow Valves

    NASA Astrophysics Data System (ADS)

    Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han

    Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.

  4. Hydrologic response to valley-scale structure in alpine headwaters

    USGS Publications Warehouse

    Weekes, Anne A.; Torgersen, Christian E.; Montgomery, David R.; Woodward, Andrea; Bolton, Susan M.

    2015-01-01

    To better evaluate potential differences in streamflow response among basins with extensive coarse depositional features and those without, we examined the relationships between streamflow discharge, stable isotopes, water temperature and the amplitude of the diurnal signal at five basin outlets. We also quantified the percentages of colluvial channel length measured along the stepped longitudinal profile. Colluvial channels, characterized by the presence of surficial, coarse-grained depositional features, presented sediment-rich, transport-limited morphologies that appeared to have a cumulative effect on the timing and volume of flow downstream. Measurements taken from colluvial channels flowing through depositional landforms showed median recession constants (Kr) of 0.9-0.95, δ18O values of ≥−14.5 and summer diurnal amplitudes ≤0.8 as compared with more typical surface water recession constant values of 0.7, δ18O ≤ −13.5 and diurnal amplitudes >2.0. Our results demonstrated strong associations between the percentage of colluvial channel length within a catchment and moderated streamflow regimes, water temperatures, diurnal signals and depleted δ18O related to groundwater influx.

  5. Finite-size effects on bacterial population expansion under controlled flow conditions

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc; Toschi, Federico

    2017-03-01

    The expansion of biological species in natural environments is usually described as the combined effect of individual spatial dispersal and growth. In the case of aquatic ecosystems flow transport can also be extremely relevant as an extra, advection induced, dispersal factor. We designed and assembled a dedicated microfluidic device to control and quantify the expansion of populations of E. coli bacteria under both co-flowing and counter-flowing conditions, measuring the front speed at varying intensity of the imposed flow. At variance with respect to the case of classic advective-reactive-diffusive chemical fronts, we measure that almost irrespective of the counter-flow velocity, the front speed remains finite at a constant positive value. A simple model incorporating growth, dispersion and drift on finite-size hard beads allows to explain this finding as due to a finite volume effect of the bacteria. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) that ignore the finite size of organisms may be inaccurate to describe the physics of spatial growth dynamics of bacteria.

  6. Very high pressure liquid chromatography using core-shell particles: quantitative analysis of fast gradient separations without post-run times.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges

    2014-01-17

    Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Detonation in TATB Hemispheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druce, B; Souers, P C; Chow, C

    2004-03-17

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. Themore » problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.« less

  8. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  9. Operation of Darrieus turbines in constant circulation framework

    NASA Astrophysics Data System (ADS)

    Gorle, J. M. R.; Chatellier, L.; Pons, F.; Ba, M.

    2017-07-01

    Analytical and computational studies of flow across a low-speed marine turbine of Darrieus type with pitching blades have been carried out for flowfield and performance evaluation. The objective of this study is to develop efficient blade pitching laws to arrest or control the vortex shedding from the blades during turbine's operation. This is achieved by imparting an arbitrary constant amount of circulation to the blades, where Kelvin's theorem is respected. This paper presents the extension of the application of conformal mapping to produce the time-dependent flow over a rotating turbine blade in order to develop a quantified relationship between the blade's orientation with respect to the rotor's tangent and its rotational motion. The flow development is based on the analytical treatment given to potential flow formulation through Laurent series decomposition, where the Kutta condition is satisfied. The pitch control law and the analytical modeling of the hydrodynamic forces acting on the blade are derived based on Kelvin's theorem for the conservation of circulation. The application of this pitch control law in the real flow conditions is however limited due to viscous losses and rotational effects. Therefore, a 2D computational fluid dynamics (CFD) study with the shear stress transport (SST) k -ω turbulence model has been performed to examine the flow across a 4-bladed turbine model. While validating the analytical work, the numerical investigation reveals the applicability and limitations of circulation-controlled blade pitching laws in real flow conditions. In particular, a reference equivalent angle of attack is defined, which must be contained in a tight range in order to effectively prevent vortex shedding at a given tip-speed ratio.

  10. Quantifying exchange between groundwater and surface water in rarely measured organic sediments

    NASA Astrophysics Data System (ADS)

    Rosenberry, D. O.; Cavas, M.; Keith, D.; Gefell, M. J.; Jones, P. M.

    2016-12-01

    Transfer of water and chemicals between poorly competent organic sediments and surface water in low-energy riverine and lentic settings depends on several factors, including rate and direction of flow, redox state, number and type of benthic invertebrates, and chemical gradients at and near the sediment-water interface. In spite of their commonly large areal extent, direct measurements of flow in soft, organic sediments are rarely made and little is known about flux direction, rate, or heterogeneity. Commonly used monitoring wells are difficult to install and suffer from slow response to changing hydraulic head due to the low permeability of these sediments. Seepage meters can directly quantify seepage flux if several challenges can be overcome. Meters are difficult to install and operate where water is deep, visibility is poor, and the position of the sediment-water interface is not readily apparent. Soft, easily eroded sediment can be displaced during meter installation, creating bypass flow beneath the bottom of the seepage cylinder. Poorly competent sediments often cannot support the weight of the meters; they slowly sink into the bed and displace water inside the seepage cylinder, which leads to the interpretation of large upward flow. Decaying organic material within the sediment generates gas that can displace water and corrupt seepage-meter measurements. Several inexpensive modifications to a standard seepage meter, as well as precautions during installation and operation, can minimize these sources of error. Underwater video cameras can be mounted to the meter to remotely observe sediment disturbance during sensor installation and monitor the stability of the meter insertion depth during the period of deployment. Anchor rods can be driven a meter or more into the sediment until refusal, firmly anchoring the seepage meter at a constant sediment insertion depth. Data collected from modified seepage meters installed in Minnesota and New York demonstrate the importance of quantifying flows in these challenging settings where biogeochemistry is complex and seepage rates commonly have been assumed to be insignificantly small.

  11. Modeling multidomain hydraulic properties of shrink-swell soils

    NASA Astrophysics Data System (ADS)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  12. Role of endothelium sensitivity to shear stress in noradrenaline-induced constriction of feline femoral arterial bed under constant flow and constant pressure perfusions.

    PubMed

    Kartamyshev, Sergey P; Balashov, Sergey A; Melkumyants, Arthur M

    2007-01-01

    The effect of shear stress at the endothelium in the attenuation of the noradrenaline-induced constriction of the femoral vascular bed perfused at a constant blood flow was investigated in 16 anesthetized cats. It is known that the adrenergic vasoconstriction of the femoral vascular bed is considerably greater at a constant pressure perfusion than at a constant blood flow. This difference may depend on the ability of the endothelium to relax smooth muscle in response to an increase in wall shear stress. Since the shear stress is directly related to the blood flow and inversely related to the third power of vessel diameter, vasoconstriction at a constant blood flow increases the wall shear stress that is the stimulus for smooth muscle relaxation opposing constriction. On the other hand, at a constant perfusion pressure, vasoconstriction is accompanied by a decrease in flow rate, which prevents a wall shear stress increase. To reveal the effect of endothelial sensitivity to shear stress, we compared noradrenaline-induced changes in total and proximal arterial resistances during perfusion of the hind limb at a constant blood flow and at a constant pressure in vessels with intact and injured endothelium. We found that in the endothelium-intact bed the same concentration of noradrenaline at a constant flow caused an increase in overall vascular peripheral resistance that was half as large as at a constant perfusion pressure. This difference is mainly confined to the proximal arterial vessels (arteries and large arterioles) whose resistance at a constant flow increased only 0.19 +/- 0.03 times compared to that at a constant pressure. The removal of the endothelium only slightly increased constrictor responses at the perfusion under a constant pressure (noradrenaline-induced increases of both overall and proximal arterial resistance augmented by 12%), while the responses of the proximal vessels at a constant flow became 4.7 +/- 0.4 times greater than in the endothelium-intact bed. A selective blockage of endothelium sensitivity to shear stress using a glutaraldehyde dimer augmented the constrictor responses of the proximal vessels at a constant flow 4.6-fold (+/-0.3), but had no significant effect on the responses at a constant pressure. These results are consistent with the conclusion that the difference in constrictor responses at constant flow and pressure perfusions depends mainly on the smooth muscle relaxation caused by increased wall shear stress. Copyright (c) 2007 S. Karger AG, Basel.

  13. Test and evaluation of constant-flow devices for use in SSN AFFF proportioning systems. Interim report, January-May 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, F.W.; Back, G.G.; Burns, R.E.

    1986-11-04

    Constant flow devices, which deliver a constant flow of liquid over a range of upstream and downstream pressures, have been suggested as an alternative to orifice plates for proportioning AFFF in SSN 21 fire-suppression systems. Operational and performance characteristics of two lightweight, inexpensive, commercially available constant-flow devices have significant advantages over orifice plates. Both models tested, however, showed performance degradation when subjected to simulated service conditions. A constant flow device with improved resistance to wear and to AFFF exposure is desirable. Since the constant-flow control devices tested improves proportioning efficiency but do not have optimum characteristics, investigation of improved devicesmore » or methods is recommended.« less

  14. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE PAGES

    GS, Sidharth; Candler, Graham V.

    2018-05-08

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  15. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GS, Sidharth; Candler, Graham V.

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  16. Dynamic shear-stress-enhanced rates of nutrient consumption in gas-liquid semi-continuous-flow suspensions

    NASA Astrophysics Data System (ADS)

    Belfiore, Laurence A.; Volpato, Fabio Z.; Paulino, Alexandre T.; Belfiore, Carol J.

    2011-12-01

    The primary objective of this investigation is to establish guidelines for generating significant mammalian cell density in suspension bioreactors when stress-sensitive kinetics enhance the rate of nutrient consumption. Ultra-low-frequency dynamic modulations of the impeller (i.e., 35104 Hz) introduce time-dependent oscillatory shear into this transient analysis of cell proliferation under semi-continuous creeping flow conditions. Greater nutrient consumption is predicted when the amplitude A of modulated impeller rotation increases, and stress-kinetic contributions to nutrient consumption rates increase linearly at higher modulation frequency via an application of fluctuation-dissipation response. Interphase mass transfer is required to replace dissolved oxygen as it is consumed by aerobic nutrient consumption in the liquid phase. The theory and predictions described herein could be important at small length scales in the creeping flow regime where viscous shear is significant at the interface between the nutrient medium and isolated cells in suspension. Two-dimensional flow around spherically shaped mammalian cells, suspended in a Newtonian culture medium, is analyzed to calculate the surface-averaged magnitude of the velocity gradient tensor and modify homogeneous rates of nutrient consumption that are stimulated by viscous shear, via the formalism of stress-kinetic reciprocal relations that obey Curie's theorem in non-equilibrium thermodynamics. Time constants for stress-free free and stress-sensitive stress nutrient consumption are defined and quantified to identify the threshold (i.e., stress,threshold) below which the effect of stress cannot be neglected in accurate predictions of bioreactor performance. Parametric studies reveal that the threshold time constant for stress-sensitive nutrient consumption stress,threshold decreases when the time constant for stress-free nutrient consumption free is shorter. Hence, stress,threshold depends directly on free. In other words, the threshold rate of stress-sensitive nutrient consumption is higher when the stress-free rate of nutrient consumption increases. Modulated rotation of the impeller, superimposed on steady shear, increases stress,threshold when free is constant, and stress,threshold depends directly on the amplitude A of these angular velocity modulations.

  17. Soot loading in a generic gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Rosfjord, T. J.

    1987-01-01

    Variation in soot loading along the centerline of a generic gas turbine combustor was experimentally investigated. The 12.7-cm dia burner consisted of six sheet-metal louvers. Soot loading along the burner length was quantified by acquiring measurements first at the exit of the full-length combustor and then at upstream stations by sequential removal of liner louvers to shorten the burner length. Alteration of the flow field approaching removed louvers, maintaining a constant liner pressure drop. Burner exhaust flow was sampled at the burner centerline to determine soot mass concentration and smoke number. Characteristic particle size and number density, transmissivity of the exhaust flow, and local radiation from luminous soot particles in the exhaust flow were determined by optical techniques. Four test fuels were burned at three fuel-air ratios to determine fuel chemical property and flow temperature influences. Data were acquired at two combustor pressures. Particulate concentration data indicated a strong oxidation mechanism in the combustor secondary zone, though the oxidation was significantly affected by flow temperature. Soot production was directly related to fuel smoke point. Less soot production and lower secondary-zone oxidation rates were observed at reduced combustor pressure.

  18. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry.

    PubMed

    Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A

    2017-10-20

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.

  19. Characterization of polymerized liposomes using a combination of dc and cyclical electrical field-flow fractionation.

    PubMed

    Sant, Himanshu J; Chakravarty, Siddharth; Merugu, Srinivas; Ferguson, Colin G; Gale, Bruce K

    2012-10-02

    Characterization of polymerized liposomes (PolyPIPosomes) was carried out using a combination of normal dc electrical field-flow fractionation and cyclical electrical field-flow fractionation (CyElFFF) as an analytical technique. The constant nature of the carrier fluid and channel configuration for this technique eliminates many variables associated with multidimensional analysis. CyElFFF uses an oscillating field to induce separation and is performed in the same channel as standard dc electrical field-flow fractionation separation. Theory and experimental methods to characterize nanoparticles in terms of their sizes and electrophoretic mobilities are discussed in this paper. Polystyrene nanoparticles are used for system calibration and characterization of the separation performance, whereas polymerized liposomes are used to demonstrate the applicability of the system to biomedical samples. This paper is also the first to report separation and a higher effective field when CyElFFF is operated at very low applied voltages. The technique is shown to have the ability to quantify both particle size and electrophoretic mobility distributions for colloidal polystyrene nanoparticles and PolyPIPosomes.

  20. Experiment for validation of fluid-structure interaction models and algorithms.

    PubMed

    Hessenthaler, A; Gaddum, N R; Holub, O; Sinkus, R; Röhrle, O; Nordsletten, D

    2017-09-01

    In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established. Focus of the experiment is on biomedical engineering applications with flow being in the laminar regime with Reynolds numbers 1283 and 651. Flow and solid domains were defined using computer-aided design (CAD) tools. The experimental design aimed at providing a straightforward boundary condition definition. Material parameters and mechanical response of a moderately viscous Newtonian fluid and a nonlinear incompressible solid were experimentally determined. A comprehensive data set was acquired by using magnetic resonance imaging to record the interaction between the fluid and the solid, quantifying flow and solid motion. Copyright © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

  1. Impact of CO2 injection protocol on fluid-solid reactivity: high-pressure and temperature microfluidic experiments in limestone

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari

    2017-04-01

    Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.

  2. Utilizing dimensional analysis with observed data to determine the significance of hydrodynamic solutions in coastal hydrology

    USGS Publications Warehouse

    Swain, Eric D.; Decker, Jeremy D.; Hughes, Joseph D.

    2014-01-01

    In this paper, the authors present an analysis of the magnitude of the temporal and spatial acceleration (inertial) terms in the surface-water flow equations and determine the conditions under which these inertial terms have sufficient magnitude to be required in the computations. Data from two South Florida field sites are examined and the relative magnitudes of temporal acceleration, spatial acceleration, and the gravity and friction terms are compared. Parameters are derived by using dimensionless numbers and applied to quantify the significance of the hydrodynamic effects. The time series of the ratio of the inertial and gravity terms from field sites are presented and compared with both a simplified indicator parameter and a more complex parameter called the Hydrodynamic Significance Number (HSN). Two test-case models were developed by using the SWIFT2D hydrodynamic simulator to examine flow behavior with and without the inertial terms and compute the HSN. The first model represented one of the previously-mentioned field sites during gate operations of a structure-managed coastal canal. The second model was a synthetic test case illustrating the drainage of water down a sloped surface from an initial stage while under constant flow. The analyses indicate that the times of substantial hydrodynamic effects are sporadic but significant. The simplified indicator parameter correlates much better with the hydrodynamic effect magnitude for a constant width channel such as Miami Canal than at the non-uniform North River. Higher HSN values indicate flow situations where the inertial terms are large and need to be taken into account.

  3. Changes to the geometry and fluid mechanics of the carotid siphon in the pediatric Moyamoya disease.

    PubMed

    Jamil, Muhammad; Tan, Germaine Xin Yi; Huq, Mehnaz; Kang, Heidi; Lee, Zhi Rui; Tang, Phua Hwee; Hu, Xi Hong; Yap, Choon Hwai

    2016-12-01

    The Moyamoya disease is a cerebrovascular disease that causes occlusion of the distal end of the internal carotid artery, leading to the formation of multiple tiny collateral arteries. To date, the pathogenesis of Moyamoya is unknown. Improved understanding of the changes to vascular geometry and fluid mechanics of the carotid siphon during disease may improve understanding of the pathogenesis, prognosis techniques and disease management. A retrospective analysis of Magnetic Resonance Angiography (MRA) images was performed for Moyamoya pediatric patients (MMD) (n = 23) and control (Ctrl) pediatric patients (n = 20). The Ctrl group was composed of patients who complained of headache and had normal MRA. We performed segmentation of MRA images to quantify geometric parameters of the artery. Computational fluid dynamics (CFD) was performed to quantify the hemodynamic parameters. MMD internal carotid and carotid siphons were smaller in cross-sectional areas, and shorter in curved vascular length. Vascular curvature remained constant over age and vascular size and did not change between Ctrl and MMD, but MMD carotid siphon had lower tortuosity in the posterior bend, and higher torsion in the anterior bend. Wall shear stress and secondary flows were significantly lower in MMD, but the ratio of secondary flow kinetic energy to primary flow kinetic energy were similar between MMD and Ctrl. There were alterations to both the geometry and the flow mechanics of the carotid siphons of Moyamoya patients but it is unclear whether hemodynamics is the cause or the effect of morphological changes observed.

  4. The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.

    2016-10-01

    Aperture has a controlling impact on porosity and permeability and is a source of uncertainty in modeling of naturally fractured reservoirs. This uncertainty results from difficulties in accurately quantifying aperture in the subsurface and from a limited fundamental understanding of the mechanical and diagenetic processes that control aperture. In the absence of cement bridges and high pore pressure, fractures in the subsurface are generally considered to be closed. However, experimental work, outcrop analyses and subsurface data show that some fractures remain open, and that aperture varies even along a single fracture. However, most fracture flow models consider constant apertures for fractures. We create a stress-dependent heterogeneous aperture by combining Finite Element modeling of discrete fracture networks with an empirical aperture model. Using a modeling approach that considers fractures explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ1 has a controlling impact on aperture and permeability, where hydraulic opening is maximum for an angle of 15°. At this angle, the fracture experiences a minor amount of shear displacement that allows the fracture to remain open even when fluid pressure is lower than the local normal stress. Averaging the heterogeneous aperture to scale up permeability probably results in an underestimation of flow, indicating the need to incorporate full aperture distributions rather than simplified aperture models in reservoir-scale flow models.

  5. Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  6. Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  7. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    PubMed

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  < 0.05 considered as significant. Perfusate flow remained constant in the Constant flow group, but was more than halved during hypothermia in the Constant PPA group concomitant with a more fold increase in PVR. In the Constant flow group, Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the Constant flow group and between the groups at cessation of the experiments. In hypothermic rat lungs perfused at constant flow, fluid filtration coefficient per gram P LW and B/P ratio increased more than 10-fold concerted by increased hemoconcentration, but the changes were less in hypothermic lungs perfused at constant PPA.

  8. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In this regime, a thermal image provides a consistent estimate of the flow rate if the external cooling conditions are reasonably well constrained.

  9. Quantifying Channel Maintenance Instream Flows: An Approach for Gravel-Bed Streams in the Western United States

    Treesearch

    Larry J. Schmidt; John P. Potyondy

    2004-01-01

    This paper discusses one approach for quantifying channel maintenance instream flow necessary to achieve the Forest Service Organic Act purpose of securing favorable conditions of water flows. The approach is appropriate for quantifying channel maintenance flows on perennial, unregulated, snowmelt-dominated, gravel-bed streams with alluvial reaches. The approach...

  10. Sheared bioconvection in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Croze, O. A.; Ashraf, E. E.; Bees, M. A.

    2010-12-01

    The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.

  11. An exact closed form solution for constant area compressible flow with friction and heat transfer

    NASA Technical Reports Server (NTRS)

    Sturas, J. I.

    1971-01-01

    The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.

  12. Particle loading time and humidity effects on the efficiency of an N95 filtering facepiece respirator model under constant and inhalation cyclic flows.

    PubMed

    Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude

    2015-06-01

    It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed to be higher with the cyclic flow (170 as MIF) than with the equivalent constant flow (170 l min(-1)). For 50 and 80% RH levels, the penetrations were usually greater with a constant flow (170 l min(-1)) than with a cyclic flow (170 l min(-1) as MIF). It is concluded that, for the tested electrostatic N95 filters, the change in penetration as a function of the loading time does not necessarily take place with the same rate under constant (MIF) and cyclic flow. Moreover, for all tested flow rates, the penetration is not only affected by the loading time but also by the RH level. Lower RH levels (10%) have decreasing penetration rates in terms of loading time, while higher RH levels (50 and 80%) have increasing penetration rates. Also, the loading of the filter is normally accompanied with a shift of MPPS towards larger sizes. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  13. Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques.

    PubMed

    Kiss, Barbara; Polska, Elzbieta; Dorner, Guido; Polak, Kaija; Findl, Oliver; Mayrl, Gabriele Fuchsjäger; Eichler, Hans-Georg; Wolzt, Michael; Schmetterer, Leopold

    2002-07-01

    Retinal vasculature shows pronounced vasoconstriction in response to hyperoxia, which appears to be related to the constant oxygen demand of the retina. However, the exact amount of blood flow reduction and the exact time course of this phenomenon are still a matter of debate. We set out to investigate the retinal response to hyperoxia using innovative techniques for the assessment of retinal hemodynamics. In a total of 48 healthy volunteers we studied the effect of 100% O(2) breathing on retinal blood flow using two methods. Red blood cell movement in larger retinal veins was quantified with combined laser Doppler velocimetry and retinal vessel size measurement. Retinal white blood cell movement was quantified with the blue field entoptic technique. The time course of retinal vasoconstriction in response to hyperoxia was assessed by continuous vessel size determination using the Zeiss retinal vessel analyzer. The response to hyperoxia as measured with combined laser Doppler velocimetry and vessel size measurement was almost twice as high as that observed with the blue field technique. Vasoconstriction in response to 100% O(2) breathing occurred within the first 5 min and no counterregulatory or adaptive mechanisms were observed. Based on these results we hypothesize that hyperoxia-induced vasoconstriction differentially affects red and white blood cell movement in the human retina. This hypothesis is based on the complex interactions between red and white blood cells in microcirculation, which have been described in detail for other vascular beds.

  14. A root-mean-square pressure fluctuations model for internal flow applications

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1985-01-01

    A transport equation for the root-mean-square pressure fluctuations of turbulent flow is derived from the time-dependent momentum equation for incompressible flow. Approximate modeling of this transport equation is included to relate terms with higher order correlations to the mean quantities of turbulent flow. Three empirical constants are introduced in the model. Two of the empirical constants are estimated from homogeneous turbulence data and wall pressure fluctuations measurements. The third constant is determined by comparing the results of large eddy simulations for a plane channel flow and an annulus flow.

  15. Dilution and Mixing in transient velocity fields: a first-order analysis

    NASA Astrophysics Data System (ADS)

    Di Dato, Mariaines; de Barros, Felipe, P. J.; Fiori, Aldo; Bellin, Alberto

    2017-04-01

    An appealing remediation technique is in situ oxidation, which effectiveness is hampered by difficulties in obtaining good mixing of the injected oxidant with the contaminant, particularly when the contaminant plume is contained and therefore its deformation is physically constrained. Under such conditions (i.e. containment), mixing may be augmented by inducing temporal fluctuations of the velocity field. The temporal variability of the flow field may increase the deformation of the plume such that diffusive mass flux becomes more effective. A transient periodic velocity field can be obtained by an engineered sequence of injections and extractions from wells, which may serve also as a hydraulic barrier to confine the plume. Assessing the effectiveness of periodic flows to maximize solute mixing is a difficult task given the need to use a 3D setup and the large number of possible flow configurations that should be analyzed in order to identify the optimal one. This is the typical situation in which analytical solutions, though approximated, may assist modelers in screening possible alternative flow configurations such that solute dilution is maximized. To quantify dilution (i.e. a precondition that enables reactive mixing) we utilize the concept of the dilution index [1]. In this presentation, the periodic flow takes place in an aquifer with spatially variable hydraulic conductivity field which is modeled as a Stationary Spatial Random Function. We developed a novel first-order analytical solution of the dilution index under the hypothesis that the flow can be approximated as a sequence of steady state configurations with the mean velocity changing with time in intensity and direction. This is equivalent to assume that the characteristic time of the transient behavior is small compared to the period characterizing the change in time of the mean velocity. A few closed paths have been analyzed quantifying their effectiveness in enhancing dilution and thereby mixing between the resident contaminant and an oxidant. In particular, we considered three different flow configurations: (1) a "circular" pattern, in which the vector of the mean velocity rotates at a constant celerity; (2) a "shake" pattern, in which the velocity has a constant magnitude and changes direction alternatively leading to a "back and forth" type of movement and finally (3) a more general "shake and rotate" pattern, which combines the previous two configurations. The new analytical solution shows that dilution is affected by the configuration of the periodic mean flow. Results show that the dilution index increases when the rotation-shake configuration is adopted. In addition, the dilution index is augmented with the oscillation amplitude of the shake component. This analysis is useful to identify optimal flow configurations that may be approximately reproduced in the field and which efficiency may be checked more accurately by numerical simulations, thereby alleviating the computational burden by efficiently screening among alternative configurations. References [1] Kitanidis, P. K. (1994), The concept of the Dilution Index, Water Resour. Res., 30(7), 2011-2026, doi:10.1029/94WR00762.

  16. Observations of Methane and Ethylene Diffusion Flames Stabilized Around a Blowing Porous Sphere Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Sacksteder, Kurt; Baum, Howard R.

    1994-01-01

    This paper presents the experimental and theoretical results for expanding methane and ethylene diffusion flames in microgravity. A small porous sphere made from a low-density and low-heat-capacity insulating material was used to uniformly supply fuel at a constant rate to the expanding diffusion flame. A theoretical model which includes soot and gas radiation is formulated but only the problem pertaining to the transient expansion of the flame is solved by assuming constant pressure infinitely fast one-step ideal gas reaction and unity Lewis number. This is a first step toward quantifying the effect of soot and gas radiation on these flames. The theoretically calculated expansion rate is in good agreement with the experimental results. Both experimental and theoretical results show that as the flame radius increases, the flame expansion process becomes diffusion controlled and the flame radius grows as gamma t. Theoretical calculations also show that for a constant fuel mass injection rate a quasi-steady state is developed in the region surrounded by the flame and the mass flow rate at any location inside this region equals the mass injection rate.

  17. Preclinical Kinetic Analysis of the Caspase-3/7 PET Tracer 18F-C-SNAT: Quantifying the Changes in Blood Flow and Tumor Retention After Chemotherapy.

    PubMed

    Palner, Mikael; Shen, Bin; Jeon, Jongho; Lin, Jianguo; Chin, Frederick T; Rao, Jianghong

    2015-09-01

    Early detection of tumor response to therapy is crucial to the timely identification of the most efficacious treatments. We recently developed a novel apoptosis imaging tracer, (18)F-C-SNAT (C-SNAT is caspase-sensitive nanoaggregation tracer), that undergoes an intramolecular cyclization reaction after cleavage by caspase-3/7, a biomarker of apoptosis. This caspase-3/7-dependent reaction leads to an enhanced accumulation and retention of (18)F activity in apoptotic tumors. This study aimed to fully examine in vivo pharmacokinetics of the tracer through PET imaging and kinetic modeling in a preclinical mouse model of tumor response to systemic anticancer chemotherapy. Tumor-bearing nude mice were treated 3 times with intravenous injections of doxorubicin before undergoing a 120-min dynamic (18)F-C-SNAT PET/CT scan. Time-activity curves were extracted from the tumor and selected organs. A 2-tissue-compartment model was fitted to the time-activity curves from tumor and muscle, using the left ventricle of the heart as input function, and the pharmacokinetic rate constants were calculated. Both tumor uptake (percentage injected dose per gram) and the tumor-to-muscle activity ratio were significantly higher in the treated mice than untreated mice. Pharmacokinetic rate constants calculated by the 2-tissue-compartment model showed a significant increase in delivery and accumulation of the tracer after the systemic chemotherapeutic treatment. Delivery of (18)F-C-SNAT to the tumor tissue, quantified as K1, increased from 0.31 g⋅(mL⋅min)(-1) in untreated mice to 1.03 g⋅(mL⋅min)(-1) in treated mice, a measurement closely related to changes in blood flow. Accumulation of (18)F-C-SNAT, quantified as k3, increased from 0.03 to 0.12 min(-1), proving a higher retention of (18)F-C-SNAT in treated tumors independent from changes in blood flow. An increase in delivery was also found in the muscular tissue of treated mice without increasing accumulation. (18)F-C-SNAT has significantly increased tumor uptake and significantly increased tumor-to-muscle ratio in a preclinical mouse model of tumor therapy. Furthermore, our kinetic modeling of (18)F-C-SNAT shows that chemotherapeutic treatment increased accumulation (k3) in the treated tumors, independent of increased delivery (K1). © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Quantification aspects of constant pressure (ultra) high pressure liquid chromatography using mass-sensitive detectors with a nebulizing interface.

    PubMed

    Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G

    2013-01-25

    The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Steady and Unsteady Velocity Measurements in a Small Turbocharger Turbine with Computational Validation

    NASA Astrophysics Data System (ADS)

    Karamanis, N.; Palfreyman, D.; Arcoumanis, C.; Martinez-Botas, R. F.

    2006-07-01

    The detailed flow characteristics of three high-pressure-ratio mixed-flow turbines were investigated under both steady and pulsating flow conditions. Two rotors featured a constant inlet blade angle, one with 12 blades and the second with 10. The third rotor was shorter and had a nominally constant incidence angle. The rotors find application on an automotive high-speed large commercial diesel turbocharger. The steady flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0-mm ahead of the rotor leading edge and 9.5-mm downstream the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at two rotational speeds, 29,400 and 41,300-rpm. The results were resolved in a blade-to-blade sense to examine fully the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been verified. Regarding pulsating flow, the velocity data and their corresponding instantaneous velocity triangles were resolved in a blade-to-blade sense to understand better the complex phenomenon. The results highlighted the potential of a nominally constant incidence design to absorb better the inadequacy of the volute to discharge the exhaust gas uniformly along the blade leading edge. A double vortex rotating in a clockwise sense propagated on the plane normal to the meridional direction. This should be attributed to the effect of the passing blade that was acting as a blockage to the flow. The phenomenon was more pronounced near the suction and pressure surfaces of the blade, but diminished at the mid-passage region where the flow exhibited its best level of guidance. The full mixed flow turbine stage under transient conditions was modelled firstly with a 'steady' inlet and secondly with a 'pulsating' inlet boundary condition. In both cases comparison was made to experiment performance and LDV measurements. With the steady inlet boundary condition, a high level of accuracy was achieved when compared to the experimental performance and velocity field. The velocity along the leading edge showed the same discrepancy as the single passage analysis that is with the radial and axial component from mid span to the blade tip. At the trailing edge features identified in the experimental data are identified in the numerical results; the velocity field appears more 'diffused' across the plane as per the experimental data than from the single passage analysis. With the pulsating inlet boundary, the predicted velocity traces in the volute and close to the turbine lead and trailing edge show excellent agreement in both form (against time) and magnitude.

  20. Investigation of dynamic characteristics of a turbine-propeller engine

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L; Jacques, James R

    1951-01-01

    Time constants that characterize engine speed response of a turbine-propeller engine over the cruising speed range for various values of constant fuel flow and constant blade angle were obtained both from steady-state characteristics and from transient operation. Magnitude of speed response to changes in fuel flow and blade angle was investigated and is presented in the form of gain factors. Results indicate that at any given value of speed in the engine cruising speed range, time constants obtained both from steady-state characteristics and from transient operation agree satisfactorily for any given constant fuel flow, whereas time constants obtained from transient operation exceed time constants obtained from steady-state characteristics by approximately 14 percent for any given blade angle.

  1. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taber Wanstall, C.; Agrawal, Ajay K.; Bittle, Joshua A.

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recordedmore » by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Our results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.« less

  2. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry

    DOE PAGES

    Taber Wanstall, C.; Agrawal, Ajay K.; Bittle, Joshua A.

    2017-01-01

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recordedmore » by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Our results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.« less

  3. Fast gradient separation by very high pressure liquid chromatography: reproducibility of analytical data and influence of delay between successive runs.

    PubMed

    Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges

    2013-11-29

    Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.

  4. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1992-01-01

    Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.

  5. Constant gradient PFG sequence and automated cumulant analysis for quantifying dispersion in flow through porous media.

    PubMed

    Scheven, U M

    2013-12-01

    This paper describes a new variant of established stimulated echo pulse sequences, and an analytical method for determining diffusion or dispersion coefficients for Gaussian or non-Gaussian displacement distributions. The unipolar displacement encoding PFGSTE sequence uses trapezoidal gradient pulses of equal amplitude g and equal ramp rates throughout while sampling positive and negative halves of q-space. Usefully, the equal gradient amplitudes and gradient ramp rates help to reduce the impact of experimental artefacts caused by residual amplifier transients, eddy currents, or ferromagnetic hysteresis in components of the NMR magnet. The pulse sequence was validated with measurements of diffusion in water and of dispersion in flow through a packing of spheres. The analytical method introduced here permits the robust determination of the variance of non-Gaussian, dispersive displacement distributions. The noise sensitivity of the analytical method is shown to be negligible, using a demonstration experiment with a non-Gaussian longitudinal displacement distribution, measured on flow through a packing of mono-sized spheres. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Comparison of linear and nonlinear models for coherent hemodynamics spectroscopy (CHS)

    NASA Astrophysics Data System (ADS)

    Sassaroli, Angelo; Kainerstorfer, Jana; Fantini, Sergio

    2015-03-01

    A recently proposed linear time-invariant hemodynamic model for coherent hemodynamics spectroscopy1 (CHS) relates the tissue concentrations of oxy- and deoxy-hemoglobin (outputs of the system) to given dynamics of the tissue blood volume, blood flow and rate constant of oxygen diffusion (inputs of the system). This linear model was derived in the limit of "small" perturbations in blood flow velocity. We have extended this model to a more general model (which will be referred to as the nonlinear extension to the original model) that yields the time-dependent changes of oxy and deoxy-hemoglobin concentrations in response to arbitrary dynamic changes in capillary blood flow velocity. The nonlinear extension to the model relies on a general solution of the partial differential equation that governs the spatio-temporal behavior of oxygen saturation of hemoglobin in capillaries and venules on the basis of dynamic (or time resolved) blood transit time. We show preliminary results where the CHS spectra obtained from the linear and nonlinear models are compared to quantify the limits of applicability of the linear model.

  7. On blockage effects for a marine hydrokinetic turbine in free surface proximity

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Kolekar, N.

    2016-12-01

    Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.

  8. Mathematical and physical model of gravity-fed infusion outflow: application to soft-bag-packed solutions.

    PubMed

    Simon, N; Décaudin, B; Lannoy, D; Barthélémy, C; Lemdani, M; Odou, P

    2011-12-01

    Gravity-fed infusion (GFI) systems are acknowledged as being unable to keep their flow-rate constant. This may affect drug plasma levels such as aminoglycosides. Numerous factors have previously been cited, but their relative importance has never been quantified so far. The objective of this work is to identify the main factors that influence GFI in vitro outflow and to propose a mathematical model of flow-rate evolution as a function of time. In this model, pressure loss and infusion device creep have been considered as the main variation factors. Concomitantly, two experiments were undertaken. Firstly, the flow-rate evolution of an in vitro infusion of 250 mL of dextrose 5% was assessed. Secondly, the creep occurring on an infusion device was measured through a stress relaxation experiment. The experimental infusion flow-rate decreased by as much as 28.5% over 1 h. Simulated and experimental data are well correlated (r = 0.987; P < 0.0001). The maximum creep effect happens during the first 15 min of infusion. In this work, height of the liquid in the bag and tube creep were found to be the main variation factors in GFI flow-rate. This new mathematical model should help to explain the differences observed in drug plasma levels with gravity-fed devices.

  9. Quantifying the clay content with borehole depth and impact on reservoir flow

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  10. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  11. Photoacoustic thermal flowmetry with a single light source

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Lan, Bangxin; Hu, Leo; Chen, Ruimin; Zhou, Qifa; Yao, Junjie

    2017-09-01

    We report a photoacoustic thermal flowmetry based on optical-resolution photoacoustic microscopy (OR-PAM) using a single laser source for both thermal tagging and photoacoustic excitation. When an optically absorbing medium is flowing across the optical focal zone of OR-PAM, a small volume of the medium within the optical focus is repeatedly illuminated and heated by a train of laser pulses with a high repetition rate. The average temperature of the heated volume at each laser pulse is indicated by the photoacoustic signal excited by the same laser pulse due to the well-established linear relationship between the Grueneisen coefficient and the local temperature. The thermal dynamics of the heated medium volume, which are closely related to the flow speed, can therefore be measured from the time course of the detected photoacoustic signals. Here, we have developed a lumped mathematical model to describe the time course of the photoacoustic signals as a function of the medium's flow speed. We conclude that the rising time constant of the photoacoustic signals is linearly dependent on the flow speed. Thus, the flow speed can be quantified by fitting the measured photoacoustic signals using the derived mathematical model. We first performed proof-of-concept experiments using defibrinated bovine blood flowing in a plastic tube. The experiment results have demonstrated that the proposed method has high accuracy (˜±6%) and a wide range of measurable flow speeds. We further validated the method by measuring the blood flow speeds of the microvasculature in a mouse ear in vivo.

  12. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies

    NASA Astrophysics Data System (ADS)

    Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.

    2018-05-01

    Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.

  13. Very high pressure liquid chromatography using fully porous particles: quantitative analysis of fast gradient separations without post-run times.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges

    2014-01-10

    Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge

    USGS Publications Warehouse

    Krest, J.M.; Harvey, J.W.

    2003-01-01

    Radium activity in pore water of wetland sediments often differs from the amount expected from local production, decay, and exchange with solid phases. This disequilibrium results from vertical transport of radium with groundwater that flows between the underlying aquifer and surface water. In situations where groundwater recharge or discharge is significant, the rate of vertical water flow through wetland sediment can be determined from the radium disequilibrium by a combined model of transport, production, decay, and exchange with solid phases. We have developed and tested this technique at three sites in the freshwater portion of the Everglades by quantifying vertical advective velocities in areas with persistent groundwater recharge or discharge and estimating a coefficient of dispersion at a site that is subject to reversals between recharge and discharge. Groundwater velocities (v) were determined to be between 0 and -0.5 cm d-1 for a recharge site and 1.5 ?? 0.4 cm d-1 for a discharge site near Levee 39 in the Everglades. Strong gradients in 223Ra and 224Ra usually occurred at the base of the peat layer, which avoided the problems of other tracers (e.g., chloride) for which greatest sensitivity occurs near the peat surface - a zone readily disturbed by processes unrelated to groundwater flow. This technique should be easily applicable to any wetland system with different production rates of these isotopes in distinct sedimentary layers or surface water. The approach is most straightforward in systems where constant pore-water ionic strength can be assumed, simplifying the modeling of radium exchange.

  15. Characterization of Plastic Flow Pertinent to the Evolution of Bulk Residual Stress in Powder-Metallurgy, Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Fagin, P. N.; Goetz, R. L.; Furrer, D. U.; Dutton, R. E.

    2015-09-01

    The plastic-flow behavior which controls the formation of bulk residual stresses during final heat treatment of powder-metallurgy (PM), nickel-base superalloys was quantified using conventional (isothermal) stress-relaxation (SR) tests and a novel approach which simulates concurrent temperature and strain transients during cooling following solution treatment. The concurrent cooling/straining test involves characterization of the thermal compliance of the test sample. In turn, this information is used to program the ram-displacement- vs-time profile to impose a constant plastic strain rate during cooling. To demonstrate the efficacy of the new approach, SR tests (in both tension and compression) and concurrent cooling/tension-straining experiments were performed on two PM superalloys, LSHR and IN-100. The isothermal SR experiments were conducted at a series of temperatures between 1144 K and 1436 K (871 °C and 1163 °C) on samples that had been supersolvus solution treated and cooled slowly or rapidly to produce starting microstructures comprising coarse gamma grains and coarse or fine secondary gamma-prime precipitates, respectively. The concurrent cooling/straining tests comprised supersolvus solution treatment and various combinations of subsequent cooling rate and plastic strain rate. Comparison of flow-stress data from the SR and concurrent cooling/straining tests showed some similarities and some differences which were explained in the context of the size of the gamma-prime precipitates and the evolution of dislocation substructure. The magnitude of the effect of concurrent deformation during cooling on gamma-prime precipitation was also quantified experimentally and theoretically.

  16. Development and maintenance of a telescoping debris flow fan in response to human-induced fan surface channelization, Chalk Creek Valley Natural Debris Flow Laboratory, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Wasklewicz, T.; Scheinert, C.

    2016-01-01

    Channel change has been a constant theme throughout William L. Graf's research career. Graf's work has examined channel changes in the context of natural environmental fluctuations, but more often has focused on quantifying channel change in the context of anthropogenic modifications. Here, we consider how channelization of a debris flows along a bajada has perpetuated and sustained the development of 'telescoping' alluvial fan. Two-dimensional debris-flow modeling shows the importance of the deeply entrenched channelized flow in the development of a telescoping alluvial fan. GIS analyses of repeat (five different debris flows), high-resolution (5 cm) digital elevation models (DEMs) generated from repeat terrestrial laser scanning (TLS) data elucidate sediment and topographic dynamics of the new telescoping portion of the alluvial fan (the embryonic fan). Flow constriction from channelization helps to perpetuate debris-flow runout and to maintain the embryonic fan and telescoping nature of the alluvial fan complex. Embryonic fan development, in response to five debris flows, proceeds with a major portion of the flows depositing on the southern portion of the embryonic fan. The third through the fifth debris flows also begin to shift some deposition to the northern portion of the embryonic. The transfer of sediment from a higher portion of the embryonic fan to a lower portion continues currently on the embryonic fan. While channelized flow has been shown to be critical to the maintenance of the telescoping fan, the flow constriction has led to higher than background levels of sediment deposition in Chalk Creek, a tributary of the Arkansas River. A majority of the sediment from each debris flow is incorporated into Chalk Creek as opposed to being stored on the embryonic fan.

  17. Left Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations

    PubMed Central

    Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L.; Iaizzo, Paul A.; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin

    2018-01-01

    The aim of the present study is to characterize the hemodynamics of left ventricular (LV) geometries to examine the impact of trabeculae and papillary muscles (PMs) on blood flow using high performance computing (HPC). Five pairs of detailed and smoothed LV endocardium models were reconstructed from high-resolution magnetic resonance images (MRI) of ex-vivo human hearts. The detailed model of one LV pair is characterized only by the PMs and few big trabeculae, to represent state of art level of endocardial detail. The other four detailed models obtained include instead endocardial structures measuring ≥1 mm2 in cross-sectional area. The geometrical characterizations were done using computational fluid dynamics (CFD) simulations with rigid walls and both constant and transient flow inputs on the detailed and smoothed models for comparison. These simulations do not represent a clinical or physiological scenario, but a characterization of the interaction of endocardial structures with blood flow. Steady flow simulations were employed to quantify the pressure drop between the inlet and the outlet of the LVs and the wall shear stress (WSS). Coherent structures were analyzed using the Q-criterion for both constant and transient flow inputs. Our results show that trabeculae and PMs increase the intra-ventricular pressure drop, reduce the WSS and disrupt the dominant single vortex, usually present in the smoothed-endocardium models, generating secondary small vortices. Given that obtaining high resolution anatomical detail is challenging in-vivo, we propose that the effect of trabeculations can be incorporated into smoothed ventricular geometries by adding a porous layer along the LV endocardial wall. Results show that a porous layer of a thickness of 1.2·10−2 m with a porosity of 20 kg/m2 on the smoothed-endocardium ventricle models approximates the pressure drops, vorticities and WSS observed in the detailed models. PMID:29760665

  18. Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies

    DOE PAGES

    Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.

    2014-05-26

    Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends amongmore » streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.« less

  19. On the modelling of scalar and mass transport in combustor flows

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; So, R. M. C.

    1989-01-01

    Results are presented of a numerical study of swirling and nonswirling combustor flows with and without density variations. Constant-density arguments are used to justify closure assumptions invoked for the transport equations for turbulent momentum and scalar fluxes, which are written in terms of density-weighted variables. Comparisons are carried out with measurements obtained from three different axisymmetric model combustor experiments covering recirculating flow, swirling flow, and variable-density swirling flow inside the model combustors. Results show that the Reynolds stress/flux models do a credible job of predicting constant-density swirling and nonswirling combustor flows with passive scalar transport. However, their improvements over algebraic stress/flux models are marginal. The extension of the constant-density models to variable-density flow calculations shows that the models are equally valid for such flows.

  20. Numerical analysis of cell adhesion in capillary flow

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger; Ishikawa, Takuji

    2016-11-01

    Numerical simulation of cell adhesion was performed for capillaries whose diameter is comparable to or smaller than that of the cell. Despite a lot of works about leukocyte and tumor cell rolling, cell motion in capillaries has remained unclear. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram is obtained for various values of capillary diameter and receptor density. According to our numerical results, bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between PSGL-1 and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. This research was supported by JSPS KAKENHI Grant Numbers 25000008, 26107703, 14J03967. We also acknowledge support from the Tohoku University Division for International Advanced Research and Education Organization.

  1. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water

    PubMed Central

    Chitpong, Nithinart; Husson, Scott M.

    2016-01-01

    An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh) measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration. PMID:27999394

  2. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water.

    PubMed

    Chitpong, Nithinart; Husson, Scott M

    2016-12-20

    An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (R h ) measurements for PAA and PIA obtained from dynamic light scattering, which show that R h values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.

  3. Local thermodynamic equilibrium for globally disequilibrium open systems under stress

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury

    2016-04-01

    Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.

  4. Coupling of damped and growing modes in unstable shear flow

    DOE PAGES

    Fraser, A. E.; Terry, P. W.; Zweibel, E. G.; ...

    2017-06-14

    Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less

  5. Coupling of damped and growing modes in unstable shear flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, A. E.; Terry, P. W.; Zweibel, E. G.

    Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less

  6. Quantitative description and local structures of trivalent metal ions Eu(III) and Cm(III) complexed with polyacrylic acid.

    PubMed

    Montavon, G; Bouby, M; Huclier-Markai, S; Grambow, B; Geckeis, H; Rabung, T; Pashalidis, I; Amekraz, B; Moulin, C

    2008-11-15

    The trivalent metal ion (M(III)=Cm, Eu)/polyacrylic acid (PAA) system was studied in the pH range between 3 and 5.5 for a molar PAA-to-metal ratio above 1. The interaction was studied for a wide range of PAA (0.05 mg L(-1)-50 g L(-1)) and metal ion concentrations (2x10(-9)-10(-3) M). This work aimed at 3 goals (i) to determine the stoichiometry of M(III)-PAA complexes, (ii) to determine the number of complexed species and the local environment of the metal ion, and (iii) to quantify the reaction processes. Asymmetric flow-field-flow fractionation (AsFlFFF) coupled to ICP-MS evidenced that size distributions of Eu-PAA complexes and PAA were identical, suggesting that Eu bound to only one PAA chain. Time-resolved laser fluorescence spectroscopy (TRLFS) measurements performed with Eu and Cm showed a continuous shift of the spectra with increasing pH. The environment of complexed metal ions obviously changes with pH. Most probably, spectral variations arose from conformational changes within the M(III)-PAA complex due to pH variation. Complexation data describing the distribution of complexed and free metal ion were measured with Cm by TRLFS. They could be quantitatively described in the whole pH-range studied by considering the existence of only a single complexed species. This indicates that the slight changes in M(III) speciation with pH observed at the molecular level do not significantly affect the intrinsic binding constant. The interaction constant obtained from the modelling must be considered as a mean interaction constant.

  7. Rainfall and tillage effects on transport of fecal bacteria and sex hormones 17beta-estradiol and testosterone from broiler litter applications to a Georgia Piedmont Ultisol.

    PubMed

    Jenkins, Michael B; Truman, Clint C; Siragusa, Gregory; Line, Eric; Bailey, J Stan; Frye, Jonathan; Endale, Dinku M; Franklin, Dorcas H; Schomberg, Harry H; Fisher, Dwight S; Sharpe, Ronald R

    2008-09-15

    Poultry litter provides nutrients for crop and pasture production; however, it also contains fecal bacteria, sex hormones (17beta-estradiol and testosterone) and antibiotic residues that may contaminate surface waters. Our objective was to quantify transport of fecal bacteria, estradiol, testosterone and antibiotic residues from a Cecil sandy loam managed since 1991 under no-till (NT) and conventional tillage (CT) to which either poultry litter (PL) or conventional fertilizer (CF) was applied based on the nitrogen needs of corn (Zea mays L) in the Southern Piedmont of NE Georgia. Simulated rainfall was applied for 60 min to 2 by 3-m field plots at a constant rate in 2004 and variable rate in 2005. Runoff was continuously measured and subsamples taken for determining flow-weighted concentrations of fecal bacteria, hormones, and antibiotic residues. Neither Salmonella, nor Campylobacter, nor antimicrobial residues were detected in litter, soil, or runoff. Differences in soil concentrations of fecal bacteria before and after rainfall simulations were observed only for Escherichia coli in the constant rainfall intensity experiment. Differences in flow-weighted concentrations were observed only for testosterone in both constant and variable intensity rainfall experiments, and were greatest for treatments that received poultry litter. Total loads of E. coli and fecal enterococci, were largest for both tillage treatments receiving poultry litter for the variable rainfall intensity. Load of testosterone was greatest for no-till plots receiving poultry litter under variable rainfall intensity. Poultry litter application rates commensurate for corn appeared to enhance only soil concentrations of E. coli, and runoff concentrations of testosterone above background levels.

  8. Transient shear banding in the nematic dumbbell model of liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Adams, J. M.; Corbett, D.

    2018-05-01

    In the shear flow of liquid crystalline polymers (LCPs) the nematic director orientation can align with the flow direction for some materials but continuously tumble in others. The nematic dumbbell (ND) model was originally developed to describe the rheology of flow-aligning semiflexible LCPs, and flow-aligning LCPs are the focus in this paper. In the shear flow of monodomain LCPs, it is usually assumed that the spatial distribution of the velocity is uniform. This is in contrast to polymer solutions, where highly nonuniform spatial velocity profiles have been observed in experiments. We analyze the ND model, with an additional gradient term in the constitutive model, using a linear stability analysis. We investigate the separate cases of constant applied shear stress and constant applied shear rate. We find that the ND model has a transient flow instability to the formation of a spatially inhomogeneous flow velocity for certain starting orientations of the director. We calculate the spatially resolved flow profile in both constant applied stress and constant applied shear rate in start up from rest, using a model with one spatial dimension to illustrate the flow behavior of the fluid. For low shear rates flow reversal can be seen as the director realigns with the flow direction, whereas for high shear rates the director reorientation occurs simultaneously across the gap. Experimentally, this inhomogeneous flow is predicted to be observed in flow reversal experiments in LCPs.

  9. Laboratory Observations of Sand Ripple Evolution in a Small Oscillatory Flow Tunnel

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Palmsten, M. L.; Chu, J.; Landry, B. J.; Penko, A.

    2014-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Six different monochromatic oscillatory forcings, three with velocity asymmetry and three without, were used to investigate sand ripple dynamics using a unimodal grain size distribution with D50=0.65 mm. The experiments represent an extension of previous work using bimodal grain size distributions. A DSLR camera with a 180-degree fisheye lens collected images of the sediment bed profile every 2 seconds to resolve changes in ripple geometries and migration rates resulting from the different flow conditions for over 127 hours (229,388 images). Matlab © algorithms undistorted the fisheye images and quantified the ripple geometries, wavelengths, heights, and migration rates as a function of flow forcing. The mobility number was kept nearly constant by increasing and decreasing the semi-excursion amplitude and the wave frequency, respectively. We observed distinct changes in ripple geometry and migration rate for the pair of oscillatory forcings having nearly identical mobility numbers. The results suggested that the commonly used mobility number might not be appropriate to characterize ripple geometry or migration rates.

  10. Methodologies for extracting kinetic constants for multiphase reacting flow simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.L.; Lottes, S.A.; Golchert, B.

    1997-03-01

    Flows in industrial reactors often involve complex reactions of many species. A computational fluid dynamics (CFD) computer code, ICRKFLO, was developed to simulate multiphase, multi-species reacting flows. The ICRKFLO uses a hybrid technique to calculate species concentration and reaction for a large number of species in a reacting flow. This technique includes a hydrodynamic and reacting flow simulation with a small but sufficient number of lumped reactions to compute flow field properties followed by a calculation of local reaction kinetics and transport of many subspecies (order of 10 to 100). Kinetic rate constants of the numerous subspecies chemical reactions aremore » difficult to determine. A methodology has been developed to extract kinetic constants from experimental data efficiently. A flow simulation of a fluid catalytic cracking (FCC) riser was successfully used to demonstrate this methodology.« less

  11. Experimental river delta size set by multiple floods and backwater hydrodynamics.

    PubMed

    Ganti, Vamsi; Chadwick, Austin J; Hassenruck-Gudipati, Hima J; Fuller, Brian M; Lamb, Michael P

    2016-05-01

    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node-the location where the river course periodically and abruptly shifts-that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars.

  12. Experimental river delta size set by multiple floods and backwater hydrodynamics

    PubMed Central

    Ganti, Vamsi; Chadwick, Austin J.; Hassenruck-Gudipati, Hima J.; Fuller, Brian M.; Lamb, Michael P.

    2016-01-01

    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node—the location where the river course periodically and abruptly shifts—that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars. PMID:27386534

  13. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow

    DOE PAGES

    Jia, Dening; Cathary, Océane; Peng, Jianghong; ...

    2015-10-01

    Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gasmore » pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.« less

  14. Non Lyapunov stability of a constant spatially developing 2-D gas flow

    NASA Astrophysics Data System (ADS)

    Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  15. An experimental study of the elastic theory for granular flows

    NASA Astrophysics Data System (ADS)

    Guo, Tongtong; Campbell, Charles S.

    2016-08-01

    This paper reports annular shear cell measurements granular flows with an eye towards experimentally confirming the flow regimes laid out in the elastic theory of granular flow. Tests were carried out on four different kinds of plastic spherical particles under both constant volume flows and constant applied stress flows. In particular, observations were made of the new regime in that model, the elastic-inertial regime, and the predicted transitions between the elastic-inertial and both the elastic-quasistatic and pure inertial regimes.

  16. Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V

    2009-06-01

    The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.

  17. On factors influencing air-water gas exchange in emergent wetlands

    USGS Publications Warehouse

    Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.

    2018-01-01

    Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.

  18. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  19. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  20. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  1. A numerical study of granular dam-break flow

    NASA Astrophysics Data System (ADS)

    Pophet, N.; Rébillout, L.; Ozeren, Y.; Altinakar, M.

    2017-12-01

    Accurate prediction of granular flow behavior is essential to optimize mitigation measures for hazardous natural granular flows such as landslides, debris flows and tailings-dam break flows. So far, most successful models for these types of flows focus on either pure granular flows or flows of saturated grain-fluid mixtures by employing a constant friction model or more complex rheological models. These saturated models often produce non-physical result when they are applied to simulate flows of partially saturated mixtures. Therefore, more advanced models are needed. A numerical model was developed for granular flow employing a constant friction and μ(I) rheology (Jop et al., J. Fluid Mech. 2005) coupled with a groundwater flow model for seepage flow. The granular flow is simulated by solving a mixture model using Finite Volume Method (FVM). The Volume-of-Fluid (VOF) technique is used to capture the free surface motion. The constant friction and μ(I) rheological models are incorporated in the mixture model. The seepage flow is modeled by solving Richards equation. A framework is developed to couple these two solvers in OpenFOAM. The model was validated and tested by reproducing laboratory experiments of partially and fully channelized dam-break flows of dry and initially saturated granular material. To obtain appropriate parameters for rheological models, a series of simulations with different sets of rheological parameters is performed. The simulation results obtained from constant friction and μ(I) rheological models are compared with laboratory experiments for granular free surface interface, front position and velocity field during the flows. The numerical predictions indicate that the proposed model is promising in predicting dynamics of the flow and deposition process. The proposed model may provide more reliable insight than the previous assumed saturated mixture model, when saturated and partially saturated portions of granular mixture co-exist.

  2. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model

    PubMed Central

    Wang, Zhaoxuan; Talaat, Khaled; Glide-Hurst, Carri; Dong, Haibo

    2018-01-01

    Background Human snores are caused by vibrating anatomical structures in the upper airway. The glottis is a highly variable structure and a critical organ regulating inhaled flows. However, the effects of the glottis motion on airflow and breathing sound are not well understood, while static glottises have been implemented in most previous in silico studies. The objective of this study is to develop a computational acoustic model of human airways with a dynamic glottis and quantify the effects of glottis motion and tidal breathing on airflow and sound generation. Methods Large eddy simulation and FW-H models were adopted to compute airflows and respiratory sounds in an image-based mouth-lung model. User-defined functions were developed that governed the glottis kinematics. Varying breathing scenarios (static vs. dynamic glottis; constant vs. sinusoidal inhalations) were simulated to understand the effects of glottis motion and inhalation pattern on sound generation. Pressure distributions were measured in airway casts with different glottal openings for model validation purpose. Results Significant flow fluctuations were predicted in the upper airways at peak inhalation rates or during glottal constriction. The inhalation speed through the glottis was the predominating factor in the sound generation while the transient effects were less important. For all frequencies considered (20–2500 Hz), the static glottis substantially underestimated the intensity of the generated sounds, which was most pronounced in the range of 100–500 Hz. Adopting an equivalent steady flow rather than a tidal breathing further underestimated the sound intensity. An increase of 25 dB in average was observed for the life condition (sine-dynamic) compared to the idealized condition (constant-rigid) for the broadband frequencies, with the largest increase of approximately 40 dB at the frequency around 250 Hz. Conclusion Results show that a severely narrowing glottis during inhalation, as well as flow fluctuations in the downstream trachea, can generate audible sound levels. PMID:29101633

  3. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model.

    PubMed

    Xi, Jinxiang; Wang, Zhaoxuan; Talaat, Khaled; Glide-Hurst, Carri; Dong, Haibo

    2018-05-01

    Human snores are caused by vibrating anatomical structures in the upper airway. The glottis is a highly variable structure and a critical organ regulating inhaled flows. However, the effects of the glottis motion on airflow and breathing sound are not well understood, while static glottises have been implemented in most previous in silico studies. The objective of this study is to develop a computational acoustic model of human airways with a dynamic glottis and quantify the effects of glottis motion and tidal breathing on airflow and sound generation. Large eddy simulation and FW-H models were adopted to compute airflows and respiratory sounds in an image-based mouth-lung model. User-defined functions were developed that governed the glottis kinematics. Varying breathing scenarios (static vs. dynamic glottis; constant vs. sinusoidal inhalations) were simulated to understand the effects of glottis motion and inhalation pattern on sound generation. Pressure distributions were measured in airway casts with different glottal openings for model validation purpose. Significant flow fluctuations were predicted in the upper airways at peak inhalation rates or during glottal constriction. The inhalation speed through the glottis was the predominating factor in the sound generation while the transient effects were less important. For all frequencies considered (20-2500 Hz), the static glottis substantially underestimated the intensity of the generated sounds, which was most pronounced in the range of 100-500 Hz. Adopting an equivalent steady flow rather than a tidal breathing further underestimated the sound intensity. An increase of 25 dB in average was observed for the life condition (sine-dynamic) compared to the idealized condition (constant-rigid) for the broadband frequencies, with the largest increase of approximately 40 dB at the frequency around 250 Hz. Results show that a severely narrowing glottis during inhalation, as well as flow fluctuations in the downstream trachea, can generate audible sound levels.

  4. Effects Of Spatial Variability In Marshes On Coastal Erosion Under Storm Conditions

    NASA Astrophysics Data System (ADS)

    Lunghino, B.; Suckale, J.; Fringer, O. B.; Maldonado, S.; Ferreira, C.; Marras, S.; Mandel, T.

    2016-12-01

    To quantify the contribution of marshes in protecting coastlines, engineers and planners need to evaluate how variability in marsh characteristics and storm conditions affect erosion in the inundation zone. Previous studies show that spatial patterns in marshes significantly affect flow and sediment transport under normal tidal conditions [1, 2]. This study investigates the effect of spatial variability on floodplain sediment transport under a range of extreme hydrodynamic conditions that occur during storm events. We model the hydrodynamics of storm surge conditions on an idealized coastal floodplain by solving the 2D shallow water equations. We approximate the effect of vegetation on hydrodynamics as a constant drag coefficient. The model calculates suspended sediment transport with the advection-diffusion equation and updates morphology with erosional and depositional fluxes. We conduct numerical experiments in which we vary both the scale of the storm event and the spatial patterns of vegetation and evaluate the impact on erosion and deposition on the floodplain. We find that the alongshore extent of the vegetation is the primary control on the net volume of sediment eroded. Scour occurs in narrow channels between vegetated areas, but this does not significantly alter the net volume of sediment transported. Deposition occurs in vegetated areas under the full range of flow velocities we test. These results suggest that resolving all variability in vegetation is not necessary to quantify net sediment transport volumes at the floodplain scale. Increasing the scale of the storm event does not alter the role of spatial variability. References [1] Meire, D. W., Kondziolka, J. M., and Nepf, H. M. Interaction between neighboring vegetation patches: Impact on flow and deposition. Water Resources Research 50, 5 (2014), 3809-3825. [2] Temmerman, S., Bouma, T., Govers, G., Wang, Z., De Vries, M., and Her- man, P. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface 110, F4 (2005).

  5. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies.

    PubMed

    Zeppel, Melanie; Tissue, David; Taylor, Daniel; Macinnis-Ng, Catriona; Eamus, Derek

    2010-08-01

    Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).

  6. In microfluidico: Recreating in vivo hemodynamics using miniaturized devices

    PubMed Central

    Zhu, Shu; Herbig, Bradley A.; Li, Ruizhi; Colace, Thomas V.; Muthard, Ryan W.; Neeves, Keith B.; Diamond, Scott L.

    2016-01-01

    Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s−1 to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics. PMID:26600269

  7. Non Lyapunov stability of the constant spatially developing 1-D gas flow in presence of solutions having strictly positive exponential growth rate

    NASA Astrophysics Data System (ADS)

    Balint, Stefan; Balint, Agneta M.

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  8. Effect of Red Blood Cell Storage on Cardiac Performance. Improved Myocardial Oxygen Delivery and Function during Constant Flow Coronary Perfusion with Low Oxy-Hemoglobin Affinity Human Red Blood Cells in Normothermic and Hypothermic Rabbit Hearts.

    DTIC Science & Technology

    1983-02-01

    with an isovolumic left ven- tricular balloon. Coronary flow was held constant to simulate the physiolog of coronary atherosclerosis and other...erythrocyte DPG content can potentially benefit patients with coronary atherosclerosis , or other states with a limited coronary vasodilator reserve, who...Coronary flow was held constant to simulate the physiology of coronary atherosclerosis and other conditions of limited coronary vasodilator reserve

  9. Chemical preconcentrator with integral thermal flow sensor

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  10. The fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  11. Vibrational energy flow in photoactive yellow protein revealed by infrared pump-visible probe spectroscopy.

    PubMed

    Nakamura, Ryosuke; Hamada, Norio

    2015-05-14

    Vibrational energy flow in the electronic ground state of photoactive yellow protein (PYP) is studied by ultrafast infrared (IR) pump-visible probe spectroscopy. Vibrational modes of the chromophore and the surrounding protein are excited with a femtosecond IR pump pulse, and the subsequent vibrational dynamics in the chromophore are selectively probed with a visible probe pulse through changes in the absorption spectrum of the chromophore. We thus obtain the vibrational energy flow with four characteristic time constants. The vibrational excitation with an IR pulse at 1340, 1420, 1500, or 1670 cm(-1) results in ultrafast intramolecular vibrational redistribution (IVR) with a time constant of 0.2 ps. The vibrational modes excited through the IVR process relax to the initial ground state with a time constant of 6-8 ps in parallel with vibrational cooling with a time constant of 14 ps. In addition, upon excitation with an IR pulse at 1670 cm(-1), we observe the energy flow from the protein backbone to the chromophore that occurs with a time constant of 4.2 ps.

  12. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters

    PubMed Central

    Thompson, John A.

    2016-01-01

    The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow. PMID:26762887

  13. A gas-tracer injection for evaluating the fate of methane in a coastal plain stream: Degassing versus in-stream oxidation

    USGS Publications Warehouse

    Heilweil, Victor M.; Solomon, D. Kip; Darrah, Thomas H.; Gilmore, Troy E.; Genereux, David P.

    2016-01-01

    Methane emissions from streams and rivers have recently been recognized as an important component of global greenhouse budgets. Stream methane is lost as evasion to the atmosphere or in-stream methane oxidation. Previous studies have quantified evasion and oxidation with point-scale measurements. In this study, dissolved gases (methane, krypton) were injected into a coastal plain stream in North Carolina to quantify stream CH4 losses at the watershed scale. Stream-reach modeling yielded gas transfer and oxidation rate constants of 3.2 ± 0.5 and 0.5 ± 1.5 d–1, respectively, indicating a ratio of about 6:1. The resulting evasion and oxidation rates of 2.9 mmol m–2 d–1 and 1,140 nmol L–1 d–1, respectively, lie within ranges of published values. Similarly, the gas transfer velocity (K600) of 2.1 m d–1 is consistent with other gas tracer studies. This study illustrates the utility of dissolved-gas tracers for evaluating stream methane fluxes. In contrast to point measurements, this approach provides a larger watershed-scale perspective. Further work is needed to quantify the magnitude of these fluxes under varying conditions (e.g., stream temperature, nutrient load, gradient, flow rate) at regional and global scales before reliable bottom-up estimates of methane evasion can be determined at global scales.

  14. An experimental investigation of wall boundary layer transition Reynolds numbers in an expansion tube

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.

    1974-01-01

    Experimental measurements of boundary-layer transition in an expansion-tube test-gas flow are presented along with radial distributions of pitot pressure. An integral method for calculating constant Reynolds number lines for an expansion-tube flow is introduced. Comparison of experimental data and constant Reynolds number calculations has shown that for given conditions, wall boundary-layer transition occurs at a constant Reynolds number in an expansion-tube flow. Operating conditions in the expansion tube were chosen so that the effects of test-gas nonequilibrium on boundary-layer transition could be studied.

  15. Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power

    NASA Astrophysics Data System (ADS)

    Nishiyama, H.; Onodera, M.; Igawa, J.; Nakajima, T.

    2009-12-01

    The aim of this study is to provide the optimum operating conditions for enhancing in-flight alumina particle heating as much as possible for particle spheroidization and aggregation of melted particles using a DC-RF hybrid plasma flow system even at constant low operating power based on the thermofluid considerations. It is clarified that the swirl flow and higher operating pressure enhance the particle melting and aggregation of melted particles coupled with increasing gas temperature downstream of a plasma uniformly in the radial direction at constant electrical discharge conditions.

  16. Simulation of ground-water flow and evaluation of water-management alternatives in the Assabet River Basin, Eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.

    2004-01-01

    Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from anthropo-genic activities were relatively large percentages, compared to other subbasins, (more than 20 percent in September) of total out-flows. Wastewater flows in the Assabet River accounted for 55, 32, and 20 percent of total nonstorm streamflow (base flow plus wastewater discharge) out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. The ground-water-flow models were used to evaluate water-management alternatives by simulating hypothetical scenarios of altered withdrawals and discharges. A scenario that included no water management quantified nonstorm stream-flows that would result without withdrawals, discharges, septic-system return flow, or consumptive use. Tributary flows in this scenario increased in most subbasins by 2 to 44 percent relative to 19972001 conditions. The increases resulted mostly from variable combinations of decreased withdrawals and decreased infiltration to sewers. Average annual nonstorm streamflow in the Assabet River decreased slightly in this scenario, by 2 to 3 percent annually, because gains in ground-water discharge were offset by the elimination of wastewater discharges. A second scenario quantified the effects of increasing withdrawals and discharges to currently permitted levels. In this simulation, average annual tributary flows decreased in most subbasins, by less than 1 to 10 percent relative to 19972001 conditions. In the Assabet River, flows increased slightly, 1 to 5 percent annually, and the percentage of wastewater in the river increased to 69, 42, and 27 percent of total nonstorm streamflow out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. A third set of scenarios quantified the effects of ground-water discharge of wastewater at four hypothetical sites, while maintaining 19972000 wastewater discharges to the Assabet River. Wastewater, discharged at a constant rate that varied among sites from 0.3 to 1

  17. Water-Channel Estimation of Eulerian and Lagrangian Time Scales of the Turbulence in Idealized Two-Dimensional Urban Canopies

    NASA Astrophysics Data System (ADS)

    Di Bernardino, Annalisa; Monti, Paolo; Leuzzi, Giovanni; Querzoli, Giorgio

    2017-11-01

    Lagrangian and Eulerian statistics are obtained from a water-channel experiment of an idealized two-dimensional urban canopy flow in neutral conditions. The objective is to quantify the Eulerian (TE) and Lagrangian (TL) time scales of the turbulence above the canopy layer as well as to investigate their dependence on the aspect ratio of the canopy, AR, as the latter is the ratio of the width ( W) to the height ( H) of the canyon. Experiments are also conducted for the case of flat terrain, which can be thought of as equivalent to a classical one-directional shear flow. The values found for the Eulerian time scales on flat terrain are in agreement with previous numerical results found in the literature. It is found that both the streamwise and vertical components of the Lagrangian time scale, T_u^L and T_w^L , follow Raupach's linear law within the constant-flux layer. The same holds true for T_w^L in both the canopies analyzed (AR= 1 and AR= 2) and also for T_u^L when AR = 1. In contrast, for AR = 2, T_u^L follows Raupach's law only above z=2H. Below that level, T_u^L is nearly constant with height, showing at z=H a value approximately one order of magnitude greater than that found for AR = 1. It is shown that the assumption usually adopted for flat terrain, that β =TL/TE is proportional to the inverse of the turbulence intensity, also holds true even for the canopy flow in the constant-flux layer. In particular, γ /i_u fits well β _u =T_u^L /T_u^E in both the configurations by choosing γ to be 0.35 (here, i_u =σ _u / \\bar{u} , where \\bar{u} and σ _u are the mean and the root-mean-square of the streamwise velocity component, respectively). On the other hand, β _w =T_w^L /T_w^E follows approximately γ /i_w =0.65/( {σ _w /\\bar{u} } ) for z > 2H, irrespective of the AR value. The second main objective is to estimate other parameters of interest in dispersion studies, such as the eddy diffusivity of momentum (KT) and the Kolmogorov constant (C_0). It is found that C_0 depends appreciably on the velocity component both for the flat terrain and canopy flow, even though for the latter case it is insensitive to AR values. In all the three experimental configurations analyzed here, KT shows an overall linear growth with height in agreement with the linear trend predicted by Prandtl's theory.

  18. The impact of desorption kinetics from albumin on hepatic extraction efficiency and hepatic clearance: a model study.

    PubMed

    Krause, Sophia; Goss, Kai-Uwe

    2018-05-23

    Until now, the question whether slow desorption of compounds from transport proteins like the plasma protein albumin can affect hepatic uptake and thereby hepatic metabolism of these compounds has not yet been answered conclusively. This work now combines recently published experimental desorption rate constants with a liver model to address this question. For doing so, the used liver model differentiates the bound compound in blood, the unbound compound in blood and the compound within the hepatocytes as three well-stirred compartments. Our calculations show that slow desorption kinetics from albumin can indeed limit hepatic metabolism of a compound by decreasing hepatic extraction efficiency and hepatic clearance. The extent of this decrease, however, depends not only on the value of the desorption rate constant but also on how much of the compound is bound to albumin in blood and how fast intrinsic metabolism of the compound in the hepatocytes is. For strongly sorbing and sufficiently fast metabolized compounds, our calculations revealed a twentyfold lower hepatic extraction efficiency and hepatic clearance for the slowest known desorption rate constant compared to the case when instantaneous equilibrium between bound and unbound compound is assumed. The same desorption rate constant, however, has nearly no effect on hepatic extraction efficiency and hepatic clearance of weakly sorbing and slowly metabolized compounds. This work examines the relevance of desorption kinetics in various example scenarios and provides the general approach needed to quantify the effect of flow limitation, membrane permeability and desorption kinetics on hepatic metabolism at the same time.

  19. Unsaturated flow processes in structurally-variable pathways in wildfire-affected soils and ash

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.

    2016-12-01

    Prediction of flash flood and debris flow generation in wildfire-affected soils and ash hinges on understanding unsaturated flow processes. Water resources issues, such as groundwater recharge, also rely on our ability to quantify subsurface flow. Soil-hydraulic property data provide insight into unsaturated flow processes and timescales. A literature review and synthesis of existing data from the literature for wildfire-affected soils, including ash and unburned soils, facilitated calculating metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and the Green-Ampt wetting front parameter (Ψf) were significantly lower in burned soils compared to unburned soils, while field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity was substantially reduced in burned soils, leading to faster ponding times in response to rainfall. Ash had large values of S and Kfs compared to unburned and burned soils but intermediate values of Ψf, suggesting that ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant ( 100 mm) for unburned soils, but was more variable in burned soils. Post-wildfire changes in this ratio suggested that unburned soils had a balance between gravity and capillarity contributions to infiltration, which may depend on soil organic matter, while burning shifted infiltration more towards gravity contributions by reducing S. Taken together, the changes in post-wildfire soil-hydraulic properties increased the propensity for surface runoff generation and may have enhanced subsurface preferential flow through pathways altered by wildfire.

  20. Using nitrate to quantify quick flow in a karst aquifer

    USGS Publications Warehouse

    Mahler, B.J.; Garner, B.D.

    2009-01-01

    In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with ??18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The ??18O- based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems. ?? 2008 National Ground Water Association.

  1. Quantification of the dielectric constant of single non-spherical nanoparticles from polarization forces: eccentricity effects.

    PubMed

    Gomila, G; Esteban-Ferrer, D; Fumagalli, L

    2013-12-20

    We analyze by means of finite-element numerical calculations the polarization force between a sharp conducting tip and a non-spherical uncharged dielectric nanoparticle with the objective of quantifying its dielectric constant from electrostatic force microscopy (EFM) measurements. We show that for an oblate spheroid nanoparticle of given height the strength of the polarization force acting on the tip depends linearly on the eccentricity, e, of the nanoparticle in the small eccentricity and low dielectric constant regimes (1 < e < 2 and 1 < ε(r) < 10), while for higher eccentricities (e > 2) the dependence is sub-linear and finally becomes independent of e for very large eccentricities (e > 30). These results imply that a precise account of the nanoparticle shape is required to quantify EFM data and obtain the dielectric constants of non-spherical dielectric nanoparticles. Experimental results obtained on polystyrene, silicon dioxide and aluminum oxide nanoparticles and on single viruses are used to illustrate the main findings.

  2. Study of the structure of turbulent shear flows at supersonic speeds and high Reynolds number

    NASA Technical Reports Server (NTRS)

    Smits, A. J.; Bogdonoff, S. M.

    1984-01-01

    A major effort to improve the accuracies of turbulence measurement techniques is described including the development and testing of constant temperature hot-wire anemometers which automatically compensate for frequency responses. Calibration and data acquisition techniques for normal and inclined wires operated in the constant temperature mode, flow geometries, and physical models to explain the observed behavior of flows are discussed, as well as cooperation with computational groups in the calculation of compression corner flows.

  3. Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team

    2015-11-01

    Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).

  4. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  5. Spray Gun With Constant Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Simpson, William G.

    1987-01-01

    Conceptual mechanism mounted in handle of spray gun maintains constant ratio between volumetric flow rates in two channels leading to spray head. With mechanism, possible to keep flow ratio near 1:1 (or another desired ratio) over range of temperatures, orifice or channel sizes, or clogging conditions.

  6. Identification of the dominant runoff pathways from data-based mechanistic modelling of nested catchments in temperate UK

    NASA Astrophysics Data System (ADS)

    Ockenden, M. C.; Chappell, N. A.

    2011-05-01

    SummaryUnderstanding hydrological flow pathways is important for modelling stream response, in order to address a range of environmental problems such as flood prediction, prediction of chemical loads and identification of contaminant pathways for subsequent remediation. This paper describes the use of parametrically efficient, low order models to identify the dominant modes of stream response for catchments within the Upper Eden, UK. A first order linear model adequately identified the dominant mode in all but one of the sub-catchments. A consistent pattern of time constants and pure time delays between catchments was observed over different periods of data. In the nested catchments, time constants increased as the catchment size increased from 1.1 km 2 at Gais Gill (2-7 h) to 69.4 km 2 at Kirkby Stephen (5-10 h) to 223.4 km 2 at Great Musgrave (7-16 h) to 616.4 km 2 at Temple Sowerby (11-22 h), but Blind Beck (a small catchment 8.8 km 2, time constants 11-21 h) had time constants most similar to Temple Sowerby. This was attributed to a combination of the storage role of permeable rock strata, where present, and the effect of scale on sub-surface and channel routing. A first order model could not be identified for the 1.0 km 2 Low Hall catchment, which comprises permeable sandstone overlain by Quaternary sediments. A second-order model of Low Hall stream showed a higher proportion of water taking a slower pathway (76% via a slow pathway; time constant 252 h) than a model with the same structure for the 8.8 km 2 Blind Beck (46% via slow pathway; time constant 60 h), where only 38% of the basin was underlain by the same permeable sandstone. This highlights the need to quantify the role of deep pathways through permeable rock, where present, in addition to the effect of catchment size on response times.

  7. Determination of Hamaker constants of polymeric nanoparticles in organic solvents by asymmetrical flow field-flow fractionation.

    PubMed

    Noskov, Sergey; Scherer, Christian; Maskos, Michael

    2013-01-25

    Interaction forces between all objects are either of repulsive or attractive nature. Concerning attractive interactions, the determination of dispersion forces are of special interest since they appear in all colloidal systems and have a crucial influence on the properties and processes in these systems. One possibility to link theory and experiment is the description of the London-Van der Waals forces in terms of the Hamaker constant, which leads to the challenging problem of calculating the van der Waals interaction energies between colloidal particles. Hence, the determination of a Hamaker constant for a given material is needed when interfacial phenomena such as adhesion are discussed in terms of the total potential energy between particles and substrates. In this work, the asymmetrical flow field-flow fractionation (AF-FFF) in combination with a Newton algorithm based iteration process was used for the determination of Hamaker constants of different nanoparticles in toluene. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Compressible Flow Toolbox

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.

  9. Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers.

    PubMed

    Pindera, Maciej Z; Ding, Hui; Athavale, Mahesh M; Chen, Zhijian

    2009-05-01

    We describe results of numerical simulations of steady flows in tubes with branch bifurcations using fully 3D and reduced 1D geometries. The intent is to delineate the range of validity of reduced models used for simulations of flows in microcapillary networks, as a function of the flow Reynolds number Re. Results from model problems indicate that for Re less than 1 and possibly as high as 10, vasculatures may be represented by strictly 1D Poiseuille flow geometries with flow variation in the axial dimensions only. In that range flow rate predictions in the different branches generated by 1D and 3D models differ by a constant factor, independent of Re. When the cross-sectional areas of the branches are constant these differences are generally small and appear to stem from an uncertainty of how the individual branch lengths are defined. This uncertainty can be accounted for by a simple geometrical correction. For non-constant cross-sections the differences can be much more significant. If additional corrections for the presence of branch junctions and flow area variations are not taken into account in 1D models of complex vasculatures, the resultant flow predictions should be interpreted with caution.

  10. Magnesite Dissolution Rates Across Scales: Role of Spatial Heterogeneity, Equilibrium Lengths, and Reactive Time Scales

    NASA Astrophysics Data System (ADS)

    Wen, H.; Li, L.

    2017-12-01

    This work develops a general rate law for magnesite dissolution in heterogeneous media under variable flow and length conditions, expanding the previous work under one particular flow and length conditions (Wen and Li, 2017). We aim to answer: 1) How does spatial heterogeneity influence the time and length scales to reach equilibrium? 2) How do relative timescales of advection, diffusion/dispersion, and reactions influence dissolution rates under variable flow and length conditions? We carried out 640 Monte-Carlo numerical experiments of magnesite dissolution within quartz matrix with heterogeneity characterized by permeability variance and correlation length under a range of length and flow velocity. A rate law Rhete = kAT(1-exp(τeq,m/τa))(1-exp(- Lβ))^α was developed. The former part is rates in equivalent homogeneous media kAT(1-exp(τeq,m/τa)), depending on rate constant k, magnesite surface area AT, and relative timescales of reactions τeq,m and advection τa. The latter term (1-exp(- Lβ))^α is the heterogeneity factor χ that quantifies the deviation of heterogeneous media from its homogeneous counterpart. The term has a scaling factor, called reactive transport number β=τa/(τad,r+τeq,m), for domain length L, and the geostatistical characteristics of heterogeneity α. The β quantifies the relative timescales of advection at the domain scale τa versus the advective-diffusive-dispersive transport time out of reactive zones τad,r and reaction time τeq,m. The χ is close to 1 and is insignificant under long residence time conditions (low flow velocity and / or long length) where the residence time is longer than the time needed for Mg to dissolve and transport out of reactive zones (τad,r+τeq,m) so that equilibrium is reached and homogenization occurs. In contrast, χ deviates from 1 and is significant only when β is small, which occurs at short length or fast flow where timescales of reactive transport in reactive zones are much longer than the global residence time so that reactive transport is the limiting step. These findings demonstrate that dissolution rates in heterogeneous media reach asymptotic values in homogeneous media at "sufficiently" long lengths. Wen, H. and Li, L. (2017) An upscaled rate law for magnesite dissolution in heterogeneous porous media. Geochimica et Cosmochimica Acta 210, 289-305.

  11. 40 CFR 86.078-3 - Abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas... feet per hour. CFV—Critical flow venturi. CFV-CVS—Critical flow venturi—constant volume sampler... pump—constant volume sampler. ppm—parts per million by volume. ppm C—parts per million, carbon. psi...

  12. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed.

    PubMed

    Hubert, Casey; Loy, Alexander; Nickel, Maren; Arnosti, Carol; Baranyi, Christian; Brüchert, Volker; Ferdelman, Timothy; Finster, Kai; Christensen, Flemming Mønsted; Rosa de Rezende, Júlia; Vandieken, Verona; Jørgensen, Bo Barker

    2009-09-18

    Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 10(8) spores per square meter per year. These metabolically and phylogenetically diverse Firmicutes show no detectable activity at cold in situ temperatures but rapidly mineralize organic matter by hydrolysis, fermentation, and sulfate reduction upon induction at 50 degrees C. The closest relatives to these bacteria come from warm subsurface petroleum reservoir and ocean crust ecosystems, suggesting that seabed fluid flow from these environments is delivering thermophiles to the cold ocean. These transport pathways may broadly influence microbial community composition in the marine environment.

  13. Quantifying Hydrate Formation in Gas-rich Environments Using the Method of Characteristics

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.; DiCarlo, D. A.

    2015-12-01

    Methane hydrates hold a vast amount of methane globally, and have huge energy potential. Methane hydrates in gas-rich environments are the most promising production targets. We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation in such environments (Figure 1). Our solution shows that hydrate saturation is constant with time and space in a homogeneous system. Hydrate saturation is controlled by the initial thermodynamic condition of the system, and changed by the gas fractional flow. Hydrate saturation increases with the initial distance from the hydrate phase boundary. Different gas fractional flows behind the hydrate solidification front lead to different gas saturations at the hydrate solidification front. The higher the gas saturation at the front, the less the volume available to be filled by hydrate, and hence the lower the hydrate saturation. The gas fractional flow depends on the relative permeability curves, and the forces that drive the flow. Viscous forces (the drive for flow induced from liquid pressure gradient) dominate the flow, and hydrate saturation is independent on the gas supply rates and the flow directions at high gas supply rates. Hydrate saturation can be estimated as one minus the ratio of the initial to equilibrium salinity. Gravity forces (the drive for flow induced from the gravity) dominate the flow, and hydrate saturation depends on the flow rates and the flow directions at low gas supply rates. Hydrate saturation is highest for upward flow, and lowest for downward flow. Hydrate saturation decreases with the flow rate for upward flow, and increases with the flow rate for downward flow. This analytical solution illuminates how hydrate is formed by gas (methane, CO2, ethane, propane) flowing into brine-saturated sediments at both the laboratory and geological scales (Figure 1). It provides an approach to generalize the understanding of hydrate solidification in gas-rich environments, although complicated numerical models have been developed previously. Examples of gas expulsion into hydrate stability zones and the associated hydrate formation in both laboratory and geological scales, and CO2 sequestration into CO2-hydrates near the seafloor and under the permafrost will be presented.

  14. On the Kolmogorov constant in stochastic turbulence models

    NASA Astrophysics Data System (ADS)

    Heinz, Stefan

    2002-11-01

    The Kolmogorov constant is fundamental in stochastic models of turbulence. To explain the reasons for observed variations of this quantity, it is calculated for two flows by various methods and data. Velocity fluctuations are considered as the sum of contributions due to anisotropy, acceleration fluctuations and stochastic forcing that is controlled by the Kolmogorov constant. It is shown that the effects of anisotropy and acceleration fluctuations are responsible for significant variations of the Kolmogorov constant. It is found near 2 for flows where anisotropy and acceleration fluctuations contribute to the energy budget, and near 6 if such contributions disappear.

  15. Early-time solution of the horizontal unconfined aquifer in the build-up phase

    NASA Astrophysics Data System (ADS)

    Gravanis, Elias; Akylas, Evangelos

    2017-04-01

    The Boussinesq equation is a dynamical equation for the free surface of saturated subsurface flows over an impervious bed. Boussinesq equation is non-linear. The non-linearity comes from the reduction of the dimensionality of the problem: The flow is assumed to be vertically homogeneous, therefore the flow rate through a cross section of the flow is proportional to the free surface height times the hydraulic gradient, which is assumed to be equal to the slope of the free surface (Dupuit approximation). In general, 'vertically' means normally on the bed; combining the Dupuit approximation with the continuity equation leads to the Boussinesq equation. There are very few transient exact solutions. Self- similar solutions have been constructed in the past by various authors. A power series type of solution was derived for a self-similar Boussinesq equation by Barenblatt in 1990. That type of solution has generated a certain amount of literature. For the unconfined flow case for zero recharge rate Boussinesq derived for the horizontal aquifer an exact solution assuming separation of variables. This is actually an exact asymptotic solution of the horizontal aquifer recession phase for late times. The kinematic wave is an interesting solution obtained by dropping the non-linear term in the Boussinesq equation. Although it is an approximate solution, and holds well only for small values of the Henderson and Wooding λ parameter (that is, for steep slopes, high conductivity or small recharge rate), it becomes less and less approximate for smaller values of the parameter, that is, it is asymptotically exact with respect to that parameter. In the present work we consider the case of the unconfined subsurface flow over horizontal bed in the build-up phase under constant recharge rate. This is a case with an infinite Henderson and Wooding parameter, that is, it is the limiting case where the non-linear term is present in the Boussinesq while the linear spatial derivative term goes away. Nonetheless, no analogue of the kinematic wave or the Boussinesq separable solution exists in this case. The late time state of the build-up phase under constant recharge rate is very simply the steady state solution. Our aim is to construct the early time asymptotic solution of this problem. The solution is expressed as a power series of a suitable similarity variable, which is constructed so that to satisfy the boundary conditions at both ends of the aquifer, that is, it is a polynomial approximation of the exact solution. The series turn out to be asymptotic and it is regularized by re-summation techniques which are used to define divergent series. The outflow rate in this regime is linear in time, and the (dimensionless) coefficient is calculated to eight significant figures. The local error of the series is quantified by its deviation from satisfying the self-similar Boussinesq equation at every point. The local error turns out to be everywhere positive, hence, so is the integrated error, which in turn quantifies the degree of convergence of the series to the exact solution.

  16. Multicomponent aerosol particle deposition in a realistic cast of the human upper respiratory tract.

    PubMed

    Nordlund, Markus; Belka, Miloslav; Kuczaj, Arkadiusz K; Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Jicha, Miroslav; Sauser, Youri; Le Bouhellec, Soazig; Cosandey, Stephane; Majeed, Shoaib; Vuillaume, Grégory; Peitsch, Manuel C; Hoeng, Julia

    2017-02-01

    Inhalation of aerosols generated by electronic cigarettes leads to deposition of multiple chemical compounds in the human airways. In this work, an experimental method to determine regional deposition of multicomponent aerosols in an in vitro segmented, realistic human lung geometry was developed and applied to two aerosols, i.e. a monodisperse glycerol aerosol and a multicomponent aerosol. The method comprised the following steps: (1) lung cast model preparation, (2) aerosol generation and exposure, (3) extraction of deposited mass, (4) chemical quantification and (5) data processing. The method showed good agreement with literature data for the deposition efficiency when using a monodisperse glycerol aerosol, with a mass median aerodynamic diameter (MMAD) of 2.3 μm and a constant flow rate of 15 L/min. The highest deposition surface density rate was observed in the bifurcation segments, indicating inertial impaction deposition. The experimental method was also applied to the deposition of a nebulized multicomponent aerosol with a MMAD of 0.50 μm and a constant flow rate of 15 L/min. The deposited amounts of glycerol, propylene glycol and nicotine were quantified. The three analyzed compounds showed similar deposition patterns and fractions as for the monodisperse glycerol aerosol, indicating that the compounds most likely deposited as parts of the same droplets. The developed method can be used to determine regional deposition for multicomponent aerosols, provided that the compounds are of low volatility. The generated data can be used to validate aerosol deposition simulations and to gain insight in deposition of electronic cigarette aerosols in human airways.

  17. Determination of Acidity Constants by Gradient Flow-Injection Titration

    ERIC Educational Resources Information Center

    Conceicao, Antonio C. L.; Minas da Piedade, Manuel E.

    2006-01-01

    A three-hour laboratory experiment, designed for an advanced undergraduate course in instrumental analysis that illustrates the application of the gradient chamber flow-injection titration (GCFIT) method with spectrophotometric detection to determine acidity constants is presented. The procedure involves the use of an acid-base indicator to obtain…

  18. Natural uranium and strontium isotope tracers of water sources and surface water-groundwater interactions in arid wetlands: Pahranagat Valley, Nevada, USA

    USGS Publications Warehouse

    Paces, James B.; Wurster, Frederic C.

    2014-01-01

    Near-surface physical and chemical process can strongly affect dissolved-ion concentrations and stable isotope compositions of water in wetland settings, especially under arid climate conditions. In contrast, heavy radiogenic isotopes of strontium (87Sr/86Sr) and uranium (234U/238U) remain largely unaffected and can be used to help identify unique signatures from different sources and quantify end-member mixing that would otherwise be difficult to determine. The utility of combined Sr and U isotopes are demonstrated in this study of wetland habitats on the Pahranagat National Wildlife Refuge, which depend on supply from large-volume springs north of the Refuge, and from small-volume springs and seeps within the Refuge. Water budgets from these sources have not been quantified previously. Evaporation, transpiration, seasonally variable surface flow, and water management practices complicate the use of conventional methods for determining source contributions and mixing relations. In contrast, 87Sr/86Sr and 234U/238U remain unfractionated under these conditions, and compositions at a given site remain constant. Differences in Sr- and U-isotopic signatures between individual sites can be related by simple two- or three-component mixing models. Results indicate that surface flow constituting the Refuge’s irrigation source consists of a 65:25:10 mixture of water from two distinct regionally sourced carbonate aquifer springs, and groundwater from locally sourced volcanic aquifers. Within the Refuge, contributions from the irrigation source and local groundwater are readily determined and depend on proximity to those sources as well as water management practices.

  19. Natural uranium and strontium isotope tracers of water sources and surface water-groundwater interactions in arid wetlands - Pahranagat Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Paces, James B.; Wurster, Frederic C.

    2014-09-01

    Near-surface physical and chemical process can strongly affect dissolved-ion concentrations and stable-isotope compositions of water in wetland settings, especially under arid climate conditions. In contrast, heavy radiogenic isotopes of strontium (87Sr/86Sr) and uranium (234U/238U) remain largely unaffected and can be used to help identify unique signatures from different sources and quantify end-member mixing that would otherwise be difficult to determine. The utility of combined Sr and U isotopes are demonstrated in this study of wetland habitats on the Pahranagat National Wildlife Refuge, which depend on supply from large-volume springs north of the Refuge, and from small-volume springs and seeps within the Refuge. Water budgets from these sources have not been quantified previously. Evaporation, transpiration, seasonally variable surface flow, and water management practices complicate the use of conventional methods for determining source contributions and mixing relations. In contrast, 87Sr/86Sr and 234U/238U remain unfractionated under these conditions, and compositions at a given site remain constant. Differences in Sr- and U-isotopic signatures between individual sites can be related by simple two- or three-component mixing models. Results indicate that surface flow constituting the Refuge's irrigation source consists of a 65:25:10 mixture of water from two distinct regionally sourced carbonate-aquifer springs, and groundwater from locally sourced volcanic aquifers. Within the Refuge, contributions from the irrigation source and local groundwater are readily determined and depend on proximity to those sources as well as water management practices.

  20. The effect of topography on pyroclastic flow mobility

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Calder, E. S.

    2010-12-01

    Pyroclastic flows are among the most destructive volcanic phenomena. Hazard mitigation depends upon accurate forecasting of possible flow paths, often using computational models. Two main metrics have been proposed to describe the mobility of pyroclastic flows. The Heim coefficient, height-dropped/run-out (H/L), exhibits an inverse relationship with flow volume. This coefficient corresponds to the coefficient of friction and informs computational models that use Coulomb friction laws. Another mobility measure states that with constant shear stress, planimetric area is proportional to the flow volume raised to the 2/3 power (A∝V^(2/3)). This relationship is incorporated in models using constant shear stress instead of constant friction, and used directly by some empirical models. Pyroclastic flows from Soufriere Hills Volcano, Montserrat; Unzen, Japan; Colima, Mexico; and Augustine, Alaska are well described by these metrics. However, flows in specific valleys exhibit differences in mobility. This study investigates the effect of topography on pyroclastic flow mobility, as measured by the above mentioned mobility metrics. Valley width, depth, and cross-sectional area all influence flow mobility. Investigating the appropriateness of these mobility measures, as well as the computational models they inform, indicates certain circumstances under which each model performs optimally. Knowing which conditions call for which models allows for better model selection or model weighting, and therefore, more realistic hazard predictions.

  1. Renal cortical and medullary blood flow responses to altered NO availability in humans.

    PubMed

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L; Braad, Poul Erik; Petersen, Henrik; Høilund-Carlsen, Poul Flemming; Bie, Peter

    2010-12-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at baseline, during constant intravenous infusion of nitric oxide (NO) donor glyceryl nitrate and after intravenous injection of NO synthase inhibitor N(ω)-monomethyl-L-arginine (L-NMMA). Using the CT image, the kidney pole areas were delineated as volumes of interest (VOI). In the data analysis, tissue layers with a thickness of one voxel were eliminated stepwise from the external surface of the VOI (voxel peeling), and the blood flow subsequently was determined in each new, reduced VOI. Blood flow in the shrinking VOIs decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ± 0.17 ml·g tissue(-1)·min(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ± 0.18 ml·g tissue(-1)·min(-1) (P < 0.05) and decreased after L-NMMA injection to 1.57 ± 0.17 ml·g tissue(-1)·min(-1) (P < 0.05). Cortical blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P < 0.05]. PET/CT scanning allows identification of a renal medullary region in which the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans.

  2. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    NASA Astrophysics Data System (ADS)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  3. Rapid quantification of proanthocyanidins (condensed tannins) with a continuous flow analyzer

    Treesearch

    James K. Nitao; Bruce A. Birr; Muraleedharan G. Nair; Daniel A. Herms; William J. Mattson

    2001-01-01

    Proanthocyanidins (condensed tannins) frequently need to be quantified in large numbers of samples in food, plant, and environmental studies. An automated colorimetric method to quantify proanthocyanidins with sulfuric acid (H2SO4) was therefore developed for use in a continuous flow analyzer. Assay conditions were...

  4. Targeting the Nociceptin/Orphanin FQ Receptor for Scleroderma Therapy

    DTIC Science & Technology

    2015-12-01

    bottom well; the number of migrating cells is quantified by flow cytometry. In the aortic ring assay, freshly isolated thoracic aorta rings will...quantified by flow cytometry. In the aortic ring assay, freshly isolated thoracic aorta rings will be harvested and mounted in a small-vessel myograph. KO

  5. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  6. Surfactant and pulmonary blood flow distributions following treatment of premature lambs with natural surfactant.

    PubMed Central

    Jobe, A; Ikegami, M; Jacobs, H; Jones, S

    1984-01-01

    Prematurely delivered lambs were treated with radiolabeled natural surfactant by either tracheal instillation at birth and before the onset of mechanical ventilation, or after 23 +/- 1 (+/- SE) min of mechanical ventilation. Right ventricular blood flow distributions, left ventricular outputs, and left-to-right ductal shunts were measured with radiolabeled microspheres. After sacrifice, the lungs of lambs receiving surfactant at birth inflated uniformly with constant distending pressure while the lungs of lambs treated after a period of ventilation had aerated, partially aerated, and atelectatic areas. All lungs were divided into pieces which were weighed and catalogued as to location. The amount of radiolabeled surfactant and microsphere-associated radioactivity in each piece of lung was quantified. Surfactant was relatively homogenously distributed to pieces of lung from lambs that were treated with surfactant at birth; 48% of lung pieces received amounts of surfactant within +/- 25% of the mean value. Surfactant was preferentially recovered from the aerated pieces of lungs of lambs treated after a period of mechanical ventilation, and the distribution of surfactant to these lungs was very nonhomogeneous. Right ventricular blood flow distributions to the lungs were quite homogeneous in both groups of lambs. However, in 8 of 12 lambs, pulmonary blood flow was preferentially directed away from those pieces of lung that received relatively large amounts of surfactant and toward pieces of lung that received less surfactant. This acute redirection of pulmonary blood flow distribution may result from the local changes in compliances within the lung following surfactant instillation. PMID:6546766

  7. Calibration-free in vivo transverse blood flowmetry based on cross correlation of slow-time profiles from photoacoustic microscopy

    PubMed Central

    Zhou, Yong; Liang, Jinyang; Maslov, Konstantin I.; Wang, Lihong V.

    2013-01-01

    We propose a cross-correlation-based method to measure blood flow velocity by using photoacoustic microscopy. Unlike in previous auto-correlation-based methods, the measured flow velocity here is independent of particle size. Thus, an absolute flow velocity can be obtained without calibration. We first measured the flow velocity ex vivo, using defibrinated bovine blood. Then, flow velocities in vessels with different structures in a mouse ear were quantified in vivo. We further measured the flow variation in the same vessel and at a vessel bifurcation. All the experimental results indicate that our method can be used to accurately quantify blood velocity in vivo. PMID:24081077

  8. Bringing the Volcano to the Students: The Syracuse University LAVA Project

    NASA Astrophysics Data System (ADS)

    Karson, J.; Wysocki, B.; Kissane, M. T.

    2011-12-01

    A collaborative effort between the Department of Earth Sciences and Sculpture Department at Syracuse University has resulted in the facility to make natural-scale lava flows in a laboratory environment for K-university students and the general public. Using a large, gas-fired, furnace with a tilting crucible, basaltic gravel is heated at temperatures of 1100° to 1300°C resulting in up to 800 lbs of homogeneous, basaltic lava. Lava is poured over a variety of surfaces including rock slab, wet or dry sand, ice and dry ice. A ceramic funnel permits pouring into and under water. Differing set-ups provide analogs for a wide range of terrestrial, marine, and extraterrestrial lava flows. Composition is held constant, but varying key parameters such as temperature, pouring (effusion) rate, and slope result in different flow morphologies including ropey to toey pahoehoe, inflated flows, channelized flows with levees, and hyaloclastites. Typical flows are 2-4 m long and < 1 m wide. The cooled flows are dissected to document variations in vesicle and crystal densities. In general, the flows produce massive, glassy basalt with internal structures that mimic flows from natural environments. Byproducts of the process include abundant Pelee's hair and tears. Experiments are underway to quantify the variables associated with different morphologies, but the spectacular lava flows are also being integrated into class experiences. Students and instructors from K-12 classes as well as university classes are spectators and active participants in the lava flow events, commonly proposing experiments before or during flows. Lava flows are incorporated into labs for Earth Science classes and also used for artistic creations in the Sculpture program. Although students have access to still images and video of natural lava flows from active volcanoes, there is no substitute for "being there" and experiencing the spectacle of viscous, incandescent orange, lava flowing over the surface in a blast of heat. Grabbing student attention in this environment opens the door to discussions ranging from the nature of Earth materials (solid vs. liquid, rock vs glass, viscous vs brittle, etc.) to major planetary processes.

  9. Development of buried wire gages for measurement of wall shear stress in Blastane experiments

    NASA Technical Reports Server (NTRS)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Buried Wire Gages operated from a Constant Temperature Anemometer System are among the special types of instrumentation to be used in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). These Gages are of a new type and need to be adapted for specific applications. Methods were developed to fabricate Gage inserts and mount those in the BLASTANE Instrumentation Plugs. A large number of Gages were prepared and operated from a Constant Temperature Anemometer System to derive some of the calibration constants for application to fluid-flow wall shear-stress measurements. The final stage of the calibration was defined, but could not be accomplished because of non-availability of a suitable flow simulating apparatus. This report provides a description of the Buried Wire Gage technique, an explanation of the method evolved for making proper Gages and the calibration constants, namely Temperature Coefficient of Resistance and Conduction Loss Factor.

  10. Anomalous heat transport and condensation in convection of cryogenic helium

    PubMed Central

    Urban, Pavel; Schmoranzer, David; Hanzelka, Pavel; Sreenivasan, Katepalli R.; Skrbek, Ladislav

    2013-01-01

    When a hot body A is thermally connected to a cold body B, the textbook knowledge is that heat flows from A to B. Here, we describe the opposite case in which heat flows from a colder but constantly heated body B to a hotter but constantly cooled body A through a two-phase liquid–vapor system. Specifically, we provide experimental evidence that heat flows through liquid and vapor phases of cryogenic helium from the constantly heated, but cooler, bottom plate of a Rayleigh–Bénard convection cell to its hotter, but constantly cooled, top plate. The bottom plate is heated uniformly, and the top plate is cooled by heat exchange with liquid helium maintained at 4.2 K. Additionally, for certain experimental conditions, a rain of helium droplets is detected by small sensors placed in the cell at about one-half of its height. PMID:23576759

  11. Impact of water boundary layer diffusion on the nitrification rate of submerged biofilter elements from a recirculating aquaculture system.

    PubMed

    Prehn, Jonas; Waul, Christopher K; Pedersen, Lars-Flemming; Arvin, Erik

    2012-07-01

    Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS's. The aim of this study was to determine the impact of hydraulic film diffusion on the nitrification rate in a submerged biofilter. Using an experimental batch reactor setup with recirculation, active nitrifying biofilter units from a RAS were exposed to a range of hydraulic flow velocities. Corresponding nitrification rates were measured following ammonium chloride, NH₄Cl, spikes and the impact of hydraulic film diffusion was quantified. The nitrification performance of the tested biofilter could be significantly increased by increasing the hydraulic flow velocity in the filter. Area based first order nitrification rate constants ranged from 0.065 m d⁻¹ to 0.192 m d⁻¹ for flow velocities between 2.5 m h⁻¹ and 40 m h⁻¹ (18 °C). This study documents that hydraulic film diffusion may have a significant impact on the nitrification rate in fixed film biofilters with geometry and hydraulic flows corresponding to our experimental RAS biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters.

    PubMed

    Stratford, Jennifer M; Thompson, John A

    2016-03-01

    The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Iron cation catalyzed reduction of N2O by CO: gas-phase temperature dependent kinetics.

    PubMed

    Melko, Joshua J; Ard, Shaun G; Fournier, Joseph A; Li, Jun; Shuman, Nicholas S; Guo, Hua; Troe, Jürgen; Viggiano, Albert A

    2013-07-21

    The ion-molecule reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2, which catalyze the reaction CO + N2O → CO2 + N2, have been studied over the temperature range 120-700 K using a variable temperature selected ion flow tube apparatus. Values of the rate constants for the former two reactions were experimentally derived as k2 (10(-11) cm(3) s(-1)) = 2.0(±0.3) (T/300)(-1.5(±0.2)) + 6.3(±0.9) exp(-515(±77)/T) and k3 (10(-10) cm(3) s(-1)) = 3.1(±0.1) (T/300)(-0.9(±0.1)). Characterizing the energy parameters of the reactions by density functional theory at the B3LYP/TZVP level, the rate constants are modeled, accounting for the intermediate formation of complexes. The reactions are characterized by nonstatistical intrinsic dynamics and rotation-dependent competition between forward and backward fluxes. For Fe(+) + N2O, sextet-quartet switching of the potential energy surfaces is quantified. The rate constant for the clustering reaction FeO(+) + N2O + He → FeO(N2O)(+) + He was also measured, being k4 (10(-27) cm(6) s(-1)) = 1.1(±0.1) (T/300)(-2.5(±0.1)) in the low pressure limit, and analyzed in terms of unimolecular rate theory.

  14. Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy

    NASA Astrophysics Data System (ADS)

    Inagaki, Atsushi; Castillo, Marieta Cristina L.; Yamashita, Yoshimi; Kanda, Manabu; Takimoto, Hiroshi

    2012-02-01

    Instantaneous flow structures "within" a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields "within" the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.

  15. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale

    NASA Astrophysics Data System (ADS)

    Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander

    2016-04-01

    Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.

  16. Interaction of Aquifer and River-Canal Network near Well Field.

    PubMed

    Ghosh, Narayan C; Mishra, Govinda C; Sandhu, Cornelius S S; Grischek, Thomas; Singh, Vikrant V

    2015-01-01

    The article presents semi-analytical mathematical models to asses (1) enhancements of seepage from a canal and (2) induced flow from a partially penetrating river in an unconfined aquifer consequent to groundwater withdrawal in a well field in the vicinity of the river and canal. The nonlinear exponential relation between seepage from a canal reach and hydraulic head in the aquifer beneath the canal reach is used for quantifying seepage from the canal reach. Hantush's (1967) basic solution for water table rise due to recharge from a rectangular spreading basin in absence of pumping well is used for generating unit pulse response function coefficients for water table rise in the aquifer. Duhamel's convolution theory and method of superposition are applied to obtain water table position due to pumping and recharge from different canal reaches. Hunt's (1999) basic solution for river depletion due to constant pumping from a well in the vicinity of a partially penetrating river is used to generate unit pulse response function coefficients. Applying convolution technique and superposition, treating the recharge from canal reaches as recharge through conceptual injection wells, river depletion consequent to variable pumping and recharge is quantified. The integrated model is applied to a case study in Haridwar (India). The well field consists of 22 pumping wells located in the vicinity of a perennial river and a canal network. The river bank filtrate portion consequent to pumping is quantified. © 2014, National GroundWater Association.

  17. Probing the limits of metal plasticity with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.

    2017-10-01

    Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong and stiff metal.

  18. Measurements of evaporated perfluorocarbon during partial liquid ventilation by a zeolite absorber.

    PubMed

    Proquitté, Hans; Rüdiger, Mario; Wauer, Roland R; Schmalisch, Gerd

    2004-01-01

    During partial liquid ventilation (PLV) the knowledge of the quantity of exhaled perfluorocarbon (PFC) allows a continuous substitution of the PFC loss to achieve a constant PFC level in the lungs. The aim of our in vitro study was to determine the PFC loss in the mixed expired gas by an absorber and to investigate the effect of the evaporated PFC on ventilatory measurements. To simulate the PFC loss during PLV, a heated flask was rinsed with a constant airflow of 4 L min(-1) and PFC was infused by different speeds (5, 10, 20 mL h(-1)). An absorber filled with PFC selective zeolites was connected with the flask to measure the PFC in the gas. The evaporated PFC volume and the PFC concentration were determined from the weight gain of the absorber measured by an electronic scale. The PFC-dependent volume error of the CO2SMO plus neonatal pneumotachograph was measured by manual movements of a syringe with volumes of 10 and 28 mL with a rate of 30 min(-1). Under steady state conditions there was a strong correlation (r2 = 0.999) between the infusion speed of PFC and the calculated PFC flow rate. The PFC flow rate was slightly underestimated by 4.3% (p < 0.01). However, this bias was independent from PFC infusion rate. The evaporated PFC volume was precisely measured with errors < 1%. The volume error of the CO2SMO-Plus pneumotachograph increased with increasing PFC content for both tidal volumes (p < 0.01). However for PFC flow rates up to 20 mL/h the error of the measured tidal volumes was < 5%. PFC selective zeolites can be used to quantify accurately the evaporated PFC volume during PLV. With increasing PFC concentrations in the exhaled air the measurement errors of ventilatory parameters have to be taken into account.

  19. Effect of Detonation through a Turbine Stage

    NASA Technical Reports Server (NTRS)

    Ellis, Matthew T.

    2004-01-01

    Pulse detonation engines (PDE) have been investigated as a more efficient means of propulsion due to its constant volume combustion rather than the more often used constant pressure combustion of other propulsion systems. It has been proposed that a hybrid PDE-gas turbine engine would be a feasible means of improving the efficiency of the typical constant pressure combustion gas turbine cycle. In this proposed system, multiple pulse detonation tubes would replace the conventional combustor. Also, some of the compressor stages may be removed due to the pressure rise gained across the detonation wave. The benefits of higher thermal efficiency and reduced compressor size may come at a cost. The first question that arises is the unsteadiness in the flow created by the pulse detonation tubes. A constant pressure combustor has the advantage of supplying a steady and large mass flow rate. The use of the pulse detonation tubes will create an unsteady mass flow which will have currently unknown effects on the turbine located downstream of the combustor. Using multiple pulse detonation tubes will hopefully improve the unsteadiness. The interaction between the turbine and the shock waves exiting the tubes will also have an unknown effect. Noise levels are also a concern with this hybrid system. These unknown effects are being investigated using TURBO, an unsteady turbomachinery flow simulation code developed at Mississippi State University. A baseline case corresponding to a system using a constant pressure combustor with the same mass flow rate achieved with the pulse detonation hybrid system will be investigated first.

  20. Pre-equilibrium Longitudinal Flow in the IP-Glasma Framework for Pb+Pb Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    McDonald, Scott; Shen, Chun; Fillion-Gourdeau, François; Jeon, Sangyong; Gale, Charles

    2017-08-01

    In this work, we debut a new implementation of IP-Glasma and quantify the pre-equilibrium longitudinal flow in the IP-Glasma framework. The saturation physics based IP-Glasma model naturally provides a non-zero initial longitudinal flow through its pre-equilibrium Yang-Mills evolution. A hybrid IP-Glasma+MUSIC+UrQMD frame-work is employed to test this new implementation against experimental data and to make further predictions about hadronic flow observables in Pb+Pb collisions at 5.02 TeV. Finally, the non-zero pre-equilibrium longitudinal flow of the IP-Glasma model is quantified, and its origin is briefly discussed.

  1. Focused Flow During Infiltration Into Ethanol-Contaminated Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Jazwiec, A.; Smith, J. E.

    2017-12-01

    The increasing commercial and industrial use of ethanol, e.g. in biofuels, has generated increased incidents of vadose zone contamination by way of ethanol spills and releases. This has increased the interest in better understanding behaviors of ethanol in unsaturated porous media and it's multiphase interactions in the vadose zone. This study uses highly controlled laboratory experiments in a 2-D (0.6mx0.6mx0.01m) flow cell to investigate water infiltration behaviors into ethanol-contaminated porous media. Ethanol and water were applied by either constant head or constant flux methods onto the surface of sands homogenously packed into the flow cell. The constant flux experiments at both low and high application rates were conducted using a rainulator with a row of hypodermic needles connected to a peristaltic pump. The constant head experiments were conducted using an 8cm diameter tension disk infiltrometer set to both low and high tensions. The presence of ethanol contamination generated solute-dependent capillarity induced focused flow (SCIFF) of water infiltration, which was primarily due to decreases in interfacial tensions at the air-liquid interfaces in the unsaturated sands as a function of ethanol concentration. SCIFF was clearly expressed as an unsaturated water flow phenomenon comprised of narrowly focused vertical flow fingers of water within the initially ethanol contaminated porous media. Using analyses of photos and video, comparisons were made between constant flux and constant head application methods. Further comparisons were made between low and high infiltration rates and the two sand textures used. A high degree of sensitivity to minor heterogeneity in relatively homogeneous sands was also observed. The results of this research have implications for rainfall infiltration into ethanol contaminated vadose zones expressing SCIFF, including implications for associated mass fluxes and the nature of flushing of ethanol from the unsaturated zone to groundwaters.

  2. Carbon Nanotubes in Water: MD Simulations of Internal and External Flow, Self Organization

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Halicioglu, Timur; Werder, Thomas; Walther, Jens; Koumoutsakos, Petros; Arnold, James (Technical Monitor)

    2001-01-01

    We have developed computational tools, based on particle codes, for molecular dynamics (MD) simulation of carbon nanotubes (CNT) in aqueous environments. The interaction of CNTs with water is envisioned as a prototype for the design of engineering nano-devices, such as artificial sterocillia and molecular biosensors. Large scale simulations involving thousands of water molecules are possible due to our efficient parallel MD code that takes long range electrostatic interactions into account. Since CNTs can be considered as rolled up sheets of graphite, we expect the CNT-water interaction to be similar to the interaction of graphite with water. However, there are fundamental differences between considering graphite and CNTs, since the curvature of CNTs affects their chemical activity and also since capillary effects play an important role for both dynamic and static behaviour of materials inside CNTs. In recent studies Gordillo and Marti described the hydrogen bond structure as well as time dependent properties of water confined in CNTs. We are presenting results from the development of force fields describing the interaction of CNTs and water based on ab-initio quantum mechanical calculations. Furthermore, our results include both water flows external to CNTs and the behaviour of water nanodroplets inside heated CNTs. In the first case (external flows) the hydrophobic behaviour of CNTs is quantified and we analyze structural properties of water in the vicinity of CNTs with diagnostics such as hydrogen bond distribution, water dipole orientation and radial distribution functions. The presence of water leads to attractive forces between CNTs as a result of their hydrophobicity. Through extensive simulations we quantify these attractive forces in terms of the number and separation of the CNT. Results of our simulations involving arrays of CNTs indicate that these exhibit a hydrophobic behaviour that leads to self-organising structures capable of trapping water clusters. In the second case (internal flows) we study the behaviour of water droplets confined inside CNTs. Constant temperature simulations allow us to capture structural properties such as the contact angles and density profiles of the equilibrated drops. By heating and subsequently cooling of the CNT, we are able to measure the evaporation and the condensation rate of the entrapped water.

  3. Monitoring forests from space: quantifying forest change by using satellite data.

    Treesearch

    Jonathan Thompson

    2006-01-01

    Change is the only constant in forest ecosystems. Quantifying regional-scale forest change is increasingly done with remote sensing, which relies on data sent from digital camera-like sensors mounted to Earth-orbiting satellites. Through remote sensing, changes in forests can be studied comprehensively and uniformly across time and space.

  4. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network

    PubMed Central

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis. PMID:24404074

  5. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    PubMed

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.

  6. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  7. An Inexpensive, Fast and Sensitive Quantitative Lateral Flow Magneto-Immunoassay for Total Prostate Specific Antigen

    PubMed Central

    Barnett, Jacqueline M.; Wraith, Patrick; Kiely, Janice; Persad, Raj; Hurley, Katrina; Hawkins, Peter; Luxton, Richard

    2014-01-01

    We describe the detection characteristics of a device the Resonant Coil Magnetometer (RCM) to quantify paramagnetic particles (PMPs) in immunochromatographic (lateral flow) assays. Lateral flow assays were developed using PMPs for the measurement of total prostate specific antigen (PSA) in serum samples. A detection limit of 0.8 ng/mL was achieved for total PSA using the RCM and is at clinically significant concentrations. Comparison of data obtained in a pilot study from the analysis of serum samples with commercially available immunoassays shows good agreement. The development of a quantitative magneto-immunoassay in lateral flow format for total PSA suggests the potential of the RCM to operate with many immunoassay formats. The RCM has the potential to be modified to quantify multiple analytes in this format. This research shows promise for the development of an inexpensive device capable of quantifying multiple analytes at the point-of-care using a magneto-immunoassay in lateral flow format. PMID:25587419

  8. Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow

    NASA Astrophysics Data System (ADS)

    Schäfer, Stefan

    2017-04-01

    The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the turbulence scales of the flow. In case of heterogeneous distributions of vertical velocity components in the ADCP beams, the resulting errors significantly biased the mean velocities and could not be recognized by sole ADCP measurements. For the straightened flow scenario, the results showed good agreement of ADCP and ADV data for mean velocities, whereas the ADCP data consistently overestimated turbulence intensities by a factor of 2. Reynolds stresses were in good agreement as well as were turbulent kinetic energies, apart from one measurement with outliers of up to 30%. For the tailrace flow scenario, the mean velocities from the ADCP data underestimated the ADV data by 23%. Turbulence intensities from the ADCP data were fluctuant, overestimated the ADV data by factors of up to 2.8 and showed spatial discrepancies over the depth. Reynolds stresses were only partly in good agreement and turbulent kinetic energies were over- and underestimated in a range of [-50; +30] %.

  9. Quantification of baseline pupillary response and task-evoked pupillary response during constant and incremental task load.

    PubMed

    Mosaly, Prithima R; Mazur, Lukasz M; Marks, Lawrence B

    2017-10-01

    The methods employed to quantify the baseline pupil size and task-evoked pupillary response (TEPR) may affect the overall study results. To test this hypothesis, the objective of this study was to assess variability in baseline pupil size and TEPR during two basic working memory tasks: constant load of 3-letters memorisation-recall (10 trials), and incremental load memorisation-recall (two trials of each load level), using two commonly used methods (1) change from trail/load specific baseline, (2) change from constant baseline. Results indicated that there was a significant shift in baseline between the trails for constant load, and between the load levels for incremental load. The TEPR was independent of shifts in baseline using method 1 only for constant load, and method 2 only for higher levels of incremental load condition. These important findings suggest that the assessment of both the baseline and methods to quantify TEPR are critical in ergonomics application, especially in studies with small number of trials per subject per condition. Practitioner Summary: Quantification of TEPR can be affected by shifts in baseline pupil size that are most likely affected by non-cognitive factors when other external factors are kept constant. Therefore, quantification methods employed to compute both baseline and TEPR are critical in understanding the information processing of humans in practical ergonomics settings.

  10. Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.

    PubMed

    Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho

    2009-07-01

    A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.

  11. Graviton fluctuations erase the cosmological constant

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  12. On accelerated flow of MHD powell-eyring fluid via homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.

  13. Spin-Hall effect in the scattering of structured light from plasmonic nanowire.

    PubMed

    Sharma, Deepak K; Kumar, Vijay; Vasista, Adarsh B; Chaubey, Shailendra K; Kumar, G V Pavan

    2018-06-01

    Spin-orbit interactions are subwavelength phenomena that can potentially lead to numerous device-related applications in nanophotonics. Here, we report the spin-Hall effect in the forward scattering of Hermite-Gaussian (HG) and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the spin-Hall effect for a HG beam compared to a Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition, the nodal line of the HG beam acts as the marker for the spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the spin flow component of the Poynting vector associated with the circular polarization is responsible for the spin-Hall effect and its enhancement.

  14. Spin-Hall effect in the scattering of structured light from plasmonic nanowire

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak K.; Kumar, Vijay; Vasista, Adarsh B.; Chaubey, Shailendra K.; Kumar, G. V. Pavan

    2018-06-01

    Spin-orbit interactions are subwavelength phenomena which can potentially lead to numerous device related applications in nanophotonics. Here, we report Spin-Hall effect in the forward scattering of Hermite-Gaussian and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the Spin-Hall effect for Hermite-Gaussian beam as compared to Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition to it, nodal line of HG beam acts as the marker for the Spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the Spin flow component of Poynting vector associated with the circular polarization is responsible for the Spin-Hall effect and its enhancement.

  15. Closing the loop of the soil water retention curve

    USGS Publications Warehouse

    Lu, Ning; Alsherif, N; Wayllace, Alexandra; Godt, Jonathan W.

    2015-01-01

    The authors, to their knowledge for the first time, produced two complete principal soil water retention curves (SWRCs) under both positive and negative matric suction regimes. An innovative testing technique combining the transient water release and imbibition method (TRIM) and constant flow method (CFM) was used to identify the principal paths of SWRC in the positive pore-water pressure regime under unsaturated conditions. A negative matric suction of 9.8 kPa is needed to reach full saturation or close the loop of the SWRC for a silty soil. This work pushes the understanding of the interaction of soil and water into new territory by quantifying the boundaries of the SWRC over the entire suction domain, including both wetting and drying conditions that are relevant to field conditions such as slope wetting under heavy rainfall or rapid groundwater table rise in earthen dams or levees.

  16. Influence of obstacles on bubbles rising in water-saturated sand

    NASA Astrophysics Data System (ADS)

    Poryles, Raphaël; Varas, Germán; Vidal, Valérie

    2017-06-01

    This work investigates the dynamics of air rising through a water-saturated sand confined in a Hele- Shaw cell in which a circular obstacle is trapped. The air is injected at constant flow rate through a single nozzle at the bottom center of the cell. Without obstacle, in a similar configuration, previous studies pointed out the existence of a fluidized zone generated by the central upward gas motion which entrains two granular convection rolls on its sides. Here, a circular obstacle which diameter is of the order of the central air channel width is trapped at the vertical of the injection nozzle. We analyze the influence of the obstacle location on the size of the fluidized zone and its impact on the morphology of the central air channel. Finally, we quantify the variations of the granular free surface. Two configurations with multiple obstacles are also considered.

  17. A sequence of physical processes quantified in LAOS by continuous local measures

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Wei; Rogers, Simon A.

    2017-11-01

    The response to large amplitude oscillatory shear of a soft colloidal glass formed by a suspension of multiarm star polymers is investigated by means of well-defined continuous local measures. The local measures provide information regarding the transient elastic and viscous response of the material, as well as elastic extension via a shifting equilibrium position. It is shown that even when the amplitude of the strain is very large, cages reform and break twice per period and exhibit maximum elasticity around the point of zero stress. It is also shown that around the point of zero stress, the cages are extended by a nearly constant amount of approximately 5% at 1 rad/s and 7% at 10 rad/s, even when the total strain is as large as 420%. The results of this study provide a blueprint for a generic approach to elucidating the complex dynamics exhibited by soft materials under flow.

  18. PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.

    PubMed

    McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas

    2015-11-03

    Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.

  19. Turbulence intensity's effect on liquid jet breakup from long circular pipes

    NASA Astrophysics Data System (ADS)

    Trettel, Ben; Ezekoye, Ofodike

    2017-11-01

    Long pipes which produce fully developed flow are frequently used as a nozzle in jet breakup research. We compiled experimental data from over 20 pipe jet studies for many breakup quantities and developed correlations for these quantities based on existing theories and our own theories. Previous experimental studies often had confounding between some variables (e.g., the Reynolds and Weber numbers), neglected important quantities (e.g., the turbulence intensity), or made apples to oranges comparisons (e.g., different nozzles). By independently tracking the Reynolds number, Weber number, density ratio, and turbulence intensity, and focusing only on pipe jets to keep other variables nearly constant, we minimize these issues. Turbulence is a cause of jet breakup, yet there is little quantitative research on this due to the difficulty of turbulence measurements in free surface flows. To avoid those difficulties, we exploited the fact that adjusting the roughness of a long pipe allows one to quantifiably control the turbulence intensity. We correlated turbulence intensity as a function of the friction factor. Data for rough pipes was used to include turbulence intensity in our study. Comparisons were made with theories for the effect of turbulence intensity on breakup.

  20. Controls on streamflow intermittence in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kampf, S. K.; Puntenney, K.; Martin, C.; Weber, R.; Gerlich, J.; Hammond, J. C.; Lefsky, M. A.

    2017-12-01

    Intermittent streams comprise more than 60% of the channel length in semiarid northern Colorado, yet little is known about their flow magnitude and timing. We used field surveys, stream sensors, and remote sensing to quantify spatial and temporal patterns of streamflow intermittence in the Cache la Poudre basin in 2016-2017. To evaluate potential controls on streamflow intermittence, we delineated the drainage area to each monitored point and quantified the catchment's mean precipitation, temperature, snow persistence, slope, aspect, vegetation type, soil type, and bedrock geology. During the period of study, most streams below 2500 m elevation and <550 mm mean annual precipitation were intermittent, with flow only during the early spring and summer. In these drier low elevation areas, flow duration generally increased with precipitation and snow persistence. Locally, the type of bedrock geology and location of streams relative to faults affected flow duration. Above 2500 m, nearly all streams with drainage areas >1 km2 had perennial flow, whereas nearly all streams with drainage areas <1 km2 had intermittent flow. For the high elevation intermittent streams, stream locations often differed substantially from the locations mapped in standard GIS data products. Initial analyses have identified no clearly quantifiable controls on flow duration of high elevation streams, but field observations indicate subsurface flow paths are important contributors to surface streams.

  1. Impacts of relative permeability on CO2 phase behavior, phase distribution, and trapping mechanisms

    NASA Astrophysics Data System (ADS)

    Moodie, N.; McPherson, B. J. O. L.; Pan, F.

    2015-12-01

    A critical aspect of geologic carbon storage, a carbon-emissions reduction method under extensive review and testing, is effective multiphase CO2 flow and transport simulation. Relative permeability is a flow parameter particularly critical for accurate forecasting of multiphase behavior of CO2 in the subsurface. The relative per­meability relationship assumed and especially the irreducible saturation of the gas phase greatly impacts predicted CO2 trapping mechanisms and long-term plume migration behavior. A primary goal of this study was to evaluate the impact of relative permeability on efficacy of regional-scale CO2 sequestration models. To accomplish this we built a 2-D vertical cross-section of the San Rafael Swell area of East-central Utah. This model simulated injection of CO2 into a brine aquifer for 30 years. The well was then shut-in and the CO2 plume behavior monitored for another 970 years. We evaluated five different relative permeability relationships to quantify their relative impacts on forecasted flow results of the model, with all other parameters maintained uniform and constant. Results of this analysis suggest that CO2 plume movement and behavior are significantly dependent on the specific relative permeability formulation assigned, including the assumed irreducible saturation values of CO2 and brine. More specifically, different relative permea­bility relationships translate to significant differences in CO2 plume behavior and corresponding trapping mechanisms.

  2. Padé approximant for normal stress differences in large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.

    2018-04-01

    Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.

  3. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  4. Sonic flow distortion experiment

    NASA Astrophysics Data System (ADS)

    Peters, Gerhard; Kirtzel, Hans-Jürgen; Radke, Jürgen

    2017-04-01

    We will present results from a field experiment with multiple sonic anemometers, and will address the question about residual errors of wind tunnel based calibrations that are transferred to atmospheric measurements. Ultrasonic anemometers have become standard components of high quality in-situ instrumentations, because of the long term calibration stability, fast response, wide dynamic range, and various options of built in quality control. On the downside of this technology is the fact that the sound transducers and the carrying structure represent obstacles in the flow causing systematic deviations of the measured flow from the free flow. Usually, the correction schemes are based on wind tunnel observations of the sonic-response as function of angle of attack under stationary conditions. Since the natural atmospheric flow shows turbulence intensities and scales, which cannot be mimicked in a wind tunnel, it is suspected that the wind-tunnel based corrections may be not (fully) applicable to field data. The wide spread use of sonic anemometers in eddy flux instrumentations for example in the frame of EuroFlux, AmeriFlux or other international observation programs has therefore prompted a - still controversial - discussion of the significance of residual flow errors. In an attempt to quantify the flow distortion in free field conditions, 12 identical 3-component sonics with 120 degree head symmetry were operated at the north margin of an abandoned airfield. The sonics were installed in a straight line in WE-direction at 2.6 m height with a mutual distance of 3 meters and with an azimuth increment of the individual sonics of 11 degrees. Synchronous raw data were recorded with 20 Hz sample rate. Data of about 12 hours with southerly winds (from the relatively flat airfield) were analyzed. Statistical homogeneity of the wind field in the range of the instruments line was assumed, but a variable finite turbulent decay constant was accounted for, which was estimated from the data. The free field flow distortion estimates will be discussed in comparison with wind tunnel observations.

  5. Bio-medical flow sensor. [intrvenous procedures

    NASA Technical Reports Server (NTRS)

    Winkler, H. E. (Inventor)

    1981-01-01

    A bio-medical flow sensor including a packageable unit of a bottle, tubing and hypodermic needle which can be pre-sterilized and is disposable. The tubing has spaced apart tubular metal segments. The temperature of the metal segments and fluid flow therein is sensed by thermistors and at a downstream location heat is input by a resistor to the metal segment by a control electronics. The fluids flow and the electrical power required for the resisto to maintain a constant temperature differential between the tubular metal segments is a measurable function of fluid flow through the tubing. The differential temperature measurement is made in a control electronics and also can be used to control a flow control valve or pump on the tubing to maintain a constant flow in the tubing and to shut off the tubing when air is present in the tubing.

  6. Analysis of the dynamics of renal vascular resistance and urine flow rate in the cat following electrical stimulation of the renal nerves.

    PubMed

    Celler, B G; Stella, A; Golin, R; Zanchetti, A

    1996-08-01

    In ten sino aortic denervated, vagotomized and aneasthetized cats, renal efferent nerves were stimulated for 30 s with trains of constant current pulses at frequencies in the range 5-30 Hz. The arterial pressure, heart rate, urine flow rate (electronic drop counter) and renal blood flow (electromagnetic technique) were recorded. Subsequent computer processing gave the true means of renal artery pressure (MRAP) and renal blood flow (MRBF) and hence the renal vascular resistance (MRVR), over each cardiac cycle. Recovery of MRVR after the end of stimulation exhibited two distinct time constants. The fast component had a time constant of 2.03 +/- 0.26 s and represented 60.2 +/- 1.71% of the recovery. The time constant of the slower component was 14.1 +/- 1.9 s and represented 36.0 +/- 1.6% of the recovery. The relationship between MRVR and stimulus frequency was sigmoidal with maximum sensitivity at stimulus frequencies of 12.6 +/- 0.76 Hz. Changes in urine flow rate, in contrast, followed a hyperbolic function with maximum response sensitivity occurring at very low stimulus frequencies. Changes in urine flow rate were 50% complete at stimulus frequencies of 5 Hz. Identification of two distinct components in the relaxation phase of renal vascular resistance leads to a reasonable hypothesis that 60% of total renal vascular resistance may lie proximal to the glomerulus, whereas 36% may be accounted for by the efferent arterioles.

  7. Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for n-alkanes

    PubMed Central

    Knotts, Thomas A.

    2017-01-01

    Molecular simulation has the ability to predict various physical properties that are difficult to obtain experimentally. For example, we implement molecular simulation to predict the critical constants (i.e., critical temperature, critical density, critical pressure, and critical compressibility factor) for large n-alkanes that thermally decompose experimentally (as large as C48). Historically, molecular simulation has been viewed as a tool that is limited to providing qualitative insight. One key reason for this perceived weakness in molecular simulation is the difficulty to quantify the uncertainty in the results. This is because molecular simulations have many sources of uncertainty that propagate and are difficult to quantify. We investigate one of the most important sources of uncertainty, namely, the intermolecular force field parameters. Specifically, we quantify the uncertainty in the Lennard-Jones (LJ) 12-6 parameters for the CH4, CH3, and CH2 united-atom interaction sites. We then demonstrate how the uncertainties in the parameters lead to uncertainties in the saturated liquid density and critical constant values obtained from Gibbs Ensemble Monte Carlo simulation. Our results suggest that the uncertainties attributed to the LJ 12-6 parameters are small enough that quantitatively useful estimates of the saturated liquid density and the critical constants can be obtained from molecular simulation. PMID:28527455

  8. Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.

    In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less

  9. Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction

    DOE PAGES

    Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.; ...

    2016-08-01

    In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less

  10. Cell adhesion during bullet motion in capillaries.

    PubMed

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  11. Nitrogen and phosphorus runoff losses from variable and constant intensity rainfall simulations on loamy sand under conventional and strip tillage systems.

    PubMed

    Franklin, D; Truman, C; Potter, T; Bosch, D; Strickland, T; Bednarz, C

    2007-01-01

    Further studies on the quality of runoff from tillage and cropping systems in the southeastern USA are needed to refine current risk assessment tools for nutrient contamination. Our objective was to quantify and compare effects of constant (Ic) and variable (Iv) rainfall intensity patterns on inorganic nitrogen (N) and phosphorus (P) losses from a Tifton loamy sand (Plinthic Kandiudult) cropped to cotton (Gossypium hirsutum L.) and managed under conventional (CT) or strip-till (ST) systems. We simulated rainfall at a constant intensity and a variable intensity pattern (57 mm h(-1)) and collected runoff continuously at 5-min intervals for 70 min. For cumulative runoff at 50 min, the Iv pattern lost significantly greater amounts (p < 0.05) of total Kjeldahl N (TKN) and P (TKP) (849 g N ha(-1) and 266 g P ha(-1) for Iv; 623 g N ha(-1) and 192 g P ha(-1) for Ic) than did the Ic pattern. However, at 70 min, no significant differences in total losses were evident for TKN or TKP from either rainfall intensity pattern. In contrast, total cumulative losses of dissolved reactive P (DRP) and NO3-N were greatest for ST-Ic, followed by ST-Iv, CT-Ic, and CT-Iv in diminishing order (69 g DRP ha(-1) and 361 g NO3-N ha(-1); 37 g DRP ha(-1) and 133 g NO3-N ha(-1); 3 g DRP ha(-1) and 58 g NO3-N ha(-1); 1 g DRP ha(-1) and 49 g NO3-N ha(-1)). Results indicate that constant-rate rainfall simulations may overestimate the amount of dissolved nutrients lost to the environment in overland flow from cropping systems in loamy sand soils. We also found that CT treatments lost significantly greater amounts of TKN and TKP than ST treatments and in contrast, ST treatments lost significantly greater amounts of DRP and NO3-N than CT treatments. These results indicate that ST systems may be losing more soluble fractions than CT systems, but only a fraction the total N (33%) and total P (11%) lost through overland flow from CT systems.

  12. Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA

    USGS Publications Warehouse

    Dlubac, Katherine; Knight, Rosemary; Song, Yi-Qiao; Bachman, Nate; Grau, Ben; Cannia, Jim; Williams, John

    2013-01-01

    Hydraulic conductivity (K) is one of the most important parameters of interest in groundwater applications because it quantifies the ease with which water can flow through an aquifer material. Hydraulic conductivity is typically measured by conducting aquifer tests or wellbore flow (WBF) logging. Of interest in our research is the use of proton nuclear magnetic resonance (NMR) logging to obtain information about water-filled porosity and pore space geometry, the combination of which can be used to estimate K. In this study, we acquired a suite of advanced geophysical logs, aquifer tests, WBF logs, and sidewall cores at the field site in Lexington, Nebraska, which is underlain by the High Plains aquifer. We first used two empirical equations developed for petroleum applications to predict K from NMR logging data: the Schlumberger Doll Research equation (KSDR) and the Timur-Coates equation (KT-C), with the standard empirical constants determined for consolidated materials. We upscaled our NMR-derived K estimates to the scale of the WBF-logging K(KWBF-logging) estimates for comparison. All the upscaled KT-C estimates were within an order of magnitude of KWBF-logging and all of the upscaled KSDR estimates were within 2 orders of magnitude of KWBF-logging. We optimized the fit between the upscaled NMR-derived K and KWBF-logging estimates to determine a set of site-specific empirical constants for the unconsolidated materials at our field site. We conclude that reliable estimates of K can be obtained from NMR logging data, thus providing an alternate method for obtaining estimates of K at high levels of vertical resolution.

  13. Quantifying the size-resolved dynamics of indoor bioaerosol transport and control.

    PubMed

    Kunkel, S A; Azimi, P; Zhao, H; Stark, B C; Stephens, B

    2017-09-01

    Understanding the bioaerosol dynamics of droplets and droplet nuclei emitted during respiratory activities is important for understanding how infectious diseases are transmitted and potentially controlled. To this end, we conducted experiments to quantify the size-resolved dynamics of indoor bioaerosol transport and control in an unoccupied apartment unit operating under four different HVAC particle filtration conditions. Two model organisms (Escherichia coli K12 and bacteriophage T4) were aerosolized under alternating low and high flow rates to roughly represent constant breathing and periodic coughing. Size-resolved aerosol sampling and settle plate swabbing were conducted in multiple locations. Samples were analyzed by DNA extraction and quantitative polymerase chain reaction (qPCR). DNA from both organisms was detected during all test conditions in all air samples up to 7 m away from the source, but decreased in magnitude with the distance from the source. A greater fraction of T4 DNA was recovered from the aerosol size fractions smaller than 1 μm than E. coli K12 at all air sampling locations. Higher efficiency HVAC filtration also reduced the amount of DNA recovered in air samples and on settle plates located 3-7 m from the source. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Simulating and explaining passive air sampling rates for semi-volatile compounds on polyurethane foam passive samplers

    PubMed Central

    Petrich, Nicholas T.; Spak, Scott N.; Carmichael, Gregory R.; Hu, Dingfei; Martinez, Andres; Hornbuckle, Keri C.

    2013-01-01

    Passive air samplers (PAS) including polyurethane foam (PUF) are widely deployed as an inexpensive and practical way to sample semi-volatile pollutants. However, concentration estimates from PAS rely on constant empirical mass transfer rates, which add unquantified uncertainties to concentrations. Here we present a method for modeling hourly sampling rates for semi-volatile compounds from hourly meteorology using first-principle chemistry, physics, and fluid dynamics, calibrated from depuration experiments. This approach quantifies and explains observed effects of meteorology on variability in compound-specific sampling rates and analyte concentrations; simulates nonlinear PUF uptake; and recovers synthetic hourly concentrations at a reference temperature. Sampling rates are evaluated for polychlorinated biphenyl congeners at a network of Harner model samplers in Chicago, Illinois during 2008, finding simulated average sampling rates within analytical uncertainty of those determined from loss of depuration compounds, and confirming quasi-linear uptake. Results indicate hourly, daily and interannual variability in sampling rates, sensitivity to temporal resolution in meteorology, and predictable volatility-based relationships between congeners. We quantify importance of each simulated process to sampling rates and mass transfer and assess uncertainty contributed by advection, molecular diffusion, volatilization, and flow regime within the PAS, finding PAS chamber temperature contributes the greatest variability to total process uncertainty (7.3%). PMID:23837599

  15. From catastrophic acceleration to deceleration of liquid plugs in prewetted capillary tubes

    NASA Astrophysics Data System (ADS)

    Magniez, Juan; Baudoin, Michael; Zoueshtiagh, Farzam; Lemac/Lics Team

    2016-11-01

    Liquid/gas flows in capillaries are involved in a multitude of systems including flow in porous media, petroleum extraction, imbibition of paper or flows in pulmonary airways in pathological conditions. Liquid plugs, witch compose the biphasic flows, can have a dramatic impact on patients with pulmonary obstructive diseases, since they considerably alter the circulation of air in the airways and thus can lead to severe breathing difficulties. Here, the dynamics of liquid plugs in prewetted capillary tube is investigated experimentally and theoretically, with a particular emphasis on the role of the prewetting films and of the driving condition (constant flow rate, constant pressure). For both driving conditions, the plugs can either experience a continuous increase or decrease of their size. While this phenomenon is regular in the case of imposed flow rate, a constant pressure head can lead to a catastrophic acceleration of the plug and eventually its rupture or a dramatic increase of the plug size. A theoretical model is proposed to explain the transition between theses two regimes. These results give a new insight on the critical pressure required for airways obstruction and reopening. IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, University of Lille.

  16. Quantitative optical coherence tomography imaging of intermediate flow defect phenotypes in ciliary physiology and pathophysiology

    NASA Astrophysics Data System (ADS)

    Huang, Brendan K.; Gamm, Ute A.; Jonas, Stephan; Khokha, Mustafa K.; Choma, Michael A.

    2015-03-01

    Cilia-driven fluid flow is a critical yet poorly understood aspect of pulmonary physiology. Here, we demonstrate that optical coherence tomography-based particle tracking velocimetry can be used to quantify subtle variability in cilia-driven flow performance in Xenopus, an important animal model of ciliary biology. Changes in flow performance were quantified in the setting of normal development, as well as in response to three types of perturbations: mechanical (increased fluid viscosity), pharmacological (disrupted serotonin signaling), and genetic (diminished ciliary motor protein expression). Of note, we demonstrate decreased flow secondary to gene knockdown of kif3a, a protein involved in ciliogenesis, as well as a dose-response decrease in flow secondary to knockdown of dnah9, an important ciliary motor protein.

  17. System Regulates the Water Contents of Fuel-Cell Streams

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Lazaroff, Scott

    2005-01-01

    An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.

  18. Cell-flow technique.

    PubMed

    Hess, George P; Lewis, Ryan W; Chen, Yongli

    2014-10-01

    Various devices have been used to flow neurotransmitter solutions over cells containing receptors (e.g., ligand-gated ion channels) for whole-cell current recordings. With many of the devices, the orientation between the porthole of the flow device and the cell is not maintained absolutely constant. Orientation is critical for reproducibility in kinetic experiments. To be able to change the composition of the flowing solution during an experiment and still maintain a constant orientation, we use the cell-flow device described here. A peristaltic pump, a stainless steel U-tube, two different sizes of peristaltic tubing, and a solenoid valve are required to create a simple solution exchange system that can rapidly apply and remove solutions over the surface of a cell in tens of milliseconds. This system allows one to test multiple conditions on a cell containing the receptor of interest while constantly "washing" the cell with extracellular buffer solution between experimental applications. The use of the solenoid valve allows for the application of solutions to be precisely timed and controlled by a computer during electrophysiological current recording. © 2014 Cold Spring Harbor Laboratory Press.

  19. Non-Friedmann cosmology for the Local Universe, significance of the universal Hubble constant, and short-distance indicators of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Baryshev, Yu. V.

    2006-09-01

    Based on the increasing evidence of the cosmological relevance of the local Hubble flow, we consider a simple analytical cosmological model for the Local Universe. This is a non-Friedmann model with a non-uniform static space-time. The major dynamical factor controlling the local expansion is the antigravity produced by the omnipresent and permanent dark energy of the cosmic vacuum (or the cosmological constant). The antigravity dominates at larger distances than 1-2 Mpc from the center of the Local group. The model gives a natural explanation of the two key quantitative characteristics of the local expansion flow, which are the local Hubble constant and the velocity dispersion of the flow. The observed kinematical similarity of the local and global flows of expansion is clarified by the model. We analytically demonstrate the efficiency of the vacuum cooling mechanism that allows one to see the Hubble law this close to the Local group. The "universal Hubble constant" HV (≈60 km s-1 Mpc-1), depending only on the vacuum density, has special significance locally and globally. The model makes a number of verifiable predictions. It also unexpectedly shows that the dwarf galaxies of the local flow with the shortest distances and lowest redshifts may be the most sensitive indicators of dark energy in our neighborhood.

  20. Spatial zonation limits magnesite dissolution in porous media

    NASA Astrophysics Data System (ADS)

    Li, Li; Salehikhoo, Fatemeh; Brantley, Susan L.; Heidari, Peyman

    2014-02-01

    We investigate how mineral spatial distribution in porous media affects their dissolution rates. Specifically, we measure the dissolution rate of magnesite interspersed in different patterns in packed columns of quartz sand where the magnesite concentration (v/v) was held constant. The largest difference was observed between a “Mixed column” containing uniformly distributed magnesite and a “One-zone column” containing magnesite packed into one cylindrical center zone aligned parallel to the main flow of acidic inlet fluid (flow-parallel One-zone column). The columns were flushed with acid water at a pH of 4.0 at flow velocities of 3.6 or 0.36 m/d. Breakthrough data show that the rate of magnesite dissolution is 1.6-2 times slower in the One-zone column compared to the Mixed column. This extent of rate limitation is much larger than what was observed in our previous work (14%) for a similar One-zone column where the magnesite was packed in a layer aligned perpendicular to flow (flow-transverse One-zone column). Two-dimensional reactive transport modeling with CrunchFlow revealed that ion activity product (IAP) and local dissolution rates at the grid block scale (0.1 cm) vary by orders of magnitude. Much of the central magnesite zone in the One-zone flow-parallel column is characterized by close or equal to equilibrium conditions with IAP/Keq > 0.1. Two important surface areas are defined to understand the observed rates: the effective surface area (Ae) reflects the magnesite that effectively dissolves under far from equilibrium conditions (IAP/Keq < 0.1), while the interface surface area (AI) reflects the effective magnesite surface that lies along the quartz-magnesite interface. Modeling results reveal that the transverse dispersivity at the interface of the quartz and magnesite zones controls mass transport and therefore the values of Ae and AI. Under the conditions examined in this work, the value of Ae varies from 2% to 67% of the total magnesite BET surface area. Column-scale bulk rates R,B (in units of mol/s) vary linearly with Ae and AI. Using Ae to normalize rates, we calculate a rate constant (10-9.56 mol/m2/s) that is very close to the value of 10-10.0 mol/m2/s under well-mixed conditions at the grid block scale. This implies that the laboratory-field rate discrepancy can potentially be caused by differences in the effective surface area. If we know the effective surface area of dissolution, we will be able to use the rate constant measured in laboratory systems to calculate field rates for some systems. In this work, approximately 60-70% of the Ae is at the magnesite-quartz interface. This implies that in some field systems where the detailed information that we have for our columns is not available, the effective mineral surface area may be approximated by the area of grains residing at the interface of reactive mineral zones. Although it has long been known that spatial heterogeneities play a significant role in determining physical processes such as flow and solute transport, our data are the first that systematically and experimentally quantifies the importance of mineral spatial distribution (chemical heterogeneity) on dissolution.

  1. Using dual-domain advective-transport simulation to reconcile multiple-tracer ages and estimate dual-porosity transport parameters

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.; Niel Plummer, L.; Casile, Gerolamo; Busenberg, Ed; Nelms, David L.; Schlosser, Peter

    2017-06-01

    Dual-domain transport is an alternative conceptual and mathematical paradigm to advection-dispersion for describing the movement of dissolved constituents in groundwater. Here we test the use of a dual-domain algorithm combined with advective pathline tracking to help reconcile environmental tracer concentrations measured in springs within the Shenandoah Valley, USA. The approach also allows for the estimation of the three dual-domain parameters: mobile porosity, immobile porosity, and a domain exchange rate constant. Concentrations of CFC-113, SF6, 3H, and 3He were measured at 28 springs emanating from carbonate rocks. The different tracers give three different mean composite piston-flow ages for all the springs that vary from 5 to 18 years. Here we compare four algorithms that interpret the tracer concentrations in terms of groundwater age: piston flow, old-fraction mixing, advective-flow path modeling, and dual-domain modeling. Whereas the second two algorithms made slight improvements over piston flow at reconciling the disparate piston-flow age estimates, the dual-domain algorithm gave a very marked improvement. Optimal values for the three transport parameters were also obtained, although the immobile porosity value was not well constrained. Parameter correlation and sensitivities were calculated to help quantify the uncertainty. Although some correlation exists between the three parameters being estimated, a watershed simulation of a pollutant breakthrough to a local stream illustrates that the estimated transport parameters can still substantially help to constrain and predict the nature and timing of solute transport. The combined use of multiple environmental tracers with this dual-domain approach could be applicable in a wide variety of fractured-rock settings.

  2. Estimation of left ventricular blood flow parameters: clinical application of patient-specific CFD simulations from 4D echocardiography

    NASA Astrophysics Data System (ADS)

    Larsson, David; Spühler, Jeannette H.; Günyeli, Elif; Weinkauf, Tino; Hoffman, Johan; Colarieti-Tosti, Massimiliano; Winter, Reidar; Larsson, Matilda

    2017-03-01

    Echocardiography is the most commonly used image modality in cardiology, assessing several aspects of cardiac viability. The importance of cardiac hemodynamics and 4D blood flow motion has recently been highlighted, however such assessment is still difficult using routine echo-imaging. Instead, combining imaging with computational fluid dynamics (CFD)-simulations has proven valuable, but only a few models have been applied clinically. In the following, patient-specific CFD-simulations from transthoracic dobutamin stress echocardiography have been used to analyze the left ventricular 4D blood flow in three subjects: two with normal and one with reduced left ventricular function. At each stress level, 4D-images were acquired using a GE Vivid E9 (4VD, 1.7MHz/3.3MHz) and velocity fields simulated using a presented pathway involving endocardial segmentation, valve position identification, and solution of the incompressible Navier-Stokes equation. Flow components defined as direct flow, delayed ejection flow, retained inflow, and residual volume were calculated by particle tracing using 4th-order Runge-Kutta integration. Additionally, systolic and diastolic average velocity fields were generated. Results indicated no major changes in average velocity fields for any of the subjects. For the two subjects with normal left ventricular function, increased direct flow, decreased delayed ejection flow, constant retained inflow, and a considerable drop in residual volume was seen at increasing stress. Contrary, for the subject with reduced left ventricular function, the delayed ejection flow increased whilst the retained inflow decreased at increasing stress levels. This feasibility study represents one of the first clinical applications of an echo-based patient-specific CFD-model at elevated stress levels, and highlights the potential of using echo-based models to capture highly transient flow events, as well as the ability of using simulation tools to study clinically complex phenomena. With larger patient studies planned for the future, and with the possibility of adding more anatomical features into the model framework, the current work demonstrates the potential of patient-specific CFD-models as a tool for quantifying 4D blood flow in the heart.

  3. Investigation of the frequency response of constant voltage anemometers in turbulent flows

    NASA Astrophysics Data System (ADS)

    Sadeghi Hassanlouei, Atabak

    A commercially available anemometer system considered as a prototype, the constant voltage anemometer (CVA), is presented and its working principle is studied and analyzed. We detail the different procedures and corrections that have to be applied to voltage signals to deduce corresponding velocity signals, including the effect of the thermal inertia of the sensor. Results are compared to another anemometer system widely used in research and industry, the constant temperature anemometer (CTA), for validation requirements. Measurements are performed in the turbulent region of a subsonic axisymmetric jet and include mean velocities, root-mean-square (rms) values of velocity fluctuations and power spectral densities. In the same range of operation, we show that the two instruments give similar results. The CVA anemometer slightly underestimates the rms velocity values given by the CTA anemometer which is attributed to a non-linear effect. We show that the cut-off frequency of the CVA system is higher than the more commonly used CTA system, and that the electronic noise level is lower. The constant voltage anemometer is thus an excellent alternative to the constant temperature anemometer for low turbulent flows with rich frequency content, such as supersonic and hypersonic flows.

  4. Is hyporheic flow an indicator for salmonid spawning site selection?

    NASA Astrophysics Data System (ADS)

    Benjankar, R. M.; Tonina, D.; Marzadri, A.; McKean, J. A.; Isaak, D.

    2015-12-01

    Several studies have investigated the role of hydraulic variables in the selection of spawning sites by salmonids. Some recent studies suggest that the intensity of the ambient hyporheic flow, that present without a salmon egg pocket, is a cue for spawning site selection, but others have argued against it. We tested this hypothesis by using a unique dataset of field surveyed spawning site locations and an unprecedented meter-scale resolution bathymetry of a 13.5 km long reach of Bear Valley Creek (Idaho, USA), an important Chinook salmon spawning stream. We used a two-dimensional surface water model to quantify stream hydraulics and a three-dimensional hyporheic model to quantify the hyporheic flows. Our results show that the intensity of ambient hyporheic flows is not a statistically significant variable for spawning site selection. Conversely, the intensity of the water surface curvature and the habitat quality, quantified as a function of stream hydraulics and morphology, are the most important variables for salmonid spawning site selection. KEY WORDS: Salmonid spawning habitat, pool-riffle system, habitat quality, surface water curvature, hyporheic flow

  5. Site- and species-specific hydrolysis rates of heroin.

    PubMed

    Szöcs, Levente; Orgován, Gábor; Tóth, Gergő; Kraszni, Márta; Gergó, Lajos; Hosztafi, Sándor; Noszál, Béla

    2016-06-30

    The hydroxide-catalyzed non-enzymatic, simultaneous and consecutive hydrolyses of diacetylmorphine (DAM, heroin) are quantified in terms of 10 site- and species-specific rate constants in connection with also 10 site- and species-specific acid-base equilibrium constants, comprising all the 12 coexisting species in solution. This characterization involves the major and minor decomposition pathways via 6-acetylmorphine and 3-acetylmorphine, respectively, and morphine, the final product. Hydrolysis has been found to be 18-120 times faster at site 3 than at site 6, depending on the status of the amino group and the rest of the molecule. Nitrogen protonation accelerates the hydrolysis 5-6 times at site 3 and slightly less at site 6. Hydrolysis rate constants are interpreted in terms of intramolecular inductive effects and the concomitant local electron densities. Hydrolysis fraction, a new physico-chemical parameter is introduced and determined to quantify the contribution of the individual microspecies to the overall hydrolysis. Hydrolysis fractions are depicted as a function of pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Flow limitation and wheezes in a constant flow and volume lung preparation.

    PubMed

    Gavriely, N; Grotberg, J B

    1988-01-01

    To facilitate the study of respiratory wheezes in an animal lung model, an isovolume, constant-flow excised dog lung preparation was developed. Dog lungs were inflated to 26 +/- 4 cmH2O and coated with layers of epoxy glue and polyester compound. A rigid shell 2 mm thick was obtained around the entire pleural surface and the extra-pulmonary airways. The adhesive forces between the pleura and the shell were strong enough to hold the lung distended after the inflation pressure was removed. Holes 2 mm diam were drilled through the shell over one of the lung lobes in an array, 4 cm across. The holes penetrated the pleural surface, so that constant flow could be maintained in the expiratory direction by activating a suction pump connected to the trachea. Downstream suction pressure and flow rate were measured with a mercury manometer and a rotameter, respectively. Sounds were recorded by a small (0.6 cm OD) microphone inserted into the trachea. When suction pressure was increased, flow initially increased to 31 +/- 3 l/min. Further increase of suction pressure caused only very slight additional increase in flow (i.e., flow limitation). During this plateau of flow, a pure tone was generated with acoustic properties similar to respiratory wheezes. Both the flow plateau and the wheezing sounds could be eliminated by freezing the lungs. It is concluded that wheezing sounds were associated with flow limitation in this preparation. It is suggested that the stable acoustic properties obtained by this preparation may become useful in the analysis of mechanisms of wheezing lung sounds generation.

  7. Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model

    NASA Astrophysics Data System (ADS)

    Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.

    2016-09-01

    The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.

  8. A new algebraic turbulence model for accurate description of airfoil flows

    NASA Astrophysics Data System (ADS)

    Xiao, Meng-Juan; She, Zhen-Su

    2017-11-01

    We report a new algebraic turbulence model (SED-SL) based on the SED theory, a symmetry-based approach to quantifying wall turbulence. The model specifies a multi-layer profile of a stress length (SL) function in both the streamwise and wall-normal directions, which thus define the eddy viscosity in the RANS equation (e.g. a zero-equation model). After a successful simulation of flat plate flow (APS meeting, 2016), we report here further applications of the model to the flow around airfoil, with significant improvement of the prediction accuracy of the lift (CL) and drag (CD) coefficients compared to other popular models (e.g. BL, SA, etc.). Two airfoils, namely RAE2822 airfoil and NACA0012 airfoil, are computed for over 50 cases. The results are compared to experimental data from AGARD report, which shows deviations of CL bounded within 2%, and CD within 2 counts (10-4) for RAE2822 and 6 counts for NACA0012 respectively (under a systematic adjustment of the flow conditions). In all these calculations, only one parameter (proportional to the Karmen constant) shows slight variation with Mach number. The most remarkable outcome is, for the first time, the accurate prediction of the drag coefficient. The other interesting outcome is the physical interpretation of the multi-layer parameters: they specify the corresponding multi-layer structure of turbulent boundary layer; when used together with simulation data, the SED-SL enables one to extract physical information from empirical data, and to understand the variation of the turbulent boundary layer.

  9. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic conductivity of the lower layer over that of the unconfined aquifer) is smaller than 0.1. The present solution is compared with the numerical solution from FEMWATER for validation and the results indicate good match between these two solutions. Finally, the present solution is applied to a set of field drawdown data obtained from a CHT for the estimation of hydrogeologic parameters.

  10. Entrainment and thrust augmentation in pulsatile ejector flows

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Bui, T.

    1981-01-01

    This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.

  11. An approximate analytical solution for describing surface runoff and sediment transport over hillslope

    NASA Astrophysics Data System (ADS)

    Tao, Wanghai; Wang, Quanjiu; Lin, Henry

    2018-03-01

    Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.

  12. Forecasting seasonal hydrologic response in major river basins

    NASA Astrophysics Data System (ADS)

    Bhuiyan, A. M.

    2014-05-01

    Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.

  13. Constant-concentration boundary condition: Lessons from the HYDROCOIN variable-density groundwater benchmark problem

    USGS Publications Warehouse

    Konikow, Leonard F.; Sanford, W.E.; Campbell, P.J.

    1997-01-01

    In a solute-transport model, if a constant-concentration boundary condition is applied at a node in an active flow field, a solute flux can occur by both advective and dispersive processes. The potential for advective release is demonstrated by reexamining the Hydrologic Code Intercomparison (HYDROCOIN) project case 5 problem, which represents a salt dome overlain by a shallow groundwater system. The resulting flow field includes significant salinity and fluid density variations. Several independent teams simulated this problem using finite difference or finite element numerical models. We applied a method-of-characteristics model (MOCDENSE). The previous numerical implementations by HYDROCOIN teams of a constant-concentration boundary to represent salt release by lateral dispersion only (as stipulated in the original problem definition) was flawed because this boundary condition allows the release of salt into the flow field by both dispersion and advection. When the constant-concentration boundary is modified to allow salt release by dispersion only, significantly less salt is released into the flow field. The calculated brine distribution for case 5 depends very little on which numerical model is used, as long as the selected model is solving the proper equations. Instead, the accuracy of the solution depends strongly on the proper conceptualization of the problem, including the detailed design of the constant-concentration boundary condition. The importance and sensitivity to the manner of specification of this boundary does not appear to have been recognized previously in the analysis of this problem.

  14. The flow structure of pyroclastic density currents: evidence from particle models and large-scale experiments

    NASA Astrophysics Data System (ADS)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-05-01

    Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.

  15. A one-dimensional model for gas-solid heat transfer in pneumatic conveying

    NASA Astrophysics Data System (ADS)

    Smajstrla, Kody Wayne

    A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.

  16. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems

    USGS Publications Warehouse

    O'Connor, Ben L.; Harvey, Judson W.

    2008-01-01

    Hyporheic exchange and biogeochemical reactions are difficult to quantify because of the range in fluid‐flow and sediment conditions inherent to streams, wetlands, and nearshore marine ecosystems. Field measurements of biogeochemical reactions in aquatic systems are impeded by the difficulty of measuring hyporheic flow simultaneously with chemical gradients in sediments. Simplified models of hyporheic exchange have been developed using Darcy's law generated by flow and bed topography at the sediment‐water interface. However, many modes of transport are potentially involved (molecular diffusion, bioturbation, advection, shear, bed mobility, and turbulence) with even simple models being difficult to apply in complex natural systems characterized by variable sediment sizes and irregular bed geometries. In this study, we synthesize information from published hyporheic exchange investigations to develop a scaling relationship for estimating mass transfer in near‐surface sediments across a range in fluid‐flow and sediment conditions. Net hyporheic exchange was quantified using an effective diffusion coefficient (De) that integrates all of the various transport processes that occur simultaneously in sediments, and dimensional analysis was used to scale De to shear stress velocity, roughness height, and permeability that describe fluid‐flow and sediment characteristics. We demonstrated the value of the derived scaling relationship by using it to quantify dissolved oxygen (DO) uptake rates on the basis of DO profiles in sediments and compared them to independent flux measurements. The results support a broad application of the De scaling relationship for quantifying coupled hyporheic exchange and biogeochemical reaction rates in streams and other aquatic ecosystems characterized by complex fluid‐flow and sediment conditions.

  17. HYDRAULIC SERVO

    DOEpatents

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  18. Harbingers and latecomers - the order of appearance of exact coherent structures in plane Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Zammert, Stefan; Eckhardt, Bruno

    2017-02-01

    The transition to turbulence in plane Poiseuille flow (PPF) is connected with the presence of exact coherent structures. We here discuss a variety of different structures that are relevant for the transition, compare the critical Reynolds numbers and optimal wavelengths for their appearance, and explore the differences between flows operating at constant mass flux or at constant pressure drop. The Reynolds numbers quoted here are based on the mean flow velocity and refer to constant mass flux. Reynolds numbers based on constant pressure drop are always higher. The Tollmien-Schlichting (TS) waves bifurcate subcritically from the laminar profile at Re = 5772 at wavelength 6.16 and reach down to Re = 2610 at a different optimal wave length of 4.65. Their streamwise localised counter part bifurcates at the even lower value Re = 2334. Three-dimensional exact solutions appear at much lower Reynolds numbers. We describe one exact solutions that has a critical Reynolds number of 316. Streamwise localised versions of this state require higher Reynolds numbers, with the lowest bifurcation occurring near Re = 1018. The analysis shows that the various branches of TS-waves cannot be connected with transition observed near Re ≈ 1000 and that the exact coherent structures related to downstream vortices come in at lower Reynolds numbers and prepare for the transition.

  19. System analysis of the dynamic response of the coronary circulation to a sudden change in heart rate.

    PubMed

    Dankelman, J; Stassen, H G; Spaan, J A

    1990-03-01

    In this study the response of driving pressure/flow ration on an abrupt change in heart rate was analysed. The difference between the response obtained with constant pressure and constant flow perfusion was also studied. The responses show a fast initial reversed phase followed by a slow phase caused by regulation. To test whether the initial phase could be the result of mechanical changes in the coronary circulation, a model for regulation was extended by the addition of four different mechanical models originating from the literature. These extended models were able to explain the fast initial phase. However, the mechanical model consisting of an intramyocardial compliance (C = 0.08 ml mm Hg-1 100 g-1) with a variable venous resistance, and the model consisting of a waterfall and a small compliance (C = 0.007 ml mm Hg-1 100g-1) both explained these responses best. The analysis showed that there is no direct relationship between rate of change of vascular tone and rate of change of pressure/flow ratio. However, on the basis of the two extended models, it can be predicted that the half-time for the response of regulation to be complete is about 9s with constant pressure perfusion and 15 s with constant flow perfusion.

  20. Determining resistivity of a formation adjacent to a borehole having casing by generating constant current flow in portion of casing and using at least two voltage measurement electrodes

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.

  1. A new methodology for quantifying the impact of water repellency on the filtering function of soils

    NASA Astrophysics Data System (ADS)

    Müller, Karin; Deurer, Markus; Kawamoto, Ken; Hiradate, Syuntaro; Komatsu, Toshiko; Clothier, Brent

    2014-05-01

    Soils deliver a range of ecosystem services, and some of the most valuable relate to the regulating services resulting from the buffering and filtering of solutes by soil. However, it is commonly accepted that soil water repellency (SWR) can lead to finger flow and preferential flow. Yet, there have been few attempts to quantify the impact of such flow phenomena on the buffering and filtering of solutes. No method is available to quantify directly how SWR affects the transport of reactive solutes. We have closed this gap and developed a new method for quantifying solute transport by novel experiments with water-repellent soils. It involves sequentially applying two liquids, one water, and the other a reference fully wetting liquid, namely, aqueous ethanol, to the same intact soil core with air-drying between the application of the two liquids. Our results highlight that sorption experiments are necessary to complement our new method to ascertain directly the impact of SWR on the filtering of a solute. We conducted transport and sorption experiments, by applying our new method, with the herbicide 2,4-Dichlorophenoxyacetic acid and two Andosol top-soils; one from Japan and the other one from New Zealand. Breakthrough curves from the water experiments were characterized by preferential flow with high initial concentrations, tailing and a long prevalence of solutes remaining in the soil. Our results clearly demonstrate and quantify the impact of SWR on the leaching of this herbicide. This technique for quantifying the reduction of the soil's filtering efficiency by SWR enables assessment of the increased risk of groundwater contamination by solutes exogenously applied to water-repellent soils.

  2. Streamline similarity method for flow distributions and shock losses at the impeller inlet of the centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Zh.

    2018-02-01

    An analytical method is presented, which enables the non-uniform velocity and pressure distributions at the impeller inlet of a pump to be accurately computed. The analyses are based on the potential flow theory and the geometrical similarity of the streamline distribution along the leading edge of the impeller blades. The method is thus called streamline similarity method (SSM). The obtained geometrical form of the flow distribution is then simply described by the geometrical variable G( s) and the first structural constant G I . As clearly demonstrated and also validated by experiments, both the flow velocity and the pressure distributions at the impeller inlet are usually highly non-uniform. This knowledge is indispensible for impeller blade designs to fulfill the shockless inlet flow condition. By introducing the second structural constant G II , the paper also presents the simple and accurate computation of the shock loss, which occurs at the impeller inlet. The introduction of two structural constants contributes immensely to the enhancement of the computational accuracies. As further indicated, all computations presented in this paper can also be well applied to the non-uniform exit flow out of an impeller of the Francis turbine for accurately computing the related mean values.

  3. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  4. Computational and theoretical analysis of free surface flow in a thin liquid film under zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1988-01-01

    The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.

  5. Gene delivery by direct injection (microinjection) using a controlled-flow system.

    PubMed

    Dean, David A

    2006-12-01

    INTRODUCTIONThis protocol describes a method for constant-flow microinjection using the Pneumatic PicoPump (World Precision Instruments). This type of system is very simple and can be assembled on a relatively low budget. In this method, a constant flow of sample is delivered from the tip of the pipette, and the amount of sample injected into the cell is determined by how long the pipette remains in the cell. A typical system is composed of a pressure regulator that can be adjusted for two pressures (back pressure and injection pressure), a capillary holder, and a coarse and fine micromanipulator.

  6. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied... rated service time of the apparatus. (b) Where constant flow is used in conjunction with demand flow...

  7. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied... rated service time of the apparatus. (b) Where constant flow is used in conjunction with demand flow...

  8. Bubble Continuous Positive Airway Pressure Enhances Lung Volume and Gas Exchange in Preterm Lambs

    PubMed Central

    Pillow, J. Jane; Hillman, Noah; Moss, Timothy J. M.; Polglase, Graeme; Bold, Geoff; Beaumont, Chris; Ikegami, Machiko; Jobe, Alan H.

    2007-01-01

    Rationale: The technique used to provide continuous positive airway pressure (CPAP) to the newborn may influence lung function and breathing efficiency. Objectives: To compare differences in gas exchange physiology and lung injury resulting from treatment of respiratory distress with either bubble or constant pressure CPAP and to determine if the applied flow influences short-term outcomes. Methods: Lambs (133 d gestation; term is 150 d) born via cesarean section were weighed, intubated, and treated with CPAP for 3 hours. Two groups were treated with 8 L/minute applied flow using the bubble (n = 12) or the constant pressure (n = 12) technique. A third group (n = 10) received the bubble method with 12 L/minute bias flow. Measurements at study completion included arterial blood gases, oxygraphy, capnography, tidal flow, multiple breath washout, lung mechanics, static pressure–volume curves, and bronchoalveolar lavage fluid protein. Measurements and Main Results: Birth weight and arterial gas variables at 15 minutes were comparable. Flow (8 or 12 L/min) did not influence the 3-hour outcomes in the bubble group. Bubble technique was associated with a higher pH, PaO2, oxygen uptake, and area under the flow–volume curve, and a decreased alveolar protein, respiratory quotient, PaCO2, and ventilation inhomogeneity compared with the constant pressure group. Conclusions: Compared with constant pressure technique, bubble CPAP promotes enhanced airway patency during treatment of acute postnatal respiratory disease in preterm lambs and may offer protection against lung injury. PMID:17431223

  9. Direct simulation of isothermal-wall supersonic channel flow

    NASA Technical Reports Server (NTRS)

    Coleman, Gary N.

    1993-01-01

    The motivation for this work is the fact that in turbulent flows where compressibility effects are important, they are often poorly understood. A few examples of such flows are those associated with astrophysical phenomena and those found in combustion chambers, supersonic diffusers and nozzles, and over high-speed airfoils. For this project, we are primarily interested in compressibility effects near solid surfaces. Our main objective is an improved understanding of the fundamentals of compressible wall-bounded turbulence, which can in turn be used to cast light upon modeling concepts such as the Morkovin hypothesis and the Van Driest transformation. To this end, we have performed a direct numerical simulation (DNS) study of supersonic turbulent flow in a plane channel with constant-temperature walls. All of the relevant spatial and temporal scales are resolved so that no sub grid scale or turbulence model is necessary. The channel geometry was chosen so that finite Mach number effects can be isolated by comparing the present results to well established incompressible channel data. Here the fluid is assumed to be an ideal gas with constant specific heats, constant Prandtl number, and power-law temperature-dependent viscosity. Isothermal-wall boundary conditions are imposed so that a statistically stationary state may be obtained. The flow is driven by a uniform (in space) body force (rather than a mean pressure gradient) to preserve stream wise homogeneity, with the body force defined so that the total mass flux is constant.

  10. Normal stress effects on Knudsen flow

    NASA Astrophysics Data System (ADS)

    Eu, Byung Chan

    2018-01-01

    Normal stress effects are investigated on tube flow of a single-component non-Newtonian fluid under a constant pressure gradient in a constant temperature field. The generalized hydrodynamic equations are employed, which are consistent with the laws of thermodynamics. In the cylindrical tube flow configuration, the solutions of generalized hydrodynamic equations are exactly solvable and the flow velocity is obtained in a simple one-dimensional integral quadrature. Unlike the case of flow in the absence of normal stresses, the flow develops an anomaly in that the flow in the boundary layer becomes stagnant and the thickness of such a stagnant velocity boundary layer depends on the pressure gradient, the aspect ratio of the radius to the length of the tube, and the pressure (or density and temperature) at the entrance of the tube. The volume flow rate formula through the tube is derived for the flow. It generalizes the Knudsen flow rate formula to the case of a non-Newtonian stress tensor in the presence of normal stress differences. It also reduces to the Navier-Stokes theory formula in the low shear rate limit near equilibrium.

  11. Regulator for intravenous feeding

    NASA Technical Reports Server (NTRS)

    Dimeff, J.

    1975-01-01

    Float valve maintains constant level of solution, providing constant drop rate as long as solution can flow into patient's vein. Second float valve allows solution to enter vein, but prevents entry of air.

  12. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.

    PubMed

    Peng, Ran; Li, Dongqing

    2015-02-15

    Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Topologically massive gravity and Ricci-Cotton flow

    NASA Astrophysics Data System (ADS)

    Lashkari, Nima; Maloney, Alexander

    2011-05-01

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  14. On compressible and piezo-viscous flow in thin porous media.

    PubMed

    Pérez-Ràfols, F; Wall, P; Almqvist, A

    2018-01-01

    In this paper, we study flow through thin porous media as in, e.g. seals or fractures. It is often useful to know the permeability of such systems. In the context of incompressible and iso-viscous fluids, the permeability is the constant of proportionality relating the total flow through the media to the pressure drop. In this work, we show that it is also relevant to define a constant permeability when compressible and/or piezo-viscous fluids are considered. More precisely, we show that the corresponding nonlinear equation describing the flow of any compressible and piezo-viscous fluid can be transformed into a single linear equation. Indeed, this linear equation is the same as the one describing the flow of an incompressible and iso-viscous fluid. By this transformation, the total flow can be expressed as the product of the permeability and a nonlinear function of pressure, which represents a generalized pressure drop.

  15. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  16. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  17. Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Saxon, Jeff (Technical Monitor)

    2002-01-01

    In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.

  18. Solubility enhancement of dioxins and PCBs by surfactant monomers and micelles quantified with polymer depletion techniques.

    PubMed

    Schacht, Veronika J; Grant, Sharon C; Escher, Beate I; Hawker, Darryl W; Gaus, Caroline

    2016-06-01

    Partitioning of super-hydrophobic organic contaminants (SHOCs) to dissolved or colloidal materials such as surfactants can alter their behaviour by enhancing apparent aqueous solubility. Relevant partition constants are, however, challenging to quantify with reasonable accuracy. Partition constants to colloidal surfactants can be measured by introducing a polymer (PDMS) as third phase with known PDMS-water partition constant in combination with the mass balance approach. We quantified partition constants of PCBs and PCDDs (log KOW 5.8-8.3) between water and sodium dodecyl sulphate monomers (KMO) and micelles (KMI). A refined, recently introduced swelling-based polymer loading technique allowed highly precise (4.5-10% RSD) and fast (<24 h) loading of SHOCs into PDMS, and due to the miniaturisation of batch systems equilibrium was reached in <5 days for KMI and <3 weeks for KMO. SHOC losses to experimental surfaces were substantial (8-26%) in monomer solutions, but had a low impact on KMO (0.10-0.16 log units). Log KMO for PCDDs (4.0-5.2) were approximately 2.6 log units lower than respective log KMI, which ranged from 5.2 to 7.0 for PCDDs and 6.6-7.5 for PCBs. The linear relationship between log KMI and log KOW was consistent with more polar and moderately hydrophobic compounds. Apparent solubility increased with increasing hydrophobicity and was highest in micelle solutions. However, this solubility enhancement was also considerable in monomer solutions, up to 200 times for OCDD. Given the pervasive presence of surfactant monomers in typical field scenarios, these data suggest that low surfactant concentrations may be effective long-term facilitators for subsurface transport of SHOCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    PubMed

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  20. QUANTIFICATION OF INSTREAM FLOW NEEDS OF A WILD AND SCENIC RIVER FOR WATER RIGHTS LITIGATION.

    USGS Publications Warehouse

    Garn, Herbert S.

    1986-01-01

    The lower 4 miles of the Red River, a tributary of the Rio Grande in northern New Mexico, was designated as one of the 'instant' components of the National Wild and Scenic River System in 1968. Instream flow requirements were determined by several methods to quantify the claims made by the United States for a federal reserved water right under the Wild and Scenic Rivers Act. The scenic (aesthetic), recreational, and fish and wildlife values are the purposes for which instream flow requirements were claimed. Since water quality is related to these values, instream flows for waste transport and protection of water quality were also included in the claim. The U. S. Fish and Wildlife Service's Instream Flow Incremental Methodology was used to quantify the relationship between various flow regimes and fish habitat. Study results are discussed.

  1. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  2. Quantifying temporal isolation: a modelling approach assessing the effect of flowering time differences on crop-to-weed pollen flow in sunflower

    PubMed Central

    Roumet, Marie; Cayre, Adeline; Latreille, Muriel; Muller, Marie-Hélène

    2015-01-01

    Flowering time divergence can be a crucial component of reproductive isolation between sympatric populations, but few studies have quantified its actual contribution to the reduction of gene flow. In this study, we aimed at estimating pollen-mediated gene flow between cultivated sunflower and a weedy conspecific sunflower population growing in the same field and at quantifying, how it is affected by the weeds' flowering time. For that purpose, we extended an existing mating model by including a temporal distance (i.e. flowering time difference between potential parents) effect on mating probabilities. Using phenological and genotypic data gathered on the crop and on a sample of the weedy population and its offspring, we estimated an average hybridization rate of approximately 10%. This rate varied strongly from 30% on average for weeds flowering at the crop flowering peak to 0% when the crop finished flowering and was affected by the local density of weeds. Our result also suggested the occurrence of other factors limiting crop-to-weed gene flow. This level of gene flow and its dependence on flowering time might influence the evolutionary fate of weedy sunflower populations sympatric to their crop relative. PMID:25667603

  3. Flow of foams in two-dimensional disordered porous media

    NASA Astrophysics Data System (ADS)

    Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team

    2015-11-01

    Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.

  4. Anemonefish oxygenate their anemone hosts at night.

    PubMed

    Szczebak, Joseph T; Henry, Raymond P; Al-Horani, Fuad A; Chadwick, Nanette E

    2013-03-15

    Many stony coral-dwelling fishes exhibit adaptations to deal with hypoxia among the branches of their hosts; however, no information exists on the respiratory ecophysiology of obligate fish associates of non-coral organisms such as sea anemones and sponges. This study investigated metabolic and behavioral interactions between two-band anemonefish (Amphiprion bicinctus) and bulb-tentacle sea anemones (Entacmaea quadricolor) at night. We measured the net dark oxygen uptake ( , μmol O2 h(-1)) of fish-anemone pairs when partners were separate from each other, together as a unit, and together as a unit but separated by a mesh screen that prevented physical contact. We also measured the effects of water current on sea anemone and quantified the nocturnal behaviors of fish in the absence and presence of host anemones in order to discern the impacts of anemone presence on fish behavior. Net of united pairs was significantly higher than that of both separated pairs and united pairs that were separated by a mesh screen. Anemone increased with flow rate from 0.5 to 2.0 cm s(-1), after which remained constant up to a water flow rate of 8.0 cm s(-1). Furthermore, the percentage time and bout frequency of flow-modulating behaviors by fish increased significantly when anemones were present. We conclude that physical contact between anemonefish and sea anemones elevates the of at least one of the partners at night, and anemonefish behavior at night appears to oxygenate sea anemone hosts and to augment the metabolism of both partners.

  5. A Reactive-Transport Model Describing Methanogen Growth and Methane Production in Diffuse Flow Vents at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Algar, C. K.

    2015-12-01

    Hydrogenotrophic methanogenesis is an important mode of metabolism in deep-sea hydrothermal vents. Diffuse vent fluids often show a depletion in hydrogen with a corresponding increase in methane relative to pure-mixing of end member fluid and seawater, and genomic surveys show an enrichment in genetic sequences associated with known methanogens. However, because we cannot directly sample the subseafloor habitat where these organisms are living, constraining the size and activity of these populations remains a challenge and limits our ability to quantify the role they play in vent biogeochemistry. Reactive-transport modeling may provide a useful tool for approaching this problem. Here we present a reactive-transport model describing methane production along the flow-path of hydrothermal fluid from its high temperature end-member to diffuse venting at the seafloor. The model is set up to reflect conditions at several diffuse vents in the Axial Seamount. The model describes the growth of the two dominant thermophilic methanogens, Methanothermococcus and Methanocaldococcus, observed at Axial seamount. Monod and Arrhenius constants for Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii were obtained for the model using chemostat and bottle experiments at varying temperatures. The model is used to investigate the influence of different mixing regimes on the subseafloor populations of these methanogens. By varying the model flow path length and subseafloor cell concentrations, and fitting to observed hydrogen and methane concentrations in the venting fluid, the subseafloor biomass, fluid residence time, and methane production rate can be constrained.

  6. Estimation of the zeta potential and the dielectric constant using velocity measurements in the electroosmotic flows.

    PubMed

    Park, H M; Hong, S M

    2006-12-15

    In this paper we develop a method for the determination of the zeta potential zeta and the dielectric constant epsilon by exploiting velocity measurements of the electroosmotic flow in microchannels. The inverse problem is solved through the minimization of a performance function utilizing the conjugate gradient method. The present method is found to estimate zeta and epsilon with reasonable accuracy even with noisy velocity measurements.

  7. A theoretical description of arterial pressure-flow relationships with verification in the isolated hindlimb of the dog.

    PubMed

    Jackman, A P; Green, J F

    1990-01-01

    We developed and tested a new two-compartment serial model of the arterial vasculature which unifies the capacitance (downstream arterial compliance) and waterfall (constant downstream pressure load) theories of blood flow through the arteries. In this model, blood drains from an upstream compliance through a resistance into a downstream compliance which empties into the veins through a downstream resistance which terminates in a constant pressure load. Using transient arterial pressure data obtained from an isolated canine hindlimb preparation, we tested this model, using a stop-flow technique. Numerical parameter estimation techniques were used to estimate the physiologic parameters of the model. The downstream compliance was found to be more than ten times larger than the upstream compliance and the constant pressure load was significantly above venous pressures but decreased in response to vasodilation. Our results support the applicability of both the capacitance and waterfall theories.

  8. Spatial scale effect on sediment dynamics in basin-wide floods within a typical agro-watershed: A case study in the hilly loess region of the Chinese Loess Plateau.

    PubMed

    Zhang, Le-Tao; Li, Zhan-Bin; Wang, Shan-Shan

    2016-12-01

    Scale issues, which have been extensively studied in the domain of soil erosion, are considerably significant in geomorphologic processes and hydrologic modelling. However, relatively scarce efforts have been made to quantify the spatial scale effect on event-based sediment dynamics in basin-wide floods. To address this issue, sediment-runoff yield data of 44 basin-wide flood events were collected from gauging stations at the Chabagou river basin, a typical agro-basin (unmanaged) in the hilly loess region of the Chinese Loess Plateau. Thus, the spatial scale effect on event-based sediment dynamics was investigated in the basin system across three different spatial scales from sublateral to basin outlet. Results showed that the event-based suspended sediment concentration, as well as the intra- and inter-scale flow-sediment relationships remained spatially constant. Hence, almost all the sediment-laden flows can reach at the detachment-limited maximum concentration across scales, specifically for hyperconcentrated flows. Consequently, limited influence was exerted by upstream sediment-laden flow on downstream sediment output, particularly for major sediment-producing events. However, flood peak discharge instead of total flood runoff amount can better interpret the dynamics of sediment yield across scales. As a composite parameter, the proposed stream energy factor combines flood runoff depth and flood peak discharge, thereby showing more advantages to describe the event-based inter-scale flow-sediment relationship than other flow-related variables. Overall, this study demonstrates the process-specific characteristics of soil erosion by water flows in the basin system. Therefore, event-based sediment control should be oriented by the process to cut off the connectivity of hyperconcentrated flows and redistribute the erosive energy of flowing water in terms of temporality and spatiality. Furthermore, evaluation of soil conservation benefits should be based on the process of runoff regulation to comprehensively assess the efficiency of anti-erosion strategies in sediment control at the basin scale. Copyright © 2016. Published by Elsevier B.V.

  9. Quantifying the Journey of a Turbidity Current: How Water and Sediment Discharges Vary with Distance in Monterey Canyon

    NASA Astrophysics Data System (ADS)

    Chapplow, N.; Talling, P.; Cartigny, M.; Parsons, D. R.; Simmons, S.; Clare, M. A.; Paull, C. K.

    2017-12-01

    Turbidity currents transport vast quantities of sediment across the seafloor and form the largest sediment accumulations on Earth. Such flows pose a hazard to strategically important seafloor infrastructure and are important agents for the transport of organic carbon and nutrients that support deep-sea ecosystems. It is therefore important to quantify the scale of these flows, how much sediment they transport, and how their discharge evolves over time and space along their flow path. Two modes of flow evolution have been proposed based on experimental and numerical models. The first is termed ignition, where flows entrain seafloor sediment and become more voluminous and powerful and increase in discharge. The second is dissipation, where sediment falls out of suspension, flows decelerate and lose discharge. Field-scale turbidity currents have only been measured at a handful of sites worldwide, however, and never at multiple locations along their full course. Therefore, it has not been possible to determine when, where and why flows diverge into these two modes in the deep sea and how discharge of the flows varies. The ambitious multi-institution Coordinated Canyon Experiment measured turbidity currents at seven instrumented moorings along the Monterey Canyon, offshore California. Fifteen flows were recorded, including the fastest events yet measured at high resolution (>8 m/s). This remarkable dataset provides the first opportunity to quantify down-channel sediment and flow discharge evolution of turbidity currents in the deep sea. To understand whether flows ignite or dissipate, we derive total and sediment discharges for each of the flows at all seven mooring locations down the canyon. Discharges are calculated from measured velocities, and sediment concentrations derived using a novel inversion method. Two distinct flow modes are observed, where most flows rapidly dissipated in the upper reaches of the canyon, while three ran out for the full 50 km array length. We then explore why only these three flows ignited and discuss the implications for canyon and channel capacity and evolution.

  10. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    PubMed

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  11. Two Primary Standards for Low Flows of Gases

    PubMed Central

    Berg, Robert F.; Tison, Stuart A.

    2004-01-01

    We describe two primary standards for gas flow in the range from 0.1 to 1000 μmol/s. (1 μmol/s ≅ 1.3 cm3/min at 0 °C and 1 atmosphere.) The first standard is a volumetric technique in which measurements of pressure, volume, temperature, and time are recorded while gas flows in or out of a stainless steel bellows at constant pressure. The second standard is a gravimetric technique. A small aluminum pressure cylinder supplies gas to a laminar flow meter, and the integrated throughput of the laminar flow meter is compared to the weight decrease of the cylinder. The two standards, which have standard uncertainties of 0.019 %, agree to within combined uncertainties with each other and with a third primary standard at NIST based on pressure measurements at constant volume. PMID:27366623

  12. Microfluidic oscillators with widely tunable periods

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Takayama, Shuichi

    2013-01-01

    We present experiments and theory of a constant flow-driven microfluidic oscillator with widely tunable oscillation periods. This oscillator converts two constant input-flows from a syringe pump into an alternating, periodic output-flow with oscillation periods that can be adjusted to between 0.3 s to 4.1 h by tuning an external membrane capacitor. This capacitor allows multiple adjustable periods at a given input flow-rate, thus providing great flexibility in device operation. Also, we show that a sufficiently large external capacitance, relative to the internal capacitance of the microfluidic valve itself, is a critical requirement for oscillation. These widely tunable microfluidic oscillators are envisioned to be broadly useful for the study of biological rhythms, as on-chip timing sources for microfluidic logic circuits, and other applications that require variation in timed flow switching. PMID:23429765

  13. Influence of fast advective flows on pattern formation of Dictyostelium discoideum

    PubMed Central

    Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard

    2018-01-01

    We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179

  14. Synergistic effects of plasma-catalyst interactions for CH4 activation.

    PubMed

    Kim, Jongsik; Go, David B; Hicks, Jason C

    2017-05-24

    The elucidation of catalyst surface-plasma interactions is a challenging endeavor and therefore requires thorough and rigorous assessment of the reaction dynamics on the catalyst in the plasma environment. The first step in quantifying and defining catalyst-plasma interactions is a detailed kinetic study that can be used to verify appropriate reaction conditions for comparison and to discover any unexpected behavior of plasma-assisted reactions that might prevent direct comparison. In this paper, we provide a kinetic evaluation of CH 4 activation in a dielectric barrier discharge plasma in order to quantify plasma-catalyst interactions via kinetic parameters. The dry reforming of CH 4 with CO 2 was studied as a model reaction using Ni supported on γ-Al 2 O 3 at temperatures of 790-890 K under atmospheric pressure, where the partial pressures of CH 4 (or CO 2 ) were varied over a range of ≤25.3 kPa. Reaction performance was monitored by varying gas hourly space velocity, plasma power, bulk gas temperature, and reactant concentration. After correcting for gas-phase plasma reactions, a linear relationship was observed in the log of the measured rate constant with respect to reciprocal power (1/power). Although thermal catalysis displays typical Arrhenius behavior for this reaction, plasma-assisted catalysis occurs from a complex mixture of sources and shows non-Arrhenius behavior. However, an energy barrier was obtained from the relationship between the reaction rate constant and input power to exhibit ≤∼20 kJ mol -1 (compared to ∼70 kJ mol -1 for thermal catalysis). Of additional importance, the energy barriers measured during plasma-assisted catalysis were relatively consistent with respect to variations in total flow rates, types of diluent, or bulk reaction temperature. These experimental results suggest that plasma-generated vibrationally-excited CH 4 favorably interacts with Ni sites at elevated temperatures, which helps reduce the energy barrier required to activate CH 4 and enhance CH 4 reforming rates.

  15. Permeability anisotropy in marine mudstones in the Nankai Trough, SW Japan: Implications for hypothesized lateral fluid flow and chemical transport outboard of the trench

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; McKiernan, A. W.; Skarbek, R. M.

    2008-12-01

    Characterizing dewatering pathways and chemical fluxes near and outboard of subduction trenches is important toward understanding early sediment dewatering and devolatilization. Quantifying fluid flow rates also constrains the hydraulic gradients driving flow, and thus ultimately hold implications for pore pressure distribution and fault mechanical strength. We focus on the well-studied Nankai Trough offshore SW Japan, where drilling has sampled the sedimentary section at several boreholes from ~11 km outboard of the trench to 3 km landward. At these drillsites, &δ37Cl data and correlation of distinct extrema in downhole chloride profiles have been interpreted to reflect substantial horizontal fluid flow to >10 km outboard of the trench within the ~400 m-thick, homogeneous Lower Shikoku Basin (LSB) facies mudstone. The estimated horizontal velocities are 13 ± 5 cm yr-1; the flow is presumably driven by loading during subduction, and mediated by either permeable conduits or strong anisotropy in permeability. However, the pressure gradients and sediment permeabilities necessary for such flow have not been quantified. Here, we address this problem by combining (1) laboratory measurement of horizontal and vertical sediment permeability from a combination of constant rate of strain (CRS) consolidation tests and flow-through measurements on core samples; and (2) numerical models of fluid flow within a cross section perpendicular to the trench. In our models, we assign hydrostatic pressure at the top and seaward edges, a no-flow condition at the base of the sediments, and pore pressures ranging from 40%-100% of lithostatic at the arcward model boundary. We assign sediment permeability on the basis of our laboratory measurements, and evaluate the possible role of thin permeable conduits as well as strong anisotropy in the incoming section. Our laboratory results define a systematic log-linear relationship between sediment permeability and porosity within the LSB mudstones. The overall variation in permeability for our suite of samples is ~1 order of magnitude. Notably, horizontal permeabilities fall within the range of measured vertical permeabilities, and indicate no significant anisotropy. Using laboratory-derived permeability values, simulated horizontal flow rates range from 10-4 to 10-1 cm yr-1, and decrease dramatically with distance seaward of the trench. With permeability anisotropy of 1000x (i.e. kh = 1000kv), simulated flow rates peak at 3 cm yr-1 at the trench, and decrease to 3x10-1 cm yr-1 by 10 km seaward. These flow rates are substantially lower than those inferred from the geochemical data and also lower than the plate convergence rate of 4 cm yr-1, such that net transport of fluids out of the subduction zone is not likely. If discrete conduits are included in our models, permeabilities of ~10-114m2 are required to sustain the inferred flow rates. However, no potential conduits in the LSB were observed by coring or logging- while-drilling. In contrast, net egress of fluids - and associated chemical transport and pressure translation - are plausible at margins where continuous permeable strata are subducting. Overall, our results highlight a major discrepancy between constraints on fluid flow derived from physical hydrogeology and inferences from geochemical data. In this case, we suggest that the chemical signals may be affected by other processes such as in situ clay dehydration and down-section chemical variations.

  16. Statistical Mechanics of the Human Placenta: A Stationary State of a Near-Equilibrium System in a Linear Regime.

    PubMed

    Lecarpentier, Yves; Claes, Victor; Hébert, Jean-Louis; Krokidis, Xénophon; Blanc, François-Xavier; Michel, Francine; Timbely, Oumar

    2015-01-01

    All near-equilibrium systems under linear regime evolve to stationary states in which there is constant entropy production rate. In an open chemical system that exchanges matter and energy with the exterior, we can identify both the energy and entropy flows associated with the exchange of matter and energy. This can be achieved by applying statistical mechanics (SM), which links the microscopic properties of a system to its bulk properties. In the case of contractile tissues such as human placenta, Huxley's equations offer a phenomenological formalism for applying SM. SM was investigated in human placental stem villi (PSV) (n = 40). PSV were stimulated by means of KCl exposure (n = 20) and tetanic electrical stimulation (n = 20). This made it possible to determine statistical entropy (S), internal energy (E), affinity (A), thermodynamic force (A / T) (T: temperature), thermodynamic flow (v) and entropy production rate (A / T x v). We found that PSV operated near equilibrium, i.e., A ≺≺ 2500 J/mol and in a stationary linear regime, i.e., (A / T) varied linearly with v. As v was dramatically low, entropy production rate which quantified irreversibility of chemical processes appeared to be the lowest ever observed in any contractile system.

  17. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A.; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold

    2014-10-01

    A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%;. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats.

  18. Laboratory experiments on solute transport in bimodal porous media under cyclic precipitation-evaporation boundary conditions

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa

    2016-04-01

    Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and significantly influenced solute leaching. Dynamic boundary conditions generally resulted in faster initial breakthrough and stronger tailing. References: Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, T.P.A. Ferré and H. Veerecken. 2011a. Near-surface solute redistribution during evaporation. Geophys. Res. Lett., 38, L17404, doi:10.1029/2011GL048147. Lehmann, P. and D. Or. 2009. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E, 80, 046318, doi:10.1103/PhysRevE.80.046318.

  19. Using AFM Force Curves to Explore Properties of Elastomers

    ERIC Educational Resources Information Center

    Ferguson, Megan A.; Kozlowski, Joseph J.

    2013-01-01

    polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…

  20. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    NASA Astrophysics Data System (ADS)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  1. Measuring sap flow in plants

    USDA-ARS?s Scientific Manuscript database

    Sap flow measurements provide a powerful tool for quantifying plant water use and monitoring qualitative physiological responses of plants to environmental conditions. As such, sap flow methods are widely employed to invesitgate the agronomic, ecological and hydrological outcomes of plant growth. T...

  2. Pressure distribution in a converging-diverging nozzle during two-phase choked flow of subcooled nitrogen

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    Choked flow rates and axial pressure distributions were measured for subcooled nitrogen in a converging-diverging nozzle with a constant area section in the throat region. Stagnation pressures ranged from slightly above saturation to twice the thermodynamic critical pressure. Stagnation temperatures ranged from 0.75 to 1.03 times the thermodynamic critical temperature. The choking plane is at the divergence end of the constant area throat section. At high stagnation pressures the fluid stays liquid well into the constant area throat region; at near saturation stagnation pressures it appears that vaporization occurs at or before the entrance to the constant area throat region. The throat-to-stagnation pressure ratio data exhibits an anomalous flat region, and this anomaly is related to the two-phase process. The fluid is metastably all liquid below the saturation pressure.

  3. Parametrization of turbulence models using 3DVAR data assimilation in laboratory conditions

    NASA Astrophysics Data System (ADS)

    Olbert, A. I.; Nash, S.; Ragnoli, E.; Hartnett, M.

    2013-12-01

    In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation k-ɛ model were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation k-ɛ model, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. Such analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows. This research further demonstrates how 3DVAR can be utilized to identify and quantify shortcomings of the numerical model and consequently to improve forecasting by correct parameterization of the turbulence models. Such improvements may greatly benefit physical oceanography in terms of understanding and monitoring of coastal systems and the engineering sector through applications in coastal structure design, marine renewable energy and pollutant transport.

  4. Soil pipe flow tracer experiments: 2. Application of a transient storage zone model

    USDA-ARS?s Scientific Manuscript database

    Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...

  5. Detection and Quantification of Silver Nanoparticles at Environmentally Relevant Concentrations Using Asymmetric Flow Field??Flow Fractionation Online with Single Particle Inductively Coupled Plasma Mass Spectrometry

    EPA Pesticide Factsheets

    The presence of silver nanoparticles (AgNPs) in aquatic environments could potentially cause adverse impacts on ecosystems and human health. However, current understanding of the environmental fate and transport of AgNPs is still limited because their properties in complex environmental samples cannot be accurately determined. In this study, the feasibility of using asymmetric flow field-flow fractionation (AF4) connected online with single particle inductively coupled plasma mass spectrometry (spICPMS) to detect and quantify AgNPs at environmentally relevant concentrations was investigated. The AF4 channel had a thickness of 350 00b5m and its accumulation wall was a 10 kDa regenerated cellulose membrane. A 0.02 % FL-70 surfactant solution was used as an AF4 carrier. With 1.2 mL/min AF4 cross flow rate, 1.5 mL/min AF4 channel flow rate, and 5 ms spICPMS dwell time, the AF4??spICPMS can detect and quantify 40 ?? 80 nm AgNPs, as well as Ag-SiO2 nanoparticles (51.0 nm diameter Ag core and 21.6 nm SiO2 shell), with good recovery within 30 min. This system was not only effective in differentiating and quantifying different types of AgNPs with similar hydrodynamic diameters, such as in mixtures containing Ag-SiO2 core-shell nanoparticles and 40 ?? 80 nm AgNPs, but also suitable for differentiating between 40 nm AgNPs and elevated dissolved Ag content. The study results indicate that AF4??spICPMS is capable of detecting and quantifying AgNPs and other engineered

  6. Evaluation of Improvements to Brayton Cycle Performance.

    DTIC Science & Technology

    1986-05-29

    cogeneration systems. They are International Power Technology (IPT), Palo Alto, California and Mechanical Technology, Inc. (MTI), Latham, New York [13]. IPT...constant (10) For a constant Reynold’s number and dimensions, the friction factor will be constant. The relationship for friction of internal ...equation for the friction factor of internal turbulent flow is expressed as Ap -friction =f(Re) - constant. (12) pV 2 Applying Equation (11), Equation (12

  7. Supersonic Free-Jet Combustion in a Ramjet Burner

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Dippold, Vance F., III

    2010-01-01

    A new dual-mode ramjet combustor concept intended for operation over a wide flight Mach number range is described. Subsonic combustion mode is similar to that of a traditional ram combustor which allows operation at higher efficiency, and to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle. The maximum flight Mach number of this scheme is governed largely by the same physics as its classical counterpart. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated. Given the parallel nature of the present scheme, overall flowpath length is less than that of present dual-mode configurations. Cycle analysis was done to define the flowpath geometry for computational fluid dynamics (CFD) analysis, and then to determine performance based on the CFD results. CFD results for Mach 5, 8, and 12 flight conditions indicate stable supersonic free-jet formation and nozzle reattachment, thereby establishing the basic feasibility of the concept. These results also reveal the structure of, and interactions between the free-jet and recirculating combustion chamber flows. Performance based on these CFD results is slightly less than that of the constant-pressure-combustion cycle analysis primarily due to these interactions. These differences are quantified and discussed. Additional CFD results at the Mach 8 flight condition show the effects of nozzle throat area variation on combustion chamber pressure, flow structure, and performance. Calculations with constant temperature walls were also done to evaluate heat flux and overall heat loads. Aspects of the concept that warrant further study are outlined. These include diffuser design, ramjet operation, mode transition, loss mechanisms, and the effects of secondary flow for wall cooling and combustion chamber pressurization. Also recommended is an examination of system-level aspects such as weight, thermal management and rocket integration as well as alternate geometries and variable geometry schemes.

  8. The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall

    2004-05-01

    We devise a stochastic model for the effects of breaking waves and fit its distribution functions to laboratory and field data. This is used to represent the space time structure of momentum and energy forcing of the oceanic boundary layer in turbulence-resolving simulations. The aptness of this breaker model is evaluated in a direct numerical simulation (DNS) of an otherwise quiescent fluid driven by an isolated breaking wave, and the results are in good agreement with laboratory measurements. The breaker model faithfully reproduces the bulk features of a breaking event: the mean kinetic energy decays at a rate approaching t(-1) , and a long-lived vortex (eddy) is generated close to the water surface. The long lifetime of this vortex (more than 50 wave periods) makes it effective in energizing the surface region of oceanic boundary layers. Next, a comparison of several different DNS of idealized oceanic boundary layers driven by different surface forcing (i.e. constant current (as in Couette flow), constant stress, or a mixture of constant stress plus stochastic breakers) elucidates the importance of intermittent stress transmission to the underlying currents. A small amount of active breaking, about 1.6% of the total water surface area at any instant in time, significantly alters the instantaneous flow patterns as well as the ensemble statistics. Near the water surface a vigorous downwelling upwelling pattern develops at the head and tail of each three-dimensional breaker. This enhances the vertical velocity variance and generates both negative- and positive-signed vertical momentum flux. Analysis of the mean velocity and scalar profiles shows that breaking effectively increases the surface roughness z_o by more than a factor of 30; for our simulations z_o/lambda {≈} 0.04 to 0.06, where lambda is the wavelength of the breaking wave. Compared to a flow driven by a constant current, the extra mixing from breakers increases the mean eddy viscosity by more than a factor of 10 near the water surface. Breaking waves alter the usual balance of production and dissipation in the turbulent kinetic energy (TKE) budget; turbulent and pressure transports and breaker work are important sources and sinks in the budget. We also show that turbulent boundary layers driven by constant current and constant stress (i.e. with no breaking) differ in fundamental ways. The additional freedom provided by a constant-stress boundary condition permits finite velocity variances at the water surface, so that flows driven by constant stress mimic flows with weakly and statistically homogeneous breaking waves.

  9. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central dominant (CD) galaxies directly from ambient intercluster medium (ICM). However, for high mass accretion rate, the influence of cosmological constant on Bondi accretion dynamics, generically, diminishes. As active galactic nuclei (AGN)/ICM feedback can be advertently linked to Bondi type spherical accretion, any proper modeling of AGN feedback or megaparsecs-scale jet dynamics or accretion flow from ICM onto the central regions of host galaxies should take into account the relevant information of repulsive Λ, especially in context to supergiant elliptical galaxies or CD galaxies present in rich galaxy clusters. This could also explore the feasibility to limit the value of Λ, from the kinematics in local galactic-scales.

  10. Unsteady stokes flow of dusty fluid between two parallel plates through porous medium in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Sasikala, R.; Govindarajan, A.; Gayathri, R.

    2018-04-01

    This paper focus on the result of dust particle between two parallel plates through porous medium in the presence of magnetic field with constant suction in the upper plate and constant injection in the lower plate. The partial differential equations governing the flow are solved by similarity transformation. The velocity of the fluid and the dust particle decreases when there is an increase in the Hartmann number.

  11. DCE-MRI of hepatocellular carcinoma: perfusion quantification with Tofts model versus shutter-speed model--initial experience.

    PubMed

    Jajamovich, Guido H; Huang, Wei; Besa, Cecilia; Li, Xin; Afzal, Aneela; Dyvorne, Hadrien A; Taouli, Bachir

    2016-02-01

    To quantify hepatocellular carcinoma (HCC) perfusion and flow with the fast exchange regime-allowed Shutter-Speed model (SSM) compared to the Tofts model (TM). In this prospective study, 25 patients with HCC underwent DCE-MRI. ROIs were placed in liver parenchyma, portal vein, aorta and HCC lesions. Signal intensities were analyzed employing dual-input TM and SSM models. ART (arterial fraction), K (trans) (contrast agent transfer rate constant from plasma to extravascular extracellular space), ve (extravascular extracellular volume fraction), kep (contrast agent intravasation rate constant), and τi (mean intracellular water molecule lifetime) were compared between liver parenchyma and HCC, and ART, K (trans), v e and k ep were compared between models using Wilcoxon tests and limits of agreement. Test-retest reproducibility was assessed in 10 patients. ART and v e obtained with TM; ART, ve, ke and τi obtained with SSM were significantly different between liver parenchyma and HCC (p < 0.04). Parameters showed variable reproducibility (CV range 14.7-66.5% for both models). Liver K (trans) and ve; HCC ve and kep were significantly different when estimated with the two models (p < 0.03). Our results show differences when computed between the TM and the SSM. However, these differences are smaller than parameter reproducibilities and may be of limited clinical significance.

  12. Group solution for unsteady free-convection flow from a vertical moving plate subjected to constant heat flux

    NASA Astrophysics Data System (ADS)

    Kassem, M.

    2006-03-01

    The problem of heat and mass transfer in an unsteady free-convection flow over a continuous moving vertical sheet in an ambient fluid is investigated for constant heat flux using the group theoretical method. The nonlinear coupled partial differential equation governing the flow and the boundary conditions are transformed to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved numerically using the shooting method. The effect of Prandlt number on the velocity and temperature of the boundary-layer is plotted in curves. A comparison with previous work is presented.

  13. Longitudinal Evaluation of Myocardial Fatty Acid and Glucose Metabolism in Fasted and Nonfasted Spontaneously Hypertensive Rats Using MicroPET/CT

    DOE PAGES

    Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa; ...

    2017-09-06

    Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less

  14. Longitudinal Evaluation of Myocardial Fatty Acid and Glucose Metabolism in Fasted and Nonfasted Spontaneously Hypertensive Rats Using MicroPET/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa

    Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less

  15. Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer.

    PubMed

    Bowling, Jerry C; Zheng, Chunmiao; Rodriguez, Antonio B; Harry, Dennis L

    2006-05-05

    Approximately 3000 measurements of hydraulic conductivity in over 50 flowmeter boreholes were available at the Macro-Dispersion Experiment (MADE) site in Columbus, Mississippi, USA to quantify the heterogeneity in hydraulic conductivity at the site scale. This high-density measurement approach is perhaps infeasible for time and expense in typical groundwater remediation sites. A natural-gradient tracer experiment from the MADE site was simulated by a groundwater flow and solute transport model incorporating direct-current (DC) resistivity data collected over the observed plume location. Hydraulic conductivity from one borehole collected during the original site characterization was used to calibrate the electrical resistivity data to hydraulic conductivity using a previously derived log-log relationship. Application of this relationship, using site-specific empirical constants determined from the data, transforms the 3D electrical resistivity data into a 3D description of hydraulic conductivity that can be used in groundwater models. The validity of this approach was tested by using the geophysically derived hydraulic conductivity representation in numerical simulations of the natural-gradient tracer experiment. The agreement between the simulated and observed tracer plumes was quantified to gauge the effectiveness of geophysically derived and flowmeter based representations of the hydraulic conductivity field. This study demonstrates that a highly heterogeneous aquifer can be modeled with minimal hydrological data supplemented with geophysical data at least as well as previous models of the site using purely hydrologic data.

  16. Quantifying the Urban and Rural Nutrient Fluxes to Lake Erie Using a Paired Watershed Approach

    NASA Astrophysics Data System (ADS)

    Hopkins, M.; Beck, M.; Rossi, E.; Luh, N.; Allen-King, R. M.; Lowry, C.

    2016-12-01

    Excess nutrients have a detrimental impact on the water quality of Lake Erie, specifically nitrate and phosphate, which can lead to toxic algae blooms. Algae blooms have negatively impacted Lake Erie, which is the main source of drinking water for many coastal Great Lake communities. In 2014 the city of Toledo, Ohio was forced to shut down its water treatment plant due to these toxic algae blooms. The objective of this research is to quantify surface water nutrient fluxes to the eastern basin of Lake Erie using a paired watershed approach. Three different western New York watersheds that feed Lake Erie were chosen based on land use and areal extent: one small urban, one small rural, and one large rural. These paired watersheds were chosen to represent a range of sources of potential nutrient loading to the lake. Biweekly water samples were taken from the streams during the 2015-2016 winter to summer seasonal transition to quantify springtime snow melt effects on nutrient fluxes. These results were compared to the previous year samples, collected over the summer of 2015, which represented wetter conditions. Phosphorous levels were assessed using the ascorbic acid colorimetric assay, while nitrate was analyzed by anion-exchange chromatography. Stream gaging was used to obtain flow measurements and establish a rating curve, which was incorporated to quantify seasonal nutrient fluxes entering the lake. Patterns in the nutrient levels show higher level of nutrients in the rural watersheds with a decrease in concentration over the winter to spring transition. However, nutrient patterns in the urban stream show relatively constant patters of nutrient flux, which is independent of seasonal transition or stream discharge. A comparison of wet and dry seasons shows higher nutrient concentrations during summers with greater rainfall. By identifying the largest contributors of each nutrient, we can better allocate limited attenuation resources.

  17. Exact solutions of laminar-boundary-layer equations with constant property values for porous wall with variable temperature

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Livingood, John N B

    1955-01-01

    Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.

  18. The shallow water equation and the vorticity equation for a change in height of the topography.

    PubMed

    Da, ChaoJiu; Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian

    2017-01-01

    We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography.

  19. The shallow water equation and the vorticity equation for a change in height of the topography

    PubMed Central

    Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian

    2017-01-01

    We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography. PMID:28591129

  20. Quantum to classical transition in the Hořava-Lifshitz quantum cosmology

    NASA Astrophysics Data System (ADS)

    Bernardini, A. E.; Leal, P.; Bertolami, O.

    2018-02-01

    A quasi-Gaussian quantum superposition of Hořava-Lifshitz (HL) stationary states is built in order to describe the transition of the quantum cosmological problem to the related classical dynamics. The obtained HL phase-space superposed Wigner function and its associated Wigner currents describe the conditions for the matching between classical and quantum phase-space trajectories. The matching quantum superposition parameter is associated to the total energy of the classical trajectory which, at the same time, drives the engendered Wigner function to the classical stationary regime. Through the analysis of the Wigner flows, the quantum fluctuations that distort the classical regime can be quantified as a measure of (non)classicality. Finally, the modifications to the Wigner currents due to the inclusion of perturbative potentials are computed in the HL quantum cosmological context. In particular, the inclusion of a cosmological constant provides complementary information that allows for connecting the age of the Universe with the overall stiff matter density profile.

  1. Modeling residence-time distribution in horizontal screw hydrolysis reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, David A.; Stickel, Jonathan J.

    The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less

  2. Quantitative phase-field lattice-Boltzmann study of lamellar eutectic growth under natural convection

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Guo, Z.; Xiong, S.-M.

    2018-05-01

    The influence of natural convection on lamellar eutectic growth was determined by a comprehensive phase-field lattice-Boltzmann study for Al-Cu and CB r4-C2C l6 eutectic alloys. The mass differences resulting from concentration differences led to the fluid flow and a robust parallel and adaptive mesh refinement algorithm was employed to improve the computational efficiency. By means of carefully designed "numerical experiments", the eutectic growth under natural convection was explored and a simple analytical model was proposed to predict the adjustment of the lamellar spacing. Furthermore, by alternating the solute expansion coefficient, initial lamellar spacing, and undercooling, the microstructure evolution was presented and compared with the classical eutectic growth theory. Results showed that both interfacial solute distribution and average curvature were affected by the natural convection, the effect of which could be further quantified by adding a constant into the growth rule proposed by Jackson and Hunt [Jackson and Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966)].

  3. Modeling residence-time distribution in horizontal screw hydrolysis reactors

    DOE PAGES

    Sievers, David A.; Stickel, Jonathan J.

    2017-10-12

    The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less

  4. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    NASA Astrophysics Data System (ADS)

    Lachenal, X.; Daynes, S.; Weaver, P. M.

    2013-06-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.

  5. Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.

    2017-12-01

    Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.

  6. Conceptual design and quantification of phosphorus flows and balances at the country scale: The case of France

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Kalimuthu; Nesme, Thomas; Mollier, Alain; Pellerin, Sylvain

    2012-06-01

    Global biogeochemical cycles have been deeply modified by human activities in recent decades. But detailed studies analyzing the influence of current economic and social organizations on global biogeochemical cycles within a system perspective are still required. Country level offers a relevant scale for assessing nutrient management and identifying key driving forces and possible leaks in the nutrient cycle. Conceptual modeling helps to quantify nutrient flows within the country and we developed such an approach for France. France is a typical Western European country with intensive agriculture, trade and an affluent diet, all of which may increase internal and external P flows. Phosphorus (P) was taken as a case study because phosphate rock is a non-renewable resource which future availability is becoming increasingly bleak. A conceptual model of major P flows at the country scale was designed. France was divided into agriculture, industry, domestic, import and export sectors, and each of these sectors was further divided into compartments. A total of 25 internal and eight external P flows were identified and quantified on a yearly basis for a period of 16 years (from 1990 to 2006) in order to understand long-term P flows. All the P flows were quantified using the substance flow analysis principle. The results showed that the industrial sector remained the largest contributor to P flows in France, followed by the agriculture and domestic sectors. Soil P balance was positive. However, a positive P balance of 18 kg P ha-1 in 1990 was reduced to 4 kg P ha-1 in 2006, mainly due to the reduced application of inorganic P fertilizer. The overall country scale P balance was positive, whereas half of this additional P was lost to the environment mainly through the landfilling of municipal and industrial waste, disposal of treated wastewater from which P was partially removed, and P losses from agricultural soils though erosion and leaching. Consequences for global P resources and soil and water compartments are discussed. Some opportunities to more effectively close the P cycle in France by both improving the intensity of P recycling and decreasing losses are quantified.

  7. A similarity hypothesis for the two-point correlation tensor in a temporally evolving plane wake

    NASA Technical Reports Server (NTRS)

    Ewing, D. W.; George, W. K.; Moser, R. D.; Rogers, M. M.

    1995-01-01

    The analysis demonstrated that the governing equations for the two-point velocity correlation tensor in the temporally evolving wake admit similarity solutions, which include the similarity solutions for the single-point moment as a special case. The resulting equations for the similarity solutions include two constants, beta and Re(sub sigma), that are ratios of three characteristic time scales of processes in the flow: a viscous time scale, a time scale characteristic of the spread rate of the flow, and a characteristic time scale of the mean strain rate. The values of these ratios depend on the initial conditions of the flow and are most likely measures of the coherent structures in the initial conditions. The occurrences of these constants in the governing equations for the similarity solutions indicates that these solutions, in general, will only be the same for two flows if these two constants are equal (and hence the coherent structures in the flows are related). The comparisons between the predictions of the similarity hypothesis and the data presented here and elsewhere indicate that the similarity solutions for the two-point correlation tensors provide a good approximation of the measures of those motions that are not significantly affected by the boundary conditions caused by the finite extent of real flows. Thus, the two-point similarity hypothesis provides a useful tool for both numerical and physical experimentalist that can be used to examine how the finite extent of real flows affect the evolution of the different scales of motion in the flow.

  8. Exact solutions of the Navier-Stokes equations generalized for flow in porous media

    NASA Astrophysics Data System (ADS)

    Daly, Edoardo; Basser, Hossein; Rudman, Murray

    2018-05-01

    Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.

  9. Atomistic simulation of flow-induced crystallization at constant temperature

    NASA Astrophysics Data System (ADS)

    Baig, C.; Edwards, B. J.

    2010-02-01

    Semi-crystalline fibers, such as nylon, orlon, and spectra, play a crucial role in modern society in applications including clothing, medical devices, and aerospace technology. These applications rely on the enhanced properties that are generated in these fibers through the orientation and deformation of the constituent molecules of a molten liquid undergoing flow prior to crystallization; however, the atomistic mechanisms of flow-induced crystallization are not understood, and macroscopic theories that have been developed in the past to describe this behavior are semi-empirical. We present here the results of the first successful simulation of flow-induced crystallization at constant temperature using a nonequilibrium Monte Carlo algorithm for a short-chain polyethylene liquid. A phase transition between the liquid and crystalline phases was observed at a critical flow rate in elongational flow. The simulation results quantitatively matched experimental X-ray diffraction data of the crystalline phase. Examination of the configurational temperature generated under flow confirmed for the first time the hypothesis that flow-induced stresses within the liquid effectively raised the crystallization temperature of the liquid.

  10. Fuel control for gas turbine with continuous pilot flame

    DOEpatents

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  11. Probing and quantifying DNA-protein interactions with asymmetrical flow field-flow fractionation.

    PubMed

    Ashby, Jonathan; Schachermeyer, Samantha; Duan, Yaokai; Jimenez, Luis A; Zhong, Wenwan

    2014-09-05

    Tools capable of measuring binding affinities as well as amenable to downstream sequencing analysis are needed for study of DNA-protein interaction, particularly in discovery of new DNA sequences with affinity to diverse targets. Asymmetrical flow field-flow fractionation (AF4) is an open-channel separation technique that eliminates interference from column packing to the non-covalently bound complex and could potentially be applied for study of macromolecular interaction. The recovery and elution behaviors of the poly(dA)n strand and aptamers in AF4 were investigated. Good recovery of ssDNAs was achieved by judicious selection of the channel membrane with consideration of the membrane pore diameter and the radius of gyration (Rg) of the ssDNA, which was obtained with the aid of a Molecular Dynamics tool. The Rg values were also used to assess the folding situation of aptamers based on their migration times in AF4. The interactions between two ssDNA aptamers and their respective protein components were investigated. Using AF4, near-baseline resolution between the free and protein-bound aptamer fractions could be obtained. With this information, dissociation constants of ∼16nM and ∼57nM were obtained for an IgE aptamer and a streptavidin aptamer, respectively. In addition, free and protein-bound IgE aptamer was extracted from the AF4 eluate and amplified, illustrating the potential of AF4 in screening ssDNAs with high affinity to targets. Our results demonstrate that AF4 is an effective tool holding several advantages over the existing techniques and should be useful for study of diverse macromolecular interaction systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  13. A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells.

    PubMed

    Bankier, Claire; Cheong, Yuen; Mahalingam, Suntharavathanan; Edirisinghe, Mohan; Ren, Guogang; Cloutman-Green, Elaine; Ciric, Lena

    2018-01-01

    Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.

  14. Quantifying the Incoming Jet Past Heart Valve Prostheses Using Vortex Formation Dynamics

    NASA Astrophysics Data System (ADS)

    Pierrakos, Olga

    2005-11-01

    Heart valve (HV) replacement prostheses are associated with hemodynamic compromises compared to their native counterparts. Traditionally, HV performance and hemodynamics have been quantified using effective orifice size and pressure gradients. However, quality and direction of flow are also important aspects of HV function and relate to HV design, implantation technique, and orientation. The flow past any HV is governed by the generation of shear layers followed by the formation and shedding of organized flow structures in the form of vortex rings (VR). For the first time, vortex formation (VF) in the LV is quantified. Vortex energy measurements allow for calculation of the critical formation number (FN), which is the time at which the VR reaches its maximum strength. Inefficiencies in HV function result in critical FN decrease. This study uses the concept of FN to compare mitral HV prostheses in an in-vitro model (a silicone LV model housed in a piston-driven heart simulator) using Time-resolved Digital Particle Image Velocimetry. Two HVs were studied: a porcine HV and bileaflet MHV, which was tested in an anatomic and non-anatomic orientation. The results suggest that HV orientation and design affect the critical FN. We propose that the critical FN, which is contingent on the HV design, orientation, and physical flow characteristics, serve as a parameter to quantify the incoming jet and the efficiency of the HV.

  15. Preferential flow from pore to landscape scales

    NASA Astrophysics Data System (ADS)

    Koestel, J. K.; Jarvis, N.; Larsbo, M.

    2017-12-01

    In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  16. Constraining Path-Dependent Processes During Basalt-CO2 Interactions with Observations From Flow-Through and Batch Experiments

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.

    2017-12-01

    Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path geometry and mineral accessibility on geochemical evolution. Interestingly, surface area-normalized dissolution rates as evinced by SiO2 release in all experiments approach similar values ( 10-15 mol/cm2/s). Our experiments show how imaging techniques are helpful in interpreting path-dependent processes in open systems.

  17. Solid state isostructural behavior and quantified limiting substitution kinetics in Schiff-base bidentate ligand complexes fac-[Re(O,N-Bid)(CO)3(MeOH)](n).

    PubMed

    Brink, Alice; Visser, Hendrik G; Roodt, Andreas

    2014-12-01

    A range of N,O-donor atom salicylidene complexes of the type fac-[M(O,N-Bid)(CO)3(L)](n) (O,N-Bid = anionic N,O-bidentate ligands; L = neutral coordinated ligand) have been studied. The unique feature of the complexes which crystallize in a monoclinic isostructural space group for complexes containing methanol in the sixth position (L = MeOH) is highlighted. The reactivity and stability of the complexes were evaluated by rapid stopped-flow techniques, and the methanol substitution by a range of pyridine type ligands indicates significant activation by the N,O-salicylidene type of bidentate ligands as observed from the variation in the second-order rate constants. In particular, following the introduction of the sterically demanding and electron rich cyclohexyl salicylidene moiety on the bidentate ligand, novel limiting kinetic behavior is displayed by all entering ligands, thus enabling a systematic probe and manipulation of the limiting kinetic constants. Clear evidence of an interchange type of intimate mechanism for the methanol substitution is produced. The equilibrium and rate constants (25 °C) for the two steps in the dissociative interchange mechanism for methanol substitution in fac-[Re(Sal-Cy)(CO)3(MeOH)] (5) by the pyridine type ligands 3-chloropyridine, pyridine, 4-picoline, and DMAP are k3 (s(-1)), 40 ± 4, 13 ± 2, 10.4 ± 0.7, and 2.11 ± 0.09, and K2 (M(-1)), 0.13 ± 0.01, 0.21 ± 0.03, 0.26 ± 0.02, and 1.8 ± 0.1, respectively.

  18. Application of POCIS for exposure assessment of munitions constituents during constant and fluctuating exposure.

    PubMed

    Belden, Jason B; Lotufo, Guilherme R; Biedenbach, James M; Sieve, Kristal K; Rosen, Gunther

    2015-05-01

    The present study examined the potential use of polar organic chemical integrative samplers (POCIS) for exposure assessment of munitions constituents, including 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and their breakdown products (aminodinitrotoluenes [ADNTs], diaminonitrotoluenes [DANTs], and hexahydro-1,3,5-trinitroso-1,3,5-triazine [TNX]). Loss of munitions constituents from the sorbent phase after uptake was observed for the "pesticide" POCIS configuration but not for the "pharmaceutical" configuration. Therefore, the latter was selected for further investigation. Under constant exposure conditions, TNT, ADNTs, DANT, RDX, and atrazine (a common environmental contaminant) accumulated at a linear rate for at least 14 d, with sampling rates between 34 mL/d and 215 mL/d. When POCIS were exposed to fluctuating concentrations, analyte accumulation values were similar to values found during constant exposure, indicating that the sampler was indeed integrative. In contrast, caffeine (a common polar contaminant) and TNX did not accumulate at a linear rate and had a reduction in accumulation of greater than 50% on the POCIS during fluctuating exposures, demonstrating that POCIS did not sample those chemicals in an integrative manner. Moreover, in a flow-through microcosm containing the explosive formulation Composition B, TNT and RDX were readily measured using POCIS, despite relatively high turnover rates and thus reduced water concentrations. Mean water concentrations estimated from POCIS were ± 37% of mean water concentrations measured by traditional grab sample collection. Thus, POCIS were found to have high utility for quantifying exposure to most munitions constituents evaluated (TNT, ADNTs, and RDX) and atrazine. © 2014 SETAC.

  19. A double medium model for diffusion in fluid-bearing rock

    NASA Astrophysics Data System (ADS)

    Wang, H. F.

    1993-09-01

    The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.

  20. Regional Myocardial Blood Flow*

    PubMed Central

    Sullivan, Jay M.; Taylor, Warren J.; Elliott, William C.; Gorlin, Richard

    1967-01-01

    A method is described which measures the local effectiveness of the myocardial circulation, expressed as a clearance constant. Uniform clearance constants have been demonstrated in the normal canine and human myocardium. A distinct difference in clearance constants has been demonstrated between the normal canine myocardium and areas of naturally occurring disease. Heterogeneous clearance constants have been found in a majority of human subjects with coronary artery disease—the lowest rates being noted in areas of fibrous aneurysm. PMID:6036537

  1. Critique of Macro Flow/Damage Surface Representations for Metal Matrix Composites Using Micromechanics

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.

    1996-01-01

    Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification.

  2. Measurements in the turbulent boundary layer at constant pressure in subsonic and supersonic flow. Part 1: Mean flow

    NASA Technical Reports Server (NTRS)

    Collins, D. J.; Coles, D. E.; Hicks, J. W.

    1978-01-01

    Experiments were carried out to test the accuracy of laser Doppler instrumentation for measurement of Reynolds stresses in turbulent boundary layers in supersonic flow. Two facilities were used to study flow at constant pressure. In one facility, data were obtained on a flat plate at M sub e = 0.1, with Re theta up to 8,000. In the other, data were obtained on an adiabatic nozzle wall at M sub e = 0.6, 0.8, 1.0, 1.3, and 2.2, with Re theta = 23,000 and 40,000. The mean flow as observed using Pitot tube, Preston tube, and floating element instrumentation is described. Emphasis is on the use of similarity laws with Van Driest scaling and on the inference of the shearing stress profile and the normal velocity component from the equations of mean motion. The experimental data are tabulated.

  3. On the development of lift and drag in a rotating and translating cylinder

    NASA Astrophysics Data System (ADS)

    Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon

    2014-11-01

    The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  4. Time-to-Passage Judgments in Nonconstant Optical Flow Fields

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Hecht, Heiko

    1995-01-01

    The time until an approaching object will pass an observer (time to passage, or TTP) is optically specified by a global flow field even in the absence of local expansion or size cues. Kaiser and Mowafy have demonstrated that observers are in fact sensitive to this global flow information. The present studies investigate two factors that are usually ignored in work related to TTP: (1) non-constant motion functions and (2) concomitant eye rotation. Non-constant velocities violate an assumption of some TTP derivations, and eye rotations may complicate heading extraction. Such factors have practical significance, for example, in the case of a pilot accelerating an aircraft or executing a roll. In our studies, a flow field of constant-sized stars was presented monocularly on a large screen. TIP judgments had to be made on the basis of one target star. The flow field varied in its acceleration pattern and its roll component. Observers did not appear to utilize acceleration information. In particular, TTP with decelerating motion were consistently underestimated. TTP judgments were fairly robust with respect to roll, even when roll axis and track vector were decoupled. However, substantial decoupling between heading and track vector led to a decrement in performance, in both the presence and the absence of roll.

  5. A Study of Laminar Compressible Viscous Pipe Flow Accelerated by an Axial Body Force, with Application to Magnetogasdynamics

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1961-01-01

    A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.

  6. Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field.

    PubMed

    Geng, Tao; Zhan, Yihong; Lu, Chang

    2012-01-01

    Electroporation is one of the most widely used physical methods to deliver exogenous nucleic acids into cells with high efficiency and low toxicity. Conventional electroporation systems typically require expensive pulse generators to provide short electrical pulses at high voltage. In this work, we demonstrate a flow-through electroporation method for continuous transfection of cells based on disposable chips, a syringe pump, and a low-cost power supply that provides a constant voltage. We successfully transfect cells using either DC or AC voltage with high flow rates (ranging from 40 µl/min to 20 ml/min) and high efficiency (up to 75%). We also enable the entire cell membrane to be uniformly permeabilized and dramatically improve gene delivery by inducing complex migrations of cells during the flow.

  7. Pressure compensated flow control valve

    DOEpatents

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  8. Screening tool to evaluate the vulnerability of down-gradient receptors to groundwater contaminants from uncapped landfills

    USGS Publications Warehouse

    Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony R.; Romanok, Kristin M.; Wengrowski, Edward W

    2015-01-01

    A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenico Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.

  9. Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.

    2014-12-01

    Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).

  10. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are available. Therefore it would be very useful to get more laboratory data and especially from Tran et al (2013), Mahjoub et al. (2012) and Imanaka et al. (2012) samples in these spectral regions since their refractive indexes match observational and theoretical data in other spectral ranges. This presentation will critically summarize these recent results and present detailled constraints on the optical constants Titan's aerosols. In addition, specific lacks of data will be highlighted as well as some possible investigations to be carried out to fill these gaps. References: Cable, M. L., et al., 2012. Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chemical Reviews. 112, 1882-1909. Imanaka, H., et al., 2012. Optical constants of Titan tholins at mid-infrared wavelengths (2.5-25 µm) and the possible chemical nature of Titan's haze particles. Icarus. 218, 247-261. Khare, B. N., et al., 1984. Optical-Constants of Organic Tholins Produced in a Simulated Titanian Atmosphere - from Soft-X-Ray to Microwave-Frequencies. Icarus. 60, 127-137. Kim, S. J., Courtin, R., 2013. Spectral characteristics of the Titanian haze at 1-5 micron from Cassini/VIMS solar occultation data. Astronomy & Astrophysics. 557, L6. Mahjoub, A., et al., 2012. Influence of methane concentration on the optical indices of Titan's aerosols analogues. Icarus. 221, 670-677. Raulin, F., et al., 2012. Prebiotic-like chemistry on Titan. Chemical Society Reviews. 41, 5380-5393. Sagan, C., Khare, B. N., 1979. Tholins - Organic-Chemistry of Inter-Stellar Grains and Gas. Nature. 277, 102-107. Tran, B. N., et al., 2003. Simulation of Titan haze formation using a photochemical flow reactor - The optical constants of the polymer. Icarus. 165, 379-390. Acknowledgements: We acknowledge support from the French Space Agency (CNES) and the European Space Agency (ESA).

  11. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this level of description, the numerical results reveal interaction between the effects of space and time development and nonlinear Reynolds number effects.

  12. Implications of sediment transport by subglacial water flow for interpreting contemporary glacial erosion rates

    NASA Astrophysics Data System (ADS)

    Beaud, Flavien; Flowers, Gwenn E.; Venditti, Jeremy G.

    2017-04-01

    The role of glaciers in landscape evolution is central to the interactions between climate and tectonic forces at high latitudes and in mountainous regions. Sediment yields from glacierized basins are used to quantify contemporary erosion rates on seasonal to decadal timescales, often under the assumption that subglacial water flow is the main contributor to these yields. Two recent studies have furthermore used such sediment fluxes to calibrate a glacial erosion rule, where erosion rate scales with ice sliding speed raised to a power greater than one. Subglacial sediment transport by water flow has however seldom been studied, thus the controls on sediment yield from glacierized basins remain enigmatic. To bridge this gap, we develop a 1-D model of morphodynamics in semi-circular bedrock-floored subglacial channels. We adapt a sediment conservation law from the fluvial literature, developed for both mixed bedrock / alluvial and alluvial conditions, to subglacial channels. Channel evolution is a function of the traditional melt-opening due to viscous heat dissipation from the water flow, and creep closure of the overlying ice, to which we add the closure or enlargement due to sediment deposition or removal, respectively. Using a simple ice geometry representing a land-terminating glacier, we find that the shear stresses produced by the water flow on the bed decrease significantly near the terminus. As the ice thins, creep closure decreases and large hydraulic potential gradients cannot be sustained. The resulting gradients in sediment transport lead to a bottleneck, and sediment accumulates if the sediment supply is adequate. A similar bottleneck occurs if a channel is well established and water discharge drops. Whether such constriction happens in space of time, in the presence of a sufficiently large sediment supply sediment accumulates temporarily near the terminus, followed shortly thereafter by enhanced sediment transport. Reduction in the cross-sectional area of the channel by sediment storage leads to enhanced shear stresses and transport rates. As a result, assuming a constant sediment input and a seasonal water forcing sediment delivery to the proglacial environment undergoes two phases determined by a combination of meltwater discharge and channel development. In the stage of the melt season dominated by channel growth and increasing discharge, the sediment yield is virtually constant and matches the input. In contrast, during the stage dominated by channel closure and decreasing discharge the sediment yield exhibits daily fluctuations caused by temporary sediment storage in the channel. Our findings thus suggest that contemporary sediment yields may be controlled by the dynamics of subglacial water flow in the vicinity of the terminus. This provides a new perspective for the interpretation of proglacial sediment fluxes, fluxes which are central to refining glacial erosion laws utilized in landscape evolution models.

  13. Establishing Minimum Flow Requirements Based on Benthic Vegetation: What are Some Issues Related to Identifying Quantity of Inflow and Tools Used to Quantify Ecosystem Response?

    NASA Astrophysics Data System (ADS)

    Hunt, M. J.; Nuttle, W. K.; Cosby, B. J.; Marshall, F. E.

    2005-05-01

    Establishing minimum flow requirements in aquatic ecosystems is one way to stipulate controls on water withdrawals in a watershed. The basis of the determination is to identify the amount of flow needed to sustain a threshold ecological function. To develop minimum flow criteria an understanding of ecological response in relation to flow is essential. Several steps are needed including: (1) identification of important resources and ecological functions, (2) compilation of available information, (3) determination of historical conditions, (4) establishment of technical relationships between inflow and resources, and (5) identification of numeric criteria that reflect the threshold at which resources are harmed. The process is interdisciplinary requiring the integration of hydrologic and ecologic principles with quantitative assessments. The tools used quantify the ecological response and key questions related to how the quantity of flow influences the ecosystem are examined by comparing minimum flow determination in two different aquatic systems in South Florida. Each system is characterized by substantial hydrologic alteration. The first, the Caloosahatchee River is a riverine system, located on the southwest coast of Florida. The second, the Everglades- Florida Bay ecotone, is a wetland mangrove ecosystem, located on the southern tip of the Florida peninsula. In both cases freshwater submerged aquatic vegetation (Vallisneria americana or Ruppia maritima), located in areas of the saltwater- freshwater interface has been identified as a basis for minimum flow criteria. The integration of field studies, laboratory studies, and literature review was required. From this information we developed ecological modeling tools to quantify and predict plant growth in response to varying environmental variables. Coupled with hydrologic modeling tools questions relating to the quantity and timing of flow and ecological consequences in relation to normal variability are addressed.

  14. Quantifying green water flows for improved Integrated Land and Water Resource Management under the National Water Act of South Africa: A review on hydrological research in South Africa.

    NASA Astrophysics Data System (ADS)

    Jarmain, C.; Everson, C. S.; Gush, M. B.; Clulow, A. D.

    2009-09-01

    The contribution of hydrological research in South Africa in quantifying green water flows for improved Integrated Land and Water Resources Management is reviewed. Green water refers to water losses from land surfaces through transpiration (seen as a productive use) and evaporation from bare soil (seen as a non-productive use). In contrast, blue water flows refer to streamflow (surface water) and groundwater / aquifer recharge. Over the past 20 years, a number of methods have been used to quantify the green water and blue water flows. These include micrometeorological techniques (e.g. Bowen ratio energy balance, eddy covariance, surface renewal, scintillometry, lysimetry), field scale models (e.g. SWB, SWAP), catchment scale hydrological models (e.g. ACRU, SWAT) and more recently remote sensing based models (e.g. SEBAL, SEBS). The National Water Act of South Africa of 1998 requires that water resources are managed, protected and used (developed, conserved and controlled) in an equitable way which is beneficial to the public. The quantification of green water flows in catchments under different land uses has been pivotal in (a) regulating streamflow reduction activities (e.g. forestry) and the management of alien invasive plants, (b) protecting riparian and wetland areas through the provision of an ecological reserve, (c) assessing and improving the water use efficiency of irrigated pastures, fruit tree orchards and vineyards, (d) quantifying the potential impact of future land uses like bio-fuels (e.g. Jatropha) on water resources, (e) quantifying water losses from open water bodies, and (f) investigating "biological” mitigation measures to reduce the impact of polluted water resources as a result of various industries (e.g. mining). This paper therefore captures the evolution of measurement techniques applied across South Africa, the impact these results have had on water use and water use efficiency and the extent to which it supported the National Water Act of South Africa.

  15. Phase Resolved Angular Velocity Control of Cross Flow Turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2015-11-01

    Cross flow turbines have a number of operational advantages for the conversion of kinetic energy in marine or fluvial currents, but they are often less efficient than axial flow devices. Here a control scheme is presented in which the angular velocity of a cross flow turbine with two straight blades is prescribed as a function of azimuthal blade position, altering the time-varying effective angle of attack. Flume experiments conducted with a scale model turbine show approximately an 80% increase in turbine efficiency versus optimal constant angular velocity and constant resistive torque control schemes. Torque, drag, and lateral forces on one- and two-bladed turbines are analyzed and interpreted with bubble flow visualization to develop a simple model that describes the hydrodynamics responsible for the observed increase in mean efficiency. Challenges associated with implementing this control scheme on commercial-scale devices are discussed. If solutions are found, the performance increase presented here may impact the future development of cross flow turbines.

  16. An experimental study of a self-confined flow with ring-vorticity distribution. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Lin, K. M.; Moore, F. K.

    1976-01-01

    A new form of self-confined flow was investigated in which a recirculation zone forms away from any solid boundary. An inviscid flow analysis indicated that in a purely meridional axisymmetric flow a stationary, spherical, self-confined region should occur in the center of a streamlined divergent-convergent enlargement zone. The spherical confinement region would be at rest and at constant pressure. Experimental investigations were carried out in a specially built test apparatus to establish the desired confined flow. The streamlined divergent-convergent interior shape of the test section was fabricated according to the theoretical calculation for a particular streamline. The required inlet vorticity distribution was generated by producing a velocity profile with a shaped gauze screen in the straight pipe upstream of the test section. Fluid speed and turbulence intensity were measured with a constant-temperature hot-wire anemometer system. The measured results indicated a very orderly and stable flow field.

  17. Development of an Experimental Data Base to Validate Compressor-Face Boundary Conditions Used in Unsteady Inlet Flow Computations

    NASA Technical Reports Server (NTRS)

    Sajben, Miklos; Freund, Donald D.

    1998-01-01

    The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study is focused on the response of an inlet/compressor system to acoustic disturbances. From the viewpoint of inlet computations, acoustic disturbances are clearly the most important, since they are the only ones capable of moving upstream. Convective and entropy disturbances may also produce upstream-moving acoustic waves, but such processes are outside the scope of the present study.

  18. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  19. Microprocessor-Based Valved Controller

    NASA Technical Reports Server (NTRS)

    Norman, Arnold M., Jr.

    1987-01-01

    New controller simpler, more precise, and lighter than predecessors. Mass-flow controller compensates for changing supply pressure and temperature such as occurs when gas-supply tank becomes depleted. By periodically updating calculation of mass-flow rate, controller determines correct new position for valve and keeps mass-flow rate nearly constant.

  20. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  1. Application of velocity filtering to optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  2. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  3. Experimental observations of granular debris flows

    NASA Astrophysics Data System (ADS)

    Ghilardi, P.

    2003-04-01

    Various tests are run using two different laboratory flumes with rectangular cross section and transparent walls. The grains used in a single experiment have an almost constant grain sizes; mean diameter ranges from 5 mm to 20 mm. In each test various measurements are taken: hydrograms, velocity distribution near the transparent walls and on the free surface, average flow concentration. Concentration values are measured taking samples. Velocity distributions are obtained from movies recorded by high speed video cameras capable of 350 frames per second; flow rates and depth hydrograms are computed from the same velocity distributions. A gate is installed at the beginning of one of the flumes; this gate slides normally to the bed and opens very quickly, reproducing a dam-break. Several tests are run using this device, varying channel slope, sediment concentration, initial mixture thickness before the gate. Velocity distribution in the flume is almost constant from left to right, except for the flow sections near the front. The observed discharges and velocities are less than those given by a classic dam break formula, and depend on sediment concentration. The other flume is fed by a mixture with constant discharge and concentration, and is mainly used for measuring velocity distributions when the flow is uniform, with both rigid and granular bed, and to study erosion/deposition processes near debris flow dams or other mitigation devices. The equilibrium slope of the granular bed is very close to that given by the classical equilibrium formulas for debris flow. Different deposition processes are observed depending on mixture concentration and channel geometry.

  4. Anisotropic effects on constitutive model parameters of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter S.; Joshi, Vasant S.

    2012-03-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. Model constants are determined from tension, compression or torsion stress-strain at low and high strain rates at different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloy. Johnson- Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulation go well beyond minor parameter tweaking and experimental results show drastically different behavior it becomes important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate tensile tests were performed on specimens fabricated in the longitudinal "L", transverse "T", and thickness "TH" directions of 1' thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as ~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1' thick plate are used to derive fracture constants.

  5. Bubble formation dynamics in a planar co-flow configuration: Influence of geometric and operating characteristics

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Montes, Cándido; Bolaños-Jiménez, Rocío; Martínez-Bazán, Carlos; Sevilla, Alejandro

    2014-11-01

    An experimental and numerical study has been performed to explore the influence of different geometric features and operating conditions on the dynamics of a water-air-water planar co-flow. Specifically, regarding the nozzle used, the inner-to-outer thickness ratio of the air injector, β = Hi/Ho, the water-to-air thickness ratio, h = Hw/Ho, and the shape of the injector tip, have been described. As for the operating conditions, the water exit velocity profile under constant flow rate and constant air feeding pressure has been assessed. The results show that the jetting-bubbling transition is promoted for increasing values of β, decreasing values of h, rounded injector tip, and for uniform water exit velocity profiles. As for the bubble formation frequency, it increases with increasing values of β, decreasing values of h, rounded injector and parabolic-shaped water exit profiles. Furthermore, the bubble formation frequency has been shown to be lower under constant air feeding pressure conditions than at constant gas flow rate conditions. Finally, the effectiveness of a time-variable air feeding stream has been numerically studied, determining the forcing receptivity space in the amplitude-frequency plane. Experimental results corroborate the effectiveness of this control technique. Work supported by Spanish MINECO, Junta de Andalucía, European Funds and UJA under Projects DPI2011-28356-C03-02, DPI2011-28356-C03-03, P11-TEP7495 and UJA2013/08/05.

  6. Fundamental Studies of Strengthening Mechanisms in Metals Using Dislocation Dynamics

    DTIC Science & Technology

    2006-03-26

    to quantify the elastic fields of inclusion eigenstrain problems in 2D and 3D (Lerma et al. 2003). The inclusions can be of any shape or size and the... eigenstrains can be arbitrarily assigned, i.e. constant or non-constant within the inclusion. The method works well for material or field points...geometry and misfits. Recently, we have developed a new distributed-dislocation method for modeling eigenstrain problems such as gamma prime inclusions

  7. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA

    USGS Publications Warehouse

    Hammarstrom, J.M.; Sibrell, P.L.; Belkin, H.E.

    2003-01-01

    Armoring of limestone is a common cause of failure in limestone-based acid-mine drainage (AMD) treatment systems. Limestone is the least expensive material available for acid neutralization, but is not typically recommended for highly acidic, Fe-rich waters due to armoring with Fe(III) oxyhydroxide coatings. A new AMD treatment technology that uses CO2 in a pulsed limestone bed reactor minimizes armor formation and enhances limestone reaction with AMD. Limestone was characterized before and after treatment with constant flow and with the new pulsed limestone bed process using AMD from an inactive coal mine in Pennsylvania (pH = 2.9, Fe = 150 mg/l, acidity = 1000 mg/l CaCO3). In constant flow experiments, limestone is completely armored with reddish-colored ochre within 48 h of contact in a fluidized bed reactor. Effluent pH initially increased from the inflow pH of 2.9 to over 7, but then decreased to 6 during operation. Limestone removed from a pulsed bed pilot plant is a mixture of unarmored, rounded and etched limestone grains and partially armored limestone and refractory mineral grains (dolomite, pyrite). The ???30% of the residual grains in the pulsed flow reactor that are armored have thicker (50- to 100-??m), more aluminous coatings and lack the gypsum rind that develops in the constant flow experiment. Aluminium-rich zones developed in the interior parts of armor rims in both the constant flow and pulsed limestone bed experiments in response to pH changes at the solid/solution interface. ?? 2003 Elsevier Ltd. All rights reserved.

  8. Runout and fine-sediment deposits of axisymmetric turbidity currents

    NASA Astrophysics Data System (ADS)

    Dade, W. Brian; Huppert, Herbert E.

    1995-09-01

    We develop a model that describes the runout behavior and resulting deposit of a radially spreading, suspension-driven gravity current on a surface of negligible slope. Our analysis considers the separate cases of constant-volume and constant-flux sources. It incorporates expressions for the conservation of volume, a Froude number condition at the current front, and the evolution of the driving suspension due to settling of particles to the underlying bed. The model captures the key features of a range of experimental observations. The analysis also provides important scaling relationships between the geometry of a deposit and the source conditions for the deposit-forming flow, as well as explicit expressions for flow speed and deposit thickness as functions of radial distance from the source. Among the results of our study we find that, in the absence of information regarding flow history, the geometries of relatively well-sorted deposits generated by flows with source conditions of constant volume or constant flux are virtually indistinguishable. The results of our analysis can be used by geologists in the interpretation of some geologically important gravity-surge deposits. Using our analytical results, we consider three previously studied, radially symmetric turbidites of the Hispaniola-Caicos basin in the western Atlantic Ocean. From gross geometry and grain size of the turbidites alone we estimate for the respective deposit-forming events that upon entry into the basin the initial sediment concentrations were approximately 3% by volume and the total volumes were roughly between 30 km3 and 100 km3. Each of the suspension-driven flows is inferred to have spread into the basin with a characteristic speed of 3-5 m s-1, and reached its ultimate runout length of about 60-75 km while laying down a deposit over a period of about 10-12 hours.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  10. Flow patterns and bathymetric signatures on the delta front of a prograding river delta

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Mohrig, D. C.; Wagner, R. W.

    2016-02-01

    The transition of water between laterally confined channels and the unchannelized delta front controls the growth pattern of river deltas, but is difficult to measure on field-scale deltas. We quantify flow patterns, bathymetry and bathymetric evolution for the subaqueous delta front on the Wax Lake Delta (WLD), a rapidly prograding delta in coastal Louisiana. The flow direction field, mapped using streaklines composed of biogenic slicks on the water surface, shows that a significant portion of flow ( 59%) departs subaqueous channels laterally over the subaqueous margins of the channel seaward of the shoreline. Synoptic datasets of bathymetry and flow direction allow spatial changes in flow velocity to be quantified. Most lateral flow divergence and deceleration occurs within 3-8 channel widths outboard of subaqueous channel margins, rather than downstream of channel tips. In interdistributary bays, deposit elevation decreases with a basinward slope of 2.4 x 10-4 with distance from a channel margin along any flow path. Flow patterns and this slope produce constructional features called interdistributary troughs - topographic lows in the center of interdistributary bays. These data show that flow patterns and bathymetry on the delta front are coupled both at the transition from channelized to unchannelized flow and in the depositional regions outside the distributary network.

  11. Effect of External Pressure and Catheter Gauge on Flow Rate, Kinetic Energy, and Endothelial Injury During Intravenous Fluid Administration in a Rabbit Model.

    PubMed

    Hu, Mei-Hua; Chan, Wei-Hung; Chen, Yao-Chang; Cherng, Chen-Hwan; Lin, Chih-Kung; Tsai, Chien-Sung; Chou, Yu-Ching; Huang, Go-Shine

    2016-01-01

    The effects of intravenous (IV) catheter gauge and pressurization of IV fluid (IVF) bags on fluid flow rate have been studied. However, the pressure needed to achieve a flow rate equivalent to that of a 16 gauge (G) catheter through smaller G catheters and the potential for endothelial damage from the increased kinetic energy produced by higher pressurization are unclear. Constant pressure on an IVF bag was maintained by an automatic adjustable pneumatic pressure regulator of our own design. Fluids running through 16 G, 18 G, 20 G, and 22 G catheters were assessed while using IV bag pressurization to achieve the flow rate equivalent to that of a 16 G catheter. We assessed flow rates, kinetic energy, and flow injury to rabbit inferior vena cava endothelium. By applying sufficient external constant pressure to an IVF bag, all fluids could be run through smaller (G) catheters at the flow rate in a 16 G catheter. However, the kinetic energy increased significantly as the catheter G increased. Damage to the venous endothelium was negligible or minimal/patchy cell loss. We designed a new rapid infusion system, which provides a constant pressure that compresses the fluid volume until it is free from visible residual fluid. When large-bore venous access cannot be obtained, multiple smaller catheters, external pressure, or both should be considered. However, caution should be exercised when fluid pressurized to reach a flow rate equivalent to that in a 16 G catheter is run through a smaller G catheter because of the profound increase in kinetic energy that can lead to venous endothelium injury.

  12. Comparison between capillary electrophoresis and high performance liquid chromatography for detection and quantification of Hb constant spring [Hb CS; α142, Term→Gln (TAA>CAA IN α2)].

    PubMed

    Waneesorn, Jarurin; Panyasai, Sitthichai; Kongthai, Kanyakan; Singboottra, Panthong; Pornprasert, Sakorn

    2011-01-01

    Hb Constant Spring [Hb CS; α142, Term→Gln (TAA>CAA in α2)] is often missed by routine laboratory testing since its mRNA as well as gene product are unstable and presented at a low level in peripheral blood. This study aimed to analyze the efficacy of capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) for detecting and quantifying Hb CS in 19 heterozygotes and 14 homozygotes with Hb CS as well as 10 Hb H-CS disease subjects who were detected by molecular analysis. In the CE electrophoregram, Hb CS was seen at zone 2 and was observed in all samples, while the chromatogram of Hb CS peaks was found in 26.32% heterozygotes, 42.86% homozygotes and 90% Hb H-CS disease subjects, respectively. In addition, the Hb CS levels in each group of subjects quantified by CE were significantly higher than those quantified by HPLC. Based on the CE method, the lowest Hb CS level was found in the heterozygotes, whereas the highest level was found in the Hb H-CS disease patients. Therefore, the CE method was superior to the HPLC method for detecting Hb CS. Furthermore, the level of Hb CS quantified by CE proved useful in screening heterozygotes and homozygotes with Hb CS as well as Hb H-CS disease.

  13. A microprocessor-controlled tracheal insufflation-assisted total liquid ventilation system.

    PubMed

    Parker, James Courtney; Sakla, Adel; Donovan, Francis M; Beam, David; Chekuri, Annu; Al-Khatib, Mohammad; Hamm, Charles R; Eyal, Fabien G

    2009-09-01

    A prototype time cycled, constant volume, closed circuit perfluorocarbon (PFC) total liquid ventilator system is described. The system utilizes microcontroller-driven display and master control boards, gear motor pumps, and three-way solenoid valves to direct flow. A constant tidal volume and functional residual capacity (FRC) are maintained with feedback control using end-expiratory and end-inspiratory stop-flow pressures. The system can also provide a unique continuous perfusion (bias flow, tracheal insufflation) through one lumen of a double-lumen endotracheal catheter to increase washout of dead space liquid. FRC and arterial blood gases were maintained during ventilation with Rimar 101 PFC over 2-3 h in normal piglets and piglets with simulated pulmonary edema induced by instillation of albumin solution. Addition of tracheal insufflation flow significantly improved the blood gases and enhanced clearance of instilled albumin solution during simulated edema.

  14. Capital dissipation minimization for a class of complex irreversible resource exchange processes

    NASA Astrophysics Data System (ADS)

    Xia, Shaojun; Chen, Lingen

    2017-05-01

    A model of a class of irreversible resource exchange processes (REPes) between a firm and a producer with commodity flow leakage from the producer to a competitive market is established in this paper. The REPes are assumed to obey the linear commodity transfer law (LCTL). Optimal price paths for capital dissipation minimization (CDM) (it can measure economic process irreversibility) are obtained. The averaged optimal control theory is used. The optimal REP strategy is also compared with other strategies, such as constant-firm-price operation and constant-commodity-flow operation, and effects of the amount of commodity transferred and the commodity flow leakage on the optimal REP strategy are also analyzed. The commodity prices of both the producer and the firm for the CDM of the REPes with commodity flow leakage change with the time exponentially.

  15. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  16. Thrust and Efficiency Performance of the Microcavity Discharge Thruster

    DTIC Science & Technology

    2011-05-31

    which a constant mass flow rate with heating resulted in a pressure increase of 50 - 75%, and a corresponding stagnation temperature increase of 125...27  4.1  Plasma Dynamics Model .................................................................................. 27  4.2  Flow ...Model ....................................................................................................... 29  4.3  Plasma- Flow Coupling

  17. Flow and Transport of Radionuclides in the Rhizosphere: Imaging and Measurements in a 2D System

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Darnault, Christophe; Li, Biting; Clifford, Heather; Montgomery, Dawn; Moysey, Stephen; Powell, Brian; DeVol, Tim; Erdmann, Bryan; Edayilam, Nimisha; Tharayil, Nishanth; Dogan, Mine; Martinez, Nicole

    2017-04-01

    This research aims to build upon past 2D tank light transmission methods to quantify real-time flow in unsaturated porous media, understand how exudates effect unstable flow patterns, and understand radionuclide mobility and dispersion in the subsurface. A 2D tank light transmission method was created using a transparent flow through tank coupled with a random rainfall simulator; a commercial LED light and a CMOS DSLR Nikon D5500 camera were used to capture the real-time flow images. The images were broken down from RGB into HVI and analyzed in Matlab to produce quantifiable data about finger formation and water saturation distribution. Radionuclide locations were determined via handheld gamma scanner. Water saturation along the vertical and horizontal profile (Matlab) was used to quantify the finger more objectively than by eye assessment alone. The changes in finger formation and speed of propagation between the control rain water (0.01M NaCl) and the solutions containing plant exudates illustrates that the plant exudates increased the wettability (mobility) of water moving through unsaturated porous media. This understanding of plant exudates effect on unsaturated flow is important for works studying how plants, their roots and exudates, may affect the mobility of radionuclides in unsaturated porous media. As there is an increase in exudate concentration, the mobility of the radionuclides due to changing flow pattern and available water content in porous media may be improved causing more dispersion in the porous media and intake into the plant. Changes in plant root exudation impact the distribution and density of radionuclides in the rhizosphere and vadose zone.

  18. Effect of Soil Roughness on Overland Flow Connectivity at Different Slope Scenarios

    NASA Astrophysics Data System (ADS)

    Penuela Fernandez, A.; Javaux, M.; Bielders, C.

    2013-12-01

    Runoff generation, which involves the gradual depression filling and connection of overflowing depressions, is affected by surface roughness and slope. Therefore, quantifying and understanding the effects of surface roughness and slope on overland flow connectivity at the sub-grid scale can potentially improve current hydrological modeling and runoff prediction. However, little work has been conducted on quantifying these effects. This study examines the role of surface roughness on overland flow connectivity at the plot scale at different slopes. For this purpose, standard multi-Gaussian synthetic fields (6 × 6 m) with contrasting surface roughnesses, as defined by the parameters of the variogram (sill and range) of surface elevation, were used. In order to quantify the effects of soil roughness and slope on overland flow connectivity a functional connectivity indicator, so-called the Relative Surface Connection function (Antoine et al., 2009), was applied. This indicator, that represents the ratio of area connected to the outflow boundary (C) in function of the depression storage (DS), is able to capture runoff-relevant connectivity properties. Three parameters characterizing the connectivity function were used to quantify the effects of roughness and slope. These parameters are: C at DS = 0 (CDS=0), connectivity threshold (CT) and maximum depression storage (MDS). Results showed that variations on soil roughness and slope greatly affect the three parameters showing in some cases a clear relationship between structural connectivity and functional connectivity, such as between the ratio sill/range and MDS and between CDS=0 and range. This relationship, described by mathematical expressions, not only allows the quantification and comparison of the effects of soil roughness and slope in overland flow connectivity but also the prediction of these effects by the study of the variogram.

  19. Processes controlling the episodic streamwater transport of atrazine and other agrichemicals in an agricultural watershed

    USGS Publications Warehouse

    Hyer, Kenneth; Hornberger, George M.; Herman, Janet S.

    2001-01-01

    Episodic streamwater transport of atrazine (a common agricultural herbicide) and nutrients has been observed throughout agricultural watersheds in the United States and poses a serious threat to the quality of its water resources. Catchment-scale atrazine and nutrient transport processes after agricultural application are still poorly understood, and predicting episodic streamwater composition remains an elusive goal. We instrumented a 1.2-km2 agricultural catchment near Harrisonburg, Virginia, and examined streamwater, overland flow, soil water, groundwater, and rainfall during the summer of 1998. Storm chemographs demonstrated different patterns for constituents derived primarily from weathering (silica and calcium), compared to constituents derived primarily from early spring land applications (nitrate, atrazine, DOC, potassium, chloride, and sulfate). During storms, the concentrations of silica and calcium decreased, the atrazine response was variable, and the concentrations of nitrate, DOC, potassium, chloride, and sulfate increased; the elevated nitrate signal lagged several hours behind the other elevated constituents. Graphical and statistical analyses indicated a relatively stable spring-fed baseflow was modified by a mixture of overland flow and soil water. A rapid, short-duration overland-flow pulse dominated the streamflow early in the event and contributed most of the potassium, DOC, chloride, suspended sediment, and atrazine. A longer-duration soil–water pulse dominated the streamflow later in the event and contributed the nitrate as well as additional potassium, DOC, sulfate, and atrazine. The contributions to the episodic streamflow were quantified using a flushing model in which overland-flow and soil–water concentrations decreased exponentially with time during an episode. Flushing time constants for the overland-flow and soil–water reservoirs were calculated on a storm-by-storm basis using separate tracers for each time-variable reservoir. Initial component concentrations were estimated through regression analyses. Mass-balance calculations were used for flow separations and to predict the observed streamwater composition. Model forecasts indicated that reduced fertilizer and pesticide application (rather than elimination of overland-flow or soil–water contributions) was necessary to improve the episodic streamwater composition. This study provides important additional understanding of the catchment-scale processes by which land-applied pesticides and nutrients can move through agricultural systems.

  20. Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.

    2018-07-01

    A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as revealed by recent observation from the Rosetta mission. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Secondly, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.

  1. Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.

    2018-04-01

    A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as recent observation from the Rosetta mission revealed. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as: effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Second, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.

  2. A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground-water flow model using nonlinear regression

    USGS Publications Warehouse

    Hill, Mary Catherine

    1992-01-01

    This report documents a new version of the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model (MODFLOW) which, with the new Parameter-Estimation Package that also is documented in this report, can be used to estimate parameters by nonlinear regression. The new version of MODFLOW is called MODFLOWP (pronounced MOD-FLOW*P), and functions nearly identically to MODFLOW when the ParameterEstimation Package is not used. Parameters are estimated by minimizing a weighted least-squares objective function by the modified Gauss-Newton method or by a conjugate-direction method. Parameters used to calculate the following MODFLOW model inputs can be estimated: Transmissivity and storage coefficient of confined layers; hydraulic conductivity and specific yield of unconfined layers; vertical leakance; vertical anisotropy (used to calculate vertical leakance); horizontal anisotropy; hydraulic conductance of the River, Streamflow-Routing, General-Head Boundary, and Drain Packages; areal recharge rates; maximum evapotranspiration; pumpage rates; and the hydraulic head at constant-head boundaries. Any spatial variation in parameters can be defined by the user. Data used to estimate parameters can include existing independent estimates of parameter values, observed hydraulic heads or temporal changes in hydraulic heads, and observed gains and losses along head-dependent boundaries (such as streams). Model output includes statistics for analyzing the parameter estimates and the model; these statistics can be used to quantify the reliability of the resulting model, to suggest changes in model construction, and to compare results of models constructed in different ways.

  3. Future sea-level rise from Greenland's main outlet glaciers in a warming climate.

    PubMed

    Nick, Faezeh M; Vieli, Andreas; Andersen, Morten Langer; Joughin, Ian; Payne, Antony; Edwards, Tamsin L; Pattyn, Frank; van de Wal, Roderik S W

    2013-05-09

    Over the past decade, ice loss from the Greenland Ice Sheet increased as a result of both increased surface melting and ice discharge to the ocean. The latter is controlled by the acceleration of ice flow and subsequent thinning of fast-flowing marine-terminating outlet glaciers. Quantifying the future dynamic contribution of such glaciers to sea-level rise (SLR) remains a major challenge because outlet glacier dynamics are poorly understood. Here we present a glacier flow model that includes a fully dynamic treatment of marine termini. We use this model to simulate behaviour of four major marine-terminating outlet glaciers, which collectively drain about 22 per cent of the Greenland Ice Sheet. Using atmospheric and oceanic forcing from a mid-range future warming scenario that predicts warming by 2.8 degrees Celsius by 2100, we project a contribution of 19 to 30 millimetres to SLR from these glaciers by 2200. This contribution is largely (80 per cent) dynamic in origin and is caused by several episodic retreats past overdeepenings in outlet glacier troughs. After initial increases, however, dynamic losses from these four outlets remain relatively constant and contribute to SLR individually at rates of about 0.01 to 0.06 millimetres per year. These rates correspond to ice fluxes that are less than twice those of the late 1990s, well below previous upper bounds. For a more extreme future warming scenario (warming by 4.5 degrees Celsius by 2100), the projected losses increase by more than 50 per cent, producing a cumulative SLR of 29 to 49 millimetres by 2200.

  4. Thermal Fault Tolerance Analysis of Carbon Fiber Rope Barrier Systems for Use in the Reusable Solid Rocket Motor ( RSRM) Nozzle Joints

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Carbon Fiber Rope (CFR) thermal barrier systems are being considered for use in several RSRM (Reusable Solid Rocket Motor) nozzle joints as a replacement for the current assembly gap close-out process/design. This study provides for development and test verification of analysis methods used for flow-thermal modeling of a CFR thermal barrier subject to fault conditions such as rope combustion gas blow-by and CFR splice failure. Global model development is based on a 1-D (one dimensional) transient volume filling approach where the flow conditions are calculated as a function of internal 'pipe' and porous media 'Darcy' flow correlations. Combustion gas flow rates are calculated for the CFR on a per-linear inch basis and solved simultaneously with a detailed thermal-gas dynamic model of a local region of gas blow by (or splice fault). Effects of gas compressibility, friction and heat transfer are accounted for the model. Computational Fluid Dynamic (CFD) solutions of the fault regions are used to characterize the local flow field, quantify the amount of free jet spreading and assist in the determination of impingement film coefficients on the nozzle housings. Gas to wall heat transfer is simulated by a large thermal finite element grid of the local structure. The employed numerical technique loosely couples the FE (Finite Element) solution with the gas dynamics solution of the faulted region. All free constants that appear in the governing equations are calibrated by hot fire sub-scale test. The calibrated model is used to make flight predictions using motor aft end environments and timelines. Model results indicate that CFR barrier systems provide a near 'vented joint' style of pressurization. Hypothetical fault conditions considered in this study (blow by, splice defect) are relatively benign in terms of overall heating to nozzle metal housing structures.

  5. Nonlinear interactions in mixing layers and compressible heated round jets. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Jarrah, Yousef Mohd

    1989-01-01

    The nonlinear interactions between a fundamental instability mode and both its harmonics and the changing mean flow are studied using the weakly nonlinear stability theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial differential equations. The first part focuses on incompressible cold (or isothermal; constant temperature throughout) mixing layers, and for these, the first and second Landau constants are calculated as functions of wavenumber and Reynolds number. It is found that the dominant contribution to the Landau constants arises from the mean flow changes and not from the higher harmonics. In order to establish the range of validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are compared and the limitation of each is discussed. At small amplitudes and at low-to-moderate Reynolds numbers, the two results compare well in describing the saturation of the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up. At larger amplitudes, the interaction between the fundamental, second harmonic, and the mean flow is strongly nonlinear and the numerical solution predicts flow oscillations, whereas the weakly nonlinear theory yields saturation. In the second part, the weakly nonlinear theory is extended to heated (or nonisothermal; mean temperature distribution) subsonic round jets where quadratic and cubic nonlinear interactions are present, and the Landau constants also depend on jet temperature ratio, Mach number and azimuthal mode number. Under exponential growth and nonlinear saturation, it is found that heating and compressibility suppress the growth of instability waves, that the first azimuthal mode is the dominant instability mode, and that the weakly nonlinear solution describes the early stages of the roll-up of an axisymmetric shear layer. The receptivity of a typical jet flow to pulse type input disturbance is also studied by solving the initial value problem and then examining the behavior of the long-time solution.

  6. Removal of pharmaceuticals in pre-denitrifying MBBR - Influence of organic substrate availability in single- and three-stage configurations.

    PubMed

    Polesel, Fabio; Torresi, Elena; Loreggian, Luca; Casas, Mònica Escolà; Christensson, Magnus; Bester, Kai; Plósz, Benedek Gy

    2017-10-15

    Due to the limited efficiency of conventional biological treatment, innovative solutions are being explored to improve the removal of trace organic chemicals in wastewater. Controlling biomass exposure to growth substrate represents an appealing option for process optimization, as substrate availability likely impacts microbial activity, hence organic trace chemical removal. This study investigated the elimination of pharmaceuticals in pre-denitrifying moving bed biofilm reactors (MBBRs), where biofilm exposure to different organic substrate loading and composition was controlled by reactor staging. A three-stage MBBR and a single-stage reference MBBR (with the same operating volume and filling ratio) were operated under continuous-flow conditions (18 months). Two sets of batch experiments (day 100 and 471) were performed to quantify and compare pharmaceutical removal and denitrification kinetics in the different MBBRs. Experimental results revealed the possible influence of retransformation (e.g., from conjugated metabolites) and enantioselectivity on the removal of selected pharmaceuticals. In the second set of experiments, specific trends in denitrification and biotransformation kinetics were observed, with highest and lowest rates/rate constants in the first (S1) and the last (S3) staged sub-reactors, respectively. These observations were confirmed by removal efficiency data obtained during continuous-flow operation, with limited removal (<10%) of recalcitrant pharmaceuticals and highest removal in S1 within the three-stage MBBR. Notably, biotransformation rate constants obtained for non-recalcitrant pharmaceuticals correlated with mean specific denitrification rates, maximum specific growth rates and observed growth yield values. Overall, these findings suggest that: (i) the long-term exposure to tiered substrate accessibility in the three-stage configuration shaped the denitrification and biotransformation capacity of biofilms, with significant reduction under substrate limitation; (ii) biotransformation of pharmaceuticals may have occurred as a result of cometabolism by heterotrophic denitrifying bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydraulics of outburst floods spilling over a steep-walled canyon: Implications for paleo-discharges on Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu; Lamb, Michael

    2013-04-01

    Canyons carved by outburst floods are common landforms on Earth and Mars. These canyons are generally found in fractured basalts and jointed sedimentary rocks. Flood-carved canyons commonly have steep headwalls and a roughly constant width, and are often thought to have formed from upstream headwall propagation due to waterfall erosion. Because morphology is readily available from satellite imagery, these canyons offer a unique opportunity to quantify the discharge of rare, catastrophic paleo-floods on Earth and Mars. However, mechanistic relationships that relate canyon size to flood discharge have yet to be developed. We propose that the width of a canyon headwall in fractured rock is set by the spatial distribution of erosion around the rim of the canyon, which is controlled by the distribution of shear stresses induced by the overflowing water as it is focused into the canyon head. We test this hypothesis by performing a series of numerical simulations of flood-water focusing using ANUGA Hydro, a 2D-depth averaged, fully turbulent, hydraulic numerical modeling suite allowing for Froude-number transitions. The numerical simulations were designed to explore five dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width to flood-water width ratio, the canyon width to normal-flow depth ratio, the Froude number, and the topographic gradient upstream of the canyon. Preliminary results show that flow focusing leads to increased shear stresses at the canyon head compared to the sides of the canyon for subcritical floods and higher canyon aspect ratios. This suggests that proto-canyons start growing from a topographic defect in all directions until they reach a critical length for the side walls to dry. Once this critical length is attained, canyons focus most of the flood waters into their heads, and propagate upstream only, maintaining roughly constant widths. Preliminary results suggest that canyon width may be used to reconstruct the discharge of paleo-flood events on Mars and Earth.

  8. Harnessing electrical power from vortex-induced vibration of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Soti, Atul Kumar; Thompson, Mark C.; Sheridan, John; Bhardwaj, Rajneesh

    2017-04-01

    The generation of electrical power from Vortex-Induced Vibration (VIV) of a cylinder is investigated numerically. The cylinder is free to oscillate in the direction transverse to the incoming flow. The cylinder is attached to a magnet that can move along the axis of a coil made from conducting wire. The magnet and the coil together constitute a basic electrical generator. When the cylinder undergoes VIV, the motion of the magnet creates a voltage across the coil, which is connected to a resistive load. By Lenz's law, induced current in the coil applies a retarding force to the magnet. Effectively, the electrical generator applies a damping force on the cylinder with a spatially varying damping coefficient. For the initial investigation reported here, the Reynolds number is restricted to Re < 200, so that the flow is laminar and two-dimensional (2D). The incompressible 2D Navier-Stokes equations are solved using an extensively validated spectral-element based solver. The effects of the electromagnetic (EM) damping constant xi_m, coil dimensions (radius a, length L), and mass ratio on the electrical power extracted are quantified. It is found that there is an optimal value of xi_m (xi_opt) at which maximum electrical power is generated. As the radius or length of the coil is increased, the value of xi_opt is observed to increase. Although the maximum average power remains the same, a larger coil radius or length results in a more robust system in the sense that a relatively large amount of power can be extracted when xi_m is far from xi_opt, unlike the constant damping ratio case. The average power output is also a function of Reynolds number, primarily through the increased maximum oscillation amplitude that occurs with increased Reynolds number at least within the laminar range, although the general qualitative findings seem likely to carry across to high Reynolds number VIV.

  9. The dynamic interaction of a marine hydrokinetic turbine with its environment

    NASA Astrophysics Data System (ADS)

    Kolekar, Nitin; Banerjee, Arindam

    2014-11-01

    Unlike wind turbines, marine hydrokinetic and tidal turbines operate in a bounded flow environment where flow is constrained between deformable free surface and fixed river/sea bed. The proximity to free surface modifies the wake dynamics behind the turbine. Further, size & shape of this wake is not constant but depends on multiple factors like flow speed, turbine blade geometry, and rotational speed. In addition, the turbulence characteristics of incoming flow also affects the flow field and hence the performance. The current work aims at understanding the dynamic interaction of a hydrokinetic turbine (HkT) with free surface and flow turbulence through experimental investigations. Results will be presented from experimental study carried out in an open channel test facility at Lehigh University with a three bladed, constant chord, zero twist HkT under various operating conditions. Froude number (ratio of characteristic flow velocity to gravitational wave velocity) is used to characterize the effect of free surface proximity on turbine performance. Experimental results will be compared with analytical models based on blade element momentum theory. Characterization of wake meandering and flow around turbine will be performed using a stereo-Particle Image Velocimetry technique.

  10. Application of a Transient Storage Zone Model o Soil Pipeflow Tracer Injection Experiments

    USDA-ARS?s Scientific Manuscript database

    Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...

  11. Observing Flow in Young Children's Music Learning.

    ERIC Educational Resources Information Center

    Custodero, Lori A.

    1998-01-01

    Explores a study that quantifies preschool children's music learning preferences in teacher-intitiated environments by observing the children on video to determine their flow experiences where the challenge level and skill level are both high. Stresses that using flow to measure music experiences provides a means for teachers to evaluate student…

  12. Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides

    NASA Astrophysics Data System (ADS)

    Tiwald, Paul; Karsai, Ferenc; Laskowski, Robert; Gräfe, Stefanie; Blaha, Peter; Burgdörfer, Joachim; Wirtz, Ludger

    2015-10-01

    We revisit the well-known Mollwo-Ivey relation that describes the "universal" dependence of the absorption energies of F-type color centers on the lattice constant a of alkali-halide crystals, Eabs∝a-n. We perform both state-of-the-art ab initio quantum chemistry and post-DFT calculations of F-center absorption spectra. By "tuning" independently the lattice constant and the atomic species we show that the scaling with the lattice constant alone (keeping the elements fixed) would yield n =2 in agreement with the "particle-in-the-box" model. Keeping the lattice constant fixed and changing the atomic species enables us to quantify the ion-size effects which are shown to be responsible for the exponent n ≈1.8 .

  13. A new technique for quantifying symmetry and opening angles in quartz c-axis pole figures: Implications for interpreting the kinematic and thermal properties of rocks

    NASA Astrophysics Data System (ADS)

    Hunter, N. J. R.; Weinberg, R. F.; Wilson, C. J. L.; Law, R. D.

    2018-07-01

    Variations in flow kinematics influence the type of crystallographic preferred orientations (CPOs) in plastically deformed quartz, yet we currently lack a robust means of quantifying the diagnostic symmetries that develop in the c-axis (0001) pole figure. In this contribution, we demonstrate how the symmetry of common c-axis topologies may be quantified by analysing the intensity distribution across a line transect of the pole figure margin. A symmetry value (S) measures the relative difference in intensities between marginal girdle maxima in the pole figure, and thus the degree to which the pole figure defines orthorhombic or monoclinic end member symmetries. This provides a semi-quantitative depiction of whether the rocks underwent coaxial or non-coaxial flow, respectively, and may subsequently be used to quantify other topological properties, such as the opening angle of girdle maxima. The open source Matlab® toolbox MTEX is used to quantify pole figure symmetries in quartzite samples from the Main Central Thrust (NW Himalaya) and the Moine Thrust (NW Scotland).

  14. Reynolds number dependence of relative dispersion statistics in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Sawford, Brian L.; Yeung, P. K.; Hackl, Jason F.

    2008-06-01

    Direct numerical simulation results for a range of relative dispersion statistics over Taylor-scale Reynolds numbers up to 650 are presented in an attempt to observe and quantify inertial subrange scaling and, in particular, Richardson's t3 law. The analysis includes the mean-square separation and a range of important but less-studied differential statistics for which the motion is defined relative to that at time t =0. It seeks to unambiguously identify and quantify the Richardson scaling by demonstrating convergence with both the Reynolds number and initial separation. According to these criteria, the standard compensated plots for these statistics in inertial subrange scaling show clear evidence of a Richardson range but with an imprecise estimate for the Richardson constant. A modified version of the cube-root plots introduced by Ott and Mann [J. Fluid Mech. 422, 207 (2000)] confirms such convergence. It has been used to yield more precise estimates for Richardson's constant g which decrease with Taylor-scale Reynolds numbers over the range of 140-650. Extrapolation to the large Reynolds number limit gives an asymptotic value for Richardson's constant in the range g =0.55-0.57, depending on the functional form used to make the extrapolation.

  15. Use of Physiologically Based Pharmacokinetic (PBPK) Models ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Use of Physiologically Based Pharmacokinetic (PBPK) Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk Final Report for Cooperative Agreement. This report describes and demonstrates techniques necessary to extrapolate and incorporate in vitro derived metabolic rate constants in PBPK models. It also includes two case study examples designed to demonstrate the applicability of such data for health risk assessment and addresses the quantification, extrapolation and interpretation of advanced biochemical information on human interindividual variability of chemical metabolism for risk assessment application. It comprises five chapters; topics and results covered in the first four chapters have been published in the peer reviewed scientific literature. Topics covered include: Data Quality ObjectivesExperimental FrameworkRequired DataTwo example case studies that develop and incorporate in vitro metabolic rate constants in PBPK models designed to quantify human interindividual variability to better direct the choice of uncertainty factors for health risk assessment. This report is intended to serve as a reference document for risk assors to use when quantifying, extrapolating, and interpretating advanced biochemical information about human interindividual variability of chemical metabolism.

  16. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data

    NASA Astrophysics Data System (ADS)

    Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.

    2018-04-01

    River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.

  17. The importance of flow history in mixed shear and extensional flows

    NASA Astrophysics Data System (ADS)

    Wagner, Caroline; McKinley, Gareth

    2015-11-01

    Many complex fluid flows of experimental and academic interest exhibit mixed kinematics with regions of shear and elongation. Examples include flows through planar hyperbolic contractions in microfluidic devices and through porous media or geometric arrays. Through the introduction of a ``flow-type parameter'' α which varies between 0 in pure shear and 1 in pure elongation, the local velocity fields of all such mixed flows can be concisely characterized. It is tempting to then consider the local stress field and interpret the local state of stress in a complex fluid in terms of shearing or extensional material functions. However, the material response of such fluids exhibit a fading memory of the entire deformation history. We consider a dilute solution of Hookean dumbbells and solve the Oldroyd-B model to obtain analytic expressions for the entire stress field in any arbitrary mixed flow of constant strain rate and flow-type parameter α. We then consider a more complex flow for which the shear rate is constant but the flow-type parameter α varies periodically in time (reminiscent of flow through a periodic array or through repeated contractions and expansions). We show that the flow history and kinematic sequencing (in terms of whether the flow was initialized as shearing or extensional) is extremely important in determining the ensuing stress field and rate of dissipated energy in the flow, and can only be ignored in the limit of infinitely slow flow variations.

  18. Prediction of Supersonic Store Separation Characteristics Volume I. Theoretical Methods and Comparisons with Experiment

    DTIC Science & Technology

    1976-05-01

    attached to the wing or under the fuselage.__ DD ’JO77,S 1473 EDITION OF NOV 61 IS OBSOLETE UNICLASSIFILEDV~D.n SEUIYC ASIIAINOFTI -E %inDI I...cruciform fins. 61 7 Shock shape deduced from flow field properties. (a) M D 1. 5. 62 7 Continued. (b) MW = 2.0 63 7 Concluded. (c) M. = 2.5. 64 8 Flow...equation (14) h panel span, figure 2 K constant associated with line source strength function f(•), equation (I-8) SKd constant associated with line

  19. Aqueous Humor Dynamics of the Brown-Norway Rat

    PubMed Central

    Ficarrotta, Kayla R.; Bello, Simon A.; Mohamed, Youssef H.; Passaglia, Christopher L.

    2018-01-01

    Purpose The study aimed to provide a quantitative description of aqueous humor dynamics in healthy rat eyes. Methods One eye of 26 anesthetized adult Brown-Norway rats was cannulated with a needle connected to a perfusion pump and pressure transducer. Pressure-flow data were measured in live and dead eyes by varying pump rate (constant-flow technique) or by modulating pump duty cycle to hold intraocular pressure (IOP) at set levels (modified constant-pressure technique). Data were fit by the Goldmann equation to estimate conventional outflow facility (\\begin{document}\

  20. In vivo testing of a magnetically suspended centrifugal pump designed for long-term use.

    PubMed

    Yamada, T; Nishimura, K; Akamatsu, T; Tsukiya, T; Park, C H; Kono, S; Matsuda, K; Ban, T

    1997-10-01

    The life of currently-available centrifugal pumps is limited to no more than three days. As a magnetically suspended centrifugal pump (MSCP) contains no shaft or seal, it could be expected to have a longer life expectancy. The MSCP was evaluated in a chronic animal model using eight adult sheep. Left ventricular assist with the MSCP was instituted between the left atrium and the descending aorta. The flow rates ranged from 2.5 to 6.0 L/min. The duration of the experiments ranged from 14 to 60 days. No mechanical failure occurred. The plasma free hemoglobin levels remained within an acceptable range (3-19 mg/dL). No reduction in the counts of red blood cells or platelets was observed. Thrombus formation within the MSCP was recognized in one pump. The main reason for termination was thromboembolism derived from the circuits. Three types of regulation methods (constant rotational speed, constant motor current, and controlled motor current) were also investigated. Regulation by a constant motor current mode altered the pressure-flow (P-Q) characteristics, and thereby, a steadier pump flow was obtained compared with regulation in the constant rotational speed mode. Moreover, the controlled motor current mode can change the P-Q relationship. These results demonstrate that the MSCP is a promising device for long-term use.

  1. Dynamic and Thermal Turbulent Time Scale Modelling for Homogeneous Shear Flows

    NASA Technical Reports Server (NTRS)

    Schwab, John R.; Lakshminarayana, Budugur

    1994-01-01

    A new turbulence model, based upon dynamic and thermal turbulent time scale transport equations, is developed and applied to homogeneous shear flows with constant velocity and temperature gradients. The new model comprises transport equations for k, the turbulent kinetic energy; tau, the dynamic time scale; k(sub theta), the fluctuating temperature variance; and tau(sub theta), the thermal time scale. It offers conceptually parallel modeling of the dynamic and thermal turbulence at the two equation level, and eliminates the customary prescription of an empirical turbulent Prandtl number, Pr(sub t), thus permitting a more generalized prediction capability for turbulent heat transfer in complex flows and geometries. The new model also incorporates constitutive relations, based upon invariant theory, that allow the effects of nonequilibrium to modify the primary coefficients for the turbulent shear stress and heat flux. Predictions of the new model, along with those from two other similar models, are compared with experimental data for decaying homogeneous dynamic and thermal turbulence, homogeneous turbulence with constant temperature gradient, and homogeneous turbulence with constant temperature gradient and constant velocity gradient. The new model offers improvement in agreement with the data for most cases considered in this work, although it was no better than the other models for several cases where all the models performed poorly.

  2. Flow cytometry for receptor analysis from ex-vivo brain tissue in adult rat.

    PubMed

    Benoit, A; Guillamin, M; Aitken, P; Smith, P F; Philoxene, B; Sola, B; Poulain, L; Coquerel, A; Besnard, S

    2018-07-01

    Flow cytometry allows single-cell analysis of peripheral biological samples and is useful in many fields of research and clinical applications, mainly in hematology, immunology, and oncology. In the neurosciences, the flow cytometry separation method was first applied to stem cell extraction from healthy or cerebral tumour tissue and was more recently tested in order to phenotype brain cells, hippocampal neurogenesis, and to detect prion proteins. However, it remains sparsely applied in quantifying membrane receptors in relation to synaptic plasticity. We aimed to optimize a flow cytometric procedure for receptor quantification in neurons and non-neurons. A neural dissociation process, myelin separation, fixation, and membrane permeability procedures were optimized to maximize cell survival and analysis in hippocampal tissue obtained from adult rodents. We then aimed to quantify membrane muscarinic acetylcholine receptors (mAChRs) in rats with and without bilateral vestibular loss (BVL). mAChR's were quantified for neuronal and non-neuronal cells in the hippocampus and striatum following BVL. At day 30 but not at day 7 following BVL, there was a significant increase (P ≤ 0.05) in the percentage of neurons expressing M 2/4 mAChRs in both the hippocampus and the striatum. Here, we showed that flow cytometry appears to be a reliable method of membrane receptor quantification in ex-vivo brain tissue. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Quantifying the Contribution of Regional Aquifers to Stream Flow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Masbruch, M.; Dickinson, J.

    2017-12-01

    The growing population of the arid and semiarid southwestern U.S. relies on over-allocated surface water resources and poorly quantified groundwater resources. In the Upper Colorado River Basin, recent studies have found that about 50 percent of the surface water at U.S. Geological Survey (USGS) stream gages is derived from groundwater contributions as base flow. Prior USGS and other studies for the Colorado Plateau region have mainly examined groundwater and surface water as separate systems, and there has yet to be regional synthesis of groundwater availability in aquifers that contribute to surface water. A more physically based representation of groundwater flow could improve simulations of surface-water capture by groundwater pumping, and changes of groundwater discharge to surface water caused by possible shifts in the distribution, magnitude, and timing of recharge in the future. We seek to improve conceptual and numerical models of groundwater and surface-water interactions in the Colorado Plateau region as part of a USGS regional groundwater availability assessment. Numerical modeling is used to simulate and quantify the base flow from groundwater to the Colorado River and its major tributaries. Groundwater/surface-water interactions will be simulated using the USGS code GSFLOW, which couples the Precipitation Runoff Modeling System (PRMS) to the groundwater flow model MODFLOW. Initial results suggest that interactions between groundwater and surface water are important for projecting long-term changes in surface water budgets.

  4. Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM

    NASA Technical Reports Server (NTRS)

    Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.

    1989-01-01

    A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model.

  5. Anode energy transfer in a transient arc

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Ratovoson, P.; Razafinimanana, M.; Gleizes, A.

    2017-04-01

    This work deals with experimental investigation of a transient arc. Arc configuration and electrode erosion were studied in order to quantify the energy transfer to the electrodes as a function of maximal current, time constant and electrodes material. Experiments with two consecutive arcs allow demonstrating non stationary behaviour of the arc electrode interaction. This is due to the fact that while the duration of the experiments is far larger than plasma phenomena time constants, it is comparable to those of electrode heating and melting processes.

  6. Reversible Tailoring of Mechanical Properties of Carbon Nanotube Forests by Immersing in Solvents

    DTIC Science & Technology

    2014-12-07

    quantify the strength of vdW interactions between CNTs, Hamaker constant of CNTs in vacuum, Av ¼ V 12pD 2 G , was evaluated where ‘V’ is the vdW...effectively do not interact with each other. Therefore, we assumed curved surface–surface vdW interaction between two CNTs to evaluate the Hamaker ...of the vdW forces are directly proportional to Hamaker constant, which depends on the macroscopic properties of the interacting objects and the

  7. The acoustical structure of highly porous open-cell foams

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1982-01-01

    This work concerns both the theoretical prediction and measurement of structural parameters in open-cell highly porous polyurethane foams. Of particular interest are the dynamic flow resistance, thermal time constant, and mass structure factor and their dependence on frequency and geometry of the cellular structure. The predictions of cell size parameters, static flow resistance, and heat transfer as accounted for by a Nusselt number are compared with measurement. Since the static flow resistance and inverse thermal time constant are interrelated via the 'mean' pore size parameter of Biot, only two independent measurements such as volume porosity and mean filament diameter are required to make the predictions for a given fluid condition. The agreements between this theory and nonacoustical experiments are excellent.

  8. Single and two-phase flows of shear-thinning media in safety valves.

    PubMed

    Moncalvo, D; Friedel, L

    2009-09-15

    This study is the first one in the scientific literature to investigate the liquid and two-phase flows of shear-thinning media, here aqueous solutions of polyvinylpyrrolidone, in a fully opened safety valve. In liquid flows the volume flux at the valve seat does not show any appreciable reduction when increasing the percental weight of polymer in the solution. This result may suggest that the viscous losses in the valve do not increase sensibly from the most aqueous to the most viscous solution. The authors explain it considering that in the region between the seat and the disk, where large pressure and velocity gradients occur, large shear rates are expected. On behalf of the rheological measurements, which show that both the pseudoplasticity and the zero-shear viscosity of the solutions increase with the polymer weight, the difference between the viscosities of the most viscous and those of the most aqueous solution is between the seat and the disk far less than that existing at zero-shear condition. Therefore, the effective viscous pressure drop of the safety valve, which occurs mostly in that region, must increase only modestly with the polymer percental weight in the solution. In two-phase flows the total mass flow rate at constant quality and constant relieving pressure increases remarkably with the polymer weight. The analogy with similar results in cocurrent pipe flows suggests that air entrainment causes large velocity gradients in the liquids and strains them to very large shear rates. It suggests also that a redistribution of the gas agglomerates within the liquid must be expected when increasing the polymer weight in the solutions. In fact, the gas agglomerates react to the larger viscous drag of the liquid by compressing their volume in order to exert a higher internal pressure. The reduction of the void fraction of the mixture at constant quality and constant relieving pressure imposes an increment in the total mass flow rate, since otherwise it would lead to a reduction in the momentum of the mixture and therefore to a drop in the relieving pressure.

  9. Marketing quality and value to the managed care market.

    PubMed

    Kazmirski, G

    1998-11-01

    Quantifying quality and marketing care delivery have been long-term challenges in the health care market. Insurers, employers, other purchasers of care, and providers face a constant challenge in positioning their organizations in a proactive, competitive niche. Tools that measure patient's self-reported perception of health care needs and expectations have increased the ability to quantify quality of care delivery. When integrated with case management and disease management strategies, outcomes reporting and variance analysis tracking can be packaged to position a provider in a competitive niche.

  10. Methodology for extracting local constants from petroleum cracking flows

    DOEpatents

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  11. Novel Quantification of Sediment Concentration in Turbidity Currents Through in-situ Measurements of Conductivity and Temperature

    NASA Astrophysics Data System (ADS)

    Xu, J.; Wang, Z.; Gwiazda, R.; Paull, C. K.; Talling, P.; Parsons, D. R.; Maier, K. L.; Simmons, S.; Cartigny, M.

    2017-12-01

    During a large turbidity current event observed by seven moorings placed along Monterey Canyon, offshore central California, in the axial channel between 300 and 1900 meters water depth, a conductivity/temperature sensor placed 11 meters above canyon floor on the mooring at 1500 meters water depth recorded a rapid decrease of conductivity and increase of temperature during the passage of a large turbidity current. The conductivity decline is unlikely caused by fresh water input owing to lack of precipitation in the region prior to the event. We investigated the mechanisms of turbidity currents' high sediment concentration reducing the measured conductivity. By conducting a series of laboratory experiments with a range of different concentrations, grain size, and water temperature combinations, we quantified a relationship between reduced conductivity and the elevated sediment concentration. This relationship can be used for estimating the very high sediment concentrations in a turbidity current with a condition of assuming constant salinity of the ambient seawater. The empirical relationship was then applied to the in-situ time-series of temperature and conductivity measured during this turbidity current. The highest sediment concentration, in the head of the flow, reached nearly 400 g/L (volume concentration 17%). Such a high value, which has yet been reported in literature for an oceanic turbidity current, will have significant implications for the dynamics and deposits of such flows.

  12. Combining UASB and the "fourth generation" down-flow hanging sponge reactor for municipal wastewater treatment.

    PubMed

    Tandukar, M; Uemura, S; Ohashi, A; Harada, H

    2006-01-01

    A "fourth generation" down-flow hanging sponge (DHS) Reactor has been developed and proposed as an improved variant of post-treatment system for UASB treating domestic wastewater. This paper evaluates the potential of the proposed combination of UASB and DHS as a sewage treatment system, especially for developing countries. A pilot-scale UASB (1.15 m3) and DHS (0.38 m3; volume of sponge) was installed in a municipal sewage treatment site and constantly monitored for 2 years. UASB was operated at an HRT of 6 h corresponding to an organic load of 2.15 kg-COD/m3 per day. Subsequently, the organic load in DHS was 2.35 kg-COD/m3 per day, operated at an HRT of 2 h. Organic removal by the whole system was satisfactory, accomplishing 96% of unfiltered BOD removal and 91% of unfiltered COD removal. However, nitrification decreased from 56% during the startup period to 28% afterwards. Investigation on DHS sludge was made by quantifying it and evaluating oxygen uptake rates with various substrates. Average concentration of trapped biomass was 26 g-VSS/L of sponge volume, increasing the SRT of the system to 100-125 d. Removal of coliforms obtained was 3-4 log10 with the final count of 10(3) to 10(4) MPN/100 ml in DHS effluent.

  13. Computational Study of a Vortex-Ring Pair Interacting with a Constant-Temperature Heated Wall

    NASA Astrophysics Data System (ADS)

    Jabbar, Hussam; Naguib, Ahmed

    2017-11-01

    Impinging jets are used widely in industrial and manufacturing processes because of their ability to increase the heat transfer rate from the impingement surface. The vortical structures of these jets have an important influence on the heat transfer; by affecting the thermal boundary layer (TBL) during their interaction with the wall. In order to better understand the physics of this interaction, particularly when pairing of two vortices happens near the wall, a simplified model problem of two isolated vortex rings interacting with a flat wall is investigated computationally using ANSYS FLUENT 17.1. Observations of the vorticity field, the temperature field, the wall shear stress, the TBL and the Nusselt number (Nu) provide insight into the association of local Nu maxima/minima with different flow features. The results provide physical understanding of the flow processes leading to enhancement/deterioration of Nu due to vortex-wall interaction. Additionally, the characteristics of the vortical structures are quantified, and possible correlations between the temporal development of these characteristics and the evolution of the maximum/minimum Nu are investigated. The results are compared to those involving a single vortex ring in order to understand the effect of vortex pairing. This work is supported by NSF Grant Number CBET-1603720. Hussam Jabbar also acknowledges the fellowship support from Higher Committee for Education Development in Iraq (HCED).

  14. Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media.

    PubMed

    Scanziani, Alessio; Singh, Kamaljit; Blunt, Martin J; Guadagnini, Alberto

    2017-06-15

    Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. The cost of a large-scale hollow fibre MBR.

    PubMed

    Verrecht, Bart; Maere, Thomas; Nopens, Ingmar; Brepols, Christoph; Judd, Simon

    2010-10-01

    A cost sensitivity analysis was carried out for a full-scale hollow fibre membrane bioreactor to quantify the effect of design choices and operational parameters on cost. Different options were subjected to a long term dynamic influent profile and evaluated using ASM1 for effluent quality, aeration requirements and sludge production. The results were used to calculate a net present value (NPV), incorporating both capital expenditure (capex), based on costs obtained from equipment manufacturers and full-scale plants, and operating expenditure (opex), accounting for energy demand, sludge production and chemical cleaning costs. Results show that the amount of contingency built in to cope with changes in feedwater flow has a large impact on NPV. Deviation from a constant daily flow increases NPV as mean plant utilisation decreases. Conversely, adding a buffer tank reduces NPV, since less membrane surface is required when average plant utilisation increases. Membrane cost and lifetime is decisive in determining NPV: an increased membrane replacement interval from 5 to 10 years reduces NPV by 19%. Operation at higher SRT increases the NPV, since the reduced costs for sludge treatment are offset by correspondingly higher aeration costs at higher MLSS levels, though the analysis is very sensitive to sludge treatment costs. A higher sustainable flux demands greater membrane aeration, but the subsequent opex increase is offset by the reduced membrane area and the corresponding lower capex. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Constant pressure mode extended simple gradient liquid chromatography system for micro and nanocolumns.

    PubMed

    Šesták, Jozef; Kahle, Vladislav

    2014-07-11

    Performing gradient liquid chromatography at constant pressure instead of constant flow rate has serious potential for shortening the analysis time and increasing the productivity of HPLC instruments that use gradient methods. However, in the constant pressure mode the decreasing column permeability during a long period of time negatively affects the repeatability of retention time. Thus a volume-based approach, in which the detector signal is plotted as a function of retention volume, must be taken into consideration. Traditional HPLC equipment, however, requires quite complex hardware and software modifications in order to work at constant pressure and in the volume-based mode. In this short communication, a low cost and easily feasible pressure-controlled extension of the previously described simple gradient liquid chromatography platform is proposed. A test mixture of four nitro esters was separated by 10-60% (v/v) acetone/water gradient and a high repeatability of retention volumes at 20MPa (RSD less than 0.45%) was realized. Separations were also performed at different values of pressure (20, 25, and 31MPa), and only small variations of the retention volumes (up to 0.8%) were observed. In this particular case, the gain in the analysis speed of 7% compared to the constant flow mode was realized at a constant pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CFV sample probes and/or a heat exchanger or electronic flow compensation. Figure... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  18. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CFV sample probes and/or a heat exchanger or electronic flow compensation. Figure... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  19. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CFV sample probes and/or a heat exchanger or electronic flow compensation. Figure... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  20. Overhead Projection Cell for Streamline Flow

    ERIC Educational Resources Information Center

    Waage, Harold M.

    1969-01-01

    Describes the construction and operation of an overhead projection apparatus designed to demonstrate streamline flow of a liquid. The apparatus consists of a Plexiglass tank containing water in which plates forming the cell are submerged, a constant level reservoir, an overflow device and a system for marking the flow lines with a dye. (LC)

  1. CFD analyses of coolant channel flowfields

    NASA Technical Reports Server (NTRS)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  2. A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials

    DOE PAGES

    Olds, Daniel; Page, Katharine; Paecklar, Arnold A.; ...

    2017-03-17

    Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N 2 by Ca-exchanged zeolite-X (Na 78–2xCa xAl 78Si 144O 384,x ≈ 38). We demonstrate sensitivities to lattice contraction and N 2 adsorption sites in the structure, with both static gas loadingmore » and gas flow. A steady-state isotope transient kinetic analysis of N 2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between 15N 2 and 14N 2 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. As a result, available flow conditions, sample considerations, and future applications are discussed.« less

  3. Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube

    PubMed Central

    Niu, Jun; Fu, Ceji; Tan, Wenchang

    2012-01-01

    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared. PMID:22615961

  4. Influence of bed material entrainment and non-Newtonian rheology on turbulent geophysical flows dynamics. Numerical study

    NASA Astrophysics Data System (ADS)

    Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.

    2017-10-01

    This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.

  5. Balanced Orifice Plate

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Buskirk, Paul D. (Inventor)

    2006-01-01

    An orifice plate for use in a conduit through which fluid flows is defined by a central circular region having a radius R, and a ring-shaped region surrounding the central circular region. The ring-shaped region has holes formed therethrough with those holes centered at each radius R thereof satisfying a relationship A(sub R)=al(X(sub R)V(sub R)(sup b)) where A(sub R) is a sum of areas of those holes having centers at radius R, X(sub R) is a flow coefficient at radius R, V(sub R) is a velocity of the fluid that is to flow through the conduit at radius R, b is a constant selected to make at least one process variable (associated with the fluid that is to flow through the conduit) approximately equal at each radius R, and a is a constant that is equal to (X(sub R)A(sub R)V(sub R)(sup b)) at each radius R.

  6. Constant flow-driven microfluidic oscillator for different duty cycles

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2012-01-01

    This paper presents microfluidic devices that autonomously convert two constant flow inputs into an alternating oscillatory flow output. We accomplish this hardware embedded self-control programming using normally closed membrane valves that have an inlet, an outlet, and a membrane-pressurization chamber connected to a third terminal. Adjustment of threshold opening pressures in these 3-terminal flow switching valves enabled adjustment of oscillation periods to between 57–360 s with duty cycles of 0.2–0.5. These values are in relatively good agreement with theoretical values, providing the way for rational design of an even wider range of different waveform oscillations. We also demonstrate the ability to use these oscillators to perform temporally patterned delivery of chemicals to living cells. The device only needs a syringe pump, thus removing the use of complex, expensive external actuators. These tunable waveform microfluidic oscillators are envisioned to facilitate cell-based studies that require temporal stimulation. PMID:22206453

  7. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  8. Fracture Flow Characterization from Seismic and Electric Properties: Insight from Experimental and Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Sawayama, K.; Kitamura, K.; Tsuji, T.; Fujimitsu, Y.

    2017-12-01

    The estimation of fluid flow and its distribution in the fracture is essential to evaluate subsurface fluid (e.g., geothermal water, ground water, oil and gas). Recently, fluid flow in the geothermal reservoir has been attracting attention to develop EGS (enhanced geothermal system) technique. To detect the fluid distribution under the ground, geophysical exploration such as seismic and electromagnetic methods have been broadly applied. For better interpretation of these exploration data, more detailed investigation about the effect of fluid on seismic and electric properties of fracture is required. In this study, we measured and calculated seismic and electric properties of a cracked rock to discuss the effect of water distribution and saturation on them as well as fluid flow. For the experimental observation, we developed the technique to measure electrical impedance, P-wave velocity and water saturation simultaneously during the fluid-flow test. The test has been conducted as follows; a cracked andesite core sample was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure and then, brine (1wt.%-KCl, 1.75 S/m) was injected into the sample to replace the gas. During the test, water saturation, permeability, electrical impedance and P-wave velocity were measured. As a result of this experimental study, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine in the broad fracture. After the brine injection, electrical impedance decreased with injection pressure by up to 40% while P-wave velocity was almost constant. This decrease of electrical impedance could be related to the flow to the narrow path (microcrack) which cannot be detected by P-wave velocity. These two types of fluid flow mechanism were also suggested from other parameters such as permeability, water saturation and saturation exponent of Archie's law. To quantify the fluid flow and its distribution in the fracture, we applied fluid flow simulation by LBM (Lattice Boltzmann Method). From this result, we calculate physical parameters by FEM and FDM and then discuss effect of fluid on them as well as their comparison with experimental results.

  9. The thermodynamics of dense granular flow and jamming

    NASA Astrophysics Data System (ADS)

    Lu, Shih Yu

    The scope of the thesis is to propose, based on experimental evidence and theoretical validation, a quantifiable connection between systems that exhibit the jamming phenomenon. When jammed, some materials that flow are able to resist deformation so that they appear solid-like on the laboratory scale. But unlike ordinary fusion, which has a critically defined criterion in pressure and temperature, jamming occurs under a wide range of conditions. These condition have been rigorously investigated but at the moment, no self-consistent framework can apply to grains, foam and colloids that may have suddenly ceased to flow. To quantify the jamming behavior, a constitutive model of dense granular flows is deduced from shear-flow experiments. The empirical equations are then generalized, via a thermodynamic approach, into an equation-of-state for jamming. Notably, the unifying theory also predicts the experimental data on the behavior of molecular glassy liquids. This analogy paves a crucial road map for a unifying theoretical framework in condensed matter, for example, ranging from sand to fire retardants to toothpaste.

  10. Sources of uncertainty in flood inundation maps

    USGS Publications Warehouse

    Bales, J.D.; Wagner, C.R.

    2009-01-01

    Flood inundation maps typically have been used to depict inundated areas for floods having specific exceedance levels. The uncertainty associated with the inundation boundaries is seldom quantified, in part, because all of the sources of uncertainty are not recognized and because data available to quantify uncertainty seldom are available. Sources of uncertainty discussed in this paper include hydrologic data used for hydraulic model development and validation, topographic data, and the hydraulic model. The assumption of steady flow, which typically is made to produce inundation maps, has less of an effect on predicted inundation at lower flows than for higher flows because more time typically is required to inundate areas at high flows than at low flows. Difficulties with establishing reasonable cross sections that do not intersect and that represent water-surface slopes in tributaries contribute additional uncertainties in the hydraulic modelling. As a result, uncertainty in the flood inundation polygons simulated with a one-dimensional model increases with distance from the main channel.

  11. Electrohydrodynamic effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.

    1991-01-01

    We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.

  12. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  13. Spatial modeling of potential woody biomass flow

    Treesearch

    Woodam Chung; Nathaniel Anderson

    2012-01-01

    The flow of woody biomass to end users is determined by economic factors, especially the amount available across a landscape and delivery costs of bioenergy facilities. The objective of this study develop methodology to quantify landscape-level stocks and potential biomass flows using the currently available spatial database road network analysis tool. We applied this...

  14. Effect of tillage on macropore flow and phosphorus transport to tile drains

    USDA-ARS?s Scientific Manuscript database

    Elevated phosphorus (P) concentrations in subsurface drainage water are thought to be the result of P bypassing the soil matrix via macropore flow. The objectives of this study were to quantify event water delivery to tile drains via macropore flow paths during storm events and to determine the effe...

  15. Effects of rainfall and surface flow on chemical diffusion from soil to runoff water

    USDA-ARS?s Scientific Manuscript database

    Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...

  16. Investigating Flow Experience and Scientific Practices during a Mobile Serious Educational Game

    ERIC Educational Resources Information Center

    Bressler, Denise M.; Bodzin, Alec M.

    2016-01-01

    Mobile serious educational games (SEGs) show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. This study investigated whether a mobile SEG promotes flow experience and scientific practices with eighth-grade urban students. Students playing the game (n = 59) were…

  17. Capturing spatiotemporal variation in wildfires for improving postwildfire debris‐flow hazard assessments [Chapter 20

    Treesearch

    Jessica Haas; Matthew Thompson; Anne Tillery; Joe H. Scott

    2017-01-01

    Wildfires can increase the frequency and magnitude of catastrophic debris flows. Integrated, proactive naturalhazard assessment would therefore characterize landscapes based on the potential for the occurrence and interactions of wildfires and postwildfire debris flows. This chapter presents a new modeling effort that can quantify the variability surrounding a key...

  18. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.

    PubMed

    Lim, Einly; Salamonsen, Robert Francis; Mansouri, Mahdi; Gaddum, Nicholas; Mason, David Glen; Timms, Daniel L; Stevens, Michael Charles; Fraser, John; Akmeliawati, Rini; Lovell, Nigel Hamilton

    2015-02-01

    The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.

  20. Performance seeking control program overview

    NASA Technical Reports Server (NTRS)

    Orme, John S.

    1995-01-01

    The Performance Seeking Control (PSC) program evolved from a series of integrated propulsion-flight control research programs flown at NASA Dryden Flight Research Center (DFRC) on an F-15. The first of these was the Digital Electronic Engine Control (DEEC) program and provided digital engine controls suitable for integration. The DEEC and digital electronic flight control system of the NASA F-15 were ideally suited for integrated controls research. The Advanced Engine Control System (ADECS) program proved that integrated engine and aircraft control could improve overall system performance. The objective of the PSC program was to advance the technology for a fully integrated propulsion flight control system. Whereas ADECS provided single variable control for an average engine, PSC controlled multiple propulsion system variables while adapting to the measured engine performance. PSC was developed as a model-based, adaptive control algorithm and included four optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, maximum thrust, and minimum thrust. Subsonic and supersonic flight testing were conducted at NASA Dryden covering the four PSC optimization modes and over the full throttle range. Flight testing of the PSC algorithm, conducted in a series of five flight test phases, has been concluded at NASA Dryden covering all four of the PSC optimization modes. Over a three year period and five flight test phases 72 research flights were conducted. The primary objective of flight testing was to exercise each PSC optimization mode and quantify the resulting performance improvements.

  1. Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans.

    PubMed

    Verbree, J; Bronzwaer, Agt; van Buchem, M A; Daemen, Mjap; van Lieshout, J J; van Osch, Mjp

    2017-08-01

    Transcranial Doppler (TCD) sonography is a frequently employed technique for quantifying cerebral blood flow by assuming a constant arterial diameter. Given that exercise increases arterial pressure by sympathetic activation, we hypothesized that exercise might induce a change in the diameter of large cerebral arteries. Middle cerebral artery (MCA) cross-sectional area was assessed in response to handgrip exercise by direct magnetic resonance imaging (MRI) observations. Twenty healthy subjects (11 female) performed three 5 min bouts of rhythmic handgrip exercise at 60% maximum voluntary contraction, alternated with 5 min of rest. High-resolution 7 T MRI scans were acquired perpendicular to the MCA. Two blinded observers manually determined the MCA cross-sectional area. Sufficient image quality was obtained in 101 MCA-scans of 19 subjects (age-range 20-59 years). Mixed effects modelling showed that the MCA cross-sectional area decreased by 2.1 ± 0.8% (p = 0.01) during handgrip, while the heart rate increased by 11 ± 2% (p < 0.001) at constant end-tidal CO 2 (p = 0.10). In conclusion, the present study showed a 2% decrease in MCA cross-sectional area during rhythmic handgrip exercise. This further strengthens the current concept of sympathetic control of large cerebral arteries, showing in vivo vasoconstriction during exercise-induced sympathetic activation. Moreover, care must be taken when interpreting TCD exercise studies as diameter constancy cannot be assumed.

  2. Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam

    2011-12-01

    Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.

  3. Predicting sediment delivery from debris flows after wildfire

    NASA Astrophysics Data System (ADS)

    Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.

    2015-12-01

    Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the southeast Australian highlands provide a novel basis upon which to model sediment delivery from post-fire debris flows. The modelling approach has wider relevance to post-fire debris flow prediction both from risk management and landscape evolution perspectives.

  4. Respiratory mechanics by least squares fitting in mechanically ventilated patients: application on flow-limited COPD patients.

    PubMed

    Volta, Carlo A; Marangoni, Elisabetta; Alvisi, Valentina; Capuzzo, Maurizia; Ragazzi, Riccardo; Pavanelli, Lina; Alvisi, Raffaele

    2002-01-01

    Although computerized methods of analyzing respiratory system mechanics such as the least squares fitting method have been used in various patient populations, no conclusive data are available in patients with chronic obstructive pulmonary disease (COPD), probably because they may develop expiratory flow limitation (EFL). This suggests that respiratory mechanics be determined only during inspiration. Eight-bed multidisciplinary ICU of a teaching hospital. Eight non-flow-limited postvascular surgery patients and eight flow-limited COPD patients. Patients were sedated, paralyzed for diagnostic purposes, and ventilated in volume control ventilation with constant inspiratory flow rate. Data on resistance, compliance, and dynamic intrinsic positive end-expiratory pressure (PEEPi,dyn) obtained by applying the least squares fitting method during inspiration, expiration, and the overall breathing cycle were compared with those obtained by the traditional method (constant flow, end-inspiratory occlusion method). Our results indicate that (a) the presence of EFL markedly decreases the precision of resistance and compliance values measured by the LSF method, (b) the determination of respiratory variables during inspiration allows the calculation of respiratory mechanics in flow limited COPD patients, and (c) the LSF method is able to detect the presence of PEEPi,dyn if only inspiratory data are used.

  5. Heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube

    NASA Astrophysics Data System (ADS)

    Rollmann, P.; Spindler, K.; Müller-Steinhagen, H.

    2011-08-01

    The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between -30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini's correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.

  6. Characterization of a hypersonic quiet wind tunnel nozzle

    NASA Astrophysics Data System (ADS)

    Sweeney, Cameron J.

    The Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University has been able to achieve low-disturbance flows at high Reynolds numbers for approximately ten years. The flow in the nozzle was last characterized in 2010. However, researchers have noted that the performance of the nozzle has changed in the intervening years. Understand ing the tunnel characteristics is critical for the hypersonic boundary-layer transition research performed at the facility and any change in performance could have signif icant effects on research performed at the facility. Pitot probe measurements were made using Kulite and PCB pressure transducers to quantify the performance changes since characterization was last performed. Aspects of the nozzle that were investi gated include the radial uniformity of the flow, the effects that time and stagnation pressure have on the flow, and the Reynolds number limits of low-disturbance flows. Measurements showed that freestream noise levels are consistently around 0.01% to 0.02% for the majority of the quiet flow core, with quiet flow now achievable for Reynolds numbers up to Re = 13.0x10 6/m. Additionally, while pitot probes are a widely used measurement technique for quantifying freestream disturbances, pitot probes are not without drawbacks. In order to provide a more complete methodology for freestream noise measurement other researchers have started experimenting with alternate geometries, such as cones. Using a newly designed 30° half-angle cone model, measurements were performed to quantify the freestream noise in the BAM6QT and compare the performance with another hypersonic wind tunnel. Also, measurements were made with three newly designed pitot sleeves to study the effects of probe geometry on freestream noise measurements. The results were compared to recent DNS calculations.

  7. Retrospective Analysis of Low Flows at Headwater Watersheds in Wyoming

    NASA Astrophysics Data System (ADS)

    Voutchkova, D. D.; Miller, S. N.

    2016-12-01

    Understanding summer low-flow variability and change in the mountainous West has important implications for water allocations downstream and for maintaining water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs. Wildfires and insect infestations are classical disturbance hydrology topics. It is unclear, however, what are their effects on streamflow and in particular low-flows, when vegetation disturbances are overlapping in time and combined with highly variable and potentially changing local climate. The purpose of this study, therefore, is to quantify changes in low-flows resulting from disturbance in headwater streams. Here we present a retrospective analysis based on: (1) 49-75 complete water years (wy) of daily streamflow data (USGS) for 14 high-elevation headwater watersheds with varying areas (60-1730 km2, 86-100% of watershed area >2000masl) and evergreen forest cover (15-82%), (2) 25-36 complete wy of daily snow-water equivalent accumulation (SWE) and precipitation data from Wyoming SNOTEL stations, (3) burned area boundaries for 20wy (MTBS project), (4) aerial surveys by R1, R2, R4 Forest Service Regions for 18wy (data on tree mortality). We quantify the change in various low-flow characteristics (e.g. post-snowmelt baseflow, Q90 and Q95, 3-,7-, 30- and 90-day annual minima etc.) while accounting for local inter- and multi-annual climate variability by using SWE accumulation data, as it integrates both temperature and precipitation changes. Our approach differs from typical before-after field-based investigation for paired watersheds, as it provides a synthesis over large temporal and spatial scales, resulting in spectrum of possible hydrologic responses due to varying disturbance severity. Quantifying the changes in low-flows and low-flow variability will improve our understanding and will facilitate water management and planning at local state-wide level.

  8. Current challenges in quantifying preferential flow through the vadose zone

    NASA Astrophysics Data System (ADS)

    Koestel, John; Larsbo, Mats; Jarvis, Nick

    2017-04-01

    In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  9. A multi-scale GIS and hydrodynamic modelling approach to fish passage assessment: Clarence and Shoalhaven Rivers, NSW Australia

    NASA Astrophysics Data System (ADS)

    Bonetti, Rita M.; Reinfelds, Ivars V.; Butler, Gavin L.; Walsh, Chris T.; Broderick, Tony J.; Chisholm, Laurie A.

    2016-05-01

    Natural barriers such as waterfalls, cascades, rapids and riffles limit the dispersal and in-stream range of migratory fish, yet little is known of the interplay between these gradient dependent landforms, their hydraulic characteristics and flow rates that facilitate fish passage. The resurgence of dam construction in numerous river basins world-wide provides impetus to the development of robust techniques for assessment of the effects of downstream flow regime changes on natural fish passage barriers and associated consequences as to the length of rivers available to migratory species. This paper outlines a multi-scale technique for quantifying the relative magnitude of natural fish passage barriers in river systems and flow rates that facilitate passage by fish. First, a GIS-based approach is used to quantify channel gradients for the length of river or reach under investigation from a high resolution DEM, setting the magnitude of identified passage barriers in a longer context (tens to hundreds of km). Second, LiDAR, topographic and bathymetric survey-based hydrodynamic modelling is used to assess flow rates that can be regarded as facilitating passage across specific barriers identified by the river to reach scale gradient analysis. Examples of multi-scale approaches to fish passage assessment for flood-flow and low-flow passage issues are provided from the Clarence and Shoalhaven Rivers, NSW, Australia. In these river systems, passive acoustic telemetry data on actual movements and migrations by Australian bass (Macquaria novemaculeata) provide a means of validating modelled assessments of flow rates associated with successful fish passage across natural barriers. Analysis of actual fish movements across passage barriers in these river systems indicates that two dimensional hydraulic modelling can usefully quantify flow rates associated with the facilitation of fish passage across natural barriers by a majority of individual fishes for use in management decisions regarding environmental or instream flows.

  10. APPARATUS FOR EXPOSING ESTUARINE AQUATIC ORGANISMS TO TOXICANTS IN CONSTANT AND FLUCTUATING SALINITY REGIMES

    EPA Science Inventory

    A programmable control system for salinity has been developed and coupled with a flow-through toxicant exposure system. The resulting apparatus allow study of influences of constant and fluctuating salinity regimes on responses of One organisms exposed to selected pollutants. Con...

  11. Dense flow around a sphere moving into a cloud of grains

    NASA Astrophysics Data System (ADS)

    Gondret, Philippe; Faure, Sylvain; Lefebvre-Lepot, Aline; Seguin, Antoine

    2017-06-01

    A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone of about constant solid fraction builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size that increases with the initial solid fraction ϕ0 of the cloud. A detailed analysis of the local strain rate and local stress fields inside the cluster reveals that, despite different spatial variations of strain and stresses, the local friction coeffcient μ appears to depend only on the local inertial number I as well as the local solid fraction ϕ, which means that a local rheology does exist in the present non parallel flow. The key point is that the spatial variations of I inside the cluster does not depend on the sphere velocity and explore only a small range between about 10-2 and 10-1. The influence of sidewalls is then investigated on the flow and the forces.

  12. A finite-element model for simulation of two-dimensional steady-state ground-water flow in confined aquifers

    USGS Publications Warehouse

    Kuniansky, E.L.

    1990-01-01

    A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.

  13. Water, heat, and vapor flow in a deep vadose zone under arid and hyper-arid conditions: a numerical study.

    NASA Astrophysics Data System (ADS)

    Madi, Raneem; de Rooij, Gerrit H.

    2017-04-01

    Groundwater recharge in arid regions is notoriously difficult to quantify. One reason is data scarcity: reliable weather records (rainfall, potential evapotranspiration rate, temperature) are typically lacking, the soil properties over the entire extent of the often very deep vadose zone are usually unknown, and the effect of sparse vegetation, wadis, (biological) soil crusts, and hard pans on infiltration and evaporation is difficult to quantify. Another reason is the difficulty of modeling the intricately coupled relevant processes over extended periods of time: coupled flow of liquid water, water vapor, and heat in a very deep soil in view of considerable uncertainty at the soil surface as indicated above, and over large spatial extents. In view of this myriad of problems, we limited ourselves to the simulation of 1-dimensional coupled flow of water, heat, and vapor in an unvegetated deep vadose zone. The conventional parameterizations of the soil hydraulic properties perform poorly under very dry conditions. We therefore selected an alternative that was developed specifically for dry circumstances and modified another to eliminate the physically implausible residual water content that rendered it of limited use for desert environments. The issue of data scarcity was resolved by using numerically generated rainfall records combined with a simple model for annual and daily temperature fluctuations. The soil was uniform, and the groundwater depth was constant at 100 m depth, which provided the lower boundary condition. The geothermal gradient determined the temperature at the groundwater level. We generated two scenarios with 120 years of weather in an arid and a hyper-arid climate. The initial condition was established by first starting with a somewhat arbitrary unit gradient initial condition corresponding to a small fraction of the annual average rainfall and let the model run through the 120-year atmospheric forcing. The resulting profile of matric potential and temperature was used as the initial condition for the warm-up period of the model (240 years) during which the weather record was repeated, which was then followed by the 120-year cycle we used for analysis. We will present the initial results of our analysis: - the dynamics (or lack thereof) of groundwater recharge and the role of wet years (or clusters of years) and droughts on the amount of recharge - the speed with which the atmospheric input signal travels downward, and the damping of the signal on its way down - the role of vapor flow under geothermal conditions

  14. Topography significantly influencing low flows in snow-dominated watersheds

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Wei, Xiaohua; Yang, Xin; Giles-Hansen, Krysta; Zhang, Mingfang; Liu, Wenfei

    2018-03-01

    Watershed topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Few studies have quantified the role of topography in various flow variables. In this study, 28 watersheds with snow-dominated hydrological regimes were selected with daily flow records from 1989 to 1996. These watersheds are located in the Southern Interior of British Columbia, Canada, and range in size from 2.6 to 1780 km2. For each watershed, 22 topographic indices (TIs) were derived, including those commonly used in hydrology and other environmental fields. Flow variables include annual mean flow (Qmean), Q10 %, Q25 %, Q50 %, Q75 %, Q90 %, and annual minimum flow (Qmin), where Qx % is defined as the daily flow that occurred each year at a given percentage (x). Factor analysis (FA) was first adopted to exclude some redundant or repetitive TIs. Then, multiple linear regression models were employed to quantify the relative contributions of TIs to each flow variable in each year. Our results show that topography plays a more important role in low flows (flow magnitudes ≤ Q75 %) than high flows. However, the effects of TIs on different flow magnitudes are not consistent. Our analysis also determined five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions with the watershed size less than several thousand square kilometres.

  15. Detection and Quantification of Silver Nanoparticles at ...

    EPA Pesticide Factsheets

    The presence of silver nanoparticles (AgNPs) in aquatic environments could potentially cause adverse impacts on ecosystems and human health. However, current understanding of the environmental fate and transport of AgNPs is still limited because their properties in complex environmental samples cannot be accurately determined. In this study, the feasibility of using asymmetric flow field-flow fractionation (AF4) connected online with single particle inductively coupled plasma mass spectrometry (spICPMS) to detect and quantify AgNPs at environmentally relevant concentrations was investigated. The AF4 channel had a thickness of 350 μm and its accumulation wall was a 10 kDa regenerated cellulose membrane. A 0.02% FL-70 surfactant solution was used as an AF4 carrier. With 1.2 mL/min AF4 cross-flow rate, 1.5 mL/min AF4 channel flow rate, and 5 ms spICPMS dwell time, the AF4-spICPMS can detect and quantify 40–80 nm AgNPs, as well as Ag-SiO2 core−shell nanoparticles (51.0 nm diameter Ag core and 21.6 nm SiO2 shell), with good recovery within 30 min. This system was not only effective in differentiating and quantifying different types of AgNPs with similar hydrodynamic diameters, such as in mixtures containing Ag-SiO2 core–shell nanoparticles and 40–80 nm AgNPs, but also suitable for differentiating between 40 nm AgNPs and elevated Ag+ content. The study results indicate that AF4-spICPMS is capable of detecting and quantifying AgNPs and other engineered metal n

  16. Direct Determination of the Base-Pair Force Constant of DNA from the Acoustic Phonon Dispersion of the Double Helix

    NASA Astrophysics Data System (ADS)

    van Eijck, L.; Merzel, F.; Rols, S.; Ollivier, J.; Forsyth, V. T.; Johnson, M. R.

    2011-08-01

    Quantifying the molecular elasticity of DNA is fundamental to our understanding of its biological functions. Recently different groups, through experiments on tailored DNA samples and numerical models, have reported a range of stretching force constants (0.3 to 3N/m). However, the most direct, microscopic measurement of DNA stiffness is obtained from the dispersion of its vibrations. A new neutron scattering spectrometer and aligned, wet spun samples have enabled such measurements, which provide the first data of collective excitations of DNA and yield a force constant of 83N/m. Structural and dynamic order persists unchanged to within 15 K of the melting point of the sample, precluding the formation of bubbles. These findings are supported by large scale phonon and molecular dynamics calculations, which reconcile hard and soft force constants.

  17. A flow study in radial inflow turbine scroll-nozzle assembly

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1978-01-01

    The present analysis describes the flow behavior in the combined scroll-nozzle assembly of a radial inflow turbine. This model was chosen to provide a better understanding of the mutual interaction effects of these two components on the flow. The finite element method is used in the solution of the flow field in this multiply connected domain. The mass flow rates in the different nozzle channels is not presumed constant, but is determined from the solution.

  18. An Investigation into Performance Modelling of a Small Gas Turbine Engine

    DTIC Science & Technology

    2012-10-01

    b = Combustor part load constant f = Fuel to mass flow ratio or scale factor h = Enthalpy F = Force P = Pressure T = Temperature W = Mass flow...HP engine performance parameters[5,6] Parameter Condition (ISA, SLS) Value Thrust 108000 rpm 230 N Pressure Ratio 108000 rpm 4 Mass Flow Rate...system. The reasons for removing the electric starter were to ensure uniform flow through the bell- mouth for mass flow rate measurement, eliminate a

  19. Impacts of Different Soil Texture and Organic Content on Hydrological Performance of Bioretention

    NASA Astrophysics Data System (ADS)

    Gülbaz, Sezar; Melek Kazezyilmaz Alhan, Cevza

    2015-04-01

    The land development and increase in urbanization in a watershed has adverse effects such as flooding and water pollution on both surface water and groundwater resources. Low Impact Development (LID) Best Management Practices (BMPs) such as bioretentions, vegetated rooftops, rain barrels, vegetative swales and permeable pavements have been implemented in order to diminish adverse effects of urbanization. LID-BMP is a land planning method which is used to manage storm water runoff by reducing peak flows as well as simultaneously improving water quality. The aim of this study is developing a functional experimental setup called as Rainfall-Watershed-Bioretention (RWB) System in order to investigate and quantify the hydrological performance of bioretention. RWB System is constructed on the Istanbul University Campus and includes an artificial rainfall system, which allows for variable rainfall intensity, drainage area, which has controllable size and slope, and bioretention columns with different soil ratios. Four bioretention columns with different soil textures and organic content are constructed in order to investigate their effects on water quantity. Using RWB System, the runoff volume, hydrograph, peak flow rate and delay in peak time at the exit of bioretention columns may be quantified under various rainfalls in order to understand the role of soil types used in bioretention columns and rainfall intensities. The data obtained from several experiments conducted in RWB System are employed in establishing a relation among rainfall, surface runoff and flow reduction after bioretention. Moreover, the results are supported by mathematical models in order to explain the physical mechanism of bioretention. Following conclusions are reached based on the analyses carried out in this study: i) Results show that different local soil types in bioretention implementation affect surface runoff and peak flow considerably. ii) Rainfall intensity and duration affect peak flow reduction and arrival time and shape of the hydrograph. iii) A mathematical representation of the relation among the rainfall, surface runoff over the watershed and outflow from the bioretention is developed by incorporating kinematic wave equation into the modified Green-Ampt Method. The rainfall intensity in modified Green-Ampt method is represented by the inflow per unit surface area of bioretention which may be obtained from kinematic wave solution using the measured rainfall data. Variable rainfall cases may be taken into account by using the modified Green-Ampt method. Thus, employing the modified Green-Ampt method helps significantly in understanding and explaining the hydrological mechanism of a bioretention cell where the Darcy law or the classical Green-Ampt method is inadequate which works under constant rainfall intensities. Consequently, the rainfall is directly related with the outflow through the bioretention. This study discusses only the water quantity of bioretention.

  20. Flaws in foldamers: conformational uniformity and signal decay in achiral helical peptide oligomers† †Electronic supplementary information (ESI) available: Synthesis and characterisation of all new compounds. See DOI: 10.1039/c4sc03944k Click here for additional data file.

    PubMed Central

    Le Bailly, Bryden A. F.; Byrne, Liam; Diemer, Vincent; Foroozandeh, Mohammadali; Morris, Gareth A.

    2015-01-01

    Although foldamers, by definition, are extended molecular structures with a well-defined conformation, minor conformers must be populated at least to some extent in solution. We present a quantitative analysis of these minor conformers for a series of helical oligomers built from achiral but helicogenic α-amino acids. By measuring the chain length dependence or chain position dependence of NMR or CD quantities that measure screw-sense preference in a helical oligomer, we quantify values for the decay constant of a conformational signal as it passes through the molecular structure. This conformational signal is a perturbation of the racemic mixture of M and P helices that such oligomers typically adopt by the inclusion of an N or C terminal chiral inducer. We show that decay constants may be very low (<1% signal loss per residue) in non-polar solvents, and we evaluate the increase in decay constant that results in polar solvents, at higher temperatures, and with more conformationally flexible residues such as Gly. Decay constants are independent of whether the signal originates from the N or the C terminus. By interpreting the decay constant in terms of the probability with which conformations containing a screw-sense reversal are populated, we quantify the populations of these alternative minor conformers within the overall ensemble of secondary structures adopted by the foldamer. We deduce helical persistence lengths for Aib polymers that allow us to show that in a non-polar solvent a peptide helix, even in the absence of chiral residues, may continue with the same screw sense for approximately 200 residues. PMID:29308146

  1. Quantifying Na(I)-insulin and K(I)-insulin non-covalent complexes by ESI-MS method and calculation of their equilibrium constants.

    PubMed

    Gülfen, Mustafa; Özdemir, Abdil; Lin, Jung-Lee; Chen, Chung-Hsuan

    2017-10-01

    In this study, the dissociation and formation equilibrium constants of Na(I)-insulin and K(I)-insulin complexes have been calculated after the quantifying them on ESI mass spectrometer. The ESI-MS spectra of the complexes were measured by using the solvents as 50% MeOH in water and 100% water. The effect of pH on the Na(I)-insulin and K(I)-insulin complex formation were examined. Serial binding of Na(I) and K(I) ions to the insulin molecule were observed in the ESI-MS measurements. The first formation equilibrium constants were calculated as K f1 : 5.48×10 3 1/M for Na(I)-insulin complex and K f1 : 4.87×10 3 1/M for K(I)-insulin in water. The binding capability of Na(I) ions to insulin molecule is higher than the capability of K(I) ions. In case of a comparison together with Ca(II)-insulin and Mg(II)-insulin, the formation equilibrium constants (K f1 ) are in order of Ca(II)-insulin>Mg(II)-insulin>Na(I)-insulin>K(I)-insulin in water. The results showed that Na(I) and K(I) ions are involved in the formation of the non-covalent complexes with insulin molecule, since high extracellular and intracellular concentrations of them in the body. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO)

    NASA Astrophysics Data System (ADS)

    Ruiz-Cabello, F. Javier Montes; Maroni, Plinio; Borkovec, Michal

    2013-06-01

    Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.

  3. Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO).

    PubMed

    Montes Ruiz-Cabello, F Javier; Maroni, Plinio; Borkovec, Michal

    2013-06-21

    Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.

  4. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  5. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model.

    PubMed

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-08-16

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target.

  6. Optimization of Turbine Rim Seals

    NASA Technical Reports Server (NTRS)

    Wagner, J. H.; Tew, D. E.; Stetson, G. M.; Sabnis, J. S.

    2006-01-01

    Experiments are being conducted to gain an understanding of the physics of rim scale cavity ingestion in a turbine stage with the high-work, single-stage characteristics envisioned for Advanced Subsonic Transport (AST) aircraft gas turbine engines fo the early 21st century. Initial experimental measurements to be presented include time-averaged turbine rim cavity and main gas path static pressure measurements for rim seal coolant to main gas path mass flow ratios between 0 and 0.02. The ultimate objective of this work is develop improved rim seal design concepts for use in modern high-work, single sage turbines n order to minimize the use of secondary coolant flow. Toward this objective the time averaged and unsteady data to be obtained in these experiments will be used to 1) Quantify the impact of the rim cavity cooling air on the ingestion process. 2) Quantify the film cooling benefits of the rim cavity purge flow in the main gas path. 3) Quantify the impact of the cooling air on turbine efficiency. 4) Develop/evaluate both 3D CFD and analytical models of the ingestion/cooling process.

  7. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model

    PubMed Central

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-01-01

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target. PMID:27527065

  8. Comparative in vitro flow study of 3 different Ex-PRESS miniature glaucoma device models.

    PubMed

    Estermann, Stephan; Yuttitham, Kanokwan; Chen, Julie A; Lee, On-Tat; Stamper, Robert L

    2013-03-01

    To determine the flow characteristics of the 3 different models of the Ex-PRESS miniature glaucoma device in a controlled laboratory study. The 3 different Ex-PRESS models (P-50, R-50, and P-200; Optonol Ltd; now Alcon Lab) were tested using a gravity-driven flow test. Three samples of each of the 3 Ex-PRESS models were subjected to a constant gravitational force of fluid at 5 different pressure levels (5 to 25 mm Hg). Four measurements per sample were taken at each pressure level. The main outcome measure was flow rate (Q) (µL/min). Resistance (R) was calculated by dividing pressure (P) by the measured flow (Q). The flow rate was primarily pressure dependent. The P-200 model (internal diameter 200 µm) showed a statistically significant higher flow rate and lower resistance compared with both the P-50 and R-50 models (internal diameter 50 µm) (P<0.0001). The P-50 and R-50 models demonstrated similar flow rates (P=0.08) despite their difference in tube length (2.64 vs. 2.94 mm). The 3 models of the Ex-PRESS mini shunt behaved in vitro as simple flow resistors by creating a relatively constant resistance to flow. Tube diameter was the only parameter with significant impact on flow and resistance. All models demonstrated flow rates per unit of pressure much higher than the outflow facility of a healthy human eye.

  9. A comparison of calibration techniques for hot-wires operated in subsonic compressible slip flows

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Stainback, P. C.; Nagabushana, K. A.

    1992-01-01

    This paper focuses on the correlation of constant temperature anemometer voltages to velocity, density, and total temperature in the transonic slip flow regime. Three different calibration schemes were evaluated. The ultimate use of these hot-wire calibrations is to obtain fluctuations in the flow variables. Without the appropriate mean flow sensitivities of the heated wire, the measurements of these fluctuations cannot be accurately determined.

  10. Equilibrium and initial linear stability analysis of liquid metal falling film flows in a varying spanwise magnetic field

    NASA Astrophysics Data System (ADS)

    Gao, D.; Morley, N. B.

    2002-12-01

    A 2D model for MHD free surface flow in a spanwise field is developed. The model, designed to simulate film flows of liquid metals in future thermo­nuclear fusion reactors, considers an applied spanwise magnetic field with spatial and temporal variation and an applied streamwise external current. A special case - a thin falling film flow in spanwise magnetic field with constant gradient and constant applied external streamwise current, is here investigated in depth to gain insight into the behavior of the MHD film flow. The fully developed flow solution is derived and initial linear stability analysis is performed for this special case. It is seen that the velocity profile is significantly changed due to the presence of the MHD effect, resulting in the free surface analog of the classic M-shape velocity profile seen in developing pipe flows in a field gradient. The field gradient is also seen to destabilize the film flow under most conditions. The effect of external current depends on the relative direction of the field gradient to the current direction. By controlling the magnitude of an external current, it is possible to obtain a linearly stable falling film under these magnetic field conditions. Tables 1, Figs 12, Refs 20.

  11. Passive turbulent flamelet propagation

    NASA Technical Reports Server (NTRS)

    Ashurst, William T.; Ruetsch, G. R.; Lund, T. S.

    1994-01-01

    We analyze results of a premixed constant density flame propagating in three-dimensional turbulence, where a flame model developed by Kerstein, et al. (1988) has been used. Simulations with constant and evolving velocity fields are used, where peculiar results were obtained from the constant velocity field runs. Data from the evolving flow runs with various flame speeds are used to determine two-point correlations of the fluctuating scalar field and implications for flamelet modeling are discussed.

  12. Size Effect of the 2-D Bodies on the Geothermal Gradient and Q-A Plot

    NASA Astrophysics Data System (ADS)

    Thakur, M.; Blackwell, D. D.

    2009-12-01

    Using numerical models we have investigated some of the criticisms on the Q-A plot of related to the effect of size of the body on the slope and reduced heat flow. The effects of horizontal conduction depend on the relative difference of radioactivity between the body and the country rock (assuming constant thermal conductivity). Horizontal heat transfer due to different 2-D bodies was numerically studied in order to quantify resulting temperature differences at the Moho and errors on the predication of Qr (reduced heat flow). Using the two end member distributions of radioactivity, the step model (thickness 10km) and exponential model, different 2-D models of horizontal scale (width) ranging from 10 -500 km were investigated. Increasing the horizontal size of the body tends to move observations closer towards the 1-D solution. A temperature difference of 50 oC is produced (for the step model) at Moho between models of width 10 km versus 500 km. In other words the 1-D solution effectively provides large scale averaging in terms of heat flow and temperature field in the lithosphere. For bodies’ ≤ 100 km wide the geotherms at shallower levels are affected, but at depth they converge and are 50 oC lower than that of the infinite plate model temperature. In case of 2-D bodies surface heat flow is decreased due to horizontal transfer of heat, which will shift the Q-A point vertically downward on the Q-A plot. The smaller the size of the body, the more will be the deviation from the 1-D solution and the more will be the movement of Q-A point downwards on a Q-A plot. On the Q-A plot, a limited points of bodies of different sizes with different radioactivity contrast (for the step and exponential model), exactly reproduce the reduced heat flow Qr. Thus the size of the body can affect the slope on a Q-A plot but Qr is not changed. Therefore, Qr ~ 32 mWm-2 obtained from the global terrain average Q-A plot represents the best estimate of stable continental mantle heat flow.

  13. Experimental investigation into the impact of vegetation on fan morphology and flow

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; McLelland, Stuart; Coulthard, Tom

    2013-04-01

    Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator at the Deep, an experimental facility operated by the University of Hull. The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (alfalfa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on fan plots 2x2m in size, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography was also used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution spatial and temporal data on fan development with minimal disruption to the experiments. The results of the preliminary experiments showed that vegetation did influence the morphology and flow conditions during fan evolution. Vegetation reduced the number of active channels, and increasing the vegetation density also led to lower lateral migration rates, the formation of narrower and deeper channels and an increase in fan slope.

  14. Three-Wire Thermocouple: Frequency Response in Constant Flow

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1995-01-01

    Theory and experimental measurements are compared with a novel three-wire thermocouple. Signals from three wires of unequal diameters are recorded from the thermocouple suspended in constant flow with a periodic temperature fluctuation. It is demonstrated that the reconstructed signal from the three-wire thermocouple requires no compensation for omega less than or equal to 5(omega(sub 1)), where omega(sub 1) is the natural frequency of the smaller wire. The latter result represents a significant improvement compared to previous work with two-wire thermocouples. A correction factor has also been derived to account for wires of arbitrary diameter.

  15. Three-wire Thermocouple: Frequency Response in Constant Flow

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1995-01-01

    Theory and experimental measurements are compared with a novel three-wire thermocouple. Signals from three wires of unequal diameters arc recorded from the thermocouple suspended in constant flow with a periodic temperature fluctuation. It is demonstrated that the reconstructed signal from the three-wire thermocouple requires no compensation for omega less than or equal to 5(sub omega1), where omega, is the natural frequency of the smaller wire. The latter result represents a significant improvement compared to previous work with two-wire thermocouples. A correction factor has also been derived to account for wires of arbitrary diameter.

  16. Numerical study of magnetic nanofluids flow in the round channel located in the constant magnetic field

    NASA Astrophysics Data System (ADS)

    Pryazhnikov, Maxim; Guzei, Dmitriy; Minakov, Andrey; Rodionova, Tatyana

    2017-10-01

    In this paper, the study of ferromagnetic nanoparticles behaviour in the constant magnetic field is carried out. For numerical simulation we have used Euler-Lagrange two-component approach. Using numerical simulation we have studied the growth of deposition of nanoparticles on the channel walls depending on the Reynolds number and the position of the magnet. The flow pattern, the concentration field and the trajectory of nanoparticles as a function of the Reynolds number were obtained. The good qualitative and quantitative agreement between numerical simulation and experiments was shown.

  17. Mechanism of Na+ binding to thrombin resolved by ultra-rapid kinetics

    PubMed Central

    Gianni, Stefano; Ivarsson, Ylva; Bah, Alaji; Bush-Pelc, Leslie A.; Di Cera, Enrico

    2007-01-01

    The interaction of Na+ and K+ with proteins is at the basis of numerous processes of biological importance. However, measurement of the kinetic components of the interaction has eluded experimentalists for decades because the rate constants are too fast to resolve with conventional stopped-flow methods. Using a continuous-flow apparatus with a dead time of 50 μs we have been able to resolve the kinetic rate constants and entire mechanism of Na+ binding to thrombin, an interaction that is at the basis of the procoagulant and prothrombotic roles of the enzyme in the blood. PMID:17935858

  18. Design of a pulsed-mode fluidic pump using a venturi-like reverse flow diverter. [With no packing glands, mechanical seals or moving parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.V.; Lewis, B.E.

    1987-02-01

    This report presents a design procedure for pulsed-mode, venturi-like reverse flow diverter (RFD) pumping systems. Design techniques are presented for systems in which the output line area is allowed to vary proportionally with the throat area of the RFD as well as situations in which the output line area is held constant. The results show that for cases in which the output line area is allowed to vary, an optimum RFD throat area exists for a given input pressure. For situations in which the output line area is held constant, the average output flow decreases in almost a linear fashionmore » with increasing RFD throat area. 6 refs., 8 figs.« less

  19. Scour in supercritical flow

    DOT National Transportation Integrated Search

    1988-10-01

    Scour in supercritical flow is one extreme aspect of the effects of velocity on scour. Analysis of the case of scour in a long contraction shows that if all other independent variables are kept constant (1) some finite velocity is necessary to have a...

  20. A Risk-Based Ecohydrological Approach to Assessing Environmental Flow Regimes

    NASA Astrophysics Data System (ADS)

    Mcgregor, Glenn B.; Marshall, Jonathan C.; Lobegeiger, Jaye S.; Holloway, Dean; Menke, Norbert; Coysh, Julie

    2018-03-01

    For several decades there has been recognition that water resource development alters river flow regimes and impacts ecosystem values. Determining strategies to protect or restore flow regimes to achieve ecological outcomes is a focus of water policy and legislation in many parts of the world. However, consideration of existing environmental flow assessment approaches for application in Queensland identified deficiencies precluding their adoption. Firstly, in managing flows and using ecosystem condition as an indicator of effectiveness, many approaches ignore the fact that river ecosystems are subjected to threatening processes other than flow regime alteration. Secondly, many focus on providing flows for responses without considering how often they are necessary to sustain ecological values in the long-term. Finally, few consider requirements at spatial-scales relevant to the desired outcomes, with frequent focus on individual places rather than the regions supporting sustainability. Consequently, we developed a risk-based ecohydrological approach that identifies ecosystem values linked to desired ecological outcomes, is sensitive to flow alteration and uses indicators of broader ecosystem requirements. Monitoring and research is undertaken to quantify flow-dependencies and ecological modelling is used to quantify flow-related ecological responses over an historical flow period. The relative risk from different flow management scenarios can be evaluated at relevant spatial-scales. This overcomes the deficiencies identified above and provides a robust and useful foundation upon which to build the information needed to support water planning decisions. Application of the risk assessment approach is illustrated here by two case studies.

  1. Natural flow regimes of the Ozark-Ouachita Interior Highlands region

    USGS Publications Warehouse

    Leasure, D. R.; Magoulick, Daniel D.; Longing, S. D.

    2016-01-01

    Natural flow regimes represent the hydrologic conditions to which native aquatic organisms are best adapted. We completed a regional river classification and quantitative descriptions of each natural flow regime for the Ozark–Ouachita Interior Highlands region of Arkansas, Missouri and Oklahoma. On the basis of daily flow records from 64 reference streams, seven natural flow regimes were identified with mixture model cluster analysis: Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent Flashy. Sets of flow metrics were selected that best quantified nine ecologically important components of these natural flow regimes. An uncertainty analysis was performed to avoid selecting metrics strongly affected by measurement uncertainty that can result from short periods of record. Measurement uncertainties (bias, precision and accuracy) were assessed for 170 commonly used flow metrics. The ranges of variability expected for select flow metrics under natural conditions were quantified for each flow regime to provide a reference for future assessments of hydrologic alteration. A random forest model was used to predict the natural flow regimes of all stream segments in the study area based on climate and catchment characteristics, and a map was produced. The geographic distribution of flow regimes suggested distinct ecohydrological regions that may be useful for conservation planning. This project provides a hydrologic foundation for future examination of flow–ecology relationships in the region. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  2. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Treesearch

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  3. Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.

    PubMed

    Huang, Hong; Zhang, Baifa; Lu, Jun

    2014-01-01

    We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.

  4. Cold Flow Plume Entrainment Test Final Report NTF Test Number 2456

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David; Mishtawy, Jason; Ramachandran, Narayanan; Hammad, Khaled J.

    2005-01-01

    As part of the Space Shuttle Return to Flight (RTF) program, Marshall Space Flight Center (MSFC) performed computational fluid dynamics (CFD) analysis to define the velocity flowfields around the Shuttle stack at liftoff. These CFD predicted velocity flowfields were used in debris transport analysis (DTA). High speed flows such as plumes induce or 'entrain' mass from the surrounding environment. Previous work had shown that CFD analysis over-predicts plume induced flows. Therefore, the DTA would tend to 1) predict more debris impacts, and 2) the debris velocity (and kinetic energy) of those impacts would be too high. At a November, 2004 peer-review it was recommended that the Liftoff DTA team quantify the uncertainty in the DTA caused by the CFD's over prediction of plume induced flow. To do so, the Liftoff DTA team needed benchmark quality data for plume induced flow to quantify the CFD accuracy and its effect on the DTA. MSFC's Nozzle Test Facility (NTF) conducted the "Nozzle Induced Flows test, P#2456" to obtain experimental data for plume induced flows for nozzle flow exhausting into q quiescent freestream. Planning for the test began in December, 2004 and the experimental data was obtained in February and March of 2005. The funding for this test was provided by MSFC's Space Shuttle Propulsion Systems Integration and Engineering office.

  5. Relationship between quantitative and descriptive methods of studying blood flow through intrapulmonary arteriovenous anastomoses during exercise.

    PubMed

    Duke, Joseph W; Elliott, Jonathan E; Laurie, Steven S; Voelkel, Thomas; Gladstone, Igor M; Fish, Mathews B; Lovering, Andrew T

    2017-09-01

    Several methods exist to study intrapulmonary arteriovenous anastomoses (IPAVA) in humans. Transthoracic saline contrast echocardiography (TTSCE), i.e., bubble scores, is minimally-invasive, but cannot be used to quantify the magnitude of blood flow through IPAVA (Q IPAVA ). Radiolabeled macroaggregates of albumin ( 99m Tc-MAA) have been used to quantify Q IPAVA in humans, but this requires injection of radioactive particles. Previous work has shown agreement between 99m Tc-MAA and TTSCE, but this has not been tested simultaneously in the same group of subjects. Thus, the purpose of this study was to determine if there was a relationship between Q IPAVA quantified with 99m Tc-MAA and bubble scores obtained with TTSCE. To test this, we used 99m Tc-MAA and TTSCE to quantify and detect Q IPAVA at rest and during exercise in humans. Q IPAVA significantly increased from rest to exercise using 99m Tc-MAA and TTSCE and there was a moderately-strong, but significant relationship between methods. Our data suggest that high bubble scores generally correspond with large Q IPAVA quantified with 99m Tc-MAA during exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and β2-microglobulin during clinical haemodialysis

    PubMed Central

    Bhimani, Jai P.; Ouseph, Rosemary; Ward, Richard A.

    2010-01-01

    Background. Diffusive clearance depends on blood and dialysate flow rates and the overall mass transfer area coefficient (KoA) of the dialyzer. Although KoA should be constant for a given dialyzer, urea KoA has been reported to vary with dialysate flow rate possibly because of improvements in flow distribution. This study examined the dependence of KoA for urea, phosphate and β2-microglobulin on dialysate flow rate in dialyzers containing undulating fibers to promote flow distribution and two different fiber packing densities. Methods. Twelve stable haemodialysis patients underwent dialysis with four different dialyzers, each used with a blood flow rate of 400 mL/min and dialysate flow rates of 350, 500 and 800 mL/min. Clearances of urea, phosphate and β2-microglobulin were measured and KoA values calculated. Results. Clearances of urea and phosphate, but not β2-microglobulin, increased significantly with increasing dialysate flow rate. However, increasing dialysate flow rate had no significant effect on KoA or Ko for any of the three solutes examined, although Ko for urea and phosphate increased significantly as the average flow velocity in the dialysate compartment increased. Conclusions. For dialyzers with features that promote good dialysate flow distribution, increasing dialysate flow rate beyond 600 mL/min at a blood flow rate of 400 mL/min is likely to have only a modest impact on dialyzer performance, limited to the theoretical increase predicted for a constant KoA. PMID:20543211

  7. An improved method for differentiating cell-bound from internalized particles by imaging flow cytometry.

    PubMed

    Smirnov, Asya; Solga, Michael D; Lannigan, Joanne; Criss, Alison K

    2015-08-01

    Recognition, binding, internalization, and elimination of pathogens and cell debris are important functions of professional as well as non-professional phagocytes. However, high-throughput methods for quantifying cell-associated particles and discriminating bound from internalized particles have been lacking. Here we describe a protocol for using imaging flow cytometry to quantify the attached and phagocytosed particles that are associated with a population of cells. Cells were exposed to fluorescent particles, fixed, and exposed to an antibody of a different fluorophore that recognizes the particles. The antibody is added without cell permeabilization, such that the antibody only binds extracellular particles. Cells with and without associated particles were identified by imaging flow cytometry. For each cell with associated particles, a spot count algorithm was employed to quantify the number of extracellular (double fluorescent) and intracellular (single fluorescent) particles per cell, from which the percent particle internalization was determined. The spot count algorithm was empirically validated by examining the fluorescence and phase contrast images acquired by the flow cytometer. We used this protocol to measure binding and internalization of the bacterium Neisseria gonorrhoeae by primary human neutrophils, using different bacterial variants and under different cellular conditions. The results acquired using imaging flow cytometry agreed with findings that were previously obtained using conventional immunofluorescence microscopy. This protocol provides a rapid, powerful method for measuring the association and internalization of any particle by any cell type. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Jet Evolution Visualized and Quantified Using Filtered Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Reeder, Mark F.

    1996-01-01

    Filtered Rayleigh scattering was utilized as a flow diagnostic in an investigation of a method for enhancing mixing in supersonic jets. The primary objectives of the study were to visualize the effect of vortex generating tabs on supersonic jets, to exact quantitative data from these planar visualizations, and to detect the presence of secondary flows (i.e., streamwise vorticity) generated by the tabs. An injection seeded frequency-doubled Nd:YAG was the light source and a 14 bit Princeton Instruments iodine charge coupled display (ICCD) camera recorded the image through an iodine cell. The incident wave length of the laser was held constant for each flow case so that the filter absorbed unwanted background light, but permitted part of the thermally broadened Rayleigh scattering light to pas through. The visualizations were performed for axisymmetric jets (D=1.9 cm) operated at perfectly expanded conditions for Mach 1.0, 1.5, and 2.0. All data were recorded for the jet cross section at x/D=3. One hundred instantaneous images were recorded and averaged for each case, with a threshold set to eliminate unavoidable particulate scattering. A key factor in these experiments was that the stagnation air was heated such that the expansion of the flow in the nozzle resulted in the static temperature in the jet being equal to the ambient temperature, assuming isentropic flow. Since the thermodynamic conditions of the flow were approximately the same for each case, increases in the intensity recorded by the ICCD camera could be directly attributed to the Doppler shift, and hence velocity. Visualizations were performed for Mach 1.5 and Mach 2.0 jets with tabs inserted at the nozzle exit. The distortion of the jet was readily apparent and was consistent with Mie scattering-based visualizations. Asymmetry in the intensities of the images indicate the presence of secondary flow patterns which are consistent with the streamwise vortices measured using more traditional diagnostics in subsonic jets with the same tab configurations. Because each tab causes shocks to form, the assumption of isentropic flow is not valid for these cases. However, within a reasonable first-order estimation,the intensity across the illuminated plane for these cases can be related to a value combining density and velocity.

  9. Nitrite and S-Nitrosohemoglobin Exchange Across the Human Cerebral and Femoral Circulation: Relationship to Basal and Exercise Blood Flow Responses to Hypoxia.

    PubMed

    Bailey, Damian M; Rasmussen, Peter; Overgaard, Morten; Evans, Kevin A; Bohm, Aske M; Seifert, Thomas; Brassard, Patrice; Zaar, Morten; Nielsen, Henning B; Raven, Peter B; Secher, Niels H

    2017-01-10

    The mechanisms underlying red blood cell (RBC)-mediated hypoxic vasodilation remain controversial, with separate roles for nitrite () and S-nitrosohemoglobin (SNO-Hb) widely contested given their ability to transduce nitric oxide bioactivity within the microcirculation. To establish their relative contribution in vivo, we quantified arterial-venous concentration gradients across the human cerebral and femoral circulation at rest and during exercise, an ideal model system characterized by physiological extremes of O 2 tension and blood flow. Ten healthy participants (5 men, 5 women) aged 24±4 (mean±SD) years old were randomly assigned to a normoxic (21% O 2 ) and hypoxic (10% O 2 ) trial with measurements performed at rest and after 30 minutes of cycling at 70% of maximal power output in hypoxia and equivalent relative and absolute intensities in normoxia. Blood was sampled simultaneously from the brachial artery and internal jugular and femoral veins with plasma and RBC nitric oxide metabolites measured by tri-iodide reductive chemiluminescence. Blood flow was determined by transcranial Doppler ultrasound (cerebral blood flow) and constant infusion thermodilution (femoral blood flow) with net exchange calculated via the Fick principle. Hypoxia was associated with a mild increase in both cerebral blood flow and femoral blood flow (P<0.05 versus normoxia) with further, more pronounced increases observed in femoral blood flow during exercise (P<0.05 versus rest) in proportion to the reduction in RBC oxygenation (r=0.680-0.769, P<0.001). Plasma gradients reflecting consumption (arterial>venous; P<0.05) were accompanied by RBC iron nitrosylhemoglobin formation (venous>arterial; P<0.05) at rest in normoxia, during hypoxia (P<0.05 versus normoxia), and especially during exercise (P<0.05 versus rest), with the most pronounced gradients observed across the bioenergetically more active, hypoxemic, and acidotic femoral circulation (P<0.05 versus cerebral). In contrast, we failed to observe any gradients consistent with RBC SNO-Hb consumption and corresponding delivery of plasma S-nitrosothiols (P>0.05). These findings suggest that hypoxia and, to a far greater extent, exercise independently promote arterial-venous delivery gradients of intravascular nitric oxide, with deoxyhemoglobin-mediated reduction identified as the dominant mechanism underlying hypoxic vasodilation. © 2016 American Heart Association, Inc.

  10. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  11. Vertical variation of mixing within porous sediment beds below turbulent flows

    PubMed Central

    Chandler, I. D.; Pearson, J. M.; van Egmond, R.

    2016-01-01

    Abstract River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber‐optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment‐water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in‐sediment mixing coefficient are explored. The variation of in‐sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined. PMID:27635104

  12. Holographic constraints on Bjorken hydrodynamics at finite coupling

    NASA Astrophysics Data System (ADS)

    DiNunno, Brandon S.; Grozdanov, Sašo; Pedraza, Juan F.; Young, Steve

    2017-10-01

    In large- N c conformal field theories with classical holographic duals, inverse coupling constant corrections are obtained by considering higher-derivative terms in the corresponding gravity theory. In this work, we use type IIB supergravity and bottom-up Gauss-Bonnet gravity to study the dynamics of boost-invariant Bjorken hydrodynamics at finite coupling. We analyze the time-dependent decay properties of non-local observables (scalar two-point functions and Wilson loops) probing the different models of Bjorken flow and show that they can be expressed generically in terms of a few field theory parameters. In addition, our computations provide an analytically quantifiable probe of the coupling-dependent validity of hydrodynamics at early times in a simple model of heavy-ion collisions, which is an observable closely analogous to the hydrodynamization time of a quark-gluon plasma. We find that to third order in the hydrodynamic expansion, the convergence of hydrodynamics is improved and that generically, as expected from field theory considerations and recent holographic results, the applicability of hydrodynamics is delayed as the field theory coupling decreases.

  13. In vivo measurement of the longitudinal relaxation time of arterial blood (T1a) in the mouse using a pulsed arterial spin labeling approach.

    PubMed

    Thomas, David L; Lythgoe, Mark F; Gadian, David G; Ordidge, Roger J

    2006-04-01

    A novel method for measuring the longitudinal relaxation time of arterial blood (T1a) is presented. Knowledge of T1a is essential for accurately quantifying cerebral perfusion using arterial spin labeling (ASL) techniques. The method is based on the flow-sensitive alternating inversion recovery (FAIR) pulsed ASL (PASL) approach. We modified the standard FAIR acquisition scheme by incorporating a global saturation pulse at the beginning of the recovery period. With this approach the FAIR tissue signal difference has a simple monoexponential dependence on the recovery time, with T1a as the time constant. Therefore, FAIR measurements performed over a range of recovery times can be fitted to a monoexponential recovery curve and T1a can be calculated directly. This eliminates many of the difficulties associated with the measurement of T1a. Experiments performed in vivo in the mouse at 2.35T produced a mean value of 1.51 s for T1a, consistent with previously published values. (c) 2006 Wiley-Liss, Inc.

  14. Numerical Investigation of the Flow Angularity Effects of the NASA Langley UPWT on the Ares I DAC1 0.01-Scale Model

    NASA Technical Reports Server (NTRS)

    Lee, Henry C.; Klopfer, Goetz H.; Onufer, Jeff T.

    2011-01-01

    Investigation of the non-uniform flow angularity effects on the Ares I DAC-1 in the Langley Unitary Plan Wind Tunnel are explored through simulations by OVERFLOW. Verification of the wind tunnel results are needed to ensure that the standard wind tunnel calibration procedures for large models are valid. The expectation is that the systematic error can be quantified, and thus be used to correct the wind tunnel data. The corrected wind tunnel data can then be used to quantify the CFD uncertainties.

  15. Forced response unsteady aerodynamics in a multistage compressor

    NASA Astrophysics Data System (ADS)

    Capece, Vincent Ralph

    The fundamental flow physics of the unsteady aerodynamics associated with forced vibrations in turbomachinery are investigated. Unique data are obtained through a series of experiments in a three stage axial flow research compressor which quantify the unsteady harmonic gust interaction phenomena over a range of operating and geometric conditions at high values of reduced frequency. In these experiments the effects of the following on the stator vane unsteady aerodynamics were quantified: (1) the steady aerodynamic loading, (2) the detailed waveform of the aerodynamic forcing function, including the chordwise and transverse gust components, (3) multistage blade row interactions, and (4) the solidity, ranging from a design value of 1.09 to an isolated airfoil. In addition, the effect of flow separation on the unsteady aerodynamics of an isolated airfoil was also investigated.

  16. MIXING QUANTIFICATION BY VISUAL IMAGING ANALYSIS

    EPA Science Inventory

    This paper reports on development of a method for quantifying two measures of mixing, the scale and intensity of segregation, through flow visualization, video recording, and software analysis. This non-intrusive method analyzes a planar cross section of a flowing system from an ...

  17. Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith

    NASA Astrophysics Data System (ADS)

    Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.

    2012-09-01

    The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.

  18. Modular Exhaust Design and Manufacturing Techniques for Low Cost Mid Volume Rapid Buidl to Order Systems

    DTIC Science & Technology

    2014-08-06

    the pressure field is uniform across them, but which allow mass flow to be diverted. Series elements have a constant mass flow across the ports...they can be used to calculate the pressure and mass flow after the element from the pressure and mass flow prior to the element, as shown in...the matrix product of each transfer matrix in turn. The final matrix gives no information about the pressures and mass flows within the element

  19. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  20. Granular flow through an aperture: influence of the packing fraction.

    PubMed

    Aguirre, M A; De Schant, R; Géminard, J-C

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  1. Granular flow through an aperture: Influence of the packing fraction

    NASA Astrophysics Data System (ADS)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  2. A simulation-based study on different control strategies for variable speed pump in distributed ground source heat pump systems

    DOE PAGES

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    2016-01-01

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  3. Analytical Solution for Time-drawdown Response to Constant Pumping from a Homogeneous, Confined Horizontal Aquifer with Unidirectional Flow

    NASA Astrophysics Data System (ADS)

    Parrish, K. E.; Zhang, J.; Teasdale, E.

    2007-12-01

    An exact analytical solution to the ordinary one-dimensional partial differential equation is derived for transient groundwater flow in a homogeneous, confined, horizontal aquifer using Laplace transformation. The theoretical analysis is based on the assumption that the aquifer is homogeneous and one-dimensional (horizontal); confined between impermeable formations on top and bottom; and of infinite horizontal extent and constant thickness. It is also assumed that there is only a single pumping well penetrating the entire aquifer; flow is everywhere horizontal within the aquifer to the well; the well is pumping with a constant discharge rate; the well diameter is infinitesimally small; and the hydraulic head is uniform throughout the aquifer before pumping. Similar to the Theis solution, this solution is suited to determine transmissivity and storativity for a two- dimensional, vertically confined aquifer, such as a long vertically fractured zone of high permeability within low permeable rocks or a long, high-permeability trench inside a low-permeability porous media. In addition, it can be used to analyze time-drawdown responses to pumping and injection in similar settings. The solution can also be used to approximate the groundwater flow for unconfined conditions if (1) the variation of transmissivity is negligible (groundwater table variation is small in comparison to the saturated thickness); and (2) the unsaturated flow is negligible. The errors associated with the use of the solution to unconfined conditions depend on the accuracies of the above two assumptions. The solution can also be used to assess the impacts of recharge from a seasonal river or irrigation canal on the groundwater system by assuming uniform, time- constant recharge along the river or canal. This paper presents the details for derivation of the analytical solution. The analytical solution is compared to numerical simulation results with example cases. Its accuracy is also assessed and discussed for confined and unconfined conditions.

  4. Marangoni elasticity of flowing soap films

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Mandre, Shreyas

    2017-08-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.

  5. Discrete Morse flow for Ricci flow and porous medium equation

    NASA Astrophysics Data System (ADS)

    Ma, Li; Witt, Ingo

    2018-06-01

    In this paper, we study the discrete Morse flow for the Ricci flow on the American football, which is the 2-sphere with the north and south poles removed and equipped with a metric g0 of constant scalar curvature, and for the porous medium equation on a bounded regular domain in the plane. We show that under suitable assumptions on the initial metric g(0) one has a weak approximate discrete Morse flow for the approximated Ricci flow and porous medium equation on any time interval.

  6. Etude hydromecanique d'une fracture en cisaillement sous contrainte normale constante

    NASA Astrophysics Data System (ADS)

    Lamontagne, Eric

    This research study deals with the effects of shear direction and injection flow rate on the flow directional anisotropy for a given normal stress. It presents experimental works on hydromechanical shear behaviour of a fracture under constant normal stress conditions that permits the characterisation of the intrinsic hydraulic transmissivity in relation with the directional anisotropy of the roughness morphology on the fracture surfaces. Tests were performed on mortar replicas of a natural fracture so that the fracture roughness and void space geometry were kept the same for each test. The experimental work program was performed through direct shear tests on the fracture replicas in four shear directions under four constant normal stress levels. The application of the normal stress was followed by several injections of fluid under constant flow rate. Then, for each defined shear displacement, several injections of fluid were done at different flow rate but under constant flow rate. The test results show that: (1) for the whole shear tests, the global intrinsic transmissivity is included within an enveloping zone of about one order of size. The transmissivity curves within the enveloping zone has a particularity to increase about two orders of size in the first millimetre of shear displacement and subsequently stabilised rapidly; (2) the highest dilatancy do not correspond necessarily with the highest intrinsic transmissivity so that, the behaviour of the global intrinsic transmissivity is not directly proportional to the fracture dilatancy during shear; (3) after the peak shear stress, the divergence is more marked between the global intrinsic transmissivity curves at various flow rate; (4) after peak shear strength and the beginning of asperity degradation, the gradual passage to residual friction shear behaviour causes a directional flow anisotropy and a reorientation of the flow chenalisation direction sub perpendicularly to the shear direction; (5) the anisotropy is not to develop equally between the two sense in the perpendicular direction to shear direction. In order to characterise the dynamics of the flow pattern in the fracture, a statistical analysis of the surfaces morphology of the fracture and the casting of void space geometry were performed before and after shear. A statistical analysis of asperity heights, on the global scale of the fracture surfaces, permits to characterise the fracture morphology and put in evidence a large morphological structure on which are superposed smaller asperities of variable dimensions. This large dimension structure generate a higher level landing occupying more than half of the fracture area. The study of the surfaces morphology of the fracture, performed with the geostatistical mean asperity heights variogram by direction before shearing, show the presence of two entangled morphologic structure families (28 and 15 mm). This same study done after shearing shows that the asperity degradation seems associated with the reduction of the global intrinsic transmissivity of the fracture. Finally, the void spaces morphology evaluated by casting techniques, during the shear tests, has permitted to verify the contacts evolution with the increasing shear displacement and visualised flow chenalisation during fracture shearing.

  7. Status of systemic to pulmonary arterial collateral flow after the fontan procedure.

    PubMed

    Whitehead, Kevin K; Harris, Matthew A; Glatz, Andrew C; Gillespie, Matthew J; DiMaria, Michael V; Harrison, Neil E; Dori, Yoav; Keller, Marc S; Rome, Jonathan J; Fogel, Mark A

    2015-06-15

    The investigators recently validated a method of quantifying systemic-to-pulmonary arterial collateral flow using phase-contrast magnetic resonance imaging velocity mapping. Cross-sectional data suggest decreased collateral flow in patients with total cavopulmonary connections (TCPCs) compared with those with superior cavopulmonary connections (SCPCs). However, no studies have examined serial changes in collateral flow from SCPCs to TCPCs in the same patients. The aim of this study was to examine differences in collateral flow between patients with SCPCs and those with TCPCs. Collateral flow was quantified by 2 independent measures from 250 single-ventricle studies in 219 different patients (115 SCPC and 135 TCPC studies, 31 patients with both) and 18 controls, during routine studies using through-plane phase-contrast magnetic resonance imaging. Collateral flow was indexed to body surface area, aortic flow, and pulmonary venous flow. Regardless of indexing method, SCPC patients had significantly higher collateral flow than TCPC patients (1.64 ± 0.8 vs 1.03 ± 0.8 L/min/m(2), p <0.001). In 31 patients who underwent serial examinations, collateral flow as a fraction of aortic flow increased early after TCPC completion. In TCPC patients, indexed collateral flow demonstrated a significant negative correlation with time from TCPC. In conclusion, SCPC and TCPC patients demonstrate substantial collateral flow, with SCPC patients having higher collateral flow than TCPC patients overall. On the basis of the paired subset analysis, collateral flow does not decrease in the short term after TCPC completion and trends toward an increase. In the long term, however, collateral flow decreases over time after TCPC completion. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  9. Quantifying the Temporal Inequality of Nutrient Loads with a Novel Metric

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Schultz, D.; Rao, P. S.; Jawitz, J. W.; Royer, M.

    2015-12-01

    Inequality is an emergent property of many complex systems. For a given series of stochastic events, some events generate a disproportionately large contribution to system responses compared to other events. In catchments, such responses cause streamflow and solute loads to exhibit strong temporal inequality, with the vast majority of discharge and solute loads exported during short periods of time during which high-flow events occur. These periods of time are commonly referred to as "hot moments". Although this temporal inequality is widely recognized, there is currently no uniform metric for assessing it. We used a novel application of Lorenz Inequality, a method commonly used in economics to quantify income inequality, to quantify the spatial and temporal inequality of streamflow and nutrient (nitrogen and phosphorus) loads exported to the Chesapeake Bay. Lorenz Inequality and the corresponding Gini Coefficient provide an analytical tool for quantifying inequality that can be applied at any temporal or spatial scale. The Gini coefficient (G) is a formal measure of inequality that varies from 0 to 1, with a value of 0 indicating perfect equality (i.e., fluxes and loads are constant in time) and 1 indicating perfect inequality (i.e., all of the discharge and solute loads are exported during one instant in time). Therefore, G is a simple yet powerful tool for providing insight into the temporal inequality of nutrient transport. We will present the results of our detailed analysis of streamflow and nutrient time series data collected since the early 1980's at 30 USGS gauging stations in the Chesapeake Bay watershed. The analysis is conducted at an annual time scale, enabling trends and patterns to be assessed both temporally (over time at each station) and spatially (for the same period of time across stations). The results of this analysis have the potential to create a transformative new framework for identifying "hot moments", improving our ability to temporally and spatially target implementation of best management practices to ultimately improve water quality in the Chesapeake Bay. This method also provides insight into the temporal scales at which hydrologic and biogeochemical variability dominate nutrient export dynamics.

  10. Interrupted flow reference energy mean emission levels for the FHWA Traffic Noise Model

    DOT National Transportation Integrated Search

    1997-01-01

    This report presents the measurement, data reduction and analysis of individual vehicle sound level and speed data for non-constant speed situations. These situations are referred to as interrupted flow conditions and include acceleration from stop s...

  11. The role of varying flow on channel morphology: a flume experiment

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Eaton, B. C.; Hassan, M. A.; Lewis, S.

    2017-12-01

    Numerous studies have explored how alluvial channels develop under different sediment and flow conditions, yet we still know very little about how channels adjust and respond to changing flow conditions. One reason for this oversight is the long-held idea that channels with complex flow regimes are adjusted to a single, channel-forming discharge. But growing evidence shows that channel form reflects time-dependent processes occuring over multiple flows. To better understand how stream channels adjust to a range of flows, and identify the timescales associated with those adjustments, we conducted a series of hydrograph experiments in a freely-adjustable flume that developed a self-formed, meander pattern with pool-riffle morphology. Hydrographs had different shapes, magnitudes, and durations, but the total sediment volume fed under equilibrium conditions was kept constant among experiments. We found that hydrograph shape controlled channel morphology, the rate of channel development, and degree of regularity in the pool-riffle pattern. Hydrographs with slowly rising rates of rise and fall produced channels that were equivalent in size to channels generated from constant flow experiments, and had regularly spaced pool-riffle and meander patterns, while hydrographs with fast rates of rise and fall produced undersized channels with a chaotic bed structure and pool-riffle pattern. The latter suggests that during quickly rising hydrographs, the flow rate increases faster than the channel capacity and planform pattern adjusts. We confirmed these observations by comparing the timescales associated with pool-riffle and planform curvature development, which were identified under simple, constant flow conditions, to the total duration of the hydrograph. Hydrographs with step durations equal to or longer than the channel adjustment time produced channels with a more regular pool-riffle patterns compared to channels with step durations shorter than the adjustment time. This work points to the importance of the hydrograph as a fundamental control on channel adjustment and offers the prospect of better understanding of how changes in the flow regime, either through climate, land use, or dams, translate into morphodynamic changes.

  12. Microgravity

    NASA Image and Video Library

    1991-04-17

    Oscillatory Thermocapillary Flow Experiment (OTFE); by using silicone oil for a study on the characteristics of themocapillary flow during the onset of oscillations with particular attention to parameters; the experiment will use submerged heaters to provide a constant temperature source in open cylindrical containers to cause thermocapillary flows. Thermocouples located in the heaters, the container walls, and the fluid will monitor the temperatures in the apparatus. Tracer particles will be added to the silicone oil sample to allow observation of the flow.

  13. Increased Regurgitant Flow Causes Endocardial Cushion Defects in an Avian Embryonic Model of Congenital Heart Disease

    PubMed Central

    Ford, Stephanie M; McPheeters, Matthew T; Wang, Yves T; Ma, Pei; Gu, Shi; Strainic, James; Snyder, Christopher; Rollins, Andrew M; Watanabe, Michiko; Jenkins, Michael W

    2017-01-01

    Background The relationship between changes in endocardial cushion and resultant congenital heart diseases (CHD) has yet to be established. It has been shown that increased regurgitant flow early in embryonic heart development leads to endocardial cushion defects, but it remains unclear how abnormal endocardial cushions during the looping stages might affect the fully septated heart. The goal of this study was to reproducibly alter blood flow in vivo and then quantify the resultant effects on morphology of endocardial cushions in the looping heart and on CHDs in the septated heart. Methods Optical pacing was applied to create regurgitant flow in embryonic hearts, and optical coherence tomography (OCT) was utilized to quantify regurgitation and morphology. Embryonic quail hearts were optically paced at 3 Hz (180bpm, well above intrinsic rate 60–110bpm) at stage 13 of development (3–4 wks human) for 5 min. Pacing fatigued the heart and led to at least 1 hr of increased regurgitant flow. Resultant morphological changes were quantified with OCT imaging at stage 19 (cardiac looping – 4–5 wks human) or stage 35 (4 chambered heart – 8 wks human). Results All paced embryos imaged at stage 19 displayed structural changes in cardiac cushions. The amount of regurgitant flow immediately after pacing was inversely correlated with cardiac cushion size 24-hrs post pacing (p-value < 0.01). The embryos with the most regurgitant flow and smallest cushions after pacing had a decreased survival rate at 8 days (p<0.05), indicating that those most severe endocardial cushion defects were lethal. Of the embryos that survived to stage 35, 17/18 exhibited CHDs including valve defects, ventricular septal defects, hypoplastic ventricles, and common AV canal. Conclusion The data illustrate a strong inverse relationship in which regurgitant flow precedes abnormal and smaller cardiac cushions, resulting in the development of CHDs. PMID:28211263

  14. From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Villa, Ferdinando; Batker, David; Harrison-Cox, Jennifer; Voigt, Brian; Johnson, Gary W.

    2014-01-01

    Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service), sinks (biophysical or anthropogenic features that deplete or alter service flows), users (user locations and level of demand), and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems’ capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES) methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for economic valuation and policy applications than studies that consider only theoretical service provision and/or use.

  15. 40 CFR 1065.650 - Emission calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from a changing flow rate or a constant flow rate (including discrete-mode steady-state testing), as...·hr e NOx = 64.975/25.783 e NOx = 2.520 g/(kW·hr) (2) For discrete-mode steady-state testing, you may... method not be used if there are any work flow paths described in § 1065.210 that cross the system...

  16. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    NASA Astrophysics Data System (ADS)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  17. On the characterization of subsurface flow and hydraulic conductivity from surface SP measurements: correcting for electrical heterogeneities.

    NASA Astrophysics Data System (ADS)

    Sailhac, P.; Marquis, G.; Darnet, M.; Szalai, S.

    2003-04-01

    Surface self potential measurements (SP) are useful to characterize underground fluid flow or chemical reactions (as redox) and can be used in addition to NMR and electrical prospecting in hydrological investigations. Assuming that the SP anomalies have an electrokinetic origin, the source of SP data is the divergence of underground fluid flow; one important problem with surface SP data is then its interpretation in terms of fluid flow geometry. Some integral transform techniques have been shown to be powerful for SP interpretation (e.g. Fournier 1989, Patella, 1997; Sailhac &Marquis 2001). All these techniques are based upon Green’{ }s functions to characterize underground water flow, but they assume a constant electrical conductivity in the subsurface. This unrealistic approximation results in the appearance of non-electrokinetic sources at strong lateral electrical conductivity contrasts. We present here new Green’{ }s functions suitable for media of heterogeneous electrical conductivity. This new approach allows the joint interpretation of electrical resistivity tomography and SP measurements to detect electrokinetic sources caused by fluid flow. Tests on synthetic examples show that it gives more realistic results that when a constant electrical conductivity is assumed.

  18. Capillary Flow in an Interior Corner

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark Milton

    1996-01-01

    The design of fluids management processes in the low-gravity environment of space requires an accurate model and description of capillarity-controlled flow in containers of irregular geometry. Here we consider the capillary rise of a fluid along an interior corner of a container following a rapid reduction in gravity. The analytical portion of the work presents an asymptotic formulation in the limit of a slender fluid column, slight surface curvature along the corner, small inertia, and low gravity. New similarity solutions are found and a list of closed form expressions is provided for flow rate and column length. In particular, it is found that the flow is proportional to t(exp 1/2) for a constant height boundary condition, t(exp 2/5) for a spreading drop, and t(exp 3/5) for constant flow. In the experimental portion of the work, measurements from a 2.2s drop tower are reported. An extensive data set, collected over a previously unexplored range of flow parameters, includes estimates of repeatability and accuracy, the role of inertia and column slenderness, and the effects of corner angle, container geometry, and fluid properties. Comprehensive comparisons are made which illustrate the applicability of the analytic results to low-g fluid systems design.

  19. Power Flow in Phonation

    NASA Astrophysics Data System (ADS)

    Zhang, Lucy; Yu, Feimi; Krane, Michael

    2017-11-01

    The control volume analysis of power flow during sustained phonation is performed using results of a fully-coupled aeroelastic-aeroacoustic simulation. The control volumes consist of the laryngeal region, and the larynx and the vocal tract. Two cases are considered: an effectively infinite length vocal tract, where sound produced in the larynx radiates away and is not reflected back, and a constant-area vocal tract of normal adult human dimensions, in which phonatory sound resonates before radiating from the mouth opening. In both cases the lungs are modeled to absorb all incident sound, while providing a constant volume flow toward the larynx. Control of the acoustic boundary conditions is accomplished using perfectly matched- layers, and flow from the lungs is provided by a source distribution near the entrance to the trachea region. For both cases the power flow for the larynx and larynx plus vocal tract control volumes are computed using the integral form of the mechanical energy equation, expanded to consider power exchanges between slightly compressible flow in the larynx and the acoustic fields in the vocal tract and trachea. The funding from NIH 2R01DC005642-10A1 is greatly acknowledged.

  20. Couple stress fluid flow in a rotating channel with peristalsis

    NASA Astrophysics Data System (ADS)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  1. Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

    PubMed Central

    Fujisaki, Keisuke; Ikeda, Tomoyuki

    2013-01-01

    To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395

  2. Sensing vascularization of ex-vivo produced oral mucosal equivalent (EVPOME) skin grafts in nude mice using optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Vishwanath, Karthik; Gurjar, Rajan; Kuo, Shiuhyang; Fasi, Anthony; Kim, Roderick; Riccardi, Suzannah; Feinberg, Stephen E.; Wolf, David E.

    2014-03-01

    Repair of soft tissue defects of the lips as seen in complex maxillofacial injuries, requires pre-vascularized multi-tissue composite grafts. Protocols for fabrication of human ex-vivo produced oral mucosal equivalents (EVPOME) composed of epithelial cells and a dermal equivalent are available to create prelaminated flaps for grafting in patients. However, invivo assessment of neovascularization of the buried prelaminated flaps remains clinically challenging. Here, we use diffuse reflectance spectroscopy (DRS) and diffuse correlation spectroscopy (DCS) to non-invasively quantify longitudinal changes in the vessel density and blood-flow within EVPOME grafts implanted in the backs of SCID mice and subsequently to determine the utility of these optical techniques for assessing vascularization of implanted grafts. 20 animals were implanted with EVPOME grafts (1x1x0.05 cm3) in their backs. DRS and DCS measurements were obtained from each animal both atop the graft site and far away from the graft site, at one week post-implantation, each week, for four consecutive weeks. DRS spectra were analyzed using an inverse Monte Carlo model to extract tissue absorption and scattering coefficients, which were then used to extract blood flow information by fitting the experimental DCS traces. There were clear differences in the mean optical parameters (averaged across all mice) at the graft site vs. the off-site measurements. Both the total hemoglobin concentration (from DRS) and the relative blood flow (from DCS) peaked at week 3 at the graft site and declined to the off-site values by week 4. The optical parameters remained relatively constant throughout 4 weeks for the off-site measurements.

  3. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense of longer computation time.

  4. Large eddy simulation of a boundary layer with concave streamwise curvature

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.

    1993-01-01

    One of the most exciting recent developments in the field of large eddy simulation (LES) is the dynamic subgrid-scale model. The dynamic model concept is a general procedure for evaluating model constants by sampling a band of the smallest scales actually resolved in the simulation. To date, the procedure has been used primarily in conjunction with the Smagorinsky model. The dynamic procedure has the advantage that the value of the model constant need not be specified a priori, but rather is calculated as a function of space and time as the simulation progresses. This feature makes the dynamic model especially attractive for flows in complex geometries where it is difficult or impossible to calibrate model constants. The dynamic model was highly successful in benchmark tests involving homogeneous and channel flows. Having demonstrated the potential of the dynamic model in these simple flows, the overall direction of the LES effort at CTR shifted toward an evaluation of the model in more complex situations. The current test cases are basic engineering-type flows for which Reynolds averaged approaches were unable to model the turbulence to within engineering accuracy. Flows currently under investigation include a backward-facing step, wake behind a circular cylinder, airfoil at high angles of attack, separated flow in a diffuser, and boundary layer over a concave surface. Preliminary results from the backward-facing step and cylinder wake simulations are encouraging. Progress on the LES of a boundary layer on a concave surface is discussed. Although the geometry of a concave wall is not very complex, the boundary layer that develops on its surface is difficult to model due to the presence of streamwise Taylor-Gortler vortices. These vortices arise as a result of a centrifugal instability associated with the convex curvature.

  5. Quantifying landscape change following the 1999 jökulhlaup at Sólheimajökull, southern Iceland

    NASA Astrophysics Data System (ADS)

    Staines, Kate E. H.

    2010-05-01

    Glacial outburst floods (jökulhlaups) occur periodically in glaciated areas worldwide as the result of subglacial volcanism, geothermal activity, natural dam-failures, high rainfall events and the release of stored meltwater. Despite their relative low frequency, the high discharge magnitudes and flow velocities can lead to widespread, intensive and long-lasting landscape change. Indeed, in the jökulhlaup-prone regions of southern Iceland, outburst floods are hypothesised to largely control long-term proglacial landscape evolution, with low-magnitude/high-frequency ablation-controlled meltwater flow having a minimal impact. Jökulhlaups also pose a major threat to populations, infrastructures and property. It is predicted with climate change that the frequency and potentially the magnitude of jökulhlaups will increase. It is therefore important to study jökulhlaup flow processes and understand how landscapes are impacted by and recover from these floods. Ultimately, this will better inform policy, flood prediction and hazard management in populated regions at risk from jökulhlaups. Currently, our understanding of jökulhlaup flow processes and the links between these processes and resulting landforms is limited. This is in parts due to the difficulty in directly measuring these high-magnitude, high-velocity floods. Research into jökulhlaup flow characteristics has consequently focussed on reconstructing flow parameters through a variety of palaeohydraulic techniques. However, these often produce conflicting and inaccurate reconstructions of flow inundation, peak discharge and flow rheology as key characteristics of jökulhlaups are frequently neglected (e.g. sediment transport, flow attenuation, sediment bulking and de-bulking). Furthermore, there has been little research into quantifying landscape change, response and recovery following jökulhlaups. The degree of preservation of flood deposits is determined in large parts by the pre-flood sensitivity of the landscape and its recovery potential. Factors controlling these include the recurrence interval and magnitude of past jökulhlaups, glacier surging, glacial advance and retreat cycles and fluctuations in glacier discharge. This study aims to quantify the immediate landscape change associated with a jökulhlaup and examine the response of the landscape in the years following the flood. The study site is the outwash plain (sandur) of Sólheimajökull, an outlet glacier of the Mýrdalsjökull ice cap in southern Iceland. The most recent jökulhlaup, triggered by the eruption of the subglacial volcano Katla, was in July 1999. Field surveys of a boulder fan deposited during the flood at the snout of Sólheimajökull will be used to reconstruct flow palaeocompetence, with cross-sections of the river channel used to calculate peak discharge. From orthorectified pre- and immediate post-flood aerial imagery, digital elevation models will be generated and used to quantify net elevation change (i.e. sediment loss or gain) across the flooded area. Geomorphological maps of the proglacial area from before and in the decade following the flood have been produced and will be used to quantify changes in the main river channel, in terms of braiding and sinuosity parameters.

  6. Incorporating Storm Sewer Exfiltration into SWMM: Proof of Concept

    EPA Science Inventory

    This study evaluates the peak flow and volume reduction achieved by exfiltration from a perforated storm sewer in an urban catchment. There are three related objectives: [1] quantify peak flow and volume reduction; [2] demonstrate adaptability to climate change; and [3] evaluate ...

  7. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    USDA-ARS?s Scientific Manuscript database

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  8. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    NASA Astrophysics Data System (ADS)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  9. Anthrobiogeochemical platinum, palladium and rhodium cycles of earth: Emerging environmental contamination

    NASA Astrophysics Data System (ADS)

    Mitra, Arijeet; Sen, Indra Sekhar

    2017-11-01

    Anthrobiogeochemical cycles have been a subject of scientific research for many decades as they are important for identifying possible sources, sinks, and pathways of an element in the environment. In this study, we quantified global cycles for the platinum group elements (PGE; platinum (Pt), palladium (Pd) and rhodium (Rh)). We quantified the stocks of Pt, Pd, and Rh in Earth's various reservoirs, such as the core, mantle, consolidated crust, biomass, seawater, unconsolidated sediments, and atmosphere, as well as coal and petroleum deposits. We further quantified their fluxes, both natural and anthropogenic, between each reservoir, by identifying the flows across the hydrosphere, geosphere, biosphere, atmosphere and anthroposphere, including from mining activities, fossil fuel and biomass burning, construction activities, soil erosion, human contributions to net primary productivity, riverine transport, aeolian dust movement, primary production, volcanic eruption, sea-salt spray, crustal subduction, crust formation at mid ocean ridges, PGE recovery from recycling processes, and cosmic dust inputs at the Earth's surface. Stocks of PGEs were quantified by multiplying the mass of the reservoir by the average Pt, Pd and Rh concentration in the reservoir, whereas Pt, Pd and Rh fluxes were calculated by multiplying the rate of mass movement across the reservoirs with the Pt, Pd and Rh concentrations of the material. Uncertainties were explicitly incorporated in stock and flow estimations through Monte Carlo simulations. Our calculations reveal that the total surficial anthropogenic Pt, Pd, and Rh mobilizations were greater than their corresponding natural surficial mobilizations. We show that crustal subduction and crustal formation is the most important natural flow and contributes 21-42% of total PGE mobilization. When Earth's surficial processes are considered, soil erosion is the dominant flow for Rh and Pt mobilization, comprising 33% and 13%, respectively, of the total mobilization on Earth's surface, whereas NPP dominates the natural Pd mobilization. On the other hand, mining activities, fossil fuel burning and automobile emissions are the most important anthropogenic flows. Therefore, our qualitative and quantitative assessment indicates that mining activities contribute almost 60-80% of the total anthropogenic flow on Earth, and crustal subduction and production dominates the total global PGE cycle.

  10. Development and testing of pulsed and rotating detonation combustors

    NASA Astrophysics Data System (ADS)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data analysis approach is developed, which employs cross-correlations to detect the combustor operating state as it evolves during a test. This method enables expedient detection of the operating state from sensors placed outside the combustor, and can also identify and quantify instabilities. An investigation is conducted on a tangentially-injecting initiator tube to characterize the RDC ignition process. Maximum energy deposition for this ignition method is an order of magnitude lower than the required energy for direct initiation, and detonation develops via a deflagration-to-detonation transition process. Stable rotating detonation is preceded by a transitory onset phase with a stochastic duration, which appears to be a function of the reactant injection pressure ratio. Hydrogen-ethylene fuel blends are explored as an interim strategy to transition to stable detonation in ethylene-air mixtures. While moderate hydrogen addition enables stable operation, removal of the supplemental hydrogen triggers instability and failure. Chemical kinetic analysis indicates that elevated reactant pressure is far more significant than hydrogen addition, and suggests that the stabilizing effect of hydrogen is physical, rather than kinetic. The role of kinetic effects (e.g., cell width) is also assessed, using H2-O2-N2 mixtures. Detonation is observed when the normalized channel width exceeds the classical limit of wch/lambda = 0.5, and the number of detonations increases predictably when the detonation perimeter exceeds a critical value.

  11. Adhesion and formation of microbial biofilms in complex microfluidic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles inmore » the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.« less

  12. Thermocapillary flow contribution to dropwise condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-11-01

    With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.

  13. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow

    DOE PAGES

    Armstrong, Ryan T.; McClure, James E.; Berrill, Mark A.; ...

    2016-10-27

    Relative permeability quantifies the ease at which immiscible phases flow through porous rock and is one of the most well known constitutive relationships for petroleum engineers. It however exhibits troubling dependencies on experimental conditions and is not a unique function of phase saturation as commonly accepted in industry practices. The problem lies in the multi-scale nature of the problem where underlying disequilibrium processes create anomalous macroscopic behavior. Here we show that relative permeability rate dependencies are explained by ganglion dynamic flow. We utilize fast X-ray micro-tomography and pore-scale simulations to identify unique flow regimes during the fractional flow of immisciblemore » phases and quantify the contribution of ganglion flux to the overall flux of non-wetting phase. We anticipate our approach to be the starting point for the development of sophisticated multi-scale flow models that directly link pore-scale parameters to macro-scale behavior. Such models will have a major impact on how we recover hydrocarbons from the subsurface, store sequestered CO 2 in geological formations, and remove non-aqueous environmental hazards from the vadose zone.« less

  14. Exploiting similarity in turbulent shear flows for turbulence modeling

    NASA Technical Reports Server (NTRS)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-01-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  15. Exploiting similarity in turbulent shear flows for turbulence modeling

    NASA Astrophysics Data System (ADS)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-12-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  16. Electromagnetic probe technique for fluid flow measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  17. Dual permeability flow behavior for modeling horizontal well production in fractured-vuggy carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu

    2012-09-01

    SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.

  18. Imaging and Measurements of Flow Phenomena and Impact of Soil Associated Constituents Through Unsaturated Porous Media in a 2D System

    NASA Astrophysics Data System (ADS)

    Pales, A. R.; Li, B.; Clifford, H.; Edayilam, N.; Montgomery, D.; Dogan, M.; Tharayil, N.; Martinez, N. E.; Moysey, S. M.; Darnault, C. J. G.

    2016-12-01

    This research aims to build upon past two-dimension (2D) tank light transmission methods to quantify real-time flow in unsaturated porous media (ASTM silica sand; US Silica, Ottawa, IL, USA) and how exudates effect unstable flow patterns. A 2D tank light transmission method was created using a transparent flow through tank coupled with a random rainfall simulator; a commercial LED light and a complementary metal oxide semiconductor digital single lens reflex (CMOS DSLR) Nikon D5500 camera were used to capture the real-time flow images. The images were broken down from red-green-blue (RGB) into hue-saturation-intensity (HVI) and analyzed in Matlab to produce quantifiable data about finger formation and water saturation distribution. Contact angle and surface tension of the chemical plant exudate solutions was measured using a Kruss EasyDrop FM40Mk2 (Kruss GmbH Germany). The exudates (oxalate, citrate, tannic acid, and Suwannee River Natural Organic Matter) had an increased wettability effect compared to control rain water (0.01M NaCl). This resulted in variable finger formation and speed of finger propagation; dependent on exudate type and concentration. Water saturation along the vertical and horizontal profile (Matlab) was used to quantify the finger more objectively than by eye assessment alone. The changes in finger formation and speed of propagation between the control rain water (0.01M NaCl) and the solutions containing plant exudates illustrates that the plant exudates increased the wettability (mobility) of water moving through unsaturated porous media. This understanding of plant exudates effect on unsaturated flow is important for future works in this study to analyze how plants, their roots and exudates, may affect the mobility of radionuclides in unsaturated porous media.

  19. Creep of Ni(3)Al in the temperature regime of anomalous flow behavior

    NASA Astrophysics Data System (ADS)

    Uchic, Michael David

    Much attention has been paid to understanding the dynamics of dislocation motion and substructure formation in Ni3Al in the anomalous flow regime. However, most of the experimental work that has been performed in the lowest temperatures of the anomalous flow regime has been under constant-strain-rate conditions. An alternative and perhaps more fundamental way to probe the plastic behavior of materials is a monotonic creep test, in which the stress and temperature are held constant while the time-dependent strain is measured. The aim of this study is to use constant-stress experiments to further explore the plastic flow anomaly in L12 alloys at low temperatures. Tension creep experiments have been carried out on <123> oriented single crystals of Ni75Al24Ta1 at temperatures between 293 and 473 K. We have observed primary creep leading to exhaustion at all temperatures and stresses, with creep rates declining faster than predicted by the logarithmic creep law. The total strain and creep strain have an anomalous dependence on temperature, which is consistent with the flow stress anomaly. We have also observed other unusual behavior in our creep experiments; for example, the reinitiation of plastic flow at low temperatures after a modest increment in applied stress shows a sigmoidal response, i.e., there is a significant time delay before the plastic strain rate accelerates to a maximum value. We also examined the ability to reinitiate plastic flow in samples that have been crept to exhaustion by simply lowering the test temperature. In addition, we have also performed conventional constant-displacement-rate experiments in the same temperature range. From these experiments, we have discovered that unlike most metals, Ni3Al displays a negative dependence of the work hardening rate (WHR) with increasing strain rate. For tests at intermediate temperatures (373 and 423 K), the WHRs of crystals tested at moderately high strain rates (10-2 s-1) are half the WHRs of crystals tested at conventional strain rates (10 -5 s-1), and this anomalous dependence has also been shown to be reversible with changes in strain rate. The implications of all results are discussed in light of our efforts to model plastic deformation in these alloys.

  20. Quantifying in-stream nitrate reaction rates using continuously-collected water quality data

    Treesearch

    Matthew Miller; Anthony Tesoriero; Paul Capel

    2016-01-01

    High frequency in situ nitrate data from three streams of varying hydrologic condition, land use, and watershed size were used to quantify the mass loading of nitrate to streams from two sources – groundwater discharge and event flow – at a daily time step for one year. These estimated loadings were used to quantify temporally-variable in-stream nitrate processing ...

Top