Science.gov

Sample records for quantifying habitat requirements

  1. Quantifying home range habitat requirements for bobcats (Lynx rufus) in Vermont, USA

    USGS Publications Warehouse

    Donovan, Therese; Freeman, Mark; Abouelezz, Hanem; Royar, K.; Howard, Alan D.; Mickey, R.

    2011-01-01

    We demonstrate how home range and habitat use analysis can inform landscape-scale conservation planning for the bobcat, Lynx rufus, in Vermont USA. From 2005 to 2008, we outfitted fourteen bobcats with GPS collars that collected spatially explicit locations from individuals every 4 h for 3–4 months. Kernel home range techniques were used to estimate home range size and boundaries, and to quantify the utilization distribution (UD), which is a spatially explicit, topographic mapping of how different areas within the home range are used. We then used GIS methods to quantify both biotic (e.g. habitat types, stream density) and abiotic (e.g. slope) resources within each bobcat’s home range. Across bobcats, upper 20th UD percentiles (core areas) had 18% less agriculture, 42% less development, 26% more bobcat habitat (shrub, deciduous, coniferous forest, and wetland cover types), and 33% lower road density than lower UD percentiles (UD valleys). For each bobcat, we used Akaike’s Information Criterion (AIC) to evaluate and compare 24 alternative Resource Utilization Functions (hypotheses) that could explain the topology of the individual’s UD. A model-averaged population-level Resource Utilization Function suggested positive responses to shrub, deciduous, coniferous forest, and wetland cover types within 1 km of a location, and negative responses to roads and mixed forest cover types within 1 km of a location. Applying this model-averaged function to each pixel in the study area revealed habitat suitability for bobcats across the entire study area, with suitability scores ranging between −1.69 and 1.44, where higher values were assumed to represent higher quality habitat. The southern Champlain Valley, which contained ample wetland and shrub habitat, was a concentrated area of highly suitable habitat, while areas at higher elevation areas were less suitable. Female bobcat home ranges, on average, had an average habitat suitability score of near 0, indicating

  2. Quantifying home range habitat requirements for bobcats (Lynx rufus) in Vermont, USA

    USGS Publications Warehouse

    Donovan, T.M.; Freeman, M.; Abouelezz, H.; Royar, K.; Howard, A.; Mickey, R.

    2011-01-01

    We demonstrate how home range and habitat use analysis can inform landscape-scale conservation planning for the bobcat, Lynx rufus, in Vermont USA. From 2005 to 2008, we outfitted fourteen bobcats with GPS collars that collected spatially explicit locations from individuals every 4. h for 3-4. months. Kernel home range techniques were used to estimate home range size and boundaries, and to quantify the utilization distribution (UD), which is a spatially explicit, topographic mapping of how different areas within the home range are used. We then used GIS methods to quantify both biotic (e.g. habitat types, stream density) and abiotic (e.g. slope) resources within each bobcat's home range. Across bobcats, upper 20th UD percentiles (core areas) had 18% less agriculture, 42% less development, 26% more bobcat habitat (shrub, deciduous, coniferous forest, and wetland cover types), and 33% lower road density than lower UD percentiles (UD valleys). For each bobcat, we used Akaike's Information Criterion (AIC) to evaluate and compare 24 alternative Resource Utilization Functions (hypotheses) that could explain the topology of the individual's UD. A model-averaged population-level Resource Utilization Function suggested positive responses to shrub, deciduous, coniferous forest, and wetland cover types within 1. km of a location, and negative responses to roads and mixed forest cover types within 1. km of a location. Applying this model-averaged function to each pixel in the study area revealed habitat suitability for bobcats across the entire study area, with suitability scores ranging between -1.69 and 1.44, where higher values were assumed to represent higher quality habitat. The southern Champlain Valley, which contained ample wetland and shrub habitat, was a concentrated area of highly suitable habitat, while areas at higher elevation areas were less suitable. Female bobcat home ranges, on average, had an average habitat suitability score of near 0, indicating that home

  3. Quantifying consistent individual differences in habitat selection.

    PubMed

    Leclerc, Martin; Vander Wal, Eric; Zedrosser, Andreas; Swenson, Jon E; Kindberg, Jonas; Pelletier, Fanie

    2016-03-01

    Habitat selection is a fundamental behaviour that links individuals to the resources required for survival and reproduction. Although natural selection acts on an individual's phenotype, research on habitat selection often pools inter-individual patterns to provide inferences on the population scale. Here, we expanded a traditional approach of quantifying habitat selection at the individual level to explore the potential for consistent individual differences of habitat selection. We used random coefficients in resource selection functions (RSFs) and repeatability estimates to test for variability in habitat selection. We applied our method to a detailed dataset of GPS relocations of brown bears (Ursus arctos) taken over a period of 6 years, and assessed whether they displayed repeatable individual differences in habitat selection toward two habitat types: bogs and recent timber-harvest cut blocks. In our analyses, we controlled for the availability of habitat, i.e. the functional response in habitat selection. Repeatability estimates of habitat selection toward bogs and cut blocks were 0.304 and 0.420, respectively. Therefore, 30.4 and 42.0 % of the population-scale habitat selection variability for bogs and cut blocks, respectively, was due to differences among individuals, suggesting that consistent individual variation in habitat selection exists in brown bears. Using simulations, we posit that repeatability values of habitat selection are not related to the value and significance of β estimates in RSFs. Although individual differences in habitat selection could be the results of non-exclusive factors, our results illustrate the evolutionary potential of habitat selection. PMID:26597548

  4. Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer.

    PubMed

    Northrup, Joseph M; Anderson, Charles R; Wittemyer, George

    2015-11-01

    Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development. PMID:26264447

  5. QUANTIFYING STRUCTURAL PHYSICAL HABITAT ATTRIBUTES USING LIDAR AND HYPERSPECTRAL IMAGERY

    EPA Science Inventory

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity and cover, riparian vegetation cover and structure, anthropogenic disturbances and channel-riparian interaction. These habitat attributes will vary dependen...

  6. Quantifying the effect of habitat availability on species distributions.

    PubMed

    Aarts, Geert; Fieberg, John; Brasseur, Sophie; Matthiopoulos, Jason

    2013-11-01

    1. If animals moved randomly in space, the use of different habitats would be proportional to their availability. Hence, deviations from proportionality between use and availability are considered the tell-tale sign of preference. This principle forms the basis for most habitat selection and species distribution models fitted to use-availability or count data (e.g. MaxEnt and Resource Selection Functions). 2. Yet, once an essential habitat type is sufficiently abundant to meet an individual's needs, increased availability of this habitat type may lead to a decrease in the use/availability ratio. Accordingly, habitat selection functions may estimate negative coefficients when habitats are superabundant, incorrectly suggesting an apparent avoidance. Furthermore, not accounting for the effects of availability on habitat use may lead to poor predictions, particularly when applied to habitats that differ considerably from those for which data have been collected. 3. Using simulations, we show that habitat use varies non-linearly with habitat availability, even when individuals follow simple movement rules to acquire food and avoid risk. The results show that the impact of availability strongly depends on the type of habitat (e.g. whether it is essential or substitutable) and how it interacts with the distribution and availability of other habitats. 4. We demonstrate the utility of a variety of existing and new methods that enable the influence of habitat availability to be explicitly estimated. Models that allow for non-linear effects (using b-spline smoothers) and interactions between environmental covariates defining habitats and measures of their availability were best able to capture simulated patterns of habitat use across a range of environments. 5. An appealing aspect of some of the methods we discuss is that the relative influence of availability is not defined a priori, but directly estimated by the model. This feature is likely to improve model prediction

  7. Quantifying multi-habitat support of Great Lakes fishes

    EPA Science Inventory

    Recent advances in trophic ecology have revealed the interconnectedness of diverse habitats in support of aquatic food webs. Understanding the degree to which different habitats support fish can be valuable for fisheries management and ecosystem protection. For example, stable is...

  8. Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery.

    PubMed

    Hall, Robert K; Watkins, Russell L; Heggem, Daniel T; Jones, K Bruce; Kaufmann, Philip R; Moore, Steven B; Gregory, Sandra J

    2009-12-01

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecological resources at different scales. High-resolution remote sensing provides unique capabilities in detecting a variety of features and indicators of environmental health and condition. LIDAR is an airborne scanning laser system that provides data on topography, channel dimensions (width, depth), slope, channel complexity (residual pools, volume, morphometric complexity, hydraulic roughness), riparian vegetation (height and density), dimensions of riparian zone, anthropogenic alterations and disturbances, and channel and riparian interaction. Hyperspectral aerial imagery offers the advantage of high spectral and spatial resolution allowing for the detection and identification of riparian vegetation and natural and anthropogenic features at a resolution not possible with satellite imagery. When combined, or fused, these technologies comprise a powerful geospatial data set for assessing and monitoring lentic and lotic environmental characteristics and condition. PMID:19165614

  9. Quantifying Regional Measurement Requirements for ASCENDS

    NASA Astrophysics Data System (ADS)

    Mountain, M. E.; Eluszkiewicz, J.; Nehrkorn, T.; Hegarty, J. D.; Aschbrenner, R.; Henderson, J.; Zaccheo, S.

    2011-12-01

    Quantification of greenhouse gas fluxes at regional and local scales is required by the Kyoto protocol and potential follow-up agreements, and their accompanying implementation mechanisms (e.g., cap-and-trade schemes and treaty verification protocols). Dedicated satellite observations, such as those provided by the Greenhouse gases Observing Satellite (GOSAT), the upcoming Orbiting Carbon Observatory (OCO-2), and future active missions, particularly Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and Advanced Space Carbon and Climate Observation of Planet Earth (A-SCOPE), are poised to play a central role in this endeavor. In order to prepare for the ASCENDS mission, we are applying the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by meteorological fields from a customized version of the Weather Research and Forecasting (WRF) model to generate surface influence functions for ASCENDS observations. These "footprints" (or adjoint) express the sensitivity of observations to surface fluxes in the upwind source regions and thus enable the computation of a posteriori flux error reductions resulting from the inclusion of satellite observations (taking into account the vertical sensitivity and error characteristics of the latter). The overarching objective of this project is the specification of the measurement requirements for the ASCENDS mission, with a focus on policy-relevant regional scales. Several features make WRF-STILT an attractive tool for regional analysis of satellite observations: 1) WRF meteorology is available at higher resolution than for global models and is thus more realistic, 2) The Lagrangian approach minimizes numerical diffusion present in Eulerian models, 3) The WRF-STILT coupling has been specifically designed to achieve good mass conservation characteristics, and 4) The receptor-oriented approach offers a relatively straightforward way to compute the adjoint of the transport model. These aspects allow

  10. Terrestrial Laser Scanning for Quantifying Habitat and Hydraulic Complexity Measures: A Comparison with Traditional Surveying Techniques

    NASA Astrophysics Data System (ADS)

    Resop, J. P.; Kozarek, J. L.; Hession, W. C.

    2010-12-01

    Accurate stream topography measurement is important for many ecological applications such as hydraulic modeling and habitat characterization. Measures of habitat complexity are often difficult to quantify or are performed qualitatively. Traditional surveying with a total station can be time intensive and limited by poor spatial resolution. These problems lead to measurement and interpolation errors, which propagate to model uncertainty. Terrestrial laser scanning (TLS) has the potential to measure topography at a high resolution and accuracy. Two methods, total station surveying and TLS, were used to measure a 100-m forested reach on the Staunton River in Shenandoah National Park, VA, USA. The TLS dataset was post-processed to remove vegetation and create a 2-cm digital elevation model (DEM). The position and size of ten rocks were compared for each method. An algorithm was developed for delineating rocks within the stream channel from the TLS DEM. Ecological metrics based on the structural complexity of the stream, such as percent in-stream rock cover and cross-sectional heterogeneity, were derived from the TLS dataset for six habitat areas and compared with the estimates from traditional methods. Compared to TLS, total station surveying underestimated rock volume and cross-sectional heterogeneity by 55% and 41%, respectively. TLS has the potential to quantify habitat complexity measures in an automated, unbiased manner.

  11. Quantifying Stream Habitat: Relative Effort Versus Quality of Competing Remote Sensing & Ground-Based Survey Techniques

    NASA Astrophysics Data System (ADS)

    Bangen, S. G.; Wheaton, J. M.; Bouwes, N.

    2010-12-01

    Numerous field and analytical methods exist to assist in the quantification of the quantity and quality of in-stream habitat for salmonids. These methods range from field sketches or ‘tape and stick’ ground-based surveys, through to spatially explicit topographic and aerial photographic surveys from a mix of ground-based and remotely sensed airborne platforms. Although some investigators have assessed the quality of specific individual survey methods, the inter-comparison of competing techniques across a diverse range of habitat conditions (wadeable headwater channels to non-wadeable mainstem channels) has not yet been elucidated. In this study, we seek to quantify relative quality (i.e. accuracy, precision, extent) of habitat metrics and inventories derived from different ground-based and remotely sensed surveys of varying degrees of sophistication, as well as enumerate the effort and cost in completing the surveys. Over the summer of 2010, seven sample reaches of varying habitat complexity were surveyed in the Lemhi River Basin, Idaho, USA. Three different traditional (“stick and tape”) survey techniques were used, including a variant using map-grade GPS. Complete topographic/bathymetric surveys were attempted at each site using separate rtkGPS, total station, ground-based LiDaR, boat-based echo-sounding (w/ ADCP), traditional airborne LiDaR, and imagery-based spectral methods. Separate, georectified aerial imagery surveys were acquired using a tethered blimp, a drone UAV, and a traditional fixed-wing aircraft. Preliminary results from the surveys highlight that no single technique works across the full range of conditions where stream habitat surveys are needed. The results are helpful for understanding the strengths and weaknesses of each approach in specific conditions, and how a hybrid of data acquisition methods can be used to build a more complete quantification of habitat conditions in rivers.

  12. Quantifying solar spectral irradiance in aquatic habitats for the assessment of photoenhanced toxicity

    USGS Publications Warehouse

    Barron, M.G.; Little, E.E.; Calfee, R.; Diamond, S.

    2000-01-01

    The spectra and intensity of solar radiation (solar spectral irradiance [SSI]) was quantified in selected aquatic habitats in the vicinity of an oil field on the California coast. Solar spectral irradiance measurements consisted of spectral scans (280-700 rim) and radiometric measurements of ultraviolet (UV): UVB (280-320 nm) and UVA (320-400 nm). Solar spectral irradiance measurements were taken at the surface and at various depths in two marsh ponds, a shallow wetland, an estuary lagoon, and the intertidal area of a high-energy sandy beach. Daily fluctuation in SSI showed a general parabolic relationship with time; maximum structure-activity relationship (SAR) was observed at approximate solar noon. Solar spectral irradiance measurements taken at 10-cm depth at approximate solar noon in multiple aquatic habitats exhibited only a twofold variation in visible light and UVA and a 4.5-fold variation in UVB. Visible light ranged from 11,000 to 19,000 ??W/cm2, UVA ranged from 460 to 1,100 ??W/cm2, and UVB ranged from 8.4 to 38 ??W/cm2. In each habitat, the attenuation of light intensity with increasing water depth was differentially affected over specific wavelengths of SSI. The study results allowed the development of environmentally realistic light regimes necessary for photoenhanced toxicity studies.

  13. Quantifying Florida Bay Habitat Suitability for Fishes and Invertebrates Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Kearney, Kelly A.; Butler, Mark; Glazer, Robert; Kelble, Christopher R.; Serafy, Joseph E.; Stabenau, Erik

    2015-04-01

    The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate ( Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.

  14. Quantifying Florida Bay habitat suitability for fishes and invertebrates under climate change scenarios.

    PubMed

    Kearney, Kelly A; Butler, Mark; Glazer, Robert; Kelble, Christopher R; Serafy, Joseph E; Stabenau, Erik

    2015-04-01

    The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem. PMID:25216988

  15. Quantifying solar spectral irradiance in aquatic habitats for the assessment of photoenhanced toxicity

    SciTech Connect

    Barron, M.G.; Little, E.E.; Calfee, R.; Diamond, S.

    2000-04-01

    The spectra and intensity of solar radiation (solar spectral irradiance [SSI]) was quantified in selected aquatic habitats in the vicinity of an oil field on the California coast. Solar spectral irradiance measurements consisted of spectral scans and radiometric measurements of ultraviolet (UV): UVB and UVA. Solar spectral irradiance measurements were taken at the surface and at various depths in two marsh ponds, a shallow wetland, an estuary lagoon, and the intertidal area of a high-energy sandy beach. Daily fluctuation in SSI showed a general parabolic relationship with time; maximum structure-activity relationship (SAR) was observed at approximate solar noon. Solar spectral irradiance measurements taken at 10-cm depth at approximate solar noon in multiple aquatic habitats exhibited only a twofold variation in visible light and UVA and a 4.5-fold variation in UVB. Visible light ranged from 11,000 to 19,000 {micro}W/cm{sup 2}, UVA ranged from 460 to 1,100 {micro}W/cm{sup 2}, and UVB ranged from 8.4 to 38 {micro}W/cm{sup 2}. In each habitat, the attenuation of light intensity with increasing water depth was differentially affected over specific wavelengths of SSI. The study results allowed the development of environmentally realistic light regimes necessary for photoenhanced toxicity studies.

  16. Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning.

    PubMed

    Espinoza, Mario; Cappo, Mike; Heupel, Michelle R; Tobin, Andrew J; Simpfendorfer, Colin A

    2014-01-01

    Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches. PMID

  17. Quantifying Shark Distribution Patterns and Species-Habitat Associations: Implications of Marine Park Zoning

    PubMed Central

    Espinoza, Mario; Cappo, Mike; Heupel, Michelle R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2014-01-01

    Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches. PMID

  18. MWSA's physical habitat approach - combining knowledge of habitat requirements with mechanisms of geomorphic and anthropogenic influence on stream channel form

    EPA Science Inventory

    Effective environmental policy decisions benefit from stream habitat information that is accurate, precise, and relevant. The recent National Wadeable Streams Assessment (NWSA) carried out by the U.S. EPA required physical habitat information sufficiently comprehensive to facilit...

  19. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting

    PubMed Central

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is “biodiversity offsetting” (wherein biodiversity impacted is “replaced” through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of “linear” infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with “hub” infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km2 across the Ustyurt (total ∼ 100,000 km2), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species

  20. Terrestrial laser scanning for delineating in-stream boulders and quantifying habitat complexity measures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate stream topography measurement is important for many ecological applications such as hydraulic modeling and habitat characterization. Habitat complexity measures are often made using total station surveying or visual approximation, which can be subjective and have spatial resolution limitati...

  1. Quantifying Structural Physical Habitat Attributes Using Lidar and Hyperspectral Imagery (1)

    EPA Science Inventory

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of eco...

  2. Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery - PRK

    EPA Science Inventory

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecol...

  3. QUANTIFYING STREAM STRUCTURAL PHYSICAL HABITAT ATTRIBUTES USING LIDAR AND HYPERSPECTRAL IMAGERY

    EPA Science Inventory

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity and cover, riparian vegetation cover and structure, anthropogenic disturbances and channel-riparian interaction.

  4. Integrating terrestrial laser scanning and repeat field measurements to quantify habitat changes during baseflow recession

    NASA Astrophysics Data System (ADS)

    Woelfle-Erskine, C. A.; Thompson, S. E.

    2013-12-01

    Understanding stream habitat heterogeneity is essential for evaluating stream habitat quality for salmonids, but the variability in pool sizes, groundwater sources, and the associated water quality makes characterization of habitat challenging. Habitat volume and stream connectivity are key drivers of ecosystem processes in spatially-intermittent streams, and strongly influence survival of juvenile salmonids in coastal California. Stream disconnection creates heterogeneous habitats, as disconnected pools are fed by distinct groundwater and hyporheic sources of water containing different concentrations of carbon, oxygen and nutrients. These distinct biogeochemical regimes drive production of benthic macroinvertebrates (salmonids' primary food source) and dissolved oxygen levels, which in turn govern salmonid metabolism. In this study, we use terrestrial laser scans of the streambed, topographic surveys of wetted pools, and repeat field measurements of pool depth to develop a timeseries of finely resolved pool volumes and dry riffle lengths. We overlay repeat water quality measurements onto this surface to visualize how cessation of flow creates heterogeneous habitats influenced by groundwater flux and geomorphic setting. By coupling terrestrial laser scans with traditional surveys, we create high-resolution facies surfaces that can be integrated with timeseries measurements of other biogeochemical data to characterize changes in habitat conditions during baseflow recession. Compared with traditional survey methods, this method yields improved qualitative descriptions of habitat fragmentation via visualizations and spatially and temporally explicit quantification of aquatic and riparian habitat characteristics that drive salmonid over-summer survival.

  5. Raccoon spatial requirements and multi-scale habitat selection within an intensively managed central Appalachian forest

    USGS Publications Warehouse

    Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall

    2015-01-01

    We studied a raccoon (Procyon lotor) population within a managed central Appalachian hardwood forest in West Virginia to investigate the effects of intensive forest management on raccoon spatial requirements and habitat selection. Raccoon home-range (95% utilization distribution) and core-area (50% utilization distribution) size differed between sexes with males maintaining larger (2×) home ranges and core areas than females. Home-range and core-area size did not differ between seasons for either sex. We used compositional analysis to quantify raccoon selection of six different habitat types at multiple spatial scales. Raccoons selected riparian corridors (riparian management zones [RMZ]) and intact forests (> 70 y old) at the core-area spatial scale. RMZs likely were used by raccoons because they provided abundant denning resources (i.e., large-diameter trees) as well as access to water. Habitat composition associated with raccoon foraging locations indicated selection for intact forests, riparian areas, and regenerating harvest (stands <10 y old). Although raccoons were able to utilize multiple habitat types for foraging resources, a selection of intact forest and RMZs at multiple spatial scales indicates the need of mature forest (with large-diameter trees) for this species in managed forests in the central Appalachians.

  6. Habitat requirements and expected distribution of Alaska coral. Final report

    SciTech Connect

    Cimberg, R.L.; Gerrodette, T.; Muzik, K.

    1981-10-01

    The objectives of the study are to provide the Alaskan OCS office of the Bureau of Land Management with: (1) a compilation and synthesis of information from the literature and other sources regarding the distribution, abundance, habitat requirements, and probable locations of corals along the Alaskan OCS waters; (2) a discussion of the potential effects of oil and gas exploration and development on corals; and (3) recommendations for further studies of corals and the effects of oil and gas exploration and development on these organisms.

  7. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert

    USGS Publications Warehouse

    Sappington, J.M.; Longshore, K.M.; Thompson, D.B.

    2007-01-01

    Terrain ruggedness is often an important variable in wildlife habitat models. Most methods used to quantify ruggedness are indices derived from measures of slope and, as a result, are strongly correlated with slope. Using a Geographic Information System, we developed a vector ruggedness measure (VRM) of terrain based on a geomorphological method for measuring vector dispersion that is less correlated with slope. We examined the relationship of VRM to slope and to 2 commonly used indices of ruggedness in 3 physiographically different mountain ranges within the Mojave Desert of the southwestern United States. We used VRM, slope, distance to water, and springtime bighorn sheep (Ovis canadensis nelsoni) adult female locations to model sheep habitat in the 3 ranges. Using logistic regression, we determined that the importance of ruggedness in habitat selection remained consistent across mountain ranges, whereas the relative importance of slope varied according to the characteristic physiography of each range. Our results indicate that the VRM quantifies local variation in terrain more independently of slope than other methods tested, and that VRM and slope distinguish 2 different components of bighorn sheep habitat.

  8. Quantifying the co-evolution of morphology, hydraulics and spawning habitat in a recently restored gravel-bed river

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Legleiter, C. J.; Wydzga, A. M.; Dunne, T.

    2008-12-01

    An emergent paradigm within restoration science is that restoration of natural physical processes is the best way to restore habitat for native organisms in degraded rivers. This concept, which underpins many restoration projects, is based on the notion that the establishment of an actively migrating, alluvial river channel-floodplain system will provide a number of desired ecological functions, each related to specific physical processes that occur at the habitat-scale. Here we quantify the rates of morphologic change, channel migration and the development of high-quality habitat, using a recently restored gravel-bed reach of the Merced River, California, USA. DEM-derived differences in bed elevation indicate that sediment storage accelerated processes of bar-building, pool scour, and bank erosion, leading to more asymmetric cross- sectional geometry. The volume of sediment stored on developing point bars was correlated with the migration distance of the outer bank, whereas in bends that have not accumulated sediment there has been little erosion, suggesting that channel migration was influenced by sediment supply as well as by channel curvature. The documented channel changes have had marked results on flow hydraulics, leading to decreased velocities over riffles and increased velocities in pools during low flow spawning conditions. Habitat modeling indicates that the quality of Chinook salmon (Oncorhynchus tshawytscha) spawning habitat has improved following the initial channel construction. These changes in morphology, hydraulics and habitat availability occurred primarily during two sustained periods of overbank flow. Collectively, these results highlight the importance of overbank flows and a sediment supply sufficient for bar growth in meander migration and creating channel complexity and high-quality habitat.

  9. Quantifying The Influence Of Time-Since-Creation On Benthic Secondary Production In Created Coastal Habitats

    EPA Science Inventory

    Wetland creation, enhancement, and restoration activities are commonly implemented to compensate for wetland loss or degradation in freshwater and coastal ecosystems. While assessments on structural condition are common in monitoring habitat restoration, functional equivalence i...

  10. Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2007-01-01

    Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.

  11. Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

    SciTech Connect

    Hanrahan, Timothy P.; Larson, Kyle B.

    2012-04-09

    As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating SWH using four different elevation data

  12. Quantifying the role of woody debris in providing bioenergetically favorable habitat for juvenile salmon

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Hafs, A. W.; Utz, R.; Dunne, T.

    2013-12-01

    The habitat complexity of a riverine ecosystem substantially influences aquatic communities, and especially the bioenergetics of drift feeding fish. We coupled hydrodynamic and bioenergetic models to assess the influence of habitat complexity, generated via large woody debris (LWD) additions, on juvenile Chinook salmon (Oncorhynchus tshawytscha) growth potential in a river that lacked large wood. Model simulations indicated that LWD diversified the flow field, creating pronounced velocity gradients, which enhanced fish feeding and resting activities at the micro-habitat (sub-meter) scale. Fluid drag created by individual wood structures was increased under higher wood loading rates, leading to a 5-19% reduction in the reach-averaged velocity. We found that wood loading was asymptotically related to the reach-scale growth potential, suggesting that the river became saturated with LWD and additional loading would produce minimal benefit. In our study reach, LWD additions could potentially quadruple the potential growth area available before that limit was reached. Wood depletion in the world's rivers has been widely documented, leading to widespread attempts by river managers to reverse this trend by adding wood to simplified aquatic habitats, though systematic prediction of the effects of wood on fish growth has not been previously accomplished. We offer a quantitative, theory-based approach for assessing the role of wood on habitat potential as it affects fish growth at the micro-habitat and reach-scales. Fig. 1. Predicted flow field and salmon growth potential maps produced from model simulations with no woody debris (Graphs A and D), a low density (Graphs B and E), and a high density (Graphs C and E) of woody debris.

  13. Quantifying and Mapping Habitat-Based Biodiversity Metrics Within an Ecosystem Services Framework

    EPA Science Inventory

    Ecosystem services have become a key issue of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with econom...

  14. A National Approach for Mapping and Quantifying Habitat-based Biodiversity Metrics Across Multiple Spatial Scales

    EPA Science Inventory

    Ecosystem services, i.e., "services provided to humans from natural systems," have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national inte...

  15. Quantifying forest vertical structure to determine bird habitat quality in the Greenbelt Corridor, Denton, TX

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Shiho

    This study presents the integration of light detection and range (LiDAR) and hyperspectral remote sensing to create a three-dimensional bird habitat map in the Greenbelt Corridor of the Elm Fork of the Trinity River. This map permits to examine the relationship between forest stand structure, landscape heterogeneity, and bird community composition. A biannual bird census was conducted at this site during the breeding seasons of 2009 and 2010. Census data combined with the three-dimensional map suggest that local breeding bird abundance, community structure, and spatial distribution patterns are highly influenced by vertical heterogeneity of vegetation surface. For local breeding birds, vertical heterogeneity of canopy surface within stands, connectivity to adjacent forest patches, largest forest patch index, and habitat (vegetation) types proved to be the most influential factors to determine bird community assemblages. Results also highlight the critical role of secondary forests to increase functional connectivity of forest patches. Overall, three-dimensional habitat descriptions derived from integrated LiDAR and hyperspectral data serve as a powerful bird conservation tool that shows how the distribution of bird species relates to forest composition and structure at various scales.

  16. Quantifying restoration effectiveness using multi-scale habitat models: implications for sage-grouse in the Great Basin

    USGS Publications Warehouse

    Arkle, Robert S.; Pilliod, David S.; Hanser, Steven E.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.; Knutson, Kevin C.; Pyke, David A.; Welty, Justin L.

    2014-01-01

    conditions, but in most climates, establishing forbs and reducing cheatgrass dominance is unlikely. Reestablishing sagebrush cover will require more than 20 years using past restoration methods. Given current fire frequencies and restoration capabilities, protection of landscapes containing a mix of dwarf sagebrush and big sagebrush steppe, minimal human development, and low non-native plant cover may provide the best opportunity for conservation of sage-grouse habitats.

  17. Forest loss and the biodiversity threshold: an evaluation considering species habitat requirements and the use of matrix habitats.

    PubMed

    Estavillo, Candelaria; Pardini, Renata; da Rocha, Pedro Luís Bernardo

    2013-01-01

    Habitat loss is the main driver of the current biodiversity crisis, a landscape-scale process that affects the survival of spatially-structured populations. Although it is well-established that species responses to habitat loss can be abrupt, the existence of a biodiversity threshold is still the cause of much controversy in the literature and would require that most species respond similarly to the loss of native vegetation. Here we test the existence of a biodiversity threshold, i.e. an abrupt decline in species richness, with habitat loss. We draw on a spatially-replicated dataset on Atlantic forest small mammals, consisting of 16 sampling sites divided between forests and matrix habitats in each of five 3600-ha landscapes (varying from 5% to 45% forest cover), and on an a priori classification of species into habitat requirement categories (forest specialists, habitat generalists and open-area specialists). Forest specialists declined abruptly below 30% of forest cover, and spillover to the matrix occurred only in more forested landscapes. Generalists responded positively to landscape heterogeneity, peaking at intermediary levels of forest cover. Open area specialists dominated the matrix and did not spillover to forests. As a result of these distinct responses, we observed a biodiversity threshold for the small mammal community below 30% forest cover, and a peak in species richness just above this threshold. Our results highlight that cross habitat spillover may be asymmetrical and contingent on landscape context, occurring mainly from forests to the matrix and only in more forested landscapes. Moreover, they indicate the potential for biodiversity thresholds in human-modified landscapes, and the importance of landscape heterogeneity to biodiversity. Since forest loss affected not only the conservation value of forest patches, but also the potential for biodiversity-mediated services in anthropogenic habitats, our work indicates the importance of proactive

  18. Quantifying the effects of trampling and habitat edges on forest understory vegetation--a field experiment.

    PubMed

    Hamberg, Leena; Malmivaara-Lämsä, Minna; Lehvävirta, Susanna; O'Hara, Robert B; Kotze, D Johan

    2010-09-01

    We investigated the effects of human trampling on boreal forest understory vegetation on, and off paths from suburban forest edges towards the interiors and on the likelihood of trampling-aided dispersal into the forests for three years by carrying out a trampling experiment. We showed that the vegetation was highly sensitive to trampling. Even low levels of trampling considerably decreased covers of the most abundant species on the paths. Cover decreased between 10 and 30% on paths which had been trampled 35 times, and at least by 50% on those trampled 70-270 times. On-path vegetation cover decreased similarly at forest edges and in the interiors. However, some open habitat plant species that occurred outside the forest patches and at forest edges dispersed into the forests, possibly through the action of trampling. A higher cover percentage of an open habitat species at the forest edge line increased its probability to disperse into the forest interior. The vegetation community on, next to, and away from lightly trampled paths remained the same throughout the trampling experiment. For heavily trampled paths, the community changed drastically on the paths, but stayed relatively similar next to and away from the paths. As boreal vegetation is highly sensitive to the effects of trampling, overall ease of access throughout the forest floor should be restricted to avoid the excessive creation of spontaneous paths. To minimize the effects of trampling, recreational use could be guided to the maintained path network in heavily used areas. PMID:20434828

  19. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    USGS Publications Warehouse

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  20. Quantifying the importance of patch-specific changes in habitat to metapopulation viability of an endangered songbird.

    PubMed

    Horne, Jon S; Strickler, Katherine M; Alldredge, Mathew

    2011-10-01

    A growing number of programs seek to facilitate species conservation using incentive-based mechanisms. Recently, a market-based incentive program for the federally endangered Golden-cheeked Warbler (Dendroica chrysoparia) was implemented on a trial basis at Fort Hood, an Army training post in Texas, USA. Under this program, recovery credits accumulated by Fort Hood through contracts with private landowners are used to offset unintentional loss of breeding habitat of Golden-cheeked Warblers within the installation. Critical to successful implementation of such programs is the ability to value, in terms of changes to overall species viability, both habitat loss and habitat restoration or protection. In this study, we sought to answer two fundamental questions: Given the same amount of change in breeding habitat, does the change in some patches have a greater effect on metapopulation persistence than others? And if so, can characteristics of a patch (e.g., size or spatial location) be used to predict how the metapopulation will respond to these changes? To answer these questions, we describe an approach for using sensitivity analysis of a metapopulation projection model to predict how changes to specific habitat patches would affect species viability. We used a stochastic, discrete-time projection model based on stage-specific estimates of survival and fecundity, as well as various assumptions about dispersal among populations. To assess a particular patch's leverage, we quantified how much metapopulation viability was expected to change in response to changing the size of that patch. We then related original patch size and distance from the largest patch to each patch's leverage to determine if general patch characteristics could be used to develop guidelines for valuing changes to patches within a metapopulation. We found that both the characteristic that best predicted patch leverage and the magnitude of the relationship changed under different model scenarios

  1. Assessment of Habitat and Streamflow Requirements for Habitat Protection, Usquepaug-Queen River, Rhode Island, 1999-2000

    USGS Publications Warehouse

    Armstrong, David S.; Parker, Gene W.

    2003-01-01

    species that would have been expected to occur in this area. Streamflow records from the gaging station Usquepaug River near Usquepaug were used to (1) determine streamflow requirements for habitat protection by use of the Tennant method, and (2) define a flow regime that mimics the river's natural flow regime by use of the Range of Variability Approach. The Tennant streamflow requirement, defined as 30 percent of the mean annual flow, was 0.64 cubic feet per second per square mile (ft3/s/mi2). This requirement should be considered an initial estimate because flows measured at the Usquepaug River gaging station are reduced by water withdrawals upstream from the gage. The streamflow requirements may need to be revised once a watershed-scale precipitationrunoff model of the Usquepaug River is complete and a simulation of streamflows without water withdrawals has been determined. Streamflow requirements for habitat protection were also determined at seven riffle sites by use of the Wetted-Perimeter and R2Cross methods. Two of these sites were on the mainstem Usquepaug River, one was on the mainstem Queen River, and four were on tributaries and the headwaters of the Queen River. Median streamflow requirements for habitat protection for these sites were 0.41 (ft3/s)/mi2, determined by the Wetted-Perimeter method and 0.72 ft3/s/mi2, determined by the R2Cross method.

  2. Habitat requirements of New Mexico’s endangered salamanders

    USGS Publications Warehouse

    Ramotnik, Cindy A.; Scott, N.J.

    1988-01-01

    We measured habitat components for two state-listed endangered salamanders in New Mexico in 1986 and 1987. Both species are restricted to mesic environments within high-elevation, mixed coniferous forests. Steep slope and high elevation were the most useful variables for predicting the occurrence of Jemez Mountains salamanders and Sacramento Mountain salamanders, respectively. Although the discriminant models show some predictive value in detecting salamanders based on habitat variables, we believe that the best survey technique is ground-truth surveys in wet weather. A better fit of the discriminant models might be obtained by including variables not measured e.g., fire and logging history, and soil characteristics. We offer interim management guidelines as a result of our analysis.

  3. Representing connectivity: quantifying effective habitat availability based on area and connectivity for conservation status assessment and recovery

    PubMed Central

    Tumas, Hayley R.; Marsden, Brittany W.

    2014-01-01

    We apply a comprehensive suite of graph theoretic metrics to illustrate how landscape connectivity can be effectively incorporated into conservation status assessments and in setting conservation objectives. These metrics allow conservation practitioners to evaluate and quantify connectivity in terms of representation, resiliency, and redundancy and the approach can be applied in spite of incomplete knowledge of species-specific biology and dispersal processes. We demonstrate utility of the graph metrics by evaluating changes in distribution and connectivity that would result from implementing two conservation plans for three endangered plant species (Erigeron parishii, Acanthoscyphus parishii var. goodmaniana, and Eriogonum ovalifolium var. vineum) relative to connectivity under current conditions. Although distributions of the species differ from one another in terms of extent and specific location of occupied patches within the study landscape, the spatial scale of potential connectivity in existing networks were strikingly similar for Erigeron and Eriogonum, but differed for Acanthoscyphus. Specifically, patches of the first two species were more regularly distributed whereas subsets of patches of Acanthoscyphus were clustered into more isolated components. Reserves based on US Fish and Wildlife Service critical habitat designation would not greatly contribute to maintain connectivity; they include 83–91% of the extant occurrences and >92% of the aerial extent of each species. Effective connectivity remains within 10% of that in the whole network for all species. A Forest Service habitat management strategy excluded up to 40% of the occupied habitat of each species resulting in both range reductions and loss of occurrences from the central portions of each species’ distribution. Overall effective network connectivity was reduced to 62–74% of the full networks. The distance at which each CHMS network first became fully connected was reduced relative to the

  4. Representing connectivity: quantifying effective habitat availability based on area and connectivity for conservation status assessment and recovery.

    PubMed

    Neel, Maile; Tumas, Hayley R; Marsden, Brittany W

    2014-01-01

    We apply a comprehensive suite of graph theoretic metrics to illustrate how landscape connectivity can be effectively incorporated into conservation status assessments and in setting conservation objectives. These metrics allow conservation practitioners to evaluate and quantify connectivity in terms of representation, resiliency, and redundancy and the approach can be applied in spite of incomplete knowledge of species-specific biology and dispersal processes. We demonstrate utility of the graph metrics by evaluating changes in distribution and connectivity that would result from implementing two conservation plans for three endangered plant species (Erigeron parishii, Acanthoscyphus parishii var. goodmaniana, and Eriogonum ovalifolium var. vineum) relative to connectivity under current conditions. Although distributions of the species differ from one another in terms of extent and specific location of occupied patches within the study landscape, the spatial scale of potential connectivity in existing networks were strikingly similar for Erigeron and Eriogonum, but differed for Acanthoscyphus. Specifically, patches of the first two species were more regularly distributed whereas subsets of patches of Acanthoscyphus were clustered into more isolated components. Reserves based on US Fish and Wildlife Service critical habitat designation would not greatly contribute to maintain connectivity; they include 83-91% of the extant occurrences and >92% of the aerial extent of each species. Effective connectivity remains within 10% of that in the whole network for all species. A Forest Service habitat management strategy excluded up to 40% of the occupied habitat of each species resulting in both range reductions and loss of occurrences from the central portions of each species' distribution. Overall effective network connectivity was reduced to 62-74% of the full networks. The distance at which each CHMS network first became fully connected was reduced relative to the full

  5. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization

    EPA Science Inventory

    The maximum depth of colonization (Zc) is a useful measure of seagrass growth that describes response to light attenuation in the water column. However, lack of standardization among methods for estimating Zc has limited the description of habitat requirements at spatial scales m...

  6. Habitat Suitability Index Models: Marten

    USGS Publications Warehouse

    Allen, Arthur W.

    1982-01-01

    Habitat preferences and species characteristics of the pine marten (Martes americana) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available scientific data on the species-habitat requirements of the pine marten. Habitat use information is presented in a review of the literature, followed by the development of a HSI model. The model is presented in three formats: graphic, word and mathematical. Suitability index graphs quantify the species-habitat relationship. These data are then synthesized into a model which is designed to provide information for use in impact assessment and habitat management activities.

  7. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1989-1990 Annual Report.

    SciTech Connect

    Nigro, Anthony A.

    1990-09-01

    We report on our progress from April 1989 through March 1990 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from McNary Dam, to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam, to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams, and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights from this work is also included. 47 refs., 33 figs., 66 tabs.

  8. Assessment of Habitat, Fish Communities, and Streamflow Requirements for Habitat Protection, Ipswich River, Massachusetts, 1998-99

    USGS Publications Warehouse

    Armstrong, David S.; Richards, Todd A.; Parker, Gene W.

    2001-01-01

    The relations among stream habitat, fish communities, and hydrologic conditions were investigated in the Ipswich River Basin in northeastern Massachusetts. Data were assessed from 27 sites on the mainstem of the Ipswich River from July to September 1998 and from 10 sites on 5 major tributaries in July and August 1999. Habitat assessments made in 1998 determined that in a year with sustained streamflow for most of the summer, the Ipswich River contains diverse, high-quality aquatic habitat. Channel types are predominantly low gradient glides, pools, and impoundments, with a sandy streambed and a forest or shrub riparian zone. Features that provide fish habitat are located mostly along stream margins; these features include overhanging brush, undercut banks, exposed roots, and woody debris. These habitat features decrease in availability to aquatic communities with declining streamflows and generally become unavailable after streamflows drop to the point where the edge of water recedes from the stream banks.The mainstem and tributaries were sampled to determine fish species composition, relative abundance, and length frequency. Fish sampling indicates that the fish community in the Ipswich River is currently a warm-water fish community dominated by pond-type fish. However, historical temperature data, and survival of stocked trout in the mainstem Ipswich into late summer of 1998, indicate that the Ipswich River potentially could support cold-water fish species if adequate flows are maintained. Dominant fish species sampled in the mainstem Ipswich River were redfin pickerel (Esox americanus), American eel (Anguilla rostrata), and pumpkinseed (Lepomis gibbosus), which together represented 41, 22, and 10 percent, respectively, of 4,745 fish sampled. The fish communities of the mainstem and tributaries contained few fluvial-dependent or fluvial-specialist species (requiring flow), and were dominated by macrohabitat generalists (tolerant of low-flow, warm-water, and

  9. Marine mammal and habitat monitoring: Requirements; principles; needs; and approaches

    SciTech Connect

    Swartz, S.L.; Hofman, R.J.

    1991-08-01

    The paper discusses the intents and provisions of section 101(a)(5) of the Marine Mammal Protection Act which allows the Secretaries of the Interior and Commerce to authorize the unintentional taking of small numbers of marine mammals incidental to offshore oil and gas development and other such activities. It explains the rationale for and describes the types of site-specific and population monitoring programs required to document the manner and level of take and to verify that the take has negligible effects on the distribution, size, and productivity of the affected species and populations.

  10. Habitat requirements and burrowing depths of rodents in relation to shallow waste burial sites

    SciTech Connect

    Gano, K.A.; States, J.B.

    1982-05-01

    The purpose of this paper is to provide a review of the literature and summarize information on factors affecting habitat selection and maximum recorded burrowing depths for representative small mammals that we consider most likely to inhibit waste burial sites in arid and semi-arid regions of the West. The information is intended for waste management designers who need to know what to expect from small mammals that may be present at a particular site. Waste repositories oculd be designed to exclude the deep burrowing rodents of a region by creating an unattractive habitat over the waste. Summaries are given for habitat requirements of each group along with generalized modifications that could be employed to deter habitation. Representatives from the major groups considered to be deep burrowers are discussed. Further, detailed information about a particular species can be obtained from the references cited.

  11. Applying coupled flow and sediment-transport models to understanding habitat requirements and availability.

    NASA Astrophysics Data System (ADS)

    McDonald, R. R.; Nelson, J. M.

    2006-12-01

    Understanding the relationship between habitat requirements and the magnitude and duration of flow and sediment supply is an important component of both habitat assessment and restoration strategies. Fish habitat is often defined in terms of velocity, depth or substrate composition; locations where combinations of these factors meet habitat requirements depend on channel morphology, flow magnitude, and, in rivers with mobile beds, time-varying change in channel morphology. Because coupled multi-dimensional flow and sediment transport models provide spatially distributed information on flow and other hydraulic quantities, they permit detailed delineation of habitat. Furthermore, they can be used directly to understand how flow magnitude and duration and sediment supply control channel change and habitat availability. We present an example to illustrate how such models can be used in investigations of fish spawning habitat and availability. In the Kootenai River, Idaho, comparison of observed spawning locations with model derived spatial distributions of depths and velocities suggests that white sturgeon utilize the largest available velocity and depth within an 18-kilometer spawning reach over a range of discharges. This is a somewhat more selective criterion than a simple specification of a range of velocity or depth magnitudes, which illustrates the importance of evaluating habitat over a full range of discharge magnitudes. Observations also suggest that spawning currently occurs over a sandy substrate resulting in suffocation of eggs and little to no recruitment of juvenile sturgeon since closure of Libby Dam in 1974. Extending flow modeling to incorporate sediment- transport and bed evolution suggests that a relatively high magnitude long duration discharge can remove sandy substrate, thereby exposing a coarse gravel lag deposit in some areas and providing needed spawning substrate. These results were qualitatively validated through video surveys of channel

  12. Quantifying flow-dependent changes in subyearling fall chinook salmon rearing habitat using two-dimensional spatially explicit modeling

    USGS Publications Warehouse

    Tiffan, K.F.; Garland, R.D.; Rondorf, D.W.

    2002-01-01

    We used an analysis based on a geographic information system (GIS) to determine the amount of rearing habitat and stranding area for subyearling fall chinook salmon Oncorhynchus tshawytscha in the Hanford Reach of the Columbia River at steady-state flows ranging from 1,416 to 11,328 m3/s. High-resolution river channel bathymetry was used in conjunction with a two-dimensional hydrodynamic model to estimate water velocities, depths, and lateral slopes throughout our 33-km study area. To relate the probability of fish presence in nearshore habitats to measures of physical habitat, we developed a logistic regression model from point electrofishing data. We only considered variables that were compatible with a GIS and therefore excluded other variables known to be important to juvenile salmonids. Water velocity and lateral slope were the only two variables included in our final model. The amount of available rearing habitat generally decreased as flow increased, with the greatest decreases occurring between 1,416 and 4,814 m3/s. When river discharges were between 3,682 and 7,080 m3/s, flow fluctuations of 566 m3/s produced the smallest change in available rearing area (from -6.3% to +6.8% of the total). Stranding pool area was greatly reduced at steady-state flows exceeding 4,531 m3/s, but the highest net gain in stranding area was produced by 850 m3/s decreases in flow when river discharges were between 5,381 and 5,664 m3/s. Current measures to protect rearing fall chinook salmon include limiting flow fluctuations at Priest Rapids Dam to 850 m3/s when the dam is spilling water and when the weekly flows average less than 4,814 m3/s. We believe that limiting flow fluctuations at all discharges would further protect subyearling fall chinook salmon.

  13. Conceptual model for quantifying pre-smolt production from flow-dependent physical habitat and water temperature

    USGS Publications Warehouse

    Williamson, S. C.; Bartholow, J. M.; Stalnaker, C. B.

    1993-01-01

    A conceptual model has been developed to test river regulation concepts by linking physical habitat and water temperature with salmonid population and production in cold water streams. Work is in progress to examine numerous questions as part of flow evaluation and habitat restoration programmes in the Trinity River of California and elsewhere. For instance, how much change in pre-smolt chinook salmon (Oncorhynchus tshawytscha) production in the Trinity River would result from a different annual instream allocation (i.e. up or down from 271 × 106 m3 released in the late 1980s) and how much change in pre-smolt production would result from a different release pattern (i.e. different from the 8.5 m3 s−1 year-round release). The conceptual model is being used to: design, integrate and improve young-of-year population data collection efforts; test hypotheses that physical habitat significantly influences movement, growth and mortality of salmonid fishes; and analyse the relative severity of limiting factors during each life stage. The conceptual model, in conjunction with previously developed tools in the Instream Flow Incremental Methodology, should provide the means to more effectively manage a fishery resource below a regulated reservoir and to provide positive feedback to planning of annual reservoir operations.

  14. Habitat area requirements of breeding forest birds of the middle Atlantic states

    USGS Publications Warehouse

    Robbins, Chandler S.; Dawson, Deanna K.; Dowell, Barbara A.

    1989-01-01

    Conservation of birds requires an understanding of their nesting requirements, including area as well as structural characteristics of the habitat. Previous studies have shown that many neotropical migrant bird species seem to depend on extensive forested areas, but the specific area requirements of individual species have not been clarified sufficiently to aid in design and management of effective preserves. For this 5-year study, bird and vegetation data were obtained at 469 points in forests ranging in area from 0.1 ha to more than 3,000 ha in Maryland and adjacent states. Data were analyzed first by stepwise regression to identify habitat factors that had the greatest influence on relative abundance of each bird species. In the relatively undisturbed mature forests studied, degree of isolation and area were significant predictors of relative abundance for more bird species than were any habitat variables. For species for which forest area was a significant predictor of abundance, we used logistic regression to examine the relationship between forest area and the probability of detecting the species. In managing forest lands for wildlife, top priority should go toward providing for the needs of area-sensitive or rare species rather than increasing species diversity per se. Avian species that occur in small and disturbed forests are generalists that are adapted to survival under edge conditions and need no special assistance from man. Forest reserves with thousands of hectares are required to have the highest probability of providing for the least common species of forest birds in a region. However, if preservation of large contiguous forest tracts is not a realistic option, results of this study suggest 2 alternative approaches. First, if other habitat attributes also are considered, smaller forests may provide suitable breeding sites for relatively rare species. Second, smaller tracts in close proximity to other forests may serve to attract or retain area

  15. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    PubMed

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. PMID:25402260

  16. Defining environmental flows requirements at regional scale by using meso-scale habitat models and catchments classification

    NASA Astrophysics Data System (ADS)

    Vezza, Paolo; Comoglio, Claudio; Rosso, Maurizio

    2010-05-01

    oxygen were collected for each sampled area and considered as independent variables. According to the MesoHABSIM method, we performed a stepwise forward logistic regression in order to build up a biological model identifying the habitat characteristics mostly used by a target fish. For each stream we predicted changes in habitat area over a range of discharges by building the habitat-flow rating curves. Finally, in order to define a regional criteria needed to fulfill environmental flow requirements, we split the study domain according to the regression tree classification criterion defining homogenous sub-regions distinct on both environmental flows and catchment characteristics.

  17. Virtual environment to quantify the influence of colour stimuli on the performance of tasks requiring attention

    PubMed Central

    2011-01-01

    Background Recent studies indicate that the blue-yellow colour discrimination is impaired in ADHD individuals. However, the relationship between colour and performance has not been investigated. This paper describes the development and the testing of a virtual environment that is capable to quantify the influence of red-green versus blue-yellow colour stimuli on the performance of people in a fun and interactive way, being appropriate for the target audience. Methods An interactive computer game based on virtual reality was developed to evaluate the performance of the players. The game's storyline was based on the story of an old pirate who runs across islands and dangerous seas in search of a lost treasure. Within the game, the player must find and interpret the hints scattered in different scenarios. Two versions of this game were implemented. In the first, hints and information boards were painted using red and green colours. In the second version, these objects were painted using blue and yellow colours. For modelling, texturing, and animating virtual characters and objects the three-dimensional computer graphics tool Blender 3D was used. The textures were created with the GIMP editor to provide visual effects increasing the realism and immersion of the players. The games were tested on 20 non-ADHD volunteers who were divided into two subgroups (A1 and A2) and 20 volunteers with ADHD who were divided into subgroups B1 and B2. Subgroups A1 and B1 used the first version of the game with the hints painted in green-red colors, and subgroups A2 and B2 the second version using the same hints now painted in blue-yellow. The time spent to complete each task of the game was measured. Results Data analyzed with ANOVA two-way and posthoc TUKEY LSD showed that the use of blue/yellow instead of green/red colors decreased the game performance of all participants. However, a greater decrease in performance could be observed with ADHD participants where tasks, that require

  18. Habitat and logistic support requirements for the initiation of a space manufacturing enterprise

    NASA Technical Reports Server (NTRS)

    Vajk, J. P.; Engel, J. H.; Shettler, J. A.

    1979-01-01

    A detailed scenario for the initiation of a space manufacturing enterprise using lunar materials to construct solar power satellites (SPS) was developed, with particular attention to habitat design and logistic support requirements. If SPS's can be constructed exclusively from lunar materials, the entire enterprise can be initiated in a 7 year period of launch activity (beginning as early as 1985) using the Space Shuttle and a low-cost, Shuttle-derived heavy lift vehicle. If additional chemical feedstocks must be imported from earth in significant quantities, it may be necessary to bring the next-generation launch vehicle (single-stage-to-orbit) into operation by 1991. The scenario presented features use of the mass-driver reaction engine for orbit-to-orbit transfer of cargos and makes extensive use of the expendable Shuttle external propellant tanks.

  19. Human disturbance and stage-specific habitat requirements influence snowy plover site occupancy during the breeding season.

    PubMed

    Webber, Alyson F; Heath, Julie A; Fischer, Richard A

    2013-04-01

    Habitat use has important consequences for avian reproductive success and survival. In coastal areas with recreational activity, human disturbance may limit use of otherwise suitable habitat. Snowy plovers Charadrius nivosus have a patchy breeding distribution along the coastal areas on the Florida Panhandle, USA. Our goal was to determine the relative effects of seasonal human disturbance and habitat requirements on snowy plover habitat use. We surveyed 303 sites for snowy plovers, human disturbance, and habitat features between January and July 2009 and 2010. We made multiple visits during three different sampling periods that corresponded to snowy plover breeding: pre-breeding, incubation, and brood-rearing and used multi-season occupancy models to examine whether human disturbance, habitat features, or both influenced site occupancy, colonization (probability of transition from an unoccupied site to an occupied site), and extinction (probability of transition from an occupied site to an unoccupied site). Snowy plover site occupancy and colonization was negatively associated with human disturbance and site extinction was positively associated with human disturbance. Interdune vegetation had a negative effect on occupancy and colonization, indicating that plovers were less likely to use areas with uniform, dense vegetation among dunes. Also, dune shape, beach debris, and access to low-energy foraging areas influenced site occupancy, colonization, and extinction. Plovers used habitat based on beach characteristics that provided stage-specific resource needs; however, human disturbance was the strongest predictor of site occupancy. In addition, vegetation plantings used to enhance dune rehabilitation may negatively impact plover site occupancy. Management actions that decrease human disturbance, such as symbolic fencing and signage, may increase the amount of breeding habitat available to snowy plovers on the Florida Panhandle and in other areas with high human

  20. Human disturbance and stage-specific habitat requirements influence snowy plover site occupancy during the breeding season

    PubMed Central

    Webber, Alyson F; Heath, Julie A; Fischer, Richard A

    2013-01-01

    Habitat use has important consequences for avian reproductive success and survival. In coastal areas with recreational activity, human disturbance may limit use of otherwise suitable habitat. Snowy plovers Charadrius nivosus have a patchy breeding distribution along the coastal areas on the Florida Panhandle, USA. Our goal was to determine the relative effects of seasonal human disturbance and habitat requirements on snowy plover habitat use. We surveyed 303 sites for snowy plovers, human disturbance, and habitat features between January and July 2009 and 2010. We made multiple visits during three different sampling periods that corresponded to snowy plover breeding: pre-breeding, incubation, and brood-rearing and used multi-season occupancy models to examine whether human disturbance, habitat features, or both influenced site occupancy, colonization (probability of transition from an unoccupied site to an occupied site), and extinction (probability of transition from an occupied site to an unoccupied site). Snowy plover site occupancy and colonization was negatively associated with human disturbance and site extinction was positively associated with human disturbance. Interdune vegetation had a negative effect on occupancy and colonization, indicating that plovers were less likely to use areas with uniform, dense vegetation among dunes. Also, dune shape, beach debris, and access to low-energy foraging areas influenced site occupancy, colonization, and extinction. Plovers used habitat based on beach characteristics that provided stage-specific resource needs; however, human disturbance was the strongest predictor of site occupancy. In addition, vegetation plantings used to enhance dune rehabilitation may negatively impact plover site occupancy. Management actions that decrease human disturbance, such as symbolic fencing and signage, may increase the amount of breeding habitat available to snowy plovers on the Florida Panhandle and in other areas with high human

  1. Biodiversity: Habitat Suitability

    EPA Science Inventory

    Habitat suitability quantifies the relationship between species and habitat, and is evaluated according to the species’ fitness (i.e. proportion of birth rate to death rate). Even though it might maximize evolutionary success, species are not always in habitat that optimizes fit...

  2. A Methodology for Quantifying Certain Design Requirements During the Design Phase

    NASA Technical Reports Server (NTRS)

    Adams, Timothy; Rhodes, Russel

    2005-01-01

    A methodology for developing and balancing quantitative design requirements for safety, reliability, and maintainability has been proposed. Conceived as the basis of a more rational approach to the design of spacecraft, the methodology would also be applicable to the design of automobiles, washing machines, television receivers, or almost any other commercial product. Heretofore, it has been common practice to start by determining the requirements for reliability of elements of a spacecraft or other system to ensure a given design life for the system. Next, safety requirements are determined by assessing the total reliability of the system and adding redundant components and subsystems necessary to attain safety goals. As thus described, common practice leaves the maintainability burden to fall to chance; therefore, there is no control of recurring costs or of the responsiveness of the system. The means that have been used in assessing maintainability have been oriented toward determining the logistical sparing of components so that the components are available when needed. The process established for developing and balancing quantitative requirements for safety (S), reliability (R), and maintainability (M) derives and integrates NASA s top-level safety requirements and the controls needed to obtain program key objectives for safety and recurring cost (see figure). Being quantitative, the process conveniently uses common mathematical models. Even though the process is shown as being worked from the top down, it can also be worked from the bottom up. This process uses three math models: (1) the binomial distribution (greaterthan- or-equal-to case), (2) reliability for a series system, and (3) the Poisson distribution (less-than-or-equal-to case). The zero-fail case for the binomial distribution approximates the commonly known exponential distribution or "constant failure rate" distribution. Either model can be used. The binomial distribution was selected for

  3. Quantifying the thermal heat requirement of Brassica in assessing biophysical parameters under semi-arid microenvironments

    NASA Astrophysics Data System (ADS)

    Adak, Tarun; Chakravarty, N. V. K.

    2010-07-01

    Evaluation of the thermal heat requirement of Brassica spp. across agro-ecological regions is required in order to understand the further effects of climate change. Spatio-temporal changes in hydrothermal regimes are likely to affect the physiological growth pattern of the crop, which in turn will affect economic yields and crop quality. Such information is helpful in developing crop simulation models to describe the differential thermal regimes that prevail at different phenophases of the crop. Thus, the current lack of quantitative information on the thermal heat requirement of Brassica crops under debranched microenvironments prompted the present study, which set out to examine the response of biophysical parameters [leaf area index (LAI), dry biomass production, seed yield and oil content] to modified microenvironments. Following 2 years of field experiments on Typic Ustocrepts soils under semi-arid climatic conditions, it was concluded that the Brassica crop is significantly responsive to microenvironment modification. A highly significant and curvilinear relationship was observed between LAI and dry biomass production with accumulated heat units, with thermal accumulation explaining ≥80% of the variation in LAI and dry biomass production. It was further observed that the economic seed yield and oil content, which are a function of the prevailing weather conditions, were significantly responsive to the heat units accumulated from sowing to 50% physiological maturity. Linear regression analysis showed that growing degree days (GDD) could indicate 60-70% variation in seed yield and oil content, probably because of the significant response to differential thermal microenvironments. The present study illustrates the statistically strong and significant response of biophysical parameters of Brassica spp. to microenvironment modification in semi-arid regions of northern India.

  4. Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments.

    PubMed

    Rösch, Verena; Tscharntke, Teja; Scherber, Christoph; Batáry, Péter

    2015-09-01

    Agricultural intensification has been shown to reduce biodiversity through processes such as habitat degradation and fragmentation. We tested whether several small or single large habitat fragments (re-visiting the 'single large or several small' debate) support more species across a wide range of taxonomic groups (plants, leafhoppers, true bugs, snails). Our study comprised 14 small (<1 ha) and 14 large (1.5-8 ha) fragments of calcareous grassland in Central Germany along orthogonal gradients of landscape complexity and habitat connectivity. Each taxon was sampled on six plots per fragment. Across taxa, species richness did not differ between large and small fragments, whereas species-area accumulation curves showed that both overall and specialist species richness was much higher on several small fragments of calcareous grassland than on few large fragments. On average, 85% of the overall species richness was recorded on all small fragments taken together (4.6 ha), whereas the two largest ones (15.1 ha) only accounted for 37% of the species. This could be due to the greater geographic extent covered by many small fragments. However, community composition differed strongly between large and small fragments, and some of the rarest specialist species appeared to be confined to large fragments. The surrounding landscape did not show any consistent effects on species richness and community composition. Our results show that both single large and many small fragments are needed to promote landscape-wide biodiversity across taxa. We therefore question the focus on large fragments only and call for a new diversified habitat fragmentation strategy for biodiversity conservation. PMID:25911274

  5. The Effects of Reducing the Structural Mass of the Transit Habitat on the Cryogenic Propellant Required for a Human Phobos Mission

    NASA Technical Reports Server (NTRS)

    Zipay, John J.

    2016-01-01

    A technique for rapidly determining the relationship between the pressurized volume, structural mass and the cryogenic propellant required to be delivered to Earth orbit for a Mars Transit Habitat is provided. This technique is based on assumptions for the required delta-V's, the Exploration Upper Stage performance and the historical structural masses for human spacecraft from Mercury Program through the International Space Station. If the Mars Transit Habitat is constructed from aluminum, structural mass estimates based on the habitat pressurized volume are accurate to within 15 percent. Other structural material options for the Mars Transit Habitat are also evaluated. The results show that small, achievable reductions in the structural mass of the Transit Habitat can save tens of thousands of pounds of cryogenic propellant that need to be delivered to Earth orbit for a human Phobos Mission.

  6. The chimpanzee nest quantified: morphology and ecology of arboreal sleeping platforms within the dry habitat site of Toro-Semliki Wildlife Reserve, Uganda.

    PubMed

    Samson, David R

    2012-10-01

    The nightly construction of a sleeping platform (SP) or "nest" is widely regarded as a universal behavior among great apes, yet SP structural morphology has been incompletely quantified to date. This is in part due to the inherent difficulties of gathering empirical data on arboreally sited SPs. I gathered quantitative structural data on SPs (n = 65) at the Toro-Semliki Wildlife Reserve from May to June 2008 and from August 2010 to January 2011. I measured SP length (semi-major axis length), width (semi-minor axis length), radii (length from the surface center to the rim edge 45° from the axis), depth (width of the concavity from the surface center to the parallel rim), and thickness (ventral center to the dorsal underside of the SP). SP complexity was defined with a scored index. SP complexity was found to be correlated with SP circumference, surface area, mass, proportion of soft leafy material to hard woody material, number of frame support branches used in its construction, and other measures that are argued to index "comfort." In addition, the height of the tree canopy above the SP was negatively correlated with SP complexity. Greater complexity (and therefore stability) is argued to maintain SP integrity, stability and restraint in the face of greater wind speeds, thereby reducing the probability of falls. Given the observation that males site SPs lower than females (Fruth and Hohmann, Ethology 94:113-126, 1994; Brownlow et al., Am J Primatol 55:49-55, 2001), and that SP diameters were greater for SPs sited low in the canopy at Semliki, it is inferred that more massive males benefit from lower climbing expenses and greater stability. These data support Baldwin and colleagues' (Primates 22:474-486, 1981) hypothesis that the principal advantage of SPs over open-branch sleeping sites is the greater stability required by large-bodied great apes. PMID:22555951

  7. Quantifying remaining forested habitat within the historic distribution of the cotton-top tamarin (Saguinus oedipus) in Colombia: Implications for long-term conservation.

    PubMed

    Miller, L; Savage, A; Giraldo, H

    2004-12-01

    Landsat Thematic Mapper (TM) data were used to classify forested areas within the historic distribution of the endangered cotton-top tamarin (Saguinus oedipus) in Colombia. This species continues to be threatened by habitat destruction, and we observed a 31% decrease of the forested habitat within the tamarins' historic distribution in 1990-2000. It is estimated that since the establishment of some protected areas for cotton-top tamarins and other native Colombian wildlife (Parque Nacional Natural Paramillo, Santuario de Fauna y Flora Los Colorados, and Reserva Forestal de Montes de Maria), almost 43% of the original forested area has been lost. Given that the human population of Colombia increases annually by 1.6% [Patel, 2002], it is important to target specific areas for tamarin protection while creating mitigation strategies to compensate for economic growth. The results of this study provide valuable information to assist in the long-term development of effective conservation strategies for this endangered primate. PMID:15580586

  8. Atrial Fibrosis Quantified Using Late Gadolinium Enhancement MRI is Associated With Sinus Node Dysfunction Requiring Pacemaker Implant

    PubMed Central

    Akoum, Nazem; Mcgann, Christopher; Vergara, Gaston; Badger, Troy; Ranjan, Ravi; Mahnkopf, Christian; Kholmovski, Eugene; Macleod, Rob; Marrouche, Nassir

    2015-01-01

    Introduction Sinus node dysfunction (SND) commonly manifests with atrial arrhythmias alternating with sinus pauses and sinus bradycardia. The underlying process is thought to be because of atrial fibrosis. We assessed the value of atrial fibrosis, quantified using Late Gadolinium Enhanced-MRI (LGE-MRI), in predicting significant SND requiring pacemaker implant. Methods Three hundred forty-four patients with atrial fibrillation (AF) presenting for catheter ablation underwent LGE-MRI. Left atrial (LA) fibrosis was quantified in all patients and right atrial (RA) fibrosis in 134 patients. All patients underwent catheter ablation with pulmonary vein isolation with posterior wall and septal debulking. Patients were followed prospectively for 329 ± 245 days. Ambulatory monitoring was instituted every 3 months. Symptomatic pauses and bradycardia were treated with pacemaker implantation per published guidelines. Results The average patient age was 65 ± 12 years. The average wall fibrosis was 16.7 ± 11.1% in the LA, and 5.3 ± 6.4% in the RA. RA fibrosis was correlated with LA fibrosis (R2 = 0.26; P < 0.01). Patients were divided into 4 stages of LA fibrosis (Utah I: <5%, Utah II: 5–20%, Utah III: 20–35%, Utah IV: >35%). Twenty-two patients (mean atrial fibrosis, 23.9%) required pacemaker implantation during follow-up. Univariate and multivariate analysis identified LA fibrosis stage (OR, 2.2) as a significant predictor for pacemaker implantation with an area under the curve of 0.704. Conclusions In patients with AF presenting for catheter ablation, LGE-MRI quantification of atrial fibrosis demonstrates preferential LA involvement. Significant atrial fibrosis is associated with clinically significant SND requiring pacemaker implantation. PMID:21806700

  9. HABITAT FINGERPRINTS FOR LAKE SUPERIOR COASTAL WETLANDS DERIVED FROM ELEMENTAL ANALYSIS OF YELLOW PERCH OTOLITHS

    EPA Science Inventory

    Assessing the ecological importance of coastal habitats to Great Lakes ecosystems requires an understanding of the ecological linkages between coastal and offshore waters. . . . Our results suggest that otolith elemental fingerprints may be useful for quantifying the relative con...

  10. Development of a Habitat Suitability Index Model for the Sage Sparrow on the Hanford Site

    SciTech Connect

    Duberstein, Corey A.; Simmons, Mary Ann; Sackschewsky, Michael R.; Becker, James M.

    2008-01-01

    Mitigation threshold guidelines for the Hanford Site are based on habitat requirements of the sage sparrow (Amphispiza belli) and only apply to areas with a mature sagebrush (Artemisia tridentata) overstory and a native understory. The sage sparrow habitat requirements are based on literature values and are not specific to the Hanford Site. To refine these guidelines for the Site, a multi-year study was undertaken to quantify habitat characteristics of sage sparrow territories. These characteristics were then used to develop a habitat suitability index (HSI) model which can be used to estimate the habitat value of specific locations on the Site.

  11. Quantifying the discrepancy between regional climate and climate in the micro-habitats of a rare, endemic plant of the Alps

    NASA Astrophysics Data System (ADS)

    Patsiou, Theofania-Sotiria; Conti, Elena; Theodoridis, Spyros; Körner, Christian; Randin, Christophe-François

    2014-05-01

    Alpine vegetation is predicted to be extremely vulnerable to climate change. Effects of ongoing climate warming on plant species have already been reported in the Alps, such as upward shift of species distribution, range contraction or changes in species composition in the form of thermophilisation. Extrinsic factors such as land-area reduction occurring at high elevations in a mountain range and species' intrinsic properties (e.g., their growth form, reproductive strategy or dispersal capacity) are both affecting the response of alpine species to rapid climate change. However, recent studies have shown that the topographic complexity usually found in the alpine zones creates a variety of microclimate conditions that counteract the effect of warming climate. Here we aimed at characterising the microclimate conditions that alpine plant species experience. We used a rare endemic plant of the Maritime Alps, Saxifraga florulenta, as a model taxon because of its specific topographic and edaphic requirements. We hypothesized that temperature conditions at sites where populations of S. florulenta are located are decoupled from the local and regional climate. We also hypothesised topographic-related factors are better predictors than other proxies constrained by elevation only to explain the variation of water stress. To test these hypotheses, we recorded temperature conditions at the microsite where individual grow and reconstructed 30-year time series. We used stable isotopes signal (13C) as the best proxies for water availability. We then compared our recorded temperature data to temperature produced by coarse scale geographic climate layers that are commonly used for predicting species distribution under current and changing climate. We found that the reconstructed extreme temperatures were significantly different from the temperatures of the coarse scale geographic climate layers. In particular, the reconstructed maximum temperatures were lower than the ones of the

  12. Predictive Seagrass Habitat Model

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a firm understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We explored the application...

  13. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from the McNary Dam, 1994-1995 Annual Report.

    SciTech Connect

    Beiningen, Kirk T.

    1996-03-01

    The author reports on progress from April 1994 through March 1995 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on sub-adult and adult life histories, population dynamics, quantity and quality of habitat, and production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of sub-adult a nd adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River.

  14. Habitat requirements of the endangered California freshwater shrimp (Syncaris pacifica) in lagunitas and Olema creeks, Marin County, California, USA

    USGS Publications Warehouse

    Martin, Barbara A.; Saiki, Michael K.; Fong, Darren

    2009-01-01

    This study was conducted to better understand the habitat requirements and environmental limiting factors of Syncaris pacifica, the California freshwater shrimp. This federally listed endangered species is native to perennial lowland streams in a few watersheds in northern California. Field sampling occurred in Lagunitas and Olema creeks at seasonal intervals from February 2003 to November 2004. Ten glides, five pools, and five riffles served as fixed sampling reaches, with eight glides, four pools, and four riffles located in Lagunitas Creek and the remainder in Olema Creek. A total of 1773 S. pacifica was counted during this study, all of which were captured along vegetated banks in Lagunitas Creek. Syncaris pacifica was most numerous in glides (64), then in pools (31), and lastly in riffles (5). According to logistic regression analysis, S. pacifica was mostly associated with submerged portions of streambank vegetation (especially overhanging vegetation such as ferns and blackberries, emergent vegetation such as sedge and brooklime, and fine roots associated with water hemlock, willow, sedge, and blackberries) along with low water current velocity and a sandy substrate. These seemingly favorable habitat conditions for S. pacifica were present in glides and pools in Lagunitas Creek, but not in Olema Creek. ?? 2009 The Crustacean Society.

  15. Quantifying the net benefit impacts of the Troy Waste Water Treatment Plant on Steelhead Habitat in the West Fork Little Bear Creek drainage

    NASA Astrophysics Data System (ADS)

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.

    2010-12-01

    Discharge of waste water treatment plants (WWTPs) typically is viewed to result in water quality impairment. However, WWTPs can also be a source of nutrients to enhance the salmonid food web as well as an efficient way to maintain acceptable water temperature regimes and flow conditions during summer. We observed this paradox in West Fork Little Bear Creek (WFLB) in the City of Troy, Idaho. Despite the nutrient load, the WFLB had the highest Steelhead trout density in the watershed, with a mean density of 13.2 fish/100 m2. The objective of this project was to utilize a water quality model, QUAL2kw, and an ecology assessment to examine how the nutrient load from the WWTP affects: a) habitat conditions for steelhead juveniles, and b) physic-chemical parameters. Four monitoring stations were installed from May through November in 2009 and 2010. An undisturbed creek was used as a control site in 2010. Dissolved oxygen (DO), electrical conductivity, temperature, and discharge were measured continuously at each monitoring station. Weekly samples were collected at each monitoring station and analyzed for nitrate, nitrite, ammonia, total Kjeldahl nitrogen, total phosphorous, and orthophosphates. In 2010, Chlorophyll a was analyzed weekly, while bottom algae biomass was determined monthly. Results show that during summer months, the WWTP provides the majority of the flow (0.1 cfs) in the creek. Water samples and DO measurements taken 200 m downstream of the plant during late summer months indicate that nitrification process leads to low DO level well below the state standard of 6 mg/L for cold water biota. However dissolved oxygen levels recover within 1 km downstream. Discharge data suggest that without the flow from the treatment most of the creek would dry during late summer months. Abundance of macroinverbrates, high primary productivity, and sustained flow during summer suggests that the effluent from the WWTP is a net benefit to the Steelhead habitat in the basin

  16. Landscape approach for quantifying land use land cover change (1972-2006) and habitat diversity in a mining area in Central India (Bokaro, Jharkhand).

    PubMed

    Malaviya, Sumedha; Munsi, Madhushree; Oinam, Gracy; Joshi, Pawan Kumar

    2010-11-01

    The rate and intensity of land use land cover (LULC) change has increased considerably during the past couple of decades. Mining brings significant alterations in LULC specifically due to its impact on forests. Parts of Central India are well endowed with both forests and minerals. Here, the conflict between human interests and nature has intensified over time. Monitoring and assessment of such conflicts are important for land management and policy making. Remote sensing and Geographical Information System have the potential to serve as accurate tools for environmental monitoring. Understanding the importance of landscape metrics in land use planning is challenging but important. These metrics calculated at landscape, class, and patch level provide an insight into changing spatiotemporal distribution of LULC and ecological connectedness. In the present study, geospatial tools in conjunction with landscape metrics have been used to assess the impact of coal mining on habitat diversity. LULC maps, change detection analysis, and landscape metrics have been computed for the four time periods (1972, 1992, 2001, and 2006). There has been a significant decline in forest cover especially of the Sal-mixed forests, both in area as well as quality, due to flouted mining regulations. Reclamation of mined lands has also been observed in some of the areas since 2001. PMID:19908153

  17. A physiological approach to quantifying thermal habitat quality for redband rainbow trout (Oncorhynchus mykiss gairdneri) in the south Fork John Day River, Oregon

    USGS Publications Warehouse

    Feldhaus, J.W.; Heppell, S.A.; Li, H.; Mesa, M.G.

    2010-01-01

    We examined tissue-specific levels of heat shock protein 70 (hsp70) and whole body lipid levels in juvenile redband trout (Oncorhynchus mykiss gairdneri) from the South Fork of the John Day River (SFJD), Oregon, with the goal of determining if these measures could be used as physiological indicators of thermal habitat quality for juvenile redband trout. Our objectives were to determine the hsp70 induction temperature in liver, fin, and white muscle tissue and characterize the relation between whole body lipids and hsp70 for fish in the SFJD. We found significant increases in hsp70 levels between 19 and 22??C in fin, liver, and white muscle tissue. Maximum hsp70 levels in liver, fin, and white muscle tissue occurred when mean weekly maximum temperatures (MWMT) exceeded 20-22??C. In general, the estimated hsp70 induction temperature for fin and white muscle tissue was higher than liver tissue. Whole body lipid levels began to decrease when MWMT exceeded 20. 4??C. There was a significant interaction between temperature and hsp70 in fin and white muscle tissue, but not liver tissue. Collectively, these results suggest that increased hsp70 levels in juvenile redband trout are symptomatic of thermal stress, and that energy storage capacity decreases with this stress. The possible decrease in growth potential and fitness for thermally stressed individuals emphasizes the physiological justification for thermal management criteria in salmon-bearing streams. ?? Springer Science+Business Media B.V. 2010.

  18. Determining habitat quality for species that demonstrate dynamic habitat selection

    USGS Publications Warehouse

    Beerens, James; Frederick, Peter C; Noonburg, Erik G; Gawlik, Dale E.

    2015-01-01

    Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio-temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short-term water management and long-term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20-year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km2 area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily-multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to develop

  19. Determining habitat quality for species that demonstrate dynamic habitat selection.

    PubMed

    Beerens, James M; Frederick, Peter C; Noonburg, Erik G; Gawlik, Dale E

    2015-12-01

    Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio-temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short-term water management and long-term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20-year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km(2) area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily-multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to

  20. Habitat requirements of the pulmonate land snails Trochulus oreinos oreinos and Cylindrus obtusus endemic to the Northern Calcareous Alps, Austria

    PubMed Central

    Duda, Michael; Kruckenhauser, Luise; Haring, Elisabeth; Sattmann, Helmut

    2014-01-01

    The habitat needs and potential threats to Trochulus oreinos oreinos (Wagner 1915) and Cylindrus obtusus (Draparnaud 1805) were assessed by comparing vegetation maps and our own records. We selected four sites from which we had adequate samples and for which exact vegetation maps were available: the mountains Hoch-schwab, Schneealpe, Rax and Schneeberg. Both taxa prefer open dry alpine grassland with diggable soil and/or stones. T. oreinos oreinos is restricted to subalpine and alpine boulder societies and Caricetum firmae. While C. obtusus dwells on several communities of plants, it seems to be bound to unconsolidated stony ground. As both taxa prefer naturally forest-free areas, they are not affected by structural changes of the habitat, such as reforestation caused by the abandonment of grazing and the shift of vegetation zones. But it has to be considered that T. oreinos oreinos and C. obtusus are limited by microclimatic factors, as they prefer cooler habitats. The mountains Schneealpe, Rax and Schneeberg, reaching barely 2000 m in height, are on the climatic limit of the species distribution. Therefore, the investigated taxa are vulnerable to the upward shift of climate zones. T. oreinos oreinos shows striking similarities in its habitat preference to the Swiss endemic T. biconicus, as both taxa prefer the same dry alpine habitats which are quite different to those of other representatives of the genus, which prefer damp habitats. PMID:25729612

  1. Using urban forest assessment tools to model bird habitat potential

    USGS Publications Warehouse

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; Destefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  2. Habitat Suitability Index Models: Pronghorn

    USGS Publications Warehouse

    Allen, Arthur W.; Cook, John G.; Armbruster, Michael J.

    1984-01-01

    This is one of a series of publications that provide information on the habitat requirements of selected fish and wildlife species. Literature describing the relationship between habitat variables related to life requisites and habitat suitability for the pronghorn (Antilocapra americana) are synthesized. These data are subsequently used to develop Habitat Suitability Index (HSI) models. The HSI models are designed to provide information that can be used in impact assessment and habitat management.

  3. Freshwater inflow requirements for the protection of the critical habitat and the drinking water sources in the Yangtze River Estuary, China

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Yang, Z. F.; Sun, T.; Chen, B.; Chen, G. Q.

    2009-05-01

    Freshwater inflow requirements (FIRs for short), which considered the requirements for protection of drinking water sources as well as the first-grade state protection wildlife (Acipenser sinensis) in larval periods, were analyzed in this paper for the Yangtze River Estuary, China. Based on the different levels of salinity objectives and the relationship between salinity and the freshwater inflows, the FIRs for the Yangtze River Estuary were determined. The estuary FIRs were determined based on the habitat ecosystem health from April to November with minimum and medium levels, from March to December with high level; and on the requirement of protection of drinking water sources in other months of the year, accordingly. Combined the salinity objectives of drinking water sources and critical habitat in the Yangtze River Estuary, the FIRs for the estuary are calculated to be 938.2 × 109, 729.4 × 109 and 615.5 × 109 m3 in the whole year with different levels, which is equal to 100.8%, 78.4% and 66.2% of the average annual river discharge for the Yangtze River Estuary, respectively. Annual river discharges can satisfy the medium and minimum levels of FIRs for the estuary. However, the temporal variation of the actual runoff has distinct difference from the FIRs for the estuary in critical periods (May, July and August) for the habitat ecosystem, 5% of the FIRs for the estuary should be maintained from December to February for protection of drinking water sources.

  4. Quantifying entanglement

    NASA Astrophysics Data System (ADS)

    Thapliyal, Ashish Vachaspati

    Entanglement is an essential element of quantum mechanics. The aim of this work is to explore various properties of entanglement from the viewpoints of both physics and information science, thus providing a unique picture of entanglement from an interdisciplinary point of view. The focus of this work is on quantifying entanglement as a resource. We start with bipartite states, proposing a new measure of bipartite entanglement called entanglement of assistance, showing that bound entangled states of rank two cannot exist, exploring the number of members required in the ensemble achieving the entanglement of formation and the possibility of bound entangled states that are negative under partial transposition (NPT bound entangled states). For multipartite states we introduce the notions of reducibilities and equivalences under entanglement non-increasing operations and we study the relations between various reducibilities and equivalences such as exact and asymptotic LOCC, asymptotic LOCCq, cLOCC, LOc, etc. We use this new language to attempt to quantify entanglement for multiple parties. We introduce the idea of entanglement span and minimal entanglement generating set and entanglement coefficients associated with it which are the entanglement measures, thus proposing a multicomponent measure of entanglement for three or more parties. We show that the class of Schmidt decomposable states have only GHZM or Cat-like entanglement. Further we introduce the class of multiseparable states for quantification of their entanglement and prove that they are equivalent to the Schmidt decomposable states, and thus have only Cat-like entanglement. We further explore the conditions under which LOCO equivalences are possible for multipartite isentropic states. We define Cat-distillability, EPRB-distillability and distillability for multipartite mixed states and show that distillability implies EPRB-distillability. Further we show that all non-factorizable pure states are Cat

  5. Spatial Heterogeneity of Rana boylii Habitat: Quantification and Ecological Meaningfulness

    NASA Astrophysics Data System (ADS)

    Yarnell, S. M.

    2005-05-01

    Analysis of the heterogeneity of stream habitat and how biological communities respond to that complexity are fundamental components of ecosystem analysis that are often inadequately addressed in watershed assessments and restoration practices. Many aquatic species, such as the Foothill Yellow-legged Frog (Rana boylii), known to associate with certain physical habitats at various times throughout their lifecycle may require some degree of habitat complexity at a larger reach scale for a population to persist. Recent research in the field of landscape ecology has expanded the use of spatial heterogeneity indices to other fields of ecology as an objective method to quantify variability in habitat. Provided that indices are used in an appropriate context and are shown to be ecologically meaningful, they provide a potentially useful tool for quantifying the variability in riverine habitat for aquatic species such as R. boylii. This study evaluated whether stream reaches with a high heterogeneity of geomorphic features, as measured by several key spatial heterogeneity indices, correlated with a greater relative abundance of R. boylii. R. boylii habitat associations were quantified throughout a single season to obtain further insight into the local hydraulic and geomorphic conditions preferred by each lifestage. The two best predictors of habitat associations by lifestage were velocity and substrate size, two key characteristics of geomorphic units such as riffles and pools. The heterogeneity of geomorphic units was then quantified and measured at the reach scale using a variety of spatial indices. Indices of spatial composition, such as Shannon's Diversity Index, were found to correlate well with frog abundance, while indices of spatial configuration, such as Contagion, were not significant. These findings indicate R. boylii may select stream reaches with increased geomorphic complexity that potentially provide habitats suitable to each lifestage with multiple functions

  6. Climate Tolerances and Habitat Requirements Jointly Shape the Elevational Distribution of the American Pika (Ochotona princeps), with Implications for Climate Change Effects

    PubMed Central

    Yandow, Leah H.; Chalfoun, Anna D.; Doak, Daniel F.

    2015-01-01

    Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps) is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions. PMID:26244851

  7. Climate Tolerances and Habitat Requirements Jointly Shape the Elevational Distribution of the American Pika (Ochotona princeps), with Implications for Climate Change Effects.

    PubMed

    Yandow, Leah H; Chalfoun, Anna D; Doak, Daniel F

    2015-01-01

    Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps) is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions. PMID:26244851

  8. Quantifying the influence of imbrication on forces required to initiate motion of coarse-grained sediment on natural river bars

    NASA Astrophysics Data System (ADS)

    Sanguinito, S.; Johnson, J. P.

    2010-12-01

    The goal of this study is to investigate the impact that the stacking and imbrication of clasts has on forces required to initiate particle motion. Equations for predicting clast motion, such as the Shields parameter, typically assume that clast weight is the factor that controls mobility. We explore the hypothesis that the overlapping of clasts increases the forces required to dislodge particles, making individual clasts less mobile and interlocked beds more stable. Specific variables in our analysis include grain size, clast shape, and degree of clast burial. Field measurements were taken at two, subaerially exposed bar reaches along the Colorado River in Texas. These sites, the Roy G. Guerrero Park and Marble Falls contain median grain sizes of 3.7 and 6.4 mm, respectively. Small hooks were glued to individual clasts without disrupting their positions, and peak forces required to quasi-statically dislodge each clast via slow vertical lifting were measured using an FDIX force gage. Repeated lift tests done on several 100 % exposed clasts indicate that the method is repeatable, and the slow lifting simply measures the weight of the clast if it is not held down by surrounding grains. We parameterize the additional force required to mobilize a clast beyond its weight as the "excess force ratio", defined as the peak vertical dislodgement force divided by the weight of the clast. In addition, exposed surfaces were sprayed with colored dye before clasts were dislodged, and image analysis was used to calculate the ratio of exposed surface area to total surface area for individual clasts. Our data find no correlation between Corey shape factor and excess force ratio, which suggests particle shape is not a controlling variable for forces resisting motion. Particle size and mass constrain the excess force ratio; larger clasts (>1000 g) require forces equal to only one or two times their weight while smaller clasts (<500 g) can require forces up to five times their weight

  9. A framework to integrate habitat monitoring and restoration with endangered insect recovery.

    PubMed

    Bried, Jason; Tear, Tim; Shirer, Rebecca; Zimmerman, Chris; Gifford, Neil; Campbell, Steve; O'Brien, Kathy

    2014-12-01

    Monitoring is essential to track the long-term recovery of endangered species. Greater emphasis on habitat monitoring is especially important for taxa whose populations may be difficult to quantify (e.g., insects) or when true recovery (delisting) requires continuous species-specific habitat management. In this paper, we outline and implement a standardized framework to facilitate the integration of habitat monitoring with species recovery efforts. The framework has five parts: (1) identify appropriate sample units, (2) select measurable indicators of habitat requirements, (3) determine rating categories for these indicators, (4) design and implement appropriate data collection protocols, and (5) synthesize the ratings into an overall measure of habitat potential. Following these steps, we developed a set of recovery criteria to estimate habitat potential and initially assess restoration activities in the context of recovering an endangered insect, the Karner blue butterfly (Lycaeides melissa samuelis). We recommend basing the habitat potential grading scheme on recovery plan criteria, the latest information on species biology, and working hypotheses as needed. The habitat-based assessment framework helps to identify which recovery areas and habitat patches are worth investing in and what type of site-specific restoration work is needed. We propose that the transparency and decision-making process in endangered insect recovery efforts could be improved through adaptive management that explicitly identifies and tracks progress toward habitat objectives and ultimate population recovery. PMID:25108660

  10. A Framework to Integrate Habitat Monitoring and Restoration with Endangered Insect Recovery

    NASA Astrophysics Data System (ADS)

    Bried, Jason; Tear, Tim; Shirer, Rebecca; Zimmerman, Chris; Gifford, Neil; Campbell, Steve; O'Brien, Kathy

    2014-12-01

    Monitoring is essential to track the long-term recovery of endangered species. Greater emphasis on habitat monitoring is especially important for taxa whose populations may be difficult to quantify (e.g., insects) or when true recovery (delisting) requires continuous species-specific habitat management. In this paper, we outline and implement a standardized framework to facilitate the integration of habitat monitoring with species recovery efforts. The framework has five parts: (1) identify appropriate sample units, (2) select measurable indicators of habitat requirements, (3) determine rating categories for these indicators, (4) design and implement appropriate data collection protocols, and (5) synthesize the ratings into an overall measure of habitat potential. Following these steps, we developed a set of recovery criteria to estimate habitat potential and initially assess restoration activities in the context of recovering an endangered insect, the Karner blue butterfly ( Lycaeides melissa samuelis). We recommend basing the habitat potential grading scheme on recovery plan criteria, the latest information on species biology, and working hypotheses as needed. The habitat-based assessment framework helps to identify which recovery areas and habitat patches are worth investing in and what type of site-specific restoration work is needed. We propose that the transparency and decision-making process in endangered insect recovery efforts could be improved through adaptive management that explicitly identifies and tracks progress toward habitat objectives and ultimate population recovery.

  11. Evaluation of generalized habitat criteria for assessing impacts of altered flow regimes on warmwater fishes

    USGS Publications Warehouse

    Bowen, Z.H.; Freeman, Mary C.; Bovee, K.D.

    1998-01-01

    Assessing potential effects of flow regulation on southeastern warmwater fish assemblages is problematic because of high species richness and our poor knowledge of habitat requirements for most species. A previous attempt to reduce the complexity of describing habitat requirements for diverse assemblages defined five 'key habitat' types based on quantitative descriptions of depth, velocity, substrate, and cover for assessing the effects of streamflow alteration on fish communities. Our study investigated relationships between availability and temporal stability of key habitats and fish abundances at regulated and unregulated sites in the Tallapoosa River system. Fish assemblage characteristics at seven sites were quantified based on 1,400 electrofishing samples collected during 1994 and 1995. Simulations were used to model availability and temporal stability of key habitats at regulated and unregulated sites, Associations between fish assemblages and availability or stability of key habitats were identified using correlation analysis. We found that hydropeaking dam operation reduced the average length of time that shallow-water habitats were stable during the spring and summer and also reduced year-to-year variation in the stability of shallow-water habitats compared to unregulated sites. Within-site comparisons of fish and habitat variables indicated that differences in fish abundances correlated with differences in the availability and temporal stability of shallow-water habitats. Additionally, groups of stream fishes defined by taxonomy or differences in orientation to the substrate and feeding mode responded similarly to changes in key habitat availability. These findings demonstrate that the temporal and spatial availability of key habitats could serve as a useful measure of the potential effects of flow alteration on lotic fish assemblages, and suggest that both short-term temporal stability of key habitats as well as annual variation in key habitat

  12. A habitat overlap analysis derived from maxent for tamarisk and the south-western willow flycatcher

    NASA Astrophysics Data System (ADS)

    York, Patricia; Evangelista, Paul; Kumar, Sunil; Graham, James; Flather, Curtis; Stohlgren, Thomas

    2011-06-01

    Biologic control of the introduced and invasive, woody plant tamarisk ( Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher ( Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control, with the saltcedar leaf beetle ( Diorhabda elongate), began along the Virgin River, Utah, in 2006, enhancing the need for comprehensive understanding of the tamarisk-flycatcher relationship. We used maximum entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus within the studied watersheds. We used transformations of 2008 Landsat Thematic Mapper images and a digital elevation model as environmental input variables. Maxent models performed well for the flycatcher and tamarisk with Area Under the ROC Curve (AUC) values of 0.960 and 0.982, respectively. Classification of thresholds and comparison of the two Maxent outputs indicated moderate spatial overlap between predicted suitable habitat for E. traillii extimus and predicted locations with dense tamarisk stands, where flycatcher habitat will potentially change flycatcher habitats. Dense tamarisk habitat comprised 500 km2 within the study area, of which 11.4% was also modeled as potential habitat for E. traillii extimus. Potential habitat modeled for the flycatcher constituted 190 km2, of which 30.7% also contained dense tamarisk habitat. Results showed that both native vegetation and dense tamarisk habitats exist in the study area and that most tamarisk infestations do not contain characteristics that satisfy the habitat requirements of E. traillii extimus. Based on this study, effective biologic control of Tamarix spp. may, in the short term, reduce suitable habitat available to E. traillii extimus, but also has the potential

  13. Evaluation of Streamflow Requirements for Habitat Protection by Comparison to Streamflow Characteristics at Index Streamflow-Gaging Stations in Southern New England

    USGS Publications Warehouse

    Armstrong, David S.; Parker, Gene W.; Richards, Todd A.

    2003-01-01

    Streamflow characteristics and methods for determining streamflow requirements for habitat protection were investigated at 23 active index streamflow-gaging stations in southern New England. Fish communities sampled near index streamflow-gaging stations in Massachusetts have a high percentage of fish that require flowing-water habitats for some or all of their life cycle. The relatively unaltered flow condition at these sites was assumed to be one factor that has contributed to this condition. Monthly flow durations and low flow statistics were determined for the index streamflow-gaging stations for a 25-year period from 1976 to 2000. Annual hydrographs were prepared for each index station from median streamflows at the 50-percent monthly flow duration, normalized by drainage area. A median monthly flow of 1 ft3/s/mi2 was used to split hydrographs into a high-flow period (November?May), and a low-flow period (June?October). The hydrographs were used to classify index stations into groups with similar median monthly flow durations. Index stations were divided into four regional groups, roughly paralleling the coast, to characterize streamflows for November to May; and into two groups, on the basis of base-flow index and percentage of sand and gravel in the contributing area, for June to October. For the June to October period, for index stations with a high base-flow index and contributing areas greater than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.57, 0.49, and 0.46 ft3/s/mi2 for July, August, and September, respectively. For index stations with a low base-flow index and contributing areas less than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.34, 0.28, and 0.27 ft3/s/mi2 for July, August, and September, respectively. Streamflow variability between wet and dry years can be characterized by use of the

  14. Comparison of methods for determining streamflow requirements for aquatic habitat protection at selected sites on the Assabet and Charles Rivers, Eastern Massachusetts, 2000-02

    USGS Publications Warehouse

    Parker, Gene W.; Armstrong, David S.; Richards, Todd A.

    2004-01-01

    Four methods used to determine streamflow requirements for habitat protection at nine critical riffle reaches in the Assabet River and Charles River Basins were compared. The methods include three standard setting techniques?R2Cross, Wetted Perimeter, and Tennant?and a diagnostic method, the Range of Variability Approach. One study reach is on the main stem of the Assabet River, four reaches are on tributaries to the Assabet River (Cold Harbor Brook, Danforth Brook, Fort Meadow Brook, and Elizabeth Brook), three are on the main stem of the Charles River, and one is on a tributary to the Charles River (Mine Brook). The strength of the R2Cross and Wetted-Perimeter methods is that they may be applied at ungaged locations whereas the Tennant method and the Range of Variability Approach require a period of streamflow record for analysis. Fish community assessments conducted at or near riffle sites in flowing reaches of the Assabet River and Charles River Basins were used to indicate ecological conditions. The fish communities in the main stem and tributary reaches of both the Assabet and Charles River Basins indicated degraded aquatic ecosystems. However, the degree of degradation differs between the two basins. The extreme predominance of tolerant, generalist species in the Charles River fish community demon-strates the cumulative impacts of flow, habitat, and water-chemistry degradation, combined with the effects of nearby impoundments and changing land use. The range of discharges for nine ungaged riffle reaches defined by the median R2Cross 3-of-3 criteria, R2Cross 2-of-3 criteria, and Wetted-Perimeter streamflow requirements, was 0.86 cubic foot per second per square mile, 0.18 cubic foot per second per square mile, and 0.23 cubic foot per second per square mile, respectively. Application of R2Cross and Wetted-Perimeter methods to sites with altered streamflows or at sites that are riffles only at low to moderate flows can result in a greater variability of

  15. Establishing Minimum Flow Requirements Based on Benthic Vegetation: What are Some Issues Related to Identifying Quantity of Inflow and Tools Used to Quantify Ecosystem Response?

    NASA Astrophysics Data System (ADS)

    Hunt, M. J.; Nuttle, W. K.; Cosby, B. J.; Marshall, F. E.

    2005-05-01

    Establishing minimum flow requirements in aquatic ecosystems is one way to stipulate controls on water withdrawals in a watershed. The basis of the determination is to identify the amount of flow needed to sustain a threshold ecological function. To develop minimum flow criteria an understanding of ecological response in relation to flow is essential. Several steps are needed including: (1) identification of important resources and ecological functions, (2) compilation of available information, (3) determination of historical conditions, (4) establishment of technical relationships between inflow and resources, and (5) identification of numeric criteria that reflect the threshold at which resources are harmed. The process is interdisciplinary requiring the integration of hydrologic and ecologic principles with quantitative assessments. The tools used quantify the ecological response and key questions related to how the quantity of flow influences the ecosystem are examined by comparing minimum flow determination in two different aquatic systems in South Florida. Each system is characterized by substantial hydrologic alteration. The first, the Caloosahatchee River is a riverine system, located on the southwest coast of Florida. The second, the Everglades- Florida Bay ecotone, is a wetland mangrove ecosystem, located on the southern tip of the Florida peninsula. In both cases freshwater submerged aquatic vegetation (Vallisneria americana or Ruppia maritima), located in areas of the saltwater- freshwater interface has been identified as a basis for minimum flow criteria. The integration of field studies, laboratory studies, and literature review was required. From this information we developed ecological modeling tools to quantify and predict plant growth in response to varying environmental variables. Coupled with hydrologic modeling tools questions relating to the quantity and timing of flow and ecological consequences in relation to normal variability are addressed.

  16. Quantifying resilience

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.

    2016-01-01

    Several frameworks to operationalize resilience have been proposed. A decade ago, a special feature focused on quantifying resilience was published in the journal Ecosystems (Carpenter, Westley & Turner 2005). The approach there was towards identifying surrogates of resilience, but few of the papers proposed quantifiable metrics. Consequently, many ecological resilience frameworks remain vague and difficult to quantify, a problem that this special feature aims to address. However, considerable progress has been made during the last decade (e.g. Pope, Allen & Angeler 2014). Although some argue that resilience is best kept as an unquantifiable, vague concept (Quinlan et al. 2016), to be useful for managers, there must be concrete guidance regarding how and what to manage and how to measure success (Garmestani, Allen & Benson 2013; Spears et al. 2015). Ideas such as ‘resilience thinking’ have utility in helping stakeholders conceptualize their systems, but provide little guidance on how to make resilience useful for ecosystem management, other than suggesting an ambiguous, Goldilocks approach of being just right (e.g. diverse, but not too diverse; connected, but not too connected). Here, we clarify some prominent resilience terms and concepts, introduce and synthesize the papers in this special feature on quantifying resilience and identify core unanswered questions related to resilience.

  17. Habitat models for land-use planning: assumptions and strategies for development

    USGS Publications Warehouse

    Farmer, Adrian H.; Armbruster, Michael J.; Terrell, James W.; Schroeder, Richard L.

    1982-01-01

    Wildlife managers have long recognized that management goals must be constrained by the availability and suitability of habitat. This recognition, combined with ever increasing land development pressures, has resulted in environmental legislation emphasizing systematic approaches to collection and analysis of habitat information. Wildlife planners have responded with a variety of approached to the development of models that quantify habitat requirements. The use of habitat models in wildlife management is certainly not a new concept. Early models attempted to relate habitat quality and quantity as defined by various life requisites (Trippensee 1948). Conceptually, these early approaches are identical to many contemporary efforts directed at modeling habitat. This paper has two objectives related to contemporary habitat modeling approaches. The first objective is to characterize the assumptions and limitations inherent to operational habitat models. Various approaches to habitat modeling, some of which will be discussed at this conference, are described in their own terminology-which tends to obscure the fact that they have common ideals and are subject to the same sets of limitations. The second objective of this paper is to describe a strategy for development of habitat models consistent with these potential limitations. There seems to be two divergent perspectives on operational habitat models. The first is an ideal perspective, which views operational habitat models with skepticism because the current state of habitat knowledge is limited. The second is a pragmatic perspective, which recognizes that available habitat information, no matter how incomplete, can be used to improve the credibility of a land-use decision. The strategy outlined in this paper is directed toward the latter perspective but may help to bridge the gap between the pragmatic and ideal.

  18. Using Multiscale Spatial Models to Assess Potential Surrogate Habitat for an Imperiled Reptile

    PubMed Central

    Fill, Jennifer M.; Gibbons, J. Whitfield; Bennett, Stephen H.; Mousseau, Timothy A.

    2015-01-01

    In evaluating conservation and management options for species, practitioners might consider surrogate habitats at multiple scales when estimating available habitat or modeling species’ potential distributions based on suitable habitats, especially when native environments are rare. Species’ dependence on surrogates likely increases as optimal habitat is degraded and lost due to anthropogenic landscape change, and thus surrogate habitats may be vital for an imperiled species’ survival in highly modified landscapes. We used spatial habitat models to examine a potential surrogate habitat for an imperiled ambush predator (eastern diamondback rattlesnake, Crotalus adamanteus; EDB) at two scales. The EDB is an apex predator indigenous to imperiled longleaf pine ecosystems (Pinus palustris) of the southeastern United States. Loss of native open-canopy pine savannas and woodlands has been suggested as the principal cause of the species’ extensive decline. We examined EDB habitat selection in the Coastal Plain tidewater region to evaluate the role of marsh as a potential surrogate habitat and to further quantify the species’ habitat requirements at two scales: home range (HR) and within the home range (WHR). We studied EDBs using radiotelemetry and employed an information-theoretic approach and logistic regression to model habitat selection as use vs. availability. We failed to detect a positive association with marsh as a surrogate habitat at the HR scale; rather, EDBs exhibited significantly negative associations with all landscape patches except pine savanna. Within home range selection was characterized by a negative association with forest and a positive association with ground cover, which suggests that EDBs may use surrogate habitats of similar structure, including marsh, within their home ranges. While our HR analysis did not support tidal marsh as a surrogate habitat, marsh may still provide resources for EDBs at smaller scales. PMID:25915926

  19. Habitat automation

    NASA Technical Reports Server (NTRS)

    Swab, Rodney E.

    1992-01-01

    A habitat, on either the surface of the Moon or Mars, will be designed and built with the proven technologies of that day. These technologies will be mature and readily available to the habitat designer. We believe an acceleration of the normal pace of automation would allow a habitat to be safer and more easily maintained than would be the case otherwise. This document examines the operation of a habitat and describes elements of that operation which may benefit from an increased use of automation. Research topics within the automation realm are then defined and discussed with respect to the role they can have in the design of the habitat. Problems associated with the integration of advanced technologies into real-world projects at NASA are also addressed.

  20. COMPUTERIZED SYSTEM FOR THE EVALUATION OF AQUATIC HABITATS BASED ON ENVIRONMENTAL REQUIREMENTS AND POLLUTION TOLERANCE ASSOCIATIONS OF RESIDENT ORGANISMS

    EPA Science Inventory

    The Environmental Requirements and Pollution Tolerance (ERAPT) system is a computerized retrieval and analysis system for environmental information on aquatic organisms. It can be used to predict organism assemblages based on environmental conditions, to describe environmental ch...

  1. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes

    USGS Publications Warehouse

    Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.

    2001-01-01

    Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and

  2. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1988-1989 Annual Report.

    SciTech Connect

    Nigro, Anthony A. )

    1989-09-01

    We report on our progress from April 1988 through March 1989 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. Highlights of results of our work in the Dalles and Bonneville reservoirs are: using setlines, we caught 1,586 sturgeon in The Dalles Reservoir and 484 sturgeon in Bonneville Reservoir in 1988. Fork length of fish caught ranged from 34 cm to 274 cm. Of the fish caught we marked 1,248 in The Dalles Reservoir and 341 in Bonneville Reservoir. Of the fish marked in 1988, we recaptured 82 in The Dalles Reservoir and none in Bonneville Reservoir. We recaptured 89 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 35 fish marked in 1988 and 16 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 2 sturgeon marked in 1988 in Bonneville Reservoir. Individual papers were processed separately for the data base.

  3. Quantifier Comprehension in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    McMillan, Corey T.; Clark, Robin; Moore, Peachie; Grossman, Murray

    2006-01-01

    In this study, we investigated patients with focal neurodegenerative diseases to examine a formal linguistic distinction between classes of generalized quantifiers, like "some X" and "less than half of X." Our model of quantifier comprehension proposes that number knowledge is required to understand both first-order and higher-order quantifiers.…

  4. Lake Shore and Littoral Habitat Structure: Precision and biological Relevance of a Field Survey Method.

    EPA Science Inventory

    Until recently, lake physical habitat assessment has been an underemployed tool for assessing lake and reservoir ecological condition. We outline and evaluate a rapid field sampling and analytical approach for quantifying near-shore physical habitat. We quantified the repeatabil...

  5. Quantifying contextuality.

    PubMed

    Grudka, A; Horodecki, K; Horodecki, M; Horodecki, P; Horodecki, R; Joshi, P; Kłobus, W; Wójcik, A

    2014-03-28

    Contextuality is central to both the foundations of quantum theory and to the novel information processing tasks. Despite some recent proposals, it still faces a fundamental problem: how to quantify its presence? In this work, we provide a universal framework for quantifying contextuality. We conduct two complementary approaches: (i) the bottom-up approach, where we introduce a communication game, which grasps the phenomenon of contextuality in a quantitative manner; (ii) the top-down approach, where we just postulate two measures, relative entropy of contextuality and contextuality cost, analogous to existent measures of nonlocality (a special case of contextuality). We then match the two approaches by showing that the measure emerging from the communication scenario turns out to be equal to the relative entropy of contextuality. Our framework allows for the quantitative, resource-type comparison of completely different games. We give analytical formulas for the proposed measures for some contextual systems, showing in particular that the Peres-Mermin game is by order of magnitude more contextual than that of Klyachko et al. Furthermore, we explore properties of these measures such as monotonicity or additivity. PMID:24724629

  6. Habitat Suitability Index Models: Green Sunfish

    USGS Publications Warehouse

    Stuber, Robert J.; Gebhart, Glen; Maughan, O. Eugene

    1982-01-01

    This is one of a series of publications that provide information on the habitat requirements of selected fish and wildlife species. Literature describing the relationship between habitat variables related to life requisites and habitat suitability for the Green sunfish (Lepomis cyanellus) are synthesized. These data are subsequently used to develop Habitat Suitability (HIS) models. The HSI models are designed to provide information that can be used in impact assessment and habitat management.

  7. Habitat Suitability Index Models: Smallmouth Buffalo

    USGS Publications Warehouse

    Edwards, Elizabeth A.; Twomey, Katie

    1982-01-01

    This is one of a series of publications that provide information on the habitat requirements of selected fish and wildlife species. Literature describing the relationship between habitat variables related to life requisites and habitat suitability for the Smallmouth buffalo (Ictiobus bubalus) are synthesized. These data are subsequently used to develop Habitat Suitability (HIS) models. The HSI models are designed to provide information that can be used in impact assessment and habitat management.

  8. Introduction to stream network habitat analysis

    USGS Publications Warehouse

    Bartholow, John M.; Waddle, Terry J.

    1986-01-01

    Increasing demands on stream resources by a variety of users have resulted in an increased emphasis on studies that evaluate the cumulative effects of basinwide water management programs. Network habitat analysis refers to the evaluation of an entire river basin (or network) by predicting its habitat response to alternative management regimes. The analysis principally focuses on the biological and hydrological components of the riv er basin, which include both micro- and macrohabitat. (The terms micro- and macrohabitat are further defined and discussed later in this document.) Both conceptual and analytic models are frequently used for simplifying and integrating the various components of the basin. The model predictions can be used in developing management recommendations to preserve, restore, or enhance instream fish habitat. A network habitat analysis should begin with a clear and concise statement of the study objectives and a thorough understanding of the institutional setting in which the study results will be applied. This includes the legal, social, and political considerations inherent in any water management setting. The institutional environment may dictate the focus and level of detail required of the study to a far greater extent than the technical considerations. After the study objectives, including species on interest, and institutional setting are collectively defined, the technical aspects should be scoped to determine the spatial and temporal requirements of the analysis. A macro level approach should be taken first to identify critical biological elements and requirements. Next, habitat availability is quantified much as in a "standard" river segment analysis, with the likely incorporation of some macrohabitat components, such as stream temperature. Individual river segments may be aggregated to represent the networkwide habitat response of alternative water management schemes. Things learned about problems caused or opportunities generated may

  9. Quantifying water requirements of riparian river red gum (Eucalyptus camaldulensis) in the Murray-Darling Basin, Australia: Implications for the management of environmental flows

    USGS Publications Warehouse

    Doody, Tanya M.; Colloff, Matthew J.; Davies, Micah; Koul, Vijay; Benyon, Richard G.; Nagler, Pamela L.

    2015-01-01

    Water resource development and drought have altered river flow regimes, increasing average flood return intervals across floodplains in the Murray-Darling Basin, Australia, causing health declines in riparian river red gum (Eucalyptus camaldulensis) forests and woodlands. Environmental flow allocations helped to alleviate water stress during the recent Millennium Drought (1997–2010), however, quantification of the flood frequency required to support healthy E. camaldulensis communities is still needed. We quantified water requirements of E. camaldulensis for two years across a flood gradient (trees inundated at frequencies of 1:2, 1:5 and 1:10 years) at Yanga National Park, New South Wales to help inform management decision-making and design of environmental flows. Sap flow, evaporative losses and soil moisture measurements were used to determine transpiration, evapotranspiration and plant-available soil water before and after flooding. A formula was developed using plant-available soil water post-flooding and average annual rainfall, to estimate maintenance time of soil water reserves in each flood frequency zone. Results indicated that soil water reserves could sustain 1:2 and 1:5 trees for 15 months and six years, respectively. Trees regulated their transpiration rates, allowing them to persist within their flood frequency zone, and showed reduction in active sapwood area and transpiration rates when flood frequencies exceeded 1:2 years. A leaf area index of 0.5 was identified as a potential threshold indicator of severe drought stress. Our results suggest environmental water managers may have greater flexibility to adaptively manage floodplains in order to sustain E. camaldulensis forests and woodlands than has been appreciated hitherto.

  10. Catalysis: Quantifying charge transfer

    NASA Astrophysics Data System (ADS)

    James, Trevor E.; Campbell, Charles T.

    2016-02-01

    Improving the design of catalytic materials for clean energy production requires a better understanding of their electronic properties, which remains experimentally challenging. Researchers now quantify the number of electrons transferred from metal nanoparticles to an oxide support as a function of particle size.

  11. Spatiotemporal dynamics of ecological variation of waterbird habitats in Dongtan area of Chongming Island

    NASA Astrophysics Data System (ADS)

    Fan, Xuezhong; Zhang, Liquan

    2012-05-01

    Based on Landsat TM images, we explored the pattern of variation of suitable waterbird habitats from 1990 to 2008 in the Dongtan area of Chongming Island at the Changjiang (Yangtze) River mouth. By applying our highly accurate indicator model ( R=0.999, P<0.01), we quantified the variations of fluctuation intensity for local waterbird habitats during 1990-2008, and for the main waterbird groups (Anatidae, Charadriidae, Ardeidae and Laridae) from 2006 to 2008, to evaluate the impact of habitat quantity change on the waterbird habitat status and the population dynamics of the different waterbird groups. The results show that the aquaculture ponds (AP) and the Scirpus mariqueter zone (SMZ) underwent drastic habitat changes during certain periods (AP: 1997-2000, 2000-2003, 2005-2008; SMZ: 1997-2000), and the fluctuation intensity differed among habitat types in the order AP>SMZ>TSH (total suitable habitat)>BSA (bare mud flat and shallow water area). The abandonment of tracts of aquaculture ponds in Dongtan in mid-2006 brought about an intensive population fluctuation, caused by rapidly changing habitat with the population expanding to adjacent areas. At present, Anatidae and Ardeidae are threatened in the Dongtan area with declining populations because of their very "picky" habitat requirements (i.e., high reliance on AP). The Charadriidae experienced enormous population declines in the late 1990s, however, they have since recovered to normal levels as habitat change has stabilized. Our findings suggest that the current challenges for habitat management are the protection and stabilization of AP and SMZ habitats.

  12. Assessing patterns of fish demographics and habitat in stream networks

    EPA Science Inventory

    Effective habitat restoration planning requires correctly anticipating demographic responses to altered habitats. New applications of Passive Integrated Transponder (PIT) tag technology to fish-habitat research have provided critical insights into fish movement, growth, and surv...

  13. Food technology in space habitats

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  14. Habitat Complexity Metrics to Guide Restoration of Large Rivers

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; McElroy, B. J.; Elliott, C.; DeLonay, A.

    2011-12-01

    Restoration strategies on large, channelized rivers typically strive to recover lost habitat complexity, based on the assumption complexity and biophysical capacity are directly related. Although definition of links between complexity and biotic responses can be tenuous, complexity metrics have appeal because of their potential utility in quantifying habitat quality, defining reference conditions and design criteria, and measuring restoration progress. Hydroacoustic instruments provide many ways to measure complexity on large rivers, yet substantive questions remain about variables and scale of complexity that are meaningful to biota, and how complexity can be measured and monitored cost effectively. We explore these issues on the Missouri River, using the example of channel re-engineering projects that are intended to aid in recovery of the pallid sturgeon, an endangered benthic fish. We are refining understanding of what habitat complexity means for adult fish by combining hydroacoustic habitat assessments with acoustic telemetry to map locations during reproductive migrations and spawning. These data indicate that migrating sturgeon select points with relatively low velocity but adjacent to areas of high velocity (that is, with high velocity gradients); the integration of points defines pathways which minimize energy expenditures during upstream migrations of 10's to 100's of km. Complexity metrics that efficiently quantify migration potential at the reach scale are therefore directly relevant to channel restoration strategies. We are also exploring complexity as it relates to larval sturgeon dispersal. Larvae may drift for as many as 17 days (100's of km at mean velocities) before using up their yolk sac, after which they "settle" into habitats where they initiate feeding. An assumption underlying channel re-engineering is that additional channel complexity, specifically increased shallow, slow water, is necessary for early feeding and refugia. Development of

  15. Habitat model for the Florida Scrub Jay on John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Breininger, David R.

    1992-01-01

    The Florida Scrub Jay is endemic to Florida. The John F. Kennedy Space Center (KSC) provides habitat for one of the three largest populations of the Florida Scrub Jay. This threatened bird occupies scrub, slash pine flatwoods, disturbed scrub, and coastal strand on KSC. Densities of Florida Scrub Jays were shown to vary with habitat characteristics but not necessarily with vegetation type. Relationships between Florida Scrub Jay densities and habitat characteristics were used to develop a habitat model to provide a tool to compare alternative sites for new facilities and to quantify environmental impacts. This model is being tested using long term demographic studies of colorbanded Florida Scrub Jays. Optimal habitat predicted by the model has greater than or equal to 50 percent of the shrub canopy comprised of scrub oaks, 20-50 percent open space or scrub oak vegetation within 100 m of a ruderal edge, less than or equal to 15 percent pine canopy cover, a shrub height of 120-170 cm, and is greater than or equal to 100 m from a forest. This document reviews life history, social behavior, food, foraging habitat, cover requirements, characteristics of habitat on KSC, and habitat preferences of the Florida Scrub Jay. Construction of the model and its limitations are discussed.

  16. The allometric relationship between resting metabolic rate and body mass in wild waterfowl (Anatidae) and an application to estimation of winter habitat requirements

    USGS Publications Warehouse

    Miller, M.R.; Eadie, J. McA

    2006-01-01

    We examined the allometric relationship between resting metabolic rate (RMR; kJ day-1) and body mass (kg) in wild waterfowl (Anatidae) by regressing RMR on body mass using species means from data obtained from published literature (18 sources, 54 measurements, 24 species; all data from captive birds). There was no significant difference among measurements from the rest (night; n = 37), active (day; n = 14), and unspecified (n = 3) phases of the daily cycle (P > 0.10), and we pooled these measurements for analysis. The resulting power function (aMassb) for all waterfowl (swans, geese, and ducks) had an exponent (b; slope of the regression) of 0.74, indistinguishable from that determined with commonly used general equations for nonpasserine birds (0.72-0.73). In contrast, the mass proportionality coefficient (b; y-intercept at mass = 1 kg) of 422 exceeded that obtained from the nonpasserine equations by 29%-37%. Analyses using independent contrasts correcting for phylogeny did not substantially alter the equation. Our results suggest the waterfowl equation provides a more appropriate estimate of RMR for bioenergetics analyses of waterfowl than do the general nonpasserine equations. When adjusted with a multiple to account for energy costs of free living, the waterfowl equation better estimates daily energy expenditure. Using this equation, we estimated that the extent of wetland habitat required to support wintering waterfowl populations could be 37%-50% higher than previously predicted using general nonpasserine equations. ?? The Cooper Ornithological Society 2006.

  17. WILDLIFE HABITAT

    EPA Science Inventory

    Habitat change statistics were used to estimate the effects of alternative future scenarios for agriculture on non-fish vertebrate diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future scenarios w...

  18. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    SciTech Connect

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2) develop

  19. Habitat Design Optimization and Analysis

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Hull, Patrick V.; Tinker, Michael L.

    2006-01-01

    Long-duration surface missions to the Moon and Mars will require habitats for the astronauts. The materials chosen for the habitat walls play a direct role in the protection against the harsh environments found on the surface. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Advanced optimization techniques are necessary for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat design optimization tool utilizing genetic algorithms has been developed. Genetic algorithms use a "survival of the fittest" philosophy, where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multi-objective formulation of structural analysis, heat loss, radiation protection, and meteoroid protection. This paper presents the research and development of this tool.

  20. NASA Habitat Demonstration Unit (HDU) Deep Space Habitat Analog

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss J.; Gill, Tracy

    2013-01-01

    The NASA Habitat Demonstration Unit (HDU) vertical cylinder habitat was established as a exploration habitat testbed platform for integration and testing of a variety of technologies and subsystems that will be required in a human-occupied planetary surface outpost or Deep Space Habitat (DSH). The HDU functioned as a medium-fidelity habitat prototype from 2010-2012 and allowed teams from all over NASA to collaborate on field analog missions, mission operations tests, and system integration tests to help shake out equipment and provide feedback for technology development cycles and crew training. This paper documents the final 2012 configuration of the HDU, and discusses some of the testing that took place. Though much of the higher-fidelity functionality has 'graduated' into other NASA programs, as of this writing the HDU, renamed Human Exploration Research Analog (HERA), will continue to be available as a volumetric and operational mockup for NASA Human Research Program (HRP) research from 2013 onward.

  1. Stability of Caribbean coral communities quantified by long-term monitoring and autoregression models.

    PubMed

    Gross, Kevin; Edmunds, Peter J

    2015-07-01

    Tropical coral reefs exemplify ecosystems imperiled by environmental change. Anticipating the future of reef ecosystems requires understanding how scleractinian corals respond to the multiple environmental disturbances that threaten their survival. We analyzed the stability of coral reefs at three habitats at different depths along the south shore of St. John, U.S. Virgin Islands, using multivariate autoregression (MAR) models and two decades of monitoring data. We quantified several measures of ecosystem stability, including the magnitude of typical stochastic fluctuations, the rate of recovery following disturbance, and the sensitivity of coral cover to hurricanes and elevated sea temperature. Our results show that, even within a -4 km shore, coral communities in different habitats display different stability properties, and that the stability of each habitat corresponds with the habitat's known synecology. Two Orbicella-dominated habitats are less prone to annual stochastic fluctuations than coral communities in shallower water, but they recover slowly from disturbance, and one habitat has suffered recent losses in scleractinian cover that will not be quickly reversed. In contrast, a shallower, low-coral-cover habitat is subject to greater stochastic fluctuations, but rebounds more quickly from disturbance and is more robust to hurricanes and seawater warming. In some sense, the shallower community is more stable, although the stability arguably arises from having little coral cover left. Our results sharpen understanding of recent changes in coral communities at these habitats, provide a more detailed understanding of how these habitats may change in future environments, and illustrate how MAR models can be used to assess stability of communities founded upon long-lived species. PMID:26378304

  2. Mars habitat

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The College of Engineering & Architecture at Prairie View A&M University has been participating in the NASA/USRA Advanced Design Program since 1986. The interdisciplinary nature of the program allowed the involvement of students and faculty throughout the College of Engineering & Architecture for the last five years. The research goal for the 1990-1991 year is to design a human habitat on Mars that can be used as a permanent base for 20 crew members. The research is being conducted by undergraduate students from the Department of Architecture.

  3. Critical habitat designation: Is it prudent?

    NASA Astrophysics Data System (ADS)

    Sidle, John G.

    1987-08-01

    The critical habitat provision of the US Endangered Species Act was believed by many to be a key feature of the Act. It was believed that this provision would benefit federally listed endangered and threatened species. However, only 23% of the listed species in the United States have their critical habitats designated. The current trend is to forego critical habitat designation because the federal government believes that the Endangered Species Act can protect most listed species without resort to the critical habitat provision. Required publication of critical habitat locations in the Federal Register may draw vandals and collectors to rare species. In other cases, existing habitat protection already provides adequate protection for species. In a few instances critical habitat changes over time and is difficult to delineate. Lastly, designating critical habitat is time consuming, delays species listing, and is controversial, detracting from the positive image of the Endangered Species Act.

  4. Habitat persistence for sedentary organisms in managed rivers: the case for the federally endangered dwarf wedgemussel (Alasmidonta heterodon) in the Delaware River

    USGS Publications Warehouse

    Maloney, Kelly O.; Lellis, William A.; Bennett, Randy M.; Waddle, Terry J.

    2012-01-01

    1. To manage the environmental flow requirements of sedentary taxa, such as mussels and aquatic insects with fixed retreats, we need a measure of habitat availability over a variety of flows (i.e. a measure of persistent habitat). Habitat suitability measures in current environmental flow assessments are measured on a ‘flow by flow’ basis and thus are not appropriate for these taxa. Here, we present a novel measure of persistent habitat suitability for the dwarf wedgemussel (Alasmidonta heterodon), listed as federally endangered in the U.S.A., in three reaches of the Delaware River. 2. We used a two-dimensional hydrodynamic model to quantify suitable habitat over a range of flows based on modelled depth, velocity, Froude number, shear velocity and shear stress at three scales (individual mussel, mussel bed and reach). Baseline potentially persistent habitat was quantified as the sum of pixels that met all thresholds identified for these variables for flows ≥40 m3 s−1, and we calculated the loss of persistently suitable habitat by sequentially summing suitable habitat estimates at lower flows. We estimated the proportion of mussel beds exposed at each flow and the amount of change in the size of the mussel bed for one reach. 3. For two reaches, mussel beds occupied areas with lower velocity, shear velocity, shear stress and Froude number than the reach average at all flows. In the third reach, this was true only at higher flows. Together, these results indicate that beds were possible refuge areas from the effects of these hydrological parameters. Two reaches showed an increase in the amount of exposed mussel beds with decreasing flow. 4. Baseline potentially persistent habitat was less than half the areal extent of potentially suitable habitat, and it decreased with decreasing flow. Actually identified beds and modelled persistent habitat showed good spatial overlap, but identified beds occupied only a portion of the total modelled persistent

  5. Physical habitat in the national wadeable streams assessment

    EPA Science Inventory

    Effective environmental policy decisions require stream habitat information that is accurate, precise, and relevant. The recent National Wadeable Streams Assessment (NWSA) carried out by the U.S. EPA required physical habitat information sufficiently comprehensive to facilitate i...

  6. The Habitat Connection.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  7. Habitat Demonstration Unit - Deep Space Habitat Configuration

    NASA Video Gallery

    This animated video shows the process of transporting, assembling and testing the Habitat Demonstration Unit - Deep Space Habitat (HDU DSH) configuration, which will be deployed during the 2011 Des...

  8. Fuzzy modelling of Atlantic salmon physical habitat

    NASA Astrophysics Data System (ADS)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  9. Habitat selection and post-release movement of reintroduced brown treecreeper individuals in restored temperate woodland.

    PubMed

    Bennett, Victoria A; Doerr, Veronica A J; Doerr, Erik D; Manning, Adrian D; Lindenmayer, David B; Yoon, Hwan-Jin

    2012-01-01

    It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual's dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes) influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals) of the brown treecreeper (Climacteris picumnus) into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual's gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species' requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides), which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals, particularly when

  10. Habitat Selection and Post-Release Movement of Reintroduced Brown Treecreeper Individuals in Restored Temperate Woodland

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2012-01-01

    It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual’s dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes) influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals) of the brown treecreeper (Climacteris picumnus) into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual’s gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species’ requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides), which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals, particularly

  11. Partial gravity habitat study

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke

    1989-01-01

    The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.

  12. L-Reactor Habitat Mitigation Study

    SciTech Connect

    Not Available

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs. (MHB)

  13. Habitat characteristics at marten subnivean access sites

    USGS Publications Warehouse

    Corn, Janelle G.; Raphael, Martin G.

    1992-01-01

    The occurrence of coarse woody debris (CWD) at sites of subnivean (under snow) access by martens (Martes americana) has not been quantified adequately, and must be better understood to provide suitable winter habitat management for the species. Consequently, we studied subnivean activity of martens in a subalpine forest in southern Wyoming to determine how subnivean space was accessed, and to examine microhabitat characteristics around entry sites. Martens used existing openings in snow, created primarily by logs at low snow depths and by small live spruce and fir trees at greater snow depths. Sites of marten subnivean entry had greater percent cover (P ≤ 0.01) and total volume of CWD (P ≤ 0.01), greater numbers of log layers (all P ≤ 0.02), greater volume of undecayed (P ≤ 0.05) and moderately decayed logs (P ≤ 0.02), less volume of very decayed logs (P ≤ 0.001), and fewer small root masses (P ≤ 0.001) than surrounding forest stands. Provision of sufficient CWD in winter habitat of martens may require specific effort, particularly in managed forests of the central Rocky Mountains.

  14. Habitat Suitability Index Models: Yellow-Headed Blackbird

    USGS Publications Warehouse

    Schroeder, Richard L.

    1982-01-01

    Habitat preferences of the yellow-headed blackbird (Xanthocephalus xanthocephalus) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available infomration on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities.

  15. A Tool for the Automated Design and Evaluation of Habitat Interior Layouts

    NASA Technical Reports Server (NTRS)

    Simon, Matthew A.; Wilhite, Alan W.

    2013-01-01

    The objective of space habitat design is to minimize mass and system size while providing adequate space for all necessary equipment and a functional layout that supports crew health and productivity. Unfortunately, development and evaluation of interior layouts is often ignored during conceptual design because of the subjectivity and long times required using current evaluation methods (e.g., human-in-the-loop mockup tests and in-depth CAD evaluations). Early, more objective assessment could prevent expensive design changes that may increase vehicle mass and compromise functionality. This paper describes a new interior design evaluation method to enable early, structured consideration of habitat interior layouts. This interior layout evaluation method features a comprehensive list of quantifiable habitat layout evaluation criteria, automatic methods to measure these criteria from a geometry model, and application of systems engineering tools and numerical methods to construct a multi-objective value function measuring the overall habitat layout performance. In addition to a detailed description of this method, a C++/OpenGL software tool which has been developed to implement this method is also discussed. This tool leverages geometry modeling coupled with collision detection techniques to identify favorable layouts subject to multiple constraints and objectives (e.g., minimize mass, maximize contiguous habitable volume, maximize task performance, and minimize crew safety risks). Finally, a few habitat layout evaluation examples are described to demonstrate the effectiveness of this method and tool to influence habitat design.

  16. Consistency in habitat preference of forest bird species

    USGS Publications Warehouse

    Noon, B.R.; Dawson, D.K.; Inkley, D.B.; Robbins, C.S.; Anderson, S.H.

    1980-01-01

    The important management conclusion that follows from our results is that the habitat requirements of most forest bird species, although quite specific for each species, apply generally throughout their breeding ranges. Thus a habitat management program that proves beneficial in one part of the breeding range of a species has a high likelihood of success in an area hundreds of kilometers away. Site-specific programs may be necessary for successful management of species whose habitat preferences change across their range. Alternatively, geographical variation in habitat use may indicate that a species' habitat requirements are easily met and that effective management for the species is more readily attained. Close monitoring of a species' response to specific management programs will be required to resolve whether species showing geographic variation in habitat preference are habitat specialists or simply habitat generalists with varying responses to habitat structure

  17. Quantifying surface normal estimation

    NASA Astrophysics Data System (ADS)

    Reid, Robert B.; Oxley, Mark E.; Eismann, Michael T.; Goda, Matthew E.

    2006-05-01

    An inverse algorithm for surface normal estimation from thermal polarimetric imagery was developed and used to quantify the requirements on a priori information. Building on existing knowledge that calculates the degree of linear polarization (DOLP) and the angle of polarization (AOP) for a given surface normal in a forward model (from an object's characteristics to calculation of the DOLP and AOP), this research quantifies the impact of a priori information with the development of an inverse algorithm to estimate surface normals from thermal polarimetric emissions in long-wave infrared (LWIR). The inverse algorithm assumes a polarized infrared focal plane array capturing LWIR intensity images which are then converted to Stokes vectors. Next, the DOLP and AOP are calculated from the Stokes vectors. Last, the viewing angles, θ v, to the surface normals are estimated assuming perfect material information about the imaged scene. A sensitivity analysis is presented to quantitatively describe the a priori information's impact on the amount of error in the estimation of surface normals, and a bound is determined given perfect information about an object. Simulations explored the impact of surface roughness (σ) and the real component (n) of a dielectric's complex index of refraction across a range of viewing angles (θ v) for a given wavelength of observation.

  18. Quantifying learning-dependent changes in the brain: Single-trial multivoxel pattern analysis requires slow event-related fMRI.

    PubMed

    Visser, Renée M; de Haan, Michelle I C; Beemsterboer, Tinka; Haver, Pia; Kindt, Merel; Scholte, H Steven

    2016-08-01

    Single-trial analysis is particularly useful for assessing cognitive processes that are intrinsically dynamic, such as learning. Studying these processes with fMRI is problematic, as the low signal-to-noise ratio of fMRI requires the averaging over multiple trials, obscuring trial-by-trial changes in neural activation. The superior sensitivity of multivoxel pattern analysis over univariate analyses has opened up new possibilities for single-trial analysis, but this may require different fMRI designs. Here, we measured fMRI and pupil dilation responses during discriminant aversive conditioning, to assess associative learning in a trial-by-trial manner. The impact of design choices was examined by varying trial spacing and trial order in a series of five experiments (total n = 66), while keeping stimulus duration constant (4.5 s). Our outcome measure was the change in similarity between neural response patterns related to two consecutive presentations of the same stimulus (within-stimulus) and between patterns related to pairs of different stimuli (between-stimulus) that shared a specific outcome (electric stimulation vs. no consequence). This trial-by-trial similarity analysis revealed clear single-trial learning curves in conditions with intermediate (8.1-12.6 s) and long (16.5-18.4 s) intervals, with effects being strongest in designs with long intervals and counterbalanced stimulus presentation. No learning curves were observed in designs with shorter intervals (1.6-6.1 s), indicating that rapid event-related designs-at present, the most common designs in fMRI research-are not suited for single-trial pattern analysis. These findings emphasize the importance of deciding on the type of analysis prior to data collection. PMID:27153295

  19. Quantifying landscape linkages among giant panda subpopulations in regional scale conservation.

    PubMed

    Qi, Dunwu; Hu, Yibo; Gu, Xiaodong; Yang, Xuyi; Yang, Guang; Wei, Fuwen

    2012-06-01

    Understanding habitat requirements and identifying landscape linkages are essential for the survival of isolated populations of endangered species. Currently, some of the giant panda populations are isolated, which threatens their long-term survival, particularly in the Xiaoxiangling mountains. In the present study, we quantified niche requirements and then identified potential linkages of giant panda subpopulations in the most isolated region, using ecological niche factor analysis and a least-cost path model. Giant pandas preferred habitat with conifer forest and gentle slopes (>20 to ≤30°). Based on spatial distribution of suitable habitat, linkages were identified for the Yele subpopulation to 4 other subpopulations (Liziping, Matou, Xinmin and Wanba). Their lengths ranged from 15 to 54 km. The accumulated cost ranged from 693 to 3166 and conifer forest covered over 31%. However, a variety of features (e.g. major roads, human settlements and large unforested areas) might act as barriers along the linkages for giant panda dispersal. Our analysis quantified giant panda subpopulation connectivity to ensure long-term survival. PMID:22691200

  20. Geospatial interface and model for predicting potential seagrass habitat

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed a geos...

  1. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement A: Habitat Enhancement Evaluation of Fish and Wash Creeks, 1983 Annual Report.

    SciTech Connect

    Everest, Fred

    1984-04-01

    Habitat improvements for anadromous salmonids on Fish Creek in the upper Clackamas Basin were evaluated. The primary objectives of the evaluation effort include: (1) evaluate and quantify the changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements; (2) evaluate and quantify the changes in fish populations and biomass resulting from habitat improvements; and (3) evaluate the cost-effectiveness of habitat improvements developed with BPA and KV funds on Fish Creek. This report integrates data for the evaluation efforts collected in the Fish Creek Basin in 1982 and 1983. 3 references, 34 figures, 23 tables.

  2. Western habitats - Session summary

    USGS Publications Warehouse

    Titus, K.; Fuller, M.R.

    1989-01-01

    Determining the status of all habitats in the nine western states considered in this symposium is a difficult task. The authors of habitat status papers commented that the diversity of habitat classification systems limited their ability to relate habitat status to raptors. Differences of scale, objectives and survey design have hindered integration of habitat classification methods used by land managers with the habitat relationships understood by wildlife biologists, but examples now exist for successful integration of these methods. We suggest that land managers and wildlife biologists use common survey and classification schemes so that data can be combined and that results will be applicable over broader areas.

  3. Habitats of North American sea ducks.

    USGS Publications Warehouse

    Derksen, Dirk V.; Petersen, Margaret R.; Savard, Jean-Pierre L.

    2015-01-01

    Breeding, molting, fall and spring staging, and wintering habitats of the sea duck tribe Mergini are described based on geographic locations and distribution in North America, geomorphology, vegetation and soil types, and fresh water and marine characteristics. The dynamics of habitats are discussed in light of natural and anthropogenic events that shape areas important to sea ducks. Strategies for sea duck habitat management are outlined and recommendations for international collaboration to preserve key terrestrial and aquatic habitats are advanced. We follow the definition of habitat advanced by Odum (1971), which is the place or space where an organism lives. Weller (1999) emphasized that habitats for waterbirds required presence of sufficient resources (i.e., food, water, cover, space) for maintenance during a portion of their annual cycle. Habitats exploited by North American sea ducks are diverse, widespread across the continent and adjacent marine waters and until recently, most were only superficially known. Even following a 15-year-long effort through the Sea Duck Joint Venture and U.S. and Canadian Endangered/Threatened Species programs to fund research focused on sea duck habitats there are still important gaps in our understanding of key elements required by some species during various life stages. Importantly, many significant habitats, especially staging and wintering sites, have been and continue to be destroyed or altered, largely as a result of anthropogenic effects. Our goal here is to develop a comprehensive summary of marine, freshwater, and terrestrial habitats and their characteristics by considering sea duck species with similar needs as groups (e.g., eiders) within the tribe Mergini. Additionally, this chapter will examine threats and changes to sea duck habitats from human-caused and natural events. Finally, we will evaluate conservation and management programs underway or available for maintenance and enhancement of habitats critical for

  4. Loss and modification of habitat

    USGS Publications Warehouse

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  5. Mars habitat

    NASA Technical Reports Server (NTRS)

    Ayers, Dale; Barnes, Timothy; Bryant, Woody; Chowdhury, Parveen; Dillard, Joe; Gardner, Vernadette; Gregory, George; Harmon, Cheryl; Harrell, Brock; Hilton, Sherrill

    1991-01-01

    The objective of this study is to develop a conceptual design for a permanently manned, self-sustaining Martian facility, to accommodate a crew of 20 people. The goal is to incorporate the major functions required for long term habitation in the isolation of a barren planet into a thriving ecosystem. These functions include living, working, service, and medical facilities as well as a green house. The main design task was to focus on the internal layout while investigating the appropriate structure, materials, and construction techniques. The general concept was to create a comfortable, safe living environment for the crew members for a stay of six to twelve months on Mars. Two different concepts were investigated, a modular assembly reusable structure (MARS) designated Lavapolis, and a prefabricated space frame structure called Hexamars. Both models take into account factors such as future expansion, radiation shielding, and ease of assembly.

  6. Quantifying the spatial ecology of wide-ranging marine species in the Gulf of California: implications for marine conservation planning.

    PubMed

    Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R

    2011-01-01

    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25-40%), particularly, the best quality habitats (46-57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks. PMID:22163013

  7. Quantifying the Spatial Ecology of Wide-Ranging Marine Species in the Gulf of California: Implications for Marine Conservation Planning

    PubMed Central

    Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R.

    2011-01-01

    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25–40%), particularly, the best quality habitats (46–57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks. PMID:22163013

  8. MODELING PHYSICAL HABITAT PARAMETERS

    EPA Science Inventory

    Salmonid populations can be affected by alterations in stream physical habitat. Fish productivity is determined by the stream's physical habitat structure ( channel form, substrate distribution, riparian vegetation), water quality, flow regime and inputs from the watershed (sedim...

  9. Concepts for manned lunar habitats

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Butterfield, A. J.; King, C. B.; Qualls, G. D.; Davis, W. T.; Gould, M. J.; Nealy, J. E.; Simonsen, L. C.

    1991-01-01

    The design philosophy that will guide the design of early lunar habitats will be based on a compromise between the desired capabilities of the base and the economics of its development and implantation. Preferred design will be simple, make use of existing technologies, require the least amount of lunar surface preparation, and minimize crew activity. Three concepts for an initial habitat supporting a crew of four for 28 to 30 days are proposed. Two of these are based on using Space Station Freedom structural elements modified for use in a lunar-gravity environment. A third concept is proposed that is based on an earlier technology based on expandable modules. The expandable modules offer significant advantages in launch mass and packaged volume reductions. It appears feasible to design a transport spacecraft lander that, once landed, can serve as a habitat and a stand-off for supporting a regolith environmental shield. A permanent lunar base habitat supporting a crew of twelve for an indefinite period can be evolved by using multiple initial habitats. There appears to be no compelling need for an entirely different structure of larger volume and increased complexity of implantation.

  10. Assessing the Wildlife Habitat Value of New England Salt Marshes: I. Model and Application

    EPA Science Inventory

    We developed an assessment model to quantify the wildlife habitat value of New England salt marshes based on marsh characteristics and the presence of habitat types that influence habitat use by terrestrial wildlife. Applying the model to12 salt marshes located in Narragansett B...

  11. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference.

    PubMed

    Lauria, V; Garofalo, G; Gristina, M; Fiorentino, F

    2016-08-01

    Conservation of fish habitat requires a deeper knowledge of how species distribution patterns are related to environmental factors. Habitat suitability modelling is an essential tool to quantify species' realised niches and understand species-environment relationships. Cephalopods are important players in the marine food web and a significant resource for fisheries; they are also very sensitive to environmental changes. Here a time series of fishery-independent data (1998-2011) was used to construct habitat suitability models and investigate the influence of environmental variables on four commercial cephalopods: Todaropsis eblanae, Illex coindetii, Eledone moschata and Eledone cirrhosa, in the central Mediterranean Sea. The main environmental predictors of cephalopod habitat suitability were depth, seafloor morphology, chlorophyll-a concentration, sea surface temperature and surface salinity. Predictive maps highlighted contrasting habitat selection amongst species. This study identifies areas where the important commercial species of cephalopods are concentrated and provides significant information for a future spatial based approach to fisheries management in the Mediterranean Sea. PMID:27371813

  12. Urban Areas. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, teaching guides and student data sheets for three activities, and a poster. The overview discusses the city as an ecosystem, changing urban habitats, urban wildlife habitats, values of wildlife, habitat management, and…

  13. Predicting spatial and temporal distribution of Indo-Pacific lionfish (Pterois volitans) in Biscayne Bay through habitat suitability modeling

    USGS Publications Warehouse

    Bernal, Nicholas A.; DeAngelis, Donald L.; Schofield, Pamela J.; Sullivan Sealey, Kathleen

    2014-01-01

    Invasive species may exhibit higher levels of growth and reproduction when environmental conditions are most suitable, and thus their effects on native fauna may be intensified. Understanding potential impacts of these species, especially in the nascent stages of a biological invasion, requires critical information concerning spatial and temporal distributions of habitat suitability. Using empirically supported environmental variables (e.g., temperature, salinity, dissolved oxygen, rugosity, and benthic substrate), our models predicted habitat suitability for the invasive lionfish (Pterois volitans) in Biscayne Bay, Florida. The use of Geographic Information Systems (GIS) as a platform for the modeling process allowed us to quantify correlations between temporal (seasonal) fluctuations in the above variables and the spatial distribution of five discrete habitat quality classes, whose ranges are supported by statistical deviations from the apparent best conditions described in prior studies. Analysis of the resulting models revealed little fluctuation in spatial extent of the five habitat classes on a monthly basis. Class 5, which represented the area with environmental variables closest to the best conditions for lionfish, occupied approximately one-third of Biscayne Bay, with subsequent habitats declining in area. A key finding from this study was that habitat suitability increased eastward from the coastline, where higher quality habitats were adjacent to the Atlantic Ocean and displayed marine levels of ambient water quality. Corroboration of the models with sightings from the USGS-NAS database appeared to support our findings by nesting 79 % of values within habitat class 5; however, field testing (i.e., lionfish surveys) is necessary to confirm the relationship between habitat classes and lionfish distribution.

  14. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    SciTech Connect

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and photo

  15. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    SciTech Connect

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross

  16. Quantifying T Lymphocyte Turnover

    PubMed Central

    De Boer, Rob J.; Perelson, Alan S.

    2013-01-01

    Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-2′-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling. We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD4+ and CD8+ T cell pools in mice and men. PMID:23313150

  17. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.

    PubMed

    Boelman, Natalie T; Gough, Laura; Wingfield, John; Goetz, Scott; Asmus, Ashley; Chmura, Helen E; Krause, Jesse S; Perez, Jonathan H; Sweet, Shannan K; Guay, Kevin C

    2015-04-01

    Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White-crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge-dominated tussock tundra where shrub height does not exceed 20 cm, whereas White-crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy-dwelling arthropod availability (i.e. small flies and spiders) but lower ground-dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White-crowned sparrow habitat range and a 20-60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine-scale habitat

  18. Habitat characteristics of North American tortoises: chapter 9

    USGS Publications Warehouse

    Nussear, Kenneth E.; Tuberville, Tracey D.

    2014-01-01

    North American tortoises are distributed in semi-arid and temperate deserts and coastal regions of the southern United States and Mexico. The five species currently recognized each have specific habitat requirements, which they fulfill through their selection of, and interaction with unique habitat constituents. In this chapter we discuss the physiographic and geological associations, perennial and annual vegetation components, shelter sites, and climatic conditions associated with the species’ habitats, as well as the potential threats to their habitat.

  19. Deaf Learners' Knowledge of English Universal Quantifiers

    ERIC Educational Resources Information Center

    Berent, Gerald P.; Kelly, Ronald R.; Porter, Jeffrey E.; Fonzi, Judith

    2008-01-01

    Deaf and hearing students' knowledge of English sentences containing universal quantifiers was compared through their performance on a 50-item, multiple-picture task that required students to decide whether each of five pictures represented a possible meaning of a target sentence. The task assessed fundamental knowledge of quantifier sentences,…

  20. Nesting habitat and nest site selection by the bald eagle in Maryland. Final report

    SciTech Connect

    Mosher, J.A.; Andrew, J.M.

    1981-07-01

    Habitat at 70 bald eagle (Haliaeetus leucocephalus) nest sites was quantified and compared with evaluations at 139 random habitat plots located in the Chesapeake Bay region of Maryland. Bald eagles selected vegetationally open habitats near water and away from selected human activities relative to random habitat plots. Successful nest sites were located in denser forest stands farther from water and unoccupied structures than unsuccessful nest sites.

  1. Is it Logical to Count on Quantifiers? Dissociable Neural Networks Underlying Numerical and Logical Quantifiers

    PubMed Central

    Troiani, Vanessa; Peelle, Jonathan E.; Clark, Robin; Grossman, Murray

    2009-01-01

    The present study examined the neural substrate of two classes of quantifiers: Numerical quantifiers like “at least three” which require magnitude processing, and logical quantifiers like “some” which can be satisfied using a simple form of perceptual logic. We assessed these distinct classes of quantifiers with converging observations from two sources: functional imaging data from healthy adults, and behavioral and structural data from patients with corticobasal degeneration, who have acalculia. Our findings are consistent with the claim that numerical quantifier comprehension depends on a parietal-dorsolateral prefrontal network, but logical quantifier comprehension depends instead on a rostral medial prefrontal-posterior cingulate network. These observations emphasize the important contribution of abstract number knowledge to the meaning of numerical quantifiers in semantic memory and the potential role of a logic-based evaluation in the service of non-numerical quantifiers. PMID:18789346

  2. Landscape habitat diversity: An information theoretic measure

    SciTech Connect

    Loehle, C.; Wein, G.

    1994-06-01

    Biotic diversity is a topic of increasing concern, but current tools for quantifying diversity at the landscape level are inadequate. A new index is proposed. Beginning with a classified raster image of a landscape, each habitat type is assigned a value based on an ordination axis distance. The change in value from one patch to the next depends on how similar the two patches are. An information measure d{sub I} is used to evaluate deviation from uniformity of the ordination values at different scales. Different areas can be compared if habitat values are based on the same ordination scale. This new method provides a powerful tool for both displaying and calculating landscape habitat diversity.

  3. Linking habitat mosaics and connectivity in a coral reef seascape.

    PubMed

    McMahon, Kelton W; Berumen, Michael L; Thorrold, Simon R

    2012-09-18

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes. PMID:22949665

  4. Linking habitat mosaics and connectivity in a coral reef seascape

    PubMed Central

    McMahon, Kelton W.; Berumen, Michael L.; Thorrold, Simon R.

    2012-01-01

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes. PMID:22949665

  5. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  6. Quantifying fish assemblages in large, offshore marine protected areas: an Australian case study.

    PubMed

    Hill, Nicole A; Barrett, Neville; Lawrence, Emma; Hulls, Justin; Dambacher, Jeffrey M; Nichol, Scott; Williams, Alan; Hayes, Keith R

    2014-01-01

    As the number of marine protected areas (MPAs) increases globally, so does the need to assess if MPAs are meeting their management goals. Integral to this assessment is usually a long-term biological monitoring program, which can be difficult to develop for large and remote areas that have little available fine-scale habitat and biological data. This is the situation for many MPAs within the newly declared Australian Commonwealth Marine Reserve (CMR) network which covers approximately 3.1 million km2 of continental shelf, slope, and abyssal habitat, much of which is remote and difficult to access. A detailed inventory of the species, types of assemblages present and their spatial distribution within individual MPAs is required prior to developing monitoring programs to measure the impact of management strategies. Here we use a spatially-balanced survey design and non-extractive baited video observations to quantitatively document the fish assemblages within the continental shelf area (a multiple use zone, IUCN VI) of the Flinders Marine Reserve, within the Southeast marine region. We identified distinct demersal fish assemblages, quantified assemblage relationships with environmental gradients (primarily depth and habitat type), and described their spatial distribution across a variety of reef and sediment habitats. Baited videos recorded a range of species from multiple trophic levels, including species of commercial and recreational interest. The majority of species, whilst found commonly along the southern or south-eastern coasts of Australia, are endemic to Australia, highlighting the global significance of this region. Species richness was greater on habitats containing some reef and declined with increasing depth. The trophic breath of species in assemblages was also greater in shallow waters. We discuss the utility of our approach for establishing inventories when little prior knowledge is available and how such an approach may inform future monitoring

  7. Quantifying Fish Assemblages in Large, Offshore Marine Protected Areas: An Australian Case Study

    PubMed Central

    Hill, Nicole A.; Barrett, Neville; Lawrence, Emma; Hulls, Justin; Dambacher, Jeffrey M.; Nichol, Scott; Williams, Alan; Hayes, Keith R.

    2014-01-01

    As the number of marine protected areas (MPAs) increases globally, so does the need to assess if MPAs are meeting their management goals. Integral to this assessment is usually a long-term biological monitoring program, which can be difficult to develop for large and remote areas that have little available fine-scale habitat and biological data. This is the situation for many MPAs within the newly declared Australian Commonwealth Marine Reserve (CMR) network which covers approximately 3.1 million km2 of continental shelf, slope, and abyssal habitat, much of which is remote and difficult to access. A detailed inventory of the species, types of assemblages present and their spatial distribution within individual MPAs is required prior to developing monitoring programs to measure the impact of management strategies. Here we use a spatially-balanced survey design and non-extractive baited video observations to quantitatively document the fish assemblages within the continental shelf area (a multiple use zone, IUCN VI) of the Flinders Marine Reserve, within the Southeast marine region. We identified distinct demersal fish assemblages, quantified assemblage relationships with environmental gradients (primarily depth and habitat type), and described their spatial distribution across a variety of reef and sediment habitats. Baited videos recorded a range of species from multiple trophic levels, including species of commercial and recreational interest. The majority of species, whilst found commonly along the southern or south-eastern coasts of Australia, are endemic to Australia, highlighting the global significance of this region. Species richness was greater on habitats containing some reef and declined with increasing depth. The trophic breath of species in assemblages was also greater in shallow waters. We discuss the utility of our approach for establishing inventories when little prior knowledge is available and how such an approach may inform future monitoring

  8. Selecting habitat management strategies on refuges

    USGS Publications Warehouse

    Schroeder, Richard L.; King, Wayne J.; Cornely, John E.

    1998-01-01

    This report is a joint effort of the Biological Resources Division, U.S. Geological Survey and the U.S. Fish and Wildlife Service (FWS) to provide National Wildlife Refuge (NWR) managers guidance on the selection and evaluation of habitat management strategies to meet stated objectives. The FWS recently completed a handbook on writing refuge management goals and objectives (U.S. Fish and Wildlife Service 1996a). the National Wildlife Refuge System Improvement Act of 1997 requires that National Wildlife Refuge System (NWRS) lands be managed according to approved Comprehensive Conservation Plans to guide management decisions and devise strategies for achieving refuge unit purposes and meeting the NWRS mission. It is expected that over the next several years most refuges will develop new or revised refuge goals and objectives for directing their habitat management strategies. This paper outlines the steps we recommend in selecting and evaluating habitat management strategies to meet specific refuge habitat objectives. We selected two examples to illustrate the process. Although each refuge is unique and will require specific information and solutions, these two examples can be used as guidance when selecting and evaluating habitat management strategies for other refuge resources: Example 1. Management of floodplain woods habitat for forest interior birds. The biological recourse of concern is the quality and quantity of floodplain woods habitat for eastern forest interior birds in the Cypress Creek NWR (U.S. Fish and Wildlife Service 1996b). Example 2. Management of habitat for biodiversity: Historical landscape proportions. The biological resource of concern is the change in diversity associated with man-induced changes in the distribution and abundance of habitat types at the Minnesota Valley NWR (U.S. Fish and Wildlife Service 1996c).

  9. The Habitat Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Habitat Project is a multiday, differentiated, interdisciplinary environmental science lesson that incorporates skill-building and motivational strategies to internalize ecosystem vocabulary. Middle school students research an animal, display its physical characteristics on a poster, build a three-dimensional habitat and present their work…

  10. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  11. Schoolyard Habitat Project Guide.

    ERIC Educational Resources Information Center

    Mason, Rich

    This project aims to provide basic steps for students to restore and create wildlife habitats on school grounds. Four chapters are included in this guide, and each chapter is divided into teacher and student sections. Chapter 1 provides necessary information for starting a habitat project. Chapters 2, 3, and 4 discuss the details for the Forest…

  12. Relationship between nitrogen concentration, light, and Zostera marina habitat quality and survival in southeastern Massachusetts estuaries.

    PubMed

    Benson, Jennifer L; Schlezinger, David; Howes, Brian L

    2013-12-15

    The relationship of eelgrass survival and habitat quality to water column nitrogen level, phytoplankton biomass, particulate matter, bottom light intensity, and light attenuation was quantified at 70 sites within 19 Massachusetts estuaries through 4 growing seasons (2007-2009, 2011). Sites included a range of eelgrass habitat quality, from stable productive eelgrass beds, to degraded beds, to areas that have lost all eelgrass coverage. Survival of transplanted eelgrass culms was used as a bio-indicator of habitat quality. Habitat quality based upon both changes in stability of eelgrass coverage and transplant survival was positively related to light intensity and percent transmittance. Transplant survival was consistent with habitat designations based upon long-term changes in eelgrass coverage, with lowest light coinciding with areas that lost eelgrass in earlier decades. Bottom light declined in proportion to increases in total nitrogen levels, phytoplankton biomass, and water column particulates determined from long-term water quality data. Field surveys indicated that eelgrass survival required bottom light ≥100 μE/m(2)/s and healthy eelgrass existed where tidally-averaged total nitrogen was less than 0.34 mg/L, equivalent to a mid-ebb tide water-column total nitrogen of <0.37 mg/L. Traditional sampling of water column nitrogen at mid-ebb tide was found to slightly overestimate the average nitrogen level over a complete tidal cycle. However, since long-term, ebb-tide and tidally-averaged total nitrogen are correlated, it is possible to use the monitoring average to guide management until tidally-averaged TN becomes available. Nitrogen thresholds that support eelgrass communities provide a fundamental tool for managing this habitat and for selection of transplant sites aimed at accelerating restoration of this resource under increasing nitrogen loading of the coastal zone. PMID:24161802

  13. Lunar Habitat Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.

  14. Decadal-scale effects of benthic habitat and marine reserve protection on Philippine goatfish (F: Mullidae)

    NASA Astrophysics Data System (ADS)

    Russ, Garry R.; Bergseth, Brock J.; Rizzari, Justin R.; Alcala, Angel C.

    2015-09-01

    Reef fish populations can be affected by both fishing and changes in benthic habitat. Yet, partitioning these effects is often difficult, usually requiring an appropriate sampling design and long-term monitoring. Here we quantify, over a 30-yr period, the effects of benthic habitat change and no-take marine reserve (NTMR) protection on the density and species richness of a lightly harvested benthic-feeding reef fish family, the Mullidae (goatfish), at four Philippine islands. Boosted regression trees demonstrated that goatfish density and species richness had strong negative associations with hard coral cover and strong positive associations with cover of dead substratum. No-take marine reserve protection had no effect on the density or species richness of goatfish over 19 and 30 yr at Sumilon and Apo islands, respectively. However, environmental disturbances (e.g., typhoons, coral bleaching) that reduced hard coral cover subsequently led to increases in goatfish numbers for periods ranging from 2 to 8 yr. After initial increases due to benthic disturbance, goatfish populations decreased during coral recovery, occurring on timescales of 10-20 yr. This long-term, "natural experiment" demonstrated that changes to benthic habitat (bottom-up control) had a far greater effect on Philippine goatfish populations than protection from fishing (a top-down effect) in NTMRs. Given the strong positive response of goatfish populations to loss of live hard coral cover, this group of fishes may be a valuable indicator species for habitat degradation on coral reefs.

  15. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    SciTech Connect

    Rien, Thomas A.; Beiningen, Kirk T.

    1997-07-01

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  16. Quantifying Faculty Workloads.

    ERIC Educational Resources Information Center

    Archer, J. Andrew

    Teaching load depends on many variables, however most colleges define it strictly in terms of contact or credit hours. The failure to give weight to variables such as number of preparations, number of students served, committee and other noninstructional assignments is usually due to the lack of a formula that will quantify the effects of these…

  17. Generalisation of physical habitat-discharge relationships

    NASA Astrophysics Data System (ADS)

    Booker, D. J.; Acreman, M. C.

    2007-01-01

    Physical habitat is increasingly used worldwide as a measure of river ecosystem health when assessing changes to river flows, such as those caused by abstraction. The major drawback with this approach is that defining precisely the relationships between physical habitat and flow for a given river reach requires considerable data collection and analysis. Consequently, widely used models such as the Physical Habitat Simulation (PHABSIM) system are expensive to apply. There is, thus, a demand for rapid methods for defining habitat-discharge relationships from simple field measurements. This paper reports the analysis of data from 63 sites in the UK where PHABSIM has been applied. The results demonstrate that there are strong relationships between single measurements of channel form and river hydraulics and the habitat available for target species. The results can form the basis of a method to estimate sensitivity of physical habitat to flow change by visiting a site at only one flow. Furthermore, the uncertainty in estimates reduces as more information is collected. This allows the user to select the level of investment in data collection appropriate for the desired confidence in the estimates. The method is demonstrated using habitat indicators for different life stages of Atlantic salmon, brown trout, roach and dace.

  18. Transmission loss in manatee habitats.

    PubMed

    Miksis-Olds, Jennifer L; Miller, James H

    2006-10-01

    The Florida manatee is regularly exposed to high volumes of vessel traffic and other human-related noise because of its coastal distribution. Quantifying specific aspects of the manatee's acoustic environment will allow for a better understanding of how these animals respond to both natural and human-induced changes in their environment. Transmission loss measurements were made in 24 sampling sites that were chosen based on the frequency of manatee presence. The Monterey-Miami Parabolic Equation model was used to relate environmental parameters to transmission loss in two extremely shallow water environments: seagrass beds and dredged habitats. Model accuracy was verified by field tests at all modeled sites. Results indicated that high-use grassbeds have higher levels of transmission loss for frequencies above 2 kHz compared to low-use sites of equal food species composition and density. This also happens to be the range of most efficient sound propagation inside the grassbed habitat and includes the dominant frequencies of manatee vocalizations. The acoustic environment may play a more important role in manatee grassbed selection than seagrass coverage or species composition, as linear regression analysis showed no significant correlation between usage and either total grass coverage, individual species coverage, or aerial pattern. PMID:17069327

  19. Comparative habitat use in a juniper woodland bird community

    USGS Publications Warehouse

    Pavlacky, D.C., Jr.; Anderson, S.H.

    2004-01-01

    We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.

  20. Partitioning mechanisms of predator interference in different habitats.

    PubMed

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific. PMID:16086166

  1. Multi-scale Hydroacoustic Remote Sensing of Sturgeon and Their Habitats in A Large, Turbid River

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; Delonay, A.; Vishy, C.; Elliott, C. M.; Reuter, J. M.; Chojnacki, K. A.

    2009-12-01

    Restoration and management of the Lower Missouri River (LMOR) to support recovery of the endangered pallid sturgeon (Scaphirhynchus albus) requires quantifying habitats used during all life stages in order to isolate specific habitats (if any) that present bottlenecks to reproduction and survival. All life stages of the pallid sturgeon take place in deep, turbid rivers where direct observation of habitat selection, movement, and behavior are impossible. Female pallid sturgeon reproduce only once every 3-5 years, but during a reproductive season they may migrate 10’s to 100’s of kilometers to spawn in patches of only several 100’s of square meters over a period of several hours. The broad ranges of spatial and temporal scales involved in understanding how particular life stages relate to their environment, as well as the technical challenges of working in a large river, dictate application of a multi-scale, remote-sensing approach. At the scale of the entire LMOR (1300 km), extensive hydroacoustic mapping using single-beam bathymetry, acoustic Doppler current profiling (ADCP), and substrate classification has been used to quantify the fundamental biophysical capacity of river segments in terms of frequency distributions of hydraulic variables. Coordinated telemetric tracking of reproductive fish provides an understanding of home range and habitat selection at reach to segment scales, over timeframes commensurate with 3-5 year reproductive cycles. Intensive reach-scale hydroacoustic mapping using multibeam bathymetry, ADCP, and high-resolution sidescan sonar, combined with intensive telemetric tracking, provide coincident measures of habitat availability and selection for upstream-migrating and spawning fish during reproductive seasons. These assessments measure habitat variables at sub-meter to bedform scales, commensurate with the scale at which fish occupy their habitat. For example, dual-frequency identification sonar (DIDSON) imagery indicates that during

  2. Semi-automated analysis of high-resolution aerial images to quantify docks in glacial lakes

    NASA Astrophysics Data System (ADS)

    Beck, Marcus W.; Vondracek, Bruce; Hatch, Lorin K.; Vinje, Jason

    2013-07-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on K^) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  3. Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat

    NASA Technical Reports Server (NTRS)

    Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.

    2014-01-01

    NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat

  4. Lunar/Mars Surface Habitat Mockups Project

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Daues, Katherine R.

    2005-01-01

    Surface habitats play a centric role with respect to integration of the crew operations and supporting surface systems for external operations on the moon and Mars. Up to now the only planetary surface habitat NASA has ever developed is the 2-person, 3-day duration Lunar Module from the 1960 s-era Apollo Program. Today s National Vision for Space Exploration pushes far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making habitat design decisions Experience has shown that using mockups very early in a project s life cycle is extremely beneficial, providing data that influences requirements for human design, volumetrics, functionality, systems hardware and operations. Evaluating and comparing a variety of habitat configurations will provide NASA with a cost-effective basis for trades to support lunar and Martian habitat design selection. This paper describes the NASA project that recently has been created to undertake the development and evaluation of a series of planetary surface habitat mockups. This project is in direct response to the Advanced Space Platforms and Systems (ASPS) Element Program s request for novel systems approaches for robust and reconfigurable habitation systems.

  5. Quantifying Health Across Populations.

    PubMed

    Kershnar, Stephen

    2016-07-01

    In this article, I argue that as a theoretical matter, a population's health-level is best quantified via averagism. Averagism asserts that the health of a population is the average of members' health-levels. This model is better because it does not fall prey to a number of objections, including the repugnant conclusion, and because it is not arbitrary. I also argue that as a practical matter, population health-levels are best quantified via totalism. Totalism asserts that the health of a population is the sum of members' health-levels. Totalism is better here because it fits better with cost-benefit analysis and such an analysis is the best practical way to value healthcare outcomes. The two results are compatible because the theoretical and practical need not always align, whether in general or in the context of population health. PMID:26766584

  6. Quantifying Ubiquitin Signaling

    PubMed Central

    Ordureau, Alban; Münch, Christian; Harper, J. Wade

    2015-01-01

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850

  7. Modeling effects of conservation grassland losses on amphibian habitat

    USGS Publications Warehouse

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  8. Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  9. Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  10. Habitat Suitability Index Models: Southern Red-Backed Vole (Western United States)

    USGS Publications Warehouse

    Allen, Arthur W.

    1983-01-01

    Habitat preferences of the southern red-backed vole (Clethrionomys gapperi) are described in this publication, which is one of a series of Habitat Suitability Index (HSI) models. A review and synthesis of the literature is followed by development of a model of the species-habitat requirements of the southern red-backed vole. Habitat suitability indexes are designed for use with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  11. Quantifying concordance in cosmology

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Grandis, Sebastian; Amara, Adam; Refregier, Alexandre

    2016-05-01

    Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between data sets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13, and Planck 15 constraints on the Λ CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S =17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Planck 15 constraints deviate from the Planck 13 results (S =56.3 bits), primarily due to a shift in the same direction. The Surprise between WMAP and Planck consequently disappears when moving to Planck 15 (S =-5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.

  12. Resource selection by the California condor (Gymnogyps californianus) relative to terrestrial-based habitats and meteorological conditions.

    PubMed

    Rivers, James W; Johnson, J Matthew; Haig, Susan M; Schwarz, Carl J; Glendening, John W; Burnett, L Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus) within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas). Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection) and negative (avoidance) effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status) or components of the species management program (i.e., release site, rearing method) relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development). Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize their risk to

  13. Resource Selection by the California Condor (Gymnogyps californianus) Relative to Terrestrial-Based Habitats and Meteorological Conditions

    PubMed Central

    Rivers, James W.; Johnson, J. Matthew; Haig, Susan M.; Schwarz, Carl J.; Glendening, John W.; Burnett, L. Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus) within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas). Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection) and negative (avoidance) effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status) or components of the species management program (i.e., release site, rearing method) relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development). Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize their risk to

  14. Current practices in the identification of critical habitat for threatened species.

    PubMed

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. PMID:25472827

  15. Pneumatically erected rigid habitat

    NASA Technical Reports Server (NTRS)

    Salles, Bradley

    1992-01-01

    The pneumatically erected rigid habitat concept consists of a structure based on an overexpanded metal bellows. The basic concept incorporates the advantages of both inflatable and rigid structures. The design and erection detail are presented with viewgraphs.

  16. A variance-decomposition approach to investigating multiscale habitat associations

    USGS Publications Warehouse

    Lawler, J.J.; Edwards, T.C., Jr.

    2006-01-01

    The recognition of the importance of spatial scale in ecology has led many researchers to take multiscale approaches to studying habitat associations. However, few of the studies that investigate habitat associations at multiple spatial scales have considered the potential effects of cross-scale correlations in measured habitat variables. When cross-scale correlations in such studies are strong, conclusions drawn about the relative strength of habitat associations at different spatial scales may be inaccurate. Here we adapt and demonstrate an analytical technique based on variance decomposition for quantifying the influence of cross-scale correlations on multiscale habitat associations. We used the technique to quantify the variation in nest-site locations of Red-naped Sapsuckers (Sphyrapicus nuchalis) and Northern Flickers (Colaptes auratus) associated with habitat descriptors at three spatial scales. We demonstrate how the method can be used to identify components of variation that are associated only with factors at a single spatial scale as well as shared components of variation that represent cross-scale correlations. Despite the fact that no explanatory variables in our models were highly correlated (r < 0.60), we found that shared components of variation reflecting cross-scale correlations accounted for roughly half of the deviance explained by the models. These results highlight the importance of both conducting habitat analyses at multiple spatial scales and of quantifying the effects of cross-scale correlations in such analyses. Given the limits of conventional analytical techniques, we recommend alternative methods, such as the variance-decomposition technique demonstrated here, for analyzing habitat associations at multiple spatial scales. ?? The Cooper Ornithological Society 2006.

  17. External Device to Incrementally Skid the Habitat (E-DISH)

    NASA Technical Reports Server (NTRS)

    Brazell, J. W.; Introne, Steve; Bedell, Lisa; Credle, Ben; Holp, Graham; Ly, Siao; Tait, Terry

    1994-01-01

    A Mars habitat transport system was designed as part of the NASA Mars exploration program. The transport system, the External Device to Incrementally Skid the Habitat (E - DISH), will be used to transport Mars habitats from their landing sites to the colony base and will be detached after unloading. The system requirements for Mars were calculated and scaled for model purposes. Specific model materials are commonly found and recommendations for materials for the Mars design are included.

  18. Quantifying light pollution

    NASA Astrophysics Data System (ADS)

    Cinzano, P.; Falchi, F.

    2014-05-01

    In this paper we review new available indicators useful to quantify and monitor light pollution, defined as the alteration of the natural quantity of light in the night environment due to introduction of manmade light. With the introduction of recent radiative transfer methods for the computation of light pollution propagation, several new indicators become available. These indicators represent a primary step in light pollution quantification, beyond the bare evaluation of the night sky brightness, which is an observational effect integrated along the line of sight and thus lacking the three-dimensional information.

  19. Modeling Protected Species Habitat and Assigning Risk to Inform Regulatory Decisions

    NASA Astrophysics Data System (ADS)

    Montgomery, Robert A.; Rubeck-Schurtz, C. Nichole; Millenbah, Kelly F.; Roloff, Gary J.; Whalon, Mark E.; Olsen, Larry G.

    2009-07-01

    In the United States, environmental regulatory agencies are required to use “best available” scientific information when making decisions on a variety of issues. However, agencies are often hindered by coarse or incomplete data, particularly as it pertains to threatened and endangered species protection. Stakeholders often agree that more resolute and integrated processes for decision-making are desirable. We demonstrate a process that uses species occurrence data for a federally endangered insect (Karner blue butterfly), a readily available habitat modeling tool, and spatially explicit information about an important Michigan commodity (tart cherries). This case study has characteristics of many protected species regulatory decisions in that species occurrence data were sparse and unequally distributed; regulatory decisions (on pesticide use) were required with potentially significant impacts on a viable agricultural industry; and stakeholder relations were diverse, misinformed, and, in some situations, unjustly contentious. Results from our process include a large-scale, empirically derived habitat suitability map for the focal species and a risk ranking of tart cherry orchards with risk based on the likelihood that pesticide applications will influence the focal protected species. Although the majority (77%) of pesticide-influence zones overlapped Karner blue butterfly habitat, risk scores associated with each orchard were low. Through our process we demonstrated that spatially explicit models can help stakeholders visualize and quantify potential protected species effects. In addition, model outputs can serve to guide field activities (e.g., species surveys and implementation of pesticide buffer zones) that help minimize future effects.

  20. Habitat Suitability Index Models: Muskellunge

    USGS Publications Warehouse

    Cook, Mark F.; Solomon, R. Charles

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the muskellunge (Esox masquinongy Mitchell). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  1. Habitat Suitability Index Models: Bobcat

    USGS Publications Warehouse

    Boyle, Katherine A.; Fendley, Timothy T.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the bobcat (Felis rufus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  2. The value of carbon sequestration and storage in coastal habitats

    NASA Astrophysics Data System (ADS)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  3. Meso-scale habitat simulation for the conservation of the endangered crayfish Austropotamobious pallipes complex in Italy

    NASA Astrophysics Data System (ADS)

    Vezza, Paolo; Ghia, Daniela; Fea, Gianluca; Spairani, Michele; Comoglio, Claudio; Di Francesco, Monica

    2014-05-01

    Crayfish are the largest mobile freshwater invertebrates, being often considered key species in the aquatic ecosystems of small streams and creeks in Italy. Specifically, Austropotamobius pallipes complex is currently classified as an endangered species, and Italian local populations significantly decreased over the last decades due to habitat modifications and introduction of alien species. Information on A. pallipes ecological requirements is then needed to quantify habitat loss, to simulate restoration scenarios and to implement effective conservation measures. In this work we analyze mesohabitat use of A. pallipes in reference streams and creeks located in the Italian pre-Alps (Lombardia region) and in the mountainous areas of the Gran Sasso e monti della Laga National Park (Abruzzo region). Data from seven morphologically different streams were used to calibrate and validate habitat models for the endangered crayfish A. pallipes complex. The Random Forests algorithm was used to identify the best and the most parsimonious habitat model, to define the lowest number of variables to be surveyed in future model applications. The obtained habitat models were then applied to each stream in order to classify each mesohabitat into suitability categories, and to develop habitat-flow rating curves. Finally, habitat time series analysis was used to define detailed schemes of flow management for individual water diversions in order to represent how physical habitat changes through time and to identify stress conditions for A. pallipes created by persistent limitation in habitat availability. Results indicated that fine substrate (as proportion of gravel and sand), shallow water depth and cover (as presence of boulders, woody debris and undercut banks) revealed to be significant variables for the occurrence of A. pallipes. Habitat models, performing well in both model calibration and validation phases (accuracy ranging from 71% to 87%), are regarded as valuable tools being

  4. Physical habitat structure of the lake shoreline and littoral zone -- How important is it?

    EPA Science Inventory

    The recent National Lakes Assessment (NLA) included the first national assessment of littoral and lakeshore physical habitat. It quantified water depth, surface characteristics, bank morphology, lake level fluctuations, substrate, fish concealment features, aquatic macrophytes, l...

  5. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  6. A geospatial modelling approach to predict seagrass habitat recovery under multiple stressor regimes

    EPA Science Inventory

    Restoration of estuarine seagrass habitats requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed and demonstrated a geospatial modeling a...

  7. Impacts of Discharge Reductions on Physical and Thermal Habitat Characteristics in a Desert Spring, Death Valley National Park, California, USA

    NASA Astrophysics Data System (ADS)

    Morrison, R. R.; Stone, M. C.; Sada, D. W.

    2013-12-01

    Desert springs are biodiversity hotspots that are sensitive to anthropogenic activities. Despite their importance, the effects of human disturbance on desert springs are not well known, and scarce information exists describing the biotic or environmental effects of incrementally increasing disturbance. The objective of this research was to quantify the influence of incremental reductions in discharge on the physical and thermal characteristics of a desert springbrook. This objective was accomplished through a combination of field experiments at Travertine Spring in Death Valley National Park, USA, and hydraulic/temperature modeling in order to: (1) quantify changes in physical characteristics of the springbrook channel and aquatic environment; (2) investigate the effects of reduced spring discharge on seasonal spatial temperature patterns; (3) delineate tipping points that exhibit a non-linear response to decreased flow. The study results supported our predictions that decreased discharge would modify physical habitat characteristics of the springbrook, reduce aquatic habitat volume, increase variability in water temperatures along the springbrook, and reduce springbrook suitability for invertebrates that require stable environments. Field observations revealed a significant relationship between water depth and flow velocity with reduced spring discharge. The rate of change of mean water depths, velocities, and habitat volumes were greatest with only a 10% reduction in spring flow. In addition, a non-linear temperature response to flow reductions was present under all modeled conditions. Generally, water temperature gradients increased as flows were decreased, and the sensitivity of reduced discharge increased with distance from the spring source. The degree of sensitivity was a function of season, which reflects the influence of ambient air temperature and wind in the cooling of the springbrook. These results suggest that habitat for species using stable thermal

  8. EFFECT OF URBANIZATION ON FISH ASSEMBLAGES AND HABITAT QUALITY IN A PIEDMONT RIVER BASIN

    EPA Science Inventory

    We quantified the relationships among urbanization, fishes, and habitat quality to determine how assemblags respond to urbanization and if a habitat quality assessment reflects urban effects on stream ecosystems. We sampled 30 wadeable streams along an urban gradient in the Etow...

  9. On quantifying insect movements

    SciTech Connect

    Wiens, J.A.; Crist, T.O. ); Milne, B.T. )

    1993-08-01

    We elaborate on methods described by Turchin, Odendaal Rausher for quantifying insect movement pathways. We note the need to scale measurement resolution to the study insects and the questions being asked, and we discuss the use of surveying instrumentation for recording sequential positions of individuals on pathways. We itemize several measures that may be used to characterize movement pathways and illustrate these by comparisons among several Eleodes beetles occurring in shortgrass steppe. The fractal dimension of pathways may provide insights not available from absolute measures of pathway configuration. Finally, we describe a renormalization procedure that may be used to remove sequential interdependence among locations of moving individuals while preserving the basic attributes of the pathway.

  10. Inflatable rigidizable human habitat of large size

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey

    Human organism is sensitive to space environment factors such as temperature variations, ra-diation, microgravity, that exist in all space missions on the board of space ships and space stations on Low Earth Orbit (LEO). The materials and constructions of modern space ships and ISS provide acceptable conditions for human crew during some months on the LEO. Fu-ture space flights to Moon, Mars and further will require new materials and stronger protection against high intensity solar irradiation, which could kill living organisms when flight is over the radiation belt of Earth. One of the modern project for future space flight is a large size habitat based on inflatable technology with rigidization of the habitat walls after deployment. The requirements for radiation protection, stable inflating, rigidization and sufficient mechan-ical properties during long life-time of the habitat are key question for selection of a suitable materials of the habitat. The properties of the inflatable rigidizable habitat to save life in far space are considered and discussed.

  11. Habitat goes green

    SciTech Connect

    Kriescher, P.; Smith, M.

    1999-12-01

    A Denver family enjoys the financial and personal benefits of owning an affordable, energy-efficient home. On Earth Day, April 22, 1997, Habitat for Humanity of Metro Denver witnessed the realization of a dream. As Luis and Estella Valadez and their four children cut the ribbon on their 1,100 square foot (102 m{sup 2}) northwest Denver home, it signified the completion of the Denver Habitat affiliate's first ``Green'' home. Building this dream involved developing a plan to build affordable Habitat homes that also embodied a sense of stewardship of the Earth's environment. The affiliate also wanted to use this effort to achieve the additional goal of reducing the homeowner's utility and maintenance bills.

  12. RELATIONSHIPS BETWEEN HABITAT QUALITY AND DENSITY OF JUVENILE WINTER FLOUNDER

    EPA Science Inventory

    We used a digital video camera mounted to a 1-m beam trawl together with an attached continuous recording YSI sonde and GPS unit to quantify juvenile winter flounder (Pseudopleuronectes americanus) densities and fish habitat. The YSI sonde measured temperature, salinity, dissolve...

  13. Scale considerations in monitoring greater sage-grouse ( Centrocercus urophasianus) vegetation structure and habitat suitability within nesting habitat in western Wyoming

    NASA Astrophysics Data System (ADS)

    Zabihi Afratakhti, Khodabakhsh

    Disturbance of nesting habitat associated with energy development has contributed to population declines of greater sage-grouse (Centrocercus urophasianus) in western Wyoming. Greater sage-grouse, rely on sagebrush ecosystems during all of their life stages. Specific criteria for suitable nesting habitat for the species includes both amount and distribution of sagebrush and herbaceous cover. Loss of suitable sagebrush habitat makes the identification of remaining suitable habitat critical for long-term management of the species. This research documents spatial patterns of vegetation structure within greater sage-grouse nesting habitat to compare shrub configuration (shrub patchiness) between nest and random non-nest locations at very fine scales. Additionally, we examine the applicability of gap intercept techniques to quantify shrub structural characteristics (shrub height and patchiness). Finally, the suitability of nesting habitats was mapped using biophysical features and anthropogenic disturbances at fine to broad scales. Spatial vegetation patterns vary with scale, and spatial homogeneity of sagebrush stands declines with increasing shrub height. Canopy gap intercept techniques reliably quantify composition, configuration, and height of shrub cover. The proportion of shrub cover and non-shrub gaps can be used as a compositional attribute that characterizes nesting habitat at the broad scale (across kilometers). In addition, variation in gap sizes within shrub cover, or shrub patchiness is a habitat characteristic that differentiates nesting and non-nest habitat at fine scales. Shrub cover-to-gap proportion, shrub spatial configuration, and mean shrub heights are important vegetative traits that characterize sage-grouse nesting habitat. At broad scales, habitat suitability for nesting is related to both anthropogenic disturbances and the suitability of biophysical features (e.g., slope, aspect, vegetation type and composition). Information about habitat

  14. Lunar microcosmos. [human factors of lunar habitat

    NASA Technical Reports Server (NTRS)

    Pirie, N.

    1974-01-01

    A human habitat on the lunar surface requires energy recycling metabolites based on the utilization of vegetative plants that are good photosynthesizers. Selection criteria involve reactions to fertilization by human excrements, suitability as food for man (with or without fractionation), physiological effects of prolonged ingestion of these plants, and technical methods for returning inedible portions back into the cycle.

  15. Habitat Suitability Information: Blacknose Dace

    USGS Publications Warehouse

    Trial, Joan G.; Stanley, Jon G.; Batcheller, Mary; Gebhart, Gary; Maughan, O. Eugene; Nelson, Patrick C.

    1983-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for Blacknose dace, a freshwater species. The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for freshwater, marine, and estuarine areas of the continental United States. Habitat suitability indexes (HSI's) are designed for use with the habitat evaluation procedures developed by the U.S. Fish and Wildlife Service. Also included are discussions of Suitability Index (SI) curves as used in the Instream Flow Incremental Methodology (IFIM) and SI curves available for an IFIM analysis of Blacknose dace.

  16. Mapping Habitats and Developing Baselines in Offshore Marine Reserves with Little Prior Knowledge: A Critical Evaluation of a New Approach

    PubMed Central

    Lawrence, Emma; Hayes, Keith R.; Lucieer, Vanessa L.; Nichol, Scott L.; Dambacher, Jeffrey M.; Hill, Nicole A.; Barrett, Neville; Kool, Johnathan; Siwabessy, Justy

    2015-01-01

    The recently declared Australian Commonwealth Marine Reserve (CMR) Network covers a total of 3.1 million km2 of continental shelf, slope, and abyssal habitat. Managing and conserving the biodiversity values within this network requires knowledge of the physical and biological assets that lie within its boundaries. Unfortunately very little is known about the habitats and biological assemblages of the continental shelf within the network, where diversity is richest and anthropogenic pressures are greatest. Effective management of the CMR estate into the future requires this knowledge gap to be filled efficiently and quantitatively. The challenge is particularly great for the shelf as multibeam echosounder (MBES) mapping, a key tool for identifying and quantifying habitat distribution, is time consuming in shallow depths, so full coverage mapping of the CMR shelf assets is unrealistic in the medium-term. Here we report on the results of a study undertaken in the Flinders Commonwealth Marine Reserve (southeast Australia) designed to test the benefits of two approaches to characterising shelf habitats: (i) MBES mapping of a continuous (~30 km2) area selected on the basis of its potential to include a range of seabed habitats that are potentially representative of the wider area, versus; (ii) a novel approach that uses targeted mapping of a greater number of smaller, but spatially balanced, locations using a Generalized Random Tessellation Stratified sample design. We present the first quantitative estimates of habitat type and sessile biological communities on the shelf of the Flinders reserve, the former based on three MBES analysis techniques. We contrast the quality of information that both survey approaches offer in combination with the three MBES analysis methods. The GRTS approach enables design based estimates of habitat types and sessile communities and also identifies potential biodiversity hotspots in the northwest corner of the reserve’s IUCN zone IV, and

  17. Mapping Habitats and Developing Baselines in Offshore Marine Reserves with Little Prior Knowledge: A Critical Evaluation of a New Approach.

    PubMed

    Lawrence, Emma; Hayes, Keith R; Lucieer, Vanessa L; Nichol, Scott L; Dambacher, Jeffrey M; Hill, Nicole A; Barrett, Neville; Kool, Johnathan; Siwabessy, Justy

    2015-01-01

    The recently declared Australian Commonwealth Marine Reserve (CMR) Network covers a total of 3.1 million km2 of continental shelf, slope, and abyssal habitat. Managing and conserving the biodiversity values within this network requires knowledge of the physical and biological assets that lie within its boundaries. Unfortunately very little is known about the habitats and biological assemblages of the continental shelf within the network, where diversity is richest and anthropogenic pressures are greatest. Effective management of the CMR estate into the future requires this knowledge gap to be filled efficiently and quantitatively. The challenge is particularly great for the shelf as multibeam echosounder (MBES) mapping, a key tool for identifying and quantifying habitat distribution, is time consuming in shallow depths, so full coverage mapping of the CMR shelf assets is unrealistic in the medium-term. Here we report on the results of a study undertaken in the Flinders Commonwealth Marine Reserve (southeast Australia) designed to test the benefits of two approaches to characterising shelf habitats: (i) MBES mapping of a continuous (~30 km2) area selected on the basis of its potential to include a range of seabed habitats that are potentially representative of the wider area, versus; (ii) a novel approach that uses targeted mapping of a greater number of smaller, but spatially balanced, locations using a Generalized Random Tessellation Stratified sample design. We present the first quantitative estimates of habitat type and sessile biological communities on the shelf of the Flinders reserve, the former based on three MBES analysis techniques. We contrast the quality of information that both survey approaches offer in combination with the three MBES analysis methods. The GRTS approach enables design based estimates of habitat types and sessile communities and also identifies potential biodiversity hotspots in the northwest corner of the reserve's IUCN zone IV, and in

  18. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research.

    SciTech Connect

    Bottom, Daniel L.; Simenstad, Charles A.; Campbell, Lance

    2009-05-15

    In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal

  19. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  20. Predictive Modeling of Spinner Dolphin (Stenella longirostris) Resting Habitat in the Main Hawaiian Islands

    PubMed Central

    Thorne, Lesley H.; Johnston, David W.; Urban, Dean L.; Tyne, Julian; Bejder, Lars; Baird, Robin W.; Yin, Suzanne; Rickards, Susan H.; Deakos, Mark H.; Mobley, Joseph R.; Pack, Adam A.; Chapla Hill, Marie

    2012-01-01

    Predictive habitat models can provide critical information that is necessary in many conservation applications. Using Maximum Entropy modeling, we characterized habitat relationships and generated spatial predictions of spinner dolphin (Stenella longirostris) resting habitat in the main Hawaiian Islands. Spinner dolphins in Hawai'i exhibit predictable daily movements, using inshore bays as resting habitat during daylight hours and foraging in offshore waters at night. There are growing concerns regarding the effects of human activities on spinner dolphins resting in coastal areas. However, the environmental factors that define suitable resting habitat remain unclear and must be assessed and quantified in order to properly address interactions between humans and spinner dolphins. We used a series of dolphin sightings from recent surveys in the main Hawaiian Islands and a suite of environmental variables hypothesized as being important to resting habitat to model spinner dolphin resting habitat. The model performed well in predicting resting habitat and indicated that proximity to deep water foraging areas, depth, the proportion of bays with shallow depths, and rugosity were important predictors of spinner dolphin habitat. Predicted locations of suitable spinner dolphin resting habitat provided in this study indicate areas where future survey efforts should be focused and highlight potential areas of conflict with human activities. This study provides an example of a presence-only habitat model used to inform the management of a species for which patterns of habitat availability are poorly understood. PMID:22937022

  1. Quantifying solvated electrons' delocalization.

    PubMed

    Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J

    2015-07-28

    Delocalized, solvated electrons are a topic of much recent interest. We apply the electron delocalization range EDR(r;u) (J. Chem. Phys., 2014, 141, 144104) to quantify the extent to which a solvated electron at point r in a calculated wavefunction delocalizes over distance u. Calculations on electrons in one-dimensional model cavities illustrate fundamental properties of the EDR. Mean-field calculations on hydrated electrons (H2O)n(-) show that the density-matrix-based EDR reproduces existing molecular-orbital-based measures of delocalization. Correlated calculations on hydrated electrons and electrons in lithium-ammonia clusters illustrates how electron correlation tends to move surface- and cavity-bound electrons onto the cluster or cavity surface. Applications to multiple solvated electrons in lithium-ammonia clusters provide a novel perspective on the interplay of delocalization and strong correlation central to lithium-ammonia solutions' concentration-dependent insulator-to-metal transition. The results motivate continued application of the EDR to simulations of delocalized electrons. PMID:25994586

  2. Uncertainty quantified trait predictions

    NASA Astrophysics Data System (ADS)

    Fazayeli, Farideh; Kattge, Jens; Banerjee, Arindam; Schrodt, Franziska; Reich, Peter

    2015-04-01

    Functional traits of organisms are key to understanding and predicting biodiversity and ecological change, which motivates continuous collection of traits and their integration into global databases. Such composite trait matrices are inherently sparse, severely limiting their usefulness for further analyses. On the other hand, traits are characterized by the phylogenetic trait signal, trait-trait correlations and environmental constraints, all of which provide information that could be used to statistically fill gaps. We propose the application of probabilistic models which, for the first time, utilize all three characteristics to fill gaps in trait databases and predict trait values at larger spatial scales. For this purpose we introduce BHPMF, a hierarchical Bayesian extension of Probabilistic Matrix Factorization (PMF). PMF is a machine learning technique which exploits the correlation structure of sparse matrices to impute missing entries. BHPMF additionally utilizes the taxonomic hierarchy for trait prediction. Implemented in the context of a Gibbs Sampler MCMC approach BHPMF provides uncertainty estimates for each trait prediction. We present comprehensive experimental results on the problem of plant trait prediction using the largest database of plant traits, where BHPMF shows strong empirical performance in uncertainty quantified trait prediction, outperforming the state-of-the-art based on point estimates. Further, we show that BHPMF is more accurate when it is confident, whereas the error is high when the uncertainty is high.

  3. Quantifying the Adaptive Cycle

    PubMed Central

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems. PMID:26716453

  4. Quantifying Loopy Network Architectures

    PubMed Central

    Katifori, Eleni; Magnasco, Marcelo O.

    2012-01-01

    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs. PMID:22701593

  5. The interaction of intraspecific competition and habitat on individual diet specialization: a near range-wide examination of sea otters

    USGS Publications Warehouse

    Newsome, Seth D.; Tinker, M. Tim; Gill, Verena A.; Hoyt, Zachary N.; Doroff, Angela; Nichol, Linda; Bodkin, James L.

    2015-01-01

    The quantification of individuality is a common research theme in the fields of population, community, and evolutionary ecology. The potential for individuality to arise is likely context-dependent, and the influence of habitat characteristics on its prevalence has received less attention than intraspecific competition. We examined individual diet specialization in 16 sea otter (Enhydra lutris) populations from southern California to the Aleutian Islands in Alaska. Because population histories, relative densities, and habitat characteristics vary widely among sites, we could examine the effects of intraspecific competition and habitat on the prevalence of individual diet specialization. Using observed diet data, we classified half of our sites as rocky substrate habitats and the other half containing a mixture of rocky and unconsolidated (soft) sediment substrates. We used stable isotope data to quantify population- and individual-level diet variation. Among rocky substrate sites, the slope [±standard error (SE)] of the positive significant relationship between the within-individual component (WIC) and total isotopic niche width (TINW) was shallow (0.23 ± 0.07) and negatively correlated with sea otter density. In contrast, the slope of the positive WIC/TINW relationship for populations inhabiting mixed substrate habitats was much higher (0.53 ± 0.14), suggesting a low degree of individuality, irrespective of intraspecific competition. Our results show that the potential for individuality to occur as a result of increasing intraspecific competition is context-dependent and that habitat characteristics, which ultimately influence prey diversity, relative abundance, and the range of skillsets required for efficient prey procurement, are important in determining when and where individual diet specialization occurs in nature.

  6. The interaction of intraspecific competition and habitat on individual diet specialization: a near range-wide examination of sea otters.

    PubMed

    Newsome, Seth D; Tinker, M Tim; Gill, Verena A; Hoyt, Zachary N; Doroff, Angela; Nichol, Linda; Bodkin, James L

    2015-05-01

    The quantification of individuality is a common research theme in the fields of population, community, and evolutionary ecology. The potential for individuality to arise is likely context-dependent, and the influence of habitat characteristics on its prevalence has received less attention than intraspecific competition. We examined individual diet specialization in 16 sea otter (Enhydra lutris) populations from southern California to the Aleutian Islands in Alaska. Because population histories, relative densities, and habitat characteristics vary widely among sites, we could examine the effects of intraspecific competition and habitat on the prevalence of individual diet specialization. Using observed diet data, we classified half of our sites as rocky substrate habitats and the other half containing a mixture of rocky and unconsolidated (soft) sediment substrates. We used stable isotope data to quantify population- and individual-level diet variation. Among rocky substrate sites, the slope [±standard error (SE)] of the positive significant relationship between the within-individual component (WIC) and total isotopic niche width (TINW) was shallow (0.23 ± 0.07) and negatively correlated with sea otter density. In contrast, the slope of the positive WIC/TINW relationship for populations inhabiting mixed substrate habitats was much higher (0.53 ± 0.14), suggesting a low degree of individuality, irrespective of intraspecific competition. Our results show that the potential for individuality to occur as a result of increasing intraspecific competition is context-dependent and that habitat characteristics, which ultimately influence prey diversity, relative abundance, and the range of skillsets required for efficient prey procurement, are important in determining when and where individual diet specialization occurs in nature. PMID:25645269

  7. Structural Health System for Crew Habitats

    NASA Technical Reports Server (NTRS)

    Brandon, Erik

    2005-01-01

    This viewgraph presentation reviews the history of JPL, and its affilation with CalTech and NASA. It continues by examining some of the sensors, and systems to ensure structural health that JPL has developed. It also reviews some of the habitat designs that are being developed for the lunar base. With these crew habitats, there is a requirement to have embedded systems health monitoring, to alert the crew in time about adverse structural conditions. The use of sensing technologies and smart materials are being developed to assure mechanical flexibility, minimumally invasive, autonomous, and enhanced reliability.

  8. MAINE MARINE WORM HABITAT

    EPA Science Inventory

    WORM provides a generalized representation at 1:24,000 scale of commercially harvested marine worm habitat in Maine, based on Maine Department of Marine Resources data from 1970's. Original maps were created by MDMR and published by USF&WS as part of the ""&quo...

  9. Modeling sensitive elasmobranch habitats

    NASA Astrophysics Data System (ADS)

    Pennino, M. Grazia; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José Marí; a

    2013-10-01

    Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.

  10. Earth is a Marine Habitat. Habitat Conservation Program.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This brochure is intended to educate the public about the need to conserve and preserve the earth's environment (man's habitat). It contains an introduction to the ocean world and threats to coastal habitat. Photos and narrative revolve around the theme "Earth is a Marine Habitat." Sections include: "The Web of Life,""Oceans and the United…

  11. Quantifying the Thermal Fatigue of CPV Modules

    SciTech Connect

    Bosco, N.; Kurtz, S.

    2011-02-01

    A method is presented to quantify thermal fatigue in the CPV die-attach from meteorological data. A comparative; study between cities demonstrates a significant difference in the accumulated damage. These differences are most; sensitive to the number of larger (ΔT) thermal cycles experienced for a location. High frequency data (<1/min) may; be required to most accurately employ this method.

  12. Thermoregulatory strategies in an aquatic ectotherm from thermally-constrained habitats: An evaluation of current approaches.

    PubMed

    Piasečná, Karin; Pončová, Alena; Tejedo, Miguel; Gvoždík, Lumír

    2015-08-01

    Many ectotherms employ diverse behavioral adjustments to effectively buffer the spatio-temporal variation in environmental temperatures, whereas others remain passive to thermal heterogeneity. Thermoregulatory studies are frequently performed on species living in thermally benign habitats, which complicate understanding of the thermoregulation-thermoconformity continuum. The need for new empirical data from ectotherms exposed to thermally challenging conditions requires the evaluation of available methods for quantifying thermoregulatory strategies. We evaluated the applicability of various thermoregulatory indices using fire salamander larvae, Salamandra salamandra, in two aquatic habitats, a forest pool and well, as examples of disparate thermally-constrained environments. Water temperatures in the well were lower and less variable than in the pool. Thermal conditions prevented larvae from reaching their preferred body temperature range in both water bodies. In contrast to their thermoregulatory abilities examined in a laboratory thermal gradient, field body temperatures only matched the mean and range of operative temperatures, showing thermal passivity of larvae in both habitats. Despite apparent thermoconformity, thermoregulatory indices indicated various strategies from active thermoregulation, to thermoconformity, and even thermal evasion, which revealed their limited applicability under thermally-constrained conditions. Salamander larvae abandoned behavioral thermoregulation despite varying opportunities to increase their body temperature above average water temperatures. Thermoconformity represents a favored strategy in these ectotherms living in more thermally-constrained environments than those examined in previous thermoregulatory studies. To understand thermal ecology and its impact on population dynamics, the quantification of thermoregulatory strategies of ectotherms in thermally-constrained habitats requires the careful choice of an appropriate

  13. A unified approach for quantifying invasibility and degree of invasion.

    PubMed

    Guo, Qinfeng; Fei, Songlin; Dukes, Jeffrey S; Oswalt, Christopher M; Iannone, Basil V; Potter, Kevin M

    2015-10-01

    Habitat invasibility is a central focus of invasion biology, with implications for basic ecological patterns and processes and for effective invasion management. "Invasibility" is, however, one of the most elusive metrics and misused terms in ecology. Empirical studies and meta-analyses of invasibility have produced inconsistent and even conflicting results. This lack of consistency, and subsequent difficulty in making broad cross-habitat comparisons, stem in part from (1) the indiscriminant use of a closely related, but fundamentally different concept, that of degree of invasion (DI) or level of invasion; and (2) the lack of common invasibility metrics, as illustrated by our review of all invasibility-related papers published in 2013. To facilitate both cross-habitat comparison and more robust ecological generalizations, we clarify the definitions of invasibility and DI, and for the first time propose a common metric for quantifying invasibility based on a habitat's resource availability as inferred from relative resident species richness and biomass. We demonstrate the feasibility of our metric using empirical data collected from 2475 plots from three forest ecosystems in the eastern United States. We also propose a similar metric for DI. Our unified, resource-based metrics are scaled from 0 to 1, facilitating cross-habitat comparisons. Our proposed metrics clearly distinguish invasibility and DI from each other, which will help to (1) advance invasion ecology by allowing more robust testing of generalizations and (2) facilitate more effective invasive species control and management. PMID:26649383

  14. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  15. Habitat-specific breeder survival of Florida Scrub-Jays: Inferences from multistate models

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Carter, G.M.; Oddy, D.M.

    2009-01-01

    Quantifying habitat-specific survival and changes in habitat quality within disturbance-prone habitats is critical for understanding population dynamics and variation in fitness, and for managing degraded ecosystems. We used 18 years of color-banding data and multistate capture-recapture models to test whether habitat quality within territories influences survival and detection probability of breeding Florida Scrub-Jays (Aphelocoma coerulescens) and to estimate bird transition probabilities from one territory quality state to another. Our study sites were along central Florida's Atlantic coast and included two of the four largest metapopulations within the species range. We developed Markov models for habitat transitions and compared these to bird transition probabilities. Florida Scrub-Jay detection probabilities ranged from 0.88 in the tall territory state to 0.99 in the optimal state; detection probabilities were intermediate in the short state. Transition probabilities were similar for birds and habitat in grid cells mapped independently of birds. Thus, bird transitions resulted primarily from habitat transitions between states over time and not from bird movement. Survival ranged from 0.71 in the short state to 0.82 in the optimal state, with tall states being intermediate. We conclude that average Florida Scrub-Jay survival will remain at levels that lead to continued population declines because most current habitat quality is only marginally suitable across most of the species range. Improvements in habitat are likely to be slow and difficult because tall states are resistant to change and the optimal state represents an intermediate transitional stage. The multistate modeling approach to quantifying survival and habitat transition probabilities is useful for quantifying habitat transition probabilities and comparing them to bird transition probabilities to test for habitat selection in dynamic environments. ?? 2009 by the Ecological society ot America.

  16. Modeling habitat suitability for Greater Rheas based on satellite image texture.

    PubMed

    Bellis, Laura M; Pidgeon, Anna M; Radeloff, Volker C; St-Louis, Véronique; Navarro, Joaquín L; Martella, Mónica B

    2008-12-01

    Many wild species are affected by human activities occurring at broad spatial scales. For instance, in South America, habitat loss threatens Greater Rhea (Rhea americana) populations, making it important to model and map their habitat to better target conservation efforts. Spatially explicit habitat modeling is a powerful approach to understand and predict species occurrence and abundance. One problem with this approach is that commonly used land cover classifications do not capture the variability within a given land cover class that might constitute important habitat attribute information. Texture measures derived from remote sensing images quantify the variability in habitat features among and within habitat types; hence they are potentially a powerful tool to assess species-habitat relationships. Our goal was to explore the utility of texture measures for habitat modeling and to develop a habitat suitability map for Greater Rheas at the home range level in grasslands of Argentina. Greater Rhea group size obtained from aerial surveys was regressed against distance to roads, houses, and water, and land cover class abundance (dicotyledons, crops, grassland, forest, and bare soil), normalized difference vegetation index (NDVI), and selected first- and second-order texture measures derived from Landsat Thematic Mapper (TM) imagery. Among univariate models, Rhea group size was most strongly positively correlated with texture variables derived from near infrared reflectance measurement (TM band 4). The best multiple regression models explained 78% of the variability in Greater Rhea group size. Our results suggest that texture variables captured habitat heterogeneity that the conventional land cover classification did not detect. We used Greater Rhea group size as an indicator of habitat suitability; we categorized model output into different habitat quality classes. Only 16% of the study area represented high-quality habitat for Greater Rheas (group size > or =15

  17. The Nutritional Geometry of Resource Scarcity: Effects of Lean Seasons and Habitat Disturbance on Nutrient Intakes and Balancing in Wild Sifakas.

    PubMed

    Irwin, Mitchell T; Raharison, Jean-Luc; Raubenheimer, David R; Chapman, Colin A; Rothman, Jessica M

    2015-01-01

    Animals experience spatial and temporal variation in food and nutrient supply, which may cause deviations from optimal nutrient intakes in both absolute amounts (meeting nutrient requirements) and proportions (nutrient balancing). Recent research has used the geometric framework for nutrition to obtain an improved understanding of how animals respond to these nutritional constraints, among them free-ranging primates including spider monkeys and gorillas. We used this framework to examine macronutrient intakes and nutrient balancing in sifakas (Propithecus diadema) at Tsinjoarivo, Madagascar, in order to quantify how these vary across seasons and across habitats with varying degrees of anthropogenic disturbance. Groups in intact habitat experience lean season decreases in frugivory, amounts of food ingested, and nutrient intakes, yet preserve remarkably constant proportions of dietary macronutrients, with the proportional contribution of protein to the diet being highly consistent. Sifakas in disturbed habitat resemble intact forest groups in the relative contribution of dietary macronutrients, but experience less seasonality: all groups' diets converge in the lean season, but disturbed forest groups largely fail to experience abundant season improvements in food intake or nutritional outcomes. These results suggest that: (1) lemurs experience seasonality by maintaining nutrient balance at the expense of calories ingested, which contrasts with earlier studies of spider monkeys and gorillas, (2) abundant season foods should be the target of habitat management, even though mortality might be concentrated in the lean season, and (3) primates' within-group competitive landscapes, which contribute to variation in social organization, may vary in complex ways across habitats and seasons. PMID:26061401

  18. The Nutritional Geometry of Resource Scarcity: Effects of Lean Seasons and Habitat Disturbance on Nutrient Intakes and Balancing in Wild Sifakas

    PubMed Central

    Irwin, Mitchell T.; Raharison, Jean-Luc; Raubenheimer, David R.; Chapman, Colin A.; Rothman, Jessica M.

    2015-01-01

    Animals experience spatial and temporal variation in food and nutrient supply, which may cause deviations from optimal nutrient intakes in both absolute amounts (meeting nutrient requirements) and proportions (nutrient balancing). Recent research has used the geometric framework for nutrition to obtain an improved understanding of how animals respond to these nutritional constraints, among them free-ranging primates including spider monkeys and gorillas. We used this framework to examine macronutrient intakes and nutrient balancing in sifakas (Propithecus diadema) at Tsinjoarivo, Madagascar, in order to quantify how these vary across seasons and across habitats with varying degrees of anthropogenic disturbance. Groups in intact habitat experience lean season decreases in frugivory, amounts of food ingested, and nutrient intakes, yet preserve remarkably constant proportions of dietary macronutrients, with the proportional contribution of protein to the diet being highly consistent. Sifakas in disturbed habitat resemble intact forest groups in the relative contribution of dietary macronutrients, but experience less seasonality: all groups’ diets converge in the lean season, but disturbed forest groups largely fail to experience abundant season improvements in food intake or nutritional outcomes. These results suggest that: (1) lemurs experience seasonality by maintaining nutrient balance at the expense of calories ingested, which contrasts with earlier studies of spider monkeys and gorillas, (2) abundant season foods should be the target of habitat management, even though mortality might be concentrated in the lean season, and (3) primates’ within-group competitive landscapes, which contribute to variation in social organization, may vary in complex ways across habitats and seasons. PMID:26061401

  19. Telescience concept for habitat monitoring and control

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl; Johnson, Vicki; Mian, Arshad

    1988-01-01

    The operational environment for life sciences on the Space Station will incorporate telescience, a new set of operational modes for conducting science and operations remotely. This paper presents payload functional requirements for Space Station Life Sciences habitat monitoring and control and describes telescience concepts and technologies which meet these requirements. Special considerations for designing sensors and effectors to accommodate future evolutions in technology are discussed.

  20. The Habitat Demonstration Unit Project

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Gill, Tracy; Tri, Terry; Howe, Scott

    2009-01-01

    This paper will describe an overview of the NASA-led multi-center Habitat Demonstration Unit (HDU) Project. The HDU project is a technology-pull project that integrates technologies and innovations from numerous NASA centers. This project will be used to investigate and validate surface architectures, operations concepts, and requirements definition. The HDU project will be part of the 2010 Desert Research and Technologies Simulations (DRATS). The purpose of this project is to develop, integrate, test, and evaluate a HDU in the context of the mission architectures and surface operation concepts. This HDU is based on the Constellation Architecture Scenario 12.1 concept of a vertically oriented habitat module. A multi-center approach with be utilized to build, integrate, and test the HDU project through a shared collaborative effort of multiple NASA centers. This project is part of the strategic plan from the ESMD Directorate Integration Office (DIO) and the Lunar Surface Systems Project Office (LSSPO) to test surface elements in a surface analog environment which includes two Lunar Electric Rovers and the HDU during the 2010 analog field test. This paper will describe the overall objectives, its various configurations, strategic plan, and technology integration as it pertains to the 2010 and 2011 field analog tests.

  1. Habitat-based polymorphism is common in stream fishes.

    PubMed

    Senay, Caroline; Boisclair, Daniel; Peres-Neto, Pedro R

    2015-01-01

    Morphological differences (size and shape) across habitats are common in lake fish where differences relate to two dominant contrasting habitats: the pelagic and littoral habitat. Repeated occurrence of littoral and pelagic morphs across multiple populations of several lake fish species has been considered as important evidence that polymorphism is adaptive in these systems. It has been suggested that these habitat-based polymorphic differences are due to the temporal stability of the differences between littoral and pelagic habitats. Although streams are spatially heterogeneous, they are also more temporally dynamic than lakes and it is still an open question whether streams provide the environmental conditions that promote habitat-based polymorphism. We tested whether fish from riffle, run and pool habitats, respectively, differed consistently in their morphology. Our test compared patterns of morphological variation (size and shape) in 10 fish species from the three stream habitat types in 36 separate streams distributed across three watersheds. For most species, body size and shape (after controlling for body size) differed across riffle, run and pool habitats. Unlike many lake species, the nature of these differences was not consistent across species, possibly because these species use these habitat types in different ways. Our results suggest that habitat-based polymorphism is an important feature also in stream fishes despite the fact that streams are temporally variable in contrast to lake systems. Future research is required to assess whether the patterns of habitat-based polymorphism encountered in streams have a genetic basis or they are simply the result of within generation phenotypic plasticity. PMID:25041645

  2. Spatiotemporal variation in range-wide Golden-cheeked Warbler habitat

    USGS Publications Warehouse

    Duarte, Adam; Jensen, Jennifer; Hatfield, Jeffrey S.; Weckerly, Floyd

    2013-01-01

    Habitat availability ultimately limits the distribution and abundance of wildlife species. Consequently, it is paramount to identify where wildlife habitat is and understand how it changes over time in order to implement large scale wildlife conservation plans. Yet, no work has quantified the degree of change in range-wide breeding habitat for the golden-cheeked warbler (Setophaga chrysoparia), despite the species being listed as endangered by the U.S. federal government. Thus, using available geographic information system (GIS) data and Landsat satellite imagery we quantified range-wide warbler breeding habitat change from 1999-2001 to 2010-2011. We detected a 29% reduction in total warbler breeding habitat and found that warbler breeding habitat was removed and became more fragmented at uneven rates across the warbler’s breeding range during this time period. This information will assist researchers and managers in prioritizing breeding habitat conservation efforts for the species and provide a foundation for more realistic carrying capacity scenarios when modeling golden-cheeked warbler populations over time. Additionally, this study highlights the need for future work centered on quantifying golden-cheeked warbler movement rates and distances in order to assess the degree of connectivity between increasingly fragmented habitat patches.

  3. Habitat and Recreational Fishing Opportunity in Tampa Bay: Linking Ecological and Ecosystem Services to Human Beneficiaries

    EPA Science Inventory

    Estimating value of estuarine habitat to human beneficiaries requires that we understand how habitat alteration impacts function through both production and delivery of ecosystem goods and services (EGS). Here we expand on the habitat valuation technique of Bell (1997) with an es...

  4. Dynamic habitat selection by two wading bird species with divergent foraging strategies in a seasonally fluctuating wetland

    USGS Publications Warehouse

    Beerens, J.M.; Gawlik, D.E.; Herring, G.; Cook, Mark I.

    2011-01-01

    Seasonal and annual variation in food availability during the breeding season plays an influential role in the population dynamics of many avian species. In highly dynamic ecosystems like wetlands, finding and exploiting food resources requires a flexible behavioral response that may produce different population trends that vary with a species' foraging strategy. We quantified dynamic foraging-habitat selection by breeding and radiotagged White Ibises (Eudocimus albus) and Great Egrets (Ardea alba) in the Florida Everglades, where fluctuation in food resources is pronounced because of seasonal drying and flooding. The White Ibis is a tactile "searcher" species in population decline that specializes on highly concentrated prey, whereas the Great Egret, in a growing population, is a visual "exploiter" species that requires lower prey concentrations. In a year with high food availability, resource-selection functions for both species included variables that changed over multiannual time scales and were associated with increased prey production. In a year with low food availability, resource-selection functions included short-term variables that concentrated prey (e.g., water recession rates and reversals in drying pattern), which suggests an adaptive response to poor foraging conditions. In both years, the White Ibis was more restricted in its use of habitats than the Great Egret. Real-time species-habitat suitability models were developed to monitor and assess the daily availability and quality of spatially explicit habitat resources for both species. The models, evaluated through hindcasting using independent observations, demonstrated that habitat use of the more specialized White Ibis was more accurately predicted than that of the more generalist Great Egret. ?? The American Ornithologists' Union, 2011.

  5. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  6. Semi-automted analysis of high-resolution aerial images to quantify docks in Upper Midwest glacial lakes

    USGS Publications Warehouse

    Beck, Marcus W.; Vondracek, Bruce C.; Hatch, Lorin K.; Vinje, Jason

    2013-01-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on ) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  7. Quantifying the Functionality of Ephemeral Streams at the Watershed Scale for Land Management Applications

    NASA Astrophysics Data System (ADS)

    O'Connor, B. L.; Hamada, Y.; Bowen, E. E.; Wuthrich, K. K.; Grippo, M. A.

    2013-12-01

    measures of stream ecological functionality. The initial results for a small watershed (110 km2) using stereoscopic, sub-meter resolution aerial images, detected an increase of more than 100% in identified ephemeral stream channels and habitat patterns were more spatially correlated with ephemeral stream networks than was observed for the initial assessment approach. The eventual goal of these efforts is to refine the methodology for quantifying the disturbance sensitivity of ephemeral streams, from professional judgment rankings to spectral indices of stream functionality, and to close the spatial gap between the need for large-scale assessments for land management planning and the small-scale analyses and data requirements for quantifying ephemeral stream functionality.

  8. Habitat selection and abundance of young-of-year smallmouth bass in north temperate lakes

    USGS Publications Warehouse

    Brown, Peter James; Bozek, Michael A.

    2010-01-01

    Habitat use during early life history plays an important role in the ecology of smallmouth bass Micropterus dolomieu in north temperate lakes. The highest levels of mortality occur during the first year of life, and the habitat selected probably affects mortality. We used resource selection functions and abundance data from two northern Wisconsin lakes to determine the habitats that influence the survival of smallmouth bass. Coarse substrates were consistently important to both nesting locations and young-of-year smallmouth bass. Young smallmouth bass used woody structure after swimming from their nests but disassociated themselves from habitats with more complex woody structure by August. Nonwoody cobble areas offer protection for young-of-year smallmouth bass without attracting predators, as woody habitats do. The decline in the abundance of young-of-year smallmouth bass was best fit to an exponential decay function in woody habitats, but in rock habitats it was linear. Habitat selection by young-of-year smallmouth bass shifts over time, and the shift is linked to predation risk: woody habitats initially offer them an advantage with respect to spawning but eventually provide their predators greater opportunities for ambush. This shift underscores the importance of having a diversity of littoral habitats. This study provides the first quantifiable analyses describing the habitat features selected by young-of-year smallmouth bass and links these descriptions to population dynamics.

  9. Habitat Evaluation Procedures (HEP) Report : West Beaver Lake, 2004-2005 Technical Report.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 103.08 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 7.17 HUs for mallard and muskrat. Conifer forest habitat provides 95.91 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  10. Assessing functional equivalency of nekton habitat in enhanced habitats: Comparison of terraced and unterraced marsh ponds

    USGS Publications Warehouse

    La Peyre, M.K.; Gossman, B.; Nyman, J.A.

    2007-01-01

    be significantly lower in terraced versus unterraced ponds (p < 0.05). To properly assess the ecological equivalency of restored or rehabilitated sites for nekton requires that we move beyond measures of nekton density, biomass, and diversity and incorporate measures of functional equivalency, including habitat measures. ?? 2007 Estuarine Research Federation.

  11. Habitat Suitability Index Models: Wood Duck

    USGS Publications Warehouse

    Sousa, Patrick J.; Farmer, Adrian H.

    1983-01-01

    A review and synthesis of existing information were used to develop models for breeding and wintering habitats for the wood duck (Aix sponsa). The models are scaled to produce indices of habitat suitability between 0 (unsuitable habitat) and 1 (optimally suitable habitat). Habitat suitability indices are designed for use with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  12. The decline of the European eel Anguilla anguilla: quantifying and managing escapement to support conservation.

    PubMed

    Bilotta, G S; Sibley, P; Hateley, J; Don, A

    2011-01-01

    A method was developed to quantify the number and biomass of European eels Anguilla anguilla escaping to the ocean for breeding. The non-intrusive method, involving a fixed-position, high-frequency multi-beam sonar, permitted constant surveillance of A. anguilla movements throughout their 5 month escapement season (July to December). During this period, >1000 individuals were monitored escaping to the Atlantic Ocean from their freshwater habitat in the River Huntspill study site (Somerset, U.K.). The total length of each fish was measured using the sonar software. These measurements were then converted to an estimate of mass using a length:mass regression relationship derived from historical fyke-net data from this site, comprising c. 500 A. anguilla length:mass measurements collected over a 10 year period. The net biomass of escapement from the study site was equivalent to c. 6 kg ha⁻¹ year⁻¹, lower than the present European target which would require at least 7 kg ha⁻¹ year⁻¹ from this habitat. These findings demonstrate the capabilities of this monitoring technique and its usefulness both as a tool to assess the compliance with conservation targets and as a tool to evaluate the success of conservation measures for elusive aquatic species such as A. anguilla. PMID:21235544

  13. Habitat planning, maintenance and management working group

    SciTech Connect

    1997-03-01

    The Gulf of Mexico (GOM), called {open_quotes}America`s Sea,{close_quotes} is actually a small ocean basin covering over 1.5 million square kilometers. Because of the multiple uses, diversity, and size of the Gulf`s resources, management is shared by a number of governmental agencies including the Minerals Management Service, the Gulf of Mexico Fishery Management Council, the Gulf States Marine Fisheries Commission, National Marine Fisheries Service, the US Coast Guard, the US Army Corps of Engineers, and the five Gulf states fisheries agencies. All of these entities share a common goal of achieving optimum sustainable yield to maximize geological, biological, social, and economic benefits from these resources. These entities also share a common theme that the successful management of the northern GOM requires maintenance and enhancement of both the quantity and quality of habitats. A closer look at the GOM shows the sediment to be clearly dominated by vast sand and mud plains. These soft bottom habitats are preferred by many groundfish and shrimp species and, thus, have given rise to large commercial fisheries on these stocks. Hard bottom and reef habitats, on the other hand, are limited to approximately 1.6% of the total area of the Gulf, so that, while there are high demands by commercial and recreational fishermen for reef associated species, the availability of habitat for these stocks is limited. The thousands of oil and gas structures placed in the Gulf have added significant amounts of new hard substrate. The rigs-to-reefs concept was a common sense idea with support from environmental user groups and the petroleum industry for preserving a limited but valuable habitat type. As long as maximizing long-term benefits from the Gulf s resources for the greatest number of users remains the goal, then programs such as Rigs-to-Reefs will remain an important tool for fisheries and habitat managers in the Gulf.

  14. Habitat selection and productivity of least terns on the lower Platte River, Nebraska

    USGS Publications Warehouse

    Kirsch, Eileen M.

    1996-01-01

    Least terns (Sterna antillarum) were studied on the lower Platte River, Nebraska, where this endangered population nests on natural sandbar habitat and on sandpit sites created by gravel dredging adjacent to the river. Theoretically terns should select habitats according to habitat suitability. However, the introduction of sandpits and conversion of tallgrass prairies along the river banks to agriculture, residential, and wooded areas may have affected terns' abilities to distinguish suitable habitat or the suitability of nesting habitats in general. I examined habitat selection and productivity of least terns to determine if terns selected habitat according to suitability (as indicated by productivity), what factors affected habitat selection and productivity, and if estimated productivity could support this population. Available habitats of both types were characterized and quantified using aerial videography (1989-90), and habitat use was assessed from census data (1987-90). Productivity of adults and causes and correlates of egg and chick mortality were estimated (1987-90). Population trend was assessed with a deterministic model using my estimates of productivity and a range of survival estimates for Laridae reported in the literature. Terns tended to use river sites with large midstream sandbars and a wide channel, and large sandpit sites with large surface areas of water relative to unused sites on both habitats. Number of sites and area of sand available were estimated using discriminant function analysis of variables quantified from video scenes of both habitats. Terns apparently did not use all potentially available sandbar and sandpit sites because discriminant function factor scores for used and unused sites overlapped broadly for both habitats. Terns did not prefer 1 habitat over the other. Although proportions of available sites used were greater on sandpits than on the river, proportions of available sand used did not differ between habitats

  15. Assessing cumulative impacts of forest development on the distribution of furbearers using expert-based habitat modeling.

    PubMed

    Bridger, M C; Johnson, C J; Gillingham, M P

    2016-03-01

    Cumulative impacts of anthropogenic landscape change must be considered when managing and conserving wildlife habitat. Across the central-interior of British Columbia, Canada, industrial activities are altering the habitat of furbearer species. This region has witnessed unprecedented levels of anthropogenic landscape change following rapid development in a number of resource sectors, particularly forestry. Our objective was to create expert-based habitat models for three furbearer species: fisher (Pekania pennanti), Canada lynx (Lynx canadensis), and American marten (Martes americana) and quantify habitat change for those species. We recruited 10 biologist and 10 trapper experts and then used the analytical hierarchy process to elicit expert knowledge of habitat variables important to each species. We applied the models to reference landscapes (i.e., registered traplines) in two distinct study areas and then quantified the change in habitat availability from 1990 to 2013. There was strong agreement between expert groups in the choice of habitat variables and associated scores. Where anthropogenic impacts had increased considerably over the study period, the habitat models showed substantial declines in habitat availability for each focal species (78% decline in optimal fisher habitat, 83% decline in optimal lynx habitat, and 79% decline in optimal marten habitat). For those traplines with relatively little forest harvesting, the habitat models showed no substantial change in the availability of habitat over time. The results suggest that habitat for these three furbearer species declined significantly as a result of the cumulative impacts of forest harvesting. Results of this study illustrate the utility of expert knowledge for understanding large-scale patterns of habitat change over long time periods. PMID:27209791

  16. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    PubMed Central

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  17. Quantifying macromolecular conformational transition pathways

    NASA Astrophysics Data System (ADS)

    Seyler, Sean; Kumar, Avishek; Thorpe, Michael; Beckstein, Oliver

    2015-03-01

    Diverse classes of proteins function through large-scale conformational changes that are challenging for computer simulations. A range of fast path-sampling techniques have been used to generate transitions, but it has been difficult to compare paths from (and assess the relative strengths of) different methods. We introduce a comprehensive method (pathway similarity analysis, PSA) for quantitatively characterizing and comparing macromolecular pathways. The Hausdorff and Fréchet metrics (known from computational geometry) are used to quantify the degree of similarity between polygonal curves in configuration space. A strength of PSA is its use of the full information available from the 3 N-dimensional configuration space trajectory without requiring additional specific knowledge about the system. We compare a sample of eleven different methods for the closed-to-open transitions of the apo enzyme adenylate kinase (AdK) and also apply PSA to an ensemble of 400 AdK trajectories produced by dynamic importance sampling MD and the Geometrical Pathways algorithm. We discuss the method's potential to enhance our understanding of transition path sampling methods, validate them, and help guide future research toward deeper physical insights into conformational transitions.

  18. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    NASA Astrophysics Data System (ADS)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  19. Room to Live: the sizing of Lunar and Martian Habitats

    NASA Technical Reports Server (NTRS)

    McGregor, Walter L.

    2006-01-01

    In order for man to return to space or extra terrestrial bodies for long duration missions it is important that adequate habitat volume be defined early to avoid costly delays and redesign. To properly define a habitat volume two major factors need to be considered. The first factor is the free or open space. This is the space that allows the crew room to move about the habitat. This space will vary based on crew size and length of the mission. The second major factor is the stowage space required for equipment and supplies. This includes both fixed volumes and consumables. Fixed volumes include items such as tools, communication equipment, Advanced Life Support (ALS) equipment, and support equipment. Consumables include items like filters, food, water and oxygen. This space is also dependent on crew size and mission length. A review of past missions into alien environments, such as deep sea habitats as well as space based habitats will be used to validate the assumption made in this paper. Once these key factors are defined trades must be run to optimize the overall volume of a habitat. This includes trades of disposable vs. reusable for items such as clothing, dishes, and water. Another factor to consider is the availability of in situ resources to aid in the construction of the habitat structure as well as re-supply of consumable items. A review of past missions into alien environments, such as deep sea habitats as well as space based habitats will be used to validate the assumption made in this paper. The result is a habitat sizing tool to provide a first order estimate of habitat volumes for extended mission to the surface of the moon and Mars.

  20. Tracking changes and preventing loss in critical tiger habitat.

    PubMed

    Joshi, Anup R; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L; Olson, David; Jones, Benjamin S; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C; Sizer, Nigel C; Davis, Crystal L; Palminteri, Suzanne; Hahn, Nathan R

    2016-04-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion. PMID:27051881

  1. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  2. Coastal Vertebrate Exposure to Predicted Habitat Changes Due to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel K.; Moore, Clinton T.; Cooper, Robert J.

    2015-12-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species' fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species ( n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species' foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  3. Coastal Vertebrate Exposure to Predicted Habitat Changes Due to Sea Level Rise.

    PubMed

    Hunter, Elizabeth A; Nibbelink, Nathan P; Alexander, Clark R; Barrett, Kyle; Mengak, Lara F; Guy, Rachel K; Moore, Clinton T; Cooper, Robert J

    2015-12-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species' fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species' foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR. PMID:26163199

  4. Coastal vertebrate exposure to predicted habitat changes due to sea level rise

    USGS Publications Warehouse

    Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel; Moore, Clinton; Cooper, Robert J.

    2015-01-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species’ fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species’ foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  5. Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly

    PubMed Central

    Schtickzelle, Nicolas; Joiris, Augustin; Van Dyck, Hans; Baguette, Michel

    2007-01-01

    Background Dispersal between habitat patches is a key process in the functioning of (meta)populations. As distance between suitable habitats increases, the ongoing process of habitat fragmentation is expected to generate strong selection pressures on movement behaviour. This leads to an increase or decrease of dispersal according to its cost relative to landscape structure. To limit the cost of dispersal in an increasingly hostile matrix, we predict that organisms would adopt special dispersal behaviour between habitats, which are different from movements associated with resource searching in suitable habitats. Results Here we quantified the movement behaviour of the bog fritillary butterfly (Proclossiana eunomia) by (1) assessing perceptual range, the distance to which the habitat can be perceived, and (2) tracking and parameterizing movement behaviour within and outside habitat (parameters were move length and turning angles distributions). Results are three-fold. (1) Perceptual range was < 30 m. (2) Movements were significantly straighter in the matrix than within the habitat. (3) Correlated random walk adequately described movement behaviour for 70% of the observed movement paths within habitat and in the matrix. Conclusion The perceptual range being lower than the distance between habitat patches in the study area, P. eunomia likely perceives these habitat networks as fragmented, and must locate suitable habitats while dispersing across the landscape matrix. Such a constraint means that dispersal entails costs, and that selection pressure should favour behaviours that limit these costs. Indeed, our finding that dispersal movements in the matrix are straighter than resource searching movements within habitat supports the prediction of simulation studies that adopting straight movements for dispersal reduces its costs in fragmented landscapes. Our results support the mounting evidence that dispersal in fragmented landscapes evolved towards the use of specific

  6. Children's interpretations of general quantifiers, specific quantifiers, and generics

    PubMed Central

    Gelman, Susan A.; Leslie, Sarah-Jane; Was, Alexandra M.; Koch, Christina M.

    2014-01-01

    Recently, several scholars have hypothesized that generics are a default mode of generalization, and thus that young children may at first treat quantifiers as if they were generic in meaning. To address this issue, the present experiment provides the first in-depth, controlled examination of the interpretation of generics compared to both general quantifiers ("all Xs", "some Xs") and specific quantifiers ("all of these Xs", "some of these Xs"). We provided children (3 and 5 years) and adults with explicit frequency information regarding properties of novel categories, to chart when "some", "all", and generics are deemed appropriate. The data reveal three main findings. First, even 3-year-olds distinguish generics from quantifiers. Second, when children make errors, they tend to be in the direction of treating quantifiers like generics. Third, children were more accurate when interpreting specific versus general quantifiers. We interpret these data as providing evidence for the position that generics are a default mode of generalization, especially when reasoning about kinds. PMID:25893205

  7. Deep Space Habitat Wireless Smart Plug

    NASA Technical Reports Server (NTRS)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  8. Habitat Concepts for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  9. Quantifying terpenes in rumen fluid, serum, and plasma from sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the fate of terpenes consumed by browsing ruminants require methods to quantify their presence in blood and rumen fluid. Our objective was to modify an existing procedure for plasma terpenes to quantify 25 structurally diverse mono- and sesquiterpenes in serum, plasma, and rumen fluid fr...

  10. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    SciTech Connect

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  11. Lakeland Habitat for Humanity

    SciTech Connect

    Gilbride, Theresa L.

    2009-03-30

    This is a case study of the Lakeland, FLorida, Habitat for Humanity affiliate, which has partnered with DOE's Building America program to homes that achieve energy savings of 30% or more over the Building America baseline home (a home built to the 1993 Model Energy Code). The article includes a description of the energy-efficiency features used. The Lakeland affiliate built several of its homes with ducts in conditioned space, which minimizes heat losses and gains. They also used high-efficiency SEER 14 air conditioners; radiant barriers in the roof to keep attics cooler; above-code high-performance dual-pane vinyl-framed low-emissivity windows; a passive fresh air duct to the air handler; and duct blaster and blower door testing of every home to ensure the home's air tightness. This case study was also prepared as a flier titled "High Performance Builder Spotlight: Lakeland Habitat for Humanity, Lakeland, Florida,: which was cleared as PNNL-SA-59068 and distributed at the International Builders’ Show Feb 13-16, 2008, in Orlando, Florida.

  12. Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  13. Simulated effects of habitat loss and fragmentation on a solitary, mustellid predator

    SciTech Connect

    Jager, Yetta; Carr, Eric A; Efroymson, Rebecca Ann

    2005-01-01

    Brine spills associated with petroleum extraction can reduce the amount of suitable habitat and increase habitat fragmentation for many terrestrial animals. We conducted a simulation study to quantify the effects of habitat loss and fragmentation on a solitary mammal predator. To provide focus, we adopted biological attributes of the American badger (Taxidea taxus) and environmental attributes of the Tallgrass Prairie Preserve in Oklahoma. We simulated badger activities on landscapes with different degrees of habitat loss and fragmentation using a spatially explicit and individual-based population model. Both habitat loss and fragmentation increased the incidence of habitat-related mortality and decreased the proportion of eligible females that mated, which decreased final population sizes and the likelihood of persistence. Parameter exploration suggested that steep, threshold-like, responses to habitat loss occurred when animals included high-risk habitat in their territories. Badger populations showed a steeper decline with increasing habitat loss on landscapes fragmented by spills than on less fragmented landscapes. Habitat fragmentation made it difficult for badgers to form high-quality territories, and exposed individuals to higher risk while seeking to establish a territory. Our simulations also suggest that an inability to find mates (an Allee effect) becomes increasingly important for landscapes that support a sparse distribution of territories. Thus, the presence of unmated females with territories may foreshadow population decline in solitary species that do not normally tolerate marginal adults.

  14. Habitat use by Swainson's Warblers in a managed bottomland forest

    USGS Publications Warehouse

    Somershoe, S.G.; Hudman, S.P.; Chandler, C.R.

    2003-01-01

    The Swainson's Warbler (Limnothlypis swainsonii) is a locally distributed and relatively uncommon Neotropical migrant songbird that breeds in the bottomland forests of the southeastern United States and spends the nonbreeding season in the Caribbean Basin. Populations of Swainson's Warblers have declined during recent decades as bottomland forests have come under increasingly intensive management and large areas have been converted to other land uses. We examined the habitat around song perches used by male Swainson's Warblers at Big Hammock Wildlife Management Area, a managed bottomland forest along the Altamaha River in Tattnall County, Georgia. We quantified 20 features of habitat structure in areas occupied by Swainson's Warblers (occupied plots) and two sets of controls: unoccupied plots adjacent to occupied plots (adjacent control plots) and unoccupied plots throughout the management area (general control plots). Occupied plots and adjacent control plots both differed in structure from the general control plots. We detected no significant differences, however, in vegetation structure between occupied plots and adjacent control plots. General control plots tended to have a greater number of trees, greater basal area, and a complete canopy, whereas occupied and adjacent control plots had high densities of small stems, cane, herbaceous ground cover, and leaf litter; this latter pattern is typical of documented Swainson's Warbler breeding habitat. Lack of significant differences in vegetation structure may be due to great variation in habitat structure around song perches, small sample size, or scarcity of Swainson's Warblers. Future research should focus on quantifying habitat characteristics around nest sites, song perches, and feeding areas. Our results suggest that management of bottomland habitats by thinning forests and encouraging regeneration of canebrakes is needed for successful conservation of Swainson's Warblers.

  15. Concepts for a Shroud or Propellant Tank Derived Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howard, Robert L.

    2012-01-01

    Long duration human spaceflight missions beyond Low Earth Orbit will require much larger spacecraft than capsules such as the Russian Soyuz or American Orion Multi-Purpose Crew Vehicle. A concept spacecraft under development is the Deep Space Habitat, with volumes approaching that of space stations such as Skylab, Mir, and the International Space Station. This paper explores several concepts for Deep Space Habitats constructed from a launch vehicle shroud or propellant tank. It also recommends future research using mockups and prototypes to validate the size and crew station capabilities of such a habitat. Keywords: Exploration, space station, lunar outpost, NEA, habitat, long duration, deep space habitat, shroud, propellant tank.

  16. Natural regeneration in two central Idaho grand fir habitat types. Forest Service research paper

    SciTech Connect

    Geier-Hayes, K.

    1994-03-01

    Natural regeneration of five conifer species was surveyed in two central Idaho grand fir habitat types. The habitat types range from warm, dry (grand fir/white spirea) to mesic (Grand fir/Mountain Maple). Four harvest-regeneration methods and four site preparation techniques were sampled. Recommendations for obtaining natural regeneration vary primarily by habitat type. Conifer seedlings in the warm, dry grand fir white spirea habitat type require site protection for establishment. In the mesic grand fir/mountain maple habitat type, tall shrub potential can reduce the opportunity to establish early seral conifer species.

  17. Workstation Designs for a Cis-Lunar Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott

    2014-01-01

    Using the International Standard Payload Rack (ISPR) system, a suite of workstations required for deep space missions have been proposed to fill out habitation functions in an International Space Station (ISS) derived Cis-lunar Deep Space Habitat. This paper introduces the functional layout of the Cis-lunar habitat design, and describes conceptual designs for modular deployable work surfaces, General Maintenance Workstation (GMWS), In-Space Manufacturing Workstation (ISMW), Intra-Vehicular Activity Telerobotics Work Station (IVA-TRWS), and Galley / Wardroom.

  18. Scale-dependent habitat use in three species of prairie wetland birds

    USGS Publications Warehouse

    Naugle, D.E.; Higgins, K.F.; Nusser, S.M.; Johnson, W.C.

    1999-01-01

    We evaluated the influence of scale on habitat use for three wetland-obligate bird species with divergent life history characteristics and possible scale-dependent criteria for nesting and foraging in South Dakota, USA. A stratified, two-stage cluster sample was used to randomly select survey wetlands within strata defined by region, wetland density, and wetland surface area. We used 18-m (0.1 ha) fixed radius circular-plots to survey birds in 412 semipermanent wetlands during the summers of 1995 and 1996. Variation in habitat use by pied-billed grebes (Podilymbus podiceps) and yellow-headed blackbirds (Xanthocephalus xanthocephalus), two sedentary species that rarely exploit resources outside the vicinity of nest wetlands, was explained solely by within-patch variation. Yellow-headed blackbirds were a cosmopolitan species that commonly nested in small wetlands, whereas pied-billed grebes were an area-sensitive species that used larger wetlands regardless of landscape pattern. Area requirements for black terns (Chlidonias niger), a vagile species that typically forages up to 4 km away from the nest wetland, fluctuated in response to landscape structure. Black tern area requirements were small (6.5 ha) in heterogeneous landscapes compared to those in homogeneous landscapes (15.4-32.6 ha). Low wetland density landscapes composed of small wetlands, where few nesting wetlands occurred and potential food sources were spread over large distances, were not widely used by black terns. Landscape-level measurements related to black tern occurrence extended past relationships between wetlands into the surrounding matrix. Black terns were more likely to occur in landscapes where grasslands had not been tilled for agricultural production. Our findings represent empirical evidence that characteristics of entire landscapes, rather than individual patches, must be quantified to assess habitat suitability for wide-ranging species that use resources over large areas.

  19. Habitat-mediated timing of migration in polar bears: an individual perspective.

    PubMed

    Cherry, Seth G; Derocher, Andrew E; Lunn, Nicholas J

    2016-07-01

    Migration phenology is largely determined by how animals respond to seasonal changes in environmental conditions. Our perception of the relationship between migratory behavior and environmental cues can vary depending on the spatial scale at which these interactions are measured. Understanding the behavioral mechanisms behind population-scale movements requires knowledge of how individuals respond to local cues. We show how time-to-event models can be used to predict what factors are associated with the timing of an individual's migratory behavior using data from GPS collared polar bears (Ursus maritimus) that move seasonally between sea ice and terrestrial habitats. We found the concentration of sea ice that bears experience at a local level, along with the duration of exposure to these conditions, was most associated with individual migration timing. Our results corroborate studies that assume thresholds of >50% sea ice concentration are necessary for suitable polar bear habitat; however, continued periods (e.g., days to weeks) of exposure to suboptimal ice concentrations during seasonal melting were required before the proportion of bears migrating to land increased substantially. Time-to-event models are advantageous for examining individual movement patterns because they account for the idea that animals make decisions based on an accumulation of knowledge from the landscapes they move through and not simply the environment they are exposed to at the time of a decision. Understanding the migration behavior of polar bears moving between terrestrial and marine habitat, at multiple spatiotemporal scales, will be a major aspect of quantifying observed and potential demographic responses to climate-induced environmental changes. PMID:27547331

  20. Effect of mesoscale eddies and streamers on sardine spawning habitat and recruitment success off Southern and central California

    NASA Astrophysics Data System (ADS)

    Nieto, Karen; McClatchie, Sam; Weber, Edward D.; Lennert-Cody, Cleridy E.

    2014-09-01

    We quantified the effect of mesoscale eddies and streamers on the spatial distribution of Pacific sardine spawning habitat using a merged altimetry data set and a statistical spawning habitat model. The distribution of eggs could be predicted using sea-surface temperature, chlorophyll concentration, and eddy kinetic energy (EKE) similarly to previous studies. Eddies alone did not have a significant additional or emergent effect on the probability of capturing eggs beyond these predictors. Rather, mesoscale features (eddies and streamers) entrained water with the appropriate conditions in terms of temperature, chlorophyll, and EKE. These dynamic features moved appropriate spawning habitat for sardine offshore to areas where appropriate habitat otherwise would not exist. Using centroids of predicted sardine habitat, we showed that sardine recruitment success was inversely correlated with distance from shore of predicted sardine habitat centroids. This indicates that offshore transport has a negative effect on sardine recruitment, despite expanding favorable spawning habitat further offshore.

  1. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha.

    PubMed

    Bourret, S L; Kennedy, B P; Caudill, C C; Chittaro, P M

    2014-11-01

    Isotopic composition of (87) Sr:(86) Sr and natural elemental tracers (Sr, Ba, Mg, Mn and Ca) were quantified from otoliths in juvenile and adult Chinook salmon Oncorhynchus tshawytscha to assess the ability of otolith microchemistry and microstructure to reconstruct juvenile O. tshawytscha rearing habitat and growth. Daily increments were measured to assess relative growth between natal rearing habitats. Otolith microchemistry was able to resolve juvenile habitat use between reservoir and natal tributary rearing habitats (within headwater basins), but not among catchments. Results suggest that 90% (n = 18) of sampled non-hatchery adults returning to the Middle Fork Willamette River were reared in a reservoir and 10% (n = 2) in natal tributary habitat upstream from the reservoir. Juveniles collected in reservoirs had higher growth rates than juveniles reared in natal streams. The results demonstrate the utility of otolith microchemistry and microstructure to distinguish among rearing habitats, including habitats in highly altered systems. PMID:25229130

  2. Clay Animals and Their Habitats

    ERIC Educational Resources Information Center

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  3. A Wildlife Habitat Improvement Plan.

    ERIC Educational Resources Information Center

    Rogers, S. Elaine

    The document presents an overview of Stony Acres, a "sanctuary" for wildlife as well as a place for recreation enjoyment and education undertakings. A review of the history of wildlife habitat management at Stony Acres and the need for continued and improved wildlife habitat management for the property are discussed in Chapter I. Chapter II…

  4. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    PubMed

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  5. The impacts of mobile fishing gear on seafloor habitats in the gulf of maine (Northwest Atlantic): Implications for conservation of fish populations

    USGS Publications Warehouse

    Auster, P.J.; Malatesta, R.J.; Langton, R.W.; Watling, Les; Valentine, P.C.; Donaldson, C.L.S.; Langton, E.W.; Shepard, A.N.; Babb, Ivar G.

    1996-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was impacted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat-management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  6. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    NASA Astrophysics Data System (ADS)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  7. Lunar Surface Habitat Configuration Assessment: Methodology and Observations

    NASA Technical Reports Server (NTRS)

    Carpenter, Amanda

    2008-01-01

    The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.

  8. Density-dependent habitat selection and partitioning between two sympatric ungulates.

    PubMed

    van Beest, Floris M; McLoughlin, Philip D; Vander Wal, Eric; Brook, Ryan K

    2014-08-01

    Theory on density-dependent habitat selection predicts that as population density of a species increases, use of higher quality (primary) habitat by individuals declines while use of lower quality (secondary) habitat rises. Habitat partitioning is often considered the primary mechanism for coexistence between similar species, but how this process evolves with changes in population density remains to be empirically tested for free-ranging ungulates. We used resource-selection functions to quantify density effects on landscape-scale habitat selection of two sympatric species of ungulates [moose (Alces alces) and elk (Cervus canadensis manitobensis)] in Riding Mountain National Park, Manitoba, Canada (2000-2011). The density of elk was actively reduced from 1.2 to 0.4 elk km(-2) through increased hunting effort during the period of study, while moose density decreased without additional human influence from 1.6-0.7 moose km(-2). Patterns of habitat selection during winter by both species changed in accordance to expectations from density-dependent habitat-selection theory. At low intraspecific density, moose and elk did not partition habitat, as both species selected strongly for mixed forest (primary habitat providing both food and cover), but did so in different areas segregated across an elevational gradient. As intraspecific density increased, selection for primary habitat by both species decreased, while selection for secondary, lower quality habitat such as agricultural fields (for elk) and built-up areas (for moose) increased. We show that habitat-selection strategies during winter for moose and elk, and subsequent effects on habitat partitioning, depend heavily on the position in state space (density) of both species. PMID:24913777

  9. Effects of Mitigation Measures on Productivity of the White Sturgeon Populations in the Columbia River Downstream from McNary Dam, and Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1992-1993 Annual Report.

    SciTech Connect

    Beamesdorfer, Raymond C.; Nigro, Anthony A.

    1993-12-01

    We report on our progress from April 1992-March 1993 in research on white sturgeon in the lower Columbia River. The study began in July 1986 and progress through 1992 was summarized in a comprehensive report in 2 volumes (Beamesderfer and Nigro 1993a, 1993b). This report details activities during the first year of Phase II of this sturgeon research. In Phase I, we assessed the status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam. Phase II will examine the effects on white sturgeon productivity of mitigative measures recommended in Phase I. The status and habitat requirements of white sturgeon populations upstream from McNary Dam will also be examined in Phase II. The study is a cooperative effort by the Oregon Department of Fish and Wildlife, Washington Department of Fisheries, U.S. Fish and Wildlife Service, and National Marine Fisheries Service. Work during the past year has focused on: (1) analysis of results of limited sampling conducted in 1992, (2) submission of Phase I results to the peer-review literature to ensure widespread dissemination, clarity of presentation, and credibility of findings, and (3) preparations for additional field work in 1993. In report sections A to D, each agency reports 1992 results if applicable and the current status of manuscripts. Results of field work conducted in 1993 will be reported in the 1994 annual report.

  10. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    PubMed

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. PMID:25302855

  11. The Shark Assemblage at French Frigate Shoals Atoll, Hawai‘i: Species Composition, Abundance and Habitat Use

    PubMed Central

    Dale, Jonathan J.; Stankus, Austin M.; Burns, Michael S.; Meyer, Carl G.

    2011-01-01

    Empirical data on the abundance and habitat preferences of coral reef top predators are needed to evaluate their ecological impacts and guide management decisions. We used longline surveys to quantify the shark assemblage at French Frigate Shoals (FFS) atoll from May to August 2009. Fishing effort consisted of 189 longline sets totaling 6,862 hook hours of soak time. A total of 221 sharks from 7 species were captured, among which Galapagos (Carcharhinus galapagensis, 36.2%), gray reef (Carcharhinus amblyrhynchos, 25.8%) and tiger (Galeocerdo cuvier, 20.4%) sharks were numerically dominant. A lack of blacktip reef sharks (Carcharhinus melanopterus) distinguished the FFS shark assemblage from those at many other atolls in the Indo-Pacific. Compared to prior underwater visual survey estimates, longline methods more accurately represented species abundance and composition for the majority of shark species. Sharks were significantly less abundant in the shallow lagoon than adjacent habitats. Recaptures of Galapagos sharks provided the first empirical estimate of population size for any Galapagos shark population. The overall recapture rate was 5.4%. Multiple closed population models were evaluated, with Chao Mh ranking best in model performance and yielding a population estimate of 668 sharks with 95% confidence intervals ranging from 289–1720. Low shark abundance in the shallow lagoon habitats suggests removal of a small number of sharks from the immediate vicinity of lagoonal islets may reduce short-term predation on endangered monk seal (Monachus schauinslandi) pups, but considerable fishing effort would be required to catch even a small number of sharks. Additional data on long-term movements and habitat use of sharks at FFS are required to better assess the likely ecological impacts of shark culling. PMID:21347321

  12. The shark assemblage at French Frigate Shoals atoll, Hawai'i: species composition, abundance and habitat use.

    PubMed

    Dale, Jonathan J; Stankus, Austin M; Burns, Michael S; Meyer, Carl G

    2011-01-01

    Empirical data on the abundance and habitat preferences of coral reef top predators are needed to evaluate their ecological impacts and guide management decisions. We used longline surveys to quantify the shark assemblage at French Frigate Shoals (FFS) atoll from May to August 2009. Fishing effort consisted of 189 longline sets totaling 6,862 hook hours of soak time. A total of 221 sharks from 7 species were captured, among which Galapagos (Carcharhinus galapagensis, 36.2%), gray reef (Carcharhinus amblyrhynchos, 25.8%) and tiger (Galeocerdo cuvier, 20.4%) sharks were numerically dominant. A lack of blacktip reef sharks (Carcharhinus melanopterus) distinguished the FFS shark assemblage from those at many other atolls in the Indo-Pacific. Compared to prior underwater visual survey estimates, longline methods more accurately represented species abundance and composition for the majority of shark species. Sharks were significantly less abundant in the shallow lagoon than adjacent habitats. Recaptures of Galapagos sharks provided the first empirical estimate of population size for any Galapagos shark population. The overall recapture rate was 5.4%. Multiple closed population models were evaluated, with Chao M(h) ranking best in model performance and yielding a population estimate of 668 sharks with 95% confidence intervals ranging from 289-1720. Low shark abundance in the shallow lagoon habitats suggests removal of a small number of sharks from the immediate vicinity of lagoonal islets may reduce short-term predation on endangered monk seal (Monachus schauinslandi) pups, but considerable fishing effort would be required to catch even a small number of sharks. Additional data on long-term movements and habitat use of sharks at FFS are required to better assess the likely ecological impacts of shark culling. PMID:21347321

  13. Linking occurrence and fitness to persistence: Habitat-based approach for endangered Greater Sage-Grouse

    USGS Publications Warehouse

    Aldridge, C.L.; Boyce, M.S.

    2007-01-01

    Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel

  14. Weather Conditions Drive Dynamic Habitat Selection in a Generalist Predator

    PubMed Central

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B.; Rahbek, Carsten

    2014-01-01

    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year-round resident generalist predator, to see how this varied as a function of weather, season and availability. Use of the two most frequently used land cover types, gardens/buildings and cultivated fields varied more than 3-fold as a simple function of season and weather through linear effects of wind and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types. An opportunistic foraging strategy in a landscape with erratically appearing feeding opportunities in different land cover types, may possibly also explain decreasing selection of the two most frequently used land cover types with increasing availability. PMID:24516615

  15. Abyssal recipes revisited: A new physically-based approach to quantify the vertical diapycnal diffusion profile required to balance water masses formation by surface heat and freshwater fluxes with error bars.

    NASA Astrophysics Data System (ADS)

    Hochet, Antoine; Tailleux, Rémi; Kuhlbrodt, Till; Ferreira, David; Gregory, Jonathan

    2016-04-01

    We revisit the calculation of the diapycnal mixing required to equilibrate the formation of deep water made by Munk and Wunsch 1998 (MW). Our calculation is made possible by a new physically-based density variable, called thermodynamic neutral density, recently introduced by Tailleux 2016, which accurately approximates Jackett and McDougall 1997 empirical neutral density. Unlike neutral density, however, thermodynamic neutral density is a materially conserved variable. As a result, it can only change as the result of diabatic molecular diffusive effects by heat and salt, and is therefore more suitable for studying ocean mixing than neutral density, since the latter can also change as the result of non-material effects unrelated to mixing processes. Climatological temperature and salinity data are used along with heat and freshwater surface fluxes to estimate the dianeutral mean fluxes using a framework stemming from Walin 1982 ideas. The mean fluxes values are estimated to range between 0.2e-4 m^2/s and 5e-4 m^2/s for the densest waters and between 0.025e-4 m^2/s and 0.1e-4 m^2/s for middepth and surface waters. These values contrasts with the previous values of 1e-4 m^2/s first obtained by Munk 1966 and then by MW, and appear much closer to observational estimates of diapycnal mixing obtained by tracer release or microstructure measurements. We further show that the range of uncertainty in the above values is due to the nonlinearities of the equation of state for density.

  16. Quantifying Electron Delocalization in Electrides.

    PubMed

    Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J

    2016-01-12

    Electrides are ionic solids whose anions are electrons confined to crystal voids. We show that our electron delocalization range function EDR(r;d), which quantifies the extent to which an electron at point r in a calculated wave function delocalizes over distance d, provides useful insights into electrides. The EDR quantifies the characteristic delocalization length of electride electrons and provides a chemically intuitive real-space picture of the electrons' distribution. It also gives a potential diagnostic for whether a given formula unit will form a solid electride at ambient pressure, quantifies the effects of electron-electron correlation on confined electrons' interactions, and highlights analogies between covalent bonding and the interaction of interstitial quasi-atoms in high-pressure electrides. These results motivate adding the EDR to the toolbox of theoretical methods applied to electrides. PMID:26652208

  17. Habitat Suitability Index Models: Longnose Sucker

    USGS Publications Warehouse

    Edwards, Elizabeth A.

    1983-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for Longnose sucker (Catostomus catostomus), a freshwater fish. The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for freshwater areas of the continental United States. Habitat suitability indexes (HSI's) are designed for use with the habitat evaluation procedures developed by the U.S. Fish and Wildlife Service.

  18. Development of a stream habitat index for the Northern Lakes and Forest Ecoregions

    USGS Publications Warehouse

    Goldstein, Robert M.; Wang, Lizhu; Simon, Thomas P.; Stewart, Paul M.

    2002-01-01

    Physical habitat was quantified in 105 randomly selected streams across the Northern Lakes and Forests Ecoregion during 1998 and 1999 to develop a stream habitat index for the region. Physical habitat measures (106) were classified into four groups: substrate, instream cover, riparian zone–land use, and geomorphology–hydrology. Variable reduction procedures yielded seven variables: sinuosity, percent of substrate gravel or larger, percent substrate as detritus or muck, percent of bank with forested cover, amount of bank erosion, number of large logs per 100 m, and mean length of pools. Streams were separated by a gradient value of 3 m/km (low N = 70; high N = 35) and assigned to model and test data sets. For low-gradient streams in the model data set, the seven habitat variables explained 47% of the variation in index of biotic integrity (IBI) scores. To produce the habitat index, the coefficients in the regression were used to weight each of the seven variables. For low-gradient streams in the test data set, the habitat index explained 20% of the variation in IBI scores. A habitat index could not be developed for high-gradient sites, probably due to the low number of sites. Comparison of habitat to IBI scores provides resource managers with a method to evaluate the contribution of habitat quality to the IBI score.

  19. Habitat quality from individual- and population-level perspectives and implications for management

    USGS Publications Warehouse

    Boves, Than J.; Rodewald, Amanda D.; Wood, Petra Bohall; Buehler, David A.; Larkin, Jeffrey L.; Wigley, T. Bently; Keyser, Patrick D.

    2015-01-01

    Many wildlife management prescriptions are either implicitly or explicitly designed to improve habitat quality for a focal species, but habitat quality is often difficult to quantify. Depending upon the approach used to define and identify high-quality habitat, management decisions may differ widely. Although individual-level measures of habitat quality based on per capita reproduction (e.g., average nesting success, number of young produced per pair) are most common in the literature, they may not align with population-level measures that reflect number of young produced within a defined area. Using data on the cerulean warbler (Setophaga cerulea) collected in the Cumberland Mountains (Tennessee, USA; 2008–2010) as an example, we illustrate how lack of concordance between individual- and population-level measures of habitat quality can have real-world management implications.

  20. Habitat selection responses of parents to offspring predation risk: An experimental test

    USGS Publications Warehouse

    Fontaine, J.J.; Martin, T.E.

    2006-01-01

    The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity. ?? 2006 by The University of Chicago. All rights reserved.

  1. Diversity and Community Composition of Vertebrates in Desert River Habitats

    PubMed Central

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  2. Diversity and Community Composition of Vertebrates in Desert River Habitats.

    PubMed

    Free, C L; Baxter, G S; Dickman, C R; Lisle, A; Leung, L K-P

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  3. Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico.

    PubMed

    Roberts, Jason J; Best, Benjamin D; Mannocci, Laura; Fujioka, Ei; Halpin, Patrick N; Palka, Debra L; Garrison, Lance P; Mullin, Keith D; Cole, Timothy V N; Khan, Christin B; McLellan, William A; Pabst, D Ann; Lockhart, Gwen G

    2016-01-01

    Cetaceans are protected worldwide but vulnerable to incidental harm from an expanding array of human activities at sea. Managing potential hazards to these highly-mobile populations increasingly requires a detailed understanding of their seasonal distributions and habitats. Pursuant to the urgent need for this knowledge for the U.S. Atlantic and Gulf of Mexico, we integrated 23 years of aerial and shipboard cetacean surveys, linked them to environmental covariates obtained from remote sensing and ocean models, and built habitat-based density models for 26 species and 3 multi-species guilds using distance sampling methodology. In the Atlantic, for 11 well-known species, model predictions resembled seasonal movement patterns previously suggested in the literature. For these we produced monthly mean density maps. For lesser-known taxa, and in the Gulf of Mexico, where seasonal movements were less well described, we produced year-round mean density maps. The results revealed high regional differences in small delphinoid densities, confirmed the importance of the continental slope to large delphinoids and of canyons and seamounts to beaked and sperm whales, and quantified seasonal shifts in the densities of migratory baleen whales. The density maps, freely available online, are the first for these regions to be published in the peer-reviewed literature. PMID:26936335

  4. Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico

    PubMed Central

    Roberts, Jason J.; Best, Benjamin D.; Mannocci, Laura; Fujioka, Ei; Halpin, Patrick N.; Palka, Debra L.; Garrison, Lance P.; Mullin, Keith D.; Cole, Timothy V. N.; Khan, Christin B.; McLellan, William A.; Pabst, D. Ann; Lockhart, Gwen G.

    2016-01-01

    Cetaceans are protected worldwide but vulnerable to incidental harm from an expanding array of human activities at sea. Managing potential hazards to these highly-mobile populations increasingly requires a detailed understanding of their seasonal distributions and habitats. Pursuant to the urgent need for this knowledge for the U.S. Atlantic and Gulf of Mexico, we integrated 23 years of aerial and shipboard cetacean surveys, linked them to environmental covariates obtained from remote sensing and ocean models, and built habitat-based density models for 26 species and 3 multi-species guilds using distance sampling methodology. In the Atlantic, for 11 well-known species, model predictions resembled seasonal movement patterns previously suggested in the literature. For these we produced monthly mean density maps. For lesser-known taxa, and in the Gulf of Mexico, where seasonal movements were less well described, we produced year-round mean density maps. The results revealed high regional differences in small delphinoid densities, confirmed the importance of the continental slope to large delphinoids and of canyons and seamounts to beaked and sperm whales, and quantified seasonal shifts in the densities of migratory baleen whales. The density maps, freely available online, are the first for these regions to be published in the peer-reviewed literature. PMID:26936335

  5. Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roberts, Jason J.; Best, Benjamin D.; Mannocci, Laura; Fujioka, Ei; Halpin, Patrick N.; Palka, Debra L.; Garrison, Lance P.; Mullin, Keith D.; Cole, Timothy V. N.; Khan, Christin B.; McLellan, William A.; Pabst, D. Ann; Lockhart, Gwen G.

    2016-03-01

    Cetaceans are protected worldwide but vulnerable to incidental harm from an expanding array of human activities at sea. Managing potential hazards to these highly-mobile populations increasingly requires a detailed understanding of their seasonal distributions and habitats. Pursuant to the urgent need for this knowledge for the U.S. Atlantic and Gulf of Mexico, we integrated 23 years of aerial and shipboard cetacean surveys, linked them to environmental covariates obtained from remote sensing and ocean models, and built habitat-based density models for 26 species and 3 multi-species guilds using distance sampling methodology. In the Atlantic, for 11 well-known species, model predictions resembled seasonal movement patterns previously suggested in the literature. For these we produced monthly mean density maps. For lesser-known taxa, and in the Gulf of Mexico, where seasonal movements were less well described, we produced year-round mean density maps. The results revealed high regional differences in small delphinoid densities, confirmed the importance of the continental slope to large delphinoids and of canyons and seamounts to beaked and sperm whales, and quantified seasonal shifts in the densities of migratory baleen whales. The density maps, freely available online, are the first for these regions to be published in the peer-reviewed literature.

  6. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    PubMed

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites. PMID:26610967

  7. 76 FR 25307 - Incidental Take Permit and Habitat Conservation Plan for PacifiCorp Klamath Hydroelectric Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... National Oceanic and Atmospheric Administration RIN 0648-XA410 Incidental Take Permit and Habitat... of availability of draft environmental assessment, habitat conservation plan, implementing agreement...-year period. As required by the ESA, PacifiCorp has also prepared a Habitat Conservation Plan (Plan)...

  8. Habitat Evaluation Procedures (HEP) Report; Priest River Project, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Priest River property, an acquisition completed by the Kalispel Tribe of Indians in 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Priest River Project provides a total of 140.73 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 60.05 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Grassland meadow habitat provides 7.39 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 71.13 HUs for mallard, yellow warbler, and white-tailed deer. Open water habitat provides 2.16 HUs for Canada goose and mallard. The objective of using HEP at the Priest River Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  9. Habitat Evaluation Procedures (HEP) Report; North Eaton Lake, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-11-01

    On July 6, 2005, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the North Eaton Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The North Eaton Lake Project provides a total of 235.05 Habitat Units (HUs) for the species evaluated. Open water habitat provides 9.38 HUs for Canada goose, mallard and muskrat. Emergent wetland habitat provides 11.36 HUs for Canada goose, mallard and muskrat. Forested wetland provides 10.97 HUs for bald eagle, black-capped chickadee, mallard and white-tailed deer. Conifer forest habitat provides 203.34 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the North Eaton Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  10. Coastal Habitats as Surrogates for Taxonomic, Functional and Trophic Structures of Benthic Faunal Communities

    PubMed Central

    Törnroos, Anna; Nordström, Marie C.; Bonsdorff, Erik

    2013-01-01

    Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning. PMID

  11. The Habitat Demonstration Unit Project Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Grill, Tracy R.; Tri, Terry O.; Howe, Alan S.

    2010-01-01

    This paper will describe an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) Project. The HDU project is a "technology-pull" project that integrates technologies and innovations from numerous NASA centers. This project will be used to investigate and validate surface architectures, operations concepts, and requirements definition of various habitation concepts. The first habitation configuration this project will build and test is the Pressurized Excursion Module (PEM). This habitat configuration - the PEM - is based on the Constellation Architecture Scenario 12.1 concept of a vertically oriented habitat module. The HDU project will be tested as part of the 2010 Desert Research and Technologies Simulations (D-RATS) test objectives. The purpose of this project is to develop, integrate, test, and evaluate a habitat configuration in the context of the mission architectures and surface operation concepts. A multi-center approach will be leveraged to build, integrate, and test the PEM through a shared collaborative effort of multiple NASA centers. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Lunar Surface Systems Project Office (LSSPO) to test surface elements in a surface analog environment. The 2010 analog field test will include two Lunar Electric Rovers (LER) and the PEM among other surface demonstration elements. This paper will describe the overall objectives, its various habitat configurations, strategic plan, and technology integration as it pertains to the 2010 and 2011 field analog tests. To accomplish the development of the PEM from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using a set of design standards to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Lab, that those systems will support

  12. Habitat and forage associations of a naturally colonising insect pollinator, the tree bumblebee Bombus hypnorum.

    PubMed

    Crowther, Liam P; Hein, Pierre-Louis; Bourke, Andrew F G

    2014-01-01

    Bumblebees (Bombus species) are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. hypnorum, a recent natural colonist that has rapidly expanded its range in the UK over the past decade. Counts of B. hypnorum and six other Bombus species were made in March-June 2012 within a mixed landscape in south-eastern Norfolk, UK. The extent of different landscape elements around each transect was quantified at three scales (250 m, 500 m and 1500 m). We then identified the landscape elements that best predicted the density of B. hypnorum and other Bombus species. At the best fitting scale (250 m), B. hypnorum density was significantly positively associated with extent of both urban and woodland cover and significantly negatively associated with extent of oilseed rape cover. This combination of landscape predictors was unique to B. hypnorum. Urban and woodland cover were associated with B. hypnorum density at three and two, respectively, of the three scales studied. Relative to other Bombus species, B. hypnorum exhibited a significantly higher foraging preference for two flowering trees, Crataegus monogyna and Prunus spinosa, and significantly lower preferences for Brassica napus, Glechoma hederacea and Lamium album. Our study provides novel, quantitative support for an association of B. hypnorum with urban and woodland landscape elements. Range expansion in B. hypnorum appears to depend, on exploitation of widespread habitats underutilised by native Bombus species, suggesting B. hypnorum will readily co-exist with these species. These findings suggest that management

  13. Habitat and Forage Associations of a Naturally Colonising Insect Pollinator, the Tree Bumblebee Bombus hypnorum

    PubMed Central

    Crowther, Liam P.; Hein, Pierre-Louis; Bourke, Andrew F. G.

    2014-01-01

    Bumblebees (Bombus species) are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. hypnorum, a recent natural colonist that has rapidly expanded its range in the UK over the past decade. Counts of B. hypnorum and six other Bombus species were made in March-June 2012 within a mixed landscape in south-eastern Norfolk, UK. The extent of different landscape elements around each transect was quantified at three scales (250 m, 500 m and 1500 m). We then identified the landscape elements that best predicted the density of B. hypnorum and other Bombus species. At the best fitting scale (250 m), B. hypnorum density was significantly positively associated with extent of both urban and woodland cover and significantly negatively associated with extent of oilseed rape cover. This combination of landscape predictors was unique to B. hypnorum. Urban and woodland cover were associated with B. hypnorum density at three and two, respectively, of the three scales studied. Relative to other Bombus species, B. hypnorum exhibited a significantly higher foraging preference for two flowering trees, Crataegus monogyna and Prunus spinosa, and significantly lower preferences for Brassica napus, Glechoma hederacea and Lamium album. Our study provides novel, quantitative support for an association of B. hypnorum with urban and woodland landscape elements. Range expansion in B. hypnorum appears to depend, on exploitation of widespread habitats underutilised by native Bombus species, suggesting B. hypnorum will readily co-exist with these species. These findings suggest that management

  14. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    SciTech Connect

    Ashley, Paul R.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

  15. Children's knowledge of hierarchical phrase structure: quantifier floating in Japanese.

    PubMed

    Suzuki, Takaaki; Yoshinaga, Naoko

    2013-06-01

    The interpretation of floating quantifiers in Japanese requires knowledge of hierarchical phrase structure. However, the input to children is insufficient or even misleading, as our analysis indicates. This presents an intriguing question on learnability: do children interpret floating quantifiers based on a structure-dependent rule which is not obvious in the input or do they employ a sentence comprehension strategy based on the available input? Two experiments examined four- to six-year-old Japanese-speaking children for their interpretations of floating quantifiers in SOV and OSV sentences. The results revealed that no child employed a comprehension strategy in terms of the linear ordering of constituents, and most five- and six-year-olds correctly interpreted floating quantifiers when word-order difficulty was reduced. These facts indicate that children's interpretation of floating quantifiers is structurally dependent on hierarchical phrase structure, suggesting that this knowledge is a part of children's grammar despite the insufficient input available to them. PMID:22850618

  16. Habitat classification modeling with incomplete data: Pushing the habitat envelope

    USGS Publications Warehouse

    Zarnetske, P.L.; Edwards, T.C., Jr.; Moisen, G.G.

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting

  17. Habitat classification modeling with incomplete data: pushing the habitat envelope.

    PubMed

    Zarnetske, Phoebe L; Edwards, Thomas C; Moisen, Gretchen G

    2007-09-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can bb used. Traditional techniques generate pseudo-absence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, threshold-independent receiver operating characteristic (ROC) plots, adjusted deviance (D(adj)2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant

  18. How mechanisms of habitat preference evolve and promote divergence with gene flow

    PubMed Central

    Berner, Daniel

    2015-01-01

    Habitat preference may promote adaptive divergence and speciation, yet the conditions under which this is likely are insufficiently explored. We use individual-based simulations to study the evolution and consequence of habitat preference during divergence with gene flow, considering four different underlying genetically-based behavioral mechanisms: natal habitat imprinting, phenotype-dependent, competition-dependent, and direct genetic habitat preference. We find that the evolution of habitat preference generally requires initially high dispersal, is facilitated by asymmetry in population sizes between habitats, and is hindered by an increasing number of underlying genetic loci. Moreover, the probability of habitat preference to emerge and promote divergence differs greatly among the underlying mechanisms. Natal habitat imprinting evolves most easily and can allow full divergence in parameter ranges where no divergence is possible in the absence of habitat preference. The reason is that imprinting represents a one-allele mechanism of assortative mating linking dispersal behavior very effectively to local selection. At the other extreme, direct genetic habitat preference, a two-allele mechanism, evolves under restricted conditions only, and even then facilitates divergence weakly. Overall, our results indicate that habitat preference can be a strong reproductive barrier promoting divergence with gene flow, but that this is highly contingent on the underlying preference mechanism. PMID:26119841

  19. Seasonal habitat preference by the flagship species Testudo hermanni: Implications for the conservation of coastal dunes.

    PubMed

    Berardo, Fabiana; Carranza, Maria Laura; Frate, Ludovico; Stanisci, Angela; Loy, Anna

    2015-05-01

    In this study, we explored if, how, and when the European Union habitats (EU sensu Habitats Directive 92/43/CEE) are used by the flagship species Testudo hermanni in a well-preserved coastal dune system of the Italian peninsula. Radio telemetry data and fine-scale vegetation habitat mapping were used to address the following questions: (a) is each EU habitat used differentially by Hermann's tortoises? (b) is there any seasonal variation in this utilization pattern? (c) how does each habitat contribute to the ecological requirements of the tortoises? Nine tortoises were fitted with transmitters and monitored for the entire season of activity. The eight EU habitats present in the study area were surveyed and mapped using GIS. The seasonal preferential use or avoidance of each habitat was tested by comparing, through bootstrap tests, the proportion of habitat occupied (piTh) with the proportion of available habitat in the entire landscape (piL). The analysis of 340 spatial locations showed a marked preference for the Cisto-Lavanduletalia dune sclerophyllous scrubs (EU code 2260) and a seasonal selection of Juniperus macrocarpa bushes (EU code 2250(*)), wooded dunes with Pinus (EU code 2270) and mosaic of dune grasslands and sclerophyllous scrubs (EU codes 2230, 2240, 2260). Seasonal variation of habitat preference was interpreted in light of the different feeding, thermoregulation and reproductive needs of the tortoises. Our results stress the ecological value of EU coastal dune habitats and suggest prioritization of conservation efforts in these ecosystems. PMID:25843221

  20. Biodiversity in urban habitat patches.

    PubMed

    Angold, P G; Sadler, J P; Hill, M O; Pullin, A; Rushton, S; Austin, K; Small, E; Wood, B; Wadsworth, R; Sanderson, R; Thompson, K

    2006-05-01

    We examined the biodiversity of urban habitats in Birmingham (England) using a combination of field surveys of plants and carabid beetles, genetic studies of four species of butterflies, modelling the anthropochorous nature of the floral communities and spatially explicit modelling of selected mammal species. The aim of the project was to: (i) understand the ecological characteristics of the biota of cities model, (ii) examine the effects of habitat fragment size and connectivity upon the ecological diversity and individual species distributions, (iii) predict biodiversity in cities, and (iv) analyse the extent to which the flora and fauna utilise the 'urban greenways' both as wildlife corridors and as habitats in their own right. The results suggest that cities provide habitats for rich and diverse range of plants and animals, which occur sometimes in unlikely recombinant communities. The studies on carabids and butterflies illustrated the relative importance of habitat quality on individual sites as opposed to site location within the conurbation. This suggests that dispersal for most of our urban species is not a limiting factor in population persistence, although elements of the woodland carabid fauna did appear to have some geographical structuring. Theoretical models suggested that dormice and water voles may depend on linear habitats for dispersal. The models also indicated that other groups, such as small and medium sized mammals, may use corridors, although field-based research did not provide any evidence to suggest that plants or invertebrates use urban greenways for dispersal. This finding indicates the importance of identifying a target species or group of species for urban greenways intended as dispersal routeways rather than as habitat in their own right. Their importance for most groups is rather that greenways provide a chain of different habitats permeating the urban environment. We suggest that planners can have a positive impact on urban

  1. Integration Process for the Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Howe, A. Scott

    2010-01-01

    The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities The HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture To complete the development of the HDU from conception in June 2009 to rollout for operations in July 2010, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads, such as the Geology Lab, that those systems will support The utilization of interface design standards and uniquely tailored reviews have allowed for an accelerated design process Scheduled activities include early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development Modeling tools have been effective in hardware systems layout, cable routing and length estimation, and human factors analysis Decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations Incremental test operations leading up to an integrated systems test allows for an orderly systems test program The HDU will begin its journey as an emulation of a Pressurized Excursion Module (PEM) for 2010 field testing and then may evolve to a Pressurized Core Module (PCM) for 2011 and later field tests, depending on agency architecture decisions The HDU deployment will vary slightly from current lunar architecture plans to include developmental hardware and software items and additional systems called opportunities for technology demonstration One of the HDU challenges has been designing to be prepared for the integration of

  2. Geopressured habitat: A literature review

    SciTech Connect

    Negus-de Wys, Jane

    1992-09-01

    A literature review of the geopressured-geothermal habitat is summarized. Findings are presented and discussed with respect to the principal topics: Casual agents are both geological and geochemical; they include disequilibrium compaction of sediments, clay diagenesis, aquathermal pressuring, hydrocarbon generation, and lateral tectonic compression. The overall physical and chemical characteristics of the habitats are dictated by varying combinations of sedimentation rates, alteration mineralogy, permeability, porosity and pressure, temperature, fluid content and chemistry, and hydrodynamic flow. Habitat pressure seals are considered in terms of their formation processes, geologic characteristics, and physical behavior, including pressure release and reservoir pressure recharge on a geologic time scale. World-wide occurrence of geopressured-geothermal habitats is noted. The main thrust of this topic concerns the U.S.A. and Canada; in addition, reference is made to occurrences in China and indications from deep-sea vents, as well as the contribution of paleo-overpressure to habitat initiation and maintenance. Identification and assessment of the habitat is addressed in relation to use of hydrogeologic, geophysical, geochemical, and geothermic techniques, as well as well-logging and drill-stem-test data. Conclusions concerning the adequacy of the current state of knowledge and its applicability to resource exploration and development are set forth, together with recommendations for the thrust of future work.

  3. Asotin Creek Instream Habitat Alteration Projects: 1998 Habitat Evaluation Surveys.

    SciTech Connect

    Bumgarner, Joseph D.

    1999-03-01

    The Asotin Creek Model Watershed Master Plan was completed 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from the various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories, (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were, (a) create more pools, (b) increase the amount of large organic debris (LOD), (c) increase the riparian buffer zone through tree planting, and (d) increase fencing to limit livestock access; additionally, the actions are intended to stabilize the river channel, reduce sediment input, and protect private property. Fish species of main concern in Asotin Creek are summer steelhead (Oncorhynchus mykiss), spring chinook (Oncorhynchus tshawytscha), and bull trout (Salvelinus confluentus). Spring chinook in Asotin Creek are considered extinct (Bumgarner et al. 1998); bull trout and summer steelhead are below historical levels and are currently as ''threatened'' under the ESA. In 1998, 16 instream habitat projects were planned by ACCD along with local landowners. The ACCD identified the need for a more detailed analysis of these instream projects to fully evaluate their effectiveness at improving fish habitat. The Washington Department of Fish and Wildlife's (WDFW) Snake River Lab (SRL) was contracted by the ACCD to take pre-construction measurements of the existing habitat (pools, LOD, width, depth, etc.) within each identified site, and to eventually evaluate fish use within these sites. All pre-construction habitat measurements were completed between 6 and 14 July, 1998. 1998 was the first year that this sort of evaluation has occurred. Post construction measurements of habitat structures installed in 1998, and fish usage evaluation, will be

  4. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach.

    PubMed

    Lengyel, Szabolcs; Déri, Eszter; Magura, Tibor

    2016-01-01

    Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD) is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR) of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary) and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals) showed that the wet-dry gradient (compositional HD at the between-patch scale) was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale) was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale) was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none) was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve biodiversity in

  5. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach

    PubMed Central

    Lengyel, Szabolcs; Déri, Eszter; Magura, Tibor

    2016-01-01

    Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD) is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR) of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary) and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals) showed that the wet-dry gradient (compositional HD at the between-patch scale) was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale) was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale) was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none) was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve biodiversity in

  6. Quantifying tumour heterogeneity with CT

    PubMed Central

    Miles, Kenneth A.

    2013-01-01

    Abstract Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response. PMID:23545171

  7. SHORELINE, LAKE, AND ESTUARY SCALE HABITAT RESEARCH

    EPA Science Inventory

    Habitat alteration is well recognized as a major cause of loss of living aquatic resources. Many fish and wildlife species depend on several habitats (or on habitat landscapes) in their life histories and migratory patterns. This NHEERL habitat research will develop stressor-re...

  8. Quantifying and measuring cyber resiliency

    NASA Astrophysics Data System (ADS)

    Cybenko, George

    2016-05-01

    Cyber resliency has become an increasingly attractive research and operational concept in cyber security. While several metrics have been proposed for quantifying cyber resiliency, a considerable gap remains between those metrics and operationally measurable and meaningful concepts that can be empirically determined in a scientific manner. This paper describes a concrete notion of cyber resiliency that can be tailored to meet specific needs of organizations that seek to introduce resiliency into their assessment of their cyber security posture.

  9. Quantifying drivers of population dynamics for a migratory bird throughout the annual cycle.

    PubMed

    Rushing, Clark S; Ryder, Thomas B; Marra, Peter P

    2016-01-27

    Worldwide, migratory species are undergoing rapid declines but understanding the factors driving these declines is hindered by missing information about migratory connectivity and the lack of data to quantify environmental processes across the annual cycle. Here, we combined range-wide information about migratory connectivity with global remote-sensing data to quantify the relative importance of breeding and non-breeding environmental processes to persistent long-term population declines of a migratory songbird, the wood thrush (Hylocichla mustelina). Consistent with theoretical predictions about population limitation of migratory birds, our results suggest that habitat loss and climate have contributed to the observed declines in wood thrush breeding abundance, yet the relative importance of breeding versus non-breeding factors is population-specific. For example, high-abundance core breeding populations appear to be more limited by habitat loss, whereas low-abundance, peripheral populations appear to be limited by climate-driven seasonal interactions. Further, our analysis indicates that the relative impact of breeding habitat loss is at least three to six times greater than the impact of equivalent non-breeding habitat loss and therefore the steepest regional declines have likely been driven by the loss of breeding habitat. These results underscore the need for population-specific conservation strategies implemented throughout the annual cycle to reverse long-term declines. PMID:26817774

  10. Habitat Suitability Index Models: Bigmouth Buffalo

    USGS Publications Warehouse

    Edwards, Elizabeth A.

    1983-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for Bigmouth buffalo (Ictiobus cyprinellus), a freshwater fish. The models are scaled to produce an indices of habitat suitability between 0 (unsuitable habitat) and 1 (optimally suitable habitat) for freshwater areas of the continental United States. Other habitat suitability models found in the literature are also included. Habitat suitability indices (HSI's) are designed for use with the habitat evaluation procedures developed by the U.S. Fish and Wildlife Service.

  11. Quantifying spatiotemporal changes in a sagebrush ecosystem in relation to energy development.

    SciTech Connect

    Walston, L. J.; Cantwell, B. L.; Krummel, J. R.; Environmental Science Division

    2009-12-01

    Energy development has been occurring in the intermountain western United States for over a century, yet few studies have attempted to spatially quantify the impacts of this disturbance on native ecosystems. We used temporal remotely sensed data for the Pinedale Anticline Project Area (PAPA) in western Wyoming, a region that has experienced increased natural gas development within the past 10 yr, to quantify the spatiotemporal distribution of Wyoming big sagebrush Artemisia tridentata, natural gas development, and other landcover types. Our analyses included 5 Landsat Thematic Mapper (TM) images of the PAPA over a 22-yr period (1985-2006). We determined whether Wyoming big sagebrush spatiotemporal patterns were associated with natural gas development or other landcover types. We also developed a footprint model to determine the direct and indirect impacts of natural gas development on the distribution of Wyoming big sagebrush habitats. Over the 22-yr period, we observed an inverse relationship between the amount of Wyoming big sagebrush habitat and natural gas development. During this time, Wyoming big sagebrush habitat declined linearly at a rate of 0.2% yr-1 (4.5% total net loss), whereas natural gas development increased exponentially at a rate of 20% yr-1 (4800% total net increase). Our evaluation indicated that, by 2006, natural gas development directly impacted 2.7% (1750 ha) of original Wyoming big sagebrush habitat. Indirect impacts, quantified to account for degraded habitat quality, affected as much as 58.5% (assuming 1000-m buffers) of the original Wyoming big sagebrush habitat. Integrating assessments of the direct and indirect impacts will yield a better elucidation of the overall effects of disturbances on ecosystem function and quality.

  12. Habitat degradation may affect niche segregation patterns in lizards

    NASA Astrophysics Data System (ADS)

    Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.

    2013-08-01

    Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.

  13. Relationship between shrubs and foods in mountain plover habitat in Park County, Colorado

    USGS Publications Warehouse

    Schneider, S.C.; Wunder, Michael B.; Knopf, F.L.

    2006-01-01

    We explored habitat use in terms of vegetation structure and potential forage availability for mountain plovers (Charadrius montanus) in Park County, Colorado. We quantified the percentage cover of bare ground, percentage cover of shrubs (Chrysothamnus visadiflorus), linear distance to nearest shrub, arthropod biomass, and grasshopper density for 102 plots of 1,963 m2, 51 of which were occupied by plovers and 51 of which were selected randomly within previously-classified potential habitat. We modeled the probability of habitat use by plovers based on these measurements. We further subdivided the occupied plots to model probability of habitat use by adults with broods as compared with use by pre-nesting and post-nesting adults. Percentage of bare ground and probability of habitat use for adults with broods were related inversely, but not so for adults without broods. Grasshopper density was positively related to probability of habitat use by adults without broods, whereas proximity to nearest shrub was negatively related. We propose that habitat use by plovers in South Park is influenced by the amount of available shrub-grassland edge habitat and the availability of forage.

  14. Propagule redirection: habitat availability reduces colonization and increases recruitment in reef fishes.

    PubMed

    Stier, Adrian C; Osenberg, Craig W

    2010-10-01

    Increased habitat availability or quality can alter production of habitat-dependent organisms in two contrasting ways: (1) by enhancing input of new colonists to the new sites (the Field-of-Dreams Hypothesis); and (2) by drawing colonists away from existing sites (the Propagule Redirection Hypothesis), and thus reducing the deleterious effects of density. We conducted a field experiment on coral reef fishes in Moorea, French Polynesia, to quantify how differing levels of habitat availability (controlling for quality) increased and/or redirected colonizing larval fish. Focal reefs without neighboring reefs received two to four times more settlers than reefs with adjacent habitat, demonstrating that increased habitat redirected larval fish. At the scale of the entire reef array, total colonization increased 1.3-fold in response to a sixfold increase in reef area (and a 2.75-fold increase in adjusted habitat availability). Thus, propagules were both increased and redirected, a result midway between the Field-of-Dreams and Propagule Redirection Hypotheses. A recruitment model using our data and field estimates of density-dependent recruitment predicts that habitat addition increases recruitment primarily by ameliorating the negative effects of competition at existing sites rather than increasing colonization at the new sites per se. Understanding long-term implications of these effects depends upon the interplay among habitat dynamics, population connectivity, colonization dynamics, and density dependence. PMID:21058544

  15. Macrofaunal communities associated with chemosynthetic habitats from the U.S. Atlantic margin: A comparison among depth and habitat types

    USGS Publications Warehouse

    Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda

    2016-01-01

    Hydrocarbon seeps support distinct benthic communities capable of tolerating extreme environmental conditions and utilizing reduced chemical compounds for nutrition. In recent years, several locations of methane seepage have been mapped along the U.S. Atlantic continental slope. In 2012 and 2013, two newly discovered seeps were investigated in this region: a shallow site near Baltimore Canyon (BCS, 366–412 m) and a deep site near Norfolk Canyon (NCS, 1467–1602 m), with both sites containing extensive chemosynthetic mussel bed and microbial mat habitats. Sediment push cores, suction samples, and Ekman box cores were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 μm) in mussel beds, mats, and slope habitats at both sites. Community data from the deep site were also assessed in relation to the associated sediment environment (organic carbon and nitrogen, stable carbon and nitrogen isotopes, grain size, and depth). Infaunal assemblages and densities differed both between depths and among habitat types. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments and were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in BCS microbial mat habitats, but higher in mussel and slope sediments compared to NCS habitats. Multivariate statistical analysis revealed specific sediment properties as important for distinguishing the macrofaunal communities, including larger grain sizes present within NCS microbial mat habitats and depleted stable carbon isotopes (δ13C) in sediments present at mussel beds. These results suggest that habitat differences in the quality and source of organic matter are driving the observed patterns in the infaunal assemblages, including high β diversity and high variability in the macrofaunal community composition. This

  16. Habitat Suitability Index Models: Flathead Catfish

    USGS Publications Warehouse

    Lee, Lawrence A.; Terrell, James W.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the flathead catfish (Pylodictis olivaris). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  17. Habitat Suitability Index Models: Cactus Wren

    USGS Publications Warehouse

    Short, Henry L.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the cactus wren (Campylorhynchus brunneicapillus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  18. Habitat Suitability Index Models: Slider Turtle

    USGS Publications Warehouse

    Morreale, Stephen J.; Gibbons, J. Whitfield

    1986-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the slider turtle (Pseudemys scripta). The model consolidates habitat use information into a framework appropriate for field application and is scaled to produce an index between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  19. Habitat Suitability Index Models: Lesser Scaup (Breeding)

    USGS Publications Warehouse

    Allen, Arthur W.

    1986-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the lesser scaup (Aythya affinis). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  20. Habitat Suitability Index Models: Barred Owl

    USGS Publications Warehouse

    Allen, Arthur W.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the barred owl (Strix varia). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  1. Habitat Suitability Index Models: Spotted Owl

    USGS Publications Warehouse

    Laymon, Stephen A.; Salwasser, Hal; Barrett, Reginald H.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the spotted owl (Strix occidentalis). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  2. Habitat Suitability Index Models: Eastern Wild Turkey

    USGS Publications Warehouse

    Schroeder, Richard L.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the eastern wild turkey (Meleagris gallopavo sylvestris). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  3. Habitat Suitability Index Models: Hairy Woodpecker

    USGS Publications Warehouse

    Sousa, Patrick J.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the hairy woodpecker (Picoides villosus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  4. Habitat Suitability Index Models: Snowshoe Hare

    USGS Publications Warehouse

    Carreker, Raymond G.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the Snowshoe hare (Lepus americanus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  5. Habitat Suitability Index Models: Swamp Rabbit

    USGS Publications Warehouse

    Allen, Arthur W.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the swamp rabbit (Sylvilagus aquaticus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  6. Tracking changes and preventing loss in critical tiger habitat

    PubMed Central

    Joshi, Anup R.; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L.; Olson, David; Jones, Benjamin S.; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C.; Sizer, Nigel C.; Davis, Crystal L.; Palminteri, Suzanne; Hahn, Nathan R.

    2016-01-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km2) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km2, 7.7% of remaining habitat) over the 14-year study period (2001–2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km2) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km2 (x¯=24km2, SD = 89, total = 1676 ± 476 km2). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near–real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion. PMID:27051881

  7. Bird communities of natural and modified habitats in Panama

    USGS Publications Warehouse

    Petit, L.J.; Petit, D.R.; Christian, D.G.; Powell, H.D.W.

    1999-01-01

    enhancement of agricultural and developed lands as wildlife habitat. To understand the true conservation value of these modified lands will require examination not only of numbers but also of the types of species supported by these habitats, their reproductive output and survival rates.

  8. Habitat Associations of Juvenile Fish at Ningaloo Reef, Western Australia: The Importance of Coral and Algae

    PubMed Central

    Wilson, Shaun K.; Depczynski, Martial; Fisher, Rebecca; Holmes, Thomas H.; O'Leary, Rebecca A.; Tinkler, Paul

    2010-01-01

    Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs

  9. Habitat Evaluation Procedures (HEP) Report, Pend Oreille Wetlands Wildlife II Project, Technical Report 2002.

    SciTech Connect

    Holmes, Darren

    2003-06-01

    In 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Pend Oreille Wetlands Wildlife II Project, an acquisition completed by the Kalispel Tribe of Indians in 1997. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, and yellow warbler. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Pend Oreille Wetlands Wildlife II Project provides a total of 313.91 Habitat Units (HUs) for the species evaluated. Open water habitat provides 16.08 HUs for Canada goose and mallard. Shoreline and island habitat provide 7.36 HUs fore Canada goose and mallard. Wet meadow provides 117.62 HUs for Canada goose and mallard. Scrub-shrub wetlands provide 9.78 HUs for yellow warbler, mallard, and white-tailed deer. Deciduous forested wetlands provide 140.47 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Conifer forest provides 22.60 HUs for bald eagle, black-capped chickadee, and white-tailed deer. The objective of using HEP at the Pend Oreille Wetlands Wildlife II Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  10. Habitat Evaluation Procedures (HEP) Report; West Beaver Lake Project, Technical Report 2005

    SciTech Connect

    Entz, Ray

    2005-05-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 82.69 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 8.80 HUs for mallard, muskrat, and Canada goose. Conifer forest habitat provides 70.33 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Open water provides 3.30 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  11. Habitat specialization predicts genetic response to fragmentation in tropical birds.

    PubMed

    Khimoun, Aurélie; Eraud, Cyril; Ollivier, Anthony; Arnoux, Emilie; Rocheteau, Vincent; Bely, Marine; Lefol, Emilie; Delpuech, Martin; Carpentier, Marie-Laure; Leblond, Gilles; Levesque, Anthony; Charbonnel, Anaïs; Faivre, Bruno; Garnier, Stéphane

    2016-08-01

    Habitat fragmentation is one of the most severe threats to biodiversity as it may lead to changes in population genetic structure, with ultimate modifications of species evolutionary potential and local extinctions. Nonetheless, fragmentation does not equally affect all species and identifying which ecological traits are related to species sensitivity to habitat fragmentation could help prioritization of conservation efforts. Despite the theoretical link between species ecology and extinction proneness, comparative studies explicitly testing the hypothesis that particular ecological traits underlies species-specific population structure are rare. Here, we used a comparative approach on eight bird species, co-occurring across the same fragmented landscape. For each species, we quantified relative levels of forest specialization and genetic differentiation among populations. To test the link between forest specialization and susceptibility to forest fragmentation, we assessed species responses to fragmentation by comparing levels of genetic differentiation between continuous and fragmented forest landscapes. Our results revealed a significant and substantial population structure at a very small spatial scale for mobile organisms such as birds. More importantly, we found that specialist species are more affected by forest fragmentation than generalist ones. Finally, our results suggest that even a simple habitat specialization index can be a satisfying predictor of genetic and demographic consequences of habitat fragmentation, providing a reliable practical and quantitative tool for conservation biology. PMID:27314987

  12. Ecological specialisation in habitat selection within a macropodid herbivore guild.

    PubMed

    Garnick, Sarah; Di Stefano, Julian; Elgar, Mark A; Coulson, Graeme

    2016-03-01

    Specialist species show stronger resource selection, narrower niches and lower niche overlap than generalist species. We examined ecological specialisation with respect to habitat selection in a macropodid community comprising the western grey kangaroo Macropus fuliginosus, red-necked wallaby M. rufogriseus and swamp wallaby Wallabia bicolor in the Grampians National Park, Victoria, Australia. We used radio tracking to quantify habitat selection. We predicted that because the fitness benefits of generalisation and specialisation differ, there would be a mix of generalised and specialised species in our community. As all three macropodid species show marked sexual dimorphism, we also expected that they would show sex-based specialisation. Finally, because many large herbivores select different habitats for foraging and resting, we predicted that our species would specialise on a subset of their overall selected habitat based on activity period (diurnal or nocturnal). All three species specialised on the available resources to some degree. Western grey kangaroos were specialists, at least during the active period. Niche data for the two wallaby species were harder to interpret so we could not determine their degree of specialisation. Within species, we found no evidence of sex-based specialisation. However, we found clear evidence of specialisation by activity period in western grey kangaroos and red-necked wallabies, but not in swamp wallabies. The strength of behavioural decisions made during the active period in influencing specialisation points to the likelihood that bottom-up processes regulate this community. PMID:26621691

  13. Habitat use by giant panda in relation to man-made forest in Wanglang Nature Reserve of China.

    PubMed

    Kang, Dongwei; Wang, Xiaorong; Yang, Hongwei; Duan, Lijuan; Li, Junqing

    2014-12-01

    To evaluate the effectiveness of human restoration in species conservation, in this study, we undertook a field survey of giant panda (Ailuropoda melanoleuca) habitat and man-made forest habitat in Wanglang Nature Reserve of China. Our results revealed that giant panda did not use the man-made forest in this area so far, and that there were significant differences between the giant panda habitat and the man-made forest habitat. Compared with giant panda habitat, the man-made forest habitat was characterized by lower shrub coverage, thinner trees and lower bamboo density. To improve the effectiveness of human restoration, the habitat requirement of giant panda should be fully consider in the whole process of habitat restoration. PMID:25012204

  14. Conservation planning and monitoring avian habitat

    USGS Publications Warehouse

    Twedt, D.J.; Loesch, C.R.

    2000-01-01

    Migratory bird conservation plans should not only develop population goals, they also should establish attainable objectives for optimizing avian habitats. Meeting population goals is of paramount importance, but progress toward established habitat objectives can generally be monitored more easily than can progress toward population goals. Additionally, local or regional habitat objectives can be attained regardless of perturbations to avian populations that occur outside the geographic area covered by conservation plans. Assessments of current avian habitats, obtained from remotely sensed data, and the historical distribution of habitats should be used in establishing habitat objectives. Habitat planning and monitoring are best conducted using a geographic information system. Habitat objectives are assigned to three categories: maintaining existing habitat, restoring habitat, and creating new or alternative habitat. Progress toward meeting habitat objectives can be monitored through geographic information systems by incorporating georeferenced information on public lands, private lands under conservation easements, corporate lands under prescribed management, habitat restoration areas, and private lands under alternative management to enhance wildlife values. We recommend that the area and distribution of habitats within the area covered by conservation plans be reassessed from remotely sensed imagery at intervals appropriate to detect predicted habitat changes.

  15. The impacts of mobile fishing gear on seafloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish populations

    USGS Publications Warehouse

    Auster, Peter J.; Malatesta, Richard J.; Langton, Richard W.; Watting, Les; Valentine, Page C.; Donaldson, Carol Lee S.; Langton, Elizabeth W.; Shepard, Andrew N.; Babb, War G.

    1997-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was imparted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and‐ sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create.structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat‐management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  16. QUANTIFYING ULTRAVIOLET RADIATION DOSE RELATIVE TO WETLAND HABITAT VARIABLES FOR THE ASSESSMENT OF RISK TO AMPHIBIANS

    EPA Science Inventory

    Ultraviolet B radiation (UV-B) has increased globally over the last several decades due to reduction of stratospheric ozone. UV-B may also increase when climate change alters cloud cover, rainfall, and distributions of vegetation. In aquatic systems, these factors can also intera...

  17. Quantifying local traffic contributions to NO2 and NH3 concentrations in natural habitats.

    PubMed

    Gadsdon, Sally R; Power, Sally A

    2009-10-01

    NO(2) and NH(3) concentrations were measured across a Special Area for Conservation in southern England, at varying distances from the local road network. Exceedances of the critical levels for these pollutants were recorded at nearly all roadside locations, extending up to 20 m away from roads at some sites. Further, paired measurements of NH(3) and NO(2) concentrations revealed differences between ground and tree canopy levels. At "background" sites, away from the direct influence of roads, concentrations were higher within tree canopies than at ground level; the reverse pattern was, however, seen at roadside locations. Calculations of pollutant deposition rates showed that nitrogen inputs are dominated by NH(3) at roadside sites. This study demonstrates that local traffic emissions contribute substantially to the exceedance of critical levels and critical loads, and suggests that on-site monitoring is needed for sites of nature conservation value which are in close proximity to local transport routes. PMID:19427723

  18. Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses

    PubMed Central

    Smith, M. Alex; Eveleigh, Eldon S.; McCann, Kevin S.; Merilo, Mark T.; McCarthy, Peter C.; Van Rooyen, Kathleen I.

    2011-01-01

    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana – SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD) – the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the “bird feeder effect”) and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future

  19. PARAMETERS FOR QUANTIFYING BEAM HALO

    SciTech Connect

    C.K. ALLEN; T.P. WANGLER

    2001-06-01

    Two different parameters for the quantitative description of beam halo are introduced, both based on moments of the particle distribution. One parameter is a measure of spatial halo formation and has been defined previously by Wangler and Crandall [3], termed the profile parameter. The second parameter relies on kinematic invariants to quantify halo formation in phase space; we call it the halo parameter. The profile parameter can be computed from experimental beam profile data. The halo parameter provides a theoretically more complete description of halo in phase space, but is difficult to obtain experimentally.

  20. Camouflage and individual variation in shore crabs (Carcinus maenas) from different habitats.

    PubMed

    Stevens, Martin; Lown, Alice E; Wood, Louisa E

    2014-01-01

    Camouflage is widespread throughout the natural world and conceals animals from predators in a vast range of habitats. Because successful camouflage usually involves matching aspects of the background environment, species and populations should evolve appearances tuned to their local habitat, termed phenotype-environment associations. However, although this has been studied in various species, little work has objectively quantified the appearances of camouflaged animals from different habitats, or related this to factors such as ontogeny and individual variation. Here, we tested for phenotype-environment associations in the common shore crab (Carcinus maenas), a species highly variable in appearance and found in a wide range of habitats. We used field surveys and digital image analysis of the colors and patterns of crabs found in four locations around Cornwall in the UK to quantify how individuals vary with habitat (predominantly rockpool, mussel bed, and mudflat). We find that individuals from sites comprising different backgrounds show substantial differences in several aspects of color and pattern, and that this is also dependent on life stage (adult or juvenile). Furthermore, the level of individual variation is dependent on site and life stage, with juvenile crabs often more variable than adults, and individuals from more homogenous habitats less diverse. Ours is the most comprehensive study to date exploring phenotype-environment associations for camouflage and individual variation in a species, and we discuss the implications of our results in terms of the mechanisms and selection pressures that may drive this. PMID:25551233

  1. Camouflage and Individual Variation in Shore Crabs (Carcinus maenas) from Different Habitats

    PubMed Central

    Stevens, Martin; Lown, Alice E.; Wood, Louisa E.

    2014-01-01

    Camouflage is widespread throughout the natural world and conceals animals from predators in a vast range of habitats. Because successful camouflage usually involves matching aspects of the background environment, species and populations should evolve appearances tuned to their local habitat, termed phenotype-environment associations. However, although this has been studied in various species, little work has objectively quantified the appearances of camouflaged animals from different habitats, or related this to factors such as ontogeny and individual variation. Here, we tested for phenotype-environment associations in the common shore crab (Carcinus maenas), a species highly variable in appearance and found in a wide range of habitats. We used field surveys and digital image analysis of the colors and patterns of crabs found in four locations around Cornwall in the UK to quantify how individuals vary with habitat (predominantly rockpool, mussel bed, and mudflat). We find that individuals from sites comprising different backgrounds show substantial differences in several aspects of color and pattern, and that this is also dependent on life stage (adult or juvenile). Furthermore, the level of individual variation is dependent on site and life stage, with juvenile crabs often more variable than adults, and individuals from more homogenous habitats less diverse. Ours is the most comprehensive study to date exploring phenotype-environment associations for camouflage and individual variation in a species, and we discuss the implications of our results in terms of the mechanisms and selection pressures that may drive this. PMID:25551233

  2. Impacts of forest herbicides on wildlife: Toxicity and habitat alteration

    USGS Publications Warehouse

    Morrison, M.L.; Meslow, E.C.

    1983-01-01

    This paper begins with a review of both laboratory and field studies on tbe possible direct toxic effects of herbicides on terrestrial vertebrates, primarily birds and mammals. Alteration of the palatability of forage and changes in reproductive success are also discussed. Emphasis is placed on the use of herbicides in forestry; studies dealing with agricultural systems are referenced where appropriate. The indirect effects of herbicides on wildlife-habitat are then conceptualized and quantified using data from a 3-year study on effects of phenoxy and glyphosate herbicides on bird and small mammal communities in western Oregon. Data on density and habitat use are presented and compared with data available from other geographic regions.

  3. Assessment of chevron dikes for the enhancement of physical-aquatic habitat within the Middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Remo, J. W.; Pinter, N.

    2012-12-01

    Along the Middle Mississippi River (MMR), rehabilitation of aquatic habitat is being undertaken using river-training structures such as the blunt-nose chevron dike. Chevron dikes were initially designed to concentrate flow and thus facilitate river navigation, but this new river-training structure is now justified, in part, as a tool for creating aquatic habitat and promoting habitat heterogeneity. The ability of chevrons to create and diversify physical-aquatic habitat has not been verified. In this study, we used 2-D hydrodynamic modeling and reach-scale habitat metrics to assess changes in physical habitat and habitat heterogeneity for pre-chevron and post-chevron along a 2- km reach of the Mississippi River at St. Louis, MO. A historic reference condition (circa 1890) was also modeled to compare physical habitat in a less engineered river channel versus the new physical-habitat patches created by chevron-dike enhancement. This modeling approach quantified changes in habitat availability and diversity among selected reference conditions for a wide range of in-channel flows. Depth-velocity habitat classes were used for assessment of change in physical-habitat patches, and spatial statistical tools were employed to evaluate the reach-scale habitat patch diversity. Modeling of post-chevron channel conditions revealed increases in deep to very deep (>3.0 m) areas of slow moving (<0.6 m/s) water downstream of these structures under emergent flow conditions (≤ 1.5 x mean annual flow[MAF]) relative to pre-construction conditions. Chevron construction increased potential over-wintering habitat (deep [>3.0 m], low velocity [<0.6 m/s]) by up to 7.6 ha. The addition of the chevrons to the river channel also created some (0.8-3.8 ha) shallow-water habitat (0-1.5 m depth with a 0-0.6 m/s velocity) for flows ≤2.0 x MAF and contributed to an 8-35% increase in physical-habitat diversity compared to pre-chevron channel conditions. Comparison of the historic reference

  4. Lunar Habitat Airlock/Suitlock

    NASA Technical Reports Server (NTRS)

    Griffin, Brand Norman

    2008-01-01

    Airlocks for lunar Extravehicular Activity (EVA) will be significantly different than previous designs. Until now, airlocks operated infrequently and only in the "clean" weightless environment, but lunar airlocks are planned to be used much more often (every other day) in a dusty, gravity environment. Concepts for airlocks were analyzed by the NASA, JSC Habitability Focus Element during recent lunar outpost studies. Three airlock types were identified; an Airlock (AL) or independent pressure vessel with one hatch to the outside and the other to the Habitat. A Suitlock (SL) which shares a pressure bulkhead with the Habitat allowing rear-entry suits to remain on the dusty side while the crew enters/exits the Habitat. The third option is the Suitport (SP) which offers direct access from the habitable volume into an externally mounted suit. The SP concept was not compared, however between the AL and SL, the AL was favored.

  5. Habitat Suitability Index Models and Instream Flow Suitability Curves: White Bass

    USGS Publications Warehouse

    Hamilton, Karen; Nelson, Patrick C.

    1984-01-01

    Habitat characteristics important to white bass (Morone chrysops) are reviewed in this report using two techniques developed by the U.S. Fish and Wildlife Service, the Habitat Evaluation Procedures (HEP) and the Instream Flow Incremental Methodology (IFIM). The Suitability Index (SI) curves and graphs and Habitat Suitability Index (HSI) models developed in this report are based primarily on a synthesis of information obtained from a review of literature concerning the habitat requirements of the species. A discussion of IFIM and white bass SI curves available for use with IFIM is included.

  6. Channel dynamics and habitat complexity in a meandering, gravel-bed river

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Legleiter, C. J.; Pecquerie, L.; Dunne, T.

    2009-12-01

    River channel dynamics play an important role in creating and maintaining diverse habitat conditions for multiple life stages of aquatic organisms. As a result, many river restoration projects seek to re-establish ecosystems in which an enhanced degree of habitat complexity is sustained through natural fluvial processes of flow, sediment transport, and channel change. Few field cases have effectively quantified the evolution of channel morphology and habitat complexity in restored rivers, however, and the outcomes of restoration actions remain difficult to predict. Our objective was to quantify the extent to which morphology, flow complexity and salmonid spawning and rearing habitat develop from the simplified initial conditions commonly observed in re-configured meandering channels. Using a time-series of topographic data, we measured rates of morphologic change in a recently restored gravel-bed reach of the Merced River, California, USA. We constructed two-dimensional (2D) hydrodynamic models to quantify how the evolving morphology influenced hydraulic conditions, flow complexity and suitability for Chinook salmon spawning and rearing. Following two large flood events, point bar development led to order-of-magnitude increases in modeled flow complexity, as quantified via the metrics of kinetic energy gradient, vorticity and hydraulic strain. On a bend-averaged scale, morphologic changes produced up to a two-fold increase in flow circulation, indicating a direct linkage between geomorphic processes and the development of habitat complexity at both the local (1.0 m2 grid cell) and meander wavelength scale. Habitat modeling indicated that the availability of Chinook salmon spawning habitat has increased over time, whereas the majority of the reach provides low-medium quality rearing habitat for juvenile salmonids, primarily due to a lack of low velocity refuge zones. These results demonstrate the ability of geomorphic processes to increase flow complexity and

  7. Towards quantifying fuzzy stream power

    NASA Astrophysics Data System (ADS)

    Schwanghart, W.; Korup, O.

    2012-04-01

    Deterministic flow direction algorithms such as the D8 have wide application in numerical models of landscape evolution. These simple algorithms play a central role in quantifying drainage basin area, and hence approximating—via empirically derived relationships from regional flood frequency and hydraulic geometry—stream power or fluvial erosion potential. Here we explore how alternative algorithms that employ a probabilistic choice of flow direction affect quantitative estimates of stream power. We test a probabilistic multi-flow direction algorithm within the MATLAB TopoToolbox in model and real landscapes of low topographic relief and minute gradients, where potentially fuzzy drainage divides are dictated by, among others, alluvial fan dynamics, playa infill, and groundwater fluxes and seepage. We employ a simplistic numerical landscape evolution model that simulates fluvial incision and hillslope diffusion and explicitly models the existence and capture of endorheic basins that prevail in (semi-)arid, low-relief landscapes. We discuss how using this probabilistic multi-flow direction algorithm helps represent and quantify uncertainty about spatio-temporal drainage divide locations and how this bears on quantitative estimates of downstream stream power and fluvial erosion potential as well as their temporal dynamics.

  8. Quantifying torso deformity in scoliosis

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter O.; Kumar, Anish; Durdle, Nelson G.; Raso, V. James

    2006-03-01

    Scoliosis affects the alignment of the spine and the shape of the torso. Most scoliosis patients and their families are more concerned about the effect of scoliosis on the torso than its effect on the spine. There is a need to develop robust techniques for quantifying torso deformity based on full torso scans. In this paper, deformation indices obtained from orthogonal maps of full torso scans are used to quantify torso deformity in scoliosis. 'Orthogonal maps' are obtained by applying orthogonal transforms to 3D surface maps. (An 'orthogonal transform' maps a cylindrical coordinate system to a Cartesian coordinate system.) The technique was tested on 361 deformed computer models of the human torso and on 22 scans of volunteers (8 normal and 14 scoliosis). Deformation indices from the orthogonal maps correctly classified up to 95% of the volunteers with a specificity of 1.00 and a sensitivity of 0.91. In addition to classifying scoliosis, the system gives a visual representation of the entire torso in one view and is viable for use in a clinical environment for managing scoliosis.

  9. Quantifying the Arctic methane budget

    NASA Astrophysics Data System (ADS)

    Warwick, Nicola; Cain, Michelle; Pyle, John

    2014-05-01

    The Arctic is a major source of atmospheric methane, containing climate-sensitive emissions from natural wetlands and gas hydrates, as well as the fossil fuel industry. Both wetland and gas hydrate methane emissions from the Arctic may increase with increasing temperature, resulting in a positive feedback leading to enhancement of climate warming. It is important that these poorly-constrained sources are quantified by location and strength and their vulnerability to change be assessed. The MAMM project (Methane and other greenhouse gases in the Arctic: Measurements, process studies and Modelling') addresses these issues as part of the UK NERC Arctic Programme. A global chemistry transport model has been used, along with MAMM and other long term observations, to assess our understanding of the different source and sink terms in the Arctic methane budget. Simulations including methane coloured by source and latitude are used to distinguish between Arctic seasonal variability arising from transport and that arising from changes in Arctic sources and sinks. Methane isotopologue tracers provide a further constraint on modelled methane variability, distinguishing between isotopically light and heavy sources (e.g. wetlands and gas fields). We focus on quantifying the magnitude and seasonal variability of Arctic wetland emissions.

  10. Lake shore and littoral habitat structure: a field survey method and its precision

    EPA Science Inventory

    Until recently, lake physical habitat assessment has been and underemployed tool for assessing lake and reservoir ecological condition. Herein, we outline and evaluate a rapid (2 persons: 1.5-3.5 h) field sampling and analytical approach for quantifying near-shore physical habit...

  11. RELATIONSHIPS BETWEEN HABITAT ARRANGEMENT AND JUVENILE WINTER FLOUNDER DENSITY IN NARRAGANSETT BAY

    EPA Science Inventory

    We used aerial photography in conjunction with a 1-m beam trawl attached to a videocamera with GPS overwrite and a YSI water quality logger to quantify fish densities and characterize habitats in Narragansett Bay and in Rhode Island's coastal lagoons. We compared fish counts fro...

  12. USE OF VIDEO TO ACCESS JUVENILE WINTER FLOUNDER DENSITIES AND HABITATS

    EPA Science Inventory

    We used a digital video camera mounted to a 1-m beam trawl together with an attached continuous recording YSI sonde and a GPS unit to quantify juvenile winter flounder (Pseudopleuronectes americanus) densities and fish habitat in Narragansett Bay, RI. The YSI sonde measured te...

  13. 77 FR 12543 - Endangered and Threatened Wildlife and Plants; Revised Critical Habitat for Riverside Fairy Shrimp

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... FR 31686), our DEA of the proposed revised designation, and the amended required determinations... critical habitat rule (76 FR 31686; June 1, 2011); (b) Areas containing the physical and biological... revise critical habitat (76 FR 31686) for further discussion. (9) Any probable economic,...

  14. 76 FR 9871 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Nine Bexar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ..., 2000 (65 FR 81419), the proposed critical habitat designation published August 27, 2002 (67 FR 55063), and the final critical habitat designation published April 8, 2003 (68 FR 17155). The nine species for... invertebrates require stable temperatures and constant, high humidity (Barr 1968, p. 47; Mitchell 1971b, p....

  15. Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish

    NASA Astrophysics Data System (ADS)

    Tobler, Michael; Schlupp, Ingo; García de León, Francisco J.; Glaubrecht, Matthias; Plath, Martin

    2007-05-01

    Living in extreme habitats typically requires costly adaptations of any organism tolerating these conditions, but very little is known about potential benefits that trade off these costs. We suggest that extreme habitats may function as refuge from parasite infections, since parasites can become locally extinct either directly, through selection by an extreme environmental parameter on free-living parasite stages, or indirectly, through selection on other host species involved in its life cycle. We tested this hypothesis in a small freshwater fish, the Atlantic molly ( Poecilia mexicana) that inhabits normal freshwaters as well as extreme habitats containing high concentrations of toxic hydrogen sulfide. Populations from such extreme habitats are significantly less parasitized by the trematode Uvulifer sp. than a population from a non-sulfidic habitat. We suggest that reduced parasite prevalence may be a benefit of living in sulfidic habitats.

  16. Seasonal variation in microhabitat of salamanders: environmental variation or shift of habitat selection?

    PubMed

    Lunghi, Enrico; Manenti, Raoul; Ficetola, Gentile Francesco

    2015-01-01

    Relationships between species and their habitats are not always constant. Different processes may determine changes in species-habitat association: individuals may prefer different habitat typologies in different periods, or they may be forced to occupy a different habitat in order to follow the changing environment. The aim of our study was to assess whether cave salamanders change their habitat association pattern through the year, and to test whether such changes are determined by environmental changes or by changes in preferences. We monitored multiple caves in Central Italy through one year, and monthly measured biotic and abiotic features of microhabitat and recorded Italian cave salamanders distribution. We used mixed models and niche similarity tests to assess whether species-habitat relationships remain constant through the year. Microhabitat showed strong seasonal variation, with the highest variability in the superficial sectors. Salamanders were associated to relatively cold and humid sectors in summer, but not during winter. Such apparent shift in habitat preferences mostly occurred because the environmental gradient changed through the year, while individuals generally selected similar conditions. Nevertheless, juveniles were more tolerant to dry sectors during late winter, when food demand was highest. This suggests that tolerance for suboptimal abiotic conditions may change through time, depending on the required resources. Differences in habitat use are jointly determined by environmental variation through time, and by changes in the preferred habitat. The trade-offs between tolerance and resources requirement are major determinant of such variation. PMID:26290788

  17. EXAMINING ASSOCIATIONS BETWEEN FISH ASSEMBLAGES AND PHYSICAL HABITAT

    EPA Science Inventory

    Assessing lotic fish-habitat interactions from regional survey data requires that we consider a comprehensive representation, at the appropriate scale, of the likely controls on fish assemblages. At the scale of stream and river reaches, the important dimensions of physical habi...

  18. HABITAT ASSESSMENT MODELS FOR BAY SCALLOP, ARGOPECTEN IRRADIANS

    EPA Science Inventory

    Bay scallops (Argopecten irradians) inhabit shallow subtidal habitats along the Atlantic coast of the United States and require settlement substrates, such as submerged aquatic vegetation (SAV), for their early juvenile stages. The short lifespan of bay scallops (1-2 yr) coupled...

  19. Habitat Suitability Index Models: Red King Crab

    USGS Publications Warehouse

    Jewett, Stephen C.; Onuf, Christopher P.

    1988-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for evaluating habitat of different life stages of red king crab (Paralithodes camtschatica). A model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) and 1.0 (optimum habitat) in Alaskan coastal waters, especially in the Gulf of Alaska and the southeastern Bering Sea. HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  20. Habitat Suitability Index Models: Laughing Gull

    USGS Publications Warehouse

    Zale, Alexander V.; Mulholland, Rosemarie

    1985-01-01

    A review and synthesis of existing information were used to develop a habitat model for laughing gull (Larus atricilla). The model is scaled to produce an index of habitat suitability between 0 (unsuitable habitat) and 1.0 (optimally suitable habitat) for areas along the Gulf of Mexico coast. Habitat suitability indices are designed for use with the Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service. Guidelines for application of the model and techniques for measuring model variables are described.

  1. Habitat Suitability Index Models: Lesser Scaup (Wintering)

    USGS Publications Warehouse

    Mulholland, Rosemarie

    1985-01-01

    A review and synthesis of existing information were used to develop a model for evaluating wintering habitat quality for the lesser scaup (Aythya affinis). The model is scaled to produce an index of habitat suitability between 0.0 (unsuitable habitat) to 1.0 (optimal habitat) for Southern Atlantic and Gulf of Mexico coastal areas of the continental United States. Habitat suitability indices are designed for use with the Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service Guidelines for model application and techniques for measuring model variables are provided.

  2. Predicting minimum habitat characteristics for the Indiana bat in the Champlain Valley

    USGS Publications Warehouse

    Watrous, K.S.; Donovan, T.M.; Mickey, R.M.; Darling, S.R.; Hicks, A.C.; Von Oettingen, S. L.

    2006-01-01

    Predicting potential habitat across a landscape for rare species is extremely challenging. However, partitioned Mahalanobis D2 methods avoid pitfalls commonly encountered when surveying rare species by using data collected only at known species locations. Minimum habitat requirements are then determined by examining a principal components analysis to find consistent habitat characteristics across known locations. We used partitioned D 2 methods to examine minimum habitat requirements of Indiana bats (Myotis sodalis) in the Champlain Valley of Vermont and New York, USA, across 7 spatial scales and map potential habitat for the species throughout the same area. We radiotracked 24 female Indiana bats to their roost trees and across their nighttime foraging areas to collect habitat characteristics at 7 spatial scales: 1) roost trees, 2) 0.1-ha circular plots surrounding the roost trees, 3) home ranges, and 4-7) 0.5-km, 1-km, 2-km, and 3-km buffers surrounding the roost tree. Roost trees (n = 50) typically were tall, dead, large-diameter trees with exfoliating bark, located at low elevations and close to water. Trees surrounding roosts typically were smaller in diameter and shorter in height, but they had greater soundness than the roost trees. We documented 14 home ranges in areas of diverse, patchy land cover types that were close to water with east-facing aspects. Across all landscape extents, area of forest within roost-tree buffers and the aspect across those buffers were the most consistent features. Predictive maps indicated that suitable habitat ranged from 4.7-8.1% of the area examined within the Champlain Valley. These habitat models further understanding of Indiana bat summer habitat by indicating minimum habitat characteristics at multiple scales and can be used to aid management decisions by highlighting potential habitat. Nonetheless, information on juvenile production and recruitment is lacking; therefore, assessments of Indiana bat habitat quality in the

  3. Quantifying Aggressive Behavior in Zebrafish.

    PubMed

    Teles, Magda C; Oliveira, Rui F

    2016-01-01

    Aggression is a complex behavior that influences social relationships and can be seen as adaptive or maladaptive depending on the context and intensity of expression. A model organism suitable for genetic dissection of the underlying neural mechanisms of aggressive behavior is still needed. Zebrafish has already proven to be a powerful vertebrate model organism for the study of normal and pathological brain function. Despite the fact that zebrafish is a gregarious species that forms shoals, when allowed to interact in pairs, both males and females express aggressive behavior and establish dominance hierarchies. Here, we describe two protocols that can be used to quantify aggressive behavior in zebrafish, using two different paradigms: (1) staged fights between real opponents and (2) mirror-elicited fights. We also discuss the methodology for the behavior analysis, the expected results for both paradigms, and the advantages and disadvantages of each paradigm in face of the specific goals of the study. PMID:27464816

  4. Quantifying entanglement with witness operators

    SciTech Connect

    Brandao, Fernando G.S.L.

    2005-08-15

    We present a unifying approach to the quantification of entanglement based on entanglement witnesses, which includes several already established entanglement measures such as the negativity, the concurrence, and the robustness of entanglement. We then introduce an infinite family of new entanglement quantifiers, having as its limits the best separable approximation measure and the generalized robustness. Gaussian states, states with symmetry, states constrained to super-selection rules, and states composed of indistinguishable particles are studied under the view of the witnessed entanglement. We derive new bounds to the fidelity of teleportation d{sub min}, for the distillable entanglement E{sub D} and for the entanglement of formation. A particular measure, the PPT-generalized robustness, stands out due to its easy calculability and provides sharper bounds to d{sub min} and E{sub D} than the negativity in most of the states. We illustrate our approach studying thermodynamical properties of entanglement in the Heisenberg XXX and dimerized models.

  5. Predicted Deep-Sea Coral Habitat Suitability for the U.S. West Coast

    PubMed Central

    Guinotte, John M.; Davies, Andrew J.

    2014-01-01

    Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled. PMID:24759613

  6. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities

    PubMed Central

    He, Chunyang

    2016-01-01

    Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF) during urbanization. The objectives of this study were two-fold: 1) to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2) to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800–2000) of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic—linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the “space-for-time” approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization. PMID:27124180

  7. Habitat Evaluation Procedures (HEP) Report; Upper Trimble Project, Technical Report 2004-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Upper Trimble property, an acquisition completed by the Kalispel Tribe of Indians in March 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Upper Trimble Project provides a total of 250.67 Habitat Units (HUs) for the species evaluated. Wet meadow provides 136.92 HUs for mallard, muskrat, and Canada goose. Mixed forest habitat provides 111.88 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub vegetation provides 1.87 HUs for yellow warbler, and white-tailed deer. The objective of using HEP at the Upper Trimble Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  8. Assessing habitat selection in Spring by male American Woodcock in Maine with a geographic information system

    USGS Publications Warehouse

    Sprankle, K.E.; Sepik, G.F.; McAuley, D.G.; Longcore, J.R.

    2000-01-01

    Geographic information system (GIS) technology was used to identify habitats available to and used by male American woodcock (Scolopax minor) equipped with radio transmitters--54 in 1987, 51 in 1988, 46 in 1989 at Moosehorn National Wildlife Refuge, Maine. Woodcock were monitored from time of capture (25 March-15 April) to 15 June each year. To determine habitat selection by male woodcock, the following habitat characteristics were measured: land cover, age and stocking density of the forest overstory, soil drainage and texture, aspect, and percent slope. Habitat selection was examined as affected by the covariates weather and age-class of woodcock, and among years for diurnal and crepuscular periods of the breeding period. Multivariate techniques that compare use and availability of habitats were not available, so a statistical model was developed to rate importance of multiple habitat characteristics selected by woodcock. The most critical period for woodcock in terms of survival was from arrival to: mid-April. Second-year and after-second-year woodcock did not select different (P > 0.05) habitat types, but they did select different types among years and within breeding intervals (P < 0.05). In years when weather was moderate, woodcock selected young, dense stands of speckled alder (Alnus rugosa) and hardwoods, interspersed with forest openings. Suitable habitat can be maintained by creating an uneven-aged forest managed in even-aged blocks composed of several hardwood species. Managers can now quantify suitable woodcock habitat in a GIS and plan large-scale forest-harvesting strategies using data on several habitat characteristics (e.g., land cover, stand age, stocking density, soil drainage and texture, and aspect).

  9. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities.

    PubMed

    Liu, Zhifeng; He, Chunyang; Wu, Jianguo

    2016-01-01

    Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF) during urbanization. The objectives of this study were two-fold: 1) to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2) to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800-2000) of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic-linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the "space-for-time" approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization. PMID:27124180

  10. Habitat Evaluation Procedures (HEP) Report; Tacoma Creek South Project, Technical Report 2003-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Tacoma Creek South property, an acquisition completed by the Kalispel Tribe of Indians in June 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Tacoma Creek South Project provides a total of 190.79 Habitat Units (HUs) for the species evaluated. Emergent wetlands provide 20.51 HUs for Canada goose, mallard, and muskrat. Grassland provides 1.65 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 11.76 HUs for mallard, yellow warbler, and white-tailed deer. Conifer forest habitat provides 139.92 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Deciduous forest also provides 19.15 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the Tacoma Creek South Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  11. Evaluating the Influence of Geomorphic Conditions on Instream Fish Habitat Using Hydraulic Modeling and Geostatistical Analyses

    NASA Astrophysics Data System (ADS)

    Clark, J. S.; Rizzo, D. M.; Hession, W. C.; Watzin, M. C.; Laible, J. P.

    2006-05-01

    A two-dimensional hydrodynamic model (River2D) was utilized to evaluate the relationship between geomorphic conditions (as estimated using an existing rapid assessment protocol) and instream habitat quality in small Vermont streams. Six stream reaches ranging in geomorphic condition from good to poor according to the protocols were utilized for this study. We conducted detailed topographic surveys, quantified bed substrate, and measured velocity and discharge values during baseflow conditions. The reach models were calibrated with realistic roughness values based on field observations and pebble counts. After calibration, the weighted usable area (WUA) of habitat was calculated for each stream at three flows (7Q 10, median, and bankfull) using modeled parameters and habitat suitability curves for specific fish species and life stage. Brown trout (Salmo trutta), white sucker (Catostomus commersoni), and common shiner (Notropis cornutus) habitats were predicted using habitat parameters of velocity, depth, and channel substrate type for adult, juvenile, and fry stages. The predictions of reach-averaged WUA show a negative correlation to the geomorphic condition scores, indicating that the often-used rapid protocols, may not directly relate to habitat conditions at the reach spatial scale. However, the areas of high WUA are distributed in a patchy nature throughout the stream. This fluctuation of physical habitat conditions may be more important to classifying habitat than a single reach-averaged WUA score. The spatial distribution of habitat variables is not captured using either the reach-averaged WUA or geomorphic assessment scores to classify streams. Spatial analyses will be used to further evaluate the patchy nature of WUA distributions, and actual data on species distributions in the study streams will be compared to modeled habitat parameters and their spatial patterns.

  12. SHARC: Space Habitat, Assembly and Repair Center

    NASA Technical Reports Server (NTRS)

    Colangelo, Todd; Hoetger, Debora; Kuo, Addison; Lo, Michael; Marcus, Leland; Tran, Philip; Tutt, Chris; Wassmuth, Chad; Wildgrube, Gregory

    1992-01-01

    Integrated Space Systems (ISS) has taken on the task of designing a Space Habitat, Assembly and Repair Center (SHARC) in Low Earth Orbit to meet the future needs of the space program. Our goal is to meet the general requirements given by the 1991/1992 AIAA/LORAL Team Space Design competition with an emphasis on minimizing the costs of such a design. A baseline structural configuration along with preliminary designs of the major subsystems was created. Our initial mission requirements, which were set by AIAA, were that the facility be able to: support simultaneous assembly of three major vehicles; conduct assembly operations and minimal extra vehicular activity (EVA); maintain orbit indefinitely; and assemble components 30 feet long with a 10 foot diameter in a shirtsleeve environment.

  13. Fatty acids in anopheline mosquito larvae and their habitats.

    PubMed

    Komínková, Dana; Rejmánková, Eliška; Grieco, John; Achee, Nicole

    2012-12-01

    Larvae of the three important Central American malaria vectors, Anopheles albimanus, An. vestitipennis, and An. darlingi, are found in distinctly different habitats broadly defined by hydrology and aquatic vegetation, but little is known about the actual food quality and quantity of these habitats. Polyunsaturated fatty acids (PUFA) are of special interest, because mosquitoes require 20:5ω3 (EPA), 20:4ω6 (ARA), and 22:6ω3 (DHA) and without an adequate supply of these PUFAs they are not able to complete their life cycle. We collected samples of larvae and their corresponding habitats and analyzed their fatty acid (FA) composition to reveal if there are any species-specific and habitat-specific differences in FA composition, and if habitat FA differences can be linked to differences in the mosquito FA pattern and, ultimately, mosquito performance. We also assessed how FA of wild larvae compare to the laboratory-reared larvae. Habitats were generally low in essential PUFAs and there were no significant differences among the FA composition of habitat samples. There were significant differences in FA composition of larvae. An. darlingi contained significantly higher amounts of FA, specifically a higher content of ω-6 PUFA, represented mainly by the linoleic acid (18:2ω-6). Large differences were found between field-collected and laboratory-reared An. vestitipennis larvae, especially in the content of PUFAs. The laboratory-reared larvae contained significantly more of the total FA, ω3 PUFA, and MUFA. The laboratory-reared larvae contained three to five times more essential PUFAs, EPA, and DHA. However, there were no differences in the total dry weight of the 4(th) instar larvae between the wild vs laboratory-reared larvae. Total FA in both larvae and habitats of An. albimanus and An. darlingi were positively correlated with the concentration of particulate organic carbon and nitrogen (POC, PON) in their respective habitats, but no such correlation was found for An

  14. Constellation Architecture Team-Lunar: Lunar Habitat Concepts

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Kennedy, Kriss J.

    2008-01-01

    This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (TS1) investigated sustaining a crew of four for six months with full outpost capability and the ability to perform long surface mission excursions using large mobility systems. Two basic habitat concepts of a hard metallic horizontal cylinder and a larger inflatable torus concept were investigated as options in response to the surface exploration architecture campaign analysis. Figure 1 and 2 depicts the notional outpost configurations for this trade set. Trade set two (TS2) investigated a mobile architecture approach with the campaign focused on early exploration using two small pressurized rovers and a mobile logistics support capability. This exploration concept will not be described in this paper. Trade set three (TS3) investigated delivery of a "core' habitation capability in support of an early outpost that would mature into the TS1 full outpost capability. Three core habitat concepts were defined for this campaign analysis. One with a four port core habitat, another with a 2 port

  15. A digital terrain model of bathymetry and shallow-zone bottom-substrate classification for Spednic Lake and estimates of lake-level-dependent habitat to support smallmouth bass persistence modeling

    USGS Publications Warehouse

    Dudley, Robert W.; Schalk, Charles W.; Stasulis, Nicholas W.; Trial, Joan G.

    2011-01-01

    In 2009, the U.S. Geological Survey entered into a cooperative agreement with the International Joint Commission, St. Croix River Board to do an analysis of historical smallmouth bass habitat as a function of lake level for Spednic Lake in an effort to quantify the effects, if any, of historical lake-level management and meteorological conditions (from 1970 to 2009) on smallmouth bass year-class failure. The analysis requires estimating habitat availability as a function of lake level during spawning periods from 1970 to 2009, which is documented in this report. Field work was done from October 19 to 23, and from November 2 to 10, 2009, to acquire acoustic bathymetric (depth) data and acoustic data indicating the character of the surficial lake-bottom sediments. Historical lake-level data during smallmouth bass spawning (May-June) were applied to the bathymetric and surficial-sediment type data sets to produce annual historic estimates of smallmouth-bass-spawning-habitat area. Results show that minimum lake level during the spawning period explained most of the variability (R2 = 0.89) in available spawning habitat for nearshore areas of shallow slope (less than 10 degrees) on the basis of linear correlation. The change in lake level during the spawning period explained most of the variability (R2 = 0.90) in available spawning habitat for areas of steeper slopes (10 to 40 degrees) on the basis of linear correlation. The next step in modeling historic smallmouth bass year-class persistence is to combine this analysis of the effects of lake-level management on habitat availability with meteorological conditions.

  16. Deep Space Habitat Concept of Operations for Transit Mission Phases

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.

  17. MAINE ATLANTIC SALMON HABITAT - GENERAL

    EPA Science Inventory

    ASDENN00 describes, at 1:24,000 scale, important Atlantic salmon habitat of the Dennys River in Maine. The coverage was developed from field surveys conducted on the Dennys River in Maine by staff of the Atlantic Salmon Authority and U.S. Fish and Wildlife Service. This survey wa...

  18. Microbial Habitat on Kilimanjaro's Glaciers

    NASA Astrophysics Data System (ADS)

    Ponce, A.; Beaty, S. M.; Lee, C.; Lee, C.; Noell, A. C.; Stam, C. N.; Connon, S. A.

    2011-03-01

    Kilimanjaro glaciers captured a history of microbial diversity and abundance of supraglacial habitats. We show that a majority of bacterial clones, as determined by bacterial 16S rRNA gene sequencing, are most closely related to those isolated from cold-water environments.

  19. Stimfit: quantifying electrophysiological data with Python

    PubMed Central

    Guzman, Segundo J.; Schlögl, Alois; Schmidt-Hieber, Christoph

    2013-01-01

    Intracellular electrophysiological recordings provide crucial insights into elementary neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting these signals is essential for a quantitative understanding of neuronal information processing, and requires both fast data visualization and ready access to complex analysis routines. To achieve this goal, we have developed Stimfit, a free software package for cellular neurophysiology with a Python scripting interface and a built-in Python shell. The program supports most standard file formats for cellular neurophysiology and other biomedical signals through the Biosig library. To quantify and interpret the activity of single neurons and communication between neurons, the program includes algorithms to characterize the kinetics of presynaptic action potentials and postsynaptic currents, estimate latencies between pre- and postsynaptic events, and detect spontaneously occurring events. We validate and benchmark these algorithms, give estimation errors, and provide sample use cases, showing that Stimfit represents an efficient, accessible and extensible way to accurately analyze and interpret neuronal signals. PMID:24600389

  20. Stress tolerance in plants via habitat-adapted symbiosis

    USGS Publications Warehouse

    Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S.

    2008-01-01

    We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.The ISME Journal (2008) 2, 404-416; doi:10.1038/ismej.2007.106; published online 7 February 2008. ?? 2008 International Society for Microbial Ecology All rights reserved.

  1. Coefficients of Productivity for Yellowstone's Grizzly Bear Habitat

    USGS Publications Warehouse

    Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy

    2004-01-01

    This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (<100 m) or far away from forest/nonforest edges, and areas inside or outside of ungulate winter ranges. Densities of bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.

  2. HDU Deep Space Habitat (DSH) Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project Deep Space Habitat (DSH) analog that will be field-tested during the 2011 Desert Research and Technologies Studies (D-RATS) field tests. The HDU project is a technology pull project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU Pressurized Excursion Module (PEM) that was field tested in the 2010 D-RATS, adding habitation functionality to the prototype unit. The 2010 configuration of the HDU-PEM consisted of a lunar surface laboratory module that was used to bring over 20 habitation-related technologies together in a single platform that could be tested as an advanced habitation analog in the context of mission architectures and surface operations. The 2011 HDU-DSH configuration will build upon the PEM work, and emphasize validity of crew operations (habitation and living, etc), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The HDU project consists of a multi-center team brought together in a skunkworks approach to quickly build and validate hardware in analog environments. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 analog field test will include Multi Mission Space Exploration Vehicles (MMSEV) and the DSH among other demonstration elements to be brought together in a mission architecture context. This paper will describe overall objectives, various habitat configurations, strategic plan, and technology integration as it pertains to the 2011 field tests.

  3. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam: Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1997-1998 Annual Report.

    SciTech Connect

    Ward, David L.

    1999-02-01

    The authors report on their progress from April 1997 through March 1998 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), National Marine Fisheries Service (NMFS; Report D), U.S. Fish and Wildlife Service (USFWS; Report E), and Columbia River Inter-Tribal Fish Commission (CRITFC; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of the work from April 1997 through March 1998 listed.

  4. Estimating functional connectivity of wildlife habitat and its relevance to ecological risk assessment

    USGS Publications Warehouse

    Johnson, A.R.; Allen, C.R.; Simpson, K.A.N.

    2004-01-01

    Habitat fragmentation is a major threat to the viability of wildlife populations and the maintenance of biodiversity. Fragmentation relates to the sub-division of habitat intq disjunct patches. Usually coincident with fragmentation per se is loss of habitat, a reduction in the size of the remnant patches, and increasing distance between patches. Natural and anthropogenic processes leading to habitat fragmentation occur at many spatial scales, and their impacts on wildlife depend on the scales at which species interact with the landscape. The concept of functional connectivity captures this organism-based view of the relative ease of movement or degree of exchange between physically disjunct habitat patches. Functional connectivity of a given habitat arrangement for a given wildlife species depends on details of the organism's life history and behavioral ecology, but, for broad categories of species, quantities such as home range size and dispersal distance scale allometrically with body mass. These relationships can be incorporated into spatial analyses of functional connectivity, which can be quantified by indices or displayed graphically in maps. We review indices and GIS-based approaches to estimating functional connectivity, presenting examples from the literature and our own work on mammalian distributions. Such analyses can be readily incorporated within an ecological risk framework. Estimates of functional connectivity may be useful in a screening-level assessment of the impact of habitat fragmentation relative to other stressors, and may be crucial in detailed population modeling and viability analysis.

  5. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  6. Patterns of avian nest predators and a brood parasite among restored riparian habitats in agricultural watersheds.

    PubMed

    Maul, Jonathan D; Smiley, Peter C; Cooper, Charles M

    2005-09-01

    In fragmented edge-dominated landscapes, nest predation and brood parasitism may reduce avian reproductive success and, ultimately, populations of some passerine species. In the fragmented agroecosystem of northwest Mississippi, placement of drop-pipe structures has been used as a restoration technique for abating gully erosion along stream banks. These actions have formed small herbaceous and woody habitat extensions into former agricultural lands. We quantified species relative abundances, species richness, and evenness of avian nest predators and a brood parasite within four categories of constructed habitat resulting from drop-pipe installation. Differences in the abundance of two nest predators, cotton mouse (Peromyscus gossypinus) and blue jay (Cyanocitta cristata), were observed among constructed habitats. However, relative abundances of other predators such as common grackle (Quiscalus quiscula), American crow (Corvus brachyrhynchos), and hispid cotton rat (Sigmodon hispidus), and the obligate brood parasite brown-headed cowbird (Molothrus ater) did not differ among four habitat categories. Although species richness, abundance, and evenness of potential nest predators were generally similar among the constructed habitats, predator species composition varied, suggesting that these habitats supported different predator communities. This difference is important because as each predator species is added to or deleted from the community, variation may occur in the framework of prey search methods, predator strategies, and potentially overall predation pressure. We suggest that land managers using drop-pipes as part of stream restoration projects allow for the development of the constructed habitat with the largest area and greatest vegetative structure. PMID:16160783

  7. Implications of scale-independent habitat specialization on persistence of a rare small mammal

    USGS Publications Warehouse

    Cleaver, Michael; Klinger, Robert C.; Anderson, Steven T.; Maier, Paul A.; Clark, Jonathan

    2015-01-01

    We assessed the habitat use patterns of the Amargosa vole Microtus californicus scirpensis , an endangered rodent endemic to wetland vegetation along a 3.5 km stretch of the Amargosa River in the Mojave Desert, USA. Our goals were to: (1) quantify the vole’s abundance, occupancy rates and habitat selection patterns along gradients of vegetation cover and spatial scale; (2) identify the processes that likely had the greatest influence on its habitat selection patterns. We trapped voles monthly in six 1 ha grids from January to May 2012 and measured habitat structure at subgrid (View the MathML source225m2) and trap (View the MathML source1m2) scales in winter and spring seasons. Regardless of scale, analyses of density, occupancy and vegetation structure consistently indicated that voles occurred in patches of bulrush (Schoenoplectus americanus ; Cyperaceae) where cover >50%. The majority of evidence indicates the vole's habitat selectivity is likely driven by bulrush providing protection from intense predation. However, a combination of selective habitat use and limited movement resulted in a high proportion of apparently suitable bulrush patches being unoccupied. This suggests the Amargosa vole's habitat selection behavior confers individual benefits but may not allow the overall population to persist in a changing environment.

  8. The dynamics of mountain rock pools - Are aquatic and terrestrial habitats alternative stable states?

    NASA Astrophysics Data System (ADS)

    Buschke, Falko T.; Esterhuyse, Surina; Kemp, Marthie E.; Seaman, Maitland T.; Brendonck, Luc; Vanschoenwinkel, Bram

    2013-02-01

    The theory of alternative stable states (ASS) proposes that ecosystems can exhibit multiple equilibria stabilised by positive feedback mechanisms. There are signs that terrestrial and aquatic habitats could exhibit ASS and we investigate this possibility in eroded basins on an isolated rock outcrop. The coverage of terrestrial and aquatic habitats on the Korannaberg Mountain in South Africa was quantified using GIS for three intervals between 1993 and 2011. Results confirmed that the proportional coverage of habitat states showed a consistent bimodal distribution over the study period, thereby supporting the ASS hypothesis. The depth of geological basins and the distance from the exposed cliff face were significantly associated with the proportion of aquatic habitat within the basins. These patterns were interpreted by hypothetical feedback mechanisms driven by basin inundation and wind erosion. Findings supported dual responses of habitat classes to basin parameters; a phenomenon often associated with ASS. Stability of aquatic and terrestrial habitats and the differential responses of these habitats to similar combinations of system parameters oppose the succession hypothesis and support the ASS hypothesis. These findings are consistent with unique diversity patterns demonstrated by previous studies and further justify the use of rock pools and vegetation patches as natural models in ecology and evolutionary biology research.

  9. Monitoring and mapping selected riparian habitat along the lower Snake River

    SciTech Connect

    Downs, J. L; Tiller, B. L; Witter, M.; Mazaika, R.

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  10. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  11. Quantifying the distribution and abundance of rippled scour depressions (RSDs) on the seafloor of California's continental margin using autoclassfication models

    NASA Astrophysics Data System (ADS)

    Davis, A. C.; Mueller, C.; Hallenbeck, T.; Carrillo, J.; Gomez, J.

    2010-12-01

    The California Seafloor Mapping Project (CSMP) is a cooperative initiative creating a comprehensive, high-resolution (2-5m) coastal/marine geologic and habitat base map for all of California’s State waters (Mean high water to three nautical miles). This massive dataset covering > 8500 sq. km of coastal seafloor is enabling researchers to study patterns and distribution of near shore habitats and geomorphology on a scale never before possible. Data from CSMP reveal the presence of rippled scour depressions (RSD) as the most prominent features on the continental shelf. These features are found worldwide and are characterized as depressions (.4m-1m) of coarse grain sediment and long period sand waves surrounded by a fine sediment plateau. While previous studies have described the geomorphologies of RSDs and speculated on their origin, this is the first regional study describing their patterns of abundance and distribution on a scale of 1000s of km. The purpose of this study is to use auto classification methods to quantify the spatial extent and distribution of three benthic habitats (rock, sediment, RSD) within the state waters of California. Using CSMP acoustic backscatter imagery and derived bathymetric products (rugosity, bathymetric position index, and slope), we developed a habitat classification model in ArcGIS to assign benthic habitat into one of these three classes. These results will then be used to quantify and characterize spatial patterns in the distribution and abundance of these habitats along the California continental margin.

  12. Habitat Suitability Index Models: Rainbow Trout

    USGS Publications Warehouse

    Raleigh, Robert F.; Hickman, Terry; Solomon, R. Charles; Nelson, Patrick C.

    1984-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for rainbow trout (Salmo gairdneri), a freshwater species. The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for freshwater areas of the continental United States. Other habitat suitability models found in the literature are also included. Habitat suitability indexes (HSI's) are designed for use with the habitat evaluation procedures developed by the U.S. Fish and Wildlife Service. Also included are discussions of Suitability Index (SI) curves as used in the Instream Flow Incremental Methodology (IFIM) and SI curves available for an IFIM analysis of Fallfish habitat.

  13. FUTURE SCENARIOS OF CHANGE IN WILDLIFE HABITAT

    EPA Science Inventory

    Studies in Pennsylvania, Iowa, California, and Oregon show varying losses of terrestrial wildlife habitat in scenarios based on different assumptions about future human land use patterns. Retrospective estimates of losses of habitat since Euro-American settlement in several stud...

  14. PECONIC ESTUARY EELGRASS HABITAT CRITERIA STUDY

    EPA Science Inventory

    PECONIC ESTUARY EELGRASS HABITAT CRITERIA STUDY The main objective of this study is to develop criteria for eelgrass habitat establishment and persistence within the Peconic Estuary utilizing various environmental analyses. The Program evaluated water and sediment quality data to...

  15. Incipient habitat race formation in an amphibian.

    PubMed

    Van Buskirk, J

    2014-03-01

    Theory defines conditions under which sympatric speciation may occur, and several possible examples of the process in action have been identified. In most cases, organisms specialize onto habitats that fall into discrete categories, such as host species used by herbivores and parasites. Ecological specialization within a continuous habitat gradient is theoretically possible, but becomes less likely with increasing gene flow among clinal habitat types. Here, I show that habitat race formation is underway in a frog, Rana temporaria, along a continuous and spatially mosaic habitat gradient. Tadpoles from 23 populations raised in an outdoor mesocosm experiment showed adaptive phenotypic variation correlated with the predator density in their pond of origin. A survey of microsatellite markers in 48 populations found that neutral genetic divergence was enhanced between ponds with very different densities of predators. This represents a new example of habitat specialization along a continuous habitat gradient with no spatial autocorrelation in habitat. PMID:26230250

  16. Contributions of Estuarine Habitats to Major Fisheries

    EPA Science Inventory

    Estuaries provide unique habitat conditions that are essential to the production of major fisheries throughout the world, but quantitatively demonstrating the value of these habitats to fisheries presents some difficult problems. The questions are important, because critical hab...

  17. Choosing appropriate techniques for quantifying groundwater recharge

    USGS Publications Warehouse

    Scanlon, B.R.; Healy, R.W.; Cook, P.G.

    2002-01-01

    Various techniques are available to quantify recharge; however, choosing appropriate techniques is often difficult. Important considerations in choosing a technique include space/time scales, range, and reliability of recharge estimates based on different techniques; other factors may limit the application of particular techniques. The goal of the recharge study is important because it may dictate the required space/time scales of the recharge estimates. Typical study goals include water-resource evaluation, which requires information on recharge over large spatial scales and on decadal time scales; and evaluation of aquifer vulnerability to contamination, which requires detailed information on spatial variability and preferential flow. The range of recharge rates that can be estimated using different approaches should be matched to expected recharge rates at a site. The reliability of recharge estimates using different techniques is variable. Techniques based on surface-water and unsaturated-zone data provide estimates of potential recharge, whereas those based on groundwater data generally provide estimates of actual recharge. Uncertainties in each approach to estimating recharge underscore the need for application of multiple techniques to increase reliability of recharge estimates.

  18. Risk of local extinction of Odonata freshwater habitat generalists and specialists.

    PubMed

    Suhonen, Jukka; Korkeamäki, Esa; Salmela, Jukka; Kuitunen, Markku

    2014-06-01

    Understanding the risk of a local extinction in a single population relative to the habitat requirements of a species is important in both theoretical and applied ecology. Local extinction risk depends on several factors, such as habitat requirements, range size of species, and habitat quality. We studied the local extinctions among 31 dragonfly and damselfly species from 1930 to 1975 and from 1995 to 2003 in Central Finland. We tested whether habitat specialists had a higher local extinction rate than generalist species. Approximately 30% of the local dragonfly and damselfly populations were extirpated during the 2 study periods. The size of the geographical range of the species was negatively related to extinction rate of the local populations. In contrast to our prediction, the specialist species had lower local extinction rates than the generalist species, probably because generalist species occurred in both low- and high-quality habitat. Our results are consistent with source-sink theory. PMID:24405332

  19. Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size.

    PubMed

    Schrey, Aaron W; Ragsdale, Alexandria K; McCoy, Earl D; Mushinsky, Henry R

    2016-07-01

    Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. PMID:26976940

  20. Single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using the spent external tank from a National Space Transportation System (NSTS) to derive a lunar habitat is described. The external tank is carried into low Earth orbit where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS orbiter can place the external tank in LEO, provide orbiter astronauts for disassembly of the external tank, and transport the required subsystem hardware for outfitting the lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen intertank modifications utilize existing structures and openings for man access without compromising the structural integrity of the tank. The modifications include installation of living quarters, instrumentation, and an airlock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal control, environmental control and life support, and propulsion. The converted lunar habitat is designed for unmanned transport and autonomous soft landing on the lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyer. The lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a lunar lander for crew changeover and resupply.

  1. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Haselschwardt, Sally

    2012-01-01

    A Radial Internal Material Handling System (RIMS) has been developed to service a circular floor area in variable gravity. On planetary surfaces, pressurized human habitable volumes will require a means to carry heavy equipment between various locations within the volume of the habitat, regardless of the partial gravity (Earth, moon, Mars, etc). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand off lifted items to other material handling systems through the side hatches, such as through an airlock. This paper describes the RIMS system which is scalable for application in a variety of circular habitat volumes.

  2. Quantifying Riverscape Connectivity with Graph Theory

    NASA Astrophysics Data System (ADS)

    Carbonneau, P.; Milledge, D.; Sinha, R.; Tandon, S. K.

    2013-12-01

    Fluvial catchments convey fluxes of water, sediment, nutrients and aquatic biota. At continental scales, crustal topography defines the overall path of channels whilst at local scales depositional and/or erosional features generally determine the exact path of a channel. Furthermore, constructions such as dams, for either water abstraction or hydropower, often have a significant impact on channel networks.The concept of ';connectivity' is commonly invoked when conceptualising the structure of a river network.This concept is easy to grasp but there have been uneven efforts across the environmental sciences to actually quantify connectivity. Currently there have only been a few studies reporting quantitative indices of connectivity in river sciences, notably, in the study of avulsion processes. However, the majority of current work describing some form of environmental connectivity in a quantitative manner is in the field of landscape ecology. Driven by the need to quantify habitat fragmentation, landscape ecologists have returned to graph theory. Within this formal setting, landscape ecologists have successfully developed a range of indices which can model connectivity loss. Such formal connectivity metrics are currently needed for a range of applications in fluvial sciences. One of the most urgent needs relates to dam construction. In the developed world, hydropower development has generally slowed and in many countries, dams are actually being removed. However, this is not the case in the developing world where hydropower is seen as a key element to low-emissions power-security. For example, several dam projects are envisaged in Himalayan catchments in the next 2 decades. This region is already under severe pressure from climate change and urbanisation, and a better understanding of the network fragmentation which can be expected in this system is urgently needed. In this paper, we apply and adapt connectivity metrics from landscape ecology. We then examine the

  3. A Rapid Approach to Modeling Species-Habitat Relationships

    NASA Technical Reports Server (NTRS)

    Carter, Geoffrey M.; Breinger, David R.; Stolen, Eric D.

    2005-01-01

    A growing number of species require conservation or management efforts. Success of these activities requires knowledge of the species' occurrence pattern. Species-habitat models developed from GIS data sources are commonly used to predict species occurrence but commonly used data sources are often developed for purposes other than predicting species occurrence and are of inappropriate scale and the techniques used to extract predictor variables are often time consuming and cannot be repeated easily and thus cannot efficiently reflect changing conditions. We used digital orthophotographs and a grid cell classification scheme to develop an efficient technique to extract predictor variables. We combined our classification scheme with a priori hypothesis development using expert knowledge and a previously published habitat suitability index and used an objective model selection procedure to choose candidate models. We were able to classify a large area (57,000 ha) in a fraction of the time that would be required to map vegetation and were able to test models at varying scales using a windowing process. Interpretation of the selected models confirmed existing knowledge of factors important to Florida scrub-jay habitat occupancy. The potential uses and advantages of using a grid cell classification scheme in conjunction with expert knowledge or an habitat suitability index (HSI) and an objective model selection procedure are discussed.

  4. Architecture and life support systems for a rotating space habitat

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  5. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, M.; Seitz, H.; Scott, J.

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies. ?? 1998 John Wiley & Sons, Ltd.

  6. The Habitat Demonstration Unit System Integration

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Kennedy, Kriss J.; Tri, Terry O.; Howe, Alan S.

    2010-01-01

    The Lunar Surface System Habitat Demonstration Unit (HDU) will require a project team to integrate a variety of contributions from National Aeronautics and Space Administration (NASA) centers and potential outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture. To accomplish the development of the first version of the HDU, the Pressurized Excursion Module (PEM), from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using several strategies to mitigate risks and bring the separate efforts together. First, a set of design standards is being developed to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Laboratory, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a habitat avionics test bed prior to equipment installation into HDU PEM are planned to facilitate the integration process. A coordinated effort to establish simplified Computer Aided Design (CAD) standards and the utilization of a modeling and simulation systems will aid in design and integration concept development. Finally, decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU design to maximize the efficiency of both integration and field operations.

  7. The Habitat Demonstration Unit System Integration

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Gill, Tracy; Tri, Terry; Howe, Scott

    2009-01-01

    The Lunar Surface System Habitat Demonstration Unit (HDU) will require the project team to integrate a variety of contributions from NASA centers and potential outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture. To accomplish the development of the HDU from conception in June 2009 to rollout for operations in July 2010, the HDU team is using several strategies to mitigate risks and bring the separate efforts together. First, a set of design standards is being developed to define the interfaces between the various systems of HDU and to the payloads, such as the Geology Lab, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU. A coordinated effort to establish simplified Computer Aided Design standards and the utilization of a modeling and simulation systems will aid in design and integration concept development. Finally, decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations.

  8. Bat habitat research. Final technical report

    SciTech Connect

    Keller, B.L.; Bosworth, W.R.; Doering, R.W.

    1993-12-31

    This progress report describes activities over the current reporting period to characterize the habitats of bats on the INEL. Research tasks are entitled Monitoring bat habitation of caves on the INEL to determine species present, numbers, and seasons of use; Monitor bat use of man-made ponds at the INEL to determine species present and rates of use of these waters; If the Big Lost River is flowing on the INEL and/or if the Big Lost River sinks contain water, determine species present, numbers and seasons of use; Determine the habitat requirement of Townsend`s big-eared bats, including the microclimate of caves containing Townsend`s big-eared bats as compared to other caves that do not contain bats; Determine and describe an economical and efficient bat census technique to be used periodically by INEL scientists to determine the status of bats on the INEL; and Provide a suggestive management and protective plan for bat species on the INEL that might, in the future, be added to the endangered and sensitive list;

  9. JUVENILE BAY SCALLOP (ARGOPECTEN IRRADIANS) HABITAT PREFERENCES

    EPA Science Inventory

    Habitat quality and quantity are known to be important for maintaining populations of bay scallops (Argopecten irradians), but data linking habitat attributes to bay scallop populations are lacking. This information is essential to understand the role of habitat alteration in th...

  10. Habitats: Making Homes for Animals and Plants.

    ERIC Educational Resources Information Center

    Hickman, Pamela M.

    This book of activities is designed to supplement a child's outdoor experiences and to encourage children to take a closer look at nature by creating temporary mini-habitats at home or in school. An introduction explains to students the concept of habitat and the responsibilities of keeping a mini-habitat. The remainder of the book contains…

  11. Quantifying the vitamin D economy.

    PubMed

    Heaney, Robert P; Armas, Laura A G

    2015-01-01

    Vitamin D enters the body through multiple routes and in a variety of chemical forms. Utilization varies with input, demand, and genetics. Vitamin D and its metabolites are carried in the blood on a Gc protein that has three principal alleles with differing binding affinities and ethnic prevalences. Three major metabolites are produced, which act via two routes, endocrine and autocrine/paracrine, and in two compartments, extracellular and intracellular. Metabolic consumption is influenced by physiological controls, noxious stimuli, and tissue demand. When administered as a supplement, varying dosing schedules produce major differences in serum metabolite profiles. To understand vitamin D's role in human physiology, it is necessary both to identify the foregoing entities, mechanisms, and pathways and, specifically, to quantify them. This review was performed to delineate the principal entities and transitions involved in the vitamin D economy, summarize the status of present knowledge of the applicable rates and masses, draw inferences about functions that are implicit in these quantifications, and point out implications for the determination of adequacy. PMID:26024057

  12. Quantifying the seismicity on Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Hsuan; Chen, Chien-Chih; Turcotte, Donald L.; Rundle, John B.

    2013-07-01

    We quantify the seismicity on the island of Taiwan using the frequency-magnitude statistics of earthquakes since 1900. A break in Gutenberg-Richter scaling for large earthquakes in global seismicity has been observed, this break is also observed in our Taiwan study. The seismic data from the Central Weather Bureau Seismic Network are in good agreement with the Gutenberg-Richter relation taking b ≈ 1 when M < 7. For large earthquakes, M ≥ 7, the seismic data fit Gutenberg-Richter scaling with b ≈ 1.5. If the Gutenberg-Richter scaling for M < 7 earthquakes is extrapolated to larger earthquakes, we would expect a M > 8 earthquake in the study region about every 25 yr. However, our analysis shows a lower frequency of occurrence of large earthquakes so that the expected frequency of M > 8 earthquakes is about 200 yr. The level of seismicity for smaller earthquakes on Taiwan is about 12 times greater than in Southern California and the possibility of a M ≈ 9 earthquake north or south of Taiwan cannot be ruled out. In light of the Fukushima, Japan nuclear disaster, we also discuss the implications of our study for the three operating nuclear power plants on the coast of Taiwan.

  13. Quantifying Uncertainty in Epidemiological Models

    SciTech Connect

    Ramanathan, Arvind; Jha, Sumit Kumar

    2012-01-01

    Modern epidemiology has made use of a number of mathematical models, including ordinary differential equation (ODE) based models and agent based models (ABMs) to describe the dynamics of how a disease may spread within a population and enable the rational design of strategies for intervention that effectively contain the spread of the disease. Although such predictions are of fundamental importance in preventing the next global pandemic, there is a significant gap in trusting the outcomes/predictions solely based on such models. Hence, there is a need to develop approaches such that mathematical models can be calibrated against historical data. In addition, there is a need to develop rigorous uncertainty quantification approaches that can provide insights into when a model will fail and characterize the confidence in the (possibly multiple) model outcomes/predictions, when such retrospective analysis cannot be performed. In this paper, we outline an approach to develop uncertainty quantification approaches for epidemiological models using formal methods and model checking. By specifying the outcomes expected from a model in a suitable spatio-temporal logic, we use probabilistic model checking methods to quantify the probability with which the epidemiological model satisfies the specification. We argue that statistical model checking methods can solve the uncertainty quantification problem for complex epidemiological models.

  14. Quantifying the Shape of Aging

    PubMed Central

    Wrycza, Tomasz F.; Missov, Trifon I.; Baudisch, Annette

    2015-01-01

    In Biodemography, aging is typically measured and compared based on aging rates. We argue that this approach may be misleading, because it confounds the time aspect with the mere change aspect of aging. To disentangle these aspects, here we utilize a time-standardized framework and, instead of aging rates, suggest the shape of aging as a novel and valuable alternative concept for comparative aging research. The concept of shape captures the direction and degree of change in the force of mortality over age, which—on a demographic level—reflects aging. We 1) provide a list of shape properties that are desirable from a theoretical perspective, 2) suggest several demographically meaningful and non-parametric candidate measures to quantify shape, and 3) evaluate performance of these measures based on the list of properties as well as based on an illustrative analysis of a simple dataset. The shape measures suggested here aim to provide a general means to classify aging patterns independent of any particular mortality model and independent of any species-specific time-scale. Thereby they support systematic comparative aging research across different species or between populations of the same species under different conditions and constitute an extension of the toolbox available to comparative research in Biodemography. PMID:25803427

  15. Detecting, visualising, and quantifying mucins.

    PubMed

    Harrop, Ceri A; Thornton, David J; McGuckin, Michael A

    2012-01-01

    The extreme size, extensive glycosylation, and gel-forming nature of mucins make them a challenge to work with, and methodologies for the detection of mucins must take into consideration these features to ensure that one obtains both accurate and meaningful results. In understanding and appreciating the nature of mucins, this affords the researcher a valuable toolkit which can be used to full advantage in detecting, quantifying, and visualising mucins. The employment of a combinatorial approach to mucin detection, using antibody, chemical, and lectin detection methods, allows important information to be gleaned regarding the size, extent of glycosylation, specific mucin species, and distribution of mucins within a given sample. In this chapter, the researcher is guided through considerations into the structure of mucins and how this both affects the detection of mucins and can be used to full advantage. Techniques including ELISA, dot/slot blotting, and Western blotting, use of lectins and antibodies in mucin detection on membranes as well as immunohistochemistry and immunofluorescence on both tissues and cells grown on Transwell™ inserts are described. Notes along with each section advice the researcher on best practice and describe any associated limitations of a particular technique from which the researcher can further develop a particular protocol. PMID:22259129

  16. A rehabilitation plan for walleye populations and habitats in Lake Superior

    USGS Publications Warehouse

    Hoff, MIchael H.

    2003-01-01

    The walleye (Stizostedion vitreum vitreum) has been historically important in regional fisheries and fish communities in large bays, estuaries, and rivers of Lake Superior. Significant negative impacts on the species caused by overharvesting, habitat degradation, and pollution during the late 1800s and early 1900s have led to the preparation of a strategic rehabilitation plan. The lakewide goal is to maintain, enhance, and rehabilitate habitat for walleye and to establish self-sustaining populations in areas where walleyes historically lived. Population objectives that support the goal are to increase the abundance of juvenile and adult walleyes in selected areas. Habitat objectives that support the goal include increasing spawning and nursery habitat in four areas: enhancing fish passage, reducing sedimentation, increasing water quality, and reducing contaminants in walleyes. Progress toward achieving the habitat objectives should be measured by documenting increases in spawning and nursery habitats, resolving fish-passage issues, reducing sediments in rivers, and reducing contaminant levels in walleyes. Stocking various life stages of walleye should be considered to rehabilitate certain degraded populations. Total annual mortality of walleye populations should be less than 45% to allow populations to either increase or be maintained at target levels of abundance. Routine assessments should focus on gathering the data necessary to evaluate abundance and mortality and on taking inventories of spawning and nursery habitats. Research should be conducted to understand the specific habitat requirements for Lake Superior walleye populations and the habitat-abundance relationships for populations and for the lake as a whole.

  17. Seasonal variation in habitat use of juvenile Steelhead in a tributary of Lake Ontario

    USGS Publications Warehouse

    Studdert, Emily W.; Johnson, James H.

    2015-01-01

    We examined seasonal-habitat use by subyearling and yearling Oncorhynchus mykiss (Rainbow Trout or Steelhead) in Trout Brook, a tributary of the Salmon River, NY. We determined daytime fish-habitat use and available habitat during August and October of the same year and observed differences in habitat selection among year classes. Water depth and cover played the greatest role in Steelhead habitat use. During summer and autumn, we found yearling Steelhead in areas with deeper water and more cover than where we observed subyearling Steelhead. Both year classes sought out areas with abundant cover during both seasons; this habitat was limited within the stream reach. Subyearling Steelhead were associated with more cover during autumn, even though available cover within the stream reach was greater during summer. Principal component analysis showed that variation in seasonal-habitat use was most pronounced for subyearling Steelhead and that yearling Steelhead were more selective in their habitat use than subyearling Steelhead. The results of this study contribute to a greater understanding of how this popular sportfish is adapting to a new environment and the factors that may limit juvenile Steelhead survival. Our findings provide valuable new insights into the seasonal-habitat requirements of subyearling and yearling Steelhead that can be used by fisheries managers to enhance and protect the species throughout the Great Lakes region.

  18. Habitat-associations of turban snails on intertidal and subtidal rocky reefs.

    PubMed

    Smoothey, Amy F

    2013-01-01

    Patchiness of habitat has important influences on distributions and abundances of organisms. Given the increasing threat of loss and alteration of habitats due to pressures associated with humans, there is a need for ecologists to understand species' requirements for habitat and to predict changes to taxa under various future environmental conditions. This study tested hypotheses about the generality of patterns described for one species of marine intertidal turban snail for a different, yet closely-related species in subtidal habitats along the coast of New South Wales, Australia. These two closely-related species live in similar habitats, yet under quite different conditions, which provided an opportunity to investigate how similar types of habitats influence patterns of distribution, abundance and size-structure in intertidal versus subtidal environments. For each species, there were similar associations between biogenically structured habitat and densities. The intertidal species, Turbo undulates, were more abundant, with greater proportions of small individuals in habitats formed by the canopy-forming alga, Hormosira banksii, the solitary ascidian, Pyura stolonifera or the turfing red alga, Corallina officinalis compared to simple habitat (bare rock). Similarly, more Turbo torquatus were found in biogenically structured subtidal habitat, i.e. canopy-forming algae, Ecklonia radiata, mixed algal communities ('fringe'), or turfing red algae (Corallina officinalis and Amphiroa aniceps) than where habitat is simple (barrens). Small T. torquatus were more abundant in areas of turf and 'fringe', while large snails were more abundant in areas of kelp and barrens. These patterns were found at each location sampled (i.e. eight intertidal and two subtidal rocky reefs) and at all times of sampling, across each environment. This study highlighted the consistent influence of biogenically structured habitats on the distribution, abundance and size-structure of intertidal and

  19. Choosing among Techniques for Quantifying Single-Case Intervention Effectiveness

    ERIC Educational Resources Information Center

    Manolov, Rumen; Solanas, Antonio; Sierra, Vicenta; Evans, Jonathan J.

    2011-01-01

    If single-case experimental designs are to be used to establish guidelines for evidence-based interventions in clinical and educational settings, numerical values that reflect treatment effect sizes are required. The present study compares four recently developed procedures for quantifying the magnitude of intervention effect using data with known…

  20. River Temperature Dynamics and Habitat Characteristics as Predictors of Salmonid Abundance using Fiber-Optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Gryczkowski, L.; Gallion, D.; Haeseker, S.; Bower, R.; Collier, M.; Selker, J. S.; Scherberg, J.; Henry, R.

    2011-12-01

    Salmonids require cool water for all life stages, including spawning and growth. Excessive water temperature causes reduced growth and increased disease and mortality. During the summer, salmonids seek local zones of cooler water as a refuge from elevated temperatures. They also prefer specific habitat features such as boulders and overhanging vegetation. The purpose of this study is to determine whether temperature dynamics or commonly measured fish habitat metrics best explain salmonid abundance. The study site was a 2-kilometer reach of the Walla Walla River near Milton-Freewater, OR, USA, which provides habitat for the salmonids chinook salmon (Oncorhynchus tshawytscha), steelhead/rainbow trout (Oncorhynchus mykiss), mountain whitefish (Prosopium williamsoni), and the endangered bull trout (Salvelinus confluentus). The Walla Walla River is listed as an impaired water body under section 303(d) of the Clean Water Act due to temperature. The associated total maximum daily load (TMDL) calls for temperatures to be below 18 °C at all times for salmonid rearing and migration; however, river temperatures surpassed 24 °C in parts of the study reach in 2009. The two largest factors contributing to the warmer water are reduced riparian vegetation, which decreases shading and increases direct solar radiation, and decreased summer flows caused by diversions and irrigation for agriculture. Fiber-optic distributed temperature sensing has emerged as a unique and powerful tool for ecological applications because of its high spatial and temporal resolution. In this study, meter-scale temperature measurements were obtained at 15-minute intervals along the length of the study reach, allowing for the detection and quantification of cold water inflows during the summer of 2009. The cold water inflows were classified as groundwater or hyporheic sources based on the diurnal temperature patterns. Snorkel surveys were conducted in mid-July and mid-August, 2009 to enumerate salmonid

  1. Accessible habitat for shorebirds: Factors influencing its availability and conservation implications

    USGS Publications Warehouse

    Collazo, J.A.; O'Harra, D. A.; Kelly, C.A.

    2002-01-01

    We examined the relationship between water levels and accessible habitat, and how accessible habitat influenced Dunlin (Calidris alpina) and Semipalmated Sandpiper (Calidris pusilla) numbers in managed wetlands at Pea Island (North Carolina) and Merritt Island (Florida) National Wildlife Refuges in 1998 and 1999. At Pea Island we experimentally manipulated water levels, which also allowed us to examine the effects of water level fluctuations on prey base. We examined these relationships because access to foraging habitat by shorebirds is positively related to the length of their tarsometatarsus, and in the southeastern United States, small calidrids are a numerically important component of the two million migrants using inland and managed wetlands. We confirmed the importance of shallow waters for Dunlin and Semipalmated Sandpiper-numbers increased with increasing availability of 0-4 cm habitat. At Merritt Island, Dunlin use was inversely related to variability in water depth of 0-4 cm. Minimizing the frequency and amplitude of water level fluctuations associated with single-capped culverts is necessary to improve habitat quality. After adjusting for accessibility, spring habitat requirements for Dunlin and Semipalmated Sandpiper at Pea Island were met under nearly all abundance scenarios. We identified water level targets that maximize accessible habitat at Pea Island. In contrast, winter habitat requirements for Dunlin at Merritt Island were not met except in one scenario. Seasonally low prey density contributed to the shortfall, suggesting that allocating more habitat is the primary management option. Manipulating water levels at Pea Island did not adversely affect the density of eight shorebird prey species. Estimates of accessible habitat and other parameters (e.g., turnover rates, prey biomass) are essential to set and implement realistic shorebird habitat conservation goals.

  2. Incorporating ecologically relevant habitat and demographic data in assessment of contaminant risk to wildlife

    EPA Science Inventory

    Evaluating population-level effects of contamination on wildlife requires specific information on habitat quality, species distribution, and contaminant concentration. Establishing broadly applicable thresholds for risk assessment involves an understanding of the applicability o...

  3. Describing Willow Flycatcher habitats: scale perspectives and gender differences

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    We compared habitat characteristics of nest sites (female-selected sites) and song perch sites (male-selected sites) with those of sites unused by Willow Flycatchers (Empidonax traillii) at three different scales of vegetation measurement: (1) microplot (central willow [Salix spp.] bush and four adjacent bushes); (2) mesoplot (0.07 ha); and, (3) macroplot (flycatcher territory size). Willow Flycatchers exhibited vegetation preferences at all three scales. Nest sites were distinguished by high willow density and low variability in willow patch size and bush height. Song perch sites were characterized by large central shrubs, low central shrub vigor, and high variability in shrub size. Unused sites were characterized by greater distances between willows and willow patches, less willow coverage, and a smaller riparian zone width than either nest or song perch sites. At all scales, nest sites were situated farther from unused sites in multivariate habitat space than were song perch sites, suggesting (1) a correspondence among scales in their ability to describe Willow Flycatcher habitat, and (2) females are more discriminating in habitat selection than males. Microhabitat differences between male-selected (song perch) and female-selected (nest) sites were evident at the two smaller scales; at the finest scale, the segregation in habitat space between male-selected and female-selected sites was greater than that between male-selected and unused sites. Differences between song perch and nest sites were not apparent at the scale of flycatcher territory size, possibly due to inclusion of (1) both nest and song perch sites, (2) defended, but unused habitat, and/or (3) habitat outside of the territory, in larger scale analyses. The differences between nest and song perch sites at the finer scales reflect their different functions (e.g., nest concealment and microclimatic requirements vs. advertising and territorial defense, respectively), and suggest that the exclusive use

  4. Spatial Analysis of Chinook Spawning Habitat: GIS Analysis of Warm Water Intrusion Below Iron Gate Dam; Klamath, California

    NASA Astrophysics Data System (ADS)

    Royer, C. F.; Stubblefield, A. P.

    2007-12-01

    The Klamath River supports several species of salmon including Steelhead, Coho and Chinook. Historically, Klamath has been the third largest producer of salmon on the West coast and an integral part of the California fishery, supporting commercial, recreational and tribal communities. Within the past decade, however, water quality conditions on the Klamath have declined due to increased temperatures and nutrients, depressed dissolved oxygen and elevated turbidity; prompting the EPA to list the Klamath as an impaired river. The effects and spatial extent of elevated temperature below Iron Gate Dam on Chinook salmon spawning were evaluated using ArcMap 9.2 in conjunction with nine USGS gauging stations. Potential habitat layers were derived from DEM and relative bed stability indices. Through the process of Dynamic Segmentation, habitat and water quality were combined and available spawning habitat were quantified. Dynamic Segmentation converts linearly referenced data stored in a table into features that can be displayed and analyzed on a map. By overlaying and intersecting potential salmon spawning habitat layers with water quality the amount of available habitat can be quantified along a linear feature. Analysis indicates reduction of spawning habitat by 24% due to warm water intrusion. This approach also allows for an assessment of the potential impacts on habitat suitability under different climate change scenarios.

  5. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  6. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009

    SciTech Connect

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Dawley, Earl M.; Coleman, Andre M.

    2010-08-01

    This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary.

  7. Using Habitat Equivalency Analysis to Assess the Cost Effectiveness of Restoration Outcomes in Four Institutional Contexts.

    PubMed

    Scemama, Pierre; Levrel, Harold

    2016-01-01

    At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources. PMID:26306791

  8. Using Habitat Equivalency Analysis to Assess the Cost Effectiveness of Restoration Outcomes in Four Institutional Contexts

    NASA Astrophysics Data System (ADS)

    Scemama, Pierre; Levrel, Harold

    2016-01-01

    At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources.

  9. Integration Process for the Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tn, Terry; Toups, Larry; Howe, A. Scott; Smitherman, David

    2011-01-01

    The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities. The HDU previously served as a test bed for testing technologies and sub-systems in a terrestrial surface environment. in 2010 in the Pressurized Excursion Module (PEM) configuration. Due to the amount of work involved to make the HDU project successful, the HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators The size of the team and number of systems involved With the HDU makes Integration a complicated process. However, because the HDU shell manufacturing is complete, the team has a head start on FY--11 integration activities and can focus on integrating upgrades to existing systems as well as integrating new additions. To complete the development of the FY-11 HDU from conception to rollout for operations in July 2011, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads. The highlighted HDU work for FY-11 will focus on performing upgrades to the PEM configuration, adding the X-Hab as a second level, adding a new porch providing the astronauts a larger work area outside the HDU for EVA preparations, and adding a Hygiene module. Together these upgrades result in a prototype configuration of the Deep Space Habitat (DSH), an element under evaluation by NASA's Human Exploration Framework Team (HEFT) Scheduled activates include early fit-checks and the utilization of a Habitat avionics test bed prior to installation into HDU. A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development. Modeling tools have been effective in hardware systems layout, cable routing, sub-system interface length estimation and human factors analysis. Decision processes on integration and use of all new subsystems will be defined early in the project to

  10. Quantifying uncertainty from material inhomogeneity.

    SciTech Connect

    Battaile, Corbett Chandler; Emery, John M.; Brewer, Luke N.; Boyce, Brad Lee

    2009-09-01

    Most engineering materials are inherently inhomogeneous in their processing, internal structure, properties, and performance. Their properties are therefore statistical rather than deterministic. These inhomogeneities manifest across multiple length and time scales, leading to variabilities, i.e. statistical distributions, that are necessary to accurately describe each stage in the process-structure-properties hierarchy, and are ultimately the primary source of uncertainty in performance of the material and component. When localized events are responsible for component failure, or when component dimensions are on the order of microstructural features, this uncertainty is particularly important. For ultra-high reliability applications, the uncertainty is compounded by a lack of data describing the extremely rare events. Hands-on testing alone cannot supply sufficient data for this purpose. To date, there is no robust or coherent method to quantify this uncertainty so that it can be used in a predictive manner at the component length scale. The research presented in this report begins to address this lack of capability through a systematic study of the effects of microstructure on the strain concentration at a hole. To achieve the strain concentration, small circular holes (approximately 100 {micro}m in diameter) were machined into brass tensile specimens using a femto-second laser. The brass was annealed at 450 C, 600 C, and 800 C to produce three hole-to-grain size ratios of approximately 7, 1, and 1/7. Electron backscatter diffraction experiments were used to guide the construction of digital microstructures for finite element simulations of uniaxial tension. Digital image correlation experiments were used to qualitatively validate the numerical simulations. The simulations were performed iteratively to generate statistics describing the distribution of plastic strain at the hole in varying microstructural environments. In both the experiments and simulations, the

  11. Habitat Suitability Index Models: American Alligator

    USGS Publications Warehouse

    Newsom, John D.; Joanen, Ted; Howard, Rebecca J.

    1987-01-01

    A review and synthesis of existing information were used to develop a model for evaluating American alligator habitat quality. The model is applicable in marshes along the northern Gulf of Mexico. It is scaled to produce an index between 0 (unsuitable habitat) and 1.0 (optimal habitat). Habitat suitability index models are designed for use with the Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service. Guidelines for model application and techniques for measuring model variables are described.

  12. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  13. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators.

    PubMed

    Strickland, Bradley A; Vilella, Francisco J; Belant, Jerrold L

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  14. Effect of urbanisation on habitat generalists: starlings not so flexible?

    NASA Astrophysics Data System (ADS)

    Mennechez, Gwénaëlle; Clergeau, Philippe

    2006-09-01

    The small variability of habitat generalist abundances in relation to landscape changes has been related to their behavioural flexibility. We hypothesise that successful generalists, such as the starling, compensate for feeding resource difficulties (poor quality of food, accessibility) in habitats such as urban ecosystems and that its behavioural flexibility allows for similar breeding performance in rural and urban areas. Along an urbanisation gradient we compared simultaneously (1) success factors such as the abundance of breeding starlings, their breeding performance and the fitness of nestlings, and (2) possible flexibility quantified through the rate of parental food-provisioning, and the composition and the amount of food delivered to nestlings. Abundance of breeding starlings are similar throughout the urbanisation gradient, but urbanisation profoundly and negatively affects reproductive parameters of starlings. Differences in the amount of food delivered to nestlings by parents (less food in town centre), and the small masses of nestlings reared in the urban sectors support the idea that urban nestlings received insufficient food loads. Despite modifications to their diurnal food-provisioning rhythm and the incorporation of some human food refuse into their diet, starling parents have a significantly reduced production of young in the urban centre sector. We rebut the idea that the "generalist" starling is able to breed successfully anywhere: other more "specialist" species succeed in producing their young by innovating more in terms of diet resources. We suggest defining successful birds with respect to colonisation or invasion process through behavioural innovation rather than an ambiguous habitat generalist definition.

  15. Graph models of habitat mosaics.

    PubMed

    Urban, Dean L; Minor, Emily S; Treml, Eric A; Schick, Robert S

    2009-03-01

    Graph theory is a body of mathematics dealing with problems of connectivity, flow, and routing in networks ranging from social groups to computer networks. Recently, network applications have erupted in many fields, and graph models are now being applied in landscape ecology and conservation biology, particularly for applications couched in metapopulation theory. In these applications, graph nodes represent habitat patches or local populations and links indicate functional connections among populations (i.e. via dispersal). Graphs are models of more complicated real systems, and so it is appropriate to review these applications from the perspective of modelling in general. Here we review recent applications of network theory to habitat patches in landscape mosaics. We consider (1) the conceptual model underlying these applications; (2) formalization and implementation of the graph model; (3) model parameterization; (4) model testing, insights, and predictions available through graph analyses; and (5) potential implications for conservation biology and related applications. In general, and for a variety of ecological systems, we find the graph model a remarkably robust framework for applications concerned with habitat connectivity. We close with suggestions for further work on the parameterization and validation of graph models, and point to some promising analytic insights. PMID:19161432

  16. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    2000-01-01

    Models of habitat associations for species often are developed with an implicit assumption that habitats are static, even though recent disturbance may have altered the landscape. We tested our hypothesis that trajectory and magnitude of habitat change influenced observed distribution and abundance of passerine birds breeding in shrubsteppe habitats of southwestern Idaho. Birds in this region live in dynamic landscapes undergoing predominantly large-scale, radical, and unidirectional habitat change because wildfires are converting shrublands into expanses of exotic annual grasslands. We used data from field surveys and satellite image analyses in a series of redundancy analyses to partition variances and to determine the relative contribution of habitat change and current landscapes. Although current habitats explained a greater proportion of total variation, changes in habitat and measures of habitat richness and texture also contributed to variation in abundance of Horned Larks (Eremophila alpestris), Brewera??s Sparrows (Spizella breweri), and Sage Sparrows (Amphispiza belli). Abundance of birds was insensitive to scale for nonspatial habitat variables. In contrast, spatial measures of habitat richness and texture in the landscape were significant only at large spatial scales. Abundance of Horned Larks, Western Meadowlarks (Sturnella neglecta), and Brewera??s Sparrows, but not Sage Thrashers (Oreoscoptes montanus) or Sage Sparrows, was positively correlated with changes toward stable habitats. Because dominant habitat changes were toward less stable conditions, regional declines of those birds in shrubsteppe habitats reflect current landscapes as well as the history, magnitude, and trajectory of habitat change.

  17. A Testbed for Evaluating Lunar Habitat Autonomy Architectures

    NASA Astrophysics Data System (ADS)

    Kortenkamp, David; Izygon, Michel; Lawler, Dennis; Schreckenghost, Debra; Bonasso, R. Peter; Wang, Lui; Kennedy, Kriss

    2008-01-01

    A lunar outpost will involve a habitat with an integrated set of hardware and software that will maintain a safe environment for human activities. There is a desire for a paradigm shift whereby crew will be the primary mission operators, not ground controllers. There will also be significant periods when the outpost is uncrewed. This will require that significant automation software be resident in the habitat to maintain all system functions and respond to faults. JSC is developing a testbed to allow for early testing and evaluation of different autonomy architectures. This will allow evaluation of different software configurations in order to: 1) understand different operational concepts; 2) assess the impact of failures and perturbations on the system; and 3) mitigate software and hardware integration risks. The testbed will provide an environment in which habitat hardware simulations can interact with autonomous control software. Faults can be injected into the simulations and different mission scenarios can be scripted. The testbed allows for logging, replaying and re-initializing mission scenarios. An initial testbed configuration has been developed by combining an existing life support simulation and an existing simulation of the space station power distribution system. Results from this initial configuration will be presented along with suggested requirements and designs for the incremental development of a more sophisticated lunar habitat testbed.

  18. Quantifying Wetland Dynamics and Hydrologic Function with Landsat Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Rover, J. A.; Wright, C.; Wylie, B. K.; Euliss, N. H.

    2007-12-01

    The Prairie Pothole Region (PPR) of North America spans the glaciated prairies from Alberta, Canada, to central Iowa. The region contains hundreds of thousands of wetlands that provide habitat for an estimated 50 to 80 percent of North America's waterfowl. The composition of species that use the PPR are a function of wetland water chemistry. The water chemistry is driven by wetland functional processes that determine hydrogeochemical interactions of surface water, ground water, and their connectivity to other wetlands. As wetlands cycle from drought to deluge, significant surface water fluctuations can alter water chemistry and hydroperiods, influencing the composition of wetland communities. We quantified these temporal water dynamics with Landsat TM and ETM+ imagery, spanning a 17-year period during a drought-deluge cycle. Using clustering techniques, we grouped wetlands based on their functional responses to climate and quantified the traits of each cluster. We found that wetlands receiving groundwater discharge respond very differently to climatic shifts than wetlands functioning as recharge basins. In addition, wetlands with closed basins are less dynamic than wetlands located in open basins. Accuracies of the initial classification ranged from 75 to 100 percent. This study offers the first insight into wetland dynamics at a regional scale with implications for modeling biogeochemistry and ecosystem services across the PPR. Although this method was developed in the Missouri Coteau and nearby drift plains of the PPR, we believe this technique is applicable to other regions.

  19. An allometric approach to quantify the extinction vulnerability of birds and mammals.

    PubMed

    Hilbers, J P; Schipper, A M; Hendriks, A J; Verones, F; Pereira, H M; Huijbregts, M A J

    2016-03-01

    Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species

  20. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    NASA Technical Reports Server (NTRS)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  1. The Importance of Biologically Relevant Microclimates in Habitat Suitability Assessments

    PubMed Central

    Varner, Johanna; Dearing, M. Denise

    2014-01-01

    Predicting habitat suitability under climate change is vital to conserving biodiversity. However, current species distribution models rely on coarse scale climate data, whereas fine scale microclimate data may be necessary to assess habitat suitability and generate predictive models. Here, we evaluate disparities between temperature data at the coarse scale from weather stations versus fine-scale data measured in microhabitats required for a climate-sensitive mammal, the American pika (Ochotona princeps). We collected two years of temperature data in occupied talus habitats predicted to be suitable (high elevation) and unsuitable (low elevation) by the bioclimatic envelope approach. At low elevations, talus surface and interstitial microclimates drastically differed from ambient temperatures measured on-site and at a nearby weather station. Interstitial talus temperatures were frequently decoupled from high ambient temperatures, resulting in instantaneous disparities of over 30°C between these two measurements. Microhabitat temperatures were also highly heterogeneous, such that temperature measurements within the same patch of talus were not more correlated than measurements at distant patches. An experimental manipulation revealed that vegetation cover may cool the talus surface by up to 10°C during the summer, which may contribute to this spatial heterogeneity. Finally, low elevation microclimates were milder and less variable than typical alpine habitat, suggesting that, counter to species distribution model predictions, these seemingly unsuitable habitats may actually be better refugia for this species under climate change. These results highlight the importance of fine-scale microhabitat data in habitat assessments and underscore the notion that some critical refugia may be counterintuitive. PMID:25115894

  2. Geomapping generalized eigenvalue frequency distributions for predicting prolific Aedes albopictus and Culex quinquefasciatus habitats based on spatiotemporal field-sampled count data.

    PubMed

    Jacob, Benjamin G; Morris, Joel A; Caamano, Erick X; Griffith, Daniel A; Novak, Robert J

    2011-02-01

    Marked spatiotemporal variabilities in mosquito infection of arboviruses require adaptive strategies for determining optimal field-sampling timeframes, pool screening, and data analyses. In particular, the error distribution and aggregation patterns of adult arboviral mosquitoes can vary significantly by species, which can statistically bias analyses of spatiotemporal-sampled predictor variables generating misinterpretation of prolific habitat surveillance locations. Currently, there is a lack of reliable and consistent measures of risk exposure based on field-sampled georeferenced explanatory covariates which can compromise quantitative predictions generated from arboviral mosquito surveillance models for implementing larval control strategies targeting productive habitats. In this research we used spatial statistics and QuickBird visible and near-infra-red data for determining trapping sites that were related to Culex quinquefasciatus and Aedes albopictus species abundance and distribution in Birmingham, Alabama. Initially, a Land Use Land Cover (LULC) model was constructed from multiple spatiotemporal-sampled georeferenced predictors and the QuickBird data. A Poisson regression model with a non-homogenous, gamma-distributed mean then decomposed the data into positive and negative spatial filter eigenvectors. An autoregressive process in the error term then was used to derive the sample distribution of the Moran's I statistic for determining latent autocorrelation components in the model. Spatial filter algorithms established means, variances, distributional functions, and pairwise correlations for the predictor variables. In doing so, the eigenfunction spatial filter quantified the residual autocorrelation error in the mean response term of the model as a linear combination of various distinct Cx. quinquefasciatus and Ae. albopictus habitat map patterns. The analyses revealed 18-27% redundant information in the data. Prolific habitats of Cx. quinquefasciatus and

  3. Lunar base habitat designs: Characterizing the environment, and selecting habitat designs for future trade-offs

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Ferrall, Joseph; Seshan, P. K.

    1993-01-01

    A survey of distinct conceptual lunar habitat designs covering the pre- and post-Apollo era is presented. The impact of the significant lunar environmental challenges such as temperature, atmosphere, radiation, soil properties, meteorites, and seismic activity on the habitat design parameters are outlined. Over twenty habitat designs were identified and classified according to mission type, crew size; total duration of stay, modularity, environmental protection measures, and emplacement. Simple selection criteria of (1) post-Apollo design, (2) uniqueness of the habitat design, (3) level of thoroughness in design layout, (4) habitat dimensions are provided, and (5) materials of construction for the habitat shell are specified, are used to select five habitats for future trade studies. Habitat emplacement scenarios are created to examine the possible impact of emplacement of the habitat in different locations, such as lunar poles vs. equatorial, above ground vs. below ground, etc.

  4. Habitat use by an endangered riverine fish and implications for species protection

    USGS Publications Warehouse

    Freeman, B.J.; Freeman, Mary C.

    1994-01-01

    We investigated habitat specificity of the amber darter (Percina antesella Williams & Etnier 1977), an imperiled fish from restricted portions of 2 rivers in the southeastern United States. Foraging amber darters occupied a narrow range of riffle habitat, consistently avoiding areas < 20 cm deep and with velocity < 10 cm. s-1 near the substrate, occupying areas with cobble or gravel substrate and average water-column velocity of 30 to 70 cm. s-1. During low to moderate flows, approximately 20% or more of the study areas contained suitable habitat for the species. Amber darters appeared rare, and the numbers of individuals were uncorrelated with the concurrent availability of suitable habitat. Protecting the amber darter may require more than maintaining adequate depths and velocities over gravel-cobble substrates. Until we understand the potential importance of migration and dispersal for maintaining small populations, suitable habitat should be maintained over the longest contiguous stream segments possible.

  5. Quantified Trust Levels for Authentication

    NASA Astrophysics Data System (ADS)

    Thomas, Ivonne; Menzel, Michael; Meinel, Christoph

    Service-oriented Architectures (SOAs) facilitate applications to integrate seamlessly services from collaborating business partners regardless of organizational borders. In order to secure access to these services, mechanisms for authentication and authorisation must be deployed that control the access based on identity-related information. To enable a business partners’ users to access the provided services, an identity federation is often established that enables the brokering of identity information across organisational borders. The establishment of such a federation requires complex agreements and contracts that define common policies, obligations and procedures. Generally, this includes obligations on the authentication process as well.

  6. The Earth Observation Data for Habitat Monitoring (EODHaM) system

    NASA Astrophysics Data System (ADS)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola

    2015-05-01

    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.

  7. Fish habitat characterization and quantification using lidar and conventional topographic information in river survey

    NASA Astrophysics Data System (ADS)

    Marchamalo, Miguel; Bejarano, María-Dolores; García de Jalón, Diego; Martínez Marín, Rubén

    2007-10-01

    This study presents the application of LIDAR data to the evaluation and quantification of fluvial habitat in river systems, coupling remote sensing techniques with hydrological modeling and ecohydraulics. Fish habitat studies depend on the quality and continuity of the input topographic data. Conventional fish habitat studies are limited by the feasibility of field survey in time and budget. This limitation results in differences between the level of river management and the level of models. In order to facilitate upscaling processes from modeling to management units, meso-scale methods were developed (Maddock & Bird, 1996; Parasiewicz, 2001). LIDAR data of regulated River Cinca (Ebro Basin, Spain) were acquired in the low flow season, maximizing the recorded instream area. DTM meshes obtained from LIDAR were used as the input for hydraulic simulation for a range of flows using GUAD2D software. Velocity and depth outputs were combined with gradient data to produce maps reflecting the availability of each mesohabitat unit type for each modeled flow. Fish habitat was then estimated and quantified according to the preferences of main target species as brown trout (Salmo trutta). LIDAR data combined with hydraulic modeling allowed the analysis of fluvial habitat in long fluvial segments which would be time-consuming with traditional survey. LIDAR habitat assessment at mesoscale level avoids the problems of time efficiency and upscaling and is a recommended approach for large river basin management.

  8. Changes in habitat availability for outmigrating juvenile salmon (Oncorhychus spp.) following estuary restoration

    USGS Publications Warehouse

    Ellings, Christopher S.; Davis, Melanie; Grossman, Eric; Hodgson, Sayre; Turner, Kelley L.; Woo PR, Isa; Nakai, Glynnis; Takekawa, Jean E.; Takekawa, John Y.

    2016-01-01

    The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre-restoration, and post-restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre- to post-restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre-restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post-restoration. The presence of salmon in restored tidal channels confirmed rapid post-restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.

  9. Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions.

    PubMed

    Chamberlain, Dan; Brambilla, Mattia; Caprio, Enrico; Pedrini, Paolo; Rolando, Antonio

    2016-08-01

    Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients