Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V
2011-04-01
We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.
NASA Astrophysics Data System (ADS)
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V.
2012-06-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro
2012-01-01
Abstract. Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed. PMID:22734767
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V
2012-06-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.
Near-infrared spectroscopy of renal tissue in vivo
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Steinkellner, Oliver; Wabnitz, Heidrun; Macdonald, Rainer; Niendorf, Thoralf; Cantow, Kathleen; Flemming, Bert; Seeliger, Erdmann
2013-03-01
We have developed a method to quantify hemoglobin concentration and oxygen saturation within the renal cortex by near-infrared spectroscopy. A fiber optic probe was used to transmit the radiation of three semiconductor lasers at 690 nm, 800 nm and 830 nm to the tissue, and to collect diffusely remitted light at source-detector separations from 1 mm to 4 mm. To derive tissue hemoglobin concentration and oxygen saturation of hemoglobin the spatial dependence of the measured cw intensities was fitted by a Monte Carlo model. In this model the tissue was assumed to be homogeneous. The scaling factors between measured intensities and simulated photon flux were obtained by applying the same setup to a homogeneous semi-infinite phantom with known optical properties and by performing Monte Carlo simulations for this phantom. To accelerate the fit of the tissue optical properties a look-up table of the simulated reflected intensities was generated for the needed range of absorption and scattering coefficients. The intensities at the three wavelengths were fitted simultaneously using hemoglobin concentration, oxygen saturation, the reduced scattering coefficient at 800 nm and the scatter power coefficient as fit parameters. The method was employed to study the temporal changes of renal hemoglobin concentration and blood oxygenation on an anesthetized rat during a short period of renal ischemia induced by aortic occlusion and during subsequent reperfusion.
Simulations and experiments of photon propagation in biological tissue and liquid crystal waveguides
NASA Astrophysics Data System (ADS)
Lines, Collin M.
The development of non-invasive methods to probe human tissue is an ongoing challenge in biomedical optics. In vivo measurements by conventional methods are limited by the mean free path (MFP) of a photon, which is governed by the spatial distribution of chromophores and the absorption and scattering properties of the tissue. As one of the strongest chromophores in human tissues, hemoglobin concentrations in human tissue greatly affect the MFP of photons in visible wavelengths (i.e. bruising). Changes in the concentration of hemoglobin and other chromophores within the tissue (minor trauma causing a contusion, increased bilirubin due to jaundice, etc.) will affect the MFP, leading to a visibly different appearance (color) of the tissue. As color perception is a complex physiological process, these changes are diffcult to quantify by human observation alone. The transport of hemoglobin and its breakdown products in tissue is related to a number of medical conditions that could benefit from a non-invasive method to determine the hemoglobin levels.
NASA Astrophysics Data System (ADS)
Joglekar, M.; Shah, H.; Trivedi, V.; Mahajan, S.; Chhaniwal, V.; Leitgeb, R.; Javidi, B.; Anand, A.
2017-07-01
Adequate supply of oxygen to the body is the most essential requirement. In vertebrate species this function is performed by Hemoglobin contained in red blood cells. The mass concentration of the Hb determines the oxygen carrying capacity of the blood. Thus it becomes necessary to determine its concentration in the blood, which helps in monitoring the health of a person. If the amount of Hb crosses certain range, then it is considered critical. As the Hb constitutes upto 96% of red blood cells dry content, it would be interesting to examine various physical and mechanical parameters of RBCs which depends upon its concentration. Various diseases bring about significant variation in the amount of hemoglobin which may alter certain parameters of the RBC such as surface area, volume, membrane fluctuation etc. The study of the variations of these parameters may be helpful in determining Hb content which will reflect the state of health of a human body leading to disease diagnosis. Any increase or decrease in the amount of Hb will change the density and hence the optical thickness of the RBCs, which affects the cell membrane and thereby changing its mechanical and physical properties. Here we describe the use of lateral shearing digital holographic microscope for quantifying the cell parameters for studying the change in biophysical properties of cells due to variation in hemoglobin concentration.
NASA Astrophysics Data System (ADS)
Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio
2018-02-01
Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.
Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin
2015-12-15
We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du Le, Vinh Nguyen; Patterson, Michael S.; Farrell, Thomas J.; Hayward, Joseph E.; Fang, Qiyin
2015-12-01
The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).
Multiple-wavelength spectroscopic quantitation of light-absorbing species in scattering media
Nathel, Howard; Cartland, Harry E.; Colston, Jr., Billy W.; Everett, Matthew J.; Roe, Jeffery N.
2000-01-01
An oxygen concentration measurement system for blood hemoglobin comprises a multiple-wavelength low-coherence optical light source that is coupled by single mode fibers through a splitter and combiner and focused on both a target tissue sample and a reference mirror. Reflections from both the reference mirror and from the depths of the target tissue sample are carried back and mixed to produce interference fringes in the splitter and combiner. The reference mirror is set such that the distance traversed in the reference path is the same as the distance traversed into and back from the target tissue sample at some depth in the sample that will provide light attenuation information that is dependent on the oxygen in blood hemoglobin in the target tissue sample. Two wavelengths of light are used to obtain concentrations. The method can be used to measure total hemoglobin concentration [Hb.sub.deoxy +Hb.sub.oxy ] or total blood volume in tissue and in conjunction with oxygen saturation measurements from pulse oximetry can be used to absolutely quantify oxyhemoglobin [HbO.sub.2 ] in tissue. The apparatus and method provide a general means for absolute quantitation of an absorber dispersed in a highly scattering medium.
Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography
NASA Astrophysics Data System (ADS)
Boverman, Gregory; Fang, Qianqian; Carp, Stefan A.; Miller, Eric L.; Brooks, Dana H.; Selb, Juliette; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.
2007-07-01
We develop algorithms for imaging the time-varying optical absorption within the breast given diffuse optical tomographic data collected over a time span that is long compared to the dynamics of the medium. Multispectral measurements allow for the determination of the time-varying total hemoglobin concentration and of oxygen saturation. To facilitate the image reconstruction, we decompose the hemodynamics in time into a linear combination of spatio-temporal basis functions, the coefficients of which are estimated using all of the data simultaneously, making use of a Newton-based nonlinear optimization algorithm. The solution of the extremely large least-squares problem which arises in computing the Newton update is obtained iteratively using the LSQR algorithm. A Laplacian spatial regularization operator is applied, and, in addition, we make use of temporal regularization which tends to encourage similarity between the images of the spatio-temporal coefficients. Results are shown for an extensive simulation, in which we are able to image and quantify localized changes in both total hemoglobin concentration and oxygen saturation. Finally, a breast compression study has been performed for a normal breast cancer screening subject, using an instrument which allows for highly accurate co-registration of multispectral diffuse optical measurements with an x-ray tomosynthesis image of the breast. We are able to quantify the global return of blood to the breast following compression, and, in addition, localized changes are observed which correspond to the glandular region of the breast.
Comparison of linear and nonlinear models for coherent hemodynamics spectroscopy (CHS)
NASA Astrophysics Data System (ADS)
Sassaroli, Angelo; Kainerstorfer, Jana; Fantini, Sergio
2015-03-01
A recently proposed linear time-invariant hemodynamic model for coherent hemodynamics spectroscopy1 (CHS) relates the tissue concentrations of oxy- and deoxy-hemoglobin (outputs of the system) to given dynamics of the tissue blood volume, blood flow and rate constant of oxygen diffusion (inputs of the system). This linear model was derived in the limit of "small" perturbations in blood flow velocity. We have extended this model to a more general model (which will be referred to as the nonlinear extension to the original model) that yields the time-dependent changes of oxy and deoxy-hemoglobin concentrations in response to arbitrary dynamic changes in capillary blood flow velocity. The nonlinear extension to the model relies on a general solution of the partial differential equation that governs the spatio-temporal behavior of oxygen saturation of hemoglobin in capillaries and venules on the basis of dynamic (or time resolved) blood transit time. We show preliminary results where the CHS spectra obtained from the linear and nonlinear models are compared to quantify the limits of applicability of the linear model.
Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor
NASA Astrophysics Data System (ADS)
Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli
2007-02-01
Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.
Method for determining properties of red blood cells
Gourley, Paul L.
2001-01-01
A method for quantifying the concentration of hemoglobin in a cell, and indicia of anemia, comprises determining the wavelength of the longitudinal mode of a liquid in a laser microcavity; determining the wavelength of the fundamental transverse mode of a red blood cell in the liquid in the laser microcavity; and determining if the cell is anemic from the difference between the wavelength of the longitudinal mode and the fundamental transverse mode. In addition to measuring hemoglobin, the invention includes a method using intracavity laser spectroscopy to measure the change in spectra as a function of time for measuring the influx of water into a red blood cell and the cell's subsequent rupture.
NASA Astrophysics Data System (ADS)
Kaniyappan, Udayakumar; Gnanatheepam, Einstein; Aruna, Prakasarao; Dornadula, Koteeswaran; Ganesan, Singaravelu
2017-02-01
Cancer is one of the most common threat to human beings and it increases at an alarming level around the globe. In recent years, due to the advancements in opto-electronic technology, various optical spectroscopy techniques have emerged to assess the photophysicochemical and morphological conditions of normal and malignant tissues in micro as well as in macroscopic scale. In this regard, diffuse reflectance spectroscopy is considered to be the simplest, cost effective and rapid technique in diagnosis of cancerous tissues. In the present study, the hemoglobin concentration in normal and cancerous oral tissues was quantified and subsequent statistical analysis has been carried out to verify the diagnostic potentiality of the technique.
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Cantow, Kathleen; Arakelyan, Karen; Wabnitz, Heidrun; Flemming, Bert; Skalweit, Angela; Ladwig, Mechthild; Macdonald, Rainer; Niendorf, Thoralf; Seeliger, Erdmann
2015-07-01
We have developed a hybrid approach to investigate the dynamics of perfusion and oxygenation in the kidney of rats under pathophysiologically relevant conditions. Our approach combines near-infrared spectroscopy to quantify hemoglobin concentration and oxygen saturation in the renal cortex, and an invasive probe method for measuring total renal blood flow by an ultrasonic probe, perfusion by laser-Doppler fluxmetry, and tissue oxygen tension via fluorescence quenching. Hemoglobin concentration and oxygen saturation were determined from experimental data by a Monte Carlo model. The hybrid approach was applied to investigate and compare temporal changes during several types of interventions such as arterial and venous occlusions, as well as hyperoxia, hypoxia and hypercapnia induced by different mixtures of the inspired gas. The approach was also applied to study the effects of the x-ray contrast medium iodixanol on the kidney.
The changes of cerebral hemodynamics during ketamine induced anesthesia in a rat model.
Bae, Jayyoung; Shin, Teo J; Kim, Seonghyun; Choi, Dong-Hyuk; Cho, Dongrae; Ham, Jinsil; Manca, Marco; Jeong, Seongwook; Lee, Boreom; Kim, Jae G
2018-05-25
Current electroencephalogram (EEG) based-consciousness monitoring technique is vulnerable to specific clinical conditions (eg, epilepsy and dementia). However, hemodynamics is the most fundamental and well-preserved parameter to evaluate, even under severe clinical situations. In this study, we applied near-infrared spectroscopy (NIRS) system to monitor hemodynamic change during ketamine-induced anesthesia to find its correlation with the level of consciousness. Oxy-hemoglobin (OHb) and deoxy-hemoglobin concentration levels were continuously acquired throughout the experiment, and the reflectance ratio between 730 and 850 nm was calculated to quantify the hemodynamic changes. The results showed double peaks of OHb concentration change during ketamine anesthesia, which seems to be closely related to the consciousness state of the rat. This finding suggests the possibility of NIRS based-hemodynamic monitoring as a supplementary parameter for consciousness monitoring, compensating drawbacks of EEG signal based monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reif, Roberto; Qin, Jia; Shi, Lei; Dziennis, Suzan; Zhi, Zhongwei; Nuttall, Alfred L; Wang, Ruikang K
2012-01-01
A synchronized dual-wavelength laser speckle contrast imaging (DWLSCI) system and a Doppler optical microangiography (DOMAG) system was developed to determine several ischemic parameters in the cochlea due to a systemic hypoxic challenge. DWLSCI can obtain two-dimensional data, and was used to determine the relative changes in cochlear blood flow, and change in the concentrations of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) in mice. DOMAG can obtain three-dimensional data, and was used to determine the changes in cochlear blood flow with single vessel resolution. It was demonstrated that during a hypoxic challenge there was an increase in the concentrations of Hb, a decrease in the concentrations of HbO and cochlear blood flow, and a slight decrease in the concentration of HbT. Also, the rate of change in the concentrations of Hb and HbO was quantified during and after the hypoxic challenge. The ability to simultaneously measure these ischemic parameters with high spatio-temporal resolution will allow the detailed quantitative analysis of several hearing disorders, and will be useful for diagnosing and developing treatments.
Ethylene Oxide in Blood of Ethylene-Exposed B6C3F1 Mice, Fischer 344 Rats, and Humans
Filser, Johannes Georg; Erbach, Eva; Faller, Thomas; Kreuzer, Paul Erich; Li, Qiang
2013-01-01
The gaseous olefin ethylene (ET) is metabolized in mammals to the carcinogenic epoxide ethylene oxide (EO). Although ET is the largest volume organic chemical worldwide, the EO burden in ET-exposed humans is still uncertain, and only limited data are available on the EO burden in ET-exposed rodents. Therefore, EO was quantified in blood of mice, rats, or 4 volunteers that were exposed once to constant atmospheric ET concentrations of between 1 and 10 000 ppm (rodents) or 5 and 50 ppm (humans). Both the compounds were determined by gas chromatography. At ET concentrations of between 1 and 10 000 ppm, areas under the concentration-time curves of EO in blood (µmol × h/l) ranged from 0.039 to 3.62 in mice and from 0.086 to 11.6 in rats. At ET concentrations ≤ 30 ppm, EO concentrations in blood were 8.7-fold higher in rats and 3.9-fold higher in mice than that in the volunteer with the highest EO burdens. Based on measured EO concentrations, levels of EO adducts to hemoglobin and lymphocyte DNA were calculated for diverse ET concentrations and compared with published adduct levels. For given ET exposure concentrations, there were good agreements between calculated and measured levels of adducts to hemoglobin in rats and humans and to DNA in rats and mice. Reported hemoglobin adduct levels in mice were higher than calculated ones. Furthermore, information is given on species-specific background adduct levels. In summary, the study provides most relevant data for an improved assessment of the human health risk from exposure to ET. PMID:24068676
Cho, Jang Ik; Basnyat, Buddha; Jeong, Choongwon; Di Rienzo, Anna; Childs, Geoff; Craig, Sienna R.; Sun, Jiayang
2017-01-01
Abstract Background and objectives: Tibetans have distinctively low hemoglobin concentrations at high altitudes compared with visitors and Andean highlanders. This study hypothesized that natural selection favors an unelevated hemoglobin concentration among Tibetans. It considered nonheritable sociocultural factors affecting reproductive success and tested the hypotheses that a higher percent of oxygen saturation of hemoglobin (indicating less stress) or lower hemoglobin concentration (indicating dampened response) associated with higher lifetime reproductive success. Methodology: We sampled 1006 post-reproductive ethnically Tibetan women residing at 3000–4100 m in Nepal. We collected reproductive histories by interviews in native dialects and noninvasive physiological measurements. Regression analyses selected influential covariates of measures of reproductive success: the numbers of pregnancies, live births and children surviving to age 15. Results: Taking factors such as marriage status, age of first birth and access to health care into account, we found a higher percent of oxygen saturation associated weakly and an unelevated hemoglobin concentration associated strongly with better reproductive success. Women who lost all their pregnancies or all their live births had hemoglobin concentrations significantly higher than the sample mean. Elevated hemoglobin concentration associated with a lower probability a pregnancy progressed to a live birth. Conclusions and implications: These findings are consistent with the hypothesis that unelevated hemoglobin concentration is an adaptation shaped by natural selection resulting in the relatively low hemoglobin concentration of Tibetans compared with visitors and Andean highlanders. PMID:28567284
NASA Astrophysics Data System (ADS)
Douplik, Alexandre Y.; Kessler, Manfred D.; Kakihana, Yasuyuki; Krug, Alfons
1997-08-01
Functional evaluation of local hemoglobin concentration and hemoglobin oxygenation based on back scattering spectra from human skin in vivo have been obtained in visible range (502 - 628 nm) by a rapid microlightguide spectrometer (EMPHO II) with step 250 micrometer. Analysis of received results has shown that during local cooling there is two nearly simultaneous reactions: reduction of hemoglobin concentration and increase of hemoglobin oxygenation level. In a case when one has used previous heating of planning place for cooling, reduction of hemoglobin concentration is expressed higher by 22 - 33%.
Determination Of Ph Including Hemoglobin Correction
Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.
2005-09-13
Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.
2012-07-15
Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstructionmore » of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking gelatin phantoms. Conclusions: Accurate characterization of scattering is necessary for quantification of hemoglobin. Based on this study, a system design is described to optimally combine breast tomosynthesis with NIRST.« less
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; MacKinnon, Nicholas B.; Booth, Nicholas; Farkas, Daniel L.
2017-02-01
Purpose: To determine the performance of a multimode dermoscopy system (SkinSpect) designed to quantify and 3-D map in vivo melanin and hemoglobin concentrations in skin and its melanoma scoring system, and compare the results accuracy with SIAscopy, and histopathology. Methods: A multimode imaging dermoscope is presented that combines polarization, fluorescence and hyperspectral imaging to accurately map the distribution of skin melanin, collagen and hemoglobin in pigmented lesions. We combine two depth-sensitive techniques: polarization, and hyperspectral imaging, to determine the spatial distribution of melanin and hemoglobin oxygenation in a skin lesion. By quantifying melanin absorption in pigmented areas, we can also more accurately estimate fluorescence emission distribution mainly from skin collagen. Results and discussion: We compared in vivo features of melanocytic lesions (N = 10) extracted by non-invasive SkinSpect and SIMSYS-MoleMate SIAscope, and correlate them to pathology report. Melanin distribution at different depths as well as hemodynamics including abnormal vascularity we detected will be discussed. We will adapt SkinSpect scoring with ABCDE (asymmetry , border, color, diameter, evolution) and seven point dermatologic checklist including: (1) atypical pigment network, (2) blue-whitish veil, (3) atypical vascular pattern, (4) irregular streaks, (5) irregular pigmentation, (6) irregular dots and globules, (7) regression structures estimated by dermatologist. Conclusion: Distinctive, diagnostic features seen by SkinSpect in melanoma vs. normal pigmented lesions will be compared by SIAscopy and results from histopathology.
Wong, Lih-Ming; Chum, Jia-Min; Maddy, Peter; Chan, Steven T F; Travis, Douglas; Lawrentschuk, Nathan
2010-07-01
Macroscopic hematuria is a common symptom and sign that is challenging to quantify and describe. The degree of hematuria communicated is variable due to health worker experience combined with lack of a reliable grading tool. We produced a reliable, standardized visual scale to describe hematuria severity. Our secondary aim was to validate a new laboratory test to quantify hemoglobin in hematuria specimens. Nurses were surveyed to ascertain current hematuria descriptions. Blood and urine were titrated at varying concentrations and digitally photographed in catheter bag tubing. Photos were processed and printed on transparency paper to create a prototype swatch or card showing light, medium, heavy and old hematuria. Using the swatch 60 samples were rated by nurses and laymen. Interobserver variability was reported using the generalized kappa coefficient of agreement. Specimens were analyzed for hemolysis by measuring optical density at oxyhemoglobin absorption peaks. Interobserver agreement between nurses and laymen was good (kappa = 0.51, p <0.001). Subgroup analysis showed substantial agreement for light hematuria (kappa = 0.71). Overall agreement improved when the moderate (kappa = 0.28) and heavy (kappa = 0.53) hematuria categories were combined (kappa = 0.70). Compared to known blood concentrations the assay of optical density at oxyhemoglobin absorption peaks showed a linear trend. A simple visual scale to grade and communicate hematuria with adequate interobserver agreement is feasible. The test for optical density at oxyhemoglobin absorption peaks is a new method, validated in our study, to quantify hemoglobin in a hematuria specimen. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Hemoglobin level and lipoprotein particle size.
Hämäläinen, Päivi; Saltevo, Juha; Kautiainen, Hannu; Mäntyselkä, Pekka; Vanhala, Mauno
2018-01-10
Alterations in lipoprotein size are associated with increased cardiovascular disease risk. Higher hemoglobin levels may indicate a higher risk of atherosclerosis and was previously associated with obesity, metabolic syndrome, and insulin resistance. No previous studies have investigated an association between hemoglobin concentration and lipoprotein particle size. We conducted a population-based, cross-sectional study of 766 Caucasian, middle-aged subjects (341 men and 425 women) born in Pieksämäki, Finland, who were categorized into five age groups. The concentrations and sizes of lipoprotein subclass particles were analyzed by high-throughput nuclear magnetic resonance (NMR) spectroscopy. Larger very low density lipoprotein (VLDL) particle diameter was associated with higher hemoglobin concentrations in men (p = 0.003). There was a strong relationship between smaller high density lipoprotein (HDL) particle size and higher hemoglobin concentration in both men and women as well as with smaller low density lipoprotein (LDL) particle size and higher hemoglobin concentration in men and women (p < 0.001; p = 0.009, p = 0.008). VLDL particle concentration had a moderate positive correlation with hemoglobin concentration (r = 0.15; p < 0.001). LDL particle concentration showed a statistical trend suggesting increasing particle concentration with increasing hemoglobin levels (r = 0.08; p = 0.05). Higher hemoglobin levels are associated with larger VLDL, smaller LDL, and smaller HDL particle sizes and increasing amounts of larger VLDL and smaller LDL particles. This suggests that a higher hemoglobin concentration is associated with an unfavorable lipoprotein particle profile that is part of states that increase cardiovascular disease risk like diabetes and metabolic syndrome.
NASA Astrophysics Data System (ADS)
Jiang, Shudong; Pogue, Brian W.; Srinivasan, Subhadra; Soho, Sandra; Poplack, Steven P.; Tosteson, Tor D.; Paulsen, Keith D.
2003-07-01
Near-infrared imaging can be used in humans to characterize changes in breast tumor tissue by imaging total hemoglobin and water concentrations as well as oxygen saturation. In order to improve our understanding of these changes, we need to carefully quantify the range of variation possible in normal tissues for these parameters. In this study, the effect of the subject"s menstrual cycle was examined by imaging their breast at the follicular (7-14 days of the cycle) and secretory phases (21-28 days of the cycle), using our NIR tomographic system. In this system, a three layer patient interface is used to measure 3 planes along the breast from chest wall towards the nipple at 1cm increments. Seven volunteers in their 40s were observed for 2 menstrual cycles and all of these volunteers recently had normal mammograms (ACR 1) with heterogeneously dense breast composition. The results show that average total hemoglobin in the breast increased in many subjects between 0 to 15% from the follicular phase to secretory phase. Oxygen saturation and water concentration changes between these 2 parts of the cycle were between -6.5% to 12% for saturation and between -33% to 28% for water concentration. While the data averaged between subjects showed no significant change existed between phases, it was clear that individual subjects did exhibit changes in composition which were consistent from cycle to cycle. Understanding what leads to this heterogeneity between subjects will be an important factor in utilizing these measurements in clinical practice.
Diffuse optical tomography and spectroscopy of breast cancer and fetal brain
NASA Astrophysics Data System (ADS)
Choe, Regine
Diffuse optical techniques utilize light in the near infrared spectral range to measure tissue physiology non-invasively. Based on these measurements, either on average or a three-dimensional spatial map of tissue properties such as total hemoglobin concentration, blood oxygen saturation and scattering can be obtained using model-based reconstruction algorithms. In this thesis, diffuse optical techniques were applied for in vivo breast cancer imaging and trans-abdominal fetal brain oxygenation monitoring. For in vivo breast cancer imaging, clinical diffuse optical tomography and related instrumentation was developed and used in several contexts. Bulk physiological properties were quantified for fifty-two healthy subjects in the parallel-plate transmission geometry. Three-dimensional images of breast were reconstructed for subjects with breast tumors and, tumor contrast with respect to normal tissue was found in total hemoglobin concentration and scattering and was quantified for twenty-two breast carcinomas. Tumor contrast and tumor volume changes during neoadjuvant chemotherapy were tracked for one subject and compared to the dynamic contrast-enhanced MRI. Finally, the feasibility for measuring blood flow of breast tumors using optical methods was demonstrated for seven subjects. In a qualitatively different set of experiments, the feasibility for trans-abdominal fetal brain oxygenation monitoring was demonstrated on pregnant ewes with induced fetal hypoxia. Preliminary clinical experiences were discussed to identify future directions. In total, this research has translated diffuse optical tomography techniques into clinical research environment.
Wong, Kenneth A; Nsier, Nada; Acker, Jason P
2009-10-01
Red blood cells (RBCs) cryopreserved in glycerol must be deglycerolized prior to transfusion. The adequacy of glycerol removal is commonly assessed by measurement of the refractive index (RI) of the supernatant fluid. However, the presence of free hemoglobin in the supernatant falsely increases the RI and may lead to discard of units that have an acceptable residual glycerol concentration. We performed an analysis of the diagnostic accuracy of 3 methods for residual glycerol measurement - refractometry, osmometry, and a glycerol assay kit. Residual glycerol measurement using these methods was performed on 12 deglycerolized, citrate-phosphate-dextrose (CPD)/saline-adenine-glucose-mannitol (SAGM) leukoreduced RBCs. A calculation that estimates the glycerol concentration based on the refractive index and supernatant hemoglobin concentration was developed and ensures that units with an elevated RI due to the presence of hemoglobin are not discarded if their residual glycerol concentration was <1.0% (w/v). Osmometry was an accurate method for estimating residual glycerol concentration. Refractometry overestimated the residual glycerol concentration due to the interference from hemoglobin. However, when supernatant hemoglobin values were measured and used in the calculation for glycerol concentration, refractometry accurately estimated the residual glycerol concentration. The residual glycerol concentration of cryopreserved, deglycerolized CPD/SAGM RBCs can be accurately estimated using the supernatant refractive index and an equation that accounts for the supernatant hemoglobin concentration.
Altucher, Kristine; Rasmussen, Kathleen M; Barden, Elizabeth M; Habicht, Jean-Pierre
2005-05-01
Nutrition supplementation programs are generally targeted to those members of the population who are thought to be at risk of an undesirable outcome, but not all who participate in such programs respond to them. We sought to identify determinants of improvement in hemoglobin concentration among young children in the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). We conducted an observational study using data from 9,930 children who were enrolled in the Massachusetts WIC program and had data available on their hemoglobin values at both 1 and 2 years of age. Predictors of change in hemoglobin concentration between these ages were studied using multivariate statistical modeling. Overall, hemoglobin concentrations increased from age 1 to 2 years in those who had been breastfed 25 or more weeks (P < .0001) and were female (P < .01), and decreased with increasing weight at 1 year of age (P < .001). The determinants of change in hemoglobin concentration differed from the determinants of hemoglobin concentration at age 1 year. The analytical approach used here could be extended to identify subgroups of WIC participants likely to improve in other outcomes. If current efforts to increase the duration of breastfeeding among WIC participants are successful, the importance of WIC in improving hemoglobin concentration among young children also will increase.
Rivera-Rodríguez, Laura B; Rodríguez-Estrella, Ricardo
2011-01-01
We identified and quantified organochlorine (OC) pesticide residues in the plasma of 28 osprey (Pandion haliaetus) nestlings from a dense population in Laguna San Ignacio, a pristine area of Baja California Sur, Mexico, during the 2001 breeding season. Sixteen OC pesticides were identified and quantified. α-, β-, δ- and γ-hexachlorocyclohexane, heptaclor, heptachlor epoxide, endosulfan I and II, endosulfan-sulfate, p,p'-DDE, p,p'-DDD, aldrin, dieldrin, endrin, endrin aldehyde, and endrin ketone were the OCs found in the plasma of nestlings, ranging from 0.002 to 6.856 pg/μl (parts per billion). No differences were found in the concentration of pesticides between genders (P > 0.05). In our work, the concentrations detected in the plasma were lower than those reported to be a threat for the species and that affect the survival and reproduction of birds. The presence of OC pesticides in the remote Laguna San Ignacio osprey population is an indication of the ubiquitous nature of these contaminants. OCs are apparently able to travel long distances from their source to the study area. A significant relationship between hemoglobin and mean corpuscular hemoglobin concentrations and OC concentrations were found suggesting that a potential effect on the health of chicks may exist in this osprey population caused by the OC, e.g. anemia. The total proteins were positively correlated with α-BHC, endosulfan I, and p,p'-DDD. It has been suggested that OC also affects competitive interactions and population status over the long term in vertebrate species, and our results could be used as reference information for comparison with other more exposed osprey populations.
Fluorescent measurements in whole blood and plasma using red-emitting dyes
NASA Astrophysics Data System (ADS)
Abugo, Omoefe O.; Herman, Petr; Lakowicz, Joseph R.
2000-04-01
We have determined the fluorescence characteristics of albumin blue 670 and Rhodamine 800 in plasma and blood in order to test the feasibility of making direct fluorescence sensing measurements in blood. These dyes were used because of their absorption in the red/NIR where absorption by hemoglobin is minimized. Front face illumination and detection was used to minimize absorption and scattering during measurement. Fluorescence emission was observed for these dyes in plasma and blood. Attenuation of the fluorescence emission was observed in blood because of hemoglobin absorption. Using frequency domain fluorometry, we recovered the expected lifetime parameters for both dyes in blood and plasma. We were able to quantify HSA concentrations using changes in the mean lifetime of AB670, a dye previously shown to bind preferentially to HSA. Rh800 concentrations in plasma and blood were also determined using modulation sensing. Anisotropy measurements revealed high Anisotropy for these dyes in plasma and blood. It also showed an increase in the anisotropy of AB670 with increase in HSA concentration in the presence of red blood cells. These results indicate that qualitative and quantitative fluorescence measurements can be made directly in blood without the need to process the blood.
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells.
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement by neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells ([Formula: see text]330 g.L -1 ) corresponds to an optimum for oxygen transport for individuals under strong activity.
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longeville, Stéphane; Stingaciu, Laura-Roxana
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Bradley, Melville D
2011-03-01
2,4,6-Trinitrotoluene (TNT) is an explosive used in munitions production that is known to cause both aplastic and hemolytic anemia in exposed workers. Anemia in a TNT worker is considered a sentinel health event (occupational) (SHE(O)) in the United States (US). Deaths have been reported secondary to aplastic anemia. Studies have shown that TNT systemic absorption is significant by both the respiratory and dermal routes. No studies encountered looked at hemoglobin change or anemia cases in respiratory protected workers. It is hypothesized that respiratory protection is insufficient to protect TNT workers from the risk of anemia development and hemoglobin concentration drop. A records review of eight groups of respiratory protected TNT workers' pre-exposure hemoglobin levels were compared with their during-exposure hemoglobin levels for statistically significant (alpha level 0.05) hemoglobin level changes, and anemia cases were recorded. A curve estimation analysis was performed between mean TNT air concentrations and mean hemoglobin change values. Statistically significant hemoglobin level drops and anemia cases were apparent at TNT air concentrations about the REL and PEL in respiratory protected workers. There were no anemia cases or statistically significant hemoglobin level drops at concentrations about the TLV, however. A statistically significant inverse non-linear regression model was found to be the best fit for regressing hemoglobin change on TNT air concentration. Respiratory protection may be inadequate to prevent workers who are at risk for TNT skin absorption from developing anemia. This study contributes evidence that the TLV should be considered for adoption as the new PEL.
A proposal to standardize reporting units for fecal immunochemical tests for hemoglobin.
Fraser, Callum G; Allison, James E; Halloran, Stephen P; Young, Graeme P
2012-06-06
Fecal immunochemical tests for hemoglobin are replacing traditional guaiac fecal occult blood tests in population screening programs for many reasons. However, the many available fecal immunochemical test devices use a range of sampling methods, differ with regard to hemoglobin stability, and report hemoglobin concentrations in different ways. The methods for sampling, the mass of feces collected, and the volume and characteristics of the buffer used in the sampling device also vary among fecal immunochemical tests, making comparisons of test performance characteristics difficult. Fecal immunochemical test results may be expressed as the hemoglobin concentration in the sampling device buffer and, sometimes, albeit rarely, as the hemoglobin concentration per mass of feces. The current lack of consistency in units for reporting hemoglobin concentration is particularly problematic because apparently similar hemoglobin concentrations obtained with different devices can lead to very different clinical interpretations. Consistent adoption of an internationally accepted method for reporting results would facilitate comparisons of outcomes from these tests. We propose a simple strategy for reporting fecal hemoglobin concentration that will facilitate the comparison of results between fecal immunochemical test devices and across clinical studies. Such reporting is readily achieved by defining the mass of feces sampled and the volume of sample buffer (with confidence intervals) and expressing results as micrograms of hemoglobin per gram of feces. We propose that manufacturers of fecal immunochemical tests provide this information and that the authors of research articles, guidelines, and policy articles, as well as pathology services and regulatory bodies, adopt this metric when reporting fecal immunochemical test results.
NASA Astrophysics Data System (ADS)
Xu, Xiaorong; Zhu, Wen; Padival, Vikram; Xia, Mengna; Cheng, Xuefeng; Bush, Robin; Christenson, Linda; Chan, Tim; Doherty, Tim; Iatridis, Angelo
2003-07-01
Photonify"s tissue spectrometer uses Near-Infrared Spectroscopy for real-time, noninvasive measurement of hemoglobin concentration and oxygen saturation [SO2] of biological tissues. The technology was validated by a series of ex vivo and animal studies. In the ex vivo experiment, a close loop blood circulation system was built, precisely controlling the oxygen saturation and the hemoglobin concentration of a liquid phantom. Photonify"s tissue spectrometer was placed on the surface of the liquid phantom for real time measurement and compared with a gas analyzer, considered the gold standard to measure oxygen saturation and hemoglobin concentration. In the animal experiment, the right hind limb of each dog accepted onto the study was surgically removed. The limb was kept viable by connecting the femoral vein and artery to a blood-primed extracorporeal circuit. Different concentrations of hemoglobin were obtained by adding designated amount of saline solution into the perfusion circuit. Photonify"s tissue spectrometers measured oxygen saturation and hemoglobin concentration at various locations on the limb and compared with gas analyzer results. The test results demonstrated that Photonify"s tissue spectrometers were able to detect the relative changes in tissue oxygen saturation and hemoglobin concentration with a high linear correlation compared to the gas analyzer
The refractive index of human hemoglobin in the visible range.
Zhernovaya, O; Sydoruk, O; Tuchin, V; Douplik, A
2011-07-07
Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l(-1). This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l(-1). The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.
U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation.
Dewey, Kathryn G; Oaks, Brietta M
2017-12-01
Both iron deficiency (ID) and excess can lead to impaired health status. There is substantial evidence of a U-shaped curve between the risk of adverse birth outcomes and maternal hemoglobin concentrations during pregnancy; however, it is unclear whether those relations are attributable to conditions of low and high iron status or to other mechanisms. We summarized current evidence from human studies regarding the association between birth outcomes and maternal hemoglobin concentrations or iron status. We also reviewed effects of iron supplementation on birth outcomes among women at low risk of ID and the potential mechanisms for adverse effects of high iron status during pregnancy. Overall, we confirmed a U-shaped curve for the risk of adverse birth outcomes with maternal hemoglobin concentrations, but the relations differ by trimester. For low hemoglobin concentrations, the link with adverse outcomes is more evident when hemoglobin concentrations are measured in early pregnancy. These relations generally became weaker or nonexistent when hemoglobin concentrations are measured in the second or third trimesters. Associations between high hemoglobin concentration and adverse birth outcomes are evident in all 3 trimesters but evidence is mixed. There is less evidence for the associations between maternal iron status and adverse birth outcomes. Most studies used serum ferritin (SF) concentrations as the indicator of iron status, which makes the interpretation of results challenging because SF concentrations increase in response to inflammation or infection. The effect of iron supplementation during pregnancy may depend on initial iron status. There are several mechanisms through which high iron status during pregnancy may have adverse effects on birth outcomes, including oxidative stress, increased blood viscosity, and impaired systemic response to inflammation and infection. Research is needed to understand the biological processes that underlie the U-shaped curves seen in observational studies. Reevaluation of cutoffs for hemoglobin concentrations and indicators of iron status during pregnancy is also needed. © 2017 American Society for Nutrition.
Cedrati, N; Bonneaux, F; Labrude, P; Maincent, P
1997-09-01
Hemoglobin solutions can be used as blood substitutes but they present some disadvantages often due to their rapid removal from the bloodstream after injection. A possible way of overcoming this problem is to trap hemoglobin inside particles. This study deals with the preparation, structure and stability of poly(lactic acid) and ethylcellulose microparticles containing human hemoglobin obtained with a double emulsion technique. We investigated the manufacturing process of these particles in order to increase the encapsulation ratio of hemoglobin. For this purpose, some parameters involved in the procedure were optimized, such as hemoglobin concentration and duration of stirring: hemoglobin loading increases with its concentration in the preparation and well-defined stirring time avoids a leakage of hemoglobin. Hemoglobin concentration, surfactant concentration i.e. poly(vinylic alcohol), amounts of polymer and solvent (methylene chloride), duration and speed of stirring. The microparticles were prepared with satisfactory yields (60 to 73%). They were spherical and their mean size was lower than 200 microns. The functional properties of entrapped hemoglobin were studied. The encapsulation did not alter hemoglobin and the oxygen affinity of the hemoglobin remained unmodified (P50 about 13.9 mm Hg in a Bis-Tris buffer pH 7.4 at 37 degrees C). Moreover, only low levels of methemoglobin could be detected (less than 3%). Besides, about 90% of encapsulated hemoglobin could be released from microparticles, with a speed related to the internal structure of the particles. The prepared microparticles were stored during one month at +4 degrees C. No degradation of the particle structure occurred and the functional properties of hemoglobin were preserved. These particles could provide a potential source of oxygen in the field of biotechnologies but any application for a transfusional purpose would first require a drastic reduction in particle size.
MRI-Guided Diffuse Optical Spectroscopy of Malignant and Benign Breast Lesions1
Ntziachristos, Vasilis; Yodh, A G; Schnall, Mitchell D; Chance, Britton
2002-01-01
Abstract We present the clinical implementation of a novel hybrid system that combines magnetic resonance imaging (MRI) and near-infrared (NIR) optical measurements for the noninvasive study of breast cancer in vivo. Fourteen patients were studied with a MR-NIR prototype imager and spectrometer. A diffuse optical tomographic scheme employed the MR images as a priori information to implement an image-guided NIR localized spectroscopic scheme. All patients who entered the study also underwent gadolinium-enhanced MRI and biopsy so that the optical findings were cross-validated with MR readings and histopathology. The technique quantified the oxy- and deoxyhemoglobin of five malignant and nine benign breast lesions in vivo. Breast cancers were found with decreased oxygen saturation and higher blood concentration than most benign lesions. The average hemoglobin concentration ([H]) of cancers was 0.130±0.100 mM, and the average hemoglobin saturation (Y) was 60±9% compared to [H]=0.018±0.005 mM and Y=69±6% of background tissue. Fibroadenomas exhibited high hemoglobin concentration [H]=0.060±0.010 mM and mild decrease in oxygen saturation Y=67±2%. Cysts and other normal lesions were easily differentiated based on intrinsic contrast information. This novel optical technology can be a significant add-on in MR examinations and can be used to characterize functional parameters of cancers with diagnostic and treatment prognosis potential. It is foreseen that the technique can play a major role in functional activation studies of brain and muscle as well. PMID:12082551
Friebel, Moritz; Meinke, Martina
2006-04-20
The real part of the complex refractive index of oxygenated native hemoglobin solutions dependent on concentration was determined in the wavelength range 250 to 1100 nm by Fresnel reflectance measurements. The hemoglobin solution was produced by physical hemolysis of human erythrocytes followed by ultracentrifugation and filtration. A model function is presented for calculating the refractive index of hemoglobin solutions depending on concentration in the wavelength range 250 to 1100 nm.
NASA Astrophysics Data System (ADS)
Gu, Yueqing; Bourke, Vincent; Kim, Jae Gwan; Xia, Mengna; Constantinescu, Anca; Mason, Ralph P.; Liu, Hanli
2003-07-01
Three oxygen-sensitive parameters (arterial hemoglobin oxygen saturation SaO2, tumor vascular oxygenated hemoglobin concentration [HbO2], and tumor oxygen tension pO2) were measured simultaneously by three different optical techniques (pulse oximeter, near infrared spectroscopy, and FOXY) to evaluate dynamic responses of breast tumors to carbogen (5% CO2 and 95% O2) intervention. All three parameters displayed similar trends in dynamic response to carbogen challenge, but with different response times. These response times were quantified by the time constants of the exponential fitting curves, revealing the immediate and the fastest response from the arterial SaO2, followed by changes in global tumor vascular [HbO2], and delayed responses for pO2. The consistency of the three oxygen-sensitive parameters demonstrated the ability of NIRS to monitor therapeutic interventions for rat breast tumors in-vivo in real time.
NASA Astrophysics Data System (ADS)
Tian, Han; Li, Ming; Wang, Yue; Sheng, Dinggao; Liu, Jun; Zhang, Linna
2017-11-01
Hemoglobin concentration is commonly used in clinical medicine to diagnose anemia, identify bleeding, and manage red blood cell transfusions. The golden standard method for determining hemoglobin concentration in blood requires reagent. Spectral methods were advantageous at fast and non-reagent measurement. However, model calibration with full spectrum is time-consuming. Moreover, it is necessary to use a few variables considering size and cost of instrumentation, especially for a portable biomedical instrument. This study presents different wavelength selection methods for optical wavelengths for total hemoglobin concentration determination in whole blood. The results showed that modelling using only two wavelengths combination (1143 nm, 1298 nm) can keep on the fine predictability with full spectrum. It appears that the proper selection of optical wavelengths can be more effective than using the whole spectra for determination hemoglobin in whole blood. We also discussed the influence of water absorptivity on the wavelength selection. This research provides valuable references for designing portable NIR instruments determining hemoglobin concentration, and may provide some experience for noninvasive hemoglobin measurement by NIR methods.
Correlation of Oxygenated Hemoglobin Concentration and Psychophysical Amount on Speech Recognition
NASA Astrophysics Data System (ADS)
Nozawa, Akio; Ide, Hideto
The subjective understanding on oral language understanding task is quantitatively evaluated by the fluctuation of oxygenated hemoglobin concentration measured by the near-infrared spectroscopy. The English listening comprehension test wihch consists of two difficulty level was executed by 4 subjects during the measurement. A significant correlation was found between the subjective understanding and the fluctuation of oxygenated hemoglobin concentration.
Chen, Hauh-Jyun Candy; Chen, Yu-Chin; Hsiao, Chiung-Fong; Chen, Pin-Fan
2015-12-21
Glyoxal and methylglyoxal are oxoaldehydes derived from the degradation of glucose-protein conjugates and from lipid peroxidation, and they are also present in the environment. This study investigated the site-specific reaction of glyoxal and methylglyoxal with the amino acid residues on human hemoglobin using a shot-gun proteomic approach with nanoflow liquid chromatography/nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS). In human hemoglobin incubated with glyoxal, modification on 8 different sites, including lysine residues at α-Lys-11, α-Lys-16, α-Lys-56, β-Lys-17, β-Lys-66, β-Lys-144, and arginine residues at α-Arg-92 and β-Arg-30, was observed using a data-dependent scan. In methylglyoxal-treated hemoglobin, there were specific residues, namely, α-Arg-92, β-Lys-66, β-Arg-30, and β-Lys-144, forming carboxyethylation as well as the dehydrated product hydroimidazolone at α-Arg-92 and β-Arg-30. These lysine and arginine modifications were confirmed by accurate mass measurement and the MS(2) and MS(3) spectra. The most intensive signal of each modified peptide was used as the precursor ion to perform the product ion scan. The relative extent of modifications was semiquantified simultaneously relative to the native reference peptide by nanoLC-NSI/MS/MS under the selected reaction monitoring (SRM) mode. The extent of these modifications increased dose-dependently with increasing concentrations of glyoxal or methylglyoxal. Six out of the eight modifications induced by glyoxal and three out of the six modifications induced by methylglyoxal were detected in hemoglobin freshly isolated from human blood samples. The relative extent of modification of these post-translational modifications was quantified in poorly controlled type 2 diabetes mellitus patients (n = 20) and in nondiabetic control subjects (n = 21). The results show that the carboxymethylated peptides at α-Lys-16, α-Arg-92, β-Lys-17, β-Lys-66, and the peptide at α-Arg-92 with methylglyoxal-derived hydroimidazolone are significantly higher in diabetic patients than in normal individuals (p value <0.05). This report identified and quantified glyoxal- and methylglyoxal-modified hemoglobin peptides in humans and revealed the association of the extent of modifications at specific sites with T2DM. Only one drop (10 μL) of fresh blood is needed for this assay, and only an equivalent of 1 μg of hemoglobin was analyzed by the nanoLC-NSI/MS/MS-SRM system. These results suggest the potential use of these specific post-translational modifications in hemoglobin as feasible biomarker candidates to assess protein damage induced by glyoxal and methylglyoxal.
1976-01-01
Bone marrow from mature goats and sheep was cultured in plasma clots, and three erythropoietin (ESF)-dependent responses-growth (colony formation), differentiation (globin production), and initiation of hemoglobin C (alpha2beta2C) synthesis--were quantitated. ESF concentrations below 0.01 U/ml supported colony growth and adult hemoglobin production in cultures of goat marrow, while maximal hemoglobin C synthesis (70%), as measured between 72 and 96 h in culture, required a 100-fold higher ESF concentration. Sheep marrow was cultured in a medium enriched to enhance growth and to permit complete maturation of colonies. These colonies active in hemoglobin synthesis between 24 and 96 h produced mainly adult hemoglobin, and only between 96 and 120 h did sheep colonies develop which produced mainly hemoglobin C (up to 70%). A similar heterogeneity may exist among goat colonies. Thus, when goat bone marrow was fractionated by unit gravity sedimentation, more hemoglobin C synthesis was observed in colonies derived from cells of intermediate sedimentation velocity than in colonies derived from the most rapidly sedimenting cells. Brief exposure of sheep (in vivo) and goat (in vitro) bone marrow to a high ESF concentration committed precursor cells to the generation of colonies which, even at low ESF concentration, produced hemoglobin C. Committment to hemoglobin phenotype appears to be an early and probably irreversible event in the development of an erythroid cell. PMID:993267
Hemoglobin Concentration and Risk of Incident Stroke in Community-Living Adults.
Panwar, Bhupesh; Judd, Suzanne E; Warnock, David G; McClellan, William M; Booth, John N; Muntner, Paul; Gutiérrez, Orlando M
2016-08-01
In previous observational studies, hemoglobin concentrations have been associated with an increased risk of stroke. However, these studies were limited by a relatively low number of stroke events, making it difficult to determine whether the association of hemoglobin and stroke differed by demographic or clinical factors. Using Cox proportional hazards analysis and Kaplan-Meier plots, we examined the association of baseline hemoglobin concentrations with incident stroke in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, a cohort of black and white adults aged ≥45 years. A total of 518 participants developed stroke over a mean 7±2 years of follow-up. There was a statistically significant interaction between hemoglobin and sex (P=0.05) on the risk of incident stroke. In Cox regression models adjusted for demographic and clinical variables, there was no association of baseline hemoglobin concentration with incident stroke in men, whereas in women, the lowest (<12.4 g/dL) and highest (>14.0 g/dL) quartiles of hemoglobin were associated with higher risk of stroke when compared with the second quartile (12.4-13.2 g/dL; quartile 1: hazard ratio, 1.59; 95% confidence interval, 1.09-2.31; quartile 2: referent; quartile 3: hazard ratio, 0.91; 95% confidence interval, 0.59-1.38; quartile 4: hazard ratio, 1.59; 95% confidence interval, 1.08-2.35). Similar results were observed in models stratified by hemoglobin and sex and when hemoglobin was modeled as a continuous variable using restricted quadratic spline regression. Lower and higher hemoglobin concentrations were associated with a higher risk of incident stroke in women. No such associations were found in men. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Lotfabadi, Shahin S.; Toronov, Vladislav; Ramadeen, Andrew; Hu, Xudong; Kim, Siwook; Dorian, Paul; Hare, Gregory M. T.
2014-03-01
Near-infrared spectroscopy (NIRS) is a non-invasive tool to measure real-time tissue oxygenation in the brain. In an invasive animal experiment we were able to directly compare non-invasive NIRS measurements on the skull with invasive measurements directly on the brain dura matter. We used a broad-band, continuous-wave hyper-spectral approach to measure tissue oxygenation in the brain of pigs under the conditions of cardiac arrest, cardiopulmonary resuscitation (CPR), and defibrillation. An additional purpose of this research was to find a correlation between mortality due to cardiac arrest and inadequacy of the tissue perfusion during attempts at resuscitation. Using this technique we measured the changes in concentrations of oxy-hemoglobin [HbO2] and deoxy-hemoglobin [HHb] to quantify the tissue oxygenation in the brain. We also extracted cytochrome c oxidase changes Δ[Cyt-Ox] under the same conditions to determine increase or decrease in cerebral oxygen delivery. In this paper we proved that applying CPR, [HbO2] concentration and tissue oxygenation in the brain increase while [HHb] concentration decreases which was not possible using other measurement techniques. We also discovered a similar trend in changes of both [Cyt-Ox] concentration and tissue oxygen saturation (StO2). Both invasive and non-invasive measurements showed similar results.
Bellik, Yuva; Iguer-Ouada, Mokrane
2016-01-01
In past decades, a multitude of analytical methods for measuring antioxidant activity of plant extracts has been developed. However, when using methods to determine hemoglobin released from human erythrocytes treated with ginger extracts, we found hemoglobin concentrations were significantly higher than in untreated control samples. This suggests in the presence of antioxidants that measuring hemoglobin alone is not sufficient to determine hemolysis. We show concurrent measurement of erythrocyte concentration and hemoglobin is essential in such assays, and describe a new protocol based on simultaneous measurement of cellular turbidity and hemoglobin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fantini, Sergio
2014-01-15
This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. Copyright © 2013 Elsevier Inc. All rights reserved.
Fantini, Sergio
2013-01-01
This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. PMID:23583744
Nonlinear photoacoustic spectroscopy of hemoglobin
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.
2015-01-01
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography. PMID:26045627
Nonlinear photoacoustic spectroscopy of hemoglobin.
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P; Xia, Jun; Wang, Lihong V
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.
Subunit dissociation in fish hemoglobins.
Edelstein, S J; McEwen, B; Gibson, Q H
1976-12-10
The tetramer-dimer dissociation equilibria (K 4,2) of several fish hemoglobins have been examined by sedimentation velocity measurements with a scanner-computer system for the ultracentrifuge and by flash photolysis measurements using rapid kinetic methods. Samples studied in detail included hemoglobins from a marine teleost, Brevoortia tyrannus (common name, menhaden); a fresh water teleost, Cyprinus carpio, (common name, carp); and an elasmobranch Prionace glauca (common name, blue shark). For all three species in the CO form at pH 7, in 0.1 M phosphate buffer, sedimentation coefficients of 4.3 S (typical of tetrameric hemoglobin) are observed in the micromolar concentration range. In contrast, mammalian hemoglobins dissociate appreciably to dimers under these conditions. The inability to detect dissociation in three fish hemoglobins at the lowest concentrations examined indicates that K 4,2 must have a value of 10(-8) M or less. In flash photolysis experiments on very dilute solutions in long path length cells, two kinetic components were detected with their proportions varying as expected for an equilibrium between tetramers (the slower component) and dimers (the faster component); values of K 4,2 for the three fish hemoglobins in the range 10(-9) to 10(-8) M were calculated from these data. Thus, the values of K 4,2 for liganded forms of the fish hemoglobins appear to be midway between the value for liganded human hemoglobin (K 4,2 approximately 10(-6) M) and unliganded human hemoglobin (K 4,2 approximately 10(-12) M). This conclusion is supported by measurements on solutions containing guanidine hydrochloride to enhance the degree of dissociation. All three fish hemoglobins are appreciably dissociated at guanidine concentrations of about 0.8 M, which is roughly midway between the guanidine concentrations needed to cause comparable dissociation of liganded human hemoglobin (about 0.4 M) and unliganded human hemoglobin (about 1.6 M). Kinetic measurements on solutions containing guanidine hydrochloride indicated that there are changes in both the absolute rates and the proportions of the fast and slow components, which along with other factors complicated the analysis of the data in terms of dissociation constants. Measurements were also made in solutions containing urea to promote dissociation, but with this agent very high concentrations (about 6 M) were required to give measureable dissociation and the fish hemoglobins were unstable under these conditions, with appreciable loss of absorbance spectra in both the sedimentation and kinetic experiments.
Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko
2016-01-01
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors.
Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko
2016-01-01
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors. PMID:27547939
Intestinal blood loss during cow milk feeding in older infants: quantitative measurements.
Jiang, T; Jeter, J M; Nelson, S E; Ziegler, E E
2000-07-01
To determine the response, in terms of fecal hemoglobin excretion and clinical symptoms, of normal 9 1/2-month-old infants to being fed cow milk. Longitudinal (before-after) trial in which each infant was fed formula for 1 month (baseline) followed by 3 months during which cow milk was fed. Healthy infants living in Iowa City, Iowa, a town with a population of about 60,000. Hemoglobin concentration in spot stools, 96-hour quantitative fecal hemoglobin excretion, stool characteristics, feeding-related behaviors, and iron nutritional status. Fecal hemoglobin concentration during formula feeding (baseline) was higher than previously observed in younger infants. Nine of 31 infants responded to cow milk feeding with increased fecal hemoglobin concentration. Fecal hemoglobin concentration (mean +/- SD) of the 9 responders rose from 1,395 +/- 856 microg/g of dry stool (baseline) to 2,711 +/- 1,732 microg/g of dry stool (P=.01). The response rate (29%) was similar to that in younger infants, but the intensity of the response was much less. Quantitative hemoglobin excretion was in general agreement with estimates based on spot stool hemoglobin concentrations. Cow milk feeding was not associated with recognizable changes in stool characteristics, nor were there clinical signs related to fecal blood loss. Iron status was similar, except that after 3 months of cow milk feeding responders showed lower (P= .047) ferritin concentrations than nonresponders. Cow milk-induced blood loss is present in 9 1/2-month-old infants but is of such low intensity that its clinical significance seems questionable. Nevertheless, infants without cow milk-induced blood loss were in better iron nutritional status than infants who showed blood loss.
Hallward, George; Balani, Nikhail; McCorkell, Stuart; Roxburgh, James; Cornelius, Victoria
2016-08-01
Preoperative anemia is an established risk factor associated with adverse perioperative outcomes after cardiac surgery. However, limited information exists regarding the relationship between preoperative hemoglobin concentration and outcomes. The aim of this study was to investigate how outcomes are affected by preoperative hemoglobin concentration in a cohort of patients undergoing cardiac surgery. A retrospective, observational cohort study. A single-center tertiary referral hospital. The study comprised 1,972 adult patients undergoing elective and nonelective cardiac surgery. The independent relationship of preoperative hemoglobin concentration was explored on blood transfusion rates, return to the operating room for bleeding and/or cardiac tamponade, postoperative intensive care unit (ICU) and in-hospital length of stay, and mortality. The overall prevalence of anemia was 32% (629/1,972 patients). For every 1-unit increase in hemoglobin (g/dL), blood transfusion requirements were reduced by 11%, 8%, and 3% for red blood cell units, platelet pools, and fresh frozen plasma units, respectively (adjusted incident rate ratio 0.89 [95% CI 0.87-0.91], 0.92 [0.88-0.97], and 0.97 [0.96-0.99]). For each 1-unit increase in hemoglobin (g/dL), the probability (over time) of discharge from the ICU and hospital increased (adjusted hazard ratio estimates 1.04 [1.00-1.08] and 1.12 [1.12-1.16], respectively). A lower preoperative hemoglobin concentration resulted in increased use of hospital resources after cardiac surgery. Each g/dL unit fall in preoperative hemoglobin concentration resulted in increased blood transfusion requirements and increased postoperative ICU and hospital length of stay. Copyright © 2016 Elsevier Inc. All rights reserved.
Desmons, Aurore; Jaisson, Stéphane; Gillery, Philippe; Guillard, Emmanuelle
2013-01-01
D-10(®) (Bio-Rad) analyzer using cationic exchange high performance chromatography (HPLC) allows the detection of the main hemoglobin variants. This observation shows the presence of a peak on chromatogram with a low intensity and no quantifiable which can lead to different diagnosis. Inter-sample contaminations can be confused with the presence of an hemoglobin variant. This case highlights the importance of the knowledge of technicals limits for validation and clinical use of results.
Nonlinear photoacoustic spectroscopy of hemoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics,more » such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.« less
Measurement of refractive index of hemoglobin in the visible/NIR spectral range
NASA Astrophysics Data System (ADS)
Lazareva, Ekaterina N.; Tuchin, Valery V.
2018-03-01
This study is focused on the measurements of the refractive index of hemoglobin solutions in the visible/near-infrared (NIR) spectral range at room temperature for characteristic laser wavelengths: 480, 486, 546, 589, 644, 656, 680, 930, 1100, 1300, and 1550 nm. Measurements were performed using the multiwavelength Abbe refractometer. Aqua hemoglobin solutions of different concentrations obtained from human whole blood were investigated. The specific increment of refractive index on hemoglobin concentration and the Sellmeier coefficients were calculated.
Identification of a Hemolysis Threshold That Increases Plasma and Serum Zinc Concentration.
Killilea, David W; Rohner, Fabian; Ghosh, Shibani; Otoo, Gloria E; Smith, Lauren; Siekmann, Jonathan H; King, Janet C
2017-06-01
Background: Plasma or serum zinc concentration (PZC or SZC) is the primary measure of zinc status, but accurate sampling requires controlling for hemolysis to prevent leakage of zinc from erythrocytes. It is not established how much hemolysis can occur without changing PZC/SZC concentrations. Objective: This study determines a guideline for the level of hemolysis that can significantly elevate PZC/SZC. Methods: The effect of hemolysis on PZC/SZC was estimated by using standard hematologic variables and mineral content. The calculated hemolysis threshold was then compared with results from an in vitro study and a population survey. Hemolysis was assessed by hemoglobin and iron concentrations, direct spectrophotometry, and visual assessment of the plasma or serum. Zinc and iron concentrations were determined by inductively coupled plasma spectrometry. Results: A 5% increase in PZC/SZC was calculated to result from the lysis of 1.15% of the erythrocytes in whole blood, corresponding to ∼1 g hemoglobin/L added into the plasma or serum. Similarly, the addition of simulated hemolysate to control plasma in vitro caused a 5% increase in PZC when hemoglobin concentrations reached 1.18 ± 0.10 g/L. In addition, serum samples from a population nutritional survey were scored for hemolysis and analyzed for changes in SZC; samples with hemolysis in the range of 1-2.5 g hemoglobin/L showed an estimated increase in SZC of 6% compared with nonhemolyzed samples. Each approach indicated that a 5% increase in PZC/SZC occurs at ∼1 g hemoglobin/L in plasma or serum. This concentration of hemoglobin can be readily identified directly by chemical hemoglobin assays or indirectly by direct spectrophotometry or matching to a color scale. Conclusions: A threshold of 1 g hemoglobin/L is recommended for PZC/SZC measurements to avoid increases in zinc caused by hemolysis. The use of this threshold may improve zinc assessment for monitoring zinc status and nutritional interventions.
Identification of a Hemolysis Threshold That Increases Plasma and Serum Zinc Concentration123
Otoo, Gloria E; Smith, Lauren; Siekmann, Jonathan H
2017-01-01
Background: Plasma or serum zinc concentration (PZC or SZC) is the primary measure of zinc status, but accurate sampling requires controlling for hemolysis to prevent leakage of zinc from erythrocytes. It is not established how much hemolysis can occur without changing PZC/SZC concentrations. Objective: This study determines a guideline for the level of hemolysis that can significantly elevate PZC/SZC. Methods: The effect of hemolysis on PZC/SZC was estimated by using standard hematologic variables and mineral content. The calculated hemolysis threshold was then compared with results from an in vitro study and a population survey. Hemolysis was assessed by hemoglobin and iron concentrations, direct spectrophotometry, and visual assessment of the plasma or serum. Zinc and iron concentrations were determined by inductively coupled plasma spectrometry. Results: A 5% increase in PZC/SZC was calculated to result from the lysis of 1.15% of the erythrocytes in whole blood, corresponding to ∼1 g hemoglobin/L added into the plasma or serum. Similarly, the addition of simulated hemolysate to control plasma in vitro caused a 5% increase in PZC when hemoglobin concentrations reached 1.18 ± 0.10 g/L. In addition, serum samples from a population nutritional survey were scored for hemolysis and analyzed for changes in SZC; samples with hemolysis in the range of 1–2.5 g hemoglobin/L showed an estimated increase in SZC of 6% compared with nonhemolyzed samples. Each approach indicated that a 5% increase in PZC/SZC occurs at ∼1 g hemoglobin/L in plasma or serum. This concentration of hemoglobin can be readily identified directly by chemical hemoglobin assays or indirectly by direct spectrophotometry or matching to a color scale. Conclusions: A threshold of 1 g hemoglobin/L is recommended for PZC/SZC measurements to avoid increases in zinc caused by hemolysis. The use of this threshold may improve zinc assessment for monitoring zinc status and nutritional interventions. PMID:28490675
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M.; Maly, Tyler; Booth, Nicholas; Durkin, Anthony J.; Farkas, Daniel L.
2016-11-01
Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect's higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect).
Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M.; Maly, Tyler; Booth, Nicholas; Durkin, Anthony J.; Farkas, Daniel L.
2016-01-01
Abstract. Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect’s higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect). PMID:27830262
Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M; Maly, Tyler; Booth, Nicholas; Durkin, Anthony J; Farkas, Daniel L
2016-11-01
Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect’s higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect).
Grgac, Ksenija; Li, Wenbo; Huang, Alan; Qin, Qin; van Zijl, Peter C M
2017-05-01
Blood is a physiological substance with multiple water compartments, which contain water-binding proteins such as hemoglobin in erythrocytes and albumin in plasma. Knowing the water transverse (R 2 ) relaxation rates from these different blood compartments is a prerequisite for quantifying the blood oxygenation level-dependent (BOLD) effect. Here, we report the Carr-Purcell-Meiboom-Gill (CPMG) based transverse (R 2CPMG ) relaxation rates of water in bovine blood samples circulated in a perfusion system at physiological temperature in order to mimic blood perfusion in humans. R 2CPMG values of blood plasma, lysed packed erythrocytes, lysed plasma/erythrocyte mixtures, and whole blood at 3 T, 7 T, 9.4 T, 11.7 T and 16.4 T were measured as a function of hematocrit or hemoglobin concentration, oxygenation, and CPMG inter-echo spacing (τ cp ). R 2CPMG in lysed cells showed a small τ cp dependence, attributed to the water exchange rate between free and hemoglobin-bound water to be much faster than τ cp . This was contrary to the tangential dependence in whole blood, where a much slower exchange between cells and blood plasma applies. Whole blood data were fitted as a function of τ cp using a general tangential correlation time model applicable for exchange as well as diffusion contributions to R 2CPMG , and the intercept R 20blood at infinitely short τ cp was determined. The R 20blood values at different hematocrit and the R 2CPMG values of lysed erythrocyte/plasma mixtures at different hemoglobin concentration were used to determine the relaxivity of hemoglobin inside the erythrocyte (r 2Hb ) and albumin (r 2Alb ) in plasma. The r 2Hb values obtained from lysed erythrocytes and whole blood were comparable at full oxygenation. However, while r 2Hb determined from lysed cells showed a linear dependence on oxygenation, this dependence became quadratic in whole blood. This possibly suggests an additional relaxation effect inside intact cells, perhaps due to hemoglobin proximity to the erythrocyte membrane. However, we cannot exclude that this is a consequence of the simple tangential model used to remove relaxation contributions from exchange and diffusion. The extensive data set presented should be useful for future theory development for the transverse relaxation of blood. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki
2018-02-01
We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.
Temperature transition of human hemoglobin at body temperature: effects of calcium.
Kelemen, C; Chien, S; Artmann, G M
2001-01-01
We studied the effects of calcium ion concentration on the temperature dependence of rheological behavior of human red blood cells (RBCs) and concentrated hemoglobin solutions. Our previous study (G. M. Artmann, C. Kelemen, D. Porst, G. Büldt, and S. Chien, 1998, Biophys. J., 75:3179-3183) showed a critical temperature (Tc) of 36.4 +/- 0.3 degrees C at which the RBCs underwent a transition from non-passage to passage through 1.3 microm micropipettes in response to an aspiration pressure of -2.3 kPa. An increase in intracellular Ca2+ concentration by using the ionophore A23187 reduced the passability of intact RBCs through small micropipettes above T(c); the micropipette diameter needed for >90% passage increased to 1.7 microm. Viscometry of concentrated hemoglobin solutions (45 and 50 g/dl) showed a sudden viscosity transition at 36 +/- 1 degrees C (Tc(eta)) at all calcium concentrations investigated. Below Tc(eta), the viscosity value of the concentrated hemoglobin solution at 1.8 mM Ca(2+) was higher than that at other concentrations (0.2 microM, 9 mM, and 18 mM). Above Tc(eta), the viscosity was almost Ca2+ independent. At 1.8 mM Ca2+ and 36 +/- 1 degrees C, the activation energy calculated from the viscometry data showed a strong dependence on the hemoglobin concentration. We propose that the transition of rheological behavior is attributable to a high-to-low viscosity transition mediated by a partial release of the hemoglobin-bound water. PMID:11371439
[The Relevance of Hemolysis in Anesthesia and Intensive Care Medicine].
Graw, Jan A; Baron, David M; Francis, Roland C E
2018-04-01
Hemolysis leads to an increase of circulating intravascular cell-free hemoglobin. Increased plasma concentrations of cell-free hemoglobin are relevant in critically ill patients because cell-free hemoglobin causes vasoconstriction by depletion of endothelial nitric oxide, oxidative stress, and inflammation. Furthermore, cell-free hemoglobin contributes to tissue injuries such as renal failure and intestinal mucosa damage after cardiac surgery. High concentrations of cell-free hemoglobin are associated with an increased mortality in patients with sepsis. Currently, it is unclear if hemolysis associated with transfusion of packed red blood cells that have been stored for prolonged periods of time is relevant for the clinical outcome. However, humans possess plasma proteins haptoglobin and hemopexin which bind to plasma hemoglobin and cell-free heme, respectively. The haptoglobin-hemoglobin and hemopexin-heme complexes are then eliminated from the plasma by hepatic or splenic uptake. Georg Thieme Verlag KG Stuttgart · New York.
Measurement of Hemoglobin Synthesis Rate in Vivo Using a Stable Isotope Method
Hibbert, Jacqueline M.; Sutherland, George B.; Wright, Luther L.; Wolfe, Luke G.; Wolfe, Kimberly A.; Gao, Shi Ping; Gore, Dennis C.; Abd-Elfattah, Anwar S.
2015-01-01
We developed a method to measure hemoglobin synthesis rate (SynHb) in humans, assuming that free glycine in the red blood cell (RBC) represents free glycine in bone marrow for hemoglobin synthesis. The present rat study examines this assumption of the method and quantifies SynHb in rats. Sprague–Dawley rats (n = 9) were studied, [2-13C]glycine was intravenously infused over 24 h (2.5 mg kg−1 h−1), blood was drawn for glycine and heme isolation, and bone marrow was harvested for glycine isolation. Isotopic enrichments of glycine and heme were measured, fractional hemoglobin synthesis rate (fSynHb% day−1) was calculated, and from this a value for SynHb (mg g−1 day−1) was derived. Mean body weight was 446 ± 10 g (mean ± SE) and hemoglobin concentration was 14 ± 0.5 g dl−1. At 24 h, the mean isotopic enrichment, atom percentage excess (APE), of the RBC free glycine (1.56 ± 0.18 APE) was similar to the bone marrow (1.68 ± 0.15 APE). The rate of incorporation of 13C into heme increased over time from 0.0004 APE/h between 6 and 12 h, to 0.0014 APE/h between 12 and 18 h, and 0.0024 APE/h between 18 and 24 h. Consequently, fSynHb (1.19 ± 0.32, 2.92 ± 0.66, and 4.22 ± 0.56% day−1, respectively) and SynHb (0.11 ± 0.03, 0.28 ± 0.05, and 0.42 ± 0.05 mg g−1 day−1, respectively) showed similar patterns over the 24-h study period. We conclude that (1) enrichment of free glycine in the circulating RBC approximates enrichment of bone marrow free glycine for heme formation and (2) this pattern of hemoglobin synthesis rate is reflecting the characteristic release and gradual maturation of reticulocytes in the circulation. PMID:11262164
Measurement of refractive index of hemoglobin in the visible/NIR spectral range.
Lazareva, Ekaterina N; Tuchin, Valery V
2018-03-01
This study is focused on the measurements of the refractive index of hemoglobin solutions in the visible/near-infrared (NIR) spectral range at room temperature for characteristic laser wavelengths: 480, 486, 546, 589, 644, 656, 680, 930, 1100, 1300, and 1550 nm. Measurements were performed using the multiwavelength Abbe refractometer. Aqua hemoglobin solutions of different concentrations obtained from human whole blood were investigated. The specific increment of refractive index on hemoglobin concentration and the Sellmeier coefficients were calculated. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Umar, Zubaida; Rasool, Mahmood; Asif, Muhammad; Karim, Sajjad; Malik, Arif; Mushtaq, Gohar; Kamal, Mohammad A; Mansoor, Arsala
2015-01-01
Anemia refers to a condition having low hemoglobin concentration. Anemia is considered a major risk factor for unfavorable pregnancy outcomes. This is the first study describing the pattern of hemoglobin concentration during pregnancy and its relationship to areas of high and low altitudes in Balochistan (the largest of Pakistan's four provinces). The main objective of this study was to observe hemoglobin levels and prevalence of anemia among pregnant women living in the high or low altitude areas of Balochistan. A randomized survey was conducted and blood samples were collected from 132 healthy full term pregnant women subjects and 110 unmarried females. The subjects of the current study were selected from two different areas of Balochistan (Quetta and Uthal). Hemoglobin levels of the subjects were analyzed on Microlab 300 by Merck kit. Dietary status of the subjects was assessed based on simplified associated food frequency questionnaire. The factors effecting hemoglobin in full term pregnancy at different altitudes were multi gravidity/parity (increased number of pregnancies/children), age, socio-economic and educational status. Anemia was highly prevalent in low-altitude region (68.33%). We found statistically significant difference in mean hemoglobin level at high-altitude region (11.81 ± 1.02) and low-altitude region (10.20 ± 1.28) in pregnant females of Balochistan plateau (P < 0.001). Higher maternal age (> 35 years) has shown significantly higher anemic frequency at both high (57.89%; p < 0.002) and low (41.46%; p = 0.067) altitudes. A balanced-diet that is rich in meat products has also shown significant correlation with reduced incidences of anemia among pregnant women at both altitudes. Hemoglobin concentration increases in the body with elevated altitudes and, thus, anemia was less frequent at high-altitude region. Factors affecting hemoglobin concentration in full term pregnancy at different altitudes included old maternal age, low body-mass index, education and diet.
Umar, Zubaida; Rasool, Mahmood; Asif, Muhammad; Karim, Sajjad; Malik, Arif; Mushtaq, Gohar; Kamal, Mohammad A; Mansoor, Arsala
2015-01-01
Background: Anemia refers to a condition having low hemoglobin concentration. Anemia is considered a major risk factor for unfavorable pregnancy outcomes. This is the first study describing the pattern of hemoglobin concentration during pregnancy and its relationship to areas of high and low altitudes in Balochistan (the largest of Pakistan’s four provinces). The main objective of this study was to observe hemoglobin levels and prevalence of anemia among pregnant women living in the high or low altitude areas of Balochistan. Methods: A randomized survey was conducted and blood samples were collected from 132 healthy full term pregnant women subjects and 110 unmarried females. The subjects of the current study were selected from two different areas of Balochistan (Quetta and Uthal). Hemoglobin levels of the subjects were analyzed on Microlab 300 by Merck kit. Dietary status of the subjects was assessed based on simplified associated food frequency questionnaire. The factors effecting hemoglobin in full term pregnancy at different altitudes were multi gravidity/parity (increased number of pregnancies/children), age, socio-economic and educational status. Results: Anemia was highly prevalent in low-altitude region (68.33%). We found statistically significant difference in mean hemoglobin level at high-altitude region (11.81 ± 1.02) and low-altitude region (10.20 ± 1.28) in pregnant females of Balochistan plateau (P < 0.001). Higher maternal age (> 35 years) has shown significantly higher anemic frequency at both high (57.89%; p < 0.002) and low (41.46%; p = 0.067) altitudes. A balanced-diet that is rich in meat products has also shown significant correlation with reduced incidences of anemia among pregnant women at both altitudes. Conclusion: Hemoglobin concentration increases in the body with elevated altitudes and, thus, anemia was less frequent at high-altitude region. Factors affecting hemoglobin concentration in full term pregnancy at different altitudes included old maternal age, low body-mass index, education and diet. PMID:25741391
Single-cell measurement of red blood cell oxygen affinity.
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan
2015-08-11
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.
Single-cell measurement of red blood cell oxygen affinity
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan
2015-01-01
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973
Blood circulatory system for noninvasive diagnostics
NASA Astrophysics Data System (ADS)
Fricke, D.; Kraitl, J.; Ewald, H.
2013-02-01
Based on the human circulatory system, an artificial blood circulatory system was developed to allow the controlled variation of the following blood parameters: total hemoglobin concentration (ctHb), oxyhemoglobin (O2Hb) methemoglobin (MetHb) and carboxyhemoglobin (COHb). The optical properties of the blood were observed by online spectrometer measurements. The purpose of this was to observe and quantify the absorption, transmission and scattering properties of human whole blood in the wavelength range of 400 to 1700 nm. All the non-invasive measurements of the whole blood transmission-spectra were compared with sample results obtained by a Blood Gas Analyzer (BGA) to validate the results. For all measurements, donor erythrocyte concentrates were used. The concentration of hemoglobin was changed by adding fixed amounts of blood plasma to the erythrocyte concentrate. Oxygen saturation and COHb were adjusted by a continuous flow of N2, N2-CO and compressed air through a hollow fibre membrane oxygenator. Different methemoglobin concentrations were adjusted by using natrium nitrite. The blood temperature was kept constant at 37 °C via a tube heating mechanism, with a separate circulation of water passing through the membrane Oxygenator. The Temperature and pressure of the system were automatically controlled and monitored. The model was also used to test new non-invasive measurement systems, and for this reason special cuvettes were designed to imitate human tissue and generate plethysmographical signals. In the future, the blood circulatory system has the potential to be used for testing, validating and also to calibrate newly developed optical prototype devices. It can also be used to further investigate blood components of interest.
Song, Yi; Wang, Hai-Jun; Dong, Bin; Wang, Zhiqiang; Ma, Jun; Agardh, Anette
2017-04-01
To assess the trend of sex disparity in hemoglobin concentration and prevalence of anemia among Chinese school-aged children from 1995 to 2010. Data were collected from 360 866 children aged 7, 9, 12, 14, and 17 years during 4 cross-sectional surveys (1995, 2000, 2005, and 2010) of the Chinese National Surveys on Students Constitution and Health. Shifts in hemoglobin concentration distributions were compared by sex. Average shifts and sex differences were calculated with quantile regression models. Logistic regression was used to estimate the prevalence odds ratio of sex for prevalence of anemia in different surveys. The mean hemoglobin concentration increased among Chinese children between 1995 and 2010, from 132.7 to 138.3 g/L in boys, and from 127.7 to 132.3 g/L in girls. The prevalence of anemia decreased from 18.8% in 1995 to 9.9% in 2010. It was higher in rural than urban children among all age groups. The prevalence odds ratios of girls versus boys for anemia increased in both urban and rural areas over time. Hemoglobin concentration and prevalence of anemia improved among Chinese school-aged children over time. Hemoglobin concentration improved faster in boys than girls and as a result the relative prevalence of anemia in girls compared with boys increased. Sex-specific preventive guidelines and public health policies for childhood anemia are needed in China. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pierro, Michele; Sassaroli, Angelo; Zheng, Feng; Fantini, Sergio
2011-02-01
We present a study of the relative phase of oscillations of cerebral oxy- and deoxy-hemoglobin concentrations in the low-frequency range, namely 0.04-0.12 Hz. We have characterized the potential contributions of noise to the measured phase distributions, and we have performed phase measurements on the brain of a human subject at rest, and on the brain of a human subject during stage I sleep. While phase distributions of pseudo hemodynamic oscillations generated from noise (obtained by applying to two independent sets of random numbers the same linear transformation that converts absorption coefficients at 690 and 830 nm into concentrations of oxy- and deoxy-hemoglobin) are peaked at 180º, those associated with real hemodynamic changes can be peaked around any value depending on the underlying physiology and hemodynamics. In particular, preliminary results reported here indicate a greater phase lead of deoxy-hemoglobin vs. oxy-hemoglobin low-frequency oscillations during stage I sleep (82º +/- 55º) than while the subject is awake (19º +/- 58º).
Karakochuk, Crystal D; Whitfield, Kyly C; Barr, Susan I; Lamers, Yvonne; Devlin, Angela M; Vercauteren, Suzanne M; Kroeun, Hou; Talukder, Aminuzzaman; McLean, Judy; Green, Timothy J
2015-01-01
Anemia is common in Cambodian women. Potential causes include micronutrient deficiencies, genetic hemoglobin disorders, inflammation, and disease. We aimed to investigate factors associated with anemia (low hemoglobin concentration) in rural Cambodian women (18-45 y) and to investigate the relations between hemoglobin disorders and other iron biomarkers. Blood samples were obtained from 450 women. A complete blood count was conducted, and serum and plasma were analyzed for ferritin, soluble transferrin receptor (sTfR), folate, vitamin B-12, retinol binding protein (RBP), C-reactive protein (CRP), and α1 acid glycoprotein (AGP). Hemoglobin electrophoresis and multiplex polymerase chain reaction were used to determine the prevalence and type of genetic hemoglobin disorders. Overall, 54% of women had a genetic hemoglobin disorder, which included 25 different genotypes (most commonly, hemoglobin E variants and α(3.7)-thalassemia). Of the 420 nonpregnant women, 29.5% had anemia (hemoglobin <120 g/L), 2% had depleted iron stores (ferritin <15 μg/L), 19% had tissue iron deficiency (sTfR >8.3 mg/L), <3% had folate deficiency (<3 μg/L), and 1% had vitamin B-12 deficiency (<150 pmol/L). Prevalences of iron deficiency anemia (IDA) were 14.2% and 1.5% in those with and without hemoglobin disorders, respectively. There was no biochemical evidence of vitamin A deficiency (RBP <0.7 μmol/L). Acute and chronic inflammation were prevalent among 8% (CRP >5 mg/L) and 26% (AGP >1 g/L) of nonpregnant women, respectively. By using an adjusted linear regression model, the strongest predictors of hemoglobin concentration were hemoglobin E homozygous disorder and pregnancy status. Other predictors were 2 other heterozygous traits (hemoglobin E and Constant Spring), parity, RBP, log ferritin, and vitamin B-12. Multiple biomarkers for anemia and iron deficiency were significantly influenced by the presence of hemoglobin disorders, hence reducing their diagnostic sensitivity. Further investigation of the unexpectedly low prevalence of IDA in Cambodian women is warranted. © 2015 American Society for Nutrition.
Bouwer, S T; Hoofd, L; Kreuzer, F
1997-03-07
Diffusion coefficients of oxygen (DO2) and hemoglobin (DHb) were obtained from measuring the oxygen flux through thin layers of hemoglobin solutions at 20 degrees C. The liquid layers were supported by a membrane and not soaked in any filter material. Oxygen fluxes were measured from the changes in oxygen partial pressure in the gas phases at both sides of the layer. A mathematical treatment is presented for correct evaluation of the measurements. Measurements were done for bovine and for human hemoglobin. Hemoglobin concentrations (CHb) were between 11 and 42 g/dl, which covers the concentrations in the erythrocyte. Both DO2 and DHb could be fitted to the empirical equation D = D0(1-CHb/C1)10-CHb/C2. The following parameters were obtained: DO = 1.80 x 10(-9) m2/s, C1 = 100 g/dl, C2 = 119 g/dl, for oxygen and D0 = 7.00 x 10(-11) m2/s, C1 = 46 g/dl, C2 = 128 g/dl, for hemoglobin. No difference between the diffusion coefficients of bovine or human hemoglobin was found. The diffusion coefficients of hemoglobin were higher than most values reported in the literature, probably because in this study the mobility of hemoglobin was not hindered by surrounding filter material.
Low NO Concentration Dependence of Reductive Nitrosylation Reaction of Hemoglobin*
Tejero, Jesús; Basu, Swati; Helms, Christine; Hogg, Neil; King, S. Bruce; Kim-Shapiro, Daniel B.; Gladwin, Mark T.
2012-01-01
The reductive nitrosylation of ferric (met)hemoglobin is of considerable interest and remains incompletely explained. We have previously observed that at low NO concentrations the reaction with tetrameric hemoglobin occurs with an observed rate constant that is at least 5 times faster than that observed at higher concentrations. This was ascribed to a faster reaction of NO with a methemoglobin-nitrite complex. We now report detailed studies of this reaction of low NO with methemoglobin. Nitric oxide paradoxically reacts with ferric hemoglobin with faster observed rate constants at the lower NO concentration in a manner that is not affected by changes in nitrite concentration, suggesting that it is not a competition between NO and nitrite, as we previously hypothesized. By evaluation of the fast reaction in the presence of allosteric effectors and isolated β- and α-chains of hemoglobin, it appears that NO reacts with a subpopulation of β-subunit ferric hemes whose population is influenced by quaternary state, redox potential, and hemoglobin dimerization. To further characterize the role of nitrite, we developed a system that oxidizes nitrite to nitrate to eliminate nitrite contamination. Removal of nitrite does not alter reaction kinetics, but modulates reaction products, with a decrease in the formation of S-nitrosothiols. These results are consistent with the formation of NO2/N2O3 in the presence of nitrite. The observed fast reductive nitrosylation observed at low NO concentrations may function to preserve NO bioactivity via primary oxidation of NO to form nitrite or in the presence of nitrite to form N2O3 and S-nitrosothiols. PMID:22493289
Blood flow estimation in gastroscopic true-color images
NASA Astrophysics Data System (ADS)
Jacoby, Raffael S.; Herpers, Rainer; Zwiebel, Franz M.; Englmeier, Karl-Hans
1995-05-01
The assessment of blood flow in the gastrointestinal mucosa might be an important factor for the diagnosis and treatment of several diseases such as ulcers, gastritis, colitis, or early cancer. The quantity of blood flow is roughly estimated by computing the spatial hemoglobin distribution in the mucosa. The presented method enables a practical realization by calculating approximately the hemoglobin concentration based on a spectrophotometric analysis of endoscopic true-color images, which are recorded during routine examinations. A system model based on the reflectance spectroscopic law of Kubelka-Munk is derived which enables an estimation of the hemoglobin concentration by means of the color values of the images. Additionally, a transformation of the color values is developed in order to improve the luminance independence. Applying this transformation and estimating the hemoglobin concentration for each pixel of interest, the hemoglobin distribution can be computed. The obtained results are mostly independent of luminance. An initial validation of the presented method is performed by a quantitative estimation of the reproducibility.
Quintero-Gutiérrez, Adrián Guillermo; González-Rosendo, Guillermina; Pozo, Javier Polo; Villanueva-Sánchez, Javier
2016-08-01
Food fortification is one of the most effective strategies for increasing iron intake in the population. A simple blind trial was conducted to compare the effect of 2 forms of iron fortification and assess the changes in hemoglobin and iron status indices among preschool children from rural communities. Hemoglobin was evaluated in 47 children aged 3-6 years old. For 72 days (10-week period), children ate Nito biscuits. Thirteen pupils with elevated hemoglobin levels were assigned to the biscuit control group, and pupils with hemoglobin equal to 13.5 mg/dL or less were randomly allocated to consume fortified biscuits with a heme iron concentrate (n = 15) or iron sulfate (n = 19). Changes in hemoglobin, plasma ferritin, and other hematological indices were evaluated with analysis of variance (ANOVA) for repeated measurements. Except mean corpuscular hemoglobin concentrations (+1.27 ± 2.25 g/dL), hematological indices increased significantly across the study: Mean corpuscular volume (+2.2 ± 1.0 f/dL), red blood cells (+0.30 ± 0.37 M/μL), mean corpuscular hemoglobin (+1.8 ± 1.74 pg), hemoglobin (+1.68 ± 0.91 g/dL), hematocrit (+3.43% ± 3.03%), and plasma ferritin (+18.38 ± 22.1 μg/L) were all p < 0.05. After 10 weeks, the adjusted effect of the iron-fortified chocolate biscuits in the hemoglobin levels was higher than the control group (+1.1 ± 0.2 g/dL) but no difference was found between consumers of fortified biscuits with heme iron concentrate or iron sulfate (+1.9 ± 0.2 g/dL and +2.0 ± 0.2 g/dL, respectively). Heme iron concentrate and iron sulfate were equally effective in increasing Hb levels and hematological indices. Processed foods were shown to be an effective, valuable, and admissible intervention to prevent anemia in preschool children.
21 CFR 864.8625 - Hematology quality control mixture.
Code of Federal Regulations, 2011 CFR
2011-04-01
... parameters such as white cell count (WBC), red cell count (RBC), platelet count (PLT), hemoglobin, hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC). (b) Classification. Class II (performance standards). [45 FR 60637, Sept. 12...
Pulmonary Effects of Eight-Hour MK 16 MOD 1 Dives
2007-10-01
carboxyhemoglobin and hemoglobin concentrations,5 and the samples were chosen to ensure that the analyzer signal was stable when measurements were recorded.6...Lexington, MA) determined the pretest carboxyhemoglobin and hemoglobin concentrations from a venous blood sample. An autorefractor (Humphrey model 599
Four-Hour Dives with Exercise While Breathing Oxygen Partial Pressure of 1.3 ATM
2006-09-01
carboxyhemoglobin and hemoglobin concentrations, 8 and the samples were chosen to ensure that the analyzer signal was stable when measurements were...Instrumentation Laboratory; Lexington, MA) determined the pretest carboxyhemoglobin and hemoglobin concentrations from a venous blood sample. An autorefractor
NASA Astrophysics Data System (ADS)
Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H.; Troen, Aron M.; Fantini, Sergio
2012-08-01
We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85±6 years) and 19 young adults (mean age, 28±4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10±4 μM, 4±3 μM, 14±5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.
Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H; Troen, Aron M; Fantini, Sergio
2012-08-01
We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (μ's). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10 ± 4 μM, 4 ± 3 μM, 14 ± 5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.
Kabat, Geoffrey C; Kim, Mimi Y; Verma, Amit K; Manson, JoAnn E; Lessin, Lawrence S; Kamensky, Victor; Lin, Juan; Wassertheil-Smoller, Sylvia; Rohan, Thomas E
2016-05-15
Anemia and low and high levels of hemoglobin have been associated with increased mortality and morbidity. However, most studies have measured hemoglobin at only 1 time point, and few studies have considered possible reverse causation. We used data from the Women's Health Initiative, in which baseline hemoglobin was measured in 160,081 postmenopausal women and year 3 hemoglobin was measured in 75,658 participants, to examine the associations of hemoglobin concentration with total mortality, coronary heart disease mortality, and cancer mortality. Women were enrolled from 1993 to 1998 and followed for a median of 16 years. Cox proportional hazards models were used to estimate the relative mortality hazards associated with deciles of baseline hemoglobin and the mean of baseline + year 3 hemoglobin. Both low and high deciles of baseline hemoglobin were positively associated with all 3 outcomes in the total cohort. In analyses restricted to women with 2 measurements, a low mean hemoglobin level was robustly and positively associated with all 3 outcomes, after exclusion of the early years of follow-up. High mean hemoglobin was also associated with increased risk of total mortality, whereas associations with heart disease mortality and cancer mortality were weaker and inconsistent. Our results provide evidence that low and high levels of hemoglobin are associated with increased risk of mortality in otherwise healthy women. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mazhar, Amaan; Sharif, Seyed A.; Cuccia, J. David; Nelson, J. Stuart; Kelly, Kristen M.; Durkin, Anthony J.
2012-01-01
Background and Objective Objective methods to assess port wine stain (PWS) response to laser treatment have been the subject of various research efforts for several years. Herein, we present a pilot study using a newly developed, light emitting diode (LED) based spatial frequency domain imaging (SFDI) device to record quantitatively biochemical compositional changes in PWS after laser therapy. Study Design/Patients and Methods A SFDI system was used to image before, and after, five PWS treatment sessions [n = 4 subjects (one subject was imaged before and after two consecutive laser treatments)]. SFDI derived wide-field optical properties (absorption and scattering) and tissue chromophore concentrations including oxy-hemoglobin (ctO2Hb), deoxy-hemoglobin (ctHHb), total hemoglobin (ctTHb), and tissue oxygen saturation (stO2) are presented for skin imaged prior to and immediately after laser treatment. The SFDI derived images were analyzed by comparing the above measurements in PWS to those of normal skin and tracking changes immediately after laser exposure. Results Elevated oxy-hemoglobin (>20%) and tissue oxygen saturation (>5%) were measured in all PWS lesions and compared to values for normal skin prior to treatment. Laser treatment resulted in an increase in deoxy-hemoglobin (>100%), decrease in tissue oxygen saturation (>10%), and reduced scattering (>15%) in all PWS lesions. One subject was followed before and after two consecutive laser treatments and the overall improvement in PWS lesion blanching was quantitatively assessed by measuring a 45% decrease in dermal blood volume. Conclusion SFDI is a rapid non-contact wide-field optical technique that shows potential as an imaging device that can be used to quantify biochemical compositional changes in PWS after laser therapy. Future work will investigate the potential of SFDI to provide intra-operative guidance for laser therapy of PWS lesions on an individual patient basis. PMID:22911574
Three-Hour Dives with Exercise While Breathing Oxygen Partial Pressure of 1.3 ATM
2007-10-01
after the breath hold. Adjustments were made for carboxyhemoglobin and hemoglobin concentrations,9 and the samples were chosen to ensure that the...CO and 0.3% methane. A CO oximeter (Instrumentation Laboratory; Lexington, MA) determined the pretest carboxyhemoglobin and hemoglobin concentrations
NASA Astrophysics Data System (ADS)
Sharma, Anuj K.; Gupta, Jyoti
2018-03-01
Fiber optic evanescent wave sensor with graphene as an absorption-enhancing layer to measure hemoglobin concentration in human blood is proposed. Previous modal functions and experimental results describing the variation of optical constants of human blood with different hemoglobin concentrations in the near-infrared spectral region are considered for sensor design simulation. The sensor's performance is closely analyzed in terms of its absorption coefficient, sensitivity, and detection limit. It is found that the proposed sensor should be operated at longer light wavelength to get more enhanced sensitivity and smaller detection limit. At 1000 nm wavelength, a detection limit of 18 μg/dL and sensitivity of 6.71 × 10-4 per g/dL is achievable with the proposed sensor. The sensitivity is found to be better for larger hemoglobin concentrations. The results are correlated with the evanescent wave penetration depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Alarcon, P.A.; Donovan, M.E.; Forbes, G.B.
To determine the hemoglobin concentration at which iron absorption is minimal, five subjects with thalassemia major and one with thalassemia intermedia underwent a series of iron-absorption studies. The effect of tea as an inhibitor of non-heme iron absorption was also tested. Iron absorption increased as the hemoglobin concentration decreased, although iron absorption was much higher at any given hemoglobin level in the subject with thalassemia intermedia. In the subjects with thalassemia major, iron absorption averaged 10% at hemoglobin concentrations between 9 and 10 and 2.7 per cent between 11 and 13 g per deciliter. The percentage of iron absorbed couldmore » be accurately predicted from the nucleated red-cell count (r = 0.91, P < 0.001). Tea produced a 41 to 95% inhibition of iron absorption. Since patients with thalassemia intermedia may absorb a large percentage of dietary iron, inhibitors of iron absorption, such as tea, may be useful in their management.« less
Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.
Doster, Wolfgang; Longeville, Stéphane
2007-08-15
The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.
Satirapoj, Bancha; Dispan, Rattanawan; Supasyndh, Ouppatham
2017-01-01
Anemia associated with chronic kidney disease (CKD) often requires treatment with recombinant human erythropoietin (EPO). This study investigated the therapeutic equivalence between lyophilized powder and standard liquid EPO alfa by subcutaneous (SC) administration in hemoglobin maintenance among patients on hemodialysis. This was a single-blinded, randomized, controlled, single-center, parallel-group study regarding the treatment of anemia among CKD patients on hemodialysis and being treated with stable doses of EPO alfa at least for 12 weeks. Anemic hemodialysis patients (n=63) received standard liquid or lyophilized powder EPO alfa for 24 weeks by SC administration. Achievement of the target hemoglobin concentration and safety and tolerability end points were documented. Baseline mean hemoglobin level was 11.1±0.7 g/dL using lyophilized powder EPO alfa and 11.2±0.9 g/dL using standard liquid EPO alfa. The baseline median dose of EPO alfa was 126.4 (interquartile range [IQR] 81.6-163.6) U/kg/week in the lyophilized powder EPO alfa group and 116.9 (IQR 76.5-144.1) U/kg/week in the standard liquid EPO alfa group. Treatment with SC lyophilized powder EPO alfa maintained mean hemoglobin and hematocrit concentrations after switching from standard liquid EPO alfa. No statistical significance between groups was reported for hemoglobin concentrations and weekly dose of EPO alfa during the study. No safety concerns were raised, including positive anti-EPO antibodies. In this study of anemia therapy among patients with end-stage renal disease on hemodialysis therapy, the SC injection of lyophilized powder EPO alfa was well tolerated and effectively maintained hemoglobin levels. Future studies of larger size and longer duration will be required to assess safety profiles.
Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar
2016-03-15
Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; MacKinnon, Nicholas B.; Jain, Manu; Cordova, Miguel A.; Kose, Kivanc; Rajadhyaksha, Milind; Halpern, Allan C.; Farkas, Daniel L.
2017-02-01
Motivation and background: Melanoma, the fastest growing cancer worldwide, kills more than one person every hour in the United States. Determining the depth and distribution of dermal melanin and hemoglobin adds physio-morphologic information to the current diagnostic standard, cellular morphology, to further develop noninvasive methods to discriminate between melanoma and benign skin conditions. Purpose: To compare the performance of a multimode dermoscopy system (SkinSpect), which is designed to quantify and map in three dimensions, in vivo melanin and hemoglobin in skin, and to validate this with histopathology and three dimensional reflectance confocal microscopy (RCM) imaging. Methods: Sequentially capture SkinSpect and RCM images of suspect lesions and nearby normal skin and compare this with histopathology reports, RCM imaging allows noninvasive observation of nuclear, cellular and structural detail in 1-5 μm-thin optical sections in skin, and detection of pigmented skin lesions with sensitivity of 90-95% and specificity of 70-80%. The multimode imaging dermoscope combines polarization (cross and parallel), autofluorescence and hyperspectral imaging to noninvasively map the distribution of melanin, collagen and hemoglobin oxygenation in pigmented skin lesions. Results: We compared in vivo features of ten melanocytic lesions extracted by SkinSpect and RCM imaging, and correlated them to histopathologic results. We present results of two melanoma cases (in situ and invasive), and compare with in vivo features from eight benign lesions. Melanin distribution at different depths and hemodynamics, including abnormal vascularity, detected by both SkinSpect and RCM will be discussed. Conclusion: Diagnostic features such as dermal melanin and hemoglobin concentration provided in SkinSpect skin analysis for melanoma and normal pigmented lesions can be compared and validated using results from RCM and histopathology.
Lee, Changho; Jeon, Mansik; Jeon, Min Yong; Kim, Jeehyun; Kim, Chulhong
2014-06-20
We have utilized a single pulsed broadband supercontinuum laser source to photoacoustically sense total hemoglobin concentration (HbT) and oxygen saturation of hemoglobin (SO2) in bloods in vitro. Unlike existing expensive and bulky laser systems typically used for functional photoacoustic imaging (PAI), our laser system is relatively cost-effective and compact. Instead of using two single wavelengths, two wavelength bands were applied to distinguish the concentrations of two different chromophores in the mixture. In addition, we have successfully extracted the total dye concentration and the ratio of the red dye concentration to the total dye concentration in mixed red and blue dye solutions in phantoms. The results indicate that PAI with a cheap and compact fiber based laser source can potentially provide HbT and SO2 in live animals in vivo.
NASA Astrophysics Data System (ADS)
Orlova, A. G.; Kirillin, M. Yu.; Volovetsky, A. B.; Shilyagina, N. Yu.; Sergeeva, E. A.; Golubiatnikov, G. Yu.; Turchin, I. V.
2017-07-01
Using diffuse optical spectroscopy the level of oxygenation and hemoglobin concentration in experimental tumor in comparison with normal muscle tissue of mice have been studied. Subcutaneously growing SKBR-3 was used as a tumor model. Continuous wave fiber probe diffuse optical spectroscopy system was employed. Optical properties extraction approach was based on diffusion approximation. Decreased blood oxygen saturation level and increased total hemoglobin content were demonstrated in the neoplasm. The main reason of such differences between tumor and norm was significant elevation of deoxyhemoglobin concentration in SKBR-3. The method can be useful for diagnosis of tumors as well as for study of blood flow parameters of tumor models with different angiogenic properties.
Discovery of GBT440, an Orally Bioavailable R-State Stabilizer of Sickle Cell Hemoglobin.
Metcalf, Brian; Chuang, Chihyuan; Dufu, Kobina; Patel, Mira P; Silva-Garcia, Abel; Johnson, Carl; Lu, Qing; Partridge, James R; Patskovska, Larysa; Patskovsky, Yury; Almo, Steven C; Jacobson, Matthew P; Hua, Lan; Xu, Qing; Gwaltney, Stephen L; Yee, Calvin; Harris, Jason; Morgan, Bradley P; James, Joyce; Xu, Donghong; Hutchaleelaha, Athiwat; Paulvannan, Kumar; Oksenberg, Donna; Li, Zhe
2017-03-09
We report the discovery of a new potent allosteric effector of sickle cell hemoglobin, GBT440 ( 36 ), that increases the affinity of hemoglobin for oxygen and consequently inhibits its polymerization when subjected to hypoxic conditions. Unlike earlier allosteric activators that bind covalently to hemoglobin in a 2:1 stoichiometry, 36 binds with a 1:1 stoichiometry. Compound 36 is orally bioavailable and partitions highly and favorably into the red blood cell with a RBC/plasma ratio of ∼150. This partitioning onto the target protein is anticipated to allow therapeutic concentrations to be achieved in the red blood cell at low plasma concentrations. GBT440 ( 36 ) is in Phase 3 clinical trials for the treatment of sickle cell disease (NCT03036813).
NASA Astrophysics Data System (ADS)
Yokokawa, Takumi; Nishidate, Izumi
2016-04-01
We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.
NASA Astrophysics Data System (ADS)
Papazoglou, Elisabeth S.; Neidrauer, Michael; Zubkov, Leonid; Weingarten, Michael S.; Pourrezaei, Kambiz
2009-11-01
A pilot human study is conducted to evaluate the potential of using diffuse photon density wave (DPDW) methodology at near-infrared (NIR) wavelengths (685 to 830 nm) to monitor changes in tissue hemoglobin concentration in diabetic foot ulcers. Hemoglobin concentration is measured by DPDW in 12 human wounds for a period ranging from 10 to 61 weeks. In all wounds that healed completely, gradual decreases in optical absorption coefficient, oxygenated hemoglobin concentration, and total hemoglobin concentration are observed between the first and last measurements. In nonhealing wounds, the rates of change of these properties are nearly zero or slightly positive, and a statistically significant difference (p<0.05) is observed in the rates of change between healing and nonhealing wounds. Differences in the variability of DPDW measurements over time are observed between healing and nonhealing wounds, and this variance may also be a useful indicator of nonhealing wounds. Our results demonstrate that DPDW methodology with a frequency domain NIR device can differentiate healing from nonhealing diabetic foot ulcers, and indicate that it may have clinical utility in the evaluation of wound healing potential.
Some blood chemistry values for five Chesapeake Bay area fishes
Hunn, J.B.; Robinson, P.F.
1966-01-01
Blood samples from gizzard shad,largemouth bass, white perch, pumpkinseed, and toadfish were analyzed for hemoglobin, total plasma protein, total plasma cholesterol, and ion concentrations of plasma sodium, potassium, and chloride. The hemoglobin concentration and total plasma cholesterol found in a given species seem to have positive correlation with the customary activity level of that species. The plasma ionic concentrations in general agree with those found by other authors.
Mishima, Riho; Kudo, Takumu; Tsunetsugu, Yuko; Miyazaki, Yoshifumi; Yamamura, Chie; Yamada, Yoshiaki
2004-09-01
Effects of sound generated by a dental turbine and a small stream (murmur) and the effects of no sound (null, control) on heart rate, systolic and diastolic blood pressure, and hemodynamic changes (oxygenated, deoxygenated, and total hemoglobin concentrations) in the frontal cortex were measured in 18 young volunteers. Questionnaires completed by the volunteers were also evaluated. Near-infrared spectroscopy and the Finapres technique were employed to measure hemodynamic and vascular responses, respectively. The subjects assessed the murmur, null, and turbine sounds as "pleasant," "natural," and "unpleasant," respectively. Blood pressures changed in response to the murmur, null, and turbine sound stimuli as expected: lower than the control level, unchanged, and higher than the control level, respectively. Mean blood pressure values tended to increase gradually over the recording time even during the null sound stimulation, possibly because of the recording environment. Oxygenated hemoglobin concentrations decreased drastically in response to the dental turbine sound, while deoxygenated hemoglobin concentrations remained unchanged and thus total hemoglobin concentrations decreased (due to the decreased oxygenated hemoglobin concentrations). Hemodynamic responses to the murmuring sound and the null sound were slight or unchanged, respectively. Surprisingly, heart rate measurements remained fairly stable in response to the stimulatory noises. In conclusion, we demonstrate here that sound generated by a dental turbine may affect cerebral blood flow and metabolism as well as autonomic responses. Copyright 2004 The Society of the Nippon Dental University
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki
2017-02-01
We propose a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation, and the scattering power b in the expression of μs'=aλ-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, the RGB-values are converted into the tristimulus values in CIEXYZ color space which is compatible with the common RGB working spaces. Monte Carlo simulation (MCS) for light transport in tissue is used to specify a relation among the tristimulus XYZ-values and the concentration of oxygenated hemoglobin, that of deoxygenated hemoglobin, and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed rat brain during the cortical spreading depolarization evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Decrease in the scattering power b was observed before the profound increase in the total hemoglobin concentration, which is indicative of the reversible morphological changes in brain tissue during CSD. The results in this study indicate potential of the method to evaluate the pathophysiological conditions in brain tissue with a digital red-green-blue camera.
Rohrbach, Daniel J.; Muffoletto, Daniel; Huihui, Jonathan; Saager, Rolf; Keymel, Kenneth; Paquette, Anne; Morgan, Janet; Zeitouni, Nathalie; Sunar, Ulas
2014-01-01
Rationale and Objectives The treatment of nonmelanoma skin cancer (NMSC) is usually by surgical excision or Mohs micrographic surgery and alternatively may include photodynamic therapy (PDT). To guide surgery and to optimize PDT, information about the tumor structure, optical parameters, and vasculature is desired. Materials and Methods Spatial frequency domain imaging (SFDI) can map optical absorption, scattering, and fluorescence parameters that can enhance tumor contrast and quantify light and photosensitizer dose. High frequency ultrasound (HFUS) imaging can provide high-resolution tumor structure and depth, which is useful for both surgery and PDT planning. Results Here, we present preliminary results from our recently developed clinical instrument for patients with NMSC. We quantified optical absorption and scattering, blood oxygen saturation (StO2), and total hemoglobin concentration (THC) with SFDI and lesion thickness with ultrasound. These results were compared to histological thickness of excised tumor sections. Conclusions SFDI quantified optical parameters with high precision, and multiwavelength analysis enabled 2D mappings of tissue StO2 and THC. HFUS quantified tumor thickness that correlated well with histology. The results demonstrate the feasibility of the instrument for noninvasive mapping of optical, physiological, and ultrasound contrasts in human skin tumors for surgery guidance and therapy planning. PMID:24439339
Evaluation of light detector surface area for functional Near Infrared Spectroscopy.
Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu
2017-10-01
Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multi-color phase imaging and sickle cell anemia (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hosseini, Poorya; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.
2016-03-01
Quantitative phase measurements at multiple wavelengths has created an opportunity for exploring new avenues in phase microscopy such as enhancing imaging-depth (1), measuring hemoglobin concentrations in erythrocytes (2), and more recently in tomographic mapping of the refractive index of live cells (3). To this end, quantitative phase imaging has been demonstrated both at few selected spectral points as well as with high spectral resolution (4,5). However, most of these developed techniques compromise imaging speed, field of view, or the spectral resolution to perform interferometric measurements at multiple colors. In the specific application of quantitative phase in studying blood diseases and red blood cells, current techniques lack the required sensitivity to quantify biological properties of interest at individual cell level. Recently, we have set out to develop a stable quantitative interferometric microscope allowing for measurements of such properties for red cells without compromising field of view or speed of the measurements. The feasibility of the approach will be initially demonstrated in measuring dispersion curves of known solutions, followed by measuring biological properties of red cells in sickle cell anemia. References: 1. Mann CJ, Bingham PR, Paquit VC, Tobin KW. Quantitative phase imaging by three-wavelength digital holography. Opt Express. 2008;16(13):9753-64. 2. Park Y, Yamauchi T, Choi W, Dasari R, Feld MS. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt Lett. 2009;34(23):3668-70. 3. Hosseini P, Sung Y, Choi Y, Lue N, Yaqoob Z, So P. Scanning color optical tomography (SCOT). Opt Express. 2015;23(15):19752-62. 4. Jung J-H, Jang J, Park Y. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. Anal Chem. 2013;85(21):10519-25. 5. Rinehart M, Zhu Y, Wax A. Quantitative phase spectroscopy. Biomed Opt Express. 2012;3(5):958-65.
Rappaport, Aviva I; Whitfield, Kyly C; Chapman, Gwen E; Yada, Rickey Y; Kheang, Khin Meng; Louise, Jennie; Summerlee, Alastair J; Armstrong, Gavin R; Green, Timothy J
2017-08-01
Background: Anemia affects 45% of women of childbearing age in Cambodia. Iron supplementation is recommended in populations in which anemia prevalence is high. However, there are issues of cost, distribution, and adherence. A potential alternative is a reusable fish-shaped iron ingot, which, when added to the cooking pot, leaches iron into the fluid in which it is prepared. Objective: We sought to determine whether there was a difference in hemoglobin concentrations in rural Cambodian anemic women (aged 18-49 y) who cooked with the iron ingot or consumed a daily iron supplement compared with a control after 1 y. Design: In Preah Vihear, 340 women with mild or moderate anemia were randomly assigned to 1 ) an iron-ingot group, 2 ) an iron-supplement (18 mg/d) group, or 3 ) a nonplacebo control group. A venous blood sample was taken at baseline and at 6 and 12 mo. Blood was analyzed for hemoglobin, serum ferritin, and serum transferrin receptor. Hemoglobin electrophoresis was used to detect structural hemoglobin variants. Results: Anemia prevalence was 44% with the use of a portable hemoglobinometer during screening. At baseline, prevalence of iron deficiency was 9% on the basis of a low serum ferritin concentration. There was no significant difference in mean hemoglobin concentrations between the iron-ingot group (115 g/L; 95% CI: 113, 118 g/L; P = 0.850) or iron-supplement group (115 g/L; 95% CI: 113, 117 g/L; P = 0.998) compared with the control group (115 g/L; 95% CI: 113, 117 g/L) at 12 mo. Serum ferritin was significantly higher in the iron-supplement group (73 μg/L; 95% CI: 64, 82 μg/L; P = 0.002) than in the control group at 6 mo; however, this significance was not maintained at 12 mo (73 μg/L; 95% CI: 58, 91 μg/L; P = 0.176). Conclusions: Neither the iron ingot nor iron supplements increased hemoglobin concentrations in this population at 6 or 12 mo. We do not recommend the use of the fish-shaped iron ingot in Cambodia or in countries where the prevalence of iron deficiency is low and genetic hemoglobin disorders are high. This trial was registered at clinicaltrials.gov as NCT02341586. © 2017 American Society for Nutrition.
Doherty, Brett T; Kwok, Richard K; Curry, Matthew D; Ekenga, Christine; Chambers, David; Sandler, Dale P; Engel, Lawrence S
2017-07-01
Studies of workers exposed to benzene at average air concentrations below one part per million suggest that benzene, a known hematotoxin, causes hematopoietic damage even at low exposure levels. However, evidence of such effects outside of occupational settings and for other volatile organic compounds (VOCs) is limited. To investigate associations between ambient exposures to five VOCs, including benzene, and hematologic parameters among adult residents of the U.S. Gulf Coast. Blood concentrations of selected VOCs were measured in a sample of adult participants in the Gulf Long-term Follow-up Study (GuLF STUDY) during 2012 and 2013. Complete blood counts with differentials were also performed on a subset of participants (n=406). We used these data together with detailed questionnaire data to estimate adjusted associations between blood BTEXS (benzene, toluene, ethylbenzene, o-xylene, m/p-xylene, and styrene) concentrations and hematologic parameters using generalized linear models. We observed inverse associations between blood benzene concentrations and hemoglobin concentration and mean corpuscular hemoglobin concentration, and a positive association with red cell distribution width among tobacco smoke-unexposed participants (n=146). Among tobacco smoke-exposed participants (n=247), we observed positive associations between blood VOC concentrations and several hematologic parameters, including increased white blood cell and platelet counts, suggestive of hematopoietic stimulation typically associated with tobacco smoke exposure. Most associations were stronger for benzene than for the other VOCs. Our results suggest that ambient exposure to BTEXS, particularly benzene, may be associated with hematologic effects, including decreased hemoglobin concentration, mean corpuscular hemoglobin concentration, and increased red cell distribution width. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan
2011-03-01
We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.
Should modulation of p50 be a therapeutic target in the critically ill?
Srinivasan, Amudan J; Morkane, Clare; Martin, Daniel S; Welsby, Ian J
2017-05-01
A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. Areas covered: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. Expert commentary: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50.
Gabbard, Ryan; Fendley, Mary; Dar, Irfaan A; Warren, Rik; Kashou, Nasser H
2017-10-01
Occupational noise frequently occurs in the work environment in military intelligence, surveillance, and reconnaissance operations. This impacts cognitive performance by acting as a stressor, potentially interfering with the analysts' decision-making process. We investigated the effects of different noise stimuli on analysts' performance and workload in anomaly detection by simulating a noisy work environment. We utilized functional near-infrared spectroscopy (fNIRS) to quantify oxy-hemoglobin (HbO) and deoxy-hemoglobin concentration changes in the prefrontal cortex (PFC), as well as behavioral measures, which include eye tracking, reaction time, and accuracy rate. We hypothesized that noisy environments would have a negative effect on the participant in terms of anomaly detection performance due to the increase in workload, which would be reflected by an increase in PFC activity. We found that HbO for some of the channels analyzed were significantly different across noise types ([Formula: see text]). Our results also indicated that HbO activation for short-intermittent noise stimuli was greater in the PFC compared to long-intermittent noises. These approaches using fNIRS in conjunction with an understanding of the impact on human analysts in anomaly detection could potentially lead to better performance by optimizing work environments.
NASA Astrophysics Data System (ADS)
Finlay, Jarod C.; Zhu, Timothy C.; Dimofte, Andreea; Friedberg, Joseph S.; Hahn, Stephen M.
2006-02-01
Optimal delivery of light in photodynamic therapy (PDT) requires not only optimal placement and power of light sources, but knowledge of the dynamics of light propagation in the tissue being treated and in the surrounding normal tissue, and of their respective accumulations of sensitizer. In an effort to quantify both tissue optical properties and sensitizer distribution, we have measured fluorescence emission and diffuse reflectance spectra at the surface of a variety of tissue types in the thoracic cavities of human patients. The patients studied here were enrolled in Phase II clinical trials of Photofrin-mediated PDT for the treatment of non-small cell lung cancer and cancers with pleural effusion. Patients were given Photofrin at dose of 2 mg per kg body weight 24 hours prior to treatment. Each patient received surgical resection of the affected lung and pleura. Patients received intracavity PDT at 630nm to a dose of 30 J/cm2, as determined by isotropic detectors sutured to the cavity walls. We measured the diffuse reflectance spectra before and after PDT in various positions within the cavity, including tumor, diaphragm, pericardium, skin, and chest wall muscle in 5 patients. The measurements we acquired using a specially designed fiber optic-based probe consisting of one fluorescence excitation fiber, one white light delivery fiber, and 9 detection fibers spaced at distances from 0.36 to 7.8 mm from the source, all of which are imaged via a spectrograph onto a CCD, allowing measurement of radially-resolved diffuse reflectance and fluorescence spectra. The light sources for these two measurements (a 403-nm diode laser and a halogen lamp, respectively) were blocked by computer-controlled shutters, allowing sequential fluorescence, reflectance, and background acquisition. The diffuse reflectance was analyzed to determine the absorption and scattering spectra of the tissue and from these, the concentration and oxygenation of hemoglobin and the local drug uptake. The total hemoglobin concentration in normal tissues varied from 50 to 300 µM, and the oxygen saturation was generally above 60%. One tumor measured exhibited higher hemoglobin concentration and lower saturation.
USDA-ARS?s Scientific Manuscript database
We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...
Quantifying risk of penile prosthesis infection with elevated glycosylated hemoglobin.
Wilson, S K; Carson, C C; Cleves, M A; Delk, J R
1998-05-01
Elevation of glycosylated hemoglobin above levels of 11.5 mg.% has been considered a contraindication to penile prosthesis implantation in diabetic patients. We determine the predictive value of glycosylated hemoglobin A1C in penile prosthesis infections in diabetic and nondiabetic patients to confirm or deny this prevalent opinion. We conducted a 2-year prospective study of 389 patients, including 114 diabetics, who underwent 3-piece penile prosthesis implantation. All patients had similar preoperative preparation without regard to diabetic status, control or glycosylated hemoglobin A1C level. Risk of infection was statistically analyzed for diabetics versus nondiabetics, glycosylated hemoglobin A1C values above and below 11.5 mg.%, insulin dependent versus oral medication diabetics, and fasting blood sugars above and below 180 mg.%. Prosthesis infections developed in 10 diabetics (8.7%) and 11 nondiabetics (4.0%). No increased infection rate was observed in diabetics with high fasting sugars or diabetics on insulin. There was no statistically significant increased infection risk with increased levels of glycosylated hemoglobin A1C among all patients or among only the diabetics. In fact, there was no meaningful difference in the median or mean level of glycosylated hemoglobin A1C in the infected and noninfected patients regardless of diabetes. Use of glycosylated hemoglobin A1C values to identify and exclude surgical candidates with increased risk of infections is not proved by this study. Elevation of fasting sugar or insulin dependence also does not increase risk of infection in diabetics undergoing prosthesis implantation.
The effect of abnormal hemoglobins on the membrane regulation of cell hydration.
Clark, M R; Shohet, S B
Several hemoglobinopathies are associated with abnormalities in the permeability of the red cell membrane, in some cases leading to permanent alterations of the intracellular milieu. Homozygous sickle cell disease is the most thoroughly studied example. Deoxygenation of sickle cells causes a transient increase in the permeability to monovalent cations and Ca; prolonged deoxygenation can lead to a permanent accumulation of Ca and loss of total cations and water. Although the mechanisms for the permeability changes are not yet defined, mechanical stress on the membrane, with subsequent damages by excess Ca or membrane-associated hemoglobin have been suggested to play a role. Loss of cell water and increase in mean cell hemoglobin concentration causes massive reduction of cell deformability in the oxygenated state and makes the hemoglobin more likely to undergo sickling because of the strong concentration dependence of the sickling process. Limited evidence suggests the occurrence of permeability defects in other hemoglobinopathies and the thalassemias. The suggested alterations range from a slight increase in K permeability of incubated thalassemia cells to substantial dehydration of cells from patients with homozygous hemoglobin C disease. Oxidative damage to the membrane, involving an abnormal hemoglobin-membrane association, may underly the permeability changes in these cells.
Yoshizawa, Nobuko; Ueda, Yukio; Nasu, Hatsuko; Ogura, Hiroyuki; Ohmae, Etsuko; Yoshimoto, Kenji; Takehara, Yasuo; Yamashita, Yutaka; Sakahara, Harumi
2016-11-01
Optical imaging and spectroscopy using near-infrared light have great potential in the assessment of tumor vasculature. We previously measured hemoglobin concentrations in breast cancer using a near-infrared time-resolved spectroscopy system. The purpose of the present study was to evaluate the effect of the chest wall on the measurement of hemoglobin concentrations in normal breast tissue and cancer. We measured total hemoglobin (tHb) concentration in both cancer and contralateral normal breast using a near-infrared time-resolved spectroscopy system in 24 female patients with breast cancer. Patients were divided into two groups based on menopausal state. The skin-to-chest wall distance was determined using ultrasound images obtained with an ultrasound probe attached to the spectroscopy probe. The apparent tHb concentration of normal breast increased when the skin-to-chest wall distance was less than 20 mm. The tHb concentration in pre-menopausal patients was higher than that in post-menopausal patients. Although the concentration of tHb in cancer tissue was statistically higher than that in normal breast, the contralateral normal breast showed higher tHb concentration than cancer in 9 of 46 datasets. When the curves of tHb concentrations as a function of the skin-to-chest wall distance in normal breast were applied for pre- and post-menopausal patients separately, all the cancer lesions plotted above the curves. The skin-to-chest wall distance affected the measurement of tHb concentration of breast tissue by near-infrared time-resolved spectroscopy. The tHb concentration of breast cancer tissue was more precisely evaluated by considering the skin-to-chest wall distance.
Winnick, Theodore; Davis, Alva R.; Greenberg, David M.
1940-01-01
1. The kinetics of milk clotting by asclepain, the protease of Asclepias speciosa, were investigated. At higher concentrations of enzyme, the clotting time was inversely proportional to the enzyme concentration. 2. The digestion of casein and hemoglobin in 6.6 M urea by asclepain follows the second order reaction rate. The rate was roughly second order for casein in water. 3. Evaluation of the nature of the enzyme-substrate intermediate indicates that one molecule of asclepain combines with one molecule of casein or hemoglobin in urea solution. 4. Inhibition by the reaction products was deduced from the fact that the digestion velocity of hemoglobin in urea solution varied with the asclepain concentration in agreement with the Schütz-Borissov rule. PMID:19873155
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, A.W.; McClintock, P.R.; Papaconstantinou, J.
1976-01-01
The dimethyl sulfoxide (Me/sub 2/SO)-mediated induction of hemoglobin synthesis in Friend leukemia cells (a murine erythroblastoid cell line) is coupled with the number of cell replications occurring in the presence of inducer. Varying concentrations of proflavine increase the generation time of these cells from 24 hours to over 50 hours, and in each case the induction of hemoglobin synthesis follows the completion of two cell doublings. Once the induction is initiated, the rate of hemoglobin accumulation is not affected by proflavine. These data indicate that proflavine does not affect the transcription or translation of globin mRNA and that the delaymore » in induction of hemoglobin synthesis is due to its effect on the rate of cellular replication. In experiments using high concentrations of thymidine to block replication, hemoglobin accumulation is prevented only if the cells are blocked prior to 36 hours after Me/sub 2/SO addition. If the cells have completed two generations in the presence of Me/sub 2/SO, there is no effect upon their ability to synthesize hemoglobin even though their growth is arrested. Thus, the inhibition of hemoglobin synthesis by proflavine is not merely the result of a toxic effect on newly subcultured cells but is due to its effect on cellular replication. These experiments confirm that, after addition of Me/sub 2/SO, Friend leukemia cells require more than one complete cell cycle in order to synthesize hemoglobin.« less
McGann, Patrick T.; Tyburski, Erika A.; de Oliveira, Vysolela; Santos, Brigida; Ware, Russell E.; Lam, Wilbur A.
2016-01-01
Severe anemia is an important cause of morbidity and mortality among children in resource-poor settings, but laboratory diagnostics are often limited in these locations. To address this need, we developed a simple, inexpensive, and color-based point-of-care (POC) assay to detect severe anemia. The purpose of this study was to evaluate the accuracy of this novel POC assay to detect moderate and severe anemia in a limited-resource setting. The study was a cross-sectional study conducted on children with sickle cell anemia in Luanda, Angola. The hemoglobin concentrations obtained by the POC assay were compared to reference values measured by a calibrated automated hematology analyzer. A total of 86 samples were analyzed (mean hemoglobin concentration 6.6 g/dL). There was a strong correlation between the hemoglobin concentrations obtained by the POC assay and reference values obtained from an automated hematology analyzer (r=0.88, P<0.0001). The POC assay demonstrated excellent reproducibility (r=0.93, P<0.0001) and the reagents appeared to be durable in a tropical setting (r=0.93, P<0.0001). For the detection of severe anemia that may require blood transfusion (hemoglobin <5 g/dL), the POC assay had sensitivity of 88.9% and specificity of 98.7%. These data demonstrate that an inexpensive (<$0.25 USD) POC assay accurately estimates low hemoglobin concentrations and has the potential to become a transformational diagnostic tool for severe anemia in limited-resource settings. PMID:26317494
Lee, Sun Eun; Schulze, Kerry J; Cole, Robert N; Wu, Lee S F; Yager, James D; Groopman, John; Christian, Parul; West, Keith P
2016-04-01
Vitamin K (VK) is a fat-soluble vitamin whose deficiency disrupts coagulation and may disturb bone and cardiovascular health. However, the scale and systems affected by VK deficiency in pediatric populations remains unclear. We conducted a study of the plasma proteome of 500 Nepalese children 6-8 years of age (male/female ratio = 0.99) to identify proteins associated with VK status. We measured the concentrations of plasma lipids and protein induced by VK absence-II (PIVKA-II) and correlated relative abundance of proteins quantified by mass spectrometry with PIVKA-II. VK deficiency (PIVKA-II>2 μg/L) was associated with a higher abundance of low-density lipoproteins, total cholesterol, and triglyceride concentrations (p<0.01). Among 978 proteins observed in >10% of the children, five proteins were associated with PIVKA-II and seven proteins were differentially abundant between VK deficient versus sufficient children, including coagulation factor-II, hemoglobin, and vascular endothelial cadherin, passing a false discovery rate (FDR) threshold of 10% (q<0.10). Among 27 proteins associated with PIVKA-II or VK deficiency at a less stringent FDR (q<0.20), a network comprised of hemoglobin subunits and erythrocyte anti-oxidative enzymes were highly and positively correlated each other (all r>0.7). Untargeted proteomics offers a novel systems approach to elucidating biological processes of coagulation, vascularization, and erythrocyte oxidative stress related to VK status. The results may help elucidate subclinical metabolic disturbances related to VK deficiency in populations.
NASA Astrophysics Data System (ADS)
Timm, Ulrich; Gewiss, Helge; Kraitl, Jens; Stuepmann, Kirstin; Hinz, Michael; Koball, Sebastian; Ewald, Hartmut
2015-03-01
The paper will describe the novel multi-wavelength photometric device OxyTrue Hb® which is capable to measure the hemoglobin (Hb) and methemoglobin (MetHb) concentration non-invasively. Clinic trails in blood donation centers and during the dialysis are done to prove and demonstrate the performance of the system. The results are compared to the gold standard, the BGA measurement.
Naruto, Hirosuke; Huang, Hongyun; Nishikawa, Masaki; Kojima, Nobuhiko; Mizuno, Atsushi; Ohta, Katsuji; Sakai, Yasuyuki
2007-10-01
We tested the short-term efficacy of liposome-encapsulated hemoglobin (LEH) in cultured rat hepatocytes. Supplementation with LEH (20% of the hemoglobin concentration of blood) did not lower albumin production in static culture, and completely reversed the cell death and deterioration in albumin production caused by an oxygen shortage in 2D flat-plate perfusion bioreactors.
Effect of chronic altitude hypoxia on hematologic and glycolytic parameters.
Clench, J; Ferrell, R E; Schull, W J
1982-05-01
The physiological effect of chronic exposure to altitude hypoxia on the glycolytic intermediates, adenosine triphosphate and 2,3-diphosphoglyceric acid, and the hematologic parameters, hemoglobin, hematocrit, and mean cell hemoglobin concentration, has been examined in an indigenous population, the Aymara, of the Departamento de Arica, Chile. This population normally resides at three altitudes: the coast (0-500 m), the sierra (2,500-3,500 m), and the altiplano (above 4,200 m). After isolation of altitude from other environmental factors (age, sex, body build, ethnicity, smoking, and residential permanence), an increase in 2,3-diphosphoglycerate and a decrease in adenosine triphosphate was observed. Both hemoglobin and hematocrit increased as expected, but mean cell hemoglobin concentration declined. It is proposed that a decline in the activity of a single enzyme, pyruvate kinase, can account for these observed changes and suggests a pivotal role for pyruvate kinase in the physiological adaptation to altitude hypoxia.
Kalaeva, E A; Artyukhov, V G; Putintseva, O V; Polyubez'eva, A I
2016-01-01
The spectral and oxygen-binding characteristics of human intracellular hemoglobin in the presence of nitroglycerin at concentrations of 5 ng/mL and 5 μg/mL have been studied. Short incubation (20 min) of erythrocytes with the drug led increasing hemoglobin affinity to oxygen and weakening of cooperative interactions in hemoprotein molecules. As a result, the amount of O(2) supplied to tissues in the process of gas exchange decreased by 23.96% (5 ng/mL) and 26.68% (5 μg/ml), p < 0.05. Incubation of cells for 24 h resulted in oxidation of the heme iron atom, accumulation of methemoglobin, and partial hemolysis. Nitroglycerin reduces the intensity of oxidative processes. However, no dependence of the degree of changes in the physical and chemical properties of hemoglobin on the concentration of nitroglycerin was found.
NASA Astrophysics Data System (ADS)
Noda, Toshihiko; Takao, Hidekuni; Ashiki, Mitsuaki; Ebi, Hiroyuki; Sawada, Kazuaki; Ishida, Makoto
2004-04-01
In this study, a microchip for measurement of hemoglobin in human blood has been proposed, fabricated and evaluated. The measurement principle of hemoglobin is based on the “cyanmethemoglobin method” that calculates the cyanmethemoglobin concentration by absorption photometry. A glass/silicon/silicon structure was used for the microchip. The middle silicon layer includes flow channels, and 45° mirrors formed at each end of the flow channels. Photodiodes and metal oxide semiconductor (MOS) integrated circuits were fabricated on the bottom silicon layer. The performance of the microchip for hemoglobin measurement was evaluated using a solution of red food color instead of a real blood sample. The fabricated microchip exhibited a similar performance to a nonminiaturized absorption cell which has the same optical path length. Signal processing output varied with solution concentration from 5.32 V to 5.55 V with very high stability due to differential signal processing.
Heh, Ding Yu; Tan, Eng Leong
2011-04-12
This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin.
Heh, Ding Yu; Tan, Eng Leong
2011-01-01
This paper presents the modeling of hemoglobin at optical frequency (250 nm – 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin. PMID:21559129
Grotto, Denise; Bueno, Daiane Cristovam Rosa; Ramos, Gabriela Karine de Almeida; da Costa, Susi Rosa; Spim, Sara Rosicler Vieira; Gerenutti, Marli
2016-01-01
Lentinus edodes is an edible mushroom studied for use, or as an adjunct, in the prevention of illnesses such as hypertension, hypercholesterolemia, diabetes, and cancer. Despite the functional properties of L. edodes, the doses commonly reported in experimental studies are much higher than those actually consumed. Thus, we aimed to establish the optimum intake levels of L. edodes in vivo. Four groups of male Wistar rats received dry and powdered L. edodes reconstituted in water for 30 days: control (water only), L. edodes 100 mg/kg, L. edodes 400 mg/kg, and L. edodes 800 mg/kg. Biochemical and hematological parameters were assessed using commercial kits. Antioxidant parameters were quantified spectrophotometrically. Neither cholesterol, triglycerides, glucose, nor transaminase activity was different among any of the L. edodes concentrations. However, fructosamine concentrations were significantly decreased in groups consuming L. edodes at 100 or 400 mg/kg. A significant decrease in hemoglobin concentration was found in the 400 and 800 mg/kg/day L. edodes groups, and leukopenia occurred in rats that consumed L. edodes 800 mg/kg/day compared with the control group. L. edodes at 100 and 400 mg/kg increased amounts of reduced glutathione compared with the control group. L. edodes was effective as an antioxidant at 100 and 400 mg/kg, but at 400 and 800 mg/kg some disturbances were observed, such as reductions in hemoglobin and leukocytes. In summary, this study has potential benefits for scientific development because the safe daily intake of L. edodes (at 100 mg/kg) is, to our knowledge, reported for the first time in a preclinical study.
Toward noninvasive detection and monitoring of malaria with broadband diffuse optical spectroscopy
NASA Astrophysics Data System (ADS)
Campbell, Chris; Tromberg, Bruce J.; O'Sullivan, Thomas D.
2018-02-01
Despite numerous advances, malaria continues to kill nearly half a million people globally every year. New analytical methods and diagnostics are critical to understanding how treatments under development affect the lifecycle of malaria parasites. A biomarker that has been gaining interest is the "malaria pigment" hemozoin. This byproduct of hemoglobin digestion by the parasite has a unique spectral signature but is difficult to differentiate from hemoglobin and other tissue chromophores. Hemozoin can be detected in blood samples, but only utilizing approaches that require specialized training and facilities. Diffuse optical spectroscopy (DOS) is a noninvasive sensing technique that is sensitive to near-infrared absorption and scattering and capable of probing centimeter-deep volumes of tissue in vivo. DOS is relatively low-cost, does not require specialized training and thus potentially suitable for use in low-resource settings. In this work, we assess the potential of DOS to detect and quantify the presence of hemozoin noninvasively and at physiologically relevant levels. We suspended synthetic hemozoin in Intralipid-based tissue-simulating phantoms in order to mimic malaria infection in multiply-scattering tissue. Using a fiber probe that combines frequency-domain and continuous-wave broadband DOS (650-1000 nm), we detected hemozoin concentrations below 250 ng/ml, which corresponds to parasitemia sensitivities comparable to modern rapid diagnostic tests. We used the experimental variability to simulate and estimate the sensitivity of DOS to hemozoin in tissue that includes hemoglobin, water, and lipid under various tissue oxygen saturation levels. The results indicate that with increased precision, it may be possible to detect Hz noninvasively with DOS.
Pseudosickling of hemoglobin Setif.
Charache, S; Raik, E; Holtzclaw, D; Hathaway, P J; Powell, E; Fleming, P
1987-07-01
Hemoglobin Setif produces pseudosickling of red cells in vitro; the nature of the process and the conditions that "trigger" it are unknown. Studies of red cells, hemolysates, purified hemoglobin solutions, and artificial mixtures of Hb A and Setif suggest that pseudosickling is produced by intracellular crystallization of insoluble hemoglobin. Increased tonicity of the suspending medium accentuates the process, probably by causing a rise in intracellular hemoglobin concentration. If precipitates from A/Setif mixtures are analyzed, they always contain Hb A, suggesting an unusual mechanism for the process. Despite the fact that osmolality in the renal medulla is similar to that which produces pseudosickling in vitro, carriers do not have renal dysfunction of the type found in patients with sickle cell disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin
Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against itmore » in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.« less
Arturson, G; Westman, M
1975-12-01
An experimental procedure was worked out in which rats were subjected to an exchange of erythrocytes, followed by acute anemia by means of hemodilution. One group of rats received erythrocytes with a high concentration of 2,3-diphosphoglycerate (DPG), and the other group was given erythrocytes with a low DPG concentration. The survival rate was equal in the two groups. Irrespective of DPG concentration, the rats whose hemoglobin concentration reached the lowest level died. The rats that died were also more acidotic than the others. The results indicate that the hemoglobin concentration and the pH value were more important determinants for survival than the DPG concentrations.
Elias, Darcielle Bruna Dias; Rocha, Lilianne Brito da Silva; Cavalcante, Maritza Barbosa; Pedrosa, Alano Martins; Justino, Izabel Cristina Bandeira; Gonçalves, Romélia Pinheiro
2012-01-01
Background Sickle cell disease is a hemoglobinopathy characterized by hemolytic anemia, increased susceptibility to infections and recurrent vaso-occlusive crises that reduces the quality of life of sufferers. Objective To evaluate the correlation of the levels of lactate dehydrogenase, malonaldehyde and nitrite to fetal hemoglobin in patients with sickle cell disease not under treatment with hydroxyurea in outpatients at a university hospital in Fortaleza, Ceará, Brazil. Methods Forty-four patients diagnosed with sickle cell disease were enrolled at baseline. Diagnosis was confirmed by evaluating the beta globin gene using polymerase chain reaction-restriction fragment length polymorphism. The concentration of fetal hemoglobin was obtained by high-performance liquid chromatography. Serum levels of nitrite, malonaldehyde and lactate dehydrogenase were measured by biochemical methods. Results Significantly higher levels of lactate dehydrogenase, nitrite and malonaldehyde were observed in patients with sickle cell disease compared to a control group. The study of the correlation between fetal hemoglobin levels and these variables showed a negative correlation with nitrite levels. No correlation was found between fetal hemoglobin and malonaldehyde or lactate dehydrogenase. When the study population was stratified according to fetal hemoglobin levels, a decrease in the levels of nitrite was observed with higher levels of fetal hemoglobin (p-value = 0.0415). Conclusion The results show that, similar to fetal hemoglobin levels, the concentration of nitrite can predict the clinical course of the disease, but should not be used alone as a modulator of prognosis in patients with sickle cell disease. PMID:23049438
Truncated hemoglobins in actinorhizal nodules of Datisca glomerata.
Pawlowski, K; Jacobsen, K R; Alloisio, N; Ford Denison, R; Klein, M; Tjepkema, J D; Winzer, T; Sirrenberg, A; Guan, C; Berry, A M
2007-11-01
Three types of hemoglobins exist in higher plants, symbiotic, non-symbiotic, and truncated hemoglobins. Symbiotic (class II) hemoglobins play a role in oxygen supply to intracellular nitrogen-fixing symbionts in legume root nodules, and in one case ( Parasponia Sp.), a non-symbiotic (class I) hemoglobin has been recruited for this function. Here we report the induction of a host gene, dgtrHB1, encoding a truncated hemoglobin in Frankia-induced nodules of the actinorhizal plant Datisca glomerata. Induction takes place specifically in cells infected by the microsymbiont, prior to the onset of bacterial nitrogen fixation. A bacterial gene (Frankia trHBO) encoding a truncated hemoglobin with O (2)-binding kinetics suitable for the facilitation of O (2) diffusion ( ) is also expressed in symbiosis. Nodule oximetry confirms the presence of a molecule that binds oxygen reversibly in D. glomerata nodules, but indicates a low overall hemoglobin concentration suggesting a local function. Frankia trHbO is likely to be responsible for this activity. The function of the D. glomerata truncated hemoglobin is unknown; a possible role in nitric oxide detoxification is suggested.
Karakochuk, Crystal D; Barker, Mikaela K; Whitfield, Kyly C; Barr, Susan I; Vercauteren, Suzanne M; Devlin, Angela M; Hutcheon, Jennifer A; Houghton, Lisa A; Prak, Sophonneary; Hou, Kroeun; Chai, Tze Lin; Stormer, Ame; Ly, Sokhoing; Devenish, Robyn; Oberkanins, Christian; Pühringer, Helene; Harding, Kimberly B; De-Regil, Luz M; Kraemer, Klaus; Green, Tim J
2017-07-01
Background: Despite a high prevalence of anemia among nonpregnant Cambodian women, current reports suggest that iron deficiency (ID) prevalence is low. If true, iron supplementation will not be an effective anemia reduction strategy. Objective: We measured the effect of daily oral iron with or without multiple micronutrients (MMNs) on hemoglobin concentration in nonpregnant Cambodian women screened as anemic. Design: In this 2 × 2 factorial, double-blind, randomized trial, nonpregnant women (aged 18-45 y) with hemoglobin concentrations ≤117 g/L (capillary blood) were recruited from 26 villages in Kampong Chhnang province and randomly assigned to receive 12 wk of iron (60 mg; Fe group), MMNs (14 other micronutrients; MMN group), iron plus MMNs (Fe+MMN group), or placebo capsules. A 2 × 2 factorial intention-to-treat analysis with the use of a generalized mixed-effects model was used to assess the effects of iron and MMNs and the interaction between these factors. Results: In July 2015, 809 women were recruited and 760 (94%) completed the trial. Baseline anemia prevalence was 58% (venous blood). Mean (95% CI) hemoglobin concentrations at 12 wk in the Fe, MMN, Fe+MMN, and placebo groups were 121 (120, 121), 116 (116, 117), 123 (122, 123), and 116 (116, 117) g/L, with no iron × MMN interaction ( P = 0.66). Mean (95% CI) increases in hemoglobin were 5.6 g/L (3.8, 7.4 g/L) ( P < 0.001) among women who received iron ( n = 407) and 1.2 g/L (-0.6, 3.0 g/L) ( P = 0.18) among women who received MMNs ( n = 407). The predicted proportions (95% CIs) of women with a hemoglobin response (≥10 g/L at 12 wk) were 19% (14%, 24%), 9% (5%, 12%), 30% (24%, 35%), and 5% (2%, 9%) in the Fe, MMN, Fe+MMN, and placebo groups, respectively. Conclusions: Daily iron supplementation for 12 wk increased hemoglobin in nonpregnant Cambodian women; however, MMNs did not confer additional significant benefit. Overall, ∼24% of women who received iron responded after 12 wk; even fewer would be likely to respond in the wider population. This trial was registered at clinicaltrials.gov as NCT02481375. © 2017 American Society for Nutrition.
Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.
Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut
2013-08-01
The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.
Nagamitsu, Shinichiro; Nagano, Miki; Yamashita, Yushiro; Takashima, Sachio; Matsuishi, Toyojiro
2006-06-01
Video game playing is an attractive form of entertainment among school-age children. Although this activity reportedly has many adverse effects on child development, these effects remain controversial. To investigate the effect of video game playing on regional cerebral blood volume, we measured cerebral hemoglobin concentrations using near-infrared spectroscopy in 12 normal volunteers consisting of six children and six adults. A Hitachi Optical Topography system was used to measure hemoglobin changes. For all subjects, the video game Donkey Kong was played on a Game Boy device. After spectroscopic probes were positioned on the scalp near the target brain regions, the participants were asked to play the game for nine periods of 15s each, with 15-s rest intervals between these task periods. Significant increases in bilateral prefrontal total-hemoglobin concentrations were observed in four of the adults during video game playing. On the other hand, significant decreases in bilateral prefrontal total-hemoglobin concentrations were seen in two of the children. A significant positive correlation between mean oxy-hemoglobin changes in the prefrontal region and those in the bilateral motor cortex area was seen in adults. Playing video games gave rise to dynamic changes in cerebral blood volume in both age groups, while the difference in the prefrontal oxygenation patterns suggested an age-dependent utilization of different neural circuits during video game tasks.
Choe, Regine; Konecky, Soren D.; Corlu, Alper; Lee, Kijoon; Durduran, Turgut; Busch, David R.; Pathak, Saurav; Czerniecki, Brian J.; Tchou, Julia; Fraker, Douglas L.; DeMichele, Angela; Chance, Britton; Arridge, Simon R.; Schweiger, Martin; Culver, Joseph P.; Schnall, Mitchell D.; Putt, Mary E.; Rosen, Mark A.; Yodh, Arjun G.
2009-01-01
We have developed a novel parallel-plate diffuse optical tomography (DOT) system for three-dimensional in vivo imaging of human breast tumor based on large optical data sets. Images of oxy-, deoxy-, total-hemoglobin concentration, blood oxygen saturation, and tissue scattering were reconstructed. Tumor margins were derived using the optical data with guidance from radiology reports and Magnetic Resonance Imaging. Tumor-to-normal ratios of these endogenous physiological parameters and an optical index were computed for 51 biopsy-proven lesions from 47 subjects. Malignant cancers (N=41) showed statistically significant higher total hemoglobin, oxy-hemoglobin concentration, and scattering compared to normal tissue. Furthermore, malignant lesions exhibited a two-fold average increase in optical index. The influence of core biopsy on DOT results was also explored; the difference between the malignant group measured before core biopsy and the group measured more than one week after core biopsy was not significant. Benign tumors (N=10) did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. Optical index and tumor-to-normal ratios of total hemoglobin, oxy-hemoglobin concentration, and scattering exhibited high area under the receiver operating characteristic curve values from 0.90 to 0.99, suggesting good discriminatory power. The data demonstrate that benign and malignant lesions can be distinguished by quantitative three-dimensional DOT. PMID:19405750
Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal
Tift, Michael S.; Ponganis, Paul J.; Crocker, Daniel E.
2014-01-01
Low concentrations of endogenous carbon monoxide (CO), generated primarily through degradation of heme from heme-proteins, have been shown to maintain physiological function of organs and to exert cytoprotective effects. However, high concentrations of carboxyhemoglobin (COHb), formed by CO binding to hemoglobin, potentially prevent adequate O2 delivery to tissues by lowering arterial O2 content. Elevated heme-protein concentrations, as found in marine mammals, are likely associated with greater heme degradation, more endogenous CO production and, consequently, elevated COHb concentrations. Therefore, we measured COHb in elephant seals, a species with large blood volumes and elevated hemoglobin and myoglobin concentrations. The levels of COHb were positively related to the total hemoglobin concentration. The maximum COHb value was 10.4% of total hemoglobin concentration. The mean (±s.e.m.) value in adult seals was 8.7±0.3% (N=6), while juveniles and pups (with lower heme-protein contents) had lower mean COHb values of 7.6±0.2% and 7.1±0.3%, respectively (N=9 and N=9, respectively). Serial samples over several hours revealed little to no fluctuation in COHb values. This consistent elevation in COHb suggests that the magnitude and/or rate of heme-protein turnover is much higher than in terrestrial mammals. The maximum COHb values from this study decrease total body O2 stores by 7%, thereby reducing the calculated aerobic dive limit for this species. However, the constant presence of elevated CO in blood may also protect against potential ischemia–reperfusion injury associated with the extreme breath-holds of elephant seals. We suggest the elephant seal represents an ideal model for understanding the potential cytoprotective effects, mechanisms of action and evolutionary adaptation associated with chronically elevated concentrations of endogenously produced CO. PMID:24829326
Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal.
Tift, Michael S; Ponganis, Paul J; Crocker, Daniel E
2014-05-15
Low concentrations of endogenous carbon monoxide (CO), generated primarily through degradation of heme from heme-proteins, have been shown to maintain physiological function of organs and to exert cytoprotective effects. However, high concentrations of carboxyhemoglobin (COHb), formed by CO binding to hemoglobin, potentially prevent adequate O2 delivery to tissues by lowering arterial O2 content. Elevated heme-protein concentrations, as found in marine mammals, are likely associated with greater heme degradation, more endogenous CO production and, consequently, elevated COHb concentrations. Therefore, we measured COHb in elephant seals, a species with large blood volumes and elevated hemoglobin and myoglobin concentrations. The levels of COHb were positively related to the total hemoglobin concentration. The maximum COHb value was 10.4% of total hemoglobin concentration. The mean (± s.e.m.) value in adult seals was 8.7 ± 0.3% (N=6), while juveniles and pups (with lower heme-protein contents) had lower mean COHb values of 7.6 ± 0.2% and 7.1 ± 0.3%, respectively (N=9 and N=9, respectively). Serial samples over several hours revealed little to no fluctuation in COHb values. This consistent elevation in COHb suggests that the magnitude and/or rate of heme-protein turnover is much higher than in terrestrial mammals. The maximum COHb values from this study decrease total body O2 stores by 7%, thereby reducing the calculated aerobic dive limit for this species. However, the constant presence of elevated CO in blood may also protect against potential ischemia-reperfusion injury associated with the extreme breath-holds of elephant seals. We suggest the elephant seal represents an ideal model for understanding the potential cytoprotective effects, mechanisms of action and evolutionary adaptation associated with chronically elevated concentrations of endogenously produced CO. © 2014. Published by The Company of Biologists Ltd.
Patel, Kushang V.; Longo, Dan L.; Ershler, William B.; Yu, Binbing; Semba, Richard D.; Ferrucci, Luigi; Guralnik, Jack M.
2009-01-01
Summary Mildly low hemoglobin concentration is associated with increased mortality in older adults. However, this relationship has not been well characterized in racial/ethnic minorities. Therefore, this study determined the hemoglobin threshold below which risk of death is significantly increased in older non-Hispanic whites, non-Hispanic blacks, and Mexican Americans. Data on 4,089 participants of the 1988-1994 US National Health and Nutrition Examination Survey who were ≥65 years of age were analyzed with mortality follow-up through December 31, 2000. Mean hemoglobin in non-Hispanic whites (n=2,686) and Mexican Americans (n=663) was 140 g/L, while in non-Hispanic blacks (n=740) the mean was 10 g/L lower. A total of 1,944 (47.5%) participants died. Among non-Hispanic whites and Mexican Americans, age- and sex-adjusted models showed that the hemoglobin thresholds below which mortality risk was significantly increased were 4 g/L and 2 g/L, respectively, above the World Health Organization (WHO) cutoffs for anaemia. In contrast, the threshold for non-Hispanic blacks was 7 g/L below the WHO criteria. Similar threshold effects were observed when analyzing hemoglobin in categories and adjusting for multiple confounders. In conclusion, the hemoglobin threshold below which mortality rises significantly is a full g/dL lower in non-Hispanic blacks than in non-Hispanic whites and Mexican Americans. PMID:19344387
Development of a System Model for Non-Invasive Quantification of Bilirubin in Jaundice Patients
NASA Astrophysics Data System (ADS)
Alla, Suresh K.
Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. Excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. An optical system integrated with a signal processing system is used as a platform to noninvasively quantify bilirubin concentration through the measurement of diffuse skin reflectance. Initial studies have lead to the generation of a clinical analytical model for neonatal jaundice which generates spectral reflectance data for jaundiced skin with varying levels of bilirubin concentration in the tissue. The spectral database built using the clinical analytical model is then used as a test database to validate the signal processing system in real time. This evaluation forms the basis for understanding the translation of this research to human trials. The clinical analytical model and signal processing system have been successful validated on three spectral databases. First spectral database is constructed using a porcine model as a surrogate for neonatal skin tissue. Samples of pig skin were soaked in bilirubin solutions of varying concentrations to simulate jaundice skin conditions. The resulting skins samples were analyzed with our skin reflectance systems producing bilirubin concentration values that show a high correlation (R2 = 0.94) to concentration of the bilirubin solution that each porcine tissue sample is soaked in. The second spectral database is the spectral measurements collected on human volunteers to quantify the different chromophores and other physical properties of the tissue such a Hematocrit, Hemoglobin etc. The third spectral database is the spectral data collected at different time periods from the moment a bruise is induced.
Thalidomide has a significant effect in patients with thalassemia intermedia.
Li, YunShuan; Ren, Quan; Zhou, Yali; Li, Pingping; Lin, Wanhua; Yin, Xiaolin
2018-01-01
To investigate the effect of thalidomide in patients with thalassemia intermedia. We observed the effect of thalidomide in seven patients with thalassemia intermedia requiring blood transfusion. Four of the patients were transfusion-independent, and three patients were transfusion-dependent. For the four transfusion-independent patients, hemoglobin concentration increased significantly (≥2 g/dl) in three and moderately (1-2 g/dl) in one. After 3 months of treatment, hemoglobin concentration increased 3.2 ± 1.2 g/dl compared to pretreatment. Among the three transfusion-dependent patients, transfusion was terminated after one month of treatment in one patient and decreased >50% in the other two patients, accompanied by an increase in the average hemoglobin concentration. Thalidomide had a significant effect in patients with thalassemia intermedia. Further studies of a larger scale and more rigorous design are warranted.
Physiology and Pathophysiology of Iron in Hemoglobin-Associated Diseases
Coates, Thomas D
2016-01-01
Iron overload and iron toxicity, whether because of increased absorption or iron loading from repeated transfusions, can be major causes of morbidity and mortality in a number of chronic anemias. Significant advances have been made in our understanding of iron homeostasis over the past decade. At the same time, advances in magnetic resonance imaging have allowed clinicians to monitor and quantify iron concentrations non-invasively in specific organs. Furthermore, effective iron chelators are now available, including preparations that can be taken orally. This has resulted in substantial improvement in mortality and morbidity for patients with severe chronic iron overload. This paper reviews the key points of iron homeostasis and attempts to place clinical observations in patients with transfusional iron overload in context with the current understanding of iron homeostasis in humans. PMID:24726864
Cai, Jie; Wu, Meng; Ren, Jie; Du, Yali; Long, Zhangbiao; Li, Guoxun; Han, Bing; Yang, Lichen
2017-05-02
Our aim was to evaluate the cut-off value and efficiency of using reticulocyte hemoglobin content as a marker to diagnose iron deficiency anemia in Chinese adults. 140 adults who needed bone marrow aspiration for diagnosis at the hematology department of the Peking Union Medical College Hospital were enrolled according to the inclusive and exclusive criteria. Venous blood samples were collected to detect complete blood count, including hemoglobin, reticulocyte hemoglobin content, hematocrit, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, free erythrocyte protoporphyrin; iron indexes of serum ferritin, serum transferrin receptor, and unsaturated iron-binding capacity; and inflammation markers of C-reactive protein and α-acid glycoprotein. Bone marrow samples were obtained for the bone marrow iron staining, which was used as the standard for the evaluation of iron status in this study. Subjects were divided into three groups according to hemoglobin levels and bone marrow iron staining results: the IDA (iron deficiency anemia) group, the NIDA (non-iron deficiency anemia) group, and the control group. The differences of the above-mentioned indexes were compared among the three groups and the effect of inflammation was also considered. The cut-off value of reticulocyte hemoglobin content was determined by receiver operation curves. The IDA group ( n = 56) had significantly lower reticulocyte hemoglobin content, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, and serum ferritin; and higher free erythrocyte protoporphyrin, unsaturated iron-binding capacity, and serum transferrin receptor ( p < 0.05) compared with the NIDA group ( n = 38) and control group ( n = 46). Hematocrit, serum ferritin, and unsaturated iron-binding capacity were significantly affected by inflammation while reticulocyte hemoglobin content and other parameters were not. The cut-off value of reticulocyte hemoglobin content for diagnosing iron deficiency anemia was 27.2 pg, with a sensitivity of 87.5% and a specificity of 92.9%. The cut-off values for mean cellular volume, serum ferritin, and serum transferrin receptor were 76.6, 12.9, and 4.89 mg/L, respectively. Reticulocyte hemoglobin content had the largest area under the curve of 0.929, while those for mean cellular volume, serum ferritin, serum transferrin receptor were 0.922, 0.887, and 0.900, respectively. Reticulocyte hemoglobin content has a high sensitivity and specificity in the diagnosis of iron deficiency anemia, and its comprehensive diagnostic efficacy is better than other traditional indicators-such as serum ferritin and serum transferrin receptor.
Extended Gate Field-Effect Transistor Biosensors for Point-Of-Care Testing of Uric Acid.
Guan, Weihua; Reed, Mark A
2017-01-01
An enzyme-free redox potential sensor using off-chip extended-gate field effect transistor (EGFET) with a ferrocenyl-alkanethiol modified gold electrode has been used to quantify uric acid concentration in human serum and urine. Hexacyanoferrate (II) and (III) ions are used as redox reagent. The potentiometric sensor measures the interface potential on the ferrocene immobilized gold electrode, which is modulated by the redox reaction between uric acid and hexacyanoferrate ions. The device shows a near Nernstian response to uric acid and is highly specific to uric acid in human serum and urine. The interference that comes from glucose, bilirubin, ascorbic acid, and hemoglobin is negligible in the normal concentration range of these interferents. The sensor also exhibits excellent long term reliability and is regenerative. This extended gate field effect transistor based sensor is promising for point-of-care detection of uric acid due to the small size, low cost, and low sample volume consumption.
NASA Astrophysics Data System (ADS)
Hentschke, Reinhard; Herzfeld, Judith
1991-06-01
The reversible association of globular protein molecules in concentrated solution leads to highly polydisperse fibers, e.g., actin filaments, microtubules, and sickle-cell hemoglobin fibers. At high concentrations, excluded-volume interactions between the fibers lead to spontaneous alignment analogous to that in simple lyotropic liquid crystals. However, the phase behavior of reversibly associating proteins is complicated by the threefold coupling between the growth, alignment, and hydration of the fibers. In protein systems aggregates contain substantial solvent, which may cause them to swell or shrink, depending on osmotic stress. Extending previous work, we present a model for the equilibrium phase behavior of the above-noted protein systems in terms of simple intra- and interaggregate interactions, combined with equilibration of fiber-incorporated solvent with the bulk solvent. Specifically, we compare our model results to recent osmotic pressure data for sickle-cell hemoglobin and find excellent agreement. This comparison shows that particle interactions sufficient to cause alignment are also sufficient to squeeze significant amounts of solvent out of protein fibers. In addition, the model is in accord with findings from independent sedimentation and birefringence studies on sickle-cell hemoglobin.
21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (2) Indications for use. For the treatment of anemia in dogs by increasing systemic oxygen content (plasma hemoglobin concentration) and improving the clinical signs associated with anemia, regardless of the cause of anemia (hemolysis, blood loss, or ineffective erythropoiesis). (3) Limitations. For...
21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (2) Indications for use. For the treatment of anemia in dogs by increasing systemic oxygen content (plasma hemoglobin concentration) and improving the clinical signs associated with anemia, regardless of the cause of anemia (hemolysis, blood loss, or ineffective erythropoiesis). (3) Limitations. Federal...
21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (2) Indications for use. For the treatment of anemia in dogs by increasing systemic oxygen content (plasma hemoglobin concentration) and improving the clinical signs associated with anemia, regardless of the cause of anemia (hemolysis, blood loss, or ineffective erythropoiesis). (3) Limitations. For...
21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (2) Indications for use. For the treatment of anemia in dogs by increasing systemic oxygen content (plasma hemoglobin concentration) and improving the clinical signs associated with anemia, regardless of the cause of anemia (hemolysis, blood loss, or ineffective erythropoiesis). (3) Limitations. For...
González-Rosendo, Guillermina; Polo, Javier; Rodríguez-Jerez, José Juan; Puga-Díaz, Rubén; Reyes-Navarrete, Eduardo G; Quintero-Gutiérrez, Adrián G
2010-04-01
A heme-iron concentrate product derived from swine hemoglobin was used to enrich the chocolate-flavored filling of biscuits and the bioavailability of this source of heme-iron was assessed in adolescent girls. The placebo control (PC) group consisted of 35 teenagers with the highest baseline hemoglobin concentrations. The supplemented groups were randomized to receive biscuits fortified with iron sulfate (IS, n = 37) or heme-iron concentrate (HIC, n = 40). Both groups were supplemented with 10.3 mg Fe/d for 7 wk. Blood chemistry and hematology analyses were performed at baseline and at the end of the study. The baseline prevalence of anemia (hemoglobin <12 g/dl) in the entire group was 3.9% and by the end of the study it had fallen to 2.3%. The hemoglobin levels in both supplemented groups increased (P < 0.05) during the study period from 13.6 and 13.5 g/dl for HIC and IS, respectively, at baseline to 14 g/dl at the end of the study. Serum ferritin concentrations decreased by the end of the study in both the PC and IS groups (P < 0.05), but not in the heme group. In conclusion, iron bioavailability from HIC-fortified biscuits was calculated to be 23.7% higher than that observed for IS, as shown by the differences observed in serum ferritin levels during the study. The iron contained in the heme-iron concentrate was well absorbed and tolerated by the adolescents included in the study.
Goldstein, Jay L; Luo, Xuemei; Cappelleri, Joseph C; Sands, George H
2013-01-01
In non-steroidal anti-inflammatory drug (NSAID) users, chronic occult blood loss may lead to decreases in hemoglobin, which may lead to increased healthcare expenditures. This study, therefore, sought to quantify healthcare resource utilization of ≥2 g/dL hemoglobin decrease in osteoarthritis patients. Using a large US managed care database, osteoarthritis patients aged ≥18 years who had exposure to ≥90 days of non-selective or selective COX-2 NSAID use, a hemoglobin value within 6 months before index NSAID, and at least one hemoglobin value 24 months after were evaluated. Resource utilization was evaluated in those with ≥2 g/dL hemoglobin drop vs patients with ≤0.5 g/dL hemoglobin drop (control). Of 1800 NSAID users meeting inclusion criteria, 228 patients [mean (SD) = 59.8 (9.3) years] had ≥2 g/dL hemoglobin drop vs 1572 controls [mean (SD) = 58.3 (8.0) years]. Despite relatively low absolute rates, endoscopic procedures were more commonly observed in the ≥2 g/dL hemoglobin drop group [endoscopy: 37/228 (16.2%) vs 65/1572 (4.1%); adjusted odds ratio (AOR) 3.5, (95% confidence interval [CI] = 2.1-6.0); colonoscopy: 36/228 (15.8%) vs 137/1572 (8.7%); AOR 2.0 (95% CI 1.2-3.2)]. During the 12-month follow-up, patients with ≥2 g/dL hemoglobin drop utilized significantly more healthcare resources [adjusted relative risk (95% CI) for hospitalization, 2.1 (1.5-2.9); outpatient visits, 1.4 (1.3-1.5); physician visits, 1.3 (1.1-1.4)] and charges (total adjusted charges $47,766 vs $23,342) across major categories of healthcare services. This was a retrospective analysis with baseline demographic differences. The source or cause of the hemoglobin drops could not be verified; and it is assumed that they are related to occult gastrointestinal loss. Differences with healthcare utilization and charges were not linked to hemoglobin-associated complications. In patients exposed to NSAIDs, those with significant hemoglobin drops experienced higher subsequent healthcare utilization and charges than controls who did not have a significant hemoglobin drop.
Geier, T; Glende, M; Reich, J G
1978-01-01
In a theoretical study the influence of hemoglobin and Mg-ions as binding partners of red cell 2,3-diphosphoglycerate and ATP was investigated. Free hemoglobin may be an efficient competitor of Mg2+ for the ligand ATP. At conditions which favour hemoglobin as binding partner (i.e. desoxygenation, low medium pH and incubation temperature, as in blood preservation) up to 95% of the whole cellular ATP (ca. 2mM in cell water) may be bound to hemoglobin (ca. 7 mM). This binding is largely prevented in the presence of physiological amounts of diphosphoglycerate (ca. 7 mM) which is in excess and has a higher binding affinity to hemoglobin. Therefore, diphosphoglycerate keeps ATP (MgATP) in cell water solution at conditions in which Hb would trop it in the presence of Mg2+ (ca. 3mM). It can be calculated that, by lack of free MgATP, the activity of hexokinase within the cell drops by a factor of greater than 10 when diphosphoglycerate is metabolized. This indirect activation by diphosphoglycerate of hexokinase is operative at free concentrations of DPG far below those which exert the well known excess inhibitory effect on hexokinase and phosphofructokinase. In a model study, the activation by diphosphoglycerate of the initial two-kinase stage was introduced into a simplified kinetic model of glycolysis. A pronounced hysteresis loop of the stationary concentrations of ATP and diphosphoglycerate was produced indicating the existence of several stationary states, one with high ATP and high diphosphoglycerate, the other one with low values. It is demonstrated that diphosphoglycerate, being a protector of glycolysis at physiological concentrations, triggers an autocatalytic breakdown of the energy state when permitted to drop to low values.
High affinity hemoglobin and Parkinson's disease.
Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna
2014-12-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hematologic and plasma chemistry values in captive psittacine birds.
Polo, F J; Peinado, V I; Viscor, G; Palomeque, J
1998-01-01
Reference values for some hematologic parameters in 19 species and plasma chemical values in 11 species of Psittacine birds, including cockatoos, parrots, amazons, macaws, conures, and lories, were established for use in veterinary medicine. The following parameters were studied: hematocrit, hemoglobin concentration, erythrocyte number, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, erythrocyte dimensions, leukocyte number and differential leukocyte count, glucose, urea, uric acid, cholesterol, triglycerides, creatinine, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine phosphokinase, lactic dehydrogenase, gamma glutamyl transpeptidase, total plasma protein, albumin, globulins, albumin-globulin ratio, sodium, potassium, calcium, magnesium, total phosphorus, chloride, and osmolality. Hematologically, the Psittacine is a very homogeneous avian group, with small differences between species. They are, however, different from other groups of birds.
Prevalence of Iron Deficiency Anaemia Among School Children in Kenitra, Northwest of Morocco.
Achouri, I; Aboussaleh, Y; Sbaibi, R; Ahami, A; El Hioui, M
2015-04-01
Iron deficiency anaemia is an important health problem in Morocco. This study was conducted to estimate the prevalence of anaemia among school children in Kenitra. The sample represents school children of all educational levels and age ranged between 6-15 years. The level of hemoglobin, haematocrit, mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration was measured in a group of 271 school children. The seric iron was assessed and anaemia was defined when hemoglobin < 11.5 g dL(-1). A questionnaire was developed to obtain information about the daily food consumption and socio-economic conditions. The prevalence of anaemia was 16.2%. The mean hemoglobin concentration was 12.53 g dL(-1) in boys and 12.52 g dL(-1) in girls. The results suggest that iron deficiency is an important determinant of anaemia in this population. There was a significant relationship between education of the mother and anaemia in children (p = 0.004) but not with the family income. It is concluded that improving the economic status of the family, women education and health education about balanced animal and plant food consumption are recommended strategies to reduce the burden of anaemia.
Ataga, Kenneth I; Stocker, Jonathan
2009-02-01
Sickle cell disease (SCD) is characterized by hemolytic as well as vaso-occlusive complications. The development of treatments for this inherited disease is based on an understanding of its pathophysiology. Polymerization of sickle hemoglobin is dependent on several independent factors, including the intracellular hemoglobin concentration. The hydration state (and intracellular hemoglobin concentration) of the sickle erythrocyte depends on the loss of solute and osmotically obliged water through specific pathways. Senicapoc (also known as ICA-17043) is a potent blocker of the Gardos channel, a calcium-activated potassium channel of intermediate conductance, in the red blood cell. Preclinical studies and studies in transgenic models of SCD show that inhibition of potassium efflux through the Gardos channel is associated with an increased hemoglobin level, decreased dense cells and decreased hemolysis. Senicapoc is well tolerated when administered to SCD patients and produces dose-dependent increases in hemoglobin and decreases in markers of hemolysis. Despite the lack of a reduction in the frequency of pain episodes, the increasing recognition that hemolysis contributes to the development of several SCD-related complications suggests that by decreasing hemolysis, senicapoc may yet prove to be beneficial in this disease.
NASA Astrophysics Data System (ADS)
Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.
2015-07-01
Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.
Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.
Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan
2016-12-05
Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.
Arsenic Exposure, Diabetes Prevalence, and Diabetes Control in the Strong Heart Study
Gribble, Matthew O.; Howard, Barbara V.; Umans, Jason G.; Shara, Nawar M.; Francesconi, Kevin A.; Goessler, Walter; Crainiceanu, Ciprian M.; Silbergeld, Ellen K.; Guallar, Eliseo; Navas-Acien, Ana
2012-01-01
This study evaluated the association of arsenic exposure, as measured in urine, with diabetes prevalence, glycated hemoglobin, and insulin resistance in American Indian adults from Arizona, Oklahoma, and North and South Dakota (1989–1991). We studied 3,925 men and women 45–74 years of age with available urine arsenic measures. Diabetes was defined as a fasting glucose level of 126 mg/dL or higher, a 2-hour glucose level of 200 mg/dL or higher, a hemoglobin A1c (HbA1c) of 6.5% or higher, or diabetes treatment. Median urine arsenic concentration was 14.1 µg/L (interquartile range, 7.9–24.2). Diabetes prevalence was 49.4%. After adjustment for sociodemographic factors, diabetes risk factors, and urine creatinine, the prevalence ratio of diabetes comparing the 75th versus 25th percentiles of total arsenic concentrations was 1.14 (95% confidence interval: 1.08, 1.21). The association between arsenic and diabetes was restricted to participants with poor diabetes control (HbA1c ≥8%). Arsenic was positively associated with HbA1c levels in participants with diabetes. Arsenic was not associated with HbA1c or with insulin resistance (assessed by homeostatic model assessment to quantify insulin resistance) in participants without diabetes. Urine arsenic was associated with diabetes control in a population from rural communities in the United States with a high burden of diabetes. Prospective studies that evaluate the direction of the relation between poor diabetes control and arsenic exposure are needed. PMID:23097256
Jilani, Tanveer; Azam, Iqbal; Moiz, Bushra; Mehboobali, Naseema; Perwaiz Iqbal, Mohammad
2015-01-01
Hemoglobin levels slightly below the lower limit of normal are common in adults in the general population in developing countries. A few human studies have suggested the use of antioxidant vitamins in the correction of mild anemia. The objective of the present study was to investigate the association of vitamin E supplementation in mildly anemic healthy adults with post-supplemental blood hemoglobin levels in the general population of Karachi, Pakistan. In a single-blinded and placebo-controlled randomized trial, 124 mildly anemic subjects from the General Practitioners' Clinics and personnel of the Aga Khan University were randomized into intervention (n = 82) and control (n = 42) group. In the intervention group, each subject was given vitamin E (400 mg) everyday for a period of three months, while control group subjects received a placebo. Eighty six subjects completed the trial. Fasting venous blood was collected at baseline and after three months of supplementation. Hemoglobin levels and serum/plasma concentrations of vitamin E, vitamin B12, folate, ferritin, serum transferrin receptor (sTfR), glucose, total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol, creatinine, total-antioxidant-status and erythropoietin were measured and analyzed using repeated measures ANOVA and multiple linear regression. The adjusted regression coefficients (β) and standard error [SE(β)] of the significant predictors of post-supplemental hemoglobin levels were serum concentration of vitamin E (0.983[0.095]), gender (- 0.656[0.244]), sTfR (- 0.06[0.02]) and baseline hemoglobin levels (0.768[0.077]). The study showed a positive association between vitamin E supplementation and enhanced hemoglobin levels in mildly anemic adults.
Sharma, Prashant; Das, Reena
2016-03-26
Cation-exchange high-performance liquid chromatography (CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It's versatility, speed, reproducibility and convenience have made CE-HPLC the method of choice to initially screen for hemoglobin disorders. Despite its popularity, several methodological aspects of the technology remain obscure to pathologists and this may have consequences in specific situations. This paper discusses the basic principles of the technique, the initial quality control steps and the interpretation of various controls and variables that are available on the instrument output. Subsequent sections are devoted to methodological considerations that arise during reporting of cases. For instance, common problems of misidentified peaks, totals crossing 100%, causes of total area being above or below acceptable limits and the importance of pre-integration region peaks are dealt with. Ultimately, CE-HPLC remains an investigation, the reporting of which combines in-depth knowledge of the biological basics with more than a working knowledge of the technological aspects of the technique.
Lim, Emerson A; Gunther, Jacqueline E; Kim, Hyun K; Flexman, Molly; Hibshoosh, Hanina; Crew, Katherine; Taback, Bret; Campbell, Jessica; Kalinsky, Kevin; Hielscher, Andreas; Hershman, Dawn L
2017-04-01
Breast cancer (BC) patients who achieve a favorable residual cancer burden (RCB) after neoadjuvant chemotherapy (NACT) have an improved recurrence-free survival. Those who have an unfavorable RCB will have gone through months of ineffective chemotherapy. No ideal method exists to predict a favorable RCB early during NACT. Diffuse optical tomography (DOT) is a novel imaging modality that uses near-infrared light to assess hemoglobin concentrations within breast tumors. We hypothesized that the 2-week percent change in DOT-measured hemoglobin concentrations would associate with RCB. We conducted an observational study of 40 women with stage II-IIIC BC who received standard NACT. DOT imaging was performed at baseline and 2 weeks after treatment initiation. We evaluated the associations between the RCB index (continuous measure), class (categorical 0, I, II, III), and response (RCB class 0/I = favorable, RCB class II/III = unfavorable) with changes in DOT-measured hemoglobin concentrations. The RCB index correlated significantly with the 2-week percent change in oxyhemoglobin [HbO 2 ] (r = 0.5, p = 0.003), deoxyhemoglobin [Hb] (r = 0.37, p = 0.03), and total hemoglobin concentrations [HbT] (r = 0.5, p = 0.003). The RCB class and response significantly associated with the 2-week percent change in [HbO 2 ] (p ≤ 0.01) and [HbT] (p ≤ 0.02). [HbT] 2-week percent change had sensitivity, specificity, positive, and negative predictive values for a favorable RCB response of 86.7, 68.4, 68.4, and 86.7%, respectively. The 2-week percent change in DOT-measured hemoglobin concentrations was associated with the RCB index, class, and response. DOT may help guide NACT for women with BC.
Barlas, Raphae S; Honney, Katie; Loke, Yoon K; McCall, Stephen J; Bettencourt-Silva, Joao H; Clark, Allan B; Bowles, Kristian M; Metcalf, Anthony K; Mamas, Mamas A; Potter, John F; Myint, Phyo K
2016-08-17
The impact of hemoglobin levels and anemia on stroke mortality remains controversial. We aimed to systematically assess this association and quantify the evidence. We analyzed data from a cohort of 8013 stroke patients (mean±SD, 77.81±11.83 years) consecutively admitted over 11 years (January 2003 to May 2015) using a UK Regional Stroke Register. The impact of hemoglobin levels and anemia on mortality was assessed by sex-specific values at different time points (7 and 14 days; 1, 3, and 6 months; 1 year) using multiple regression models controlling for confounders. Anemia was present in 24.5% of the cohort on admission and was associated with increased odds of mortality at most of the time points examined up to 1 year following stroke. The association was less consistent for men with hemorrhagic stroke. Elevated hemoglobin was also associated with increased mortality, mainly within the first month. We then conducted a systematic review using the Embase and Medline databases. Twenty studies met the inclusion criteria. When combined with the cohort from the current study, the pooled population had 29 943 patients with stroke. The evidence base was quantified in a meta-analysis. Anemia on admission was found to be associated with an increased risk of mortality in both ischemic stroke (8 studies; odds ratio 1.97 [95% CI 1.57-2.47]) and hemorrhagic stroke (4 studies; odds ratio 1.46 [95% CI 1.23-1.74]). Strong evidence suggests that patients with anemia have increased mortality with stroke. Targeted interventions in this patient population may improve outcomes and require further evaluation. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Relation of waterfowl poisoning to sediment lead concentrations in the Coeur d'Alene River Basin
Beyer, W.N.; Audet, D.J.; Heinz, G.H.; Hoffman, D.J.; Day, D.
2000-01-01
For many years, waterfowl have been poisoned by lead after ingesting contaminated sediment in the Coeur d'Alene River Basin, in Idaho. Results of studies on waterfowl experimentally fed this sediment were combined with results from field studies conducted in the Basin to relate sediment lead concentration to injury to waterfowl. The first step in the model estimated exposure as the relation of sediment lead concentration to blood lead concentration in mute swans (Cygnus olor), ingesting 22% sediment in a rice diet. That rate corresponded to the 90th percentile of sediment ingestion estimated from analyses of feces of tundra swans (Olor columbianus) in the Basin. Then, with additional laboratory studies on Canada geese (Branta canadensis) and mallards (Anas platyrhynchos) fed the sediment, we developed the general relation of blood lead to injury in waterfowl. Injury was quantified by blood lead concentrations, ALAD (-aminolevulinic acid dehydratase) activity, protoporphyrin concentrations, hemoglobin concentrations, hepatic lead concentrations, and the prevalence of renal nuclear inclusion bodies. Putting the exposure and injury relations together provided a powerful tool for assessing hazards to wildlife in the Basin. The no effect concentration of sediment lead was estimated as 24 mg/kg and the lowest effect level as 530 mg/kg. By combining our exposure equation with data on blood lead concentrations measured in moribund tundra swans in the Basin, we estimated that some mortality would occur at a sediment lead concentration as low as 1800 mg/kg.
Optical fiber spectroscopy measures perfusion of the brain in a murine Alzheimer's disease model
NASA Astrophysics Data System (ADS)
Ahn, Hyung Jin; Strickland, Sidney; Krueger, James; Gareau, Daniel
2014-02-01
Optical fiber spectroscopy is a versatile tool for measuring diffuse reflectance and extracting absorption information that can noninvasively quantify the presence of chromophores such as oxyhemoglobin and deoxy-hemoglobin in tissues. Cerebrovascular abnormalities were widely recognized in Alzheimer's disease (AD) patients. We analyzed blood volume fraction and level of oxygenated hemoglobin in Tg6799 mice, which are transgenic mice expressing five different familial Alzheimer disease-associated mutations in the human amyloid precursor protein and presenilin-1 genes. Diffuse reflectance spectra were iteratively fit as weighted sums of oxy- and deoxy-hemoglobin. Our observations showed slightly hypoxic conditions and significantly increased blood volume in the Alzheimer's mice versus wild type. These results suggest that hyperperfusion of our AD mice may be a compensating mechanism for impaired cerebral vascular function and somehow relevant with early stage of AD patients. Ongoing work focuses on developing a cannula fixture that allows measurement in awake, behaving animals.
[Optimization of trehalose loading in red blood cells before freeze-drying].
Zhuang, Yuan; Liu, Jing-Han; Ouyang, Xi-Lin; Chen, Lin-Feng; Che, Ji
2007-04-01
The key points for better protection of trehalose in freeze-drying red blood cells (RBCs) are to resolve non-osmosis of trehalose to red blood cells and to make cytoplasmic trehalose to reach effective concentration. This study was aimed to investigate the regularity of loading RBCs with trehalose, screen out optimal loading condition and evaluate the effect of trehalose on physico-chemical parameters of RBCs during the period of loading. The cytoplasmic trehalose concentration in red blood cells, free hemoglobin and ATP level were determined at different incubation temperatures (4, 22 and 37 degrees C), different trehaolse concentrations (0, 200, 400, 600, 800 and 1000 mmol/L) and different incubation times (2, 4, 6, 8 and 10 hours), the cytoplasmic trehalose, free hemoglobin (FHb), hemoglobin (Hb) and mean corpuscular volume (MCV) in fresh RBCs and RBCs stored for 72 hours at 4 degrees C were compared, when loading condition was ensured. The results showed that with increase of incubation temperature, time and extracellular trehalose concentration, the loading of trehalose in RBCs also increased. Under the optimal loading condition, cytoplasmic trehalose concentration and free hemoglobin level of fresh RBCs and RBCs stored for 72 hours at 4 degrees C were 65.505 +/- 6.314 mmol/L, 66.2 +/- 5.002 mmol/L and 6.567 +/- 2.568 g/L, 16.168 +/- 3.922 g/L respectively. It is concluded that the most optimal condition of loading trehalose is that fresh RBCs incubate in 800 mmol/L trehalose solution for 8 hours at 37 degrees C. This condition can result in a efficient cytoplasmic trehalose concentration. The study provides an important basis for long-term preservation of RBCs.
Haney, D.C.; Hursh, D.A.; Mix, M.C.; Winton, J.R.
1992-01-01
Chum salmon Oncorhynchus keta were injected with erythrocytic necrosis virus (ENV) to study the physiological and hematological consequences of ENV infection. Infected and control fish were held in pathogen-free seawater and sampled for 5 weeks. Physiological tests included measures of plasma cortisol, glucose, protein, and osmolality; blood lactic acid; and liver glycogen. In general, ENV-infected fish had lower plasma glucose and blood lactic acid, and higher liver glycogen concentrations than did control fish. Hematological tests included red and white blood cell (RBC and WBC) counts, hematocrit, measurement of blood hemoglobin concentration, and a determination of erythrocyte fragility. Infected fish had lower RBC counts, hematocrits, and hemoglobin concentrations; higher WBC counts; and less fragile erythrocytes than did control fish. The hematology data indicated that erythrocytes of infected fish had higher mean corpuscular volume, depressed mean corpuscular hemoglobin concentration, and slightly lower mean corpuscular hemoglobin. Erythrocytic inclusions were observed in the cytoplasm of RBCs from infected fish. The infection progressed steadily through week 4, after which the fish appeared to begin recovering. In a second study, fish were infected with ENV for 3 weeks, and recovery from a stress challenge test was measured. Plasma glucose concentrations and osmclality were higher in infected fish, whereas plasma cortisol and blood lactate were only slightly elevated. These studies indicate that chum salmon withstood the effects of ENV infection without in-eversible physiological consequences. However, when subjected to a stress challenge test, infected fish recovered more slowly than control fish and had increased osmoregulatory difficulties.
Blood lead: Its effect on trace element levels and iron structure in hemoglobin
NASA Astrophysics Data System (ADS)
Jin, C.; Li, Y.; Li, Y. L.; Zou, Y.; Zhang, G. L.; Normura, M.; Zhu, G. Y.
2008-08-01
Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 Å and the Fe-Np bond length slightly increases, but the Fe-N ɛ bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases.
Hemodynamic responses on prefrontal cortex related to meditation and attentional task
Deepeshwar, Singh; Vinchurkar, Suhas Ashok; Visweswaraiah, Naveen Kalkuni; Nagendra, Hongasandra RamaRao
2015-01-01
Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF) in the prefrontal cortex (PFC). The present study employed functional near infrared spectroscopy (fNIRS) to evaluate the relative hemodynamic changes in PFC during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years) performed a color-word stroop task before and after 20 min of meditation and random thinking. Repeated measures ANOVA was performed followed by a post hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of “During” and “Post” with “Pre” state. During meditation there was an increased in oxy-hemoglobin (ΔHbO) and total hemoglobin (ΔTHC) concentration with reduced deoxy-hemoglobin (ΔHbR) concentration over the right prefrontal cortex (rPFC), whereas in random thinking there was increased ΔHbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time (RT) was shorter during stroop color word task with concomitant reduction in ΔTHC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with activation of the PFC. PMID:25741245
Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis
Bellingham, A. J.; Detter, J. C.; Lenfant, C.
1971-01-01
The recent reports of the effect of 2,3-diphosphoglycerate (2,3-DPG) on hemoglobin affinity for oxygen suggested that this substance may play a role in man's adaptation to acidosis and alkalosis. A study of the effect of induced acidosis and alkalosis on the oxyhemoglobin dissociation curve of normal man was therefore carried out, and the mechanisms involved in the physiological regulation of hemoglobin oxygen affinity examined. In acute changes of plasma pH there was no alteration in red cell 2,3-DPG content. However, there were changes in hemoglobin oxygen affinity and these correlated with changes in mean corpuscular hemoglobin concentration (MCHC). With maintained acidosis and alkalosis, red cell 2,3-DPG content was altered and correlated with the changes in hemoglobin oxygen affinity. Both of these mechanisms shift the hemoglobin oxygen dissociation curve opposite to the direct pH (Bohr) effect, and providing the rate of pH change is neither too rapid nor too large, they counteract the direct pH effect and the in vivo hemoglobin oxygen affinity remains unchanged. It is also shown that approximately 35% of the change in hemoglobin oxygen affinity resulting from an alteration in red cell 2,3-DPG, is explained by effect of 2,3-DPG on the red cell pH. PMID:5545127
Near-infrared spectroscopy and polysomnography during all-night sleep in human subjects
NASA Astrophysics Data System (ADS)
Fantini, Sergio; Aggarwal, Payal; Chen, Kathleen; Franceschini, Maria Angela; Ehrenberg, Bruce L.
2003-10-01
We have performed cerebral near-infrared spectroscopy (NIRS) and polysomnography (electro-encephalography, electro-oculography, electro-myography, pulse oximetry, and respiratory monitoring) during all-night sleep in five human subjects. Polysomnography data were used for sleep staging, while NIRS data were used to measure the concentration and the oxygen saturation of hemoglobin in the frontal brain region. Immediately after sleep onset we observed a decrease in the cerebral concentration of oxy-hemoglobin ([HbO2]) and an increase in the concentration of deoxy-hemoglobin ([Hb]), consistent with a decrease in the cerebral blood flow velocity or an increase in cerebral metabolic rate of oxygen. An opposite trend (increase in [HbO2] and decrease in [Hb]) was usually observed after transition to deep sleep (stages III and IV). During rapid eye movement (REM) sleep, we observed an increase in [HbO2] and decrease in [Hb], consistent with an increase in the cerebral blood flow that overcompensates the increase in the metabolic rate of oxygen associated with REM sleep.
Grimes, Carolyn N; Fry, Michael M
2014-12-01
This study sought to develop customized morphology flagging thresholds for canine erythrocyte volume and hemoglobin concentration [Hgb] on the ADVIA 120 hematology analyzer; compare automated morphology flagging with results of microscopic blood smear evaluation; and examine effects of customized thresholds on morphology flagging results. Customized thresholds were determined using data from 52 clinically healthy dogs. Blood smear evaluation and automated morphology flagging results were correlated with mean cell volume (MCV) and cellular hemoglobin concentration mean (CHCM) in 26 dogs. Customized thresholds were applied retroactively to complete blood (cell) count (CBC) data from 5 groups of dogs, including a reference sample group, clinical cases, and animals with experimentally induced iron deficiency anemia. Automated morphology flagging correlated more highly with MCV or CHCM than did blood smear evaluation; correlation with MCV was highest using customized thresholds. Customized morphology flagging thresholds resulted in more sensitive detection of microcytosis, macrocytosis, and hypochromasia than default thresholds.
A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.
Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin
2017-08-01
In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Blood oxygen binding in hypoxaemic calves.
Cambier, Carole; Clerbaux, Thierry; Detry, Bruno; Marville, Vincent; Frans, Albert; Gustin, Pascal
2002-01-01
Blood oxygen transport and tissue oxygenation were studied in 28 calves from the Belgian White and Blue breed (20 healthy and 8 hypoxaemic ones). Hypoxaemic calves were selected according to their high respiratory frequency and to their low partial oxygen pressure (PaO2) in the arterial blood. Venous and arterial blood samples were collected, and 2,3-diphosphoglycerate, adenosine triphosphate, chloride, inorganic phosphate and hemoglobin concentrations, and pH, PCO, and PO2 were determined. An oxygen equilibrium curve (OEC) was measured in standard conditions, for each animal. The arterial and venous OEC were calculated, taking body temperature, pH and PCO2 values in arterial and venous blood into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and the venous compartments, and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and venous OEC combined with the PO2 and hemoglobin concentration. In hypoxaemic calves investigated in this study, the hemoglobin oxygen affinity, measured under standard conditions, was not modified. On the contrary, in vivo acidosis and hypercapnia induced a decrease in the hemoglobin oxygen affinity in arterial blood, which combined to the decrease in PaO2 led to a reduced hemoglobin saturation degree in the arterial compartment. However, this did not impair the oxygen exchange fraction (OEF%), since the hemoglobin saturation degree in venous blood was also diminished.
A microfluidic approach for hemoglobin detection in whole blood
NASA Astrophysics Data System (ADS)
Taparia, Nikita; Platten, Kimsey C.; Anderson, Kristin B.; Sniadecki, Nathan J.
2017-10-01
Diagnosis of anemia relies on the detection of hemoglobin levels in a blood sample. Conventional blood analyzers are not readily available in most low-resource regions where anemia is prevalent, so detection methods that are low-cost and point-of-care are needed. Here, we present a microfluidic approach to measure hemoglobin concentration in a sample of whole blood. Unlike conventional approaches, our microfluidic approach does not require hemolysis. We detect the level of hemoglobin in a blood sample optically by illuminating the blood in a microfluidic channel at a peak wavelength of 540 nm and measuring its absorbance using a CMOS sensor coupled with a lens to magnify the image onto the detector. We compare measurements in microchannels with channel heights of 50 and 115 μm and found the channel with the 50 μm height provided a better range of detection. Since we use whole blood and not lysed blood, we fit our data to an absorption model that includes optical scattering in order to obtain a calibration curve for our system. Based on this calibration curve and data collected, we can measure hemoglobin concentration within 1 g/dL for severe cases of anemia. In addition, we measured optical density for blood flowing at a shear rate of 500 s-1 and observed it did not affect the nonlinear model. With this method, we provide an approach that uses microfluidic detection of hemoglobin levels that can be integrated with other microfluidic approaches for blood analysis.
Effect of Some High Consumption Spices on Hemoglobin Glycation
Naderi, G. H.; Dinani, Narges J.; Asgary, S.; Taher, M.; Nikkhoo, N.; Boshtam, M.
2014-01-01
Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes. PMID:25593391
Effect of some high consumption spices on hemoglobin glycation.
Naderi, G H; Dinani, Narges J; Asgary, S; Taher, M; Nikkhoo, N; Boshtam, M
2014-01-01
Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes.
Huo, Jun Sheng; Yin, Ji Yong; Sun, Jing; Huang, Jian; Lu, Zhen Xin; Regina, Moench-Pfanner; Chen, Jun Shi; Chen, Chun Ming
2015-11-01
To assess the effect of sodium iron ethylenediaminetetraacetate (NaFeEDTA)-fortified soy sauce on anemia prevalence in the Chinese population. A systematic review was performed to identify potential studies by searching the electronic databases of PubMed, Cochrane Library, WHO Library, HighWire, CNKI, and other sources. The selection criteria included randomized controlled trials that compared the efficacy of NaFeEDTA-fortified soy sauce with that of non-fortified soy sauce. Anemia rates and hemoglobin levels were the outcomes of interest. Inclusion decisions, quality assessment, and data extraction were performed by two reviewers independently. A total of 16 studies met the inclusion criteria for anemia rate analysis, of which 12 studies met the inclusion criteria for hemoglobin analysis. All included studies assessed the effect of NaFeEDTA-fortified soy sauce on anemia rates and hemoglobin concentrations. After the intervention, the hemoglobin concentration increased and anemia rates decreased significantly as compared with the non-fortified soy sauce groups. For anemia rates, data from 16 studies could be pooled, and the pooled estimate odds ratio was 0.25 (95% CI 0.19-0.35). For hemoglobin concentrations, data from 12 studies could be pooled, and the pooled weighted mean difference was 8.81 g/L (95% CI 5.96-11.67). NaFeEDTA-fortified soy sauce has a positive effect on anemia control and prevention in the at-risk population. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Beall, Cynthia M; Brittenham, Gary M; Macuaga, Francisco; Barragan, Mario
1990-01-01
This paper presents data on hemoglobin concentration in a rural Andean sample at 3,800-3,900 m and incorporates them into a review intended to evaluate possible sources of the range of variation in mean hemoglobin concentration among samples obtained at high altitude. Between 3,400 and 4,000 m, rural Himalayan highlanders average 1.4 gm/dl lower mean hemoglobin concentration than rural Andean highlanders. With respect to potential causes of anemia, it is concluded that the relatively low values of rural Himalyan populations are not explicable by lower hypoxic stress or different techniques of obtaining and analyzing blood samples and are probably not explicable by nutritional deficiency and disease. With respect to potential causes of polycythemia within Andean populations, it is concluded that the somewhat higher values of some mining and urban samples of Andean higlanders may not be due to the mining occupation per se but may be due partly to the inclusion of European and mestizo (with at most 500 years of high-altitude ancestry) along with Amerindian highlanders (with millenia of high-altitude ancestry) as well as to the inclusion of highlanders living well above their own habitual altitudes of residence. The Andean polycythemia is probably not due to obesity, high androgen levels, or frequent intermittent hypoxemia during sleep. The effect of heavy smoking cannot be evaluated. Further work on hematological adaptation to high altitude must pay special attention to sample characteristics. Copyright © 1990 Wiley-Liss, Inc., A Wiley Company.
Oral misoprostol versus oxytocin in the management of the third stage of labour.
Parsons, Steven M; Walley, Robert L; Crane, Joan M G; Matthews, Kay; Hutchens, Donna
2006-01-01
To compare the effects of oral misoprostol 800 mug with intramuscular oxytocin 10 IU in routine management of the third stage of labour. This randomized controlled trial was performed in a rural district hospital in Ghana, West Africa, and enrolled women in labour with anticipated vaginal delivery and no known medical contraindication to prostaglandin administration. Women were randomized to receive oral misoprostol 800 mug or intramuscular oxytocin 10 IU. Blood samples were taken to determine hemoglobin concentration before delivery and at 12 hours post partum. Treatment was administered at delivery of the anterior shoulder. The primary outcome was the change in hemoglobin concentration from before to after delivery. Secondary outcomes included other measures of blood loss and presumed medication side effects. In total, 450 women were enrolled in the study. Their baseline characteristics were similar. There was no significant difference between the groups in the change in hemoglobin concentration (misoprostol 1.07 g/dL and oxytocin 1.00 g/dL). The only significant secondary outcomes were shivering (80.7% with misoprostol vs. 3.6% with oxytocin) and pyrexia (11.4% with misoprostol, none with oxytocin). Routine use of oral misoprostol 800 microg appears to be as effective as 10 IU parenteral oxytocin in minimizing blood loss during the third stage of labour, as determined by change in hemoglobin concentration. Misoprostol appears to be a safe, inexpensive, and effective uterotonic for use in rural and remote areas, where intravenous oxytocin may be unavailable.
Novel noninvasive point-of-care device for real time hemoglobin monitoring
NASA Astrophysics Data System (ADS)
Timm, Ulrich; Gewiss, Helge; Kraitl, Jens; Stuepmann, Kirstin; Hinz, Michael; Koball, Sebastian; Ewald, Hartmut
2014-02-01
During the perioperative period, which includes the period before surgery and after surgery (postoperative), it is essential to measure diagnostic parameters such as: blood oxygen saturation; hemoglobin (Hb) concentration; and pulse rate. The Hb concentration in human blood is an important parameter to evaluate the physiological condition of an individual, as Hb is the oxygen carrying component of red blood cells. By determining the Hb concentration, it is possible, for example, to observe intraoperative or postoperative bleeding, and use this information as a trigger for autologous/ allogenic blood transfusions. In blood donation center it is also an essential parameter for the decision regarding the acceptance of the donor.
Gladwin, M T; Schechter, A N; Shelhamer, J H; Pannell, L K; Conway, D A; Hrinczenko, B W; Nichols, J S; Pease-Fye, M E; Noguchi, C T; Rodgers, G P; Ognibene, F P
1999-10-01
Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of beta-chain cysteine 93, raise the possibility of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P(50), did not respond to inhaled NO, either in controls or in individuals with sickle cell disease. At baseline, the arterial and venous levels of nitrosylated hemoglobin were not significantly different, but NO inhalation led to a dose-dependent increase in mean nitrosylated hemoglobin, and at the highest dosage, a significant arterial-venous difference emerged. The levels of nitrosylated hemoglobin are too low to affect overall hemoglobin oxygen affinity, but augmented NO transport to the microvasculature seems a promising strategy for improving microvascular perfusion.
Nguyen, Ba-Vinh; Vincent, Jean-Louis; Nowak, Emmanuel; Coat, Michelle; Paleiron, Nicolas; Gouny, Pierre; Ould-Ahmed, Mehdi; Guillouet, Maité; Arvieux, Charles Christian; Gueret, Gildas
2011-11-01
In March 2008, a new multiwavelength pulse oximeter, the Radical 7 (Rad7; Masimo Corp., Irvine, CA), was developed that offers noninvasive measurement of hemoglobin concentration. Accuracy has been established in healthy adults and some surgical patients, but not in cardiac surgery intensive care patients, a group at high risk of postoperative bleeding events and anemia in whom early diagnosis could improve management. In this prospective, observational study conducted in a cardiovascular intensive care unit, we compared hemoglobin concentrations shown by the Rad7 with arterial hemoglobin concentrations determined by an automated hematology analyzer, XE-2100 (Roche, Neuilly sur Seine, France). Two software versions of Rad7 (V 7.3.0.1 [42 points of comparison in 14 patients] and the updated V 7.3.1.1 [61 points of comparison in 27 patients]) were studied during two 1-week periods. Bias, defined as the difference between the 2 methods (Masimo SpHb-XE-2100 laboratory hemoglobin), was calculated. A negative bias indicated that the Masimo underestimated hemoglobin compared with the laboratory analyzer. Correlation between the perfusion index given by Rad7 and the hemoglobin bias was also studied. Correlations between Rad7 and XE-2100 were weak for both software versions (R2=0.11 for V 7.3.0.1 and R2=0.27 for V 7.3.1.1). Mean bias was -1.3 g/dL for V 7.3.0.1 and -1.7 g/dL for V 7.3.1.1, with wide 95% prediction intervals for the bias (respectively, -4.6 to 2.1 g/dL and -5.7 to 2.3 g/dL). The absolute hemoglobin bias tended to increase when the perfusion index decreased. For the V 7.3.0.1 software, the average absolute bias was 1.9 g/dL for perfusion index<2 and 0.8 g/dL for perfusion index>2 (P=0.03). For V 7.3.1.1, the mean absolute bias was 2.1 g/dL when the perfusion index was <2, and 1.6 g/dL when the perfusion index was >2 (P=0.26). Our study demonstrates poor correlation between hemoglobin measured noninvasively by multiwavelength pulse oximetry and a laboratory hematology analyzer. The difference was greater when the pulse oximetry perfusion index was low, as may occur in shock, hypothermia, or vasoconstriction patients. The multiwavelength pulse oximetry is not sufficiently accurate for clinical use in a cardiovascular intensive care unit.
Bataille, Stanislas; Pelletier, Marion; Sallée, Marion; Berland, Yvon; McKay, Nathalie; Duval, Ariane; Gentile, Stéphanie; Mouelhi, Yosra; Brunet, Philippe; Burtey, Stéphane
2017-07-26
The main reason for anemia in renal failure patients is the insufficient erythropoietin production by the kidneys. Beside erythropoietin deficiency, in vitro studies have incriminated uremic toxins in the pathophysiology of anemia but clinical data are sparse. In order to assess if indole 3-acetic acid (IAA), indoxyl sulfate (IS), and paracresyl sulfate (PCS) -three protein bound uremic toxins- are clinically implicated in end-stage renal disease anemia we studied the correlation between IAA, IS and PCS plasmatic concentrations with hemoglobin and Erythropoietin Stimulating Agents (ESA) use in hemodialysis patients. Between June and July 2014, we conducted an observational cross sectional study in two hemodialysis center. Three statistical approaches were conducted. First, we compared patients treated with ESA and those not treated. Second, we performed linear regression models between IAA, IS, and PCS plasma concentrations and hemoglobin, the ESA dose over hemoglobin ratio (ESA/Hemoglobin) or the ESA resistance index (ERI). Third, we used a polytomous logistic regression model to compare groups of patients with no/low/high ESA dose and low/high hemoglobin statuses. Overall, 240 patients were included in the study. Mean age ± SD was 67.6 ± 16.0 years, 55.4% were men and 42.5% had diabetes mellitus. When compared with ESA treated patients, patients with no ESA had higher hemoglobin (mean 11.4 ± 1.1 versus 10.6 ± 1.2 g/dL; p <0.001), higher transferrin saturation (TSAT, 31.1 ± 16.3% versus 23.1 ± 11.5%; p < 0.001), less frequently an IV iron prescription (52.1 versus 65.7%, p = 0.04) and were more frequently treated with hemodiafiltration (53.5 versus 36.7%). In univariate analysis, IAA, IS or PCS plasma concentrations did not differ between the two groups. In the linear model, IAA plasma concentration was not associated with hemoglobin, but was negatively associated with ESA/Hb (p = 0.02; R = 0.18) and with the ERI (p = 0.03; R = 0.17). IS was associated with none of the three anemia parameters. PCS was positively associated with hemoglobin (p = 0.03; R = 0.14), but negatively with ESA/Hb (p = 0.03; R = 0.17) and the ERI (p = 0.02; R = 0.19). In multivariate analysis, the association of IAA concentration with ESA/Hb or ERI was not statistically significant, neither was the association of PCS with ESA/Hb or ERI. Identically, in the subgroup of 76 patients with no inflammation (CRP <5 mg/L) and no iron deficiency (TSAT >20%) linear regression between IAA, IS or PCS and any anemia parameter did not reach significance. In the third model, univariate analysis showed no intergroup significant differences for IAA and IS. Regarding PCS, the Low Hb/High ESA group had lower concentrations. However, when we compared PCS with the other significant characteristics of the five groups to the Low Hb/high ESA (our reference group), the polytomous logistic regression model didn't show any significant difference for PCS. In our study, using three different statistical models, we were unable to show any correlation between IAA, IS and PCS plasmatic concentrations and any anemia parameter in hemodialysis patients. Indolic uremic toxins and PCS have no or a very low effect on anemia parameters.
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
Energy metabolism and hematology of white-tailed deer fawns
Rawson, R.E.; DelGiudice, G.D.; Dziuk, H.E.; Mech, L.D.
1992-01-01
Resting metabolic rates, weight gains and hematologic profiles of six newborn, captive white-tailed deer (Odocoileus virginianus) fawns (four females, two males) were determined during the first 3 mo of life. Estimated mean daily weight gain of fawns was 0.2 kg. The regression equation for metabolic rate was: Metabolic rate (kcal/kg0.75/day) = 56.1 +/- 1.3 (age in days), r = 0.65, P less than 0.001). Regression equations were also used to relate age to red blood cell count (RBC), hemoglobin concentration (Hb), packed cell volume, white blood cell count, mean corpuscular volume, mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin. The age relationships of Hb, MCHC, and smaller RBC's were indicative of an increasing and more efficient oxygen-carrying and exchange capacity to fulfill the increasing metabolic demands for oxygen associated with increasing body size.
Blood transfusion-acquired hemoglobin C.
Suarez, A A; Polski, J M; Grossman, B J; Johnston, M F
1999-07-01
Unexpected and confusing laboratory test results can occur if a blood sample is inadvertently collected following a blood transfusion. A potential for transfusion-acquired hemoglobinopathy exists because heterozygous individuals show no significant abnormalities during the blood donor screening process. Such spurious results are infrequently reported in the medical literature. We report a case of hemoglobin C passively transferred during a red blood cell transfusion. The proper interpretation in our case was assisted by calculations comparing expected hemoglobin C concentration with the measured value. A review of the literature on transfusion-related preanalytic errors is provided.
Near-infrared muscle functional monitoring
NASA Astrophysics Data System (ADS)
Ferrari, Marco; De Blasi, Roberto A.; Ferrari, Adriano; Pizzi, Assunta; Quaresima, Valentina
1994-01-01
The oxygenation of human muscle tissue can be investigated using near IR spectroscopy (NIRS). Oxy and deoxy hemoglobin changes can be quantified combining attenuation measurements with pathlength data obtained by time resolved spectroscopy. This study reports the application of NIRS to non- invasive measurements of quadriceps oxygenation on muscular dystrophy patients during treadmill exercise.
NASA Astrophysics Data System (ADS)
Elliott, Jonathan T.; Wright, Eric A.; Tichauer, Kenneth M.; Diop, Mamadou; Morrison, Laura B.; Pogue, Brian W.; Lee, Ting-Yim; St. Lawrence, Keith
2012-12-01
In many cases, kinetic modeling requires that the arterial input function (AIF)—the time-dependent arterial concentration of a tracer—be characterized. A straightforward method to measure the AIF of red and near-infrared optical dyes (e.g., indocyanine green) using a pulse oximeter is presented. The method is motivated by the ubiquity of pulse oximeters used in both preclinical and clinical applications, as well as the gap in currently available technologies to measure AIFs in small animals. The method is based on quantifying the interference that is observed in the derived arterial oxygen saturation (SaO2) following a bolus injection of a light-absorbing dye. In other words, the change in SaO2 can be converted into dye concentration knowing the chromophore-specific extinction coefficients, the true arterial oxygen saturation, and total hemoglobin concentration. A simple error analysis was performed to highlight potential limitations of the approach, and a validation of the method was conducted in rabbits by comparing the pulse oximetry method with the AIF acquired using a pulse dye densitometer. Considering that determining the AIF is required for performing quantitative tracer kinetics, this method provides a flexible tool for measuring the arterial dye concentration that could be used in a variety of applications.
Elliott, Jonathan T; Wright, Eric A; Tichauer, Kenneth M; Diop, Mamadou; Morrison, Laura B; Pogue, Brian W; Lee, Ting-Yim; St Lawrence, Keith
2012-12-21
In many cases, kinetic modeling requires that the arterial input function (AIF)--the time-dependent arterial concentration of a tracer--be characterized. A straightforward method to measure the AIF of red and near-infrared optical dyes (e.g., indocyanine green) using a pulse oximeter is presented. The method is motivated by the ubiquity of pulse oximeters used in both preclinical and clinical applications, as well as the gap in currently available technologies to measure AIFs in small animals. The method is based on quantifying the interference that is observed in the derived arterial oxygen saturation (SaO₂) following a bolus injection of a light-absorbing dye. In other words, the change in SaO₂ can be converted into dye concentration knowing the chromophore-specific extinction coefficients, the true arterial oxygen saturation, and total hemoglobin concentration. A simple error analysis was performed to highlight potential limitations of the approach, and a validation of the method was conducted in rabbits by comparing the pulse oximetry method with the AIF acquired using a pulse dye densitometer. Considering that determining the AIF is required for performing quantitative tracer kinetics, this method provides a flexible tool for measuring the arterial dye concentration that could be used in a variety of applications.
Arredondo, Miguel; Kloosterman, Janneke; Núñez, Sergio; Segovia, Fabián; Candia, Valeria; Flores, Sebastián; Le Blanc, Solange; Olivares, Manuel; Pizarro, Fernando
2008-11-01
It is known that heme iron and inorganic iron are absorbed differently. Heme iron is found in the diet mainly in the form of hemoglobin and myoglobin. The mechanism of iron absorption remains uncertain. This study focused on the heme iron uptake by Caco-2 cells from a hemoglobin digest and its response to different iron concentrations. We studied the intracellular Fe concentration and the effect of time, K+ depletion, and cytosol acidification on apical uptake and transepithelial transport in cells incubated with different heme Fe concentrations. Cells incubated with hemoglobin-digest showed a lower intracellular Fe concentration than cells grown with inorganic Fe. However, uptake and transepithelial transport of Fe was higher in cells incubated with heme Fe. Heme Fe uptake had a low Vmax and Km as compared to inorganic Fe uptake and did not compete with non-heme Fe uptake. Heme Fe uptake was inhibited in cells exposed to K+ depletion or cytosol acidification. Heme oxygenase 1 expression increased and DMT1 expression decreased with higher heme Fe concentrations in the media. The uptake of heme iron is a saturable and temperature-dependent process and, therefore, could occur through a mechanism involving both a receptor and the endocytic pathway.
Mohammod Mostakim, Golam; Zahangir, Md. Mahiuddin; Monir Mishu, Mahbuba; Rahman, Md. Khalilur; Islam, M. Sadiqul
2015-01-01
Quinalphos (QP) is commonly used for pest control in the agricultural fields surrounding freshwater reservoirs. This study was conducted to evaluate the chronic toxicity of this pesticide on blood parameters and some organs of silver barb, Barbonymus gonionotus. Fish were exposed to two sublethal concentrations, 0.47 ppm and 0.94 ppm, of QP for a period of 28 days. All the blood parameters (red blood cell, hematocrit, and hemoglobin) and blood glucose except for white blood cells decreased with increasing concentration of toxicant and become significantly lower (p < 0.05) at higher concentration when compared with control. The derived hematological indices of mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were equally altered compared to control. Histoarchitectural changes of liver and kidney were observed after exposure to the QP. Hypertrophy of hepatocytes, mild to severe necrosis, ruptured central vein, and vacuolation were observed in the liver of treated groups. Highly degenerated kidney tubules and hematopoietic tissue, degeneration of renal corpuscle, vacuolization, and necrosis were evident in the kidney of treated groups. In conclusion, chronic exposure to QP at sublethal concentrations induced hematological and histological alterations in silver barb and offers a simple tool to evaluate toxicity derived alterations. PMID:26635877
Peña-Rehbein, Patricio; Ruiz, Karin; Ortloff, Alexander; Pizarro, María Isabel; Navarrete, Carolina
2013-01-01
Eleginops maclovinus has been an important fishery resource in Chile since 1957. Caligus rogercresseyi is one of the most prevalent ectoparasite species found on E. maclovinus. Hematocrit, hemoglobin level, red blood cell count (RBC), white blood cell count (WBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and differential white blood cell count were determined before and after an experimental infestation with C. rogercresseyi. We found significant differences in the hemoglobin level, WBC, MCV, MCH, MCHC, hematocrit level and RBC between infested and uninfested fish. Furthermore correlations between number of C. rogercresseyi with hematocrit, MCHC, neutrophil, eosinophil and lymphocyte counts were found. Hematological reference ranges of E. maclovinus in captivity conditions were also established.
Oxygen Measurements in Liposome Encapsulated Hemoglobin
NASA Astrophysics Data System (ADS)
Phiri, Joshua Benjamin
Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.
Elliptocytes and tailed poikilocytes correlate with severity of iron-deficiency anemia.
Rodgers, M S; Chang, C C; Kass, L
1999-05-01
This study examines the relationships between abnormal RBC morphology, RBC indices measured with an automated hematology analyzer, serum iron studies, and severity of anemia in patients with findings indicative of iron-deficiency anemia. Counts and morphologic classification of 1,000 RBCs from each of 22 patients were performed, and correlations were determined between parameters. The Student t test was used to determine the level of significance for correlations between parameters. Several significant relationships were found. As the percentage of elliptocytes increased, hemoglobin concentration, hematocrit, RBC concentration, and mean corpuscular hemoglobin level decreased (r = .48, .44, .40, and .49, respectively; P < .05). As the percentage of tailed poikilocytes increased, hemoglobin concentration, hematocrit, and RBC concentration decreased (r = .70, .77, and .71, respectively; P < .01) and RBC distribution width increased (r = .73; P < .01). Of significance, serum ferritin levels, long considered the best single indicator of iron deficiency, showed no correlation with the morphologic abnormalities assessed, severity of anemia, or any of the analyzer-generated indices. Our results indicate that microscopic evaluation of RBC morphology remains an important tool for the pathologist to evaluate the severity of anemia in patients with iron deficiency.
Castilho, E M; Glass, M L; Manço, J C
2003-06-01
The position of the oxygen dissociation curve (ODC) is modulated by 2,3-diphosphoglycerate (2,3-DPG). Decreases in 2,3-DPG concentration within the red cell shift the curve to the left, whereas increases in concentration cause a shift to the right of the ODC. Some earlier studies on diabetic patients have reported that insulin treatment may reduce the red cell concentrations of 2,3-DPG, causing a shift of the ODC to the left, but the reports are contradictory. Three groups were compared in the present study: 1) nondiabetic control individuals (N = 19); 2) insulin-dependent diabetes mellitus (IDDM) patients (on insulin treatment) (N = 19); 3) non-insulin-dependent diabetes mellitus (NIDDM) patients using oral hypoglycemic agents and no insulin treatment (N = 22). The overall position of the ODC was the same for the three groups despite an increase of the glycosylated hemoglobin fraction that was expected to shift the ODC to the left in both groups of diabetic patients (HbA1c: control, 4.6%; IDDM, 10.5%; NIDDM, 9.0%). In IDDM patients, the effect of the glycosylated hemoglobin fraction on the position of the ODC appeared to be counterbalanced by small though statistically significant increases in 2,3-DPG concentration from 2.05 (control) to 2.45 mol/ml blood (IDDM). Though not statistically significant, an increase of 2,3-DPG also occurred in NIDDM patients, while red cell ATP levels were the same for all groups. The positions of the ODC were the same for control subjects, IDDM and NIDDM patients. Thus, the PO2 at 50% hemoglobin-oxygen saturation was 26.8, 28.2 and 28.5 mmHg for control, IDDM and NIDDM, respectively. In conclusion, our data question the idea of adverse side effects of insulin treatment on oxygen transport. In other words, the shift to the left reported by others to be caused by insulin treatment was not detected.
ERIC Educational Resources Information Center
Abidoye, R. O.; Olukoya, A. A.
1993-01-01
Compared blood screening data for 200 urban and rural pregnant women in Nigeria. Found that rural subjects had a greater incidence of moderate anemia than did urban subjects, and corpuscular hemoglobin concentrations fell with increased gestational age. No relationship was found between hemoglobin counts and nutrition habits. (HTH)
NASA Astrophysics Data System (ADS)
Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan
2014-12-01
Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.
Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia.
Barrett, Angela N; McDonnell, Thomas C R; Chan, K C Allen; Chitty, Lyn S
2012-06-01
Cell-free fetal DNA (cffDNA) constitutes approximately 10% of the cell-free DNA in maternal plasma and is a suitable source of fetal genetic material for noninvasive prenatal diagnosis (NIPD). The objective of this study was to determine the feasibility of using digital PCR for NIPD in pregnancies at risk of sickle cell anemia. Minor-groove binder (MGB) TaqMan probes were designed to discriminate between wild-type hemoglobin A and mutant (hemoglobin S) alleles encoded by the HBB (hemoglobin, beta) gene in cffDNA isolated from maternal plasma samples obtained from pregnancies at risk of sickle cell anemia. The fractional fetal DNA concentration was assessed in male-bearing pregnancies with a digital PCR assay for the Y chromosome-specific marker DYS14. In pregnancies with a female fetus, a panel of biallelic insertion/deletion polymorphism (indel) markers was developed for the quantification of the fetal DNA fraction. We used digital real-time PCR to analyze the dosage of the variant encoding hemoglobin S relative to that encoding wild-type hemoglobin A. The sickle cell genotype was correctly determined in 82% (37 of 45) of male fetuses and 75% (15 of 20) of female fetuses. Mutation status was determined correctly in 100% of the cases (25 samples) with fractional fetal DNA concentrations >7%. The panel of indels was informative in 65% of the female-bearing pregnancies. Digital PCR can be used to determine the genotype of fetuses at risk for sickle cell anemia. Optimization of the fractional fetal DNA concentration is essential. More-informative indel markers are needed for this assay's comprehensive use in cases of a female fetus.
Anderson, Ulrik Dolberg; Gram, Magnus; Ranstam, Jonas; Thilaganathan, Basky; Kerström, Bo; Hansson, Stefan R
2016-04-01
Overproduction of cell-free fetal hemoglobin (HbF) in the preeclamptic placenta has been recently implicated as a new etiological factor of preeclampsia. In this study, maternal serum levels of HbF and the endogenous hemoglobin/heme scavenging systems were evaluated as predictive biomarkers for preeclampsia in combination with uterine artery Doppler ultrasound. Case-control study including 433 women in early pregnancy (mean 13.7weeks of gestation) of which 86 subsequently developed preeclampsia. The serum concentrations of HbF, total cell-free hemoglobin, hemopexin, haptoglobin and α1-microglobulin were measured in maternal serum. All patients were examined with uterine artery Doppler ultrasound. Logistic regression models were developed, which included the biomarkers, ultrasound indices, and maternal risk factors. There were significantly higher serum concentrations of HbF and α1-microglobulin and significantly lower serum concentrations of hemopexin in patients who later developed preeclampsia. The uterine artery Doppler ultrasound results showed significantly higher pulsatility index values in the preeclampsia group. The optimal prediction model was obtained by combining HbF, α1-microglobulin and hemopexin in combination with the maternal characteristics parity, diabetes and pre-pregnancy hypertension. The optimal sensitivity for all preeclampsia was 60% at 95% specificity. Overproduction of placentally derived HbF and depletion of hemoglobin/heme scavenging mechanisms are involved in the pathogenesis of preeclampsia. The combination of HbF and α1-microglobulin and/or hemopexin may serve as a prediction model for preeclampsia in combination with maternal risk factors and/or uterine artery Doppler ultrasound. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.
Multi-Wavelength Photomagnetic Imaging for Oral Cancer
NASA Astrophysics Data System (ADS)
Marks, Michael
In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.
Gonzales, Gustavo F.; Tapia, Vilma; Fort, Alfredo L.
2012-01-01
Objective. To determine changes in hemoglobin concentration at second measurements after a normal hemoglobin concentration was detected at first booking during pregnancy at low and at high altitudes. Methods. This is a secondary analysis of a large database obtained from the Perinatal Information System in Peru which includes 379,816 pregnant women and their babies from 43 maternity units in Peru. Results. Most women remained with normal hemoglobin values at second measurement (75.1%). However, 21.4% of women became anemic at the second measurement. In all, 2.8% resulted with moderate/severe anemia and 3.5% with erythrocytosis (Hb>14.5 g/dL). In all cases Hb was higher as altitude increased. Risk for moderate/severe anemia increased associated with higher gestational age at second measurement of hemoglobin, BMI <19.9 kg/m2, living without partner, <5 antenatal care visits, first parity, multiparity, and preeclampsia. Lower risk for moderate/severe anemia was observed with normal high Hb level at first booking living at moderate and high altitude, and high BMI. Conclusion. Prevalence of anemia increases as pregnancy progress, and that a normal value at first booking may not be considered sufficient as Hb values should be observed throughout pregnancy. BMI was a risk for anemia in a second measurement. PMID:22577573
Gonzales, Gustavo F; Tapia, Vilma; Fort, Alfredo L
2012-01-01
Objective. To determine changes in hemoglobin concentration at second measurements after a normal hemoglobin concentration was detected at first booking during pregnancy at low and at high altitudes. Methods. This is a secondary analysis of a large database obtained from the Perinatal Information System in Peru which includes 379,816 pregnant women and their babies from 43 maternity units in Peru. Results. Most women remained with normal hemoglobin values at second measurement (75.1%). However, 21.4% of women became anemic at the second measurement. In all, 2.8% resulted with moderate/severe anemia and 3.5% with erythrocytosis (Hb>14.5 g/dL). In all cases Hb was higher as altitude increased. Risk for moderate/severe anemia increased associated with higher gestational age at second measurement of hemoglobin, BMI <19.9 kg/m(2), living without partner, <5 antenatal care visits, first parity, multiparity, and preeclampsia. Lower risk for moderate/severe anemia was observed with normal high Hb level at first booking living at moderate and high altitude, and high BMI. Conclusion. Prevalence of anemia increases as pregnancy progress, and that a normal value at first booking may not be considered sufficient as Hb values should be observed throughout pregnancy. BMI was a risk for anemia in a second measurement.
NASA Astrophysics Data System (ADS)
Nur, Firman M.; Nugroho, Rudy Agung; Fachmy, Syafrizal
2017-02-01
The study was conducted to examine the effects of propolis extract (PE) on the growth (G), growth rate (GR), specific growth rate (SGR) and blood profile (erythrocyte, leukocyte, and hemoglobin) of catfish (Pangasius djambal). five groups of fish with three replicates, containing 10 fish each group were fed various concentration of PE, viz 2 (P1), 4 (P2), 6 (P3), 8 (P4) and 10 (P5) g kg-1 of PE in a basal diet and compared to control (C) fish without PE at a rate 3% of body weight for 4 weeks. At the end of the trial, G, GR, SGR, and blood profile (erythrocyte, leukocyte, and hemoglobin) of all groups of fish were examined. The results showed that PE in the fish diet significantly increased G, GR, SGR, erythrocyte, hemoglobin while leukocyte was not affected by dietary any concentration of PE. The dietary 10 g kg-1 PE in the diet of fish showed the highest growth while the highest number of erythrocyte and hemoglobin activity was found in the fish fed 6 g kg-1 PE in the diet. These findings suggested that the inclusion of PE higher than 8 g kg-1 in the diet is beneficial to improve growth, growth rate, specific growth rate, erythrocyte and hemoglobin of Pangasius djambal.
Shan, Xiaoqian; Yuan, Yuan; Liu, Changsheng
2015-01-01
The influence of polyethylene glycol (PEG) molar ratio on the nanoparticles (NPs) properties is described herein. Especially, a facile and nondestructive determination route has been raised to quantify the hemoglobin (Hb) amounts in NPs via an internal standard FTIR method. The subsequent results indicated that, briefly, the PEG molar ratio did negligible influence on the size distribution of NPs, however, it did have great effect on the NPs zeta potential and hydrophilicity as well as the Hb loading amount. These findings highlight that the PEG density on the surface is a key parameter affecting the NPs properties.
NASA Astrophysics Data System (ADS)
Chen, Chen; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael
2014-11-01
An imging resolution of micron-scale has not yet been discovered by diffuse optical imaging (DOI), while a superficial response was eliminated. In this work, we report on a new approach of DOI with a local off-set alignment to subvert the common boundary conditions of the modified Beer-Lambert Law (MBLL). It can resolve a superficial target in micron scale under a turbid media. To validate both major breakthroughs, this system was used to recover a subsurface microvascular mimicking structure under an skin equivalent phantom. This microvascular was included with oxy-hemoglobin solution in variant concentrations to distiguish the absolute values of CtRHb and CtHbO2 . Experimental results confirmed the feasibility of recovering the target vascular of 50 µm in diameter, and graded the values of the concentrations of oxy-hemoglobin from 10 g/L to 50 g/L absolutely. Ultimately, this approach could evolve into a non-invasive imaging system to map the microvascular pattern and the associated oximetry under a human skin in-vivo.
Cell-free oxygen carriers: scientific foundations, clinical development, and new directions.
Winslow, Robert M
2008-10-01
The most significant hurdle to the development of a safe and effective hemoglobin-based oxygen carrier ("blood substitute") is generally thought to be its propensity to cause vasoconstriction in the microcirculation and hypertension. Two theories for this effect are currently being studied: in one, scavenging NO by hemoglobin reduces vasorelaxation; in the other, cell-free hemoglobin oversupplies O2 (a known vasoconstrictor) to vascular walls by facilitated diffusion. While both mechanisms might lead to reduction of local NO concentration, the important distinction between the two is that if the NO scavenging theory is correct, it greatly diminishes the prospects to develop any solution based on free hemoglobin. However, if the O2-oversupply theory is correct, modifications to the hemoglobin molecule can be envisioned that can prevent oversupply and reduce toxicity. This review summarizes the development of Hemospan, a novel modification of human hemoglobin whose design is based on the O2-oversupply theory. Because of its low P50 and increased molecular size, the release of O2 in resistance vessels (arterioles) by Hemospan is restricted, and vasoconstriction is greatly reduced.
Effects of Varying Gravity Levels on fNIRS Headgear Performance and Signal Recovery
NASA Technical Reports Server (NTRS)
Mackey, Jeffrey R.; Harrivel, Angela R.; Adamovsky, Grigory; Lewandowski, Beth E.; Gotti, Daniel J.; Tin, Padetha; Floyd, Bertram M.
2013-01-01
This paper reviews the effects of varying gravitational levels on functional Near-Infrared Spectroscopy (fNIRS) headgear. The fNIRS systems quantify neural activations in the cortex by measuring hemoglobin concentration changes via optical intensity. Such activation measurement allows for the detection of cognitive state, which can be important for emotional stability, human performance and vigilance optimization, and the detection of hazardous operator state. The technique depends on coupling between the fNIRS probe and users skin. Such coupling may be highly susceptible to motion if probe-containing headgear designs are not adequately tested. The lack of reliable and self-applicable headgear robust to the influence of motion artifact currently inhibits its operational use in aerospace environments. Both NASAs Aviation Safety and Human Research Programs are interested in this technology as a method of monitoring cognitive state of pilots and crew.
Wedemeyer, Gary A.; Nelson, Nancy C.
1975-01-01
Gaussian and nonparametric (percentile estimate and tolerance interval) statistical methods were used to estimate normal ranges for blood chemistry (bicarbonate, bilirubin, calcium, hematocrit, hemoglobin, magnesium, mean cell hemoglobin concentration, osmolality, inorganic phosphorus, and pH for juvenile rainbow (Salmo gairdneri, Shasta strain) trout held under defined environmental conditions. The percentile estimate and Gaussian methods gave similar normal ranges, whereas the tolerance interval method gave consistently wider ranges for all blood variables except hemoglobin. If the underlying frequency distribution is unknown, the percentile estimate procedure would be the method of choice.
The Oxygen Equilibrium of Mammalian Hemoglobin
Roughton, F. J. W.
1965-01-01
The three chief physicochemical theories of the oxygen-hemoglobin equilibrium in vogue 40 years ago still influence current thought on the problem. Although the Hill theory lost its fundamental basis some 40 years ago, the famous empiric equation to which it gave rise is still much used, as a useful phenomenological expression, only involving two disposable constants. The Haldane theory, of which a difference in aggregation of oxygenated and deoxygenated hemoglobin was a fundamental feature, lay for many years dormant but has recently had an astonishing reawakening through the work on lamprey hemoglobin, which clearly reveals such differences in aggregation. Lamprey hemoglobin might thus be called a "Haldane type" hemoglobin. Adair's four-stage intermediate compound theory still seems applicable in the case of hemoglobins such as those of sheep, whose tetramer molecules do not tend to dissociate into dimers, and which might therefore be called "Adair type" hemoglobins. Horse and human hemoglobins appear to reveal both "Haldane" and "Adair" behaviour. The effects of pH, temperature, and protein concentration on the oxygen-equilibrium of sheep hemoglobin are summarised, and it is shown that, although the equilibrium curves are often isomorphous over their middle range, intensive work at the top and bottom of the curves reveals considerable differences in the relative effects of these factors on the several equilibrium constants of Adair's four intermediate equations. In the last section an account is given of preliminary experimental attempts to interpret the oxygen- and carbon monoxide—equilibrium curves of whole human blood, under physiological conditions in terms of the Adair intermediate compound hypothesis. PMID:5859923
The high affinity of small-molecule antioxidants for hemoglobin.
Puscas, Cristina; Radu, Luana; Carrascoza, Francisco; Mot, Augustin C; Amariei, Diana; Lungu, Oana; Scurtu, Florina; Podea, Paula; Septelean, Raluca; Matei, Alina; Mic, Mihaela; Attia, Amr A; Silaghi-Dumitrescu, Radu
2018-06-18
Hemoglobin has previously been shown to display ascorbate peroxidase and urate peroxidase activity, with measurable Michaelis-Menten parameters that reveal a particularly low Km for ascorbate as well as for urate - lower than the respective in vivo concentrations of these antioxidants in blood. Also, direct detection of a hemoglobin-ascorbate interaction was possible by monitoring the 1H-NMR spectrum of ascorbate in the presence of hemoglobin. The relative difference in structures between ascorbate and urate may raise the question as to exactly what the defining structural features would be, for a substrate that binds to hemoglobin with high affinity. Reported here are Michaelis-Menten parameters for hemoglobin acting as peroxidase against a number of other substrates of varying structures - gallate, caffeate, rutin, 3-hydroxyflavone, 3,6-dihydroxyflavone, quercetin, epicatechin, luteolin - all with high affinities (some higher than those of physiologically-relevant redox partners of Hb - ascorbate and urate). Moreover, this high affinity appears general to animal hemoglobins. 1 H-NMR and 13 C-NMR spectra reveal a general pattern wherein small hydrophilic antioxidants appear to all have their signals affected, presumably due to binding to hemoglobin. Fluorescence and calorimetry measurements confirm these conclusions. Docking calculations confirm the existence of binding sites on hemoglobin and on myoglobin for ascorbate as well as for other antioxidants. Support is found for involvement of Tyr42 in binding of three out of the four substrates investigated in the case of hemoglobin (including ascorbate and urate, as blood-contained relevant substrates), but also for Tyr145 (with urate and caffeate) and Tyr35 (with gallate). Copyright © 2018 Elsevier Inc. All rights reserved.
Quantification of tissue oxygenation levels using diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
B. S., Suresh Anand; N., Sujatha
2011-08-01
Tumor growth is characterized by increased metabolic activity. The light absorption profile of hemoglobin in dysplastic tissue is different from a normal tissue. Neovascularization is a hallmark of many diseases and can serve as a predictive biomarker for the detection of cancers. Spectroscopic techniques can provide information about the metabolic and morphological changes related to the progression of neoplasia. Diffuse reflectance spectroscopy (DRS) measures the absorption and scattering properties of a biological tissue and this method can provide clinically useful information for the early diagnosis of epithelial precancers. We used tissue simulating phantoms with absorbing and scattering molecules for the determination of total hemoglobin concentration, hemoglobin oxygen saturation and intensity difference between the deoxy and oxy hemoglobin bands. The results show promising approach for the differentiating normal and malignant states of a tissue.
Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu
2016-01-01
A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages.
USDA-ARS?s Scientific Manuscript database
Background: Infant iron status at birth is influenced by maternal iron status during pregnancy; however there are few data on the extent to which maternal iron status is associated with infant iron status during exclusive breastfeeding. Objective: We evaluated how maternal and infant hemoglobin (Hb...
USDA-ARS?s Scientific Manuscript database
Infant iron status at birth is influenced bymaternal iron status during pregnancy; however, there are limited data on the extent to which maternal iron status is associated with infant iron status during exclusive breastfeeding. We evaluated how maternal and infant hemoglobin and iron status [solubl...
NASA Astrophysics Data System (ADS)
Pierro, Michele L.; Sassaroli, Angelo; Bergethon, Peter R.; Fantini, Sergio
2012-02-01
We present a near-infrared spectroscopy study of the instantaneous phase difference between spontaneous oscillations of cerebral deoxy-hemoglobin and oxy-hemoglobin concentrations ([Hb] and [HbO], respectively) in the low-frequency range, namely 0.04-0.12 Hz. We report phase measurements during the transitions between different sleep stages in a whole-night study of a human subject. We have found that the phase difference between [Hb] and [HbO] low-frequency oscillations tends to be greater in deep sleep (by ~96° on average) and REM sleep (by ~77° on average) compared to the awake state. In particular, we have observed progressive phase increases as the subject transitions from awake conditions into non-REM sleep stages N1, N2, and N3. Corresponding phase decreases were recorded in the reversed transitions from sleep stages N3 to N2, and N2 to awake. These results illustrate the physiological information content of phase measurements of [Hb] and [HbO] oscillations that reflect the different cerebral hemodynamic conditions of the different sleep stages, and that can find broader applicability in a wide range of near-infrared spectroscopy brain studies.
Zhao, Changzhi; Wan, Li; Jiang, Li; Wang, Qin; Jiao, Kui
2008-12-01
A cholesterol biosensor based on direct electron transfer of a hemoglobin-encapsulated chitosan-modified glassy carbon electrode has been developed for highly sensitive and selective analysis of serum samples. Modified by films containing hemoglobin and cholesterol oxidase, the electrode was prepared by encapsulation of enzyme in chitosan matrix. The hydrogen peroxide produced by the catalytic oxidation of cholesterol by cholesterol oxidase was reduced electrocatalytically by immobilized hemoglobin and used to obtain a sensitive amperometric response to cholesterol. The linear response of cholesterol concentrations ranged from 1.00 x 10(-5) to 6.00 x 10(-4) mol/L, with a correlation coefficient of 0.9969 and estimated detection limit of cholesterol of 9.5 micromol/L at a signal/noise ratio of 3. The cholesterol biosensor can efficiently exclude interference by the commonly coexisting ascorbic acid, uric acid, dopamine, and epinephrine. The sensitivity to the change in the concentration of cholesterol as the slope of the calibration curve was 0.596 A/M. The relative standard deviation was under 4.0% (n=5) for the determination of real samples. The biosensor is satisfactory in the determination of human serum samples.
Heilbronn, Leonie K; Noakes, Manny; Clifton, Peter M
2002-04-01
To determine whether glycemic index (GI) differentially affects improved glucose and lipid profiles observed during weight loss in overweight subjects previously diagnosed with type 2 diabetes with variable glucose tolerance. Twenty-three female and twenty-two male overweight subjects participated in 12 weeks of energy restriction (average BMI 33.2 kg/m2, age 56.7 years, glycated hemoglobin (GHb) 6.7%). After a four-week run-in on a high saturated fat (SFA) diet (1540 kcal/day, 17% SFA), the free-living subjects were randomly assigned to either a high- (75 GI units) or low- (43 GI units) GI diet (1440 kcal/day, 60% carbohydrate, 5% SFA) for eight weeks. Weight, serum lipids, plasma glucose and glycated hemoglobin were measured every four weeks. An oral glucose tolerance test (OGTT) was also performed at baseline, weeks 4 and 12. From the baseline OGTT results subjects were divided into three groups of low, median and high glucose tolerance. At baseline, BMI, age and glycated hemoglobin concentrations were not different between subjects allocated to the high- or low-GI diets. After four weeks, weight loss was 3.6+/-0.3 kg. Fasting glucose (-5.6%), glycated hemoglobin (-2.8%), area under the glucose curve (-13.0%) and triglyceride (-13.8%) concentrations were reduced (p < 0.02). Between weeks 4 and 12 reductions were observed in weight (-4.9%), fasting glucose (-4.6%), area under glucose curve (-10.1%), glycated hemoglobin (-7.2%), triglyceride (-7.5%) and LDL-C (-13.2%) concentrations. Weight loss was not different between low and high-GI diets. However, glycated hemoglobin was reduced twofold more in subjects consuming a low-GI diet as compared to subjects consuming a high-GI diet, but this was not statistically significant. LDL concentrations were also reduced more in subjects with low glucose tolerance on the low-GI diet (p = 0.02). Weight loss produces substantial improvements in glycemic control and lipoprotein metabolism. Lowering the glycemic index of high carbohydrate, low fat diets increases the fall in LDL cholesterol in subjects with type 2 diabetes with low glucose tolerance, but has little effect on glycemic control.
The Greenland shark Somniosus microcephalus-Hemoglobins and ligand-binding properties.
Russo, Roberta; Giordano, Daniela; Paredi, Gianluca; Marchesani, Francesco; Milazzo, Lisa; Altomonte, Giovanna; Del Canale, Pietro; Abbruzzetti, Stefania; Ascenzi, Paolo; di Prisco, Guido; Viappiani, Cristiano; Fago, Angela; Bruno, Stefano; Smulevich, Giulietta; Verde, Cinzia
2017-01-01
A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R) and the tense (T) states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.
The Greenland shark Somniosus microcephalus—Hemoglobins and ligand-binding properties
Paredi, Gianluca; Marchesani, Francesco; Milazzo, Lisa; Altomonte, Giovanna; Del Canale, Pietro; Abbruzzetti, Stefania; Ascenzi, Paolo; di Prisco, Guido; Viappiani, Cristiano; Fago, Angela; Bruno, Stefano; Smulevich, Giulietta
2017-01-01
A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R) and the tense (T) states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks. PMID:29023598
Ross, Samuel Wade; Christmas, A Britton; Fischer, Peter E; Holway, Haley; Seymour, Rachel; Huntington, Ciara R; Heniford, B Todd; Sing, Ronald F
2018-06-04
The concept of hemodilution after blood loss and crystalloid infusion is a surgical maxim that remains unproven in humans. We sought to quantify the effect of hemodilution after crystalloid administration in voluntary blood donors as a model for acute hemorrhage. A prospective, randomized control trial was conducted in conjunction with community blood drives. Donors were randomized to receive no IV fluid(noIVF), two liters normal saline(NS), or two liters lactated ringers(LR) after blood donation. Blood samples were taken before donation of 500 mL of blood, immediately after donation, and following IV fluid administration. Hemoglobin(Hgb) was measured at each time point. Hgb between time points were compared between groups using standard statistical tests and the Bonferroni correction for multiple comparisons. Statistical significance was set at p≤0.0167. Of 165 patients consented, 157 patients completed the study. Average pre-donation Hgb was 14.3 g/dL. There was no difference in the mean Hgb levels after blood donation between the three groups(p>0.05). Compared to the control group, there was a significant drop in Hgb in the crystalloid infused groups from the post-donation level to post-resuscitation(13.2 vs 12.1 vs 12.2 g/dL, p<0.0001). A formula was created to predict hemoglobin levels from a given estimated blood loss(EBL) and volume replacement(VR): Hemodilution Hgb=(MeanPre-donation Hgb - hemorrhage Hgb drop - equilibration hemoglobin drop - resuscitation Hgb drop)=MeanPre-donation Hgb - [(EBL/TBV)*l] - [(EBL/TBV)*h] - [(VR/TBV)*r], l = 5.111g/dL = blood loss coefficient, h=6.722 g/dL=equilibration coefficient, r= 2.617g/dL= resuscitation coefficient. This study proves the concept of hemodilution and derived a mathematical relationship between blood loss and resuscitation. This data may help to estimate response of hemoglobin levels to blood loss and fluid resuscitation in clinical practice. Copyright © 2018. Published by Elsevier Inc.
Meadowcroft, Amy M.; Maier, Rayma; Johnson, Brendan M.; Jones, Delyth; Rastogi, Anjay; Zeig, Steven; Lepore, John J.; Cobitz, Alexander R.
2016-01-01
Hypoxia-inducible factor prolyl hydroxylase inhibitors stabilize levels of hypoxia-inducible factor that upregulate transcription of multiple genes associated with the response to hypoxia, including production of erythropoietin. We conducted two phase 2a studies to explore the relationship between the dose of the hypoxia-inducible factor–prolyl hydroxylase inhibitor GSK1278863 and hemoglobin response in patients with anemia of CKD (baseline hemoglobin 8.5–11.0 g/dl) not undergoing dialysis and not receiving recombinant human erythropoietin (nondialysis study) and in patients with anemia of CKD (baseline hemoglobin 9.5–12.0 g/dl) on hemodialysis and being treated with stable doses of recombinant human erythropoietin (hemodialysis study). Participants were randomized 1:1:1:1 to a once-daily oral dose of GSK1278863 (0.5 mg, 2 mg, or 5 mg) or control (placebo for the nondialysis study; continuing on recombinant human erythropoietin for the hemodialysis study) for 4 weeks, with a 2-week follow-up. In the nondialysis study, GSK1278863 produced dose-dependent effects on hemoglobin, with the highest dose resulting in a mean increase of 1 g/dl at week 4. In the hemodialysis study, treatment with GSK1278863 in the 5-mg arm maintained mean hemoglobin concentrations after the switch from recombinant human erythropoietin, whereas mean hemoglobin decreased in the lower-dose arms. In both studies, the effects on hemoglobin occurred with elevations in endogenous erythropoietin within the range usually observed in the respective populations and markedly lower than those in the recombinant human erythropoietin control arm in the hemodialysis study, and without clinically significant elevations in plasma vascular endothelial growth factor concentrations. GSK1278863 was generally safe and well tolerated at the doses and duration studied. GSK1278863 may prove an effective alternative for managing anemia of CKD. PMID:26494831
Animasahun, B A; Temiye, E O; Ogunkunle, O O; Izuora, A N; Njokanma, O F
2011-01-01
Sickle cell anemia (SCA) has multisystemic manifestations and is associated with severe morbidity and high mortality. It commonly affects growth leading to wasting and stunting. This study aimed to determine the influence of socioeconomic status on the nutritional status using anthropometric measurements and steady-state hemoglobin, of children with homozygous SCA, aged 1 year to 10 years in steady state at the Lagos University Teaching Hospital. This is a cross-sectional study involving 100 children with SCA and 100 age-, sex-, and social class-matched controls that fulfilled the inclusion criteria. Social class was assessed using educational attainment and occupation of parents. Hemoglobin concentration was determined using the oxy-hemoglobin method. This study demonstrated a significantly lower mean weight and weight-for-height in the SCA patients than those of controls (P < 0.001). By contrast, this study did not demonstrate any statistical significant difference in the mean height and mean body mass index of SCA patients and controls (P = 0.06) and (P = 0.12), respectively. The mean weight, height, and body mass indices of the subjects and controls were consistently below those of the NCHS standards. The magnitude of the difference from the NCHS standard was also more pronounced in the subjects, increased with advancing age and affected male subjects more than females. Progressive declines in the anthropometric attainment and hemoglobin concentration were observed from social class 1 to 4; this was statistically significant in controls (P = 0.00) but not in subjects (P > 0.1). However, SCA patients had significantly lower values than controls in each of the social classes. Poor socioeconomic status has an adverse effect on the nutritional status and hemoglobin of SCA patients.
Hoffman, D.J.; Pattee, O.H.; Wiemeyer, Stanley N.; Mulhern, B.
1981-01-01
Lead shot ingestion by bald eagles (Haliaeetus leucocephalus) is considered to be widespread and has been implicated in the death of eagles in nature. It was recently demonstrated under experimental conditions that ingestion of as few as 10 lead shot resulted in death within 12 to 20 days. In the present study hematological responses to lead toxicity including red blood cell ALAD activity, hemoglobin concentration and 23 different blood serum chemistries were examined in five captive bald eagles that were unsuitable for rehabilitation and release. Eagles were dosed by force-feeding with 10 lead shot; they were redosed if regurgitation occurred. Red blood cell ALAD activity was inhibited by nearly 80% within 24 hours when mean blood lead concentration had increased to 0.8 parts per million (ppm). By the end of 1 week there was a significant decrease (20-25%) in hematocrit and hemoglobin, and the mean blood lead concentration was over 3 ppm. Within as little as 1-2 weeks after dosing, significant elevations in serum creatinine and serum alanine aminotransferase occurred, as well as a significant decrease in the ratio of serum aspartic aminotransferase to serum alanine aminotransferase. The mean blood lead concentration was over 5 ppm by the end of 2 weeks. These changes in serum chemistry may be indicative of kidney and liver alterations.
Liquid-liquid separation in solutions of normal and sickle cell hemoglobin
NASA Astrophysics Data System (ADS)
Galkin, Oleg; Chen, Kai; Nagel, Ronald L.; Elison Hirsch, Rhoda; Vekilov, Peter G.
2002-06-01
We show that in solutions of human hemoglobin (Hb)oxy- and deoxy-Hb A or Sof near-physiological pH, ionic strength, and Hb concentration, liquid-liquid phase separation occurs reversibly and reproducibly at temperatures between 35 and 40°C. In solutions of deoxy-HbS, we demonstrate that the dense liquid droplets facilitate the nucleation of HbS polymers, whose formation is the primary pathogenic event for sickle cell anemia. In view of recent results that shifts of the liquid-liquid separation phase boundary can be achieved by nontoxic additives at molar concentrations up to 30 times lower than the protein concentrations, these findings open new avenues for the inhibition of the HbS polymerization.
NASA Astrophysics Data System (ADS)
Liang, Xiaoping; Zhang, Qizhi; Staal, Stephen; Grobmyer, Stephen; Jiang, Huabei
2009-02-01
Multispectral and phase-contrast diffuse optical tomography are used to track treatment progress in a patient with locally advanced invasive carcinoma of the breast cancer during neoadjuvant chemotherapy. Two types of chemotherapy treatment including four cycles of Adriamycin/Cytoxin (AC cycles) and twelve cycles of Taxol/Herceptin (TH cycles) were applied to patient. A total of eight optical exams were performed before and within the chemotherapy. Images of tissue refractive index, and absorption and scattering coefficients, as well as oxy-hemoglobin and deoxy-hemoglobin concentrations along with scattering particle volume fraction and mean diameter of cellular components were all obtained. The tumor was identified through absorption and scattering images. Tumor shrinkage was observed during the course of chemotherapy from all the optical images. Our results show that oxy-hemoglobin, deoxy-hemoglobin and total hemoglobin in tumor decreased after chemotherapy compared to that of before chemotherapy. Significant changes in tumor refractive index along with tumor cellular morphology during the entire chemotherapy are also observed.
Increased nitrite reductase activity of fetal versus adult ovine hemoglobin
Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.
2009-01-01
Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797
Fetal hemoglobin in sickle cell anemia: a glass half full?
Steinberg, Martin H; Chui, David H K; Dover, George J; Sebastiani, Paola; Alsultan, Abdulrahman
2014-01-23
Fetal hemoglobin (HbF) modulates the phenotype of sickle cell anemia by inhibiting deoxy sickle hemoglobin (HbS) polymerization. The blood concentration of HbF, or the number of cells with detectable HbF (F-cells), does not measure the amount of HbF/F-cell. Even patients with high HbF can have severe disease because HbF is unevenly distributed among F-cells, and some cells might have insufficient concentrations to inhibit HbS polymerization. With mean HbF levels of 5%, 10%, 20%, and 30%, the distribution of HbF/F-cell can greatly vary, even if the mean is constant. For example, with 20% HbF, as few as 1% and as many as 24% of cells can have polymer-inhibiting, or protective, levels of HbF of ∼10 pg; with lower HbF, few or no protected cells can be present. Only when the total HbF concentration is near 30% is it possible for the number of protected cells to approach 70%. Rather than the total number of F-cells or the concentration of HbF in the hemolysate, HbF/F-cell and the proportion of F-cells that have enough HbF to thwart HbS polymerization is the most critical predictor of the likelihood of severe sickle cell disease.
Saravanan, Manoharan; Karthika, Subramanian; Malarvizhi, Annamalai; Ramesh, Mathan
2011-11-15
Investigation on the toxic effects of pharmaceutical drugs namely clofibric acid (CA) and diclofenac (DCF) were studied in a common carp Cyprinus carpio at different concentrations such as 1, 10 and 100 μg L(-1) for a short-term period of 96 h under static bioassay method. At all concentrations, red blood cell (RBC), plasma sodium (Na(+)), potassium (K(+)), and glutamate oxaloacetate transaminase (GOT) levels were decreased in fish treated with CA and DCF. Contrastingly, white blood cell (WBC), plasma glucose, protein, lactate dehydrogenase (LDH) and gill Na(+)/K(+)-ATPase level were increased. However, a mixed trend was observed in hemoglobin (Hb), hematocrit (Hct), plasma chloride (Cl(-)), mean cellular volume (MCV), mean cellular hemoglobin (MCH), mean cellular hemoglobin concentration (MCHC) and glutamate pyruvate transaminase (GPT) levels. There was a significant (P<0.01 and P<0.05) change in all parameters measured in fish exposed to different concentrations of CA and DCF. In summary, the alterations in hematological, biochemical, ionoregulatory and enzymological parameters can be used as biomarkers in monitoring the toxicity of CA and DCF in aquatic environment. However, more detailed studies on using of specific biomarkers to monitor the human pharmaceuticals are needed. Copyright © 2011 Elsevier B.V. All rights reserved.
21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...
21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...
21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...
21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...
21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxyhemoglobin concentration... Indwelling blood oxyhemoglobin concentration analyzer. (a) Identification. An indwelling blood oxyhemoglobin... hemoglobin in blood to aid in determining the patient's physiological status. (b) Classification. Class III...
Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.; Miller, Teresa Y.
1988-01-01
The development of a space continuous flow electrophoresis system (CFES) is discussed. The objectives of the experiment were: (1) to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the McDonnell Douglass CFES instrument and compare its separation resolution and sample throughput with related devices on Earth, and (2) to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as samples of concentration effects. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was principally due to the mismatch of electrical conductivity between the sample and buffer.
NITRO MUSK ADDUCTS OF RAINBOW TROUT ...
Rainbow trout and other fish species can serve as 'sentinel' species for the assessment of ecological status and the presence of certain environmental contaminants. As such they act as bioindicators of exposure. Here we present seminal data regarding dose-response and toxicokinetics of trout hemoglobin adduct formation from exposure to nitro musks that are frequently used as fragrance ingredients in formulations of personal care products. Hemoglobin adducts serve as biomarkers of exposure of the sentinel species as we have shown in previous studies of hemoglobin adducts formed in trout and environmental carp exposed to musk xylene (MX) and musk ketone (MK). Gas chromatography-electron capture negative ion chemical ionization-mass spectrometry (GC-NICI-MS) employing selected ion monitoring is used to measure 4-amino-MX (4-AMX), 2-amino-MX (2-AMX), and 2-amino-MK (2-AMK) released by alkaline hydrolysis from the sulfinamide adducts of hemoglobin. Dose-response and toxicokinetics were investigated using this sensitive method for analysis of these metabolites. In the dose-response investigation, the concentrations of 4-AMX and 2-2AMX are observed to pass through a maximum at 0.10 mg/g. In the case of 2-AMK, the adduct concentration is almost the same at dosages in the range of 0.030 to 0.10 mg/g. For toxicokinetics, the concentration of the metabolites in the Hb reaches a maximum in the 3-day sample after administration of MX or MK. Further elimination of the metabo
Lacson, Eduardo K.; Kshirsagar, Abhijit V.; Key, Nigel S.; Hogan, Susan L.; Hakim, Raymond M.; Mooney, Ann; Jani, Chinu M.; Johnson, Curtis; Hu, Yichun; Falk, Ronald J.; Lazarus, J. Michael
2014-01-01
African Americans require higher doses of erythropoiesis-stimulating agents (ESAs) during dialysis to manage anemia, but the influence of sickle cell trait and other hemoglobinopathy traits on anemia in dialysis patients has not been adequately evaluated. We performed a cross-sectional study of a large cohort of adult African-American hemodialysis patients in the United States to determine the prevalence of hemoglobinopathy traits and quantify their influence on ESA dosing. Laboratory and clinical data were obtained over 6 months in 2011. Among 5319 African-American patients, 542 (10.2%) patients had sickle cell trait, and 129 (2.4%) patients had hemoglobin C trait; no other hemoglobinopathy traits were present. Sickle cell trait was more common in this cohort than the general African-American population (10.2% versus 6.5%–8.7%, respectively, P<0.05). Among 5002 patients (10.3% sickle cell trait and 2.4% hemoglobin C trait) receiving ESAs, demographic and clinical variables were similar across groups, with achieved hemoglobin levels being nearly identical. Patients with hemoglobinopathy traits received higher median doses of ESA than patients with normal hemoglobin (4737.4 versus 4364.1 units/treatment, respectively, P=0.02). In multivariable analyses, hemoglobinopathy traits associated with 13.2% more ESA per treatment (P=0.001). Within subgroups, sickle cell trait patients received 13.2% (P=0.003) higher dose and hemoglobin C trait patients exhibited a similar difference (12.9%, P=0.12). Sensitivity analyses using weight-based dosing definitions and separate logistic regression models showed comparable associations. Our findings suggest that the presence of sickle cell trait and hemoglobin C trait may explain, at least in part, prior observations of greater ESA doses administered to African-American dialysis patients relative to Caucasian patients. PMID:24459231
Liles, Elizabeth G; Perrin, Nancy; Rosales, Ana G; Smith, David H; Feldstein, Adrianne C; Mosen, David M; Levin, Theodore R
2018-05-02
The fecal immunochemical test (FIT) is easier to use and more sensitive than the guaiac fecal occult blood test, but it is unclear how to optimize FIT performance. We compared the sensitivity and specificity for detecting advanced colorectal neoplasia between single-sample (1-FIT) and two-sample (2-FIT) FIT protocols at a range of hemoglobin concentration cutoffs for a positive test. We recruited 2,761 average-risk men and women ages 49-75 referred for colonoscopy within a large nonprofit, group-model health maintenance organization (HMO), and asked them to complete two separate single-sample FITs. We generated receiver-operating characteristic (ROC) curves to compare sensitivity and specificity estimates for 1-FIT and 2-FIT protocols among those who completed both FIT kits and colonoscopy. We similarly compared sensitivity and specificity between hemoglobin concentration cutoffs for a single-sample FIT. Differences in sensitivity and specificity between the 1-FIT and 2-FIT protocols were not statistically significant at any of the pre-specified hemoglobin concentration cutoffs (10, 15, 20, 25, and 30 μg/g). There was a significant difference in test performance of the one-sample FIT between 50 ng/ml (10 μg/g) and each of the higher pre-specified cutoffs. Disease prevalence was low. A two-sample FIT is not superior to a one-sample FIT in detection of advanced adenomas; the one-sample FIT at a hemoglobin concentration cutoff of 50 ng/ml (10 μg/g) is significantly more sensitive for advanced adenomas than at higher cutoffs. These findings apply to a population of younger, average-risk patients in a U.S. integrated care system with high rates of prior screening.
Chen, Yu; Jiang, Chunhua; Luo, Yongjun; Liu, Fuyu; Gao, Yuqi
2014-12-01
Hemoglobin concentration at high altitude is considered an important marker of high altitude adaptation, and native Tibetans in the Qinghai-Tibetan plateau show lower hemoglobin concentrations than Han people who have emigrated from plains areas. Genetic studies revealed that EPAS1 plays a key role in high altitude adaptation and is associated with the low hemoglobin concentration in Tibetans. Three single nucleotide polymorphisms (rs13419896, rs4953354, rs1868092) of noncoding regions in EPAS1 exhibited significantly different allele frequencies in the Tibetan and Han populations and were associated with low hemoglobin concentrations in Tibetans. To explore the hereditary basis of high altitude polycythemia (HAPC) and investigate the association between EPAS1 and HAPC in the Han population, these 3 single nucleotide polymorphisms were assessed in 318 male Han Chinese HAPC patients and 316 control subjects. Genotyping was performed by high resolution melting curve analysis. The G-G-G haplotype of rs13419896, rs4953354, and rs1868092 was significantly more frequent in HAPC patients than in control subjects, whereas no differences in the allele or genotype frequencies of the 3 single nucleotide polymorphisms were found between HAPC patients and control subjects. Moreover, genotypes of rs1868092 (AA) and rs4953354 (GG) that were not observed in the Chinese Han in the Beijing population were found at frequencies of 1.6% and 0.9%, respectively, in our study population of HAPC patients and control subjects. Carriers of this EPAS1 haplotype (G-G-G, rs13419896, rs4953354, and rs1868092) may have a higher risk for HAPC. These results may contribute to a better understanding of the pathogenesis of HAPC in the Han population. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Elom, Michael O; Eyo, Joseph E; Okafor, Fabian C; Nworie, Amos; Usanga, Victor U; Attamah, Gerald N; Igwe, Chibueze C
2017-02-01
One hundred and fifty-two malaria-infected pregnant women whose pregnancies had advanced to the 6th month were randomised into two study groups - supplemented and placebo groups, after obtaining their approved consents. Ten thousand international units of vitamin A soft gels were administered to the supplemented group three times per week. Vitamin A soft gels devoid of their active ingredients were administered thrice weekly to the placebo group. Two hundred thousand international units of vitamin A was administered to the supplemented groups within 8 weeks postpartum. Placebo was given to the control group at same time after delivery. The regimen was continued in the two groups at three-month intervals until 12 months. Quarterly, 3 ml of venous blood was collected from each infant in the two groups and was used for the estimation of hemoglobin concentrations and determination of blood glucose levels. Hemoglobin concentrations were estimated using hemiglobincyanide method while the blood glucose levels were determined with a glucometer. Analysis of variance, Fisher's least significant difference and t-test were used for data analysis. Statistical significance was established at p < 0.05. Both hemoglobin concentrations and blood glucose levels were significantly (p < 0.05) higher in the supplemented group than in the placebo group. The malaria infection mitigating effects of maternal vitamin A supplementation have been established in the present study and supported by previous studies. Vitamin A supplementation, fortification of foods with vitamin A and diversification of diets, are advocated for maintenance of good health and protection against some infectious diseases.
Double-blind randomized controlled trial of rolls fortified with microencapsulated iron.
Barbosa, Teresa Negreira Navarro; Taddei, José Augusto de Aguiar Carrazedo; Palma, Domingos; Ancona-Lopez, Fábio; Braga, Josefina Aparecida Pellegrini
2012-01-01
To evaluate the impact of the fortification of rolls with microencapsulated iron sulfate with sodium alginate on the hemoglobin levels in preschoolers as compared to controls. Double-blind randomized controlled trial comprised of children aged 2 to 6 years with initial hemoglobin exceeding 9 g/dL from four not-for-profit daycares randomly selected in the city of São Paulo - Brazil. Children of 2 daycares (n = 88) received rolls with fortified wheat flour as the exposed group (EC) and children of 2 daycares (n = 85) received rolls without fortification as the control group (CG) over a 24-week period. Rolls with 4 mg iron each were offered once a day, five days a week. Hemoglobin concentrations were determined in capillary blood by HemoCue® at three moments of trial: baseline (Ml), after 12 and 24 weeks of intervention (M2, M3). Hemoglobin concentration presented significant increase up to M3 in EG (11.7-12.5-12.6 g/dL) and in CG (11.1-12.4-12.3 g/dL) with higher elevations in children initially with anemia. There was significant reduction in the occurrence of anemia from 22% to 9% in EG and from 47% to 8.2% in CG at M3. Rolls fortified with microencapsulated iron sulfate were well tolerated, increased hemoglobin levels and reduced the occurrence of anemia, but with no difference compared to the control group.
Timilsina, Sameer; Karki, Sirisa; Gautam, Aajeevan; Bhusal, Pujan; Paudel, Gita; Sharma, Deepak
2018-03-21
Complete blood count is one of the routinely advised blood investigation during pregnancy. It is also utilized as a diagnostic tool for neonatal anemia, sepsis and determining hemostatic status of the newborn. The present study aims at estimating the complete blood count of maternal and umbilical cord blood at the time of delivery and to establish its correlation. This cross sectional study included 114 mothers and their healthy neonates born through normal vaginal delivery. Complete blood count of umbilical cord blood and maternal blood was estimated using automatic hematology analyzer. The mean maternal and neonatal hemoglobin concentration was 11.14 ± 1.39 g/dL and 16.34 ± 2.01 g/dL respectively. A significant positive correlation was found between maternal and fetal hemoglobin concentration (p < 0.001 and Pearson R = 0.496). The correlation between maternal and fetal WBC, RBC and Platelet count was not statistically significant. A significant positive correlation was found between maternal and fetal MCV and MCH while PCV showed a non-significant positive correlation. There was moderately positive correlation between maternal and fetal hemoglobin, MCV and MCH. The cord blood hemoglobin was lower in babies born to anemic mothers. The decrease in hemoglobin followed the severity of anemia, however, the correlation did not exist in anemic mothers. It suggested that fetal hematological parameters are not reflective of maternal hemogram.
Ataga, Kenneth I; Smith, Wally R; De Castro, Laura M; Swerdlow, Paul; Saunthararajah, Yogen; Castro, Oswaldo; Vichinsky, Elliot; Kutlar, Abdullah; Orringer, Eugene P; Rigdon, Greg C; Stocker, Jonathan W
2008-04-15
Senicapoc, a novel Gardos channel inhibitor, limits solute and water loss, thereby preserving sickle red blood cell (RBC) hydration. Because hemoglobin S polymerization is profoundly influenced by intracellular hemoglobin concentration, senicapoc could improve sickle RBC survival. In a 12-week, multicenter, phase 2, randomized, double-blind, dose-finding study, we evaluated senicapoc's safety and its effect on hemoglobin level and markers of RBC hemolysis in sickle cell anemia patients. The patients were randomized into 3 treatment arms: placebo; low-dose (6 mg/day) senicapoc; and high-dose (10 mg/day) senicapoc. For the primary efficacy end point (change in hemoglobin level from baseline), the mean response to high-dose senicapoc treatment exceeded placebo (6.8 g/L [0.68 g/dL] vs 0.1 g/L [0.01 g/dL], P < .001). Treatment with high-dose senicapoc also produced significant decreases in such secondary end points as percentage of dense RBCs (-2.41 vs -0.08, P < .001); reticulocytes (-4.12 vs -0.46, P < .001); lactate dehydrogenase (-121 U/L vs -15 U/L, P = .002); and indirect bilirubin (-1.18 mg/dL vs 0.12 mg/dL, P < .001). Finally, senicapoc was safe and well tolerated. The increased hemoglobin concentration and concomitant decrease in the total number of reticulocytes and various markers of RBC destruction following senicapoc administration suggests a possible increase in the survival of sickle RBCs. This study is registered at http://clinicaltrials.gov as NCT00040677.
Developmental Function in Toddlers With Sickle Cell Anemia
Elkin, T. David; Brown, R. Clark; Glass, Penny; Rana, Sohail; Casella, James F.; Kalpatthi, Ram V.; Pavlakis, Steven; Mi, Zhibao; Wang, Winfred C.
2013-01-01
BACKGROUND: Neurocognitive impairment occurs in children and adults with sickle cell anemia, but little is known about neurodevelopment in very young children. We examined the neurodevelopmental status of infants participating in the Pediatric Hydroxyurea Phase III Clinical Trial (Baby Hug) to determine relationships with age, cerebral blood flow velocity, and hemoglobin concentration. METHODS: Standardized measures of infant neurodevelopment were administered to 193 infants with hemoglobin SS or hemoglobin S-β0 thalassemia between 7 and 18 months of age at the time of their baseline evaluation. Associations between neurodevelopmental scores and age, family income, parent education, hemoglobin concentration, and transcranial Doppler velocity were examined. RESULTS: Mean functioning on the baseline neurodevelopment scales was in the average range. There were no mental development scores <70 (impaired); 22 children had scores in the clinically significant range, 11 with impaired psychomotor scores and 11 with problematic behavior rating scores. Significantly poorer performance was observed with older age at baseline. Behavior rating scores were an average of 2.82 percentile points lower per month of age, with similar patterns observed with parent report using adaptive behavior scales. Parent-reported functional abilities and hemoglobin were negatively associated with higher transcranial Doppler velocities. CONCLUSIONS: Whereas overall functioning was in the normal range, behavioral and adaptive function was poorer with older age, even in this very young group of children. Explanatory mechanisms for this association between poorer developmental function and older age need to be identified. PMID:23296434
Olafadehan, Olurotimi A; Njidda, Ahmed A; Okunade, Sunday A; Salihu, Sarah O; Balogun, David O; Salem, Abdelfattah Z M
2018-02-01
Fifteen 5-month-old Red Sokoto buck-kids, (6.6 ± 0.71 kg body weight (BW)) randomly distributed into three groups of five animals per group, were used to study the effects of supplementary concentrate partially replaced with Piliostigma thonningii (PT) foliage on the growth performance, economic benefit and blood profile in a completely randomized design using analysis of variance. The goats in group 1 received 100% supplementary concentrates (PT0), groups 2 and 3 received 25% (PT25) and 50% (PT50), respectively, of concentrate replaced with an equal amount (dry matter basis) of Piliostigma foliage. The goats were fed a basal diet of threshed sorghum top (TST). Intake of concentrate, hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, total feeding cost and cost/kg BW were greater (P < 0.05) for PT0 than for PT25 and PT50. Consumption of P. thonningii foliage was greater (P < 0.05) for PT50 relative to PT25. Tannin consumption of the treatment diets were greater (P < 0.05) than that of the control concentrate diet. Serum urea N reduced (P < 0.05) with increasing level of concentrate replacement, while serum glucose was higher (P < 0.05) in PT0 than in PT50. However, means of all blood measurements were within normal ranges for goats. Net benefit showed this rank order: PT0 < PT50 < PT25 (all P < 0.05). Both differential and relative benefits were higher (P < 0.05) for PT25 than for PT50. P. thonningii foliage can replace 50% of supplemental concentrate without impairing feed intake, growth performance and health of buck-kids. © 2017 Japanese Society of Animal Science.
Tabima, D. Marcela; Specht, Patricia A.C.; Tejero, Jesús; Champion, Hunter C.; Kim-Shapiro, Daniel B.; Baust, Jeff; Mik, Egbert G.; Hildesheim, Mariana; Stasch, Johannes-Peter; Becker, Eva-Maria; Truebel, Hubert
2013-01-01
Abstract Aims: Hemoglobin-based oxygen carriers (HBOC) provide a potential alternative to red blood cell (RBC) transfusion. Their clinical application has been limited by adverse effects, in large part thought to be mediated by the intravascular scavenging of the vasodilator nitric oxide (NO) by cell-free plasma oxy-hemoglobin. Free hemoglobin may also cause endothelial dysfunction and platelet activation in hemolytic diseases and after transfusion of aged stored RBCs. The new soluble guanylate cyclase (sGC) stimulator Bay 41-8543 and sGC activator Bay 60-2770 directly modulate sGC, independent of NO bioavailability, providing a potential therapeutic mechanism to bypass hemoglobin-mediated NO inactivation. Results: Infusions of human hemoglobin solutions and the HBOC Oxyglobin into rats produced a severe hypertensive response, even at low plasma heme concentrations approaching 10 μM. These reactions were only observed for ferrous oxy-hemoglobin and not analogs that do not rapidly scavenge NO. Infusions of L-NG-Nitroarginine methyl ester (L-NAME), a competitive NO synthase inhibitor, after hemoglobin infusion did not produce additive vasoconstriction, suggesting that vasoconstriction is related to scavenging of vascular NO. Open-chest hemodynamic studies confirmed that hypertension occurred secondary to direct effects on increasing vascular resistance, with limited negative cardiac inotropic effects. Intravascular hemoglobin reduced the vasodilatory potency of sodium nitroprusside (SNP) and sildenafil, but had no effect on vasodilatation by direct NO-independent activation of sGC by BAY 41-8543 and BAY 60-2770. Innovation and Conclusion: These data suggest that both sGC stimulators and sGC activators could be used to restore cyclic guanosine monophosphate-dependent vasodilation in conditions where cell-free plasma hemoglobin is sufficient to inhibit endogenous NO signaling. Antioxid. Redox Signal. 19, 2232–2243. PMID:23697678
Manning, Lois R.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, James M.
2016-01-01
This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. PMID:27965062
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C; Chait, Brian T; Manning, James M
2017-02-15
This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. Copyright © 2016 Elsevier Inc. All rights reserved.
Unloading oxygen in a capillary vessel under a pathological condition.
Escobar, C; Méndez, F
2008-10-01
In this work, we study theoretically the unloading of oxygen from a hemoglobin molecule to the wall of a typical capillary vessel, considering that the hemoglobin under pathological conditions, obeys the rheological Maxwell model. Based on recent experimental evidences in hypertension, we consider that the red blood cells (RBCs) are composed by a single continuous medium in contrast with the classical particulate or discrete RBC models, which are only valid under normal physiological conditions. The analysis considers the hemodynamic interactions between the plasma and the hemoglobin, both circulating in a long horizontal capillary. We apply numerical and analytical methods to obtain the main fluid-dynamic characteristics for both fluids in the limit of low Reynolds and Womersley numbers. A diffusion boundary layer formulation for the oxygen transport in the combined plasma-hemoglobin core region is presented. The main aspects derived are the time and spatial evolution of the membrane. The hemoglobin and plasma velocities and the pressure distributions are shown. For the oxygen unloading the results are the oxy-hemoglobin saturation, the oxygen flux and the oxygen concentration in the cell-free plasma layer. The volume fraction of red blood cells and the Strouhal number have a great influence on the hemodynamic interactions.
Mehta, Rajvi; Platt, Alyssa C; Sun, Xizi; Desai, Mukesh; Clements, Dennis; Turner, Elizabeth L
2017-03-01
Background: India's high prevalence of iron-deficiency anemia has largely been attributed to the local diet consisting of nonheme iron, which has lower absorption than that of heme iron. Objective: We assessed the efficacy of the consumption of iron-supplement bars in raising hemoglobin concentrations and hematocrit percentages in anemic (hemoglobin concentration <12 g/dL) Indian women of reproductive age. Design: The Let's be Well Red study was a 90-d, pair-matched, cluster-randomized controlled trial. A total of 361 nonpregnant women (age 18-35 y) were recruited from 10 sites within Mumbai and Navi Mumbai, India. All participants received anemia education and a complete blood count (CBC). Random assignment of anemic participants to intervention and control arms occurred within 5 matched site-pairs. Intervention participants received 1 iron-supplement bar (containing 14 mg Fe)/d for 90 d, whereas control subjects received nothing. CBC tests were given at days 15, 45, and 90. Primary outcomes were 90-d changes from baseline in hemoglobin concentrations and hematocrit percentages. Linear mixed models and generalized estimating equations were used to model continuous and binary outcomes, respectively. Results: Of 179 anemic participants, 136 (76.0%) completed all follow-up assessments (65 intervention and 71 control participants). Baseline characteristics were comparable by arm. Mean hemoglobin and hematocrit increases after 90 d were greater for intervention than for control participants [1.4 g/dL (95% CI: 1.3, 1.6 g/dL) and 2.7% (95% CI: 2.2%, 3.2%), respectively]. The anemia prevalence at 90 d was lower for intervention (29.2%) than for control participants (98.6%) (OR: 0.007; 95% CI: 0.001, 0.04). Conclusions: The daily consumption of an iron-supplement bar leads to increased hemoglobin concentrations and hematocrit percentages and to a lower anemia prevalence in the target population with no reported side effects. This intervention is an attractive option to combat anemia in India. This trial was registered at clinicaltrials.gov as NCT02032615. © 2017 American Society for Nutrition.
Lizards infected with malaria: physiological and behavioral consequences.
Schall, J J
1982-09-10
In northern California, western fence lizards, Sceloporus occidentalis, are frequently parasitized by Plasmodium mexicanum, which causes malaria. Animals with this naturally occurring malarial infection are anemic: immature erythrocytes in peripheral blood become abundant (1 to 30 percent), and blood hemoglobin concentration decreases 25 percent. Maximal oxygen consumption decreases 15 percent and aerobic scope drops 29 percent in infected lizards; both correlate with blood hemoglobin concentration. Running stamina, but not burst running speed, is reduced in malarious lizards. There is a hierarchical relation between infection with malaria and effects on hematology, physiological function, and behavioral capacity. The results suggest that malarial infection may have significant effects on the ecology of lizard hosts.
The measurement of hemoglobin oxygen saturation using multiwavelength photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Deng, Zilin; Yang, Xiaoquan; Yu, Lejun; Gong, Hui
2010-02-01
Hemoglobin oxygen saturation (SO2) is one of the most critical functional parameters to the metabolism. In this paper, we mainly introduced some initial results of measuring blood oxygen using multi-wavelength photoacoustic microscopy (PAM). In phantom study, we demonstrate the photoacoustic signal amplitude increases linearly with the concentration of red or blue ink. Then the calculated concentration of red ink in double-ink mixtures with PAM has a 5% difference with the result measured with spectrophotometric analysis. In ex vivo experiment, the measured result exhibt 15% difference between the PAM and spectrophotometric analysis. Experiment results suggest that PAM could be used to determine the SO2 quantitatively.
Wang, Fenglei; Liu, Huijuan; Wan, Yi; Li, Jing; Chen, Yu; Zheng, Jusheng; Huang, Tao; Li, Duo
2017-03-23
Age of complementary foods introduction is associated with childhood anemia, but the ideal age for the introduction of complementary foods to infants is a continuing topic of debate. We examined the longitudinal association between complementary foods introduction age and risk of anemia in 18,446 children from the Jiaxing Birth Cohort, who had detailed complementary feeding records at 3 and 6 months of age and had hemoglobin concentrations measured at 4-6 years. Early introduction of complementary foods at 3-6 months of age was significantly associated with a higher risk of anemia (odds ratio = 1.14; 95% confidence interval: 1.01-1.28) and a lower hemoglobin concentration of -0.84 g/L (95% confidence interval: -1.33 to -0.35) in children aged 4-6 years, compared with those fed complementary foods starting at 6 months of age. When it comes to the specific type of complementary foods, early introduction of all plant-based foods was associated with increased anemia risks and lower hemoglobin concentrations, while early introduction of most animal-based foods was not. These findings may be informative regarding the appropriate time to introduce complementary foods in infants.
López de Romaña, Daniel; Verona, Sara; Vivanco, Oscar Aquino; Gross, Rainer
2006-01-01
The Integrated Food Security Program (Programa Integrado de Seguridad Alimentaria [PISA]) implemented a campaign to promote weekly multimicronutrient supplementation among women and adolescent girls of childbearing age and children under 5 years of age. To assess the impact of the campaign on the growth of children and on anemia among children and among women and adolescent girls of childbearing age. Weekly multimicronutrient supplementation was provided for 8 weeks. Weights, heights, and hemoglobin concentrations were assessed at the beginning and end of the campaign. Although supplementation did not significantly increase the hemoglobin concentrations of children (p = .80) or women and adolescent girls (p = .65) in the intervention group, the hemoglobin concentrations of the comparison groups were significantly lower after 8 weeks (p = .001 for children and p = .03 for women and adolescent girls). Furthermore, the percentage of anemic children in the comparison group increased significantly (p <.001), and the final value was significantly higher than that for the intervention group (p = .004). There were no significant effects of weekly multimicronutrient supplementation on the growth of children, but the study was too short to reliably determine any effects on growth.
Single-wavelength functional photoacoustic microscopy in biological tissue.
Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V
2011-03-01
Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple-laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multiwavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy.
Single-wavelength functional photoacoustic microscopy in biological tissue
Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.
2011-01-01
Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multi-wavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy. PMID:21368977
Mojs, Ewa; Stanisławska-Kubiak, Maia; Wójciak, Rafał W; Wojciechowska, Julita; Przewoźniak, Sabina
2016-03-01
Anemia in patients with diabetes is not scarce and may contribute to the complications of the disease. The risk of iron deficiency parameters in child sufferers of diabetes type 1, observed in studies, can lead to cognitive impairment. The aim of the study was to determine whether children and adolescents with diabetes type 1, in whom reduced ferric parameters are observed in control tests, may also show reduced cognitive performance. The study included 100 children with diabetes type 1 at the age of 6-17 years. During control tests, patients' morphological blood parameters were measured: red blood cells (RBC), hemoglobin, glycosylated hemoglobin, hematocrit, RBC volume, the molar mass of hemoglobin in RBC (MCH), mean corpuscular hemoglobin in RBC and iron concentrations in serum using flame atomic absorption spectroscopy and the Wechsler Intelligence Scale for Children (WISC-R). Results in the group of children with a diabetes type 1 significantly lower concentration of three ferric parameters affect the non-verbal intelligence measured with WISC-R. The prevalence of reduced ferric parameters justifies further screening in all children with diabetes type 1 and taking up appropriate preventive measures to reduce the risk of their occurrence. Copyright © 2016 American Federation for Medical Research.
NASA Astrophysics Data System (ADS)
Mastanduno, Michael A.; Davis, Scott C.; Jiang, Shudong; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.
2012-03-01
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used to image high-risk patients for breast cancer because of its higher sensitivity to tumors (approaching 100%) than traditional x-ray mammography. We focus on Near Infrared Spectroscopy (NIRS) as an emerging functional and molecular imaging technique that non-invasively quantifies optical properties of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration to increase the relatively low specificity of DCE-MRI. Our optical imaging system combines six frequency domain wavelengths, measured using PMT detectors with three continuous wave wavelengths measured using CCD/spectrometers. We present methods on combining the synergistic attributes of DCE-MR and NIRS for in-vivo imaging of breast cancer in three dimensions using a custom optical MR breast coil and diffusion based light modeling software, NIRFAST. We present results from phantom studies, healthy subjects, and breast cancer patients. Preliminary results show contrast recovery within 10% in phantoms and spatial resolution less than 5mm. Images from healthy subjects were recovered with properties similar to literature values and previous studies. Patient images have shown elevated total hemoglobin values and water fraction, agreeing with histology and previous results. The additional information gained from NIRS may improve the ability to distinguish between malignant and benign lesions during MR imaging. These dual modality instruments will provide complex anatomical and molecular prognostic information, and may decrease the number of biopsies, thereby improving patient care.
NASA Astrophysics Data System (ADS)
Leproux, Anaïs; Kim, You Me; Min, Jun Won; McLaren, Christine E.; Chen, Wen-Pin; O'Sullivan, Thomas D.; Lee, Seung-ha; Chung, Phil-Sang; Tromberg, Bruce J.
2016-07-01
Young patients with dense breasts have a relatively low-positive biopsy rate for breast cancer (˜1 in 7). South Korean women have higher breast density than Westerners. We investigated the benefit of using a functional and metabolic imaging technique, diffuse optical spectroscopic imaging (DOSI), to help the standard of care imaging tools to distinguish benign from malignant lesions in premenopausal Korean women. DOSI uses near-infrared light to measure breast tissue composition by quantifying tissue concentrations of water (ctH2O), bulk lipid (ctLipid), deoxygenated (ctHHb), and oxygenated (ctHbO2) hemoglobin. DOSI spectral signatures specific to abnormal tissue and absent in healthy tissue were also used to form a malignancy index. This study included 19 premenopausal subjects (average age 41±9), corresponding to 11 benign and 10 malignant lesions. Elevated lesion to normal ratio of ctH2O, ctHHb, ctHbO2, total hemoglobin (THb=ctHHb+ctHbO2), and tissue optical index (ctHHb×ctH2O/ctLipid) were observed in the malignant lesions compared to the benign lesions (p<0.02). THb and malignancy index were the two best single predictors of malignancy, with >90% sensitivity and specificity. Malignant lesions showed significantly higher metabolism and perfusion than benign lesions. DOSI spectral features showed high discriminatory power for distinguishing malignant and benign lesions in dense breasts of the Korean population.
Perignon, Marlène; Fiorentino, Marion; Kuong, Khov; Dijkhuizen, Marjoleine A; Burja, Kurt; Parker, Megan; Chamnan, Chhoun; Berger, Jacques; Wieringa, Frank T
2016-01-07
In Cambodia, micronutrient deficiencies remain a critical public health problem. Our objective was to evaluate the impact of multi-micronutrient fortified rice (MMFR) formulations, distributed through a World Food Program school-meals program (WFP-SMP), on the hemoglobin concentrations and iron and vitamin A (VA) status of Cambodian schoolchildren. The FORISCA-UltraRice+NutriRice study was a double-blind, cluster-randomized, placebo-controlled trial. Sixteen schools participating in WFP-SMP were randomly assigned to receive extrusion-fortified rice (UltraRice Original, UltraRice New (URN), or NutriRice) or unfortified rice (placebo) six days a week for six months. Four additional schools not participating in WFP-SMP were randomly selected as controls. A total of 2440 schoolchildren (6-16 years old) participated in the biochemical study. Hemoglobin, iron status, estimated using inflammation-adjusted ferritin and transferrin receptors concentrations, and VA status, assessed using inflammation-adjusted retinol-binding protein concentration, were measured at the baseline, as well as at three and six months. Baseline prevalence of anemia, depleted iron stores, tissue iron deficiency, marginal VA status and VA deficiency were 15.6%, 1.4%, 51.0%, 7.9%, and 0.7%, respectively. The strongest risk factors for anemia were hemoglobinopathy, VA deficiency, and depleted iron stores (all p < 0.01). After six months, children receiving NutriRice and URN had 4 and 5 times less risk of low VA status, respectively, in comparison to the placebo group. Hemoglobin significantly increased (+0.8 g/L) after three months for the URN group in comparison to the placebo group; however, this difference was no longer significant after six months, except for children without inflammation. MMFR containing VA effectively improved the VA status of schoolchildren. The impact on hemoglobin and iron status was limited, partly by sub-clinical inflammation. MMFR combined with non-nutritional approaches addressing anemia and inflammation should be further investigated.
Point-of-care hemoglobin testing for postmortem diagnosis of anemia.
Na, Joo-Young; Park, Ji Hye; Choi, Byung Ha; Kim, Hyung-Seok; Park, Jong-Tae
2018-03-01
An autopsy involves examination of a body using invasive methods such as dissection, and includes various tests using samples procured during dissection. During medicolegal autopsies, the blood carboxyhemoglobin concentration is commonly measured using the AVOXimeter® 4000 as a point-of-care test. When evaluating the body following hypovolemic shock, characteristics such as reduced livor mortis or an anemic appearance of the viscera can be identified, but these observations arequite subjective. Thus, a more objective test is required for the postmortem diagnosis of anemia. In the present study, the AVOXimeter® 4000 was used to investigate the utility of point-of-care hemoglobin testing. Hemoglobin tests were performed in 93 autopsy cases. The AVOXimeter® 4000 and the BC-2800 Auto Hematology Analyzer were used to test identical samples in 29 of these cases. The results of hemoglobin tests performed with these two devices were statistically similar (r = 0.969). The results of hemoglobin tests using postmortem blood were compared with antemortem test results from medical records from 31 cases, and these results were similar. In 13 of 17 cases of death from internal hemorrhage, hemoglobin levels were lower in the cardiac blood than in blood from the affected body cavity, likely due to compensatory changes induced by antemortem hemorrhage. It is concluded that blood hemoglobin testing may be useful as a point-of-care test for diagnosing postmortem anemia.
Hirt, Déborah; Warszawski, Josiane; Firtion, Ghislaine; Giraud, Carole; Chappuy, Hélène; Lechenadec, Jérôme; Benaboud, Sihem; Urien, Saïk; Blanche, Stéphane; Tréluyer, Jean-Marc
2013-08-15
The aims of the study were in a large group of neonates to identify the relative effect of bodyweight, postnatal age, and gestational age on zidovudine (ZDV) pharmacokinetics; to link concentrations with lactate and hemoglobin levels; and to find the more appropriate neonatal ZDV dose. In 484 neonates aged 3-30 days, born to HIV-infected mothers, 767 ZDV and 417 ZDV glucuronide concentrations were collected. Using a population approach, ZDV clearance per kilogram increased with postnatal age but not with gestational age. High neonatal exposures were found as follows: 14,025 ng/mL·h the first week and 6528 ng/mL·h the second week in comparison to 3000 ng/mL·h in adults. At month 1, median lactate level was 2.8 mmol/L (60%, ≥2.5 mmol/L) and median hemoglobin was 10.1 g/dL (90%, <12 g/dL). ZDV trough concentrations at first sampling (days 3-7) or at last sampling (day 20 ± 10) were significantly negatively correlated to hemoglobin at months 1, 3, and 6 (P < 0.02). ZDV maximal or trough concentrations at days 3-7 and at day 20 ± 10 were significantly positively correlated to lactate levels at months 3 and 6, respectively. To obtain an exposure comparable to adults, which should reduce neonatal toxicity, doses should to be decreased during the first 2 weeks of life.
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
NASA Astrophysics Data System (ADS)
Zhang, Qiujia; You, Jiang; Volkow, Nora D.; Choi, Jeonghun; Yin, Wei; Wang, Wei; Pan, Yingtian; Du, Congwu
2016-02-01
Cocaine abuse can lead to cerebral strokes and hemorrhages secondary to cocaine's cerebrovascular effects, which are poorly understood. We assessed cocaine's effects on cerebrovascular anatomy and function in the somatosensory cortex of the rat's brain. Optical coherence tomography was used for in vivo imaging of three-dimensional cerebral blood flow (CBF) networks and to quantify CBF velocities (CBFv), and multiwavelength laser-speckle-imaging was used to simultaneously measure changes in CBFv, oxygenated (Δ[HbO2]) and deoxygenated hemoglobin (Δ[HbR]) concentrations prior to and after an acute cocaine challenge in chronically cocaine exposed rats. Immunofluorescence techniques on brain slices were used to quantify microvasculature density and levels of vascular endothelial growth factor (VEGF). After chronic cocaine (2 and 4 weeks), CBFv in small vessels decreased, whereas vasculature density and VEGF levels increased. Acute cocaine further reduced CBFv and decreased Δ[HbO2] and this decline was larger and longer lasting in 4 weeks than 2 weeks cocaine-exposed rats, which indicates that risk for ischemia is heightened during intoxication and that it increases with chronic exposures. These results provide evidence of cocaine-induced angiogenesis in cortex. The CBF reduction after chronic cocaine exposure, despite the increases in vessel density, indicate that angiogenesis was insufficient to compensate for cocaine-induced disruption of cerebrovascular function.
NASA Astrophysics Data System (ADS)
Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.
2008-02-01
Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.
The impact of H63D HFE gene carriage on hemoglobin and iron status in children.
Barbara, Kaczorowska-Hac; Marcin, Luszczyk; Jedrzej, Antosiewicz; Wieslaw, Ziolkowski; Elzbieta, Adamkiewicz-Drozynska; Malgorzata, Mysliwiec; Ewa, Milosz; Jacek, Kaczor Jan
2016-12-01
The molecular mechanism that regulates iron homeostasis is based on a network of signals, which reflect on the iron requirements of the body. Hereditary hemochromatosis is a heterogenic metabolic syndrome which is due to unchecked transfer of iron into the bloodstream and its toxic effects on parenchymatous organs. It is caused by the mutation of genes that encode proteins that help hepcidin to monitor serum iron. These proteins include the human hemochromatosis protein -HFE, transferrin-receptor 2, hemojuvelin in rare instances, and ferroportin. HFE-related hemochromatosis is the most frequent form of the disease. Interestingly, the low penetrance of polymorphic HFE genes results in rare clinical presentation of the disease, predominantly in middle-aged males. Taking into account the wide dispersion of HFE mutation in our population and also its unknown role in heterozygotes, we analyzed the impact of H63D HFE carriage in the developmental age, with respect to gender, on the iron status and hemoglobin concentration of carriers in comparison to those of wild-type HFE gene (12.7 ± 3.07 years, 42 boys and 41 girls). H63D carriers presented higher blood iron, transferrin saturation, and ferritin concentration than wild-type probands (p < 0.05.) Interestingly, male H63D carriers showed higher hemoglobin concentration than the unburdened children. Moreover, in the H63D carrier group, a positive correlation between iron and hemoglobin was noted. In conclusion, this study demonstrates that changes in iron metabolism occur at a young age in HFE heterozygotes.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-07-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.
Fadrowski, Jeffrey J.; Pierce, Christopher B.; Cole, Stephen R.; Moxey-Mims, Marva; Warady, Bradley A.; Furth, Susan L.
2008-01-01
Background and objectives: The level of glomerular filtration rate at which hemoglobin declines in chronic kidney disease is poorly described in the pediatric population. Design, setting, participants, & measurements: This cross-sectional study of North American children with chronic kidney disease examined the association of glomerular filtration rate, determined by the plasma disappearance of iohexol, and hemoglobin concentration. Results: Of the 340 patients studied, the mean age was 11 ± 4 yr, the mean glomerular filtration rate was 42 ± 14 ml/min per 1.73 m2, and the mean hemoglobin was 12.5 ± 1.5. Below a glomerular filtration rate of 43, the hemoglobin declined by 0.3 g/dl (95% confidence interval −0.2 to −0.5) for every 5-ml/min per 1.73 m2 decrease in glomerular filtration rate. Above a glomerular filtration rate of 43 ml/min per 1.73 m2, the hemoglobin showed a nonsignificant decline of 0.1 g/dl for every 5-ml/min per 1.73 m2 decrease in glomerular filtration rate. Conclusions: In pediatric patients with chronic kidney disease, hemoglobin declines as an iohexol-determined glomerular filtration rate decreases below 43 ml/min per 1.73 m2. Because serum creatinine–based estimated glomerular filtration rates may overestimate measured glomerular filtration rate in this population, clinicians need to be mindful of the potential for hemoglobin decline and anemia even at early stages of chronic kidney disease, as determined by current Schwartz formula estimates. Future longitudinal analyses will further characterize the relationship between glomerular filtration rate and hemoglobin, including elucidation of reasons for the heterogeneity of this association among individuals. PMID:18235140
Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.
Budhiraja, Vikas; Hellums, J David; Post, Jan F M
2002-11-01
Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.
Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion
Klonis, Nectarios; Crespo-Ortiz, Maria P.; Bottova, Iveta; Abu-Bakar, Nurhidanatasha; Kenny, Shannon; Rosenthal, Philip J.; Tilley, Leann
2011-01-01
Combination regimens that include artemisinin derivatives are recommended as first line antimalarials in most countries where malaria is endemic. However, the mechanism of action of artemisinin is not fully understood and the usefulness of this drug class is threatened by reports of decreased parasite sensitivity. We treated Plasmodium falciparum for periods of a few hours to mimic clinical exposure to the short half-life artemisinins. We found that drug treatment retards parasite growth and inhibits uptake of hemoglobin, even at sublethal concentrations. We show that potent artemisinin activity is dependent on hemoglobin digestion by the parasite. Inhibition of hemoglobinase activity with cysteine protease inhibitors, knockout of the cysteine protease falcipain-2 by gene deletion, or direct deprivation of host cell lysate, significantly decreases artemisinin sensitivity. Hemoglobin digestion is also required for artemisinin-induced exacerbation of oxidative stress in the parasite cytoplasm. Arrest of hemoglobin digestion by early stage parasites provides a mechanism for surviving short-term artemisinin exposure. These insights will help in the design of new drugs and new treatment strategies to circumvent drug resistance. PMID:21709259
Jarosiewicz, Monika; Duchnowicz, Piotr; Włuka, Anna; Bukowska, Bożena
2017-11-01
Brominated flame retardants (BFRs) are widely used in many everyday products. Numerous studies have shown that BFRs can be released into the environment. Environmental pollution with these compounds raises concerns about their potentially adverse health effects. The aim of this study was to evaluate the effect of tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), 2,4-dibromophenol (2,4-DBP), 2,4,6- tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) on hemolysis induction and hemoglobin oxidation in human erythrocytes. The erythrocytes were incubated with selected BFRs in a wide concentrations ranging from 0.01 to 100 μg/ml for 24 h, 48 h and 72 h. All compounds studied, exhibited hemolytic potential and induced methemoglobin formation. Hemolytic and oxidative potential of BFRs increased along with the increasing concentrations of the compounds studied and elongation of the incubation time. Our study showed that both the number of aromatic rings and the number of bromine atoms in the molecule of the compounds examined influence hemoglobin oxidation and damage to the cellular membrane. Furthermore, we may conclude that 2,4-DBP is potentially most toxic compound because it causes statistically significant changes at the lowest concentration, while the highest toxicity at the highest concentrations was noted for TBBPA. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Savelieva, Tatiana A.; Loshchenov, Victor B.; Volkov, Vladimir V.; Linkov, Kirill G.; Goryainov, Sergey A.; Potapov, Alexander A.
2014-05-01
The method of intraoperative analysis of tumor markers such as structural changes, concentrations of 5- ALA induced protoporphyrin IX and hemoglobin in the area of tissue resection was developed. A device for performing this method is a neurosurgical aspiration cannulae coupled with the fiber optic probe. The configuration of fibers at the end of cannulae was developed according to the results of numerical modeling of light distribution in biological tissues. The optimal distance between the illuminating and receiving fiber was found for biologically relevant interval of optical properties. On this particular distance the detected diffuse reflectance depends on scattering coefficient almost linearly. Array of optical phantoms containing hemoglobin, protoporphyrin IX and fat emulsion (as scattering media) in various concentrations was prepared to verify the method. The recovery of hemoglobin and protoporphyrin IX concentrations in the scattering media with an error less than 10% has been demonstrated. The fat emulsion concentration estimation accuracy was less than 12%. The first clinical test was carried out during glioblastoma multiforme resection in Burdenko Neurosurgery Institute and confirmed that sensitivity of this method is enough to detect investigated tumor markers in vivo. This method will allow intraoperative analysis of the structural and metabolical tumor markers directly in the zone of destruction of tumor tissue, thereby increasing the degree of radical removal and preservation of healthy tissue.
Qiu, Wei; Ma, Guang-Hui; Meng, Fan-Tao; Su, Zhi-Guo
2004-03-01
Methoxypoly (ethylene glycol)- block-poly (DL-lactide) (PELA) microcapsules containing bovine hemoglobin (BHb) were prepared by a W/O/W double emulsion-solvent diffusion process. The P50 and Hill coeffcient were 3466 Pa and 2.4 respectively, which were near to the natural bioactivity of bovine hemoglobin. The results suggested that polymer composition had significant influence on encapsulation efficiency and particle size of microcapsules. The encapsulation efficiency could reach 90% and the particle size 3 - 5 microm when the PELA copolymer containing MPEG 2000 block was used. The encapsulation efficiency and particle size increased with the concentration of PELA. Increasing the concentrations of NaCl in outer aqueous solution resulted in the increase of encapsulation efficiency and the decrease of particle size. As the concentration of stabilizer in outer aqueous solution increased in the range of 10 g/L to 20 g/L, the particle size reduced while encapsulation efficiency was increased, further increase of the stabilizer concentration would decrease encapsulation efficiency. Increasing of primary emulsion stirring rate was advantageous to the improvement of encapsulation efficiency though it had little influence on the particle size. The influence of re-emulsion stirring rate was complicated, which was not apparent in the case of large volume of re-emulsion solution. When the wall polymer and primary emulsion stirring rate were fixed, the encapsulation efficiency decreased as the particle size reduced.
2012-02-01
a slight increase in oxygen consumption during exercise, without a decrement in capillary hemoglobin oxygen saturation compared to exercise on 85...must be provided. HSI education and training for program managers and acquisition professionals are required. Meaningful, quantifiable...positions were transferred to the 711th HPW at WPAFB. Only two of the analysts moved to WPAFB, creating a major shortfall in HSI education , training, and
Blood values of the canvasback duck by age, sex and season
Kocan, R.M.; Pitts, S.M.
1976-01-01
Blood samples were obtained from canvasback ducklings from Manitoba and Saskatchewan and from immature and adult canvasbacks on the Mississippi River near LaCrosse, Wisconsin and the Chesapeake Bay. These samples were used to determine baseline data on red cell counts, hematocrit, total protein, glucose, cholesterol, hemoglobin and distribution of plasma proteins. Calculations were also made to determine mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration. The major differences noted were between ducklings and adults. The former having higher total protein and lower hematocrit, glucose and cholesterol values. These hematologic values were collected in order to provide baseline information on apparently healthy canvasbacks, thereby providing disease investigators with a standard of comparison
Gienger, Jonas; Groß, Hermann; Neukammer, Jörg; Bär, Markus
2016-11-01
The real part of the refractive index of aqueous solutions of human hemoglobin is computed from their absorption spectra in the wavelength range 250-1100 nm using the Kramers-Kronig (KK) relations, and the corresponding uncertainty analysis is provided. The strong ultraviolet (UV) and infrared absorbance of the water outside this spectral range were taken into account in a previous study employing KK relations. We improve these results by including the concentration dependence of the water absorbance as well as by modeling the deep UV absorbance of hemoglobin's peptide backbone. The two free parameters of the model for the deep UV absorbance are fixed by a global fit.
Environmental Control Of A Genetic Process
NASA Technical Reports Server (NTRS)
Khosla, Chaitan; Bailey, James E.
1991-01-01
E. coli bacteria altered to contain DNA sequence encoding production of hemoglobin made to produce hemoglobin at rates decreasing with increases in concentration of oxygen in culture media. Represents amplification of part of method described in "Cloned Hemoglobin Genes Enhance Growth Of Cells" (NPO-17517). Manipulation of promoter/regulator DNA sequences opens promising new subfield of recombinant-DNA technology for environmental control of expression of selected DNA sequences. New recombinant-DNA fusion gene products, expression vectors, and nucleotide-base sequences will emerge. Likely applications include such aerobic processes as manufacture of cloned proteins and synthesis of metabolites, production of chemicals by fermentation, enzymatic degradation, treatment of wastes, brewing, and variety of oxidative chemical reactions.
Wang, Yaokun; Yan, Mingyang
2017-01-01
Hierarchical copper shells anchored on magnetic nanoparticles were designed and fabricated to selectively deplete hemoglobin from human blood by immobilized metal affinity chromatography. Briefly, CoFe2O4 nanoparticles coated with polyacrylic acid were first synthesized by a one-pot solvothermal method. Hierarchical copper shells were then deposited by immobilizing Cu2+ on nanoparticles and subsequently by reducing between the solid CoFe2O4@COOH and copper solution with NaBH4. The resulting nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The particles were also tested against purified bovine hemoglobin over a range of pH, contact time, and initial protein concentration. Hemoglobin adsorption followed pseudo-second-order kinetics and reached equilibrium in 90 min. Isothermal data also fit the Langmuir model well, with calculated maximum adsorption capacity 666 mg g−1. Due to the high density of Cu2+ on the shell, the nanoparticles efficiently and selectively deplete hemoglobin from human blood. Taken together, the results demonstrate that the particles with hierarchical copper shells effectively remove abundant, histidine-rich proteins, such as hemoglobin from human blood, and thereby minimize interference in diagnostic and other assays. PMID:28316987
Frontal lobe activation during object permanence: data from near-infrared spectroscopy.
Baird, Abigail A; Kagan, Jerome; Gaudette, Thomas; Walz, Kathryn A; Hershlag, Natalie; Boas, David A
2002-08-01
The ability to create and hold a mental schema of an object is one of the milestones in cognitive development. Developmental scientists have named the behavioral manifestation of this competence object permanence. Convergent evidence indicates that frontal lobe maturation plays a critical role in the display of object permanence, but methodological and ethical constrains have made it difficult to collect neurophysiological evidence from awake, behaving infants. Near-infrared spectroscopy provides a noninvasive assessment of changes in oxy- and deoxyhemoglobin and total hemoglobin concentration within a prescribed region. The evidence described in this report reveals that the emergence of object permanence is related to an increase in hemoglobin concentration in frontal cortex.
Multimode optical dermoscopy (SkinSpect) analysis for skin with melanocytic nevus
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M.; Maly, Tyler; Chave, Robert; Booth, Nicholas; Durkin, Anthony J.; Farkas, Daniel L.
2016-04-01
We have developed a multimode dermoscope (SkinSpect™) capable of illuminating human skin samples in-vivo with spectrally-programmable linearly-polarized light at 33 wavelengths between 468nm and 857 nm. Diffusely reflected photons are separated into collinear and cross-polarized image paths and images captured for each illumination wavelength. In vivo human skin nevi (N = 20) were evaluated with the multimode dermoscope and melanin and hemoglobin concentrations were compared with Spatially Modulated Quantitative Spectroscopy (SMoQS) measurements. Both systems show low correlation between their melanin and hemoglobin concentrations, demonstrating the ability of the SkinSpect™ to separate these molecular signatures and thus act as a biologically plausible device capable of early onset melanoma detection.
Mirinejad, Hossein; Gaweda, Adam E; Brier, Michael E; Zurada, Jacek M; Inanc, Tamer
2017-09-01
Anemia is a common comorbidity in patients with chronic kidney disease (CKD) and is frequently associated with decreased physical component of quality of life, as well as adverse cardiovascular events. Current treatment methods for renal anemia are mostly population-based approaches treating individual patients with a one-size-fits-all model. However, FDA recommendations stipulate individualized anemia treatment with precise control of the hemoglobin concentration and minimal drug utilization. In accordance with these recommendations, this work presents an individualized drug dosing approach to anemia management by leveraging the theory of optimal control. A Multiple Receding Horizon Control (MRHC) approach based on the RBF-Galerkin optimization method is proposed for individualized anemia management in CKD patients. Recently developed by the authors, the RBF-Galerkin method uses the radial basis function approximation along with the Galerkin error projection to solve constrained optimal control problems numerically. The proposed approach is applied to generate optimal dosing recommendations for individual patients. Performance of the proposed approach (MRHC) is compared in silico to that of a population-based anemia management protocol and an individualized multiple model predictive control method for two case scenarios: hemoglobin measurement with and without observational errors. In silico comparison indicates that hemoglobin concentration with MRHC method has less variation among the methods, especially in presence of measurement errors. In addition, the average achieved hemoglobin level from the MRHC is significantly closer to the target hemoglobin than that of the other two methods, according to the analysis of variance (ANOVA) statistical test. Furthermore, drug dosages recommended by the MRHC are more stable and accurate and reach the steady-state value notably faster than those generated by the other two methods. The proposed method is highly efficient for the control of hemoglobin level, yet provides accurate dosage adjustments in the treatment of CKD anemia. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshida, Kenichiro; Nishidate, Izumi; Ojima, Nobutoshi; Iwata, Kayoko
2014-01-01
To quantitatively evaluate skin chromophores over a wide region of curved skin surface, we propose an approach that suppresses the effect of the shading-derived error in the reflectance on the estimation of chromophore concentrations, without sacrificing the accuracy of that estimation. In our method, we use multiple regression analysis, assuming the absorbance spectrum as the response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as the predictor variables. The concentrations of melanin and total hemoglobin are determined from the multiple regression coefficients using compensation formulae (CF) based on the diffuse reflectance spectra derived from a Monte Carlo simulation. To suppress the shading-derived error, we investigated three different combinations of multiple regression coefficients for the CF. In vivo measurements with the forearm skin demonstrated that the proposed approach can reduce the estimation errors that are due to shading-derived errors in the reflectance. With the best combination of multiple regression coefficients, we estimated that the ratio of the error to the chromophore concentrations is about 10%. The proposed method does not require any measurements or assumptions about the shape of the subjects; this is an advantage over other studies related to the reduction of shading-derived errors.
Hematology and erythrocyte osmotic fragility of the Franquet's fruit bat (Epomops franqueti).
Ekeolu, Oyetunde Kazeem; Adebiyi, Olamide Elizabeth
2018-03-15
Hematological parameters are vital diagnostic tools for understanding health dynamics of humans and animals. Franquet's fruit bat (Epomops franqueti) is host to several parasites such as protozoa, bacteria, viruses and mites. Yet, studies exploring the values of its blood components with interest for research or food purposes are scarce. Thus, this study was carried out to investigate the hematological values of the adult E. franqueti. Seventeen (nine female and eight male) apparently healthy adult E. franqueti were captured from their roosting colony. Blood samples were collected for determination of erythrocyte indices [red blood cell count (RBC), packed cell volume (PCV), hemoglobin (Hb) concentration, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC)] and leukocyte indices [total white blood cell counts (WBC), lymphocytes, eosinophil, monocytes, neutrophil count and erythrocytes osmotic fragility]. There were no significant (p≥0.05) sex-related differences in RBC, PCV, Hb concentration, MCV, MCH, MCHC and total and differential WBC of E. franqueti. Erythrocyte osmotic fragility was significantly higher in female than in male E. franqueti at 0.1% NaCl. These considerations are critical in establishing reference ranges of blood parameters for E. franqueti and may provide insight to why they serve as reservoir hosts for several microorganisms.
Mild anemia during pregnancy upregulates placental vascularity development.
Stangret, A; Skoda, M; Wnuk, A; Pyzlak, M; Szukiewicz, D
2017-05-01
The connection between maternal hematological status and pregnancy outcome has been shown by many independent researchers. Attention was initially focused on the adverse effects of moderate and severe anemia. Interestingly, some studies revealed that mild anemia was associated with optimal fetal development and was not affecting pregnancy outcome. The explanation for this phenomenon became a target for scientists. Hemodilution, physiologic anemia and relative decrease in hemoglobin concentration are the changes observed during pregnancy but they do not explain the reasons for the positive influence of mild anemia on a fetomaternal unit. It is hypothesized that hemodilution facilitates placental perfusion because blood viscosity is reduced. Subsequently, it may lead to a decline in hemoglobin concentration. Anemia from its definition implies decreased oxygen carrying capacity of the blood and can result in hypoxemia and even hypoxia, which is a common factor inducing new blood vessels formation. Therefore, we raised the hypothesis that the lowered hemoglobin concentration during pregnancy may upregulate vascular growth factor receptors expression such as VEGFR-1 (Flt-1) and VEGFR-2 (FLK-1/KDR). Consecutively, increased fetoplacental vasculogenesis and angiogenesis provide further expansion of vascular network development, better placental perfusion and hence neither fetus nor the mother are affected. Copyright © 2017 Elsevier Ltd. All rights reserved.
Three-state combinatorial switch models as applied to the binding of oxygen by human hemoglobin.
Straume, M; Johnson, M L
1988-02-23
We have generated a series of all 6561 unique, discrete three-state combinatorial switch models to describe the partitioning of the cooperative oxygen-binding free change among the 10 variously ligated forms of human hemoglobin tetramers. These models were inspired by the experimental observation of Smith and Ackers that the cooperative free energy of the intersubunit contact regions of the 10 possible ligated forms of human hemoglobin tetramers can be represented by a particular distribution of three distinct energy levels [Smith, F. R., & Ackers, G. K. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5347-5351]. A statistical thermodynamic formulation accounting for both dimer-tetramer equilibria and ligand binding properties of hemoglobin solutions as a function of oxygen and protein concentrations was utilized to exhaustively test these thermodynamic models. In this series of models each of the 10 ligated forms of the hemoglobin tetramer can exist in one, and only one, of three possible energy levels; i.e., each ligated form was assumed to be associated with a discrete energy state. This series of models includes all possible ways that the 10 ligation states of hemoglobin can be distributed into three distinct cooperative energy levels. The mathematical models, as presented here, do not permit equilibria between energy states to exist for any of the 10 unique ligated forms of hemoglobin tetramers. These models were analyzed by nonlinear least-squares estimation of the free energy parameters characteristic of this statistical thermodynamic development.(ABSTRACT TRUNCATED AT 250 WORDS)
Nitric Oxide in Plants: The Roles of Ascorbate and Hemoglobin
Wang, Xiaoguang; Hargrove, Mark S.
2013-01-01
Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia. PMID:24376554
Hemoglobin concentration does not impact 3-month outcome following acute ischemic stroke.
Sharma, Kartavya; Johnson, Daniel J; Johnson, Brenda; Frank, Steven M; Stevens, Robert D
2018-06-02
There is uncertainty regarding the effect of anemia and red blood cell transfusion on functional outcome following acute ischemic stroke. We studied the relationship of hemoglobin parameters and red cell transfusion with post stroke functional outcome after adjustment for neurological severity and medical comorbidities. Retrospective cohort study of 536 patients discharged with a diagnosis of ischemic stroke from a tertiary care hospital between January 2012 and April 2015. Hemoglobin level at hospital admission, lowest recorded value during hospitalization (nadir), delta hemoglobin (admission minus nadir), red cell transfusion during hospitalization were noted. Charlson Comorbidity Index (CCI) was computed as a summary measure of medical comorbidities. A multivariable logistic regression model was used to determine risk-adjusted odds of unfavorable outcome, defined as a modified Rankin Score of > 2. Anemia was present on hospital admission in 31% of patients. Forty five percent of patients had unfavorable outcome. In the univariable analysis increasing age, admission National Institutes of Health Stroke Scale (NIHSS), CCI, nadir hemoglobin, delta hemoglobin and blood transfusion were associated with unfavorable outcome. In the multivariable model, only increasing age, CCI and NIHSS remained associated with unfavorable outcome. No quadratic association was found on repeating the model to identify a possible U-shaped relationship of hemoglobin with outcome. Our findings contradict prior observational studies and highlight an area of clinical equipoise regarding the optimal management of anemia in patients hospitalized for ischemic stroke. This uncertainty could be addressed with appropriately designed clinical trials.
Jia, Yuan; Xu, Xinxin; Ou, Jinzhao; Liu, Xiaoxia
2017-11-13
A composite material, ZnO@MC, has been synthesized successfully by calcination using a one-dimensional zinc-based coordination polymer as the precursor. In ZnO@MC, ZnO particles with a size of about 5-8 nm are dispersed evenly in a mesoporous carbon matrix. Adsorption experiments at pH 6.8 with 2 mg ZnO@MC as adsorbent illustrated an adsorption efficiency of 92.3 % in 5 mL hemoglobin (Hb) solution with a concentration of 100 mg L -1 . In contrast, the adsorption of bovine serum albumin can almost be ignored under the same conditions. The selectivity originates from a strong Zn II -histidine interaction between ZnO@MC and hemoglobin. The adsorption behavior of hemoglobin on ZnO@MC fits the Temkin model perfectly with a capacity as high as 11646 mg g -1 . The hemoglobin adsorbed on the composite material can be eluted easily with sodium dodecyl sulfate stripping reagent with an extraction efficiency of 87.7 %. Circular dichroism spectra and protein activity studies suggest the structure and biological activity of hemoglobin is the same before and after the adsorption/desorption experiment. Finally, the ZnO@MC composite material was employed to extract hemoglobin from human whole blood without any pretreatment, and gave a very satisfactory result. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abioye, Ajibola I; Aboud, Said; Premji, Zulfiqar; Etheredge, Analee J; Gunaratna, Nilupa S; Sudfeld, Christopher R; Mongi, Robert; Meloney, Laura; Darling, Anne Marie; Noor, Ramadhani A; Spiegelman, Donna; Duggan, Christopher; Fawzi, Wafaie
2016-06-01
Iron deficiency is a highly prevalent micronutrient abnormality and the most common cause of anemia globally, worsening the burden of adverse pregnancy and child outcomes. We sought to evaluate the response of hematologic biomarkers to iron supplementation and to examine the predictors of the response to iron supplementation among iron-deficient pregnant women. We identified 600 iron-deficient (serum ferritin ≤12 μg/L) pregnant women, aged 18-45 y, presenting to 2 antenatal clinics in Dar es Salaam, Tanzania using rapid ferritin screening tests, and prospectively followed them through delivery and postpartum. All women received 60 mg Fe and 0.25 mg folate daily from enrollment until delivery. Proportions meeting the thresholds representing deficient hematologic status including hemoglobin <110 g/L, ferritin ≤12 μg/L, serum soluble transferrin receptor (sTfR) >4.4 mg/L, zinc protoporphyrin (ZPP) >70 mmol/L, or hepcidin ≤13.3 μg/L at baseline and delivery were assessed. The prospective change in biomarker concentration and the influence of baseline hematologic status on the change in biomarker concentrations were assessed. Regression models were estimated to assess the relation of change in biomarker concentrations and pregnancy outcomes. There was significant improvement in maternal biomarker concentrations between baseline and delivery, with increases in the concentrations of hemoglobin (mean difference: 15.2 g/L; 95% CI: 13.2, 17.2 g/L), serum ferritin (51.6 μg/L; 95% CI: 49.5, 58.8 μg/L), and serum hepcidin (14.0 μg/L; 95% CI: 12.4, 15.6 μg/L) and decreases in sTfR (-1.7 mg/L; 95% CI: -2.0, -1.3 mg/L) and ZPP (-17.8 mmol/L; 95% CI: -32.1, 3.5 mmol/L). The proportions of participants with low hemoglobin, ferritin, and hepcidin were 73%, 93%, and 99%, respectively, at baseline and 34%, 12%, and 46%, respectively, at delivery. The improvements in biomarker concentrations were significantly greater among participants with poor hematologic status at baseline - up to 12.1 g/L and 14.5 μg/L for hemoglobin and ferritin concentrations, respectively. For every 10-g/L increase in hemoglobin concentration, there was a 24% reduced risk of perinatal mortality (RR = 0.76; 95% CI: 0.59, 0.99) and a 23% reduced risk of early infant mortality (RR = 0.77; 95% CI: 0.60, 0.99). The risk of anemia at delivery despite supplementation was predicted by baseline anemia (RR = 2.11; 95% CI: 1.39, 3.18) and improvements in ferritin concentration were more likely to be observed in participants who took iron supplements for up to 90 d (RR = 1.41; 95% CI: 1.13, 1.76). Iron supplementation decreases the risk of maternal anemia and increases the likelihood of infant survival among iron-deficient Tanzanian pregnant women. Interventions to promote increased duration and adherence to iron supplements may also provide greater health benefits. © 2016 American Society for Nutrition.
The use of hemoglobin solutions in kidney perfusions.
Daniels, F H; McCabe, R E; Leonard, E F
1984-01-01
Solutions of hemoglobin have often been considered for both hypothermic and normothermic perfusion of isolated kidneys. This paper considers basic issues, preparative techniques, and the viscosity of hemoglobin solutions, as well as the demands made by the kidney on a perfusate. The natural system of oxygen transport in higher animals is complex, and its perturbation to produce convenient hemoglobin-based renal perfusates produces numerous problems. The desirable effect of 2,3-diphosphoglycerate is not easily maintained in a perfusate, but its inclusion can be avoided by appropriate choice of species donating hemoglobin. Hemoglobin tetramer in free solution may dissociate and be lost by glomerular filtration. Ferric hemoglobin, the dominant form at redox equilibrium, is useless for oxygen transport; the ferrous form is maintained in the erythrocyte by reducing metabolites and, under normothermic conditions, the ferrous to ferric conversion is slow but significant. Methods for lysis of erythrocytes and removal of their stroma are discussed; reduction of ferric hemoglobin by chemical agents and electrolysis are considered in detail; and means for adjusting concentration and solute background are presented. The need for carbonic anhydrase in hemoglobin solutions used as perfusates is shown and methods for its provision are discussed. A review of viscometric data for hemoglobin solutions is provided to which original data are added. Hemoglobin solutions show a temperature-independent intrinsic viscosity, according to Einstein's theory for a molecule of 23 A radius. The O2 and CO2 transport requirements of renal perfusates are analyzed comprehensively. The normothermic kidney has an unusual respiration pattern, requiring an amount of oxygen that is not fixed but, rather, proportional to the total blood flow rate. In canines the average arterio-venous O2 content difference found by many investigators is 2.14 vol%; the corresponding CO2 value is 2.47 vol%; and the respiratory quotient is greater than unity. Wide limits of PO2, but not P CO2 in perfusate, appear allowable. A final section evaluates hemoglobin solutions as both normothermic and hypothermic renal perfusates from the viewpoints of blood gas chemistry, urinary loss, oncotic pressure, fatty acid carrying capacity, viscosity, and the need for functions usually attributed to platelets. It is concluded, overall, that perfusates containing free hemoglobin have only a limited role to play in renal perfusion.
Virtual Center for Renal Support: Definition of a Novel Knowledge-Based Telemedicine System
2001-10-25
USA were monitorized by the HbA1c test (Hemoglobin A1c or fraction of Glycosilated hemoglobin) in 1998 [6] and only a little percentage was...lipid tests (lipid panel, cholesterol, HDL, LDL, VLDL, Triglycerides ) performed in 1998. Quality of life of patients is related to their morbidity...meals may require adjustments in the concentration of calcium in the dialysate fluid to prevent hypercalcemia and consequent deposition of calcium
Parrow, Nermi L; Tu, Hongbin; Nichols, James; Violet, Pierre-Christian; Pittman, Corinne A; Fitzhugh, Courtney; Fleming, Robert E; Mohandas, Narla; Tisdale, John F; Levine, Mark
2017-06-01
Decreased erythrocyte deformability, as measured by ektacytometry, may be associated with disease severity in sickle cell anemia (SCA). Heterogeneous populations of rigid and deformable cells in SCA blood result in distortions of diffraction pattern measurements that correlate with the concentration of hemoglobin S (HbS) and the percentage of irreversibly sickled cells. We hypothesize that red cell heterogeneity, as well as deformability, will also be influenced by the concentration of alternative hemoglobins such as fetal hemoglobin (HbF) and the adult variant, HbA 2 . To test this hypothesis, we investigate the relationship between diffraction pattern distortion, osmotic gradient ektacytometry parameters, and the hemoglobin composition of SCA blood. We observe a correlation between the extent of diffraction pattern distortions and percentage of HbF and HbA 2 . Osmotic gradient ektacytometry data indicate that minimum elongation in the hypotonic region is positively correlated with HbF, as is the osmolality at which it occurs. The osmolality at both minimum and maximum elongation is inversely correlated with HbS and HbA 2 . These data suggest that HbF may effectively improve surface-to-volume ratio and osmotic fragility in SCA erythrocytes. HbA 2 may be relatively ineffective in improving these characteristics or cellular hydration at the levels found in this patient cohort. Copyright © 2017. Published by Elsevier Inc.
Wirth, James P; Ansumana, Rashid; Woodruff, Bradley A; Koroma, Aminata S; Hodges, Mary H
2018-01-17
By measuring the associations between the presence of sickle cell and β-thalassemia genes, we assessed the extent to which these hemoglobinopathies contribute to the high prevalence of anemia observed in preschool-aged children and women of reproductive age in Sierra Leone. The prevalence of anemia was statistically significantly higher in children with homozygous sickle cell genes (HbSS) than in children with normal hemoglobin genes (HbAA or HbAC), but there was no difference in anemia prevalence in those with heterozygous sickle cell trait (HbAS or HbSC) compared with those with normal hemoglobin genes. In women, there was no difference in anemia prevalence by sickle cell status. In both children and women, there was no difference in the anemia prevalence for individuals with or without the β-thalassemia gene. For both sickle cell and β-thalassemia, there was no significant difference in hemoglobin concentrations by sickle cell or β-thalassemia status. Anemia prevalence was higher in children and women with homozygous sickle cell (HbSS). However, as the prevalence of HbSS children (5.4%) and women (1.6%) was quite small, it is unlikely that these hemoglobinopathies substantially contributed to the high anemia prevalence found in the 2013 national micronutrient survey.
Blood pressure reduction due to hemoglobin glycosylation in type 2 diabetic patients
Cabrales, Pedro; Vázquez, Miguel A Salazar; Vázquez, Beatriz Y Salazar; Rodríguez-Morán, Martha; Intaglietta, Marcos; Guerrero-Romero, Fernando
2008-01-01
Objective: To test the hypothesis that glycosylation of hemoglobin constitutes a risk factor for hypertension. Methods: A total of 129 relative uniform diabetic subjects (86 women and 42 men) were enrolled in a cross sectional study. Exclusion criteria included alcohol consumption, smoking, ischemic heart disease, stroke, neoplasia, renal, hepatic, and chronic inflammatory disease. Systolic and diastolic pressures were recorded in subsequent days and mean arterial blood pressure (MAP) was determined. Hemoglobin glycosylation was measured by determining the percentage glycosylated hemoglobin (HbA1c) by means of the automated microparticle enzyme immunoassay test. Results: MAP was found to be independent of the concentration of HbA1c; however, correcting MAP for the variability in hematocrit, to evidence the level of vasoconstriction (or vasodilatation) showed that MAP is negatively correlated with the concentration of HbA1c (p for trend <0.05), when patients treated for hypertension are excluded from the analysis. Patients treated for hypertension showed the opposite trend with increasing MAP as HbA1c increased (p for the difference in trends <0.05). Conclusions: Glycosylation per se appears to lead to blood pressure reduction in type 2 diabetic patients untreated for hypertension. Treatment for hypertension may be associated with a level of endothelial dysfunction that interferes with the antihypertensive effect of HbA1c. PMID:19066010
NASA Astrophysics Data System (ADS)
Hamada, R.; Ogawa, E.; Arai, T.
2018-02-01
To investigate hemolysis phenomena during a photosensitization reaction with the reaction condition continuously and simultaneously for a safety assessment of hemolysis side effect, we constructed an optical system to measure blood sample absorption spectrum during the reaction. Hemolysis degree might be under estimated in general evaluation methods because there is a constant oxygen pressure assumption in spite of oxygen depression take place. By investigating hemoglobin oxidation and oxygen desorption dynamics obtained from the contribution of the visible absorption spectrum and multiple regression analysis, both the hemolysis phenomena and its oxygen environment might be obtained with time. A 664 nm wavelength laser beam for the reaction excitation and 475-650 nm light beam for measuring the absorbance spectrum were arranged perpendicularly crossing. A quartz glass cuvette with 1×10 mm in dimensions for the spectrum measurement was located at this crossing point. A red blood cells suspension medium was arranged with low hematocrit containing 30 μg/ml talaporfin sodium. This medium was irradiated up to 40 J/cm2 . The met-hemoglobin, oxygenatedhemoglobin, and deoxygenated-hemoglobin concentrations were calculated by a multiple regression analysis from the measured spectra. We confirmed the met-hemoglobin concentration increased and oxygen saturation decreased with the irradiation time, which seems to indicate the hemolysis progression and oxygen consumption, respectively. By using our measuring system, the hemolysis progression seems to be obtained with oxygen environment information.
Mills, James L; Carter, Tonia C; Scott, John M; Troendle, James F; Gibney, Eileen R; Shane, Barry; Kirke, Peadar N; Ueland, Per M; Brody, Lawrence C; Molloy, Anne M
2011-01-01
Background: In elderly individuals with low serum vitamin B-12, those who have high serum folate have been reported to have greater abnormalities in the following biomarkers for vitamin B-12 deficiency: low hemoglobin and elevated total homocysteine (tHcy) and methylmalonic acid (MMA). This suggests that folate exacerbates vitamin B-12–related metabolic abnormalities. Objective: We determined whether high serum folate in individuals with low serum vitamin B-12 increases the deleterious effects of low vitamin B-12 on biomarkers of vitamin B-12 cellular function. Design: In this cross-sectional study, 2507 university students provided data on medical history and exposure to folic acid and vitamin B-12 supplements. Blood was collected to measure serum and red blood cell folate (RCF), hemoglobin, plasma tHcy, and MMA, holotranscobalamin, and ferritin in serum. Results: In subjects with low vitamin B-12 concentrations (<148 pmol/L), those who had high folate concentrations (>30 nmol/L; group 1) did not show greater abnormalities in vitamin B-12 cellular function in any area than did those with lower folate concentrations (≤30 nmol/L; group 2). Group 1 had significantly higher holotranscobalamin and RCF, significantly lower tHcy, and nonsignificantly lower (P = 0.057) MMA concentrations than did group 2. The groups did not differ significantly in hemoglobin or ferritin. Compared with group 2, group 1 had significantly higher mean intakes of folic acid and vitamin B-12 from supplements and fortified food. Conclusions: In this young adult population, high folate concentrations did not exacerbate the biochemical abnormalities related to vitamin B-12 deficiency. These results provide reassurance that folic acid in fortified foods and supplements does not interfere with vitamin B-12 metabolism at the cellular level in a healthy population. PMID:21653798
Matiushichev, V B; Shamratova, V G; Krapivko, Iu K
2009-12-01
Factor analysis was used to study the pattern of relationships of a number of hematological parameters in clinically healthy young subjects and in patients with moderate anemia. The level of total hemoglobin and the concentration of red blood cells were ascertained to control blood oxygen-transporting function in not full measure and these might be referred to as basic characteristics only conventionally. To clarify the picture, these criteria should be supplemented by the information on other parameters. It is concluded that the introduction of the ratio of a number of hemoglobin derivatives, blood oxygen regimen and acid-base balance can substantially increase the validity of clinical opinions as to this blood function.
Iron deficiency and anemia: a common problem in female elite soccer players.
Landahl, Göran; Adolfsson, Peter; Börjesson, Mats; Mannheimer, Clas; Rödjer, Stig
2005-12-01
The objective of the study was to determine the prevalence of iron deficiency and iron deficiency anemia among elite women soccer players. Hemoglobin, serum iron, serum total iron binding capacity, and ferritin were determined in 28 female soccer players called up for the national team. Of the investigated female soccer players, 57% had iron deficiency and 29% iron deficiency anemia 6 months before the FIFA Women's World Cup. It is concluded that iron deficiency and iron deficiency anemia is common in female soccer players at the top international level. Some might suffer from relative anemia and measurement of hemoglobin alone is not sufficient to reveal relative anemia. Regular monitoring of hemoglobin concentration and iron status is necessary to institute iron supplementation when indicated.
Study of smartphone suitability for mapping of skin chromophores
NASA Astrophysics Data System (ADS)
Kuzmina, Ilona; Lacis, Matiss; Spigulis, Janis; Berzina, Anna; Valeine, Lauma
2015-09-01
RGB (red-green-blue) technique for mapping skin chromophores by smartphones is proposed and studied. Three smartphones of different manufacturers were tested on skin phantoms and in vivo on benign skin lesions using a specially designed light source for illumination. Hemoglobin and melanin indices obtained by these smartphones showed differences in both tests. In vitro tests showed an increment of hemoglobin and melanin indices with the concentration of chromophores in phantoms. In vivo tests indicated higher hemoglobin index in hemangiomas than in nevi and healthy skin, and nevi showed higher melanin index compared to the healthy skin. Smartphones that allow switching off the automatic camera settings provided useful data, while those with "embedded" automatic settings appear to be useless for distant skin chromophore mapping.
Study of smartphone suitability for mapping of skin chromophores.
Kuzmina, Ilona; Lacis, Matiss; Spigulis, Janis; Berzina, Anna; Valeine, Lauma
2015-09-01
RGB (red-green-blue) technique for mapping skin chromophores by smartphones is proposed and studied. Three smartphones of different manufacturers were tested on skin phantoms and in vivo on benign skin lesions using a specially designed light source for illumination. Hemoglobin and melanin indices obtained by these smartphones showed differences in both tests. In vitro tests showed an increment of hemoglobin and melanin indices with the concentration of chromophores in phantoms. In vivo tests indicated higher hemoglobin index in hemangiomas than in nevi and healthy skin, and nevi showed higher melanin index compared to the healthy skin. Smartphones that allow switching off the automatic camera settings provided useful data, while those with “embedded” automatic settings appear to be useless for distant skin chromophore mapping.
Bandeira, Verônica da Silva; Pires, Liliane Viana; Hashimoto, Leila Leiko; Alencar, Luciane Luca de; Almondes, Kaluce Gonçalves Sousa; Lottenberg, Simão Augusto; Cozzolino, Silvia Maria Franciscato
2017-12-01
This study evaluated the relationship between the zinc-related nutritional status and glycemic and insulinemic markers in individuals with type 2 diabetes mellitus (T2DM). A total of 82 individuals with T2DM aged between 29 and 59 years were evaluated. The concentration of zinc in the plasma, erythrocytes, and urine was determined by the flame atomic absorption spectrometry method. Dietary intake was assessed using a 3-day 24-h recall. In addition, concentrations of serum glucose, glycated hemoglobin percentage, total cholesterol and fractions, triglycerides, and serum insulin were determined. The insulin resistance index (HOMA-IR) and β-cell function (HOMA- β) were calculated. The markers of zinc status (plasma: 83.3±11.9μg/dL, erythrocytes: 30.1±4.6μg/g Hb, urine: 899.1±622.4μg Zn/24h, and dietary: 9.9±0.8mg/day) were classified in tertiles and compared to insulinemic and glycemic markers. The results showed that lower zinc concentrations in plasma and erythrocytes, as well as its high urinary excretion, were associated with higher percentages of glycated hemoglobin, reflecting a worse glycemic control in individuals with T2DM (p<0.05). Furthermore, there was a significant inverse correlation between plasma zinc levels and glycated hemoglobin percentage (r=-0.325, p=0.003), and a positive correlation between urinary zinc excretion and glycemia (r=0.269, p=0.016), glycated hemoglobin percentage (r=0.318, p=0.004) and HOMA-IR (r=0.289, p=0.009). According to our study results, conclude that T2DM individuals with reduced zinc status exhibited poor glycemic control. Copyright © 2017 Elsevier GmbH. All rights reserved.
Recovering the superficial microvascular pattern via diffuse reflection imaging: phantom validation.
Chen, Chen; Florian, Klämpfl; Rajesh, Kanawade; Max, Riemann; Christian, Knipfer; Florian, Stelzle; Michael, Schmidt
2015-09-30
Diffuse reflection imaging could potentially be used to recover the superficial microvasculature under cutaneous tissue and the associated blood oxygenation status with a modified imaging resolution. The aim of this work is to deliver a new approach of local off-axis scanning diffuse reflection imaging, with the revisit of the modified Beer-Lambert Law (MBLL). To validate this, the system is used to recover the micron-scale subsurface vessel structure interiorly embedded in a skin equivalent tissue phantom. This vessel structure is perfused with oxygenated meta-hemoglobin solution. Our preliminary results confirm that the thin vessel structure can be mapped into a 2-D planar image. The distributions of oxygenated hemoglobin concentration ([Formula: see text]) and deoxygenated hemoglobin concentration ([Formula: see text]) can be co-registerated through the MBLL upon the CW spectroscopy, the scattering issue is addressed in the reformed MBLL. The recovered pattern matches to the estimation from the simultaneous optical coherence tomography studies. With further modification, this system may serve as the first prototype to investigate the superficial microvasculature in the expotential skin cancer loci, or a micro-lesion of vascular dermatosis.
Hepcidin level predicts hemoglobin concentration in individuals undergoing repeated phlebotomy.
Mast, Alan E; Schlumpf, Karen S; Wright, David J; Johnson, Bryce; Glynn, Simone A; Busch, Michael P; Olbina, Gordana; Westerman, Mark; Nemeth, Elizabeta; Ganz, Tomas
2013-08-01
Dietary iron absorption is regulated by hepcidin, an iron regulatory protein produced by the liver. Hepcidin production is regulated by iron stores, erythropoiesis and inflammation, but its physiology when repeated blood loss occurs has not been characterized. Hepcidin was assayed in plasma samples obtained from 114 first-time/reactivated (no blood donations in preceding 2 years) female donors and 34 frequent (≥3 red blood cell donations in preceding 12 months) male donors as they were phlebotomized ≥4 times over 18-24 months. Hepcidin levels were compared to ferritin and hemoglobin levels using multivariable repeated measures regression models. Hepcidin, ferritin and hemoglobin levels declined with increasing frequency of donation in the first-time/reactivated females. Hepcidin and ferritin levels correlated well with each other (Spearman's correlation of 0.74), but on average hepcidin varied more between donations for a given donor relative to ferritin. In a multivariable repeated measures regression model the predicted inter-donation decline in hemoglobin varied as a function of hepcidin and ferritin; hemoglobin was 0.51 g/dL lower for subjects with low (>45.7 ng/mL) or decreasing hepcidin and low ferritin (>26 ng/mL), and was essentially zero for other subjects including those with high (>45.7 ng/mL) or increasing hepcidin and low ferritin (>26 ng/mL) levels (P<0.001). In conclusion, hepcidin levels change rapidly in response to dietary iron needed for erythropoiesis. The dynamic regulation of hepcidin in the presence of a low levels of ferritin suggests that plasma hepcidin concentration may provide clinically useful information about an individual's iron status (and hence capacity to tolerate repeated blood donations) beyond that of ferritin alone. Clinicaltrials.gov identifier: NCT00097006.
Yuan, Yue; Byrd, Catherine; Shen, Tong-Jian; Simplaceanu, Virgil; Tam, Tsuey Chyi S.; Ho, Chien
2013-01-01
The oxygen affinity of woolly mammoth hemoglobin (rHb WM) is less affected by temperature change than that of Asian elephant hemoglobin (rHb AE) or human adult hemoglobin (Hb A). We report here a biochemical-biophysical study of Hb A, rHb AE, rHb WM and three rHb WM mutants with amino acid substitutions at β/δ101 (β/δ101Gln→Glu, Lys, or Asp) plus a double and a triple mutant, designed to clarify the role of the β/δ101 residue. The β/δ101Gln residue is important for responding to allosteric effectors, such as phosphate, inositol hexaphosphate (IHP), and chloride. The rHb WM mutants studied generally have higher affinity for oxygen under various conditions of pH, temperature, and salt concentration, and in the presence or absence of organic phosphate, than do rHb WM, rHb AE and Hb A. Titrations for the O2 affinity of these mutant rHbs as a function of chloride concentration indicate a lower heterotopic effect of this anion due to the replacement of β/δ101Gln in rHb WM. The alkaline Bohr effect of rHb WM and its mutants is reduced by 20–50% compared to that of Hb A and is independent of changes in temperature, in contrast to what has been observed in the hemoglobins of most mammalian species, including human. The results of our study on the temperature dependence of the O2 affinity of rHb WM and its mutant rHbs illustrate the important role of β/δ101Gln in regulating the functional properties of these hemoglobins. PMID:24228693
Fernández-Cao, José C; Aranda, Núria; Ribot, Blanca; Tous, Mònica; Arija, Victoria
2017-10-01
The aim of this systematic review and meta-analysis of observational studies was to assess the relationship between elevated iron status, measured as hemoglobin and ferritin levels, and the risk of gestational diabetes mellitus (GDM). The present study was recorded in PROSPERO (2013:CRD42013005717). The selected studies were identified through a systematic review of scientific literature published in The Cochrane Library and PubMed/MEDLINE databases from their inception until March 10, 2016, in addition to citation tracking and hand-searches. The search strategy of original articles combined several terms for hemoglobin, ferritin, pregnancy, and GDM. OR and 95% CI of the selected studies were used to identify associations between hemoglobin and/or ferritin levels with the risk of GDM. Summary estimates were calculated by combining inverse-variance using fixed-effects model. 2468 abstracts were initially found during the search. Of these, 11 with hemoglobin and/or ferritin data were selected for the meta-analyses. We observed that high hemoglobin (OR = 1.52; 95% CI: 1.23-1.88), as well as ferritin (OR = 2.09; 95% CI: 1.48-2.96) levels were linked to an increased risk of GDM. Low heterogeneity was observed in hemoglobin (I 2 = 33.3%, P = 0.151) and ferritin (I 2 = 0.7%, P = 0.418) meta-analyses, respectively. Publication bias was not appreciated. High hemoglobin or ferritin levels increase the risk of GDM by more than 50% and more than double, respectively, in the first and third trimester. Therefore, determining of hemoglobin or ferritin concentration in early pregnancy might be a useful tool for recognizing pregnant women at risk of GDM. © 2016 John Wiley & Sons Ltd.
HEMOGLOBIN AND PLASMA PROTEIN PRODUCTION
Robscheit-Robbins, F. S.; Miller, L. L.; Whipple, G. H.
1946-01-01
Given healthy dogs, fed abundant iron and protein-free or low protein diets, with sustained anemia and hypoproteinemia due to bleeding, we can study the capacity of these animals to produce simultaneousiy new hemoglobin and plasma protein. The reserve stores of blood protein-producing materials in this way are largely depleted, and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for considerable periods of time. These dogs are very susceptible to infection and to injury by many poisons. Dogs tire of these diets and loss of appetite terminates many experiments. These incomplete experiments are not recorded in the present paper but give supporting evidence in harmony with those tabulated. Under these conditions (double depletion) the dogs use effectively the proteins listed above—egg, lactalbumin, meat, beef plasma, and digests of various food proteins and hemoglobin. Egg protein at times seems to favor slightly the production of plasma protein when compared with the average response (Tables 1 and 2). Various digests and concentrates compare favorably with good food proteins in the production of new hemoglobin and plasma protein in these doubly depleted dogs. Whole beef plasma by mouth is well utilized and the production of new hemoglobin is, if anything, above the average—certainly plasma protein production is not especially favored. "Modified" beef plasma by vein causes fatal anaphylaxis (Table 4). Hemoglobin digests are well used by mouth to form both hemoglobin and plasma protein. Supplementation by amino acids is recorded. Methionine in one experiment may have been responsible for a better protein output and digest utilization (Table 7). PMID:19871543
Fong, Cristian; Menzel, Stephan; Lizarralde, María Alejandra; Barreto, Guillermo
2015-01-01
Fetal hemoglobin is an important factor in modulating the severity of sickle cell anemia. Its level in peripheral blood underlies strong genetic determination. Associated loci with increased levels of fetal hemoglobin display population-specific allele frequencies. We investigated the presence and effect of known common genetic variants promoting fetal hemoglobin persistence (rs11886868, rs9399137, rs4895441, and rs7482144) in 60 Colombian patients with sickle cell anemia. Four single nucleotide polymorphisms (SNP) were genotyped by restriction fragment length polymorphisms (RFLP) and the use of the TaqMan procedure. Fetal hemoglobin (HbF) from these patients was quantified using the oxyhemoglobin alkaline denaturation technique. Genotype frequencies were compared with frequencies reported in global reference populations. We detected genetic variants in the four SNPs, reported to be associated with higher HbF levels for all four SNPs in the Colombian patients. Genetic association between SNPs and HbF levels did not reach statistical significance. The frequency of these variants reflected the specific ethnic make-up of our patient population: A high prevalence of rs7482144-'A' reflects the West-African origin of the sickle cell mutation, while high frequencies of rs4895441-'G' and rs11886868-'C' point to a significant influence of an Amerindian ethnic background in the Colombian sickle cell disease population. These results showed that in the sickle cell disease population in Colombia there is not a unique genetic background, but two (African and Amerindian). This unique genetic situation will provide opportunities for a further study of these loci, such as fine-mapping and molecular-biological investigation. Colombian patients are expected to yield a distinctive insight into the effect of modifier loci in sickle cell disease.
NASA Astrophysics Data System (ADS)
Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus
2004-06-01
The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.
NASA Astrophysics Data System (ADS)
Niu, Haijing; Li, Lin; Bhave, Gauri S.; Lin, Zi-jing; Tian, Fenghua; Khosrow, Behbehani; Zhang, Rong; Liu, Hanli
2011-03-01
The goal for this study is to examine cerebral autoregulation in response to a repeated sit-stand maneuver using both diffuse functional Near Infrared spectroscopy (fNIRS) and Transcranial Doppler sonography (TCD). While fNIRS can provide transient changes in hemodynamic response to such a physical action, TCD is a noninvasive transcranial method to detect the flow velocities in the basal or middle cerebral arteries (MCA). The initial phase of this study was to measure fNIRS signals from the forehead of subjects during the repeated sit-stand protocol and to understand the corresponding meaning of the detected signals. Also, we acquired preliminary data from simultaneous measurements of fNIRS and TCD during the sit-stand protocol so as to explore the technical difficulty of such an approach. Specifically, ten healthy adult subjects were enrolled to perform the planned protocol, and the fNIRS array probes with 4 sources and 10 detectors were placed on the subject's forehead to detect hemodynamic signal changes from the prefrontal cortex. The fNIRS results show that the oscillations of hemoglobin concentration were spatially global and temporally dynamic across the entire region of subject's forehead. The oscillation patterns in both hemoglobin concentrations and blood flow velocity seemed to follow one another; changes in oxy-hemoglobin concentration were much larger than those in deoxyhemoglobin concentration. These preliminary findings provide us with evidence that fNIRS is an appropriate means readily for studying cerebral hemodynamics and autoregulation during sit-stand maneuvers.
Andretta, I; Kipper, M; Lehnen, C R; Lovatto, P A
2012-02-01
A meta-analysis was carried out to study the association of mycotoxins with hematological and biochemical profiles in broilers. Ninety-eight articles published between 1980 and 2009 were used in the database, totaling 37,371 broilers. The information was selected from the Materials and Methods and Results sections in the selected articles and then tabulated in a database. Meta-analysis followed 3 sequential analyses: graphic, correlation, and variance-covariance. Mycotoxins reduced (P < 0.05) the hematocrit (-5%), hemoglobin (-15%), leukocytes (-25%), heterophils (-2%), lymphocytes (-2%), uric acid (-31%), creatine kinase (-27%), creatinine (-23%), triglycerides (-39%), albumin (-17%), globulin (-1%), total cholesterol (-14%), calcium (-5%), and inorganic phosphorus (-12%). Mycotoxins also altered (P < 0.05) the concentrations of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. A quadratic effect was observed on the relationship between the concentration of aflatoxin in diets and the serum concentration of alkaline phosphatase, γ-glutamyl transferase, alanine aminotransferase, and aspartate aminotransferase. The total protein concentration in blood was 18% lower (P < 0.05) in broilers challenged by aflatoxins compared with that of the unchallenged ones. The inclusion of antimycotoxin additives in diets with aflatoxins altered (P < 0.05) some variables (uric acid, creatinine, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transferase) in relation to the group that received diets with the mycotoxin and without the additive. The meta-analysis performed in this study allowed us to address and quantify systematically the relationship of mycotoxins with alterations in hematologic and biochemical profiles in broilers.
Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia
Charache, Samuel; Grisolia, Santiago; Fiedler, Adam J.; Hellegers, Andre E.
1970-01-01
Blood of patients with sickle cell anemia (SS) exhibits decreased affinity for oxygen, although the oxygen affinity of hemoglobin S is the same as that of hemoglobin A. SS red cells contain more 2,3-diphosphoglycerate (DPG) than normal erythrocytes. The oxygen affinity of hemolyzed red cells is decreased by added DPG, and hemolysates prepared from SS red cells do not differ from normal hemolysates in this regard. Reduction of oxygen affinity to the levels found in intact SS red cells required DPG concentrations in excess of those found in most SS patients. The same was true of oxygen affinity of patients with pyruvate kinase deficiency. Other organic phosphates, as well as inorganic ions, are known to alter the oxygen affinity of dilute solutions of hemoglobin. These substances, the state of aggregation of hemoglobin molecules, and cytoarchitectural factors probably play roles in determining oxygen affinity of both normal and SS red cells. PMID:5443181
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cyriac, P.J.; Antony, A.; Nambisan, P.N.K.
1989-08-01
Hematology is used as an index of health status in a number of fish species. Hematological changes have been detected following different types of stress conditions like exposure to pollutants, diseases, hypoxia, etc. Copper and mercury are two known aquatic pollutants. Though copper is an essential micro-nutrient, it is highly toxic at high concentrations. Mercury has no biological function to serve and causes serious impairment in the metabolic and physiological functions of the body. In this paper hematocrit and hemoglobin (Hb) values in the fish Oreochromis mossambicus separately exposed to two different sublethal concentrations of copper and mercury for amore » period of 168 h are reported.« less
Interaction of Jet Fuel Hydrocarbon Components with Red Blood Cells and Hemoglobin
2014-06-24
Directorate (RHDJ), Wright-Patterson AFB, OH. The authors would like to thank Maj. Paul Eden, Nicole Schaeublin, Christin Grabinski, Dr. Jeff Gearhart...We would also like to thank LtCol. Norman Fox (Laboratory Flight Commander), Mrs. Nersa Loh (Supervisor, Transfusion Services), and Mr. Dan Fischer ...Approximately 7.8 mg of hemoglobin sample was concentrated into a total volume of 5 mL of Fischer PBS pH 7.5 buffer using an Amicon Centrifugal Filter Unit
Computation of the unsteady facilitated transport of oxygen in hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1990-01-01
The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.
NASA Astrophysics Data System (ADS)
Edwards, Perry S.
2016-10-01
Fiber-optic based diffuse reflectance spectroscopy (DRS) is shown to be a highly specific and highly sensitive method for non-invasive detection of various cancers (e.g. cervical and oral) as well as many other diseases. Fiber-optic DRS diagnosis relies on non-invasive biomarker detection (e.g. oxy- and deoxy-hemoglobin) and can be done without the need for sophisticated laboratory analysis of samples. Thus, it is highly amenable for clinical adoption especially in resource scarce regions that have limited access to such developed laboratory infrastructure. Despite the demonstrated effectiveness of fiber-optic DRS, such systems remain cost prohibitive in many of these regions, mainly due to the use of bulky and expensive spectrometers. Here, a fiber-optic DRS system is coupled to a smartphone spectrometer and is proposed as a low-cost solution for non-invasive tissue hemoglobin sensing. The performance of the system is assessed by measuring tissue phantoms with varying hemoglobin concentrations. A DRS retrieval algorithm is used to extract hemoglobin parameters from the measurements and determine the accuracy of the system. The results are then compared with those of a previously reported fiber-optic DRS system which is based on a larger more expensive spectrometer system. The preliminary results are encouraging and indicate the potential of the smartphone spectrometer as a viable low-cost option for non-invasive tissue hemoglobin sensing.
Ribed-Sánchez, Borja; Varea-Díaz, Sara; Corbacho-Fabregat, Carlos; Pérez-Oteyza, Jaime; Belda-Iniesta, Cristóbal
2018-01-01
Background: Two million transfusions are performed in Spain every year. These come at a high economic price for the health system, increasing the morbidity and mortality rates. The way of obtaining the hemoglobin concentration value is via invasive and intermittent methods, the results of which take time to obtain. The drawbacks of this method mean that some transfusions are unnecessary. New continuous noninvasive hemoglobin measurement technology can save unnecessary transfusions. Methods: A prospective study was carried out with a historical control of two homogeneous groups. The control group used the traditional hemoglobin measurement methodology. The experimental group used the new continuous hemoglobin measurement technology. The difference was analyzed by comparing the transfused units of the groups. The economic savings was calculated by multiplying the cost of a transfusion by the difference in units, taking into account measurement costs. Results: The percentage of patients needing a transfusion decreased by 7.4%, and the number of transfused units per patient by 12.56%. Economic savings per patient were €20.59. At the national level, savings were estimated to be 13,500 transfusions (€1.736 million). Conclusions: Constant monitoring of the hemoglobin level significantly reduces the need for blood transfusions. By using this new measurement technology, health care facilities can significantly reduce costs and improve care quality. PMID:29702617
NITRITE REDUCTASE ACTIVITY OF NON-SYMBIOTIC HEMOGLOBINS FROM ARABIDOPSIS THALIANA†
Tiso, Mauro; Tejero, Jesús; Kenney, Claire; Frizzell, Sheila; Gladwin, Mark T.
2013-01-01
Plant non-symbiotic hemoglobins possess hexa-coordinate heme geometry similar to the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana non-symbiotic hemoglobins class 1 and 2 (AHb1 and AHb2) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for nitrite reduction to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M−1s−1, at pH = 7.4 and 25°C, respectively. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. Release of free NO gas during reaction in anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in water submerged species, non-symbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction. PMID:22620259
Monitoring of pre-frontal oxygen status in helicopter pilots using near-infrared spectrophotometers
Kikukawa, Azusa; Kobayashi, Asao; Miyamoto, Yoshinori
2008-01-01
Background There are few in-flight studies of cognition-related cerebral oxygen status in helicopter pilots. Methods Four male helicopter pilots volunteered for nine sorties during visual flight in a BK117 and UH-60J. The pilots' pre-frontal oxy-hemoglobin (O2Hb) and deoxy-hemoglobin (HHb) concentration were continuously monitored from the right/left sections of the forehead using near-infrared spectrophotometers with a consideration of motion artifacts. Results The concentration of O2Hb progressively increased (13.98 μmol•L-1 as a maximum increased concentration) in both the right/left sections of the forehead from the basal level during the heightened cognitive demand of helicopter flight. There was comparatively little change (4.32 μmol•L-1 as a maximum increased concentration) in HHb concentration during measurement of helicopter flight. HHb changes were apparently not affected by a heightened cognitive demand of helicopter pilots. Conclusion These results demonstrate that near-infrared spectroscopy, especially O2Hb measurements, provides a sensitive method for the monitoring of cognitive demand (maneuvers) in helicopter pilots. PMID:18616829
Mereghetti, Paolo; Wade, Rebecca C
2012-07-26
High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.
Wagner, Kelly A; Armah, Seth M; Smith, Lisa G; Pike, Julie; Tu, Wanzhu; Campbell, Wayne W; Boushey, Carol J; Hannon, Tamara S; Gletsu-Miller, Nana
2016-10-01
To determine the influence of dietary behaviors, assessed in a clinical setting, on measures of glycemia in overweight and obese adolescents. The study is a retrospective, cross-sectional chart review. Eligible participants were overweight youth (N = 146, age 9-21 years) who attended the Youth Diabetes Prevention Clinic in Indianapolis, IN. Glycemic status was assessed during a 2-hour oral glucose tolerance test (OGTT). In the Bright Futures Questionnaire, a recommended clinical tool for assessing unhealthy behaviors in youth, nutrition-specific questions were modified to quantify dietary habits. Associations between dietary habits and measures of glycemia were determined using multiple linear regression models. Skewed data are presented as geometric means and 95% confidence intervals. Of the 146 adolescents who were assessed [60% girls, age 13.7 years (13.3, 14.0), BMI 33.9 kg/m(2) (33.3, 34.5)], 40% were diagnosed with prediabetes. Higher intake of dessert foods was associated with increased glucose levels at 2 hours following the OGTT (β = 0.23, p = 0.004), and higher intake of packaged snack foods was associated with elevated levels of hemoglobin A1c (β = 0.04, p = 0.04), independent of adiposity. In obese youth, high intakes of dessert and packaged snack items were associated with elevated concentrations of glucose at 2 hours following the OGTT and hemoglobin A1c. Findings demonstrate the usefulness of a modified Bright Futures Questionnaire, used in a clinical setting, for identifying dietary behaviors associated with hyperglycemia in obese adolescents. ClinicalTrials.gov registration number: NCT02535169.
Increased hemoglobin mass and VO2max with 10 h nightly simulated altitude at 3000 m.
Neya, Mitsuo; Enoki, Taisuke; Ohiwa, Nao; Kawahara, Takashi; Gore, Christopher J
2013-07-01
To quantify the changes of hemoglobin mass (Hbmass) and maximum oxygen consumption (VO2max) after 22 days training at 1300-1800 m combined with nightly exposure to 3000-m simulated altitude. We hypothesized that with simulated 3000-m altitude, an adequate beneficial dose could be as little as 10 h/24 h. Fourteen male collegiate runners were equally divided into 2 groups: altitude (ALT) and control (CON). Both groups spent 22 days at 1300-1800 m. ALT spent 10 h/night for 21 nights in simulated altitude (3000 m), and CON stayed at 1300 m. VO2max and Hbmass were measured twice before and once after the intervention. Blood was collected for assessment of percent reticulocytes (%retics), serum erythropoietin (EPO), ferritin, and soluble transferrin receptor (sTfR) concentrations. Compared with CON there was an almost certain increase in absolute VO2max (8.6%, 90% confidence interval 4.8-12.6%) and a likely increase in absolute Hbmass (3.5%; 0.9-6.2%) at postintervention. The %retics were at least very likely higher in ALT than in CON throughout the 21 nights, and sTfR was also very likely higher in the ALT group until day 17. EPO of ALT was likely higher than that of CON on days 1 and 5 at altitude, whereas serum ferritin was likely lower in ALT than CON for most of the intervention. Together the combination of the natural and simulated altitude was a sufficient total dose of hypoxia to increase both Hbmass and VO2max.
Wang, Xinlong; Tian, Fenghua; Reddy, Divya D; Nalawade, Sahil S; Barrett, Douglas W; Gonzalez-Lima, Francisco; Liu, Hanli
2017-12-01
Transcranial infrared laser stimulation (TILS) is a noninvasive form of brain photobiomulation. Cytochrome-c-oxidase (CCO), the terminal enzyme in the mitochondrial electron transport chain, is hypothesized to be the primary intracellular photoacceptor. We hypothesized that TILS up-regulates cerebral CCO and causes hemodynamic changes. We delivered 1064-nm laser stimulation to the forehead of healthy participants ( n = 11), while broadband near-infrared spectroscopy was utilized to acquire light reflectance from the TILS-treated cortical region before, during, and after TILS. Placebo experiments were also performed for accurate comparison. Time course of spectroscopic readings were analyzed and fitted to the modified Beer-Lambert law. With respect to the placebo readings, we observed (1) significant increases in cerebral concentrations of oxidized CCO (Δ[CCO]; >0.08 µM; p < 0.01), oxygenated hemoglobin (Δ[HbO]; >0.8 µM; p < 0.01), and total hemoglobin (Δ[HbT]; >0.5 µM; p < 0.01) during and after TILS, and (2) linear interplays between Δ[CCO] versus Δ[HbO] and between Δ[CCO] versus Δ[HbT]. Ratios of Δ[CCO]/Δ[HbO] and Δ[CCO]/Δ[HbT] were introduced as TILS-induced metabolic-hemodynamic coupling indices to quantify the coupling strength between TILS-enhanced cerebral metabolism and blood oxygen supply. This study provides the first demonstration that TILS causes up-regulation of oxidized CCO in the human brain, and contributes important insight into the physiological mechanisms.
Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification
NASA Astrophysics Data System (ADS)
Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Miller, Kathy; Kruger, Robert
2006-02-01
Purpose. To evaluate photoacoustic spectroscopy as a potential imaging modality capable of measuring intra-tumor heterogeneity and spectral features associated with hemoglobin and the molecular probe indocyanine green (ICG). Material and Methods. Immune deficient mice were injected with wildtype and VEGF enhanced MCF-7 breast cancer cells or SKOV3x ovarian cancer cells, which were allowed to grow to a size of 6-12 mm in diameter. Two mice were imaged alive and after euthanasia for (oxy/deoxy)-hemoglobin content. A 0.4 mL volume of 1 μg/mL concentration of ICG was injected into the tail veins of two mice prior to imaging using the photoacoustic computed tomography (PCT) spectrometer (Optosonics, Inc., Indianapolis, IN 46202) scanner. Mouse images were acquired for wavelengths spanning 700-920 nm, after which the major organs were excised, and similarly imaged. A histological study was performed by sectioning the organ and optically imaging the fluorescence distribution. Results. Calibration of PCT-spectroscopy with different samples of oxygenated blood reproduced a hemoglobin dissociation curve consistent with empirical formula with an average error of 5.6%. In vivo PCT determination of SaO II levels within the tumor vascular was measurably tracked, and spatially correlated to the periphery of the tumor. Statistical and systematic errors associated with hypoxia were estimated to be 10 and 13%, respectively. Measured ICG concentrations determined by contrast-differential PCT images in excised organs (tumor, liver) were approximately 0.8 μg/mL, consistent with fluorescent histological results. Also, the difference in the ratio of ICG concentration in the gall bladder-to-vasculature between the mice was consistent with excretion times between the two mice. Conclusion. PCT spectroscopic imaging has shown to be a noninvasive modality capable of imaging intra-tumor heterogeneity of (oxy/deoxy)-hemoglobin and ICG in vivo, with an estimated error in SaO II at 17% and in ICG at 0.8 μg/mL in excised tissue. Ongoing development of spectroscopic analysis techniques, probe development, and calibration techniques are being developed to improve sensitivity to both exogenous molecular probes and (oxy/deoxy)-hemoglobin fraction.
Faruque, Labib Imran; Wiebe, Natasha; Ehteshami-Afshar, Arash; Liu, Yuanchen; Dianati-Maleki, Neda; Hemmelgarn, Brenda R.; Manns, Braden J.; Tonelli, Marcello
2017-01-01
BACKGROUND: Telemedicine, the use of telecommunications to deliver health services, expertise and information, is a promising but unproven tool for improving the quality of diabetes care. We summarized the effectiveness of different methods of telemedicine for the management of diabetes compared with usual care. METHODS: We searched MEDLINE, Embase and the Cochrane Central Register of Controlled Trials databases (to November 2015) and reference lists of existing systematic reviews for randomized controlled trials (RCTs) comparing telemedicine with usual care for adults with diabetes. Two independent reviewers selected the studies and assessed risk of bias in the studies. The primary outcome was glycated hemoglobin (HbA1C) reported at 3 time points (≤ 3 mo, 4–12 mo and > 12 mo). Other outcomes were quality of life, mortality and episodes of hypoglycemia. Trials were pooled using randomeffects meta-analysis, and heterogeneity was quantified using the I2 statistic. RESULTS: From 3688 citations, we identified 111 eligible RCTs (n = 23 648). Telemedicine achieved significant but modest reductions in HbA1C in all 3 follow-up periods (difference in mean at ≤ 3 mo: −0.57%, 95% confidence interval [CI] −0.74% to −0.40% [39 trials]; at 4–12 mo: −0.28%, 95% CI −0.37% to −0.20% [87 trials]; and at > 12 mo: −0.26%, 95% CI −0.46% to −0.06% [5 trials]). Quantified heterogeneity (I2 statistic) was 75%, 69% and 58%, respectively. In meta-regression analyses, the effect of telemedicine on HbA1C appeared greatest in trials with higher HbA1C concentrations at baseline, in trials where providers used Web portals or text messaging to communicate with patients and in trials where telemedicine facilitated medication adjustment. Telemedicine had no convincing effect on quality of life, mortality or hypoglycemia. INTERPRETATION: Compared with usual care, the addition of telemedicine, especially systems that allowed medication adjustments with or without text messaging or a Web portal, improved HbA1C but not other clinically relevant outcomes among patients with diabetes. PMID:27799615
Faruque, Labib Imran; Wiebe, Natasha; Ehteshami-Afshar, Arash; Liu, Yuanchen; Dianati-Maleki, Neda; Hemmelgarn, Brenda R; Manns, Braden J; Tonelli, Marcello
2017-03-06
Telemedicine, the use of telecommunications to deliver health services, expertise and information, is a promising but unproven tool for improving the quality of diabetes care. We summarized the effectiveness of different methods of telemedicine for the management of diabetes compared with usual care. We searched MEDLINE, Embase and the Cochrane Central Register of Controlled Trials databases (to November 2015) and reference lists of existing systematic reviews for randomized controlled trials (RCTs) comparing telemedicine with usual care for adults with diabetes. Two independent reviewers selected the studies and assessed risk of bias in the studies. The primary outcome was glycated hemoglobin (HbA 1C ) reported at 3 time points (≤ 3 mo, 4-12 mo and > 12 mo). Other outcomes were quality of life, mortality and episodes of hypoglycemia. Trials were pooled using randomeffects meta-analysis, and heterogeneity was quantified using the I 2 statistic. From 3688 citations, we identified 111 eligible RCTs ( n = 23 648). Telemedicine achieved significant but modest reductions in HbA 1C in all 3 follow-up periods (difference in mean at ≤ 3 mo: -0.57%, 95% confidence interval [CI] -0.74% to -0.40% [39 trials]; at 4-12 mo: -0.28%, 95% CI -0.37% to -0.20% [87 trials]; and at > 12 mo: -0.26%, 95% CI -0.46% to -0.06% [5 trials]). Quantified heterogeneity ( I 2 statistic) was 75%, 69% and 58%, respectively. In meta-regression analyses, the effect of telemedicine on HbA 1C appeared greatest in trials with higher HbA 1C concentrations at baseline, in trials where providers used Web portals or text messaging to communicate with patients and in trials where telemedicine facilitated medication adjustment. Telemedicine had no convincing effect on quality of life, mortality or hypoglycemia. Compared with usual care, the addition of telemedicine, especially systems that allowed medication adjustments with or without text messaging or a Web portal, improved HbA 1C but not other clinically relevant outcomes among patients with diabetes. © 2017 Canadian Medical Association or its licensors.
Subunit assembly of hemoglobin: an important determinant of hematologic phenotype.
Bunn, H F
1987-01-01
Hemoglobin's physiologic properties depend on the orderly assembly of its subunits in erythropoietic cells. The biosynthesis of alpha- and beta-globin polypeptide chains is normally balanced. Heme rapidly binds to the globin subunit, either during translation or shortly thereafter. The formation of the alpha beta-dimer is facilitated by electrostatic attraction of a positively charged alpha-subunit to a negatively charged beta-subunit. The alpha beta-dimer dissociates extremely slowly. The difference between the rate of dissociation of alpha beta- and alpha gamma-dimers with increasing pH explains the well-known alkaline resistance of Hb F. Two dimers combine to form the functioning alpha 2 beta 2-tetramer. This model of hemoglobin assembly explains the different levels of positively charged and negatively charged mutant hemoglobins that are encountered in heterozygotes and the effect of alpha-thalassemia and heme deficiency states in modifying the level of the variant hemoglobin as well as Hb A2. Electrostatic interactions also affect the binding of hemoglobin to the cytoplasmic surface of the red cell membrane and may underlie the formation of target cells. Enhanced binding of positively charged variants such as S and C trigger a normally dormant pathway for potassium and water loss. Thus, the positive charge on beta c is responsible for the two major contributors to the pathogenesis of Hb SC disease: increased proportion of Hb S and increased intracellular hemoglobin concentration. It is likely that electrostatic interactions play an important role in the assembly of a number of other multisubunit macromolecules, including membrane receptors, cytoskeletal proteins, and DNA binding proteins.
Danese, Elisa; Lippi, Giuseppe; Brocco, Giorgio; Montagnana, Martina; Salvagno, Gian Luca
2016-06-01
The effect of radiofrequency exposure on human health and health care equipment is a matter of ongoing debate. This study was planned to investigate the influence of radiofrequency (RF) waves emitted by a commercial mobile phone on red blood cells (RBC) in vitro. The study population consisted of 16 ostensibly healthy volunteers. Two whole blood specimens were collected from each volunteer. One sample was placed in a plastic rack, 1 cm distant from the chassis of a commercial mobile phone which was activated by a remote phone call lasting 30 min. The other blood sample was placed in another plastic rack, but was kept distant from any type of RF source. The main RBC parameters including RBC count, hematocrit (Ht), hemoglobin, mean corpuscular platelet volume (MPV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and RBC distribution width (RDW-CV) were assessed with an Advia 2120. The exposure of whole blood to the mobile phone call significantly increased Ht, hemoglobin, MCV and MCH, whereas the RBC count, MCHC and RDW-CV remained unchanged. A significant correlation was observed between variation of Ht and those of hemoglobin (p=0.008), MCV (p=0.009) or MCH (p=0.037), as well as between hemoglobin and MCV (p=0.048). Increased values were found in 13/16 (81%) samples for both Ht and hemoglobin, 14/16 (88%) samples for MCH and 16/16 (100%) samples for MCV. These results suggest that close mobile phone exposure may be an unappreciated and possibly underestimated cause of preanalytical bias in RBC testing.
Krishnan, Rahul; Arora, Rajan P; Alexander, Michael; White, Sean M; Lamb, Morgan W; Foster, Clarence E; Choi, Bernard; Lakey, Jonathan R T
2014-01-01
Alginate encapsulation reduces the risk of transplant rejection by evading immune-mediated cell injury and rejection; however, poor vascular perfusion results in graft failure. Since existing imaging models are incapable of quantifying the vascular response to biomaterial implants after transplantation, in this study, we demonstrate the use of in vivo laser speckle imaging (LSI) and wide-field functional imaging (WiFI) to monitor the microvascular environment surrounding biomaterial implants. The vascular response to two islet-containing biomaterial encapsulation devices, alginate microcapsules and a high-guluronate alginate sheet, was studied and compared after implantation into the mouse dorsal window chamber (N = 4 per implant group). Images obtained over a 14-day period using LSI and WiFI were analyzed using algorithms to quantify blood flow, hemoglobin oxygen saturation and vascular density. Using our method, we were able to monitor the changes in the peri-implant microvasculature noninvasively without the use of fluorescent dyes. Significant changes in blood flow, hemoglobin oxygen saturation and vascular density were noted as early as the first week post-transplant. The dorsal window chamber model enables comparison of host responses to transplanted biomaterials. Future experiments will study the effect of changes in alginate composition on the vascular and immune responses. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Vivide Tuan-Chyan; Merisier, Delson; Yu, Bing; Walmer, David K.; Ramanujam, Nirmala
2011-03-01
A significant challenge in detecting cervical pre-cancer in low-resource settings is the lack of effective screening facilities and trained personnel to detect the disease before it is advanced. Light based technologies, particularly quantitative optical spectroscopy, have the potential to provide an effective, low cost, and portable solution for cervical pre-cancer screening in these communities. We have developed and characterized a portable USB-powered optical spectroscopic system to quantify total hemoglobin content, hemoglobin saturation, and reduced scattering coefficient of cervical tissue in vivo. The system consists of a high-power LED as light source, a bifurcated fiber optic assembly, and two USB spectrometers for sample and calibration spectra acquisitions. The system was subsequently tested in Leogane, Haiti, where diffuse reflectance spectra from 33 colposcopically normal sites in 21 patients were acquired. Two different calibration methods, i.e., a post-study diffuse reflectance standard measurement and a real time self-calibration channel were studied. Our results suggest that a self-calibration channel enabled more accurate extraction of scattering contrast through simultaneous real-time correction of intensity drifts in the system. A self-calibration system also minimizes operator bias and required training. Hence, future contact spectroscopy or imaging systems should incorporate a selfcalibration channel to reliably extract scattering contrast.
Powers, Jacquelyn M; Buchanan, George R; Adix, Leah; Zhang, Song; Gao, Ang; McCavit, Timothy L
2017-06-13
Iron-deficiency anemia (IDA) affects millions of persons worldwide, and is associated with impaired neurodevelopment in infants and children. Ferrous sulfate is the most commonly prescribed oral iron despite iron polysaccharide complex possibly being better tolerated. To compare the effect of ferrous sulfate with iron polysaccharide complex on hemoglobin concentration in infants and children with nutritional IDA. Double-blind, superiority randomized clinical trial of infants and children aged 9 to 48 months with nutritional IDA (assessed by history and laboratory criteria) that was conducted in an outpatient hematology clinic at a US tertiary care hospital from September 2013 through November 2015; 12-week follow-up ended in January 2016. Three mg/kg of elemental iron once daily as either ferrous sulfate drops or iron polysaccharide complex drops for 12 weeks. Primary outcome was change in hemoglobin over 12 weeks. Secondary outcomes included complete resolution of IDA (defined as hemoglobin concentration >11 g/dL, mean corpuscular volume >70 fL, reticulocyte hemoglobin equivalent >25 pg, serum ferritin level >15 ng/mL, and total iron-binding capacity <425 μg/dL at the 12-week visit), changes in serum ferritin level and total iron-binding capacity, adverse effects. Of 80 randomized infants and children (median age, 22 months; 55% male; 61% Hispanic white; 40 per group), 59 completed the trial (28 [70%] in ferrous sulfate group; 31 [78%] in iron polysaccharide complex group). From baseline to 12 weeks, mean hemoglobin increased from 7.9 to 11.9 g/dL (ferrous sulfate group) vs 7.7 to 11.1 g/dL (iron complex group), a greater difference of 1.0 g/dL (95% CI, 0.4 to 1.6 g/dL; P < .001) with ferrous sulfate (based on a linear mixed model). Proportion with a complete resolution of IDA was higher in the ferrous sulfate group (29% vs 6%; P = .04). Median serum ferritin level increased from 3.0 to 15.6 ng/mL (ferrous sulfate) vs 2.0 to 7.5 ng/mL (iron complex) over 12 weeks, a greater difference of 10.2 ng/mL (95% CI, 6.2 to 14.1 ng/mL; P < .001) with ferrous sulfate. Mean total iron-binding capacity decreased from 501 to 389 μg/dL (ferrous sulfate) vs 506 to 417 μg/dL (iron complex) (a greater difference of -50 μg/dL [95% CI, -86 to -14 μg/dL] with ferrous sulfate; P < .001). There were more reports of diarrhea in the iron complex group than in the ferrous sulfate group (58% vs 35%, respectively; P = .04). Among infants and children aged 9 to 48 months with nutritional iron-deficiency anemia, ferrous sulfate compared with iron polysaccharide complex resulted in a greater increase in hemoglobin concentration at 12 weeks. Once daily, low-dose ferrous sulfate should be considered for children with nutritional iron-deficiency anemia. clinicaltrials.gov Identifier: NCT01904864.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Increasing evidence suggests that high selenium levels are associated with diabetes and other cardiometabolic risk factors. OBJECTIVES: We evaluated the association of serum selenium concentrations with fasting plasma glucose, glycosylated hemoglobin levels, and diabetes in the most rec...
Jin, Xiaoxia; Abbot, Stewart; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Zhao, Rui; Kameneva, Marina V.; Moore, Lee R.; Chalmers, Jeffrey J.; Zborowski, Maciej
2012-01-01
Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM) when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free) magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A), hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry) to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS) was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes) that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes. PMID:22952572
NASA Astrophysics Data System (ADS)
Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting
2018-02-01
Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.
Hassel, Erlend; Stensvold, Dorthe; Halvorsen, Thomas; Wisløff, Ulrik; Langhammer, Arnulf; Steinshamn, Sigurd
2017-01-01
Peak oxygen uptake (VO2peak) is an indicator of cardiovascular health and a useful tool for risk stratification. Direct measurement of VO2peak is resource-demanding and may be contraindicated. There exist several non-exercise models to estimate VO2peak that utilize easily obtainable health parameters, but none of them includes lung function measures or hemoglobin concentrations. We aimed to test whether addition of these parameters could improve prediction of VO2peak compared to an established model that includes age, waist circumference, self-reported physical activity and resting heart rate. We included 1431 subjects aged 69-77 years that completed a laboratory test of VO2peak, spirometry, and a gas diffusion test. Prediction models for VO2peak were developed with multiple linear regression, and goodness of fit was evaluated. Forced expiratory volume in one second (FEV1), diffusing capacity of the lung for carbon monoxide and blood hemoglobin concentration significantly improved the ability of the established model to predict VO2peak. The explained variance of the model increased from 31% to 48% for men and from 32% to 38% for women (p<0.001). FEV1, diffusing capacity of the lungs for carbon monoxide and hemoglobin concentration substantially improved the accuracy of VO2peak prediction when added to an established model in an elderly population.
A Mountain or a Plateau? Hematological Traits Vary Nonlinearly with Altitude in a Highland Lizard.
González-Morales, Juan Carlos; Beamonte-Barrientos, Rene; Bastiaans, Elizabeth; Guevara-Fiore, Palestina; Quintana, Erendira; Fajardo, Victor
High-altitude organisms exhibit hematological adaptations to augment blood transport of oxygen. One common mechanism is through increased values of blood traits such as erythrocyte count, hematocrit, and hemoglobin concentration. However, a positive relationship between altitude and blood traits is not observed in all high-altitude systems. To understand how organisms adapt to high altitudes, it is important to document physiological patterns related to hypoxia gradients from a greater variety of species. Here, we present an extensive hematological description for three populations of Sceloporus grammicus living at 2,500, 3,400, and 4,300 m. We did not find a linear increase with altitude for any of the blood traits we measured. Instead, we found nonlinear relationships between altitude and the blood traits erythrocyte number, erythrocyte size, hematocrit, and hemoglobin concentration. Erythrocyte number and hematocrit leveled off as altitude increased, whereas hemoglobin concentration and erythrocyte size were highest at intermediate altitude. Additionally, lizards from our three study populations are similar in blood pH, serum electrolytes, glucose, and lactate. Given that the highest-altitude population did not show the highest levels of the variables we measured, we suggest these lizards may be using different adaptations to cope with hypoxia than lizards at low or intermediate altitudes. We discuss future directions that research could take to investigate such potential adaptations.
Wang, Xinlong; Tian, Fenghua; Soni, Sagar S.; Gonzalez-Lima, F.; Liu, Hanli
2016-01-01
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT. PMID:27484673
NASA Astrophysics Data System (ADS)
Wang, Xinlong; Tian, Fenghua; Soni, Sagar S.; Gonzalez-Lima, F.; Liu, Hanli
2016-08-01
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.
Wang, Xinlong; Tian, Fenghua; Soni, Sagar S; Gonzalez-Lima, F; Liu, Hanli
2016-08-03
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.
Kianoush, Sina; Balali-Mood, Mahdi; Mousavi, Seyed Reza; Shakeri, Mohammad Taghi; Dadpour, Bita; Moradi, Valiollah; Sadeghi, Mahmoud
2013-01-01
Background: Lead is a toxic element which causes acute, subacute or chronic poisoning through environmental and occupational exposure. The aim of this study was to investigate clinical and laboratory abnormalities of chronic lead poisoning among workers of a car battery industry. Methods: Questionnaires and forms were designed and used to record demographic data, past medical histories and clinical manifestations of lead poisoning. Blood samples were taken to determine biochemical (using Auto Analyzer; Model BT3000) and hematologic (using Cell Counter Sysmex; Model KX21N) parameters. An atomic absorption spectrometer (Perkin-Elmer, Model 3030, USA) was used to determine lead concentration in blood and urine by heated graphite atomization technique. Results: A total of 112 men mean age 28.78±5.17 years, who worked in a car battery industry were recruited in the present study. The most common signs/symptoms of lead poisoning included increased excitability 41.9%, arthralgia 41.0%, fatigue 40.1%, dental grey discoloration 44.6%, lead line 24.1%, increased deep tendon reflexes (DTR) 22.3%, and decreased DTR (18.7%). Blood lead concentration (BLC) was 398.95 µg/L±177.40, which was significantly correlated with duration of work (P=0.044) but not with the clinical manifestations of lead poisoning. However, BLC was significantly correlated with urine lead concentration (83.67 µg/L±49.78; r2=0.711; P<0.001), mean corpuscular hemoglobin (r=-0.280; P=0.011), mean corpuscular hemoglobin concentration (r=-0.304; P=0.006) and fasting blood sugar or FBS (r=-0.258; P=0.010). Conclusion: Neuropsychiatric and skeletal findings were common manifestations of chronic occupational lead poisoning. BLC was significantly correlated with duration of work, urine lead concentration, two hemoglobin indices and FBS. PMID:23645955
Kianoush, Sina; Balali-Mood, Mahdi; Mousavi, Seyed Reza; Shakeri, Mohammad Taghi; Dadpour, Bita; Moradi, Valiollah; Sadeghi, Mahmoud
2013-03-01
Lead is a toxic element which causes acute, subacute or chronic poisoning through environmental and occupational exposure. The aim of this study was to investigate clinical and laboratory abnormalities of chronic lead poisoning among workers of a car battery industry. Questionnaires and forms were designed and used to record demographic data, past medical histories and clinical manifestations of lead poisoning. Blood samples were taken to determine biochemical (using Auto Analyzer; Model BT3000) and hematologic (using Cell Counter Sysmex; Model KX21N) parameters. An atomic absorption spectrometer (Perkin-Elmer, Model 3030, USA) was used to determine lead concentration in blood and urine by heated graphite atomization technique. A total of 112 men mean age 28.78±5.17 years, who worked in a car battery industry were recruited in the present study. The most common signs/symptoms of lead poisoning included increased excitability 41.9%, arthralgia 41.0%, fatigue 40.1%, dental grey discoloration 44.6%, lead line 24.1%, increased deep tendon reflexes (DTR) 22.3%, and decreased DTR (18.7%). Blood lead concentration (BLC) was 398.95 µg/L±177.40, which was significantly correlated with duration of work (P=0.044) but not with the clinical manifestations of lead poisoning. However, BLC was significantly correlated with urine lead concentration (83.67 µg/L±49.78; r(2)=0.711; P<0.001), mean corpuscular hemoglobin (r=-0.280; P=0.011), mean corpuscular hemoglobin concentration (r=-0.304; P=0.006) and fasting blood sugar or FBS (r=-0.258; P=0.010). Neuropsychiatric and skeletal findings were common manifestations of chronic occupational lead poisoning. BLC was significantly correlated with duration of work, urine lead concentration, two hemoglobin indices and FBS.
Bastiaens, Guido J H; Tiono, Alfred B; Okebe, Joseph; Pett, Helmi E; Coulibaly, Sam A; Gonçalves, Bronner P; Affara, Muna; Ouédraogo, Alphonse; Bougouma, Edith C; Sanou, Guillaume S; Nébié, Issa; Bradley, John; Lanke, Kjerstin H W; Niemi, Mikko; Sirima, Sodiomon B; d'Alessandro, Umberto; Bousema, Teun; Drakeley, Chris
2018-01-01
Primaquine (PQ) actively clears mature Plasmodium falciparum gametocytes but in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals can cause hemolysis. We assessed the safety of low-dose PQ in combination with artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP) in G6PDd African males with asymptomatic P. falciparum malaria. In Burkina Faso, G6PDd adult males were randomized to treatment with AL alone (n = 10) or with PQ at 0.25 (n = 20) or 0.40 mg/kg (n = 20) dosage; G6PD-normal males received AL plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. In The Gambia, G6PDd adult males and boys received DP alone (n = 10) or with 0.25 mg/kg PQ (n = 20); G6PD-normal males received DP plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. The primary study endpoint was change in hemoglobin concentration during the 28-day follow-up. Cytochrome P-450 isoenzyme 2D6 (CYP2D6) metabolizer status, gametocyte carriage, haptoglobin, lactate dehydrogenase levels and reticulocyte counts were also determined. In Burkina Faso, the mean maximum absolute change in hemoglobin was -2.13 g/dL (95% confidence interval [CI], -2.78, -1.49) in G6PDd individuals randomized to 0.25 PQ mg/kg and -2.29 g/dL (95% CI, -2.79, -1.79) in those receiving 0.40 PQ mg/kg. In The Gambia, the mean maximum absolute change in hemoglobin concentration was -1.83 g/dL (95% CI, -2.19, -1.47) in G6PDd individuals receiving 0.25 PQ mg/kg. After adjustment for baseline concentrations, hemoglobin reductions in G6PDd individuals in Burkina Faso were more pronounced compared to those in G6PD-normal individuals receiving the same PQ doses (P = 0.062 and P = 0.022, respectively). Hemoglobin levels normalized during follow-up. Abnormal haptoglobin and lactate dehydrogenase levels provided additional evidence of mild transient hemolysis post-PQ. Single low-dose PQ in combination with AL and DP was associated with mild and transient reductions in hemoglobin. None of the study participants developed moderate or severe anemia; there were no severe adverse events. This indicates that single low-dose PQ is safe in G6PDd African males when used with artemisinin-based combination therapy. Clinicaltrials.gov NCT02174900 Clinicaltrials.gov NCT02654730.
Pett, Helmi E.; Coulibaly, Sam A.; Gonçalves, Bronner P.; Affara, Muna; Ouédraogo, Alphonse; Bougouma, Edith C.; Sanou, Guillaume S.; Nébié, Issa; Bradley, John; Lanke, Kjerstin H. W.; Niemi, Mikko; Sirima, Sodiomon B.; d’Alessandro, Umberto; Bousema, Teun; Drakeley, Chris
2018-01-01
Background Primaquine (PQ) actively clears mature Plasmodium falciparum gametocytes but in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals can cause hemolysis. We assessed the safety of low-dose PQ in combination with artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP) in G6PDd African males with asymptomatic P. falciparum malaria. Methods and findings In Burkina Faso, G6PDd adult males were randomized to treatment with AL alone (n = 10) or with PQ at 0.25 (n = 20) or 0.40 mg/kg (n = 20) dosage; G6PD-normal males received AL plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. In The Gambia, G6PDd adult males and boys received DP alone (n = 10) or with 0.25 mg/kg PQ (n = 20); G6PD-normal males received DP plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. The primary study endpoint was change in hemoglobin concentration during the 28-day follow-up. Cytochrome P-450 isoenzyme 2D6 (CYP2D6) metabolizer status, gametocyte carriage, haptoglobin, lactate dehydrogenase levels and reticulocyte counts were also determined. In Burkina Faso, the mean maximum absolute change in hemoglobin was -2.13 g/dL (95% confidence interval [CI], -2.78, -1.49) in G6PDd individuals randomized to 0.25 PQ mg/kg and -2.29 g/dL (95% CI, -2.79, -1.79) in those receiving 0.40 PQ mg/kg. In The Gambia, the mean maximum absolute change in hemoglobin concentration was -1.83 g/dL (95% CI, -2.19, -1.47) in G6PDd individuals receiving 0.25 PQ mg/kg. After adjustment for baseline concentrations, hemoglobin reductions in G6PDd individuals in Burkina Faso were more pronounced compared to those in G6PD-normal individuals receiving the same PQ doses (P = 0.062 and P = 0.022, respectively). Hemoglobin levels normalized during follow-up. Abnormal haptoglobin and lactate dehydrogenase levels provided additional evidence of mild transient hemolysis post-PQ. Conclusions Single low-dose PQ in combination with AL and DP was associated with mild and transient reductions in hemoglobin. None of the study participants developed moderate or severe anemia; there were no severe adverse events. This indicates that single low-dose PQ is safe in G6PDd African males when used with artemisinin-based combination therapy. Trial registration Clinicaltrials.gov NCT02174900 Clinicaltrials.gov NCT02654730 PMID:29324864
Delgado-Mederos, Raquel; Gregori-Pla, Clara; Zirak, Peyman; Blanco, Igor; Dinia, Lavinia; Marín, Rebeca; Durduran, Turgut; Martí-Fàbregas, Joan
2018-01-01
In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time. PMID:29541519
Delgado-Mederos, Raquel; Gregori-Pla, Clara; Zirak, Peyman; Blanco, Igor; Dinia, Lavinia; Marín, Rebeca; Durduran, Turgut; Martí-Fàbregas, Joan
2018-03-01
In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time.
Duque-Sosa, Paula; Iribarren, María Josefa; Rábago, Gregorio
2017-01-01
Perioperative anemia is an important risk factor for cardiac surgery-associated acute kidney injury (CSA-AKI). Nonetheless, the severity of the anemia and the time in the perioperative period in which the hemoglobin level should be considered as a risk factor is conflicting. The present study introduces the concept of perioperative hemoglobin area under the curve (pHb-AUC) as a surrogate marker of the evolution of perioperative hemoglobin concentration. Through a retrospective analysis of prospectively collected data, we assessed this new variable as a risk factor for the development of acute kidney injury after cardiac surgery in 966 adult patients who underwent cardiac surgery with cardiopulmonary bypass, at twenty-three academic hospitals in Spain. Exclusion criteria were patients on renal replacement therapy, who needed a reoperation because of bleeding and/or with missing perioperative hemoglobin or creatinine values. Using a multivariate regression analysis, we found that a pHb-AUC <19 g/dL was an independent risk factor for CSA-AKI even after adjustment for intraoperative red blood cell transfusion (OR 1.41, p <0.05). It was also associated with mortality (OR 2.48, p <0.01) and prolonged hospital length of stay (4.67 ± 0.99 days, p <0.001) PMID:28225801
NASA Astrophysics Data System (ADS)
Marin, Ana; Milanič, Matija; Verdel, Nina; Vidovič, Luka; Majaron, Boris
2018-02-01
Combination of diffuse reflectance spectroscopy (DRS) and pulsed photothermal radiometry (PPTR) was recently successfully used to study evolution of accidental traumatic bruises. Yet, accidental bruises introduce many unknowns into the evolution analysis and thus a more controllable and repeatable approach for bruising is desired. In this study, evolution of bruises induced by aluminum projectiles of known mass and velocity were studied by DRS and PPTR. Bruises were induced on volar forearm skin of two healthy volunteers. Inverse Monte Carlo including four-layer skin model, was used to analyze the DRS and PPTR data to determine skin chromophores, their concentrations and depths. For bruise analysis, a bruise model was constructed and evolved according to hemoglobin diffusion kinetics. Bruise analysis of PPTR signals yielded bruise evolution parameters, most importantly hemoglobin diffusion constant, hemoglobin decomposition time and blood pool depth. The study results show that chronological tracking of hemoglobin decomposition can be assessed by the combined DRS and PPTR technique on induced bruise. Parameters of individual bruises were compared and two trends in chronological behavior of hemoglobin decomposition time discerned. Changes in bruise diffuse reflectance spectra were noted. Induced bruise parameters, however, still showed some scatter and thus further research is needed to reduce bruise variability.
The influence of hydroxyurea on oxidative stress in sickle cell anemia
Torres, Lidiane de Souza; da Silva, Danilo Grünig Humberto; Belini Junior, Edis; de Almeida, Eduardo Alves; Lobo, Clarisse Lopes de Castro; Cançado, Rodolfo Delfini; Ruiz, Milton Artur; Bonini-Domingos, Claudia Regina
2012-01-01
Objective The oxidative stress in 20 sickle cell anemia patients taking hydroxyurea and 13 sickle cell anemia patients who did not take hydroxyurea was compared with a control group of 96 individuals without any hemoglobinopathy. Methods Oxidative stress was assessed by thiobarbituric acid reactive species production, the Trolox-equivalent antioxidant capacity and plasma glutathione levels. Results Thiobarbituric acid reactive species values were higher in patients without specific medication, followed by patients taking hydroxyurea and the Control Group (p < 0.0001). The antioxidant capacity was higher in patients taking hydroxyurea and lower in the Control Group (p = 0.0002 for Trolox-equivalent antioxidant capacity and p < 0.0292 for plasma glutathione). Thiobarbituric acid reactive species levels were correlated with higher hemoglobin S levels (r = 0.55; p = 0.0040) and lower hemoglobin F concentrations(r = -0.52; p = 0.0067). On the other hand, plasma glutathione levels were negatively correlated with hemoglobin S levels (r = -0.49; p = 0.0111) and positively associated with hemoglobin F values (r = 0.56; p = 0.0031). Conclusion Sickle cell anemia patients have high oxidative stress and, conversely, increased antioxidant activity. The increase in hemoglobin F levels provided by hydroxyurea and its antioxidant action may explain the reduction in lipid peroxidation and increased antioxidant defenses in these individuals. PMID:23323065
Ibaraki, Masanobu; Shinohara, Yuki; Nakamura, Kazuhiro; Miura, Shuichi; Kinoshita, Fumiko; Kinoshita, Toshibumi
2010-07-01
Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with (15)O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (C(a)O(2)), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO(2)) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO(2) was independent of Hb concentration. Oxygen delivery defined as a product of C(a)O(2) and CBF (C(a)O(2) CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO(2). The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the (15)O PET data in clinical practice.
NASA Technical Reports Server (NTRS)
Strangman, Gary; Franceschini, Maria Angela; Boas, David A.; Sutton, J. P. (Principal Investigator)
2003-01-01
Near-infrared spectroscopy (NIRS) can be used to noninvasively measure changes in the concentrations of oxy- and deoxyhemoglobin in tissue. We have previously shown that while global changes can be reliably measured, focal changes can produce erroneous estimates of concentration changes (NeuroImage 13 (2001), 76). Here, we describe four separate sources for systematic error in the calculation of focal hemoglobin changes from NIRS data and use experimental methods and Monte Carlo simulations to examine the importance and mitigation methods of each. The sources of error are: (1). the absolute magnitudes and relative differences in pathlength factors as a function of wavelength, (2). the location and spatial extent of the absorption change with respect to the optical probe, (3). possible differences in the spatial distribution of hemoglobin species, and (4). the potential for simultaneous monitoring of multiple regions of activation. We found wavelength selection and optode placement to be important variables in minimizing such errors, and our findings indicate that appropriate experimental procedures could reduce each of these errors to a small fraction (<10%) of the observed concentration changes.
Kopeć, Jerzy; Januszek, Rafał; Wieczorek-Surdacka, Ewa; Sułowicz, Władysław
2009-01-01
During the last years the incidence of chronic kidney disease (CKD) is permanently increasing and has become a global social and economical problem in the world as well as in Poland. The aim of the study was the retrospective analysis of medical records of patients with renal failure under supervision at the outpatient clinic, Department of Nephrology, University Hospital in Cracow. The study population enclosed 1183 patients (640 men and 543 women) aged between 17 and 98 years (mean 64.7) with creatinine concentration >120 micromol/l and/or creatinine clearance <90 ml/min/1.73 m2. Hemoglobin, iron, creatinine, urea, sodium, potasium, calcium, phosphate, magnesium, PTH, uric acid, albumin, total protein, bilirubin, glucose, total cholesterol, LDL and HDL cholesterol, triglicerydes concentration and values of hematocrite, MCV, HbA1, as well as alkaline phosphatase, AspAT, AIAT activity were estimated based on standard laboratory methods. Creatinine clearances were evaluated based on 3 different methods: simplified MDRD formula, Cockcroft-Gault formula and 24-h urine collection. Mean creatinine concentration in the studied population was 172.8 micromol/l (1.95 mg/dl). Hypertension was diagnosed in 65% of patients. In spite of treatment, more than half of the patients (51.9%) have increased systolic blood pressure and above 1/3 (35%) increased diastolic blood pressure. Mean hemoglobin concentration was 13.02 g/dl; more than 12% of patients had decreased hemoglobin below 11 g/dl. Mean values of parameters discovering calcium-phosphate metabolism were: calcium--2.33 mmol/l, phosphate--1.23 mmol/l and parathormon--169.3 pg/ml. Increased value of total serum cholesterol level was noted more than half of the patients (56.5%). Significant positive correlations were found between GFR calculated based on Cockcroft-Gault formula and BMI, hemoglobin, hematocrite, serum iron, diastolic blood pressure, total and LDL serum cholesterol, triglicerydes level, as well as AIAT activity and % values of HbA1c and negative with age, serum potassium, phosphorus, PTH and uric acid.
Cambier, Carole; Clerbaux, Thierry; Amory, Hélène; Detry, Bruno; Florquin, Sandra; Marville, Vincent; Frans, Albert; Gustin, Pascal
2002-01-01
The study was carried out on healthy Friesian calves (n = 10) aged between 10 and 30 days. Hypochloremia and alkalosis were induced by intravenous administration of furosemide and isotonic sodium bicarbonate. The venous and arterial blood samples were collected repeatedly. 2,3-diphosphoglycerate (2,3-DPG), hemoglobin and plasmatic chloride concentrations were determined. The red blood cell chloride concentration was also calculated. pH, PCO2 and PO2 were measured in arterial and mixed venous blood. The oxygen equilibrium curve (OEC) was measured in standard conditions. The correspondence of the OEC to the arterial and mixed venous compartments was calculated, taking blood temperature, pH and PCO2 values into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and mixed venous compartments and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and mixed venous OEC, combined with PO2 and hemoglobin concentration. Oxygen delivery (DO2) was calculated using the arterial oxygen content, the cardiac output measured by thermodilution, and the body weight of the animal. The oxygen consumption (VO2) was derived from the cardiac output, OEF Vol% and body weight values. Despite the plasma hypochloremia, the erythrocyte chloride concentration was not influenced by furosemide and sodium bicarbonate infusion. Due to the alkalosis-induced increase in the 2,3-DPG, the standard OEC was shifted to the right, allowing oxygen to dissociate from hemoglobin more rapidly. These changes opposed the increased affinity of hemoglobin for oxygen induced by alkalosis. Moreover, respiratory acidosis, hemoconcentration, and the slight decrease in the partial oxygen pressure in mixed venous blood (Pvo2) tended to improve the OEF Vol% and maintain the oxygen consumption in a physiological range while the cardiac output, and the oxygen delivery were significantly decreased. It may be concluded that, despite reduced oxygen delivery, oxygen consumption is maintained during experimentally induced hypochloremic alkalosis in healthy 10-30 day old calves.
Relationship between serum 25-hydroxyvitamin D and red blood cell indices in German adolescents.
Doudin, Asmma; Becker, Andreas; Rothenberger, Aribert; Meyer, Thomas
2018-04-01
Since the impact of vitamin D on red blood cell formation has not been well studied, we aimed at assessing the putative link between serum 25-hydroxyvitamin D (25[OH]D) concentrations and hematological markers of erythropoiesis in a large cohort of German adolescents aged 11 to 17 years. In total, 5066 participants from the population-based, nationally representative KiGGS study (Kinder- und Jugendgesundheitssurvey, German Health Interview and Examination Survey for Children and Adolescents) were grouped into either tertiles or clinically accepted cutoff levels for serum 25(OH)D. Results demonstrated significant and inverse correlations between 25(OH)D levels and several hematological parameters including hemoglobin concentration (r = - 0.04, p = 0.003), mean corpuscular hemoglobin (r = - 0.11, p < 0.001), red blood cell count (r = - 0.04, p = 0.002), and soluble transferrin receptor (r = - 0.1, p < 0.001), whereas, in contrast, serum 25(OH)D was positively correlated to the mean corpuscular volume of erythrocytes (r = 0.08, p < 0.001). Multinomial regression models adjusted for clinically relevant confounders confirmed statistically significant differences between the two strata of 25(OH)D groups with respect to red blood cell markers (hemoglobin concentration, red blood cell count, mean corpuscular volume, and corpuscular hemoglobin, as well as iron and soluble transferrin receptor). The link between serum 25(OH)D and several important hematological parameters may point to an inhibitory role of vitamin D in the regulation of erythropoiesis in adolescents. What is Known: • The physiological effects of vitamin D on calcium homeostasis and bone metabolism have been established. • However, much less is known about the impact of circulating vitamin D on erythropoiesis. What is New: • Data from the KiGGS study in German adolescents demonstrated significant associations between serum vitamin D concentrations and red blood cell indices. • Further studies should be conducted to decipher the underlying mechanisms of vitamin D on erythropoiesis.
Feasibility Process for Remediation of the Crude Oil Contaminated Soil
NASA Astrophysics Data System (ADS)
Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.
2015-12-01
More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program
NASA Astrophysics Data System (ADS)
Sun, Tengfei; Davis, Carole A.; Hurst, Robert E.; Slaton, Joel W.; Piao, Daqing
2017-02-01
In vivo single-fiber reflectance spectroscopy (SfRS) was performed on an orthotopic AY-27 rat bladder urothelial cell carcinoma model to explore potential spectroscopic features revealing neoplastic changes. AY-27 bladder tumor cells were intravesically instilled in four rats and allowed to implant and grow for one week, with two additional rats as the control. A total of 107 SfRS measurements were taken from 27 sites on two control bladders and 80 from four AY-27 treated bladders. The spectral profiles obtained from AY-27 treated bladders revealed various levels of a methemoglobin (MetHb) characteristic spectral feature around 635nm. A multisegment spectral analysis method estimated concentrations of five chromophore compositions including oxyhemoglobin, deoxyhemoglobin, MetHb, lipid and water. The total hemoglobin concentration ([HbT]), the MetHb proportion in the total hemoglobin and the lipid volume content showed possible correlations. The 80 measurements from the AY-27 treated bladders could separate to three sub-sets according to the MetHb proportion. Specifically, 72 were in subset 1 with low proportion (5.3%<[MetHb]<7%), 6 in subset 2 with moderate proportion (7%<[MetHb]<30%), and 2 in subset 3 with significant proportion (>30%). When grouped according to [MetHB], the [HbT] increased from 368 μM of subset 1 to 488 μM of subset 2 to 541 μM of subset 3, in comparison to the 285 μM of the control. The increased total hemoglobin and the elevation of MetHb proportion may signify angiogenesis and degradation in hemoglobin oxygen-transport. Additionally, the lipid volume content decreased from 2.58% in the control to <0.2% in the tumor groups, indicating disruption of subepithelium tissue architecture.
A mechanistic physicochemical model of carbon dioxide transport in blood.
O'Neill, David P; Robbins, Peter A
2017-02-01
A number of mathematical models have been produced that, given the Pco 2 and Po 2 of blood, will calculate the total concentrations for CO 2 and O 2 in blood. However, all these models contain at least some empirical features, and thus do not represent all of the underlying physicochemical processes in an entirely mechanistic manner. The aim of this study was to develop a physicochemical model of CO 2 carriage by the blood to determine whether our understanding of the physical chemistry of the major chemical components of blood together with their interactions is sufficiently strong to predict the physiological properties of CO 2 carriage by whole blood. Standard values are used for the ionic composition of the blood, the plasma albumin concentration, and the hemoglobin concentration. All K m values required for the model are taken from the literature. The distribution of bicarbonate, chloride, and H + ions across the red blood cell membrane follows that of a Gibbs-Donnan equilibrium. The system of equations that results is solved numerically using constraints for mass balance and electroneutrality. The model reproduces the phenomena associated with CO 2 carriage, including the magnitude of the Haldane effect, very well. The structural nature of the model allows various hypothetical scenarios to be explored. Here we examine the effects of 1) removing the ability of hemoglobin to form carbamino compounds; 2) allowing a degree of Cl - binding to deoxygenated hemoglobin; and 3) removing the chloride (Hamburger) shift. The insights gained could not have been obtained from empirical models. This study is the first to incorporate a mechanistic model of chloride-bicarbonate exchange between the erythrocyte and plasma into a full physicochemical model of the carriage of carbon dioxide in blood. The mechanistic nature of the model allowed a theoretical study of the quantitative significance for carbon dioxide transport of carbamino compound formation; the putative binding of chloride to deoxygenated hemoglobin, and the chloride (Hamburger) shift. Copyright © 2017 the American Physiological Society.
A mechanistic physicochemical model of carbon dioxide transport in blood
O’Neill, David P.
2017-01-01
A number of mathematical models have been produced that, given the Pco2 and Po2 of blood, will calculate the total concentrations for CO2 and O2 in blood. However, all these models contain at least some empirical features, and thus do not represent all of the underlying physicochemical processes in an entirely mechanistic manner. The aim of this study was to develop a physicochemical model of CO2 carriage by the blood to determine whether our understanding of the physical chemistry of the major chemical components of blood together with their interactions is sufficiently strong to predict the physiological properties of CO2 carriage by whole blood. Standard values are used for the ionic composition of the blood, the plasma albumin concentration, and the hemoglobin concentration. All Km values required for the model are taken from the literature. The distribution of bicarbonate, chloride, and H+ ions across the red blood cell membrane follows that of a Gibbs-Donnan equilibrium. The system of equations that results is solved numerically using constraints for mass balance and electroneutrality. The model reproduces the phenomena associated with CO2 carriage, including the magnitude of the Haldane effect, very well. The structural nature of the model allows various hypothetical scenarios to be explored. Here we examine the effects of 1) removing the ability of hemoglobin to form carbamino compounds; 2) allowing a degree of Cl− binding to deoxygenated hemoglobin; and 3) removing the chloride (Hamburger) shift. The insights gained could not have been obtained from empirical models. NEW & NOTEWORTHY This study is the first to incorporate a mechanistic model of chloride-bicarbonate exchange between the erythrocyte and plasma into a full physicochemical model of the carriage of carbon dioxide in blood. The mechanistic nature of the model allowed a theoretical study of the quantitative significance for carbon dioxide transport of carbamino compound formation; the putative binding of chloride to deoxygenated hemoglobin, and the chloride (Hamburger) shift. PMID:27881667
Henríquez-Hernández, Luis Alberto; Boada, Luis D; Carranza, Cristina; Pérez-Arellano, José Luis; González-Antuña, Ana; Camacho, María; Almeida-González, Maira; Zumbado, Manuel; Luzardo, Octavio P
2017-12-01
Pollution by heavy metals and more recently by rare earth elements (REE) and other minor elements (ME) has increased due in part to their high use in technological and electronic devices. This contamination can become very relevant in those sites where e-waste is improperly processed, as it is the case in many countries of the African continent. Exposure to some toxic elements has been associated to certain hematological disorders, specifically anemia. In this study, the concentrations of 48 elements (including REE and other ME) were determined by ICP-MS in whole blood samples of sub-Saharan immigrants with anemia (n=63) and without anemia (n=78). We found that the levels of Fe, Cr, Cu, Mn, Mo, and Se were significantly higher in the control group than in the anemia group, suggesting that anemia was mainly due to nutritional deficiencies. However, since other authors have suggested that in addition to nutritional deficiency, exposure to some elements may influence hemoglobin levels, we wanted to explore the role of a broad panel of toxic and "emerging" elements in hemoglobin deficiency. We found that the levels of Ag, As, Ba, Bi, Ce, Eu, Er, Ga, La, Nb, Nd, Pb, Pr, Sm, Sn, Ta, Th, Tl, U and V were higher in anemic participants than in controls. For most of these elements an inverse correlation with hemoglobin concentration was found. Some of them also correlated inversely with blood iron levels, pointing to the possibility that a higher rate of intestinal uptake of these could exist in relation to a nutritional deficiency of iron. However, the higher levels of Pb, and the group of REE and other ME in anemic participants were independent of iron levels, pointing to the possibility that these elements could play a role in the development of anemia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Hong-tian; Trasande, Leonardo; Zhu, Li-ping; Ye, Rong-wei; Zhou, Yu-bo; Liu, Jian-meng
2015-03-01
Cesarean delivery may reduce placental-fetal transfusion and thus increase the risk of early childhood anemia compared with vaginal delivery, but this notion has not been carefully studied in longitudinal cohorts. The aim was to assess the association of cesarean delivery with anemia in infants and children in 2 longitudinal Chinese birth cohorts from different socioeconomic settings. Cohort 1 was recruited from 5 counties in northeastern China and cohort 2 from 21 counties or cities in southeastern China. Cohort 1 involved 17,423 infants born during 2006-2009 to mothers with early pregnancy baseline hemoglobin concentrations ranging from 100 to 177 g/L, whereas cohort 2 involved 122,777 children born during 1993-1996 to mothers with baseline hemoglobin concentrations ranging from 60 to 190 g/L. The main outcomes were anemia at 6 and 12 mo in cohort 1 and at 58 mo in cohort 2. Multiple logistic regressions were used to estimate adjusted ORs of anemia for cesarean compared with vaginal delivery. Stratified analyses were performed by pre- and postlabor cesarean delivery and according to maternal baseline hemoglobin concentration (≤109, 110-119, 120-129, and ≥130 g/L). Cesarean delivery was not associated with anemia at 6 mo in cohort 1 (adjusted OR: 1.05; 95% CI: 0.93, 1.19); however, cesarean delivery was associated with increased anemia at 12 mo in cohort 1 (adjusted OR: 1.19; 95% CI: 1.04, 1.37) and at 58 mo in cohort 2 (adjusted OR: 1.11; 95% CI: 1.08, 1.15). The positive associations for anemia at 12 and 58 mo were consistent across maternal hemoglobin subgroups and persisted for cesarean delivery subtypes. Cesarean delivery is likely associated with anemia in children, which suggests a possible need for exploring changes in obstetric care that might prevent anemia in cesarean-delivered children. © 2015 American Society for Nutrition.
Optical sensor technology for a noninvasive medical blood diagnosis
NASA Astrophysics Data System (ADS)
Kraitl, Jens; Ewald, Hartmut; Gehring, Hartmut
2007-02-01
NIR-spectroscopy and Photoplethysmography (PPG) and is used for a measurement of blood components. The fact that the absorption-coefficients μ a and scattering-coefficients μ s for blood differ at difference wavelengths has been exploited and is used for calculation of the optical absorbability characteristics of human blood yielding information on blood components like hemoglobin and oxygen saturation. The measured PPG time signals and the ratio between the peak to peak pulse amplitudes are used for a measurement of these parameters. A newly developed PMD device has been introduced. The non-invasive in-vivo multi-spectral method is based on the radiation of monochromatic light, emitted by laser diodes, through an area of skin on the finger. Deferrals between the proportions of hemoglobin and plasma in the intravasal volume should be detected photo-electrically by signal-analytic evaluation of the signals. The computed nonlinear coefficients are used for the measurement and calculation of the relative hemoglobin concentration change. Results with this photometric method to measure changes in the hemoglobin concentration were demonstrated during measurements with a hemodynamic model and healthy subjects. The PMD is suitable for non-invasive continuous online monitoring of one or more biologic constituent values. The objective of this development is to reduce the dependence on measurement techniques which require that a sample of blood be withdrawn from the patient for in-vitro analysis. Any invasive method used on the patient to obtain blood is accompanied by problems of inconvenience, stress, and discomfort. The patient is also exposed to the normal risks of infection associated with such invasive methods.
Anemia and Dental Caries in Pregnant Women: a Prospective Cohort Study.
Costa, Elisa Miranda; Azevedo, Juliana A P; Martins, Rafiza F M; Alves, Cláudia M C; Ribeiro, Cecília C C; Thomaz, Erika B A F
2017-06-01
The objective was to evaluate the effect of anemia during pregnancy on the risk of dental caries development in pregnant women. A prospective cohort including a sample of pregnant women in a prenatal care unit of São Luís, Brazil, was done. The incidence of dental caries during pregnancy, according to Nyvad's criteria, was the outcome. The main independent variables were serum iron, ferritin, hemoglobin, erythrocyte, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and red cell distribution width (RDW). Pregnant women (n = 121) were evaluated at two moments: up to 16th week of gestational age (T1) and in the last trimester of pregnancy (T2). Crude and adjusted associations were estimated by the incidence ratio risk (IRR) and respective 95% confidence intervals (95%CI). After adjustment, higher serum concentrations of ferritin (IRR = 0.97, 95%CI 0.95-0.99) in T1, and Fe (IRR = 0.99, 95%CI 0.98-0.99), ferritin (IRR = 0.99, 95%CI 0.98-0.99), erythrocyte (IRR = 0.71, 95%CI 0.50-0.99), hemoglobin (IRR = 0.84, 95%CI 0.73-0.96), hematocrit (IRR = 0.93, 95%CI 0.88-0.98), MCV (IRR = 0.91, 95%CI 0.86-0.96), and MCH (IRR = 0.83, 95%CI 0.74-0.93) in T2, were associated with fewer incidence of dental caries in pregnant women. Iron deficiency anemia during pregnancy is a risk factor for the incidence of dental caries in these women.
Chen, Shao-Peng; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan
2011-08-15
A novel microfluidic immunoassay system for specific detection of hemoglobin A1c (HbA1c) was developed based on a three-component shell/shell/core structured magnetic nanocomposite Au/chitosan/Fe(3)O(4), which was synthesized with easy handling feature of Fe(3)O(4) by magnet, high affinity for gold nanoparticles of chitosan and good immobilization ability for anti-human hemoglobin-A1c antibody (HbA1c mAb) of assembled colloidal gold nanoparticles. The resulting HbA1c mAb/Au/chitosan/Fe(3)O(4) magnetic nanoparticles were then introduced into microfluidic devices coupled with a gold nanoband microelectrode as electrochemical detector. After that, three-step rapid immunoreactions were carried out in the sequence of HbA1c, anti-human hemoglobin antibodies (Hb mAb) and the secondary alkaline phosphatase (AP)-conjugated antibody within 20 min. The current response of 1-naphtol obtained from the reaction between the secondary AP-conjugated antibody and 1-naphthyl phosphate (1-NP) increased proportionally to the HbA1c concentration. Under optimized electrophoresis and detection conditions, HbA1c responded linearly in the concentration of 0.05-1.5 μg mL(-1), with the detection limit of 0.025 μg mL(-1). This system was successfully employed for detection of HbA1c in blood with good accuracy and renewable ability. The proposed method proved its potential use in clinical immunoassay of HbA1c. Copyright © 2011 Elsevier B.V. All rights reserved.
Takahashi, Manami; Urushihata, Takuya; Takuwa, Hiroyuki; Sakata, Kazumi; Takado, Yuhei; Shimizu, Eiji; Suhara, Tetsuya; Higuchi, Makoto; Ito, Hiroshi
2017-01-01
Green fluorescence imaging (e.g., flavoprotein autofluorescence imaging, FAI) can be used to measure neuronal activity and oxygen metabolism in living brains without expressing fluorescence proteins. It is useful for understanding the mechanism of various brain functions and their abnormalities in age-related brain diseases. However, hemoglobin in cerebral blood vessels absorbs green fluorescence, hampering accurate assessments of brain function in animal models with cerebral blood vessel dysfunctions and subsequent cerebral blood flow (CBF) alterations. In the present study, we developed a new method to correct FAI signals for hemoglobin-dependent green fluorescence reductions by simultaneous measurements of green fluorescence and intrinsic optical signals. Intrinsic optical imaging enabled evaluations of light absorption and scatters by hemoglobin, which could then be applied to corrections of green fluorescence intensities. Using this method, enhanced flavoprotein autofluorescence by sensory stimuli was successfully detected in the brains of awake mice, despite increases of CBF, and hemoglobin interference. Moreover, flavoprotein autofluorescence could be properly quantified in a resting state and during sensory stimulation by a CO 2 inhalation challenge, which modified vascular responses without overtly affecting neuronal activities. The flavoprotein autofluorescence signal data obtained here were in good agreement with the previous findings from a condition with drug-induced blockade of cerebral vasodilation, justifying the current assaying methodology. Application of this technology to studies on animal models of brain diseases with possible changes of CBF, including age-related neurological disorders, would provide better understanding of the mechanisms of neurovascular coupling in pathological circumstances.
Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration
Majchrowicz, Daria; Kosowska, Monika; Struk, Przemysław; Sobaszek, Michał; Jędrzejewska-Szczerska, Małgorzata
2018-01-01
In this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy. The NDD film was used in the construction of the fiber optic sensor. This sensor is based on the Fabry–Pérot interferometer working in a reflective mode and the NDD film is utilized as a reflective layer of this interferometer. Application of the NDD film allowed us to obtain the sensor of hemoglobin concentration with linear work characteristics with a correlation coefficient (R2) equal to 0.988. PMID:29324715
Alonso, R; García de Viedma, D; Rodríguez-Creixems, M; Bouza, E
1999-03-01
As high heterogeneity of plasma composition may be responsible for interference with HIV-1 viral load determination by the bDNA assay, the potential interference caused by a number of plasma components was examined. Among the biochemical substances assayed, cholesterol, bilirubin, and triglycerides did not affect viral load quantification. Hemoglobin did not interfere with the assay at concentrations lower than or equal to 14 g/dl. Above this concentration, measurements decreased by up to 0.78 log, but these hemoglobin levels do not usually occur in the clinical setting. None of the antiretroviral drugs assayed (AZT, dDC, d4T, 3TC and Indinavir) interfered with the measurement. HIV bDNA is a robust assay even in those frequent circumstances in which plasma composition differs notably from normal.
Yang, Woo Hwi; Heine, Oliver; Pauly, Sebastian; Kim, Pilsang; Bloch, Wilhelm; Mester, Joachim; Grau, Marijke
2015-01-01
Rapid weight reduction is part of the pre-competition routine and has been shown to negatively affect psychological and physiological performance of Taekwondo (TKD) athletes. This is caused by a reduction of the body water and an electrolyte imbalance. So far, it is unknown whether weight reduction also affects hemorheological properties and hemorheology-influencing nitric oxide (NO) signaling, important for oxygen supply to the muscles and organs. For this purpose, ten male TKD athletes reduced their body weight by 5% within four days (rapid weight reduction, RWR). After a recovery phase, athletes reduced body weight by 5% within four weeks (gradual weight reduction, GWR). Each intervention was preceded by two baseline measurements and followed by a simulated competition. Basal blood parameters (red blood cell (RBC) count, hemoglobin concentration, hematocrit, mean corpuscular volume, mean cellular hemoglobin and mean cellular hemoglobin concentration), RBC-NO synthase activation, RBC nitrite as marker for NO synthesis, RBC deformability and aggregation parameters were determined on a total of eight investigation days. Basal blood parameters were not affected by the two interventions. In contrast to GWR, RWR decreased activation of RBC-NO synthase, RBC nitrite, respective NO concentration and RBC deformability. Additionally, RWR increased RBC aggregation and disaggregation threshold. The results point out that a rapid weight reduction negatively affects hemorheological parameters and NO signaling in RBC which might limit performance capacity. Thus, GWR should be preferred to achieve the desired weight prior to a competition to avoid these negative effects.
Development of time-resolved reflectance diffuse optical tomography for breast cancer monitoring
NASA Astrophysics Data System (ADS)
Yoshimoto, Kenji; Ohmae, Etsuko; Yamashita, Daisuke; Suzuki, Hiroaki; Homma, Shu; Mimura, Tetsuya; Wada, Hiroko; Suzuki, Toshihiko; Yoshizawa, Nobuko; Nasu, Hatsuko; Ogura, Hiroyuki; Sakahara, Harumi; Yamashita, Yutaka; Ueda, Yukio
2017-02-01
We developed a time-resolved reflectance diffuse optical tomography (RDOT) system to measure tumor responses to chemotherapy in breast cancer patients at the bedside. This system irradiates the breast with a three-wavelength pulsed laser (760, 800, and 830 nm) through a source fiber specified by an optical switch. The light collected by detector fibers is guided to a detector unit consisting of variable attenuators and photomultiplier tubes. Thirteen irradiation and 12 detection points were set to a measurement area of 50 × 50 mm for a hand-held probe. The data acquisition time required to obtain the temporal profiles within the measurement area is about 2 minutes. The RDOT system generates topographic and tomographic images of tissue properties such as hemoglobin concentration and tissue oxygen saturation using two imaging methods. Topographic images are obtained from the optical properties determined for each source-detector pair using a curve-fitting method based on the photon diffusion theory, while tomographic images are reconstructed using an iterative image reconstruction method. In an experiment using a tissue-like solid phantom, a tumor-like cylindrical target (15 mm diameter, 15 mm high) embedded in a breast tissue-like background medium was successfully reconstructed. Preliminary clinical measurements indicated that the tumor in a breast cancer patient was detected as a region of high hemoglobin concentration. In addition, the total hemoglobin concentration decreased during chemotherapy. These results demonstrate the potential of RDOT for evaluating the effectiveness of chemotherapy in patients with breast cancer.
NASA Astrophysics Data System (ADS)
Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric
2016-03-01
Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.
Fate of blood meal iron in mosquitos
Zhou, Guoli; Kohlhepp, Pete; Geiser, Dawn; Frasquillo, Maria del Carmen; Vazquez-Moreno, Luz; Winzerling, Joy J.
2007-01-01
Iron is an essential element of living cells and organisms as a component of numerous metabolic pathways. Hemoglobin and ferric-transferrin in vertebrate host blood are the two major iron sources for female mosquitoes. We used inductively coupled plasma mass spectrometry (ICP-MS) and radioisotope-labeling to quantify the fate of iron supplied from hemoglobin or as transferrin in Aedes aegypti. At the end of the first gonotrophic cycloe, ~87% of the ingested total meal heme iron was excreted, while 7% was distributed into the eggs and 6% was stored in different tissues. In contrast, ~8% of the iron provided as transferrin was excreted and of that absorbed, 77% was allocated to the eggs and 15% distributed in the tissues. Further analyses indicate that of the iron supplied in a blood meal, ~7% appears in the eggs and of this iron 98% is from hemoglobin and 2% from ferric-transferrin. Whereas of iron from a blood meal retained in body of the female, ~97% is from heme and <1 % is from transferrin. Evaluation of iron-binding proteins in hemolymph and egg following intake of 59Fe-transferrin revealed that ferritin is iron loaded in these animals, and indicate that this protein plays a critical role in meal iron transport and iron storage in eggs in A. aegypti. PMID:17689557
NASA Astrophysics Data System (ADS)
Rinehart, Matthew T.; Park, Han Sang; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam
2016-04-01
Plasmodium falciparum infection causes structural and biochemical changes in red blood cells (RBCs). To quantify these changes, we apply a novel optical technique, quantitative phase spectroscopy (QPS) to characterize individual red blood cells (RBCs) during the intraerythrocytic life cycle of P. falciparum. QPS captures hyperspectral holograms of individual RBCs to measure spectroscopic changes across the visible wavelength range (475-700 nm), providing complex information, i.e. amplitude and phase, about the light field which has interacted with the cell. The complex field provides complimentary information on hemoglobin content and cell mass, which are both found to dramatically change upon infection by P. falciparum. Hb content progressively decreases with parasite life cycle, with an average 72.2% reduction observed for RBCs infected by schizont-stage P. falciparum compared to uninfected cells. Infection also resulted in a 33.1% reduction in RBC’s optical volume, a measure of the cells’ non-aqueous components. Notably, optical volume is only partially correlated with hemoglobin content, suggesting that changes in other dry mass components such as parasite mass may also be assessed using this technique. The unique ability of QPS to discriminate individual healthy and infected cells using spectroscopic changes indicates that the approach can be used to detect disease.
Quantification of tissue texture with photoacoustic spectrum analysis
NASA Astrophysics Data System (ADS)
Wang, Xueding; Xu, Guan; Meng, Zhuo-Xian; Lin, Jiandie; Carson, Paul
2014-05-01
Photoacoustic (PA) imaging is an emerging technology that could map the functional contrasts in deep biological tissues in high resolution by "listening" to the laser induced thermoelastic waves. Almost all of the current studies in PA imaging are focused on the intensity of the PA signals as an indication of the optical absorbance of the biological tissues. Our group has for the first time demonstrated that the frequency domain power distribution of the broadband PA signals encode the texture information within the regions-of-interest (ROI). Following the similar method of ultrasound spectral analysis (USSA), photoacoustic spectrum analysis (PASA) could evaluate the relative concentrations and, more importantly, the dimensions of microstructures of the optically absorbing materials in biological tissues, including lipid, collagen, water and hemoglobin. By providing valuable insights into tissue pathology, PASA should benefit basic research and clinical management of many diseases, and may help achieve eventual "noninvasive biopsy". In this work, taking advantage of the optical absorption contrasts contributed by lipid and hemoglobin at 1200-nm and 532-nm wavelengths respectively, we investigated the capability of PASA in identifying histological changes corresponding to fat accumulation livers through the study on ex vivo and in situ mouse models. The PA signals from the mouse livers were acquired using our PA and US dual-modality imaging system, and analyzed in the frequency domain. After quantifying the power spectrum by fitting it to a first order model, three spectral parameters, including the intercept, the midband fit and the slope, were extracted and used to differentiate fatty livers from normal livers. The comparison between the PASA parameters from the normal and the fatty livers supports our hypotheses that PASA can quantitatively identify the microstructure changes in liver tissues for differentiating normal and fatty livers.
Acetylcholinesterase Activity and Neurodevelopment in Boys and Girls
Himes, John H.; Jacobs, David R.; Alexander, Bruce H.; Gunnar, Megan R.
2013-01-01
BACKGROUND: Organophosphate exposures can affect children’s neurodevelopment, possibly due to neurotoxicity induced by acetylcholinesterase (AChE) inhibition, and may affect boys more than girls. We tested the hypothesis that lower AChE activity is associated with lower neurobehavioral development among children living in Ecuadorian floricultural communities. METHODS: In 2008, we examined 307 children (age: 4–9 years; 52% male) and quantified AChE activity and neurodevelopment in 5 domains: attention/executive functioning, language, memory/learning, visuospatial processing, and sensorimotor (NEPSY-II test). Associations were adjusted for demographic and socioeconomic characteristics and height-for-age, flower worker cohabitation, and hemoglobin concentration. RESULTS: Mean ± standard deviation AChE activity was 3.14 ± 0.49 U/mL (similar for both genders). The range of scores among neurodevelopment subtests was 5.9 to 10.7 U (standard deviation: 2.6–4.9 U). Girls had a greater mean attention/executive functioning domain score than boys. In boys only, there were increased odds ratios of low (<9th percentile) neurodevelopment among those in the lowest tertile versus the highest tertile of AChE activity (odds ratios: total neurodevelopment: 5.14 [95% confidence interval (CI): 0.84 to 31.48]; attention/executive functioning domain: 4.55 [95% CI: 1.19 to 17.38], memory/learning domain: 6.03 [95% CI: 1.17 to 31.05]) after adjustment for socioeconomic and demographic factors, height-for-age, and hemoglobin. Within these domains, attention, inhibition and long-term memory subtests were most affected. CONCLUSIONS: Low AChE activity was associated with deficits in neurodevelopment, particularly in attention, inhibition, and memory in boys but not in girls. These critical cognitive skills affect learning and academic performance. Added precautions regarding secondary occupational pesticide exposure would be prudent. PMID:24249815
Sainz, Martha; Pérez-Rontomé, Carmen; Ramos, Javier; Mulet, Jose Miguel; James, Euan K; Bhattacharjee, Ujjal; Petrich, Jacob W; Becana, Manuel
2013-12-01
The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Sakota, Daisuke; Murashige, Tomotaka; Kosaka, Ryo; Fujiwara, Tatsuki; Nishida, Masahiro; Maruyama, Osamu
2015-08-01
Understanding the thrombus formation in cardiovascular devices such as rotary blood pumps is the most important issue in developing more hemocompatible devices. The objective of this study was to develop a hyperspectral imaging (HSI) method to visualize the thrombus growth process within a rotary blood pump and investigate the optical properties of the thrombus. An in vitro thrombogenic test was conducted using fresh porcine blood and a specially designed hydrodynamically levitated centrifugal blood pump with a transparent bottom. The pump rotating at 3000 rpm circulated the blood at 1.0 L/min. The bottom surface of the pump was illuminated with white light pulsed at the same frequency as the pump rotation, and the backward-scattered light was imaged using the HSI system. Using stroboscopic HSI and an image construction algorithm, dynamic spectral imaging at wavelengths ranging from 608 to 752 nm within the rotating pump was achieved. After completing the experiment, we collected the red thrombus formed in the pump impeller and quantified the thrombus hemoglobin concentration (Hbthrombus ). The spectrum changed around the center of the impeller, and the area of change expanded toward the impeller flow path. The shape corresponded approximately to the shape of the thrombus. The spectrum change indicated that the light scattering derived from red blood cells decreased. The Hbthrombus was 4.7 ± 1.3 g/dL versus a total hemoglobin of 13 ± 0.87 g/dL. The study revealed that Hbthrombus was reduced by the surrounding blood flow. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Scopesi, F; Verkeste, C M; Paola, D; Gazzolo, D; Pronzato, M A; Bruschettini, P L; Marinari, U M
1999-03-01
The present study was designed to test if dietary intake of nucleotides increases erythrocyte 2,3-diphosphoglycerate (2,3-DPG) in neonatal rats. To this end, rat pups were fed a nucleotide-supplemented formula (S, n = 14) from d 9 until d 16 after birth. The results were compared with those obtained from a group of breast-fed pups (C, n = 14) and a group of pups artificially fed with nucleotide-free formula (NS, n = 14). Neonatal weight, 2,3-DPG concentration, hematocrit (Hct) and hemoglobin concentration (Hb) were determined before the experiment (d 9) and after 7 d of treatment (d 16). In all groups, 2,3-DPG concentration was greater at d 16 than d 9, and the increase was greater in the S group than in the NS group. Alterations in neonatal weight, Hct and Hb concentration did not differ among the groups. On d 16 the 2, 3-DPG/Hb ratio, reflecting the affinity of hemoglobin for oxygen, was significantly higher in the C and S groups than in the NS group. We conclude that in neonatal rats, dietary nucleotides increase erythrocyte 2,3-DPG concentration. Studies need to be conducted in humans to assess the effect of this increase on both neonatal peripheral hemodynamics and metabolism in this species.
NASA Astrophysics Data System (ADS)
Jiang, Yan; Harrison, Tyler; Forbrich, Alex; Zemp, Roger J.
2011-03-01
The metabolic rate of oxygen consumption (MRO2) quantifies tissue metabolism, which is important for diagnosis of many diseases. For a single vessel model, the MRO2 can be estimated in terms of the mean flow velocity, vessel crosssectional area, total concentration of hemoglobin (CHB), and the difference between the oxygen saturation (sO2) of blood flowing into and out of the tissue region. In this work, we would like to show the feasibility to estimate MRO2 with our combined photoacoustic and high-frequency ultrasound imaging system. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow velocity can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate sO2 and CHB, all of these parameters necessary for MRO2 estimation can be provided by our system. Experiments have been performed on flow phantoms to generate co-registered color Doppler and photoacoustic images. To verify the sO2 estimation, two ink samples (red and blue) were mixed in various concentration ratios to mimic different levels of sO2, and the result shows a good match between the calculated concentration ratios and actual values.
Edsberg, Laura E.; Wyffels, Jennifer T.; Ogrin, Rajna; Craven, B. Catharine; Houghton, Pamela
2015-01-01
Objective To determine whether the biochemistry of chronic pressure ulcers differs between patients with and without chronic spinal cord injury (SCI) through measurement and comparison of the concentration of wound fluid inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases. Design Survey. Setting Tertiary spinal cord rehabilitation center and skilled nursing facilities. Participants Twenty-nine subjects with SCI and nine subjects without SCI (>18 years) with at least one chronic pressure ulcer Stage II, III, or IV were enrolled. Outcome measures Total protein and 22 target analyte concentrations including inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases were quantified in the wound fluid and blood serum samples. Blood samples were tested for complete blood count, albumin, hemoglobin A1c, total iron binding capacity, iron, percent (%) saturation, C-reactive protein, and erythrocyte sedimentation rate. Results Wound fluid concentrations were significantly different between subjects with SCI and subjects without SCI for total protein concentration and nine analytes, MMP-9, S100A12, S100A8, S100A9, FGF2, IL-1b, TIMP-1, TIMP-2, and TGF-b1. Subjects without SCI had higher values for all significantly different analytes measured in wound fluid except FGF2, TGF-b1, and wound fluid total protein. Subject-matched circulating levels of analytes and the standardized local concentration of the same proteins in the wound fluid were weakly or not correlated. Conclusions The biochemical profile of chronic pressure ulcers is different between SCI and non-SCI populations. These differences should be considered when selecting treatment options. Systemic blood serum properties may not represent the local wound environment. PMID:24968005
The severity of muscle ischemia during intermittent claudication.
Egun, Anselm; Farooq, Vasim; Torella, Francesco; Cowley, Richard; Thorniley, Maureen S; McCollum, Charles N
2002-07-01
The degree of ischemia during intermittent claudication is difficult to quantify. We evaluated calf muscle ischemia during exercise in patients with claudication with near infrared spectroscopy. A Critikon Cerebral Redox Model 2001 (Johnson & Johnson Medical, Newport, Gwent, United Kingdom) was used to measure calf muscle deoxygenated hemoglobin (HHb), oxygenated hemoglobin (O(2)Hb), and total hemoglobin levels and oxygenation index (HbD; HbD = O(2)Hb - HHb) in 16 patients with claudication and in 14 control subjects before, during, and after walking on a treadmill for 1 minute (submaximal exercise). These measures were repeated after a second maximal exercise in patients with claudication and after 7 minutes walking in control subjects. Near-infrared spectroscopy readings during maximal exercise were then compared with a model of total ischemia induced with tourniquet in 16 young control subjects. Total hemoglobin level changed little during exercise in both patients with claudication and control subjects. HHb levels rose, and O(2)Hb level and HbD falls were more pronounced in patients with claudication than in control subjects after submaximal and maximal exercise. During maximal exercise, HbD fell markedly by a median (interquartile range) of 210.5 micromol/cm (108.2 to 337.0 micromol/cm) in patients with claudication compared with 66.0 micromol/cm (44.0 to 101.0 micromol/cm) in elderly control subjects and 41.0 micromol/cm (36.0 to 65.0 micromol/cm) in young control subjects (P <.001). This fall also was greater than the HbD fall induced with tourniquet ischemia at 90.8 micromol/cm (57.6 to 126.2 micromol/cm; P =.006). Hemoglobin desaturation in exercising calf muscle is profound in patients with claudication, considerably greater even than that induced with three minutes of tourniquet occlusion. Further studies are necessary to investigate the relationship between the inflammatory response and near-infrared spectroscopy during exercise in patients with claudication.
Cheng, Y; Lin, H; Xue, D; Li, R; Wang, K
2001-02-14
The changes in structure and function of 2,3-diphosphoglycerate-hemoglobin (2,3-DPG-Hb) induced by Ln(3+) binding were studied by spectroscopic methods. The binding of lanthanide cations to 2,3-DPG is prior to that to Hb. Ln(3+) binding causes the hydrolysis of either one from the two phosphomonoester bonds in 2,3-DPG non-specifically. The results using the ultrafiltration method indicate that Ln(3+) binding sites for Hb can be classified into three categories: i.e. positive cooperative sites (N(I)), non-cooperative strong sites (N(S)) and non-cooperative weak sites (N(W)) with binding constants in decreasing order: K(I)>K(S)>K(W). The total number of binding sites amounts to about 65 per Hb tetramer. Information on reaction kinetics was obtained from the change of intrinsic fluorescence in Hb monitored by stopped-flow fluorometry. Fluctuation of fluorescence dependent on Ln(3+) concentration and temperature was observed and can be attributed to the successive conformational changes induced by Ln(3+) binding. The results also reveal the bidirectional changes of the oxygen affinity of Hb in the dependence on Ln(3+) concentration. At the range of [Ln(3+)]/[Hb]<2, the marked increase of oxygen affinity (P(50) decrease) with the Ln(3+) concentration can be attributed to the hydrolysis of 2,3-DPG, while the slight rebound of oxygen affinity in higher Ln(3+) concentration can be interpreted by the transition to the T-state of the Hb tetramer induced by Ln(3+) binding. This was indicated by the changes in secondary structure characterized by the decrease of alpha-helix content.
Vyas, Kaetan J; Danz, David; Gilman, Robert H; Wise, Robert A; León-Velarde, Fabiola; Miranda, J Jaime; Checkley, William
2015-06-01
Vyas, Kaetan J., David Danz, Robert H. Gilman, Robert A. Wise, Fabiola León-Velarde, J. Jaime Miranda, and William Checkley. Noninvasive assessment of excessive erythrocytosis as a screening method for chronic mountain sickness at high altitude. High Alt Med Biol 16:162-168, 2015.--Globally, over 140 million people are at risk of developing chronic mountain sickness, a common maladaptation to life at high altitude (>2500 meters above sea level). The diagnosis is contingent upon the identification of excessive erythrocytosis (EE). Current best practices to identify EE require a venous blood draw, which is cumbersome for large-scale surveillance. We evaluated two point-of-care biomarkers to screen for EE: noninvasive spot-check tests of total hemoglobin and oxyhemoglobin saturation (Pronto-7, Masimo Corporation). We conducted paired evaluations of total serum hemoglobin from a venous blood draw and noninvasive, spot-check testing of total hemoglobin and oxyhemoglobin saturation with the Pronto-7 in 382 adults aged ≥35 years living in Puno, Peru (3825 meters above sea level). We used the Bland-Altman method to measure agreement between the noninvasive hemoglobin assessment and the gold standard lab hemoglobin analyzer. Mean age was 58.8 years and 47% were male. The Pronto-7 test was unsuccessful in 21 (5%) participants. Limits of agreement between total hemoglobin measured via venous blood draw and the noninvasive, spot-check test ranged from -2.8 g/dL (95% CI -3.0 to -2.5) to 2.5 g/dL (95% CI 2.2 to 2.7), with a bias of -0.2 g/dL (95% CI -0.3 to -0.02) for the difference between total hemoglobin and noninvasive hemoglobin concentrations. Overall, the noninvasive spot-check test of total hemoglobin had a better area under the receiver operating characteristic curve compared to oxyhemoglobin saturation for the identification of EE as measured by a gold standard laboratory hemoglobin analyzer (0.96 vs. 0.82; p<0.001). Best cut-off values to screen for EE with the Pronto 7 were ≥19.9 g/dL in males and ≥17.5 g/dL in females. At these cut-points, sensitivity and specificity were both 92% and 89% for males and females, respectively. A noninvasive, spot-check test of total hemoglobin had low bias and high discrimination for the detection of EE in high altitude Peru, and may be a useful point-of-care tool for large-scale surveillance in high-altitude settings.
Blood indicators of seasonal metabolic patterns in captive adult gray wolves
Seal, U.S.; Mech, L.D.
1983-01-01
Blood samples and physical data were collected weekly from a colony of gray wolves (Canis lupus) maintained under natural weather arid light conditions. Sampling over 33 continuous months indicated that hemoglobin, hematocrit, red blood cells, mean corpuscular hemoglobin concentration (MCHC), and thyroxine exhibited consistent circannual patterns of variation in both males and females. Hemoglobin levels peaked at 15-16 g/dl in January in females and at 16-17 g/dl in February in males, and were lowest in August at 10.5-11.5 g/dl (P < 0.00001). The cyclic patterns of hematocrit, red blood cells, and MCHC were similarly timed. Females also had a cyclic pattern of white blood cell counts and body weight; their weight peaked in early February and was lowest in August (P < 0.001). Body temperature, urea nitrogen, mean corpuscular volume (MCV), serum glucose, and cortisol did not follow a consistent seasonal pattern.
NASA Astrophysics Data System (ADS)
Krug, Alfons; Kessler, Manfred D.; Khuri, Raja; Lust, Robert; Chitwood, Randolph
1996-12-01
A tissue spectrophotometer (EMPHO II) working with 70 micrometer micro lightguide sensors enables recording of spectra in the visible wavelength range (500 - 630 nm). During an initial period arterial hypoxia and hyperoxia were induced on working dog heart by mechanical ventilation with oxygen fractions (fiO2) of 0.1 and 0.5. Under these conditions the effects of low and high fiO2 on oxygenation distribution of intracapillary hemoglobin were investigated. In the second part of the experiment the relation between systemic hematocrit, local hemoglobin concentration, local hemoglobin oxygenation and the oxygen regulation mechanism were studied in detail. In the final part of the experiment the effect of critical coronary stenosis on hb and hbO2 was measured. Critical stenosis was achieved by partial clamping of the left anterior coronary artery (LAD).
Aleluia, Milena Magalhães; Fonseca, Teresa Cristina Cardoso; Souza, Regiana Quinto; Neves, Fábia Idalina; da Guarda, Caroline Conceição; Santiago, Rayra Pereira; Cunha, Bruna Laís Almeida; Figueiredo, Camylla Villas Boas; Santana, Sânzio Silva; da Paz, Silvana Sousa; Ferreira, Júnia Raquel Dutra; Cerqueira, Bruno Antônio Veloso; Gonçalves, Marilda de Souza
2017-01-01
In this study, we evaluate the association of different clinical profiles, laboratory and genetic biomarkers in patients with sickle cell anemia (SCA) and hemoglobin SC disease (HbSC) in attempt to characterize the sickle cell disease (SCD) genotypes. We conducted a cross-sectional study from 2013 to 2014 in 200 SCD individuals (141 with SCA; 59 with HbSC) and analyzed demographic data to characterize the study population. In addition, we determined the association of hematological, biochemical and genetic markers including the β S -globin gene haplotypes and the 3.7 Kb deletion of α-thalassemia (-α 3.7Kb -thal), as well as the occurrence of clinical events in both SCD genotypes. Laboratory parameters showed a hemolytic profile associated with endothelial dysfunction in SCA individuals; however, the HbSC genotype was more associated with increased blood viscosity and inflammatory conditions. The BEN haplotype was the most frequently observed and was associated with elevated fetal hemoglobin (HbF) and low S hemoglobin (HbS). The -α 3.7Kb -thal prevalence was 0.09 (9%), and it was associated with elevated hemoglobin and hematocrit concentrations. Clinical events were more frequent in SCA patients. Our data emphasize the differences between SCA and HbSC patients based on laboratory parameters and the clinical and genetic profile of both genotypes.
Diagnosis of cardiovascular diseases based on diffuse optical tomography system
NASA Astrophysics Data System (ADS)
Yu, Zong-Han; Wu, Chun-Ming; Lin, Yo-Wei; Chuang, Ming-Lung; Tsai, Jui-che; Sun, Chia-Wei
2008-02-01
Diffuse optical tomography (DOT) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues. DOT provides the measurement of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. The oxygenation images are reconstructed by the measured optical signals with nearest-neighbor pairs of sources and detectors. In our study, a portable DOT system is built with optode design on a flexible print circuit board (FPCB). In experiments, the hemodynamics temporal evolution of exercises and vessel occlusions are observed with in vivo measurements form normal subjects and some patients in intensive care unit.
Chen, Zhongjiang; Yang, Sihua; Xing, Da
2012-08-15
A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.
[Glycosylated hemoglobins and erythrocyte 2,3-diphosphoglycerate in diabetes mellitus].
Triolo, G; Giardina, E; Contorno, A; Cipolla, T; Giannuoli, G; Caimi, G; Catania, A; Rinaldi, A
1981-01-01
Investigations carried out on 43 diabetic not ketoacidotic patients (32 women and 11 men) showed that the percentage of glycosylated hemoglobins (GHb) is significantly (p less than 0.01) inversely related to the intra-erythrocytic concentration of 2,3-DPG and to the calculated P50. Preliminary data from a prospective study suggest that the inverse relationship could be referred to the degree of control of the disease. In poorly controlled diabetes, where at the highest percentages of GHb the lowest levels of 2,3-DPG are found, less oxigen can be delivered to peripheral tissues.
Douglas, Nicholas M; Lampah, Daniel A; Kenangalem, Enny; Simpson, Julie A; Poespoprodjo, Jeanne R; Sugiarto, Paulus; Anstey, Nicholas M; Price, Ric N
2013-12-01
The burden of anemia attributable to non-falciparum malarias in regions with Plasmodium co-endemicity is poorly documented. We compared the hematological profile of patients with and without malaria in southern Papua, Indonesia. Clinical and laboratory data were linked for all patients presenting to a referral hospital between April 2004 and December 2012. Data were available on patient demographics, malaria diagnosis, hemoglobin concentration, and clinical outcome, but other potential causes of anemia could not be identified reliably. Of 922,120 patient episodes (837,989 as outpatients and 84,131 as inpatients), a total of 219,845 (23.8%) were associated with a hemoglobin measurement, of whom 67,696 (30.8%) had malaria. Patients with P. malariae infection had the lowest hemoglobin concentration (n = 1,608, mean = 8.93 [95% CI 8.81-9.06]), followed by those with mixed species infections (n = 8,645, mean = 9.22 [95% CI 9.16-9.28]), P. falciparum (n = 37,554, mean = 9.47 [95% CI 9.44-9.50]), and P. vivax (n = 19,858, mean = 9.53 [95% CI 9.49-9.57]); p-value for all comparisons <0.001. Severe anemia (hemoglobin <5 g/dl) was present in 8,151 (3.7%) patients. Compared to patients without malaria, those with mixed Plasmodium infection were at greatest risk of severe anemia (adjusted odds ratio [AOR] 3.25 [95% CI 2.99-3.54]); AORs for severe anaemia associated with P. falciparum, P. vivax, and P. malariae were 2.11 (95% CI 2.00-2.23), 1.87 (95% CI 1.74-2.01), and 2.18 (95% CI 1.76-2.67), respectively, p<0.001. Overall, 12.2% (95% CI 11.2%-13.3%) of severe anemia was attributable to non-falciparum infections compared with 15.1% (95% CI 13.9%-16.3%) for P. falciparum monoinfections. Patients with severe anemia had an increased risk of death (AOR = 5.80 [95% CI 5.17-6.50]; p<0.001). Not all patients had a hemoglobin measurement, thus limitations of the study include the potential for selection bias, and possible residual confounding in multivariable analyses. In Papua P. vivax is the dominant cause of severe anemia in early infancy, mixed P. vivax/P. falciparum infections are associated with a greater hematological impairment than either species alone, and in adulthood P. malariae, although rare, is associated with the lowest hemoglobin concentration. These findings highlight the public health importance of integrated genus-wide malaria control strategies in areas of Plasmodium co-endemicity.
Saheed, Sabiu; Oladipipo, Ajani E; Abdulazeez, Abubakar A; Olarewaju, Sulyman A; Ismaila, Nurain O; Emmanuel, Irondi A; Fatimah, Quadri D; Aisha, Abubakar Y
2015-01-01
Despite the acclaimed phytotherapeutic attributes of Stigma maydis in folkloric medicine, there is paucity of information on its toxicity profile on hematological and lipid parameters. The toxicological effect of aqueous extract of corn silk at 100, 200 and 400 mg/kg body weight on hematological indices in Wistar rats were evaluated progressively at 24 h after 1, 7, 14, 21 and 28 days. Lipid parameters were also analyzed at the end of the experimental period. We observed that the extract did not exhibit any significant ( p > 0.05) effect on red blood cells, hematocrit, hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and mean platelet volume at all the tested doses. The study however showed a significant increase in the serum levels of white blood cell, platelet, lymphocytes, high-density lipoprotein cholesterol; as well as feeding pattern in the animals, while the concentrations of total cholesterol, low-density lipoprotein cholesterol, and artherogenic index value were significantly lowered. These findings are suggestive of non-hematotoxic potential of the extract. Overall, the effect exhibited by corn silk extract in this study proved that, it is unlikely to be hematotoxic and could be a good candidature in the management of coronary heart diseases if consumed at the doses investigated.
Duke, Tina J; Ruestow, Peter S; Marsh, Gary M
2018-03-24
This study aims to better understand the individual characteristics and dietary factors that affect the relationship between estimated consumption of acrylamide and measured acrylamide hemoglobin adduct levels (HbAA) and glycidamide hemoglobin adduct levels (HbGA). Acrylamide levels in individual food items, estimated by the U.S. Food and Drug Administration, were linked to data collected in the 2003-2004 National Health and Nutrition Examination Survey. Multivariable linear regression was used to evaluate the relationship between estimated consumption of acrylamide and HbAA. A significant association between acrylamide intake and HbAA was observed, after adjustment for gender, race/ethnicity, smoking status, age, and BMI (R 2 = 0.34). Across quartiles of acrylamide consumption, HbAA and HbGA levels increased monotonically. Among nonsmokers, an evaluation of three heavily consumed, high AA concentration foods showed a positive trend between the consumed amount of fried potatoes and HbAA in children, adolescents, and adults. A significant positive trend between the consumed amount of potato chips or coffee was indicated in adolescents, adults, and seniors. Consumption of some individual foods affects HbAA concentrations more strongly and in an age-dependent manner. Our results suggest that effective dietary guidelines for controlling acrylamide intake should be subpopulation specific.
Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy
Lee, Jangwoen; Kim, Jae G.; Mahon, Sari B.; Mukai, David; Yoon, David; Boss, Gerry R.; Patterson, Steven E.; Rockwood, Gary; Isom, Gary; Brenner, Matthew
2014-01-01
Abstract. A major need exists for methods to assess organ oxidative metabolic states in vivo. By contrasting the responses to cyanide (CN) poisoning versus hemorrhage in animal models, we demonstrate that diffuse optical spectroscopy (DOS) can detect cytochrome c oxidase (CcO) redox states. Intermittent decreases in inspired O2 from 100% to 21% were applied before, during, and after CN poisoning, hemorrhage, and resuscitation in rabbits. Continuous DOS measurements of total hemoglobin, oxyhemoglobin, deoxyhemoglobin, and oxidized and reduced CcO from muscle were obtained. Rabbit hemorrhage was accomplished with stepwise removal of blood, followed by blood resuscitation. CN treated rabbits received 0.166 mg/min NaCN infusion. During hemorrhage, CcO redox state became reduced concurrently with decreases in oxyhemoglobin, resulting from reduced tissue oxygen delivery and hypoxia. In contrast, during CN infusion, CcO redox state decreased while oxyhemoglobin concentration increased due to CN binding and reduction of CcO with resultant inhibition of the electron transport chain. Spectral absorption similarities between hemoglobin and CcO make noninvasive spectroscopic distinction of CcO redox states difficult. By contrasting physiological perturbations of CN poisoning versus hemorrhage, we demonstrate that DOS measured CcO redox state changes are decoupled from hemoglobin concentration measurement changes. PMID:24788369
Li, Mingfang; Zhao, Guohua; Geng, Rong; Hu, Huikang
2008-11-01
The flower-like gold nanoparticles together with spherical and convex polyhedron gold nanoparticles were fabricated on boron-doped diamond (BDD) surface by one-step and simple electrochemical method through easily controlling the applied potential and the concentration of HAuCl(4). The recorded X-ray diffraction (XRD) patterns confirmed that these three shapes of gold nanoparticles were dominated by different crystal facets. The cyclic voltammetric results indicated that the morphology of gold nanoparticles plays big role in their electrochemical behaviors. The direct electrochemistry of hemoglobin (Hb) was realized on all the three different shapes of nanogold-attached BDD surface without the aid of any electron mediator. In pH 4.5 acetate buffer solutions (ABS), Hb showed a pair of well defined and quasi-reversible redox peaks. However, the results obtained demonstrated that the redox peak potential, the average surface concentration of electroactive heme, and the electron transfer rates of Hb are greatly dependent upon the surface morphology of gold nanoparticles. The electron transfer rate constant of hemoglobin over flower-like nanogold/BDD electrode was more than two times higher than that over spherical and convex polyhedron nanogold. The observed differences may be ascribed to the difference in gold particle characteristics including surface roughness, exposed surface area, and crystal structure.
Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy
NASA Astrophysics Data System (ADS)
Lee, Jangwoen; Kim, Jae G.; Mahon, Sari B.; Mukai, David; Yoon, David; Boss, Gerry R.; Patterson, Steven E.; Rockwood, Gary; Isom, Gary; Brenner, Matthew
2014-05-01
A major need exists for methods to assess organ oxidative metabolic states in vivo. By contrasting the responses to cyanide (CN) poisoning versus hemorrhage in animal models, we demonstrate that diffuse optical spectroscopy (DOS) can detect cytochrome c oxidase (CcO) redox states. Intermittent decreases in inspired O2 from 100% to 21% were applied before, during, and after CN poisoning, hemorrhage, and resuscitation in rabbits. Continuous DOS measurements of total hemoglobin, oxyhemoglobin, deoxyhemoglobin, and oxidized and reduced CcO from muscle were obtained. Rabbit hemorrhage was accomplished with stepwise removal of blood, followed by blood resuscitation. CN treated rabbits received 0.166 mg/min NaCN infusion. During hemorrhage, CcO redox state became reduced concurrently with decreases in oxyhemoglobin, resulting from reduced tissue oxygen delivery and hypoxia. In contrast, during CN infusion, CcO redox state decreased while oxyhemoglobin concentration increased due to CN binding and reduction of CcO with resultant inhibition of the electron transport chain. Spectral absorption similarities between hemoglobin and CcO make noninvasive spectroscopic distinction of CcO redox states difficult. By contrasting physiological perturbations of CN poisoning versus hemorrhage, we demonstrate that DOS measured CcO redox state changes are decoupled from hemoglobin concentration measurement changes.
Dehaloperoxidase-Hemoglobin from Amphitrite ornata Is Primarily a Monomer in Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Thompson; S Franzen; M Davis
2011-12-31
The crystal structures of the dehaloperoxidase-hemoglobin from A. ornata (DHP A) each report a crystallographic dimer in the unit cell. Yet, the largest dimer interface observed is 450 {angstrom}{sup 2}, an area significantly smaller than the typical value of 1200-2000 {angstrom}{sup 2} and in contrast to the extensive interface region of other known dimeric hemoglobins. To examine the oligomerization state of DHP A in solution, we used gel permeation by fast protein liquid chromatography and small-angle X-ray scattering (SAXS). Gel permeation experiments demonstrate that DHP A elutes as a monomer (15.5 kDa) and can be separated from green fluorescent protein,more » which has a molar mass of 27 kDa, near the 31 kDa expected for the DHP A dimer. By SAXS, we found that DHP A is primarily monomeric in solution, but with a detectable level of dimer (10%), under all conditions studied up to a protein concentration of 3.0 mM. These concentrations are likely 10-100-fold lower than the K{sub d} for dimer formation. Additionally, there was no significant effect either on the overall conformation of DHP A or its monomer-dimer equilibrium upon addition of the DHP A inhibitor, 4-iodophenol.« less
Red blood cell 2,3-diphosphoglycerate concentration and in vivo P50 during early critical illness.
Ibrahim, Ezz el din S; McLellan, Stuart A; Walsh, Timothy S
2005-10-01
To measure red blood cell 2,3-diphosphoglycerate (RBC 2,3-DPG) concentrations in early critical illness; to investigate factors associated with high or low RBC 2,3-DPG levels; to calculate in vivo P50 in patients with early critical illness; and to explore the relationship between RBC 2,3-DPG and intensive care mortality. Prospective cohort study. General medical-surgical intensive care unit (ICU) of a major Scottish teaching hospital. One-hundred eleven critically ill patients during the first 24 hrs in the ICU with no history of chronic hematologic disorders or RBC transfusion within 24 hrs and 34 age- and sex-matched healthy reference subjects. None. We measured RBC 2,3-DPG concentration, plasma biochemistry values, and arterial blood gas parameters. On average, RBC 2,3-DPG was lower among critically ill patients than controls (mean [sd], 14.1 [6.3] vs. 16.7 [3.7] mumol/g hemoglobin; p = .004) and had a wider range of values (patients, 3.2-32.5 mumol/g hemoglobin; reference group, 9.1-24.3). Regression analysis indicated a strong independent association between plasma pH and RBC 2,3-DPG (B, 32.15 [95% confidence interval, 19.07-46.22], p < .001) and a weak association with plasma chloride (B, -0.196 [95% confidence interval, -0.39 to -0.01], p = .044) but not with hemoglobin or other measured biochemical parameters. The mean calculated in vivo P50 level was normal (3.8 kPa) but varied widely among patients (range, 2.0-5.5 kPa). RBC 2,3-DPG concentration was similar for ICU survivors and nonsurvivors. RBC 2,3-DPG concentrations vary widely among critically ill patients. Acidosis is associated with lower RBC 2,3-DPG concentrations, but anemia is not associated with a compensatory increase in RBC 2,3-DPG early in critical illness. Lower RBC 2,3-DPG concentrations during the first 24 hrs of intensive care are not associated with higher ICU mortality.
Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study
Niu, Haijing; Li, Zhen; Liao, Xuhong; Wang, Jinhui; Zhao, Tengda; Shu, Ni; Zhao, Xiaohu; He, Yong
2013-01-01
Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the choice of network metrics of interest for future applied research in developmental and clinical neuroscience. PMID:24039763
Prakash, Neal; Biag, Jonathan D.; Sheth, Sameer A.; Mitsuyama, Satoshi; Theriot, Jeremy; Ramachandra, Chaithanya; Toga, Arthur W.
2007-01-01
Background Mechanisms of neurovascular coupling—the relationship between neuronal chemoelectrical activity and compensatory metabolic and hemodynamic changes—appear to be preserved across species from rats to humans despite differences in scale. However, previous work suggests that the highly cellular dense mouse somatosensory cortex has different functional hemodynamic changes compared to other species. Methods We developed novel hardware and software for 2-dimensional optical spectroscopy (2DOS). Optical changes at four simultaneously recorded wavelengths were measured in both rat and mouse primary somatosensory cortex (S1) evoked by forepaw stimulation to create four spectral maps. The spectral maps were converted to maps of deoxy-, oxy-, and total-hemoglobin (HbR, HbO, and HbT) concentration changes using the modified Beer-Lambert law and phantom HbR and HbO absorption spectra. Results Functional hemodynamics were different in mouse versus rat neocortex. On average, hemodynamics were as expected in rat primary somatosensory cortex (S1): the fractional change in the log of HbT concentration increased monophasically 2 s after stimulus, whereas HbO changes mirrored HbR changes, with HbO showing a small initial dip at 0.5 s followed by a large increase 3.0 s post stimulus. In contrast, mouse S1 showed a novel type of stimulus-evoked hemodynamic response, with prolonged, concurrent, monophasic increases in HbR and HbT and a parallel decrease in HbO that all peaked 3.5–4.5 s post stimulus onset. For rats, at any given time point the average size and shape of HbO and HbR forepaw maps were the same, whereas surface veins distorted the shape of the HbT map. For mice, HbO, HbR, and HbT forepaw maps were generally the same size and shape at any post-stimulus time point. Conclusions 2DOS using image splitting optics is feasible across species for brain mapping and quantifying the map topography of cortical hemodynamics. These results suggest that during physiologic stimulation, different species and/or cortical architecture may give rise to different hemodynamic changes during neurovascular coupling. PMID:17574868
Vonk, Alexander B; Muntajit, Warayouth; Bhagirath, Pranav; van Barneveld, Laurentius J; Romijn, Johannes W; de Vroege, Roel; Boer, Christa
2012-10-01
The study compared the effects of three blood concentration techniques after cardiopulmonary bypass on clinical hemostatic and ex-vivo rheological parameters. Residual blood of patients undergoing elective cardiac surgery was processed by centrifugation, cell salvage or ultrafiltration, and retransfused (n = 17 per group). Study parameters included blood loss, (free) hemoglobin, hematocrit, fibrinogen and erythrocyte aggregation, deformability and 2,3-diphosphoglycerate content. Patient characteristics were similar between groups. Ultrafiltration was associated with the highest weight of the transfusion bag [649 ± 261 vs. 320 ± 134 g (centrifugation) and 391 ± 158 g (cell salvage); P < 0.01]. Cell salvage resulted in the lowest hemolysis levels in the transfusion bag. Retransfusion of cell saver blood induced the largest gain in postoperative patient hemoglobin levels when compared to centrifugation and ultrafiltration, and was associated with the largest increase in 2,3-diphosphoglycerate when compared to ultrafiltration (Δ2,3-diphosphoglycerate 1.34 ± 1.92 vs. -0.77 ± 1.56 mmol/l; P = 0.03). Cell salvage is superior with respect to postoperative hemoglobin gain and washout of free hemoglobin when compared to centrifugation or ultrafiltration.
The response of meat ducks from 15 to 35 d of age to gossypol from cottonseed meal
Zeng, Q. F.; Bai, P.; Wang, J. P.; Ding, X. M.; Luo, Y. H.; Bai, S. P.; Xuan, Y.; Su, Z. W.; Lin, S. Q.; Zhao, L. J.; Zhang, K. Y.
2015-01-01
The objective of this study was to investigate the responses of meat ducks of 15 to 35 d of age to free gossypol (FG) from cottonseed meal (CSM) and to establish the maximum limits of dietary FG concentration based on growth performance, blood parameters, and tissue residues of gossypol. Nine hundred 15-d-old ducks were randomly allocated to 5 treatments with 10 cages/treatment and 18 ducks/cage on the basis of BW. Five isonitrogenous and isocaloric experimental diets were formulated on a digestible amino acid basis to produce diets in which 0% (without FG), 25% (36 mg FG/kg), 50% (75 mg FG/kg), 75% (111 mg FG/kg), and 100% (153 mg FG/kg) of protein from soybean meal were replaced by that from CSM. Increasing dietary FG content, BW, and ADG decreased (linearly, P < 0.05, except for ADG of days 29 to 35), and F/G linearly increased (P < 0.05). At 35 d, blood hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration linearly decreased (P < 0.05), while serum total protein, albumin, and globulin content linearly decreased (P < 0.05), and the residue of gossypol in liver, kidney, heart, breast, and leg muscle linearly increased (P < 0.001) with increases in dietary FG concentration. Ducks fed 36 mg FG/kg (5.83% CSM of diet) diet had a normal histological structure of liver, and muscle (breast and leg) had no residue of gossypol. The maximum limit of dietary FG concentration was estimated to range from a low of 36 mg/kg to maximize serum globulin concentration to a high of 124 mg/kg to minimize feed intake for 22 to 28d on the basis of a quadratic broken-line model. PMID:25834247
The response of meat ducks from 15 to 35 d of age to gossypol from cottonseed meal.
Zeng, Q F; Bai, P; Wang, J P; Ding, X M; Luo, Y H; Bai, S P; Xuan, Y; Su, Z W; Lin, S Q; Zhao, L J; Zhang, K Y
2015-06-01
The objective of this study was to investigate the responses of meat ducks of 15 to 35 d of age to free gossypol (FG) from cottonseed meal (CSM) and to establish the maximum limits of dietary FG concentration based on growth performance, blood parameters, and tissue residues of gossypol. Nine hundred 15-d-old ducks were randomly allocated to 5 treatments with 10 cages/treatment and 18 ducks/cage on the basis of BW. Five isonitrogenous and isocaloric experimental diets were formulated on a digestible amino acid basis to produce diets in which 0% (without FG), 25% (36 mg FG/kg), 50% (75 mg FG/kg), 75% (111 mg FG/kg), and 100% (153 mg FG/kg) of protein from soybean meal were replaced by that from CSM. Increasing dietary FG content, BW, and ADG decreased (linearly, P<0.05, except for ADG of days 29 to 35), and F/G linearly increased (P<0.05). At 35 d, blood hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration linearly decreased (P<0.05), while serum total protein, albumin, and globulin content linearly decreased (P<0.05), and the residue of gossypol in liver, kidney, heart, breast, and leg muscle linearly increased (P<0.001) with increases in dietary FG concentration. Ducks fed 36 mg FG/kg (5.83% CSM of diet) diet had a normal histological structure of liver, and muscle (breast and leg) had no residue of gossypol. The maximum limit of dietary FG concentration was estimated to range from a low of 36 mg/kg to maximize serum globulin concentration to a high of 124 mg/kg to minimize feed intake for 22 to 28 d on the basis of a quadratic broken-line model. © The Author 2015. Published by Oxford University Press on behalf of Poultry Science Association.
Cerebral hemodynamic changes in stroke during sleep-disordered breathing.
Pizza, Fabio; Biallas, Martin; Kallweit, Ulf; Wolf, Martin; Bassetti, Claudio L
2012-07-01
Sleep-disordered breathing (SDB) negatively impacts stroke outcome. Near-infrared spectroscopy showed the acute cerebral hemodynamic effects of SDB. Eleven patients (7 men, age 61±13 years) with acute/subacute middle cerebral artery stroke (National Institutes of Health Stroke Scale score 10±7) and SDB (apnea-hypopnea index 32±28/hour) were assessed with nocturnal polysomnography and bilateral near-infrared spectroscopy recording. Cerebral oxygenation and hemoglobin concentration changes during obstructive and central apneas were analyzed. During SDB, near-infrared spectroscopy showed asymmetrical patterns of cerebral oxygenation and hemoglobin concentrations with changes significantly larger on the unaffected compared with the affected hemisphere. Brain tissue hypoxia was more severe during obstructive compared with central apneas. Profound cerebral deoxygenation effects of SDB occurred in acute/subacute stroke. These changes may contribute to poor outcome, arising in the possibility of a potential benefit of SDB treatment in stroke management.
Two dimensional microcirculation mapping with real time spatial frequency domain imaging
NASA Astrophysics Data System (ADS)
Zheng, Yang; Chen, Xinlin; Lin, Weihao; Cao, Zili; Zhu, Xiuwei; Zeng, Bixin; Xu, M.
2018-02-01
We present a spatial frequency domain imaging (SFDI) study of local hemodynamics in the human finger cuticle of healthy volunteers performing paced breathing and the forearm of healthy young adults performing normal breathing with our recently developed Real Time Single Snapshot Multiple Frequency Demodulation - Spatial Frequency Domain Imaging (SSMD-SFDI) system. A two-layer model was used to map the concentrations of deoxy-, oxy-hemoglobin, melanin, epidermal thickness and scattering properties at the subsurface of the forearm and the finger cuticle. The oscillations of the concentrations of deoxy- and oxy-hemoglobin at the subsurface of the finger cuticle and forearm induced by paced breathing and normal breathing, respectively, were found to be close to out-of-phase, attributed to the dominance of the blood flow modulation by paced breathing or heartbeat. Our results suggest that the real time SFDI platform may serve as one effective imaging modality for microcirculation monitoring.
Isosu, Tsuyoshi; Obara, Shinju; Hakozaki, Takahiro; Imaizumi, Tsuyoshi; Iseki, Yuzo; Mogami, Midori; Ohashi, Satoshi; Ikegami, Yukihiro; Kurosawa, Shin; Murakawa, Masahiro
2017-04-01
The effects of intravenous injection of indigo carmine on noninvasive and continuous total hemoglobin (SpHb) measurement were retrospectively evaluated with the Revision L sensor. The subjects were 18 patients who underwent elective gynecologic surgery under general anesthesia. During surgery, 5 mL of 0.4 % indigo carmine was injected intravenously, and changes in SpHb concentrations between before and after the injection were evaluated. The mean age was 52.4 ± 12.8 years. Before injection, the median SpHb level was 10.1 (range, 6.8-13.4) g/dL. The results demonstrated no change in SpHb concentration between before and after indigo carmine injection as detected by the Revision L sensor. SpHb measurements as determined with the Revision L sensor were not affected, even after the intravenous injection of indigo carmine.
Near-infrared spectroscopy of the visual cortex in unilateral optic neuritis.
Miki, Atsushi; Nakajima, Takashi; Takagi, Mineo; Usui, Tomoaki; Abe, Haruki; Liu, Chia-Shang J; Liu, Grant T
2005-02-01
To examine the occipital-lobe activation of patients with optic neuritis using near-infrared spectroscopy. Experimental study. NIRS was performed on five patients with acute unilateral optic neuritis during monocular visual stimulation. As controls, six normal subjects were also tested in the same manner. In the patients with optic neuritis, the changes in the hemoglobin concentrations (oxyhemoglobin, deoxyhemoglobin, and total hemoglobin) in the occipital lobe were found to be markedly reduced when the clinically affected eyes were stimulated compared with the fellow eyes. The response induced by the stimulation of the affected eye was decreased, even when the patient's visual acuity improved to 20/20 in the recovery phase. There was no difference in the concentration changes between the two eyes in the control subjects. NIRS may be useful in detecting visual dysfunction objectively and noninvasively in patients with visual disturbance, especially when used at the bedside.
NASA Astrophysics Data System (ADS)
Crane, Nicole J.; Huffman, Scott W.; Alemozaffar, Mehrdad; Gage, Frederick A.; Levin, Ira W.; Elster, Eric A.
2013-03-01
Renal ischemia that occurs intraoperatively during procedures requiring clamping of the renal artery (such as renal procurement for transplantation and partial nephrectomy for renal cancer) is known to have a significant impact on the viability of that kidney. To better understand the dynamics of intraoperative renal ischemia and recovery of renal oxygenation during reperfusion, a visible reflectance imaging system (VRIS) was developed to measure renal oxygenation during renal artery clamping in both cooled and warm porcine kidneys. For all kidneys, normothermic and hypothermic, visible reflectance imaging demonstrated a spatially distinct decrease in the relative oxy-hemoglobin concentration (%HbO2) of the superior pole of the kidney compared to the middle or inferior pole. Mean relative oxy-hemoglobin concentrations decrease more significantly during ischemia for normothermic kidneys compared to hypothermic kidneys. VRIS may be broadly applicable to provide an indicator of organ ischemia during open and laparoscopic procedures.
Lundeen, Elizabeth; Schueth, Tobias; Toktobaev, Nurjan; Zlotkin, Stanley; Hyder, S M Ziauddin; Houser, Robert
2010-09-01
Iron-deficiency anemia is widespread among young children in the Kyrgyz Republic, and there is an urgent need to identify an effective intervention to address this significant public health problem. To test the effectiveness of a 2-month intervention with daily home fortification of complementary food using micronutrient powder (Sprinkles) in reducing anemia among children 6 to 36 months of age in the Kyrgyz Republic. In this cluster-randomized, community-based effectiveness trial conducted in three regions of the Kyrgyz Republic, 24 clusters of children aged 6 to 36 months were randomly assigned to two groups. The intervention group (12 clusters, n = 1,103) received 60 sachets of micronutrient powder (12.5 mg elemental iron), which were taken as one sachet daily for 2 months. The control group (12 clusters, n = 1,090) did not receive micronutrient powder until after the study period. Blood hemoglobin concentration was assessed at the start and end of the intervention. From baseline to follow-up, the mean hemoglobin concentration in the intervention group increased by 7 g/L, whereas it decreased by 2 g/L in the control group (p < .001). The prevalence of anemia (hemoglobin < 110 g/L) in the intervention group decreased from 72% at baseline to 52% at follow-up, whereas it increased from 72% to 75% in the control group (p < .001). Compliance with the intervention was high, with children consuming on average 45 of the 60 sachets given. A course of 60 Sprinkles micronutrient powder sachets taken daily for 2 months is effective in improving hemoglobin levels and reducing the prevalence of anemia among young children in the Kyrgyz Republic.
Meurrens, Julie; Steiner, Thomas; Ponette, Jonathan; Janssen, Hans Antonius; Ramaekers, Monique; Wehrlin, Jon Peter; Vandekerckhove, Philippe; Deldicque, Louise
2016-12-01
The aims of the present study were to investigate the impact of three whole blood donations on endurance capacity and hematological parameters and to determine the duration to fully recover initial endurance capacity and hematological parameters after each donation. Twenty-four moderately trained subjects were randomly divided in a donation (n = 16) and a placebo (n = 8) group. Each of the three donations was interspersed by 3 months, and the recovery of endurance capacity and hematological parameters was monitored up to 1 month after donation. Maximal power output, peak oxygen consumption, and hemoglobin mass decreased (p < 0.001) up to 4 weeks after a single blood donation with a maximal decrease of 4, 10, and 7%, respectively. Hematocrit, hemoglobin concentration, ferritin, and red blood cell count (RBC), all key hematological parameters for oxygen transport, were lowered by a single donation (p < 0.001) and cumulatively further affected by the repetition of the donations (p < 0.001). The maximal decrease after a blood donation was 11% for hematocrit, 10% for hemoglobin concentration, 50% for ferritin, and 12% for RBC (p < 0.001). Maximal power output cumulatively increased in the placebo group as the maximal exercise tests were repeated (p < 0.001), which indicates positive training adaptations. This increase in maximal power output over the whole duration of the study was not observed in the donation group. Maximal, but not submaximal, endurance capacity was altered after blood donation in moderately trained people and the expected increase in capacity after multiple maximal exercise tests was not present when repeating whole blood donations.
Selenium status in pregnancy influences children's cognitive function at 1.5 years of age.
Skröder, Helena M; Hamadani, Jena D; Tofail, Fahmida; Persson, Lars Åke; Vahter, Marie E; Kippler, Maria J
2015-10-01
Selenium deficiency has been shown to affect the neurological development in animals, but human research in this area is scarce. We aimed to assess the impact of selenium status during pregnancy on child development at 1.5 years of age. This prospective cohort study was nested into a food and micronutrient supplementation trial (MINIMat) conducted in rural Bangladesh. Using inductively coupled plasma mass spectrometry, we measured selenium concentrations in erythrocyte fraction of blood collected from 750 mothers at gestational week 30, and calculated μg per g hemoglobin. A revised version of Bayley Scales of Infant Development was used to assess children's mental and psychomotor development. A Bangladeshi version of MacArthur's Communicative Development Inventory was used to assess language comprehension and expression. Linear regression analyses adjusted for multiple covariates were used to assess the associations. Maternal erythrocyte selenium concentrations varied considerably, from 0.19 to 0.87 μg/g hemoglobin (median 0.46 μg/g hemoglobin), and were associated with developmental measures. An increase in erythrocyte selenium by 0.50 μg/g hemoglobin was associated with an increase in children's language comprehension by 3.7 points (0.5 standard deviations; 95% confidence interval: 0.40, 7.1; p = 0.028). The same increase in erythrocyte selenium corresponded to an increase in the girls' psychomotor development by 12 points (0.9 standard deviation; 95% confidence interval: 4.3, 19; p = 0.002), but much less in boys. Low prenatal selenium status seems to be disadvantageous for children's psychomotor and language development. Further studies are needed to elucidate the underlying mechanisms of these effects. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Fawzi, Wafaie W; Msamanga, Gernard I; Kupka, Roland; Spiegelman, Donna; Villamor, Eduardo; Mugusi, Ferdinand; Wei, Ruilan; Hunter, David
2007-05-01
Anemia is a frequent complication among HIV-infected persons and is associated with faster disease progression and mortality. We examined the effect of multivitamin supplementation on hemoglobin concentrations and the risk of anemia among HIV-infected pregnant women and their children. HIV-1-infected pregnant women (n = 1078) from Dar es Salaam, Tanzania, were enrolled in a double-blind trial and provided daily supplements of preformed vitamin A and beta-carotene, multivitamins (vitamins B, C, and E), preformed vitamin A and beta-carotene + multivitamins, or placebo. All women received iron and folate supplements only during pregnancy according to local standard of care. The median follow-up time for hemoglobin measurement for mothers was 57.3 mo [interquartile range (IQR): 28.6-66.8] and for children it was 28.0 mo (IQR: 5.3-41.7). During the whole period, hemoglobin concentrations among women who received multivitamins were 0.33 g/dL higher than among women who did not receive multivitamins (P=0.07). Compared with placebo, multivitamin supplementation resulted in a hemoglobin increase of 0.59 g/dL during the first 2 y after enrollment (P=0.0002). Compared with placebo, the children born to mothers who received multivitamins had a reduced risk of anemia. In this group, the risk of macrocytic anemia was 63% lower than in the placebo group (relative risk: 0.37: 95% CI: 0.18, 0.79; P=0.01). Multivitamin supplementation provided during pregnancy and in the postpartum period resulted in significant improvements in hematologic status among HIV-infected women and their children, which provides further support for the value of multivitamin supplementation in HIV-infected adults.
Dhabangi, Aggrey; Ainomugisha, Brenda; Cserti-Gazdewich, Christine; Ddungu, Henry; Kyeyune, Dorothy; Musisi, Ezra; Opoka, Robert; Stowell, Christopher P.; Dzik, Walter H
2016-01-01
Background Prior studies have suggested that transfusion of stored RBCs with increased levels of cell free hemoglobin might reduce the bioavailability of recipient nitric oxide (NO) and cause myocardial strain. Methods Ugandan children (ages 6 to 60 months) with severe anemia and lactic acidosis were randomly assigned to receive RBCs stored 1-10 days versus 25-35 days. B-type natriuretic peptide (BNP), vital signs, renal function tests, and plasma hemoglobin were measured. Most children had either malaria or sickle cell disease and were thus at risk for reduced NO bioavailability. Results 70 patients received RBCs stored 1-10 days and 77 received RBCs stored 25-35 days. The median (IQR) cell free hemoglobin was nearly three times higher in longer-storage RBCs (26.4 [15.5-43.4] μmol/L) than in shorter-storage RBCs (10.8 [7.8-18.6] μmol/L), p<0.0001. Median (IQR) BNP 2 hours post-transfusion was 156 (59-650) pg/mL (shorter-storage) versus 158 (59-425) pg/mL (longer-storage), p=0.76. BNP values 22 hours post-transfusion were 110 (46-337) pg/mL (shorter-storage) versus 96 (49-310) pg/mL (longer-storage), p=0.76. Changes in BNP within individuals from pre-transfusion to 2-hour (or 22-hour) post-transfusion were not significantly different between the study groups. BNP change following transfusion did not correlate with the concentration of cell free hemoglobin in the RBC supernatant. Blood pressure, BUN, creatinine, and change in plasma hemoglobin were not significantly different in the two groups. Conclusion In a randomized trial among children at risk for reduced NO bioavailability, we found that BNP, blood pressure, creatinine, and plasma hemoglobin were not higher in patients receiving RBCs stored for 25-35 days versus 1-10 days. PMID:27302626
Clinical factors and the decision to transfuse chronic dialysis patients.
Whitman, Cynthia B; Shreay, Sanatan; Gitlin, Matthew; van Oijen, Martijn G H; Spiegel, Brennan M R
2013-11-01
Red blood cell transfusion was previously the principle therapy for anemia in CKD but became less prevalent after the introduction of erythropoiesis-stimulating agents. This study used adaptive choice-based conjoint analysis to identify preferences and predictors of transfusion decision-making in CKD. A computerized adaptive choice-based conjoint survey was administered between June and August of 2012 to nephrologists, internists, and hospitalists listed in the American Medical Association Masterfile. The survey quantified the relative importance of 10 patient attributes, including hemoglobin levels, age, occult blood in stool, severity of illness, eligibility for transplant, iron indices, erythropoiesis-stimulating agents, cardiovascular disease, and functional status. Triggers of transfusions in common dialysis scenarios were studied, and based on adaptive choice-based conjoint-derived preferences, relative importance by performing multivariable regression to identify predictors of transfusion preferences was assessed. A total of 350 providers completed the survey (n=305 nephrologists; mean age=46 years; 21% women). Of 10 attributes assessed, absolute hemoglobin level was the most important driver of transfusions, accounting for 29% of decision-making, followed by functional status (16%) and cardiovascular comorbidities (12%); 92% of providers transfused when hemoglobin was 7.5 g/dl, independent of other factors. In multivariable regression, Veterans Administration providers were more likely to transfuse at 8.0 g/dl (odds ratio, 5.9; 95% confidence interval, 1.9 to 18.4). Although transplant eligibility explained only 5% of decision-making, nephrologists were five times more likely to value it as important compared with non-nephrologists (odds ratio, 5.2; 95% confidence interval, 2.4 to 11.1). Adaptive choice-based conjoint analysis was useful in predicting influences on transfusion decisions. Hemoglobin level, functional status, and cardiovascular comorbidities most strongly influenced transfusion decision-making, but preference variations were observed among subgroups.
Michon, Jean
2002-10-01
Anemia occurs frequently in children with cancer, but there is little information quantifying the incidence of anemia or treatment. A survey was conducted in 1998 in Europe by The Research Partnership with the objective of determining the incidence of anemia, identifying the hemoglobin triggers that initiated anemia treatment, and the current anemia treatment options available to clinicians. The survey was conducted in the 10 largest pediatric oncology centers each in France, Germany, Italy, Spain, and the UK, and in the 8 largest centers in both Belgium and The Netherlands. Telephone interviews with the most senior physician available in the institution were used to collect data, which included the numbers of patients treated or under follow-up, cancer types, and treatment practices for anemia. Data were collected for 25,093 patients. Over 80% of patients were anemic (WHO: hemoglobin
WE-E-BRE-12: Tumor Microenvironment Dynamics Following Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, D; Niles, D; Adamson, E
2014-06-15
Purpose: This work aims to understand the radiation-induced interplay between tumor oxygenation and metabolic activity. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Using patient-derived xenografts of head and neck cancer we assessed tumor oxygenation via fiber-optic probe monitored hemoglobin saturation and Blood Oxygen Level Dependent (BOLD) MRI. Measurements were taken before and after a 10 Gy dose of radiation. Changes in metabolic activity were measured via Fluorescence Lifetime IMaging (FLIM) with the appropriate controls following a 10 Gy dose of radiation. FLIM can non-invasively monitor changes in fluorescence in responsemore » to the microenvironment including being able to detect free and bound states of the intrinsically fluorescent metabolite NADH (Nicotinamide Adenine Dinucleotide). With this information FLIM can accurately quantify the metabolic state of cells that have been radiated. To model the observed changes, a two-compartment, source-sink simulation relating hemoglobin saturation and metabolic activity was performed using MATLAB. Results: Hemoglobin saturation as measured by interstitial probe and BOLD-MRI decreased by 30% within 15 minutes following radiation. FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways. Simulation of radiation-induced alterations in tumor oxygenation demonstrated that these changes can be the result of changes in either vasculature or metabolic activity. Conclusion: Radiation induces significant changes in hemoglobin saturation and metabolic activity. These alterations occur on time scales approximately the duration of common radiation treatments. Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.« less
Guo, Wen; Bachman, Eric; Li, Michelle; Roy, Cindy N.; Blusztajn, Jerzy; Wong, Siu; Chan, Stephen Y.; Serra, Carlo; Jasuja, Ravi; Travison, Thomas G.; Muckenthaler, Martina U.; Nemeth, Elizabeta; Bhasin, Shalender
2013-01-01
Testosterone administration increases hemoglobin levels and has been used to treat anemia of chronic disease. Erythrocytosis is the most frequent adverse event associated with testosterone therapy of hypogonadal men, especially older men. However, the mechanisms by which testosterone increases hemoglobin remain unknown. Testosterone administration in male and female mice was associated with a greater increase in hemoglobin and hematocrit, reticulocyte count, reticulocyte hemoglobin concentration, and serum iron and transferring saturation than placebo. Testosterone downregulated hepatic hepcidin mRNA expression, upregulated renal erythropoietin mRNA expression, and increased erythropoietin levels. Testosterone-induced suppression of hepcidin expression was independent of its effects on erythropoietin or hypoxia-sensing mechanisms. Transgenic mice with liver-specific constitutive hepcidin over-expression failed to exhibit the expected increase in hemoglobin in response to testosterone administration. Testosterone upregulated splenic ferroportin expression and reduced iron retention in spleen. After intravenous administration of transferrin-bound 58Fe, the amount of 58Fe incorporated into red blood cells was significantly greater in testosterone-treated mice than in placebo-treated mice. Serum from testosterone-treated mice stimulated hemoglobin synthesis in K562 erythroleukemia cells more than that from vehicle-treated mice. Testosterone administration promoted the association of androgen receptor (AR) with Smad1 and Smad4 to reduce their binding to BMP-response elements in hepcidin promoter in the liver. Ectopic expression of AR in hepatocytes suppressed hepcidin transcription; this effect was blocked dose-dependently by AR antagonist flutamide. Testosterone did not affect hepcidin mRNA stability. Conclusion: Testosterone inhibits hepcidin transcription through its interaction with BMP-Smad signaling. Testosterone administration is associated with increased iron incorporation into red blood cells. PMID:23399021
Gan, Wei; Guan, Yu; Wu, Qian; An, Peng; Zhu, Jingwen; Lu, Ling; Jing, Li; Yu, Yu; Ruan, Sheng; Xie, Dong; Makrides, Maria; Gibson, Robert A; Anderson, Gregory J; Li, Huaixing; Lin, Xu; Wang, Fudi
2012-03-01
Transmembrane protease serine 6 (TMPRSS6) regulates iron homeostasis by inhibiting the expression of hepcidin. Multiple common variants in TMPRSS6 were significantly associated with serum iron in recent genome-wide association studies, but their effects in the Chinese remain to be elucidated. The objective was to determine whether the TMPRSS6 single nucleotide polymorphisms (SNPs) rs855791(V736A) and rs4820268(D521D) were associated with blood hemoglobin and plasma ferritin concentrations and risk of type 2 diabetes in Chinese individuals. The SNPs rs855791(V736A) and rs4820268(D521D) in the TMPRSS6 gene were genotyped and tested for their associations with plasma iron and type 2 diabetes risk in 1574 unrelated Chinese Hans from Beijing. The 2 TMPRSS6 SNPs rs855791(V736A) and rs4820268(D521D) were both significantly associated with plasma ferritin (P ≤ 0.0058), hemoglobin (P ≤ 0.0013), iron overload risk (P ≤ 0.0068), and type 2 diabetes risk (P ≤ 0.0314). None of the associations with hemoglobin or plasma ferritin remained significant (P ≥ 0.1229) when the 2 variants were both included in one linear regression model. A haplotype carrying both iron-lowering alleles from the 2 TMPRSS SNPs showed significant associations with lower hemoglobin (P = 0.0014), lower plasma ferritin (P = 0.0027), and a reduced risk of iron overload (P = 0.0017) and of type 2 diabetes (P = 0.0277). These findings suggest that TMPRSS6 variants were significantly associated with plasma ferritin, hemoglobin, risk of iron overload, and type 2 diabetes in Chinese Hans. The type 2 diabetes risk conferred by the TMPRSS6 SNPs is possibly mediated by plasma ferritin.
Nawiri, Mildred P; Nyambaka, Hudson; Murungi, Jane I
2013-03-01
Vitamin A deficiency (VAD) and anemia are major challenges among children and expecting and lactating mothers in developing countries. Intervention with locally available dark green leafy vegetables (DGLV) is more sustainable to eradicate VAD, being cost-effective and readily adaptable to local communities. DGLV contain high levels of iron and β-carotene (BC) and therefore useful in fighting VAD and anemia. Since DGLVs are season-dependent sun-drying enables their availability during low seasons. However, their contribution to the bioavailability of BC and the improvement of hemoglobin are not well understood. The study therefore investigated the effect of consuming cooked recipe consisting of sun-dried amaranth and cowpea leaves on the levels of BC, retinol, and hemoglobin in preschool children from Machakos District, a semiarid region in Kenya. Vegetables were purchased from local vegetable market, with some sun-dried in an open shade. Levels of BC and retinol in serum and BC in fresh and processed vegetables were determined by a HPLC method and hemoglobin using a portable Hemocue Analyzer. All-trans-BC levels in uncooked fresh cowpea and amaranth leaves were 806.0 μg/g and 599.0 μg/g dry matter, respectively, while the dehydration and cooking processes retained the β-carotene levels at over 60 %. Consumption of the dehydrated vegetables significantly improved both serum BC and retinol levels (p < 0.05), while the baseline hemoglobin levels improved by 4.6 %. The study has shown that intervention with locally available sun-dried vegetables improves the bioavailability of BC, retinol, and hemoglobin levels among preschool children.
Anemia and hemoglobin levels among Indigenous Xavante children, Central Brazil.
Ferreira, Aline Alves; Santos, Ricardo Ventura; Souza, July Anne Mendonça de; Welch, James R; Coimbra, Carlos E A
2017-01-01
To evaluate the prevalence of anemia, mean hemoglobin levels, and the main nutritional, demographic, and socioeconomic factors among Xavante children in Mato Grosso State, Brazil. A survey was conducted with children under 10 years of age in two indigenous Xavante communities within the Pimentel Barbosa Indigenous Reserve. Hemoglobin concentration levels, anthropometric measurements, and socioeconomic/demographic data were collected by means of clinical measurements and structured interviews. The cut-off points recommended by the World Health Organization were used for anemia classification. Linear regression analyses with hemoglobin as the outcome and Poisson regression with robust variance and with the presence or absence of anemia as outcomes were performed (95%CI). Lower mean hemoglobin values were observed in children under 2 years of age, without a significant difference between sexes. Anemia was observed among 50.8% of children overall, with the highest prevalence among children under 2 years of age (77.8%). Age of the child was inversely associated with the occurrence of anemia (adjusted PR = 0.60; 95%CI 0.38-0.95) and mean hemoglobin values increased significantly with age. Greater height-for-age z-score values reduced the probability of having anemia by 1.8 times (adjusted PR = 0.59; 95%CI 0.34-1.00). Presence of another child with anemia within the household increased the probability of the occurrence of anemia by 52.9% (adjusted PR = 1.89; 95%CI 1.16-3.09). Elevated levels of anemia among Xavante children reveal a disparity between this Indigenous population and the national Brazilian population. Results suggest that anemia is determined by complex and variable relationships between socioeconomic, sociodemographic, and biological factors.
Hemoglobin spectra affect measurement of tissue oxygen saturation
NASA Astrophysics Data System (ADS)
Ostojic, Daniel; Kleiser, Stefan; Nasseri, Nassim; Isler, Helene; Scholkmann, Felix; Karen, Tanja; Wolf, Martin
2018-02-01
Tissue oxygen saturation (StO2) is a valuable clinical parameter e.g. for intensive care applications or monitoring during surgery. Studies showed that near-infrared spectroscopy (NIRS) based tissue oximeters of different brands give systematically different readings of StO2. Usually these readings are linearly correlated and therefore StO2 readings from one instrument can easily be converted to those of another instrument. However, it is interesting to understand why there is this difference. One reason may be that different brands employ different spectra of hemoglobin. The aim here was to investigate how these different absorption spectra of hemoglobin affect the StO2 readings. Therefore, we performed changes in StO2 in a phantom experiment with real human hemoglobin at three different concentrations (26.5, 45 and 70 μM): desaturation by yeast consuming the oxygen and re-saturation by bubbling oxygen gas. The partial pressure of O2 in the liquid changed from at least 10 kPa to 0 kPa and ISS OxiplexTS, a frequency-domain NIRS instrument, was used to monitor changes of StO2. When we employed two different absorption spectra for hemoglobin, StO2 values were comparable in the normal physiological range. However, particularly at high and low StO2 values, a difference of >6% between these two spectra were noticed. Such a difference of >6% is substantial and relevant for medical applications. This may partly explain why different brands of NIRS instruments provide different StO2 readings. The hemoglobin spectra are therefore a factor to be considered for future developments and applications of NIRS oximeters.
Phenotypic plasticity in blood–oxygen transport in highland and lowland deer mice
Tufts, Danielle M.; Revsbech, Inge G.; Cheviron, Zachary A.; Weber, Roy E.; Fago, Angela; Storz, Jay F.
2013-01-01
SUMMARY In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude environments. We conducted a common-garden breeding experiment to assess whether altitude-related physiological differences were attributable to developmental plasticity and/or physiological plasticity during adulthood. Under conditions prevailing in their native habitats, high-altitude deer mice from the Rocky Mountains exhibited a number of pronounced hematological differences relative to low-altitude conspecifics from the Great Plains: higher hemoglobin concentrations, higher hematocrits, higher erythrocytic concentrations of 2,3-diphosphoglycerate (an allosteric regulator of hemoglobin–oxygen affinity), lower mean corpuscular hemoglobin concentrations and smaller red blood cells. However, these differences disappeared after 6 weeks of acclimation to normoxia at low altitude. The measured traits were also indistinguishable between the F1 progeny of highland and lowland mice, indicating that there were no persistent differences in phenotype that could be attributed to developmental plasticity. These results indicate that the naturally occurring hematological differences between highland and lowland mice are environmentally induced and are largely attributable to physiological plasticity during adulthood. PMID:23239893
NASA Astrophysics Data System (ADS)
Abookasis, David; Lay, Christopher C.; Mathews, Marlon S.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.
2009-03-01
We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (Iisch=ctHHb/ctO2Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.
Blind source separation of ex-vivo aorta tissue multispectral images
Galeano, July; Perez, Sandra; Montoya, Yonatan; Botina, Deivid; Garzón, Johnson
2015-01-01
Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method’s performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue. PMID:26137366
Valdés, Pablo A.; Kim, Anthony; Leblond, Frederic; Conde, Olga M.; Harris, Brent T.; Paulsen, Keith D.; Wilson, Brian C.; Roberts, David W.
2011-01-01
Biomarkers are indicators of biological processes and hold promise for the diagnosis and treatment of disease. Gliomas represent a heterogeneous group of brain tumors with marked intra- and inter-tumor variability. The extent of surgical resection is a significant factor influencing post-surgical recurrence and prognosis. Here, we used fluorescence and reflectance spectral signatures for in vivo quantification of multiple biomarkers during glioma surgery, with fluorescence contrast provided by exogenously-induced protoporphyrin IX (PpIX) following administration of 5-aminolevulinic acid. We performed light-transport modeling to quantify multiple biomarkers indicative of tumor biological processes, including the local concentration of PpIX and associated photoproducts, total hemoglobin concentration, oxygen saturation, and optical scattering parameters. We developed a diagnostic algorithm for intra-operative tissue delineation that accounts for the combined tumor-specific predictive capabilities of these quantitative biomarkers. Tumor tissue delineation achieved accuracies of up to 94% (specificity = 94%, sensitivity = 94%) across a range of glioma histologies beyond current state-of-the-art optical approaches, including state-of-the-art fluorescence image guidance. This multiple biomarker strategy opens the door to optical methods for surgical guidance that use quantification of well-established neoplastic processes. Future work would seek to validate the predictive power of this proof-of-concept study in a separate larger cohort of patients. PMID:22112112
CHEMICAL MARKERS OF HUMAN WASTE ...
Giving public water authorities another tool to monitor and measure levels of human waste contamination of waters simply and rapidly would enhance public protection. Most of the methods used today detect such contamination by quantifying microbes occurring in feces in high enough densities that they can be measured easily. However, most of these microbes, for example E. coli, do not serve as specific markers for any one host species and many can have origins other than feces. As an alternative, chemicals shed in feces and urine might be used to detect human waste contamination of environmental waters. One potential chemical marker of human waste is the compound urobilin. Urobilin is one of the final by-products of hemoglobin breakdown. Urobilin is excreted in both the urine and feces from many mammals, particularly humans. Source waters from 21 sites in New England, Nevada, and Michigan were extracted using hydrophilic-lipophilic balance (HLB) cartridges and then analyzed by high performance liquid chromatography-electrospray-mass spectrometry (HPLC-ES-MS). As a marker of human waste, urobilin was detected in many of the source waters at concentrations ranging from not detectable to 300 ng/L. Besides urobilin, zithromycin, an antibiotic widely prescribed for human-use only in the US, was also detected in many of these waters, with concentrations ranging from not detectable to 77 ng/L. This methodology, using both urobilin and azithromycin (or any other human-use
NASA Astrophysics Data System (ADS)
Valdés, Pablo A.; Kim, Anthony; Leblond, Frederic; Conde, Olga M.; Harris, Brent T.; Paulsen, Keith D.; Wilson, Brian C.; Roberts, David W.
2011-11-01
Biomarkers are indicators of biological processes and hold promise for the diagnosis and treatment of disease. Gliomas represent a heterogeneous group of brain tumors with marked intra- and inter-tumor variability. The extent of surgical resection is a significant factor influencing post-surgical recurrence and prognosis. Here, we used fluorescence and reflectance spectral signatures for in vivo quantification of multiple biomarkers during glioma surgery, with fluorescence contrast provided by exogenously-induced protoporphyrin IX (PpIX) following administration of 5-aminolevulinic acid. We performed light-transport modeling to quantify multiple biomarkers indicative of tumor biological processes, including the local concentration of PpIX and associated photoproducts, total hemoglobin concentration, oxygen saturation, and optical scattering parameters. We developed a diagnostic algorithm for intra-operative tissue delineation that accounts for the combined tumor-specific predictive capabilities of these quantitative biomarkers. Tumor tissue delineation achieved accuracies of up to 94% (specificity = 94%, sensitivity = 94%) across a range of glioma histologies beyond current state-of-the-art optical approaches, including state-of-the-art fluorescence image guidance. This multiple biomarker strategy opens the door to optical methods for surgical guidance that use quantification of well-established neoplastic processes. Future work would seek to validate the predictive power of this proof-of-concept study in a separate larger cohort of patients.
Waxman, Herbert S.
1970-01-01
The effects of iron, cobalt, hemin, and plasma on hemoglobin synthesis by suspensions of rabbit reticulocytes and nucleated bone marrow cells were studied. L-Leucine-14C and sodium pyruvate-3-14C were employed to measure globin and heme synthesis, respectively. Normal plasma (or serum) was found to stimulate the rate of globin synthesis in both systems. The stimulatory effects of iron and hemin were additive to those of plasma or serum only in the reticulocytes. Cobaltous ion, at concentrations less than 1.0 mmole/liter, was found to stimulate globin synthesis by reticulocytes as effectively as ferrous ion; cobalt was inhibitory only at concentrations greater than 3.0-5.0 mmoles/liter. Heme synthesis by reticulocytes was inhibited at all concentrations employed (0.2-5.0 mmoles/liter). In bone marrow nucleated erythroid cells, globin synthesis was markedly enhanced by exogenous hemin. In contrast to reticulocytes, however, bone marrow cells were unresponsive to either cobalt or transferrin-bound iron. Possible implications of these findings on regulation of the rate and mechanism of iron uptake and hemoglobin synthesis in vivo are discussed. PMID:5443172
NASA Technical Reports Server (NTRS)
Soller, Babs R.; Favreau, Janice; Idwasi, Patrick O.
2003-01-01
The feasibility of using near-infrared (NIR) spectroscopy in combination with partial least-squares (PLS) regression was explored to measure electrolyte concentration in whole blood samples. Spectra were collected from diluted blood samples containing randomized, clinically relevant concentrations of Na+, K+, and Ca2+. Sodium was also studied in lysed blood. Reference measurements were made from the same samples using a standard clinical chemistry instrument. Partial least squares (PLS) was used to develop calibration models for each ion with acceptable results (Na+, R2 = 0.86, CVSEP = 9.5 mmol/L; K+, R2 = 0.54, CVSEP = 1.4 mmol/L; Ca2+, R2 = 0.56, CVSEP = 0.18 mmol/L). Slightly improved results were obtained using a narrower wavelength region (470-925 nm) where hemoglobin, but not water, absorbed indicating that ionic interaction with hemoglobin is as effective as water in causing measurable spectral variation. Good models were also achieved for sodium in lysed blood, illustrating that cell swelling, which is correlated with sodium concentration, is not required for calibration model development.
Nemes-Nagy, E; Szocs-Molnár, T; Dunca, I; Balogh-Sămărghiţan, V; Hobai, S; Morar, R; Pusta, D L; Crăciun, E C
2008-12-01
Many studies have shown that oxidative stress plays an important role in the etiology of diabetes and its complications. New methods of treatment for prevention and control of this disease is a priority for the international scientific community. We investigated the relationship between the glycated hemoglobin, C peptide and two antioxidant enzymes. Thirty type 1 diabetic children were treated with a blueberry and sea buckthorn concentrate for two months. After two months of administering the product to diabetic children, the erythrocyte superoxide dismutase activity was significantly higher (p < 0.05). Levels of glycated hemoglobin were significantly lower (p < 0.05). The activity of whole blood glutathione peroxidase was moderately increased but the difference was not statistically significant. C peptide concentration was significantly higher after treatment with this dietary supplement (p < 0.05). These results suggest that treatment with this dietary supplement has a beneficial effect in the treatment of type 1 diabetic children and it should be considered as a phytotherapeutic product in the fight against diabetes mellitus.
NASA Astrophysics Data System (ADS)
Hirose, Misa; Toyota, Saori; Tsumura, Norimichi
2018-02-01
In this research, we evaluate the visibility of age spot and freckle with changing the blood volume based on simulated spectral reflectance distribution and the actual facial color images, and compare these results. First, we generate three types of spatial distribution of age spot and freckle in patch-like images based on the simulated spectral reflectance. The spectral reflectance is simulated using Monte Carlo simulation of light transport in multi-layered tissue. Next, we reconstruct the facial color image with changing the blood volume. We acquire the concentration distribution of melanin, hemoglobin and shading components by applying the independent component analysis on a facial color image. We reproduce images using the obtained melanin and shading concentration and the changed hemoglobin concentration. Finally, we evaluate the visibility of pigmentations using simulated spectral reflectance distribution and facial color images. In the result of simulated spectral reflectance distribution, we found that the visibility became lower as the blood volume increases. However, we can see that a specific blood volume reduces the visibility of the actual pigmentations from the result of the facial color images.
Wilson, D H; Bogacz, J P; Forsythe, C M; Turk, P J; Lane, T L; Gates, R C; Brandt, D R
1993-10-01
We describe a novel assay for measuring glycohemoglobin directly from anticoagulated whole blood with the Abbott IMx analyzer. The glycohemoglobin is labeled with a soluble polyanionic affinity reagent and the anionic complex is then captured with a cationic solid-phase matrix. Glycohemoglobin is quantified by measuring the quenching by heme of the static fluorescence from an added fluorophore. The assay is standardized to report both percent total glycohemoglobin (%GHb) and percent hemoglobin A1c (%HbA1c). Glucose, bilirubin, triglycerides, labile fraction, and hemoglobin variants do not interfere in the assay. Within- and between-run CVs are approximately 4-5%, with total CVs of approximately 6.5%. Highly significant linear correlations (r > 0.97) were obtained in comparison studies with two major assay methodologies. The time to obtain one result is approximately 10 min (including assay of a control), 56 min for 22 results. We describe the development, standardization, and validation of this new method.
Hypergravity-Induced Changes in Hematological and Lymphocyte Function Parameters in a Mouse Model
NASA Technical Reports Server (NTRS)
Gridley, Daila S.; Miller, Glen M.; Nelson, Gregory A.; Pecaut, Michael J.
2003-01-01
The purpose of this study was to quantify hypergravity-induced changes in hematological and lymphocyte characteristics. Mice were subjected to 1, 2, and 3G and euthanized on days 1 , 4, 7, 10, and 21. The data show that increased gravitational force resulted in persistent hypothermia. Red blood cell (RBC) counts, hematocrit, and hemoglobin were reduced by day 21, whereas hemoglobin and RBC volume were low at most times of measurement. A transient increase was noted in platelet numbers in the 3G group. Fluctuations in spontaneous blastogenesis of lymphocytes were dependent upon centrifugation time and not gravity. Changes in splenocyte responses to T and B cell mitogens due to gravity were also noted. Cytokine production was primarily affected during the first week; IL-2, IL-4 and TNF-alpha were increased, whereas IFN-gamma was decreased. These findings indicate that altered gravity can influence both hematological and functional variables that may translate into serious health consequences.
Sabow, A B; Sazili, A Q; Zulkifli, I; Goh, Y M; Ab Kadir, M Z A; Abdulla, N R; Nakyinsige, K; Kaka, U; Adeyemi, K D
2015-06-01
The study assessed the effect of conscious halal slaughter and slaughter following minimal anesthesia on bleeding efficiency of goats and keeping quality of goat meat. Ten Boer cross bucks were divided into two groups and subjected to either halal slaughter without stunning (HS) or minimal anesthesia prior to slaughter (AS). The blood lost during exsanguination was measured. Residual blood was further quantified by determination of hemoglobin and myoglobin content in longissimus lumborum muscle. Storage stability of the meat was evaluated by microbiological analysis and lipid oxidation. Blood loss at exsanguination, residual hemoglobin and lipid oxidation were not significantly different (p>0.05) between HS and AS. Lactic acid bacteria was the only microbe that was significantly elevated after 24h of storage at 4°C in the AS group. In conclusion, slaughtering goats under minimal anesthesia or fully conscious did not affect bleeding efficiency and keeping quality of goat meat. Copyright © 2015. Published by Elsevier Ltd.
Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf B.; Durkin, Anthony J.; Chave, Robert; Lindsley, Erik H.; Farkas, Daniel L.
2014-05-01
Attempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models. For this system's proof of concept, human skin measurements on melanocytic nevus, vitiligo, and venous occlusion conditions were performed in volunteers. The resulting molecular distribution maps matched physiological and anatomical expectations, confirming a technologic approach that can be applied to next generation dermoscopes and having biological plausibility that is likely to appeal to dermatologists.
Nelson, R W; Robertson, J; Feldman, E C; Briggs, C
2000-04-15
To evaluate effect of acarbose on control of glycemia in dogs with diabetes mellitus. Prospective randomized crossover controlled trial. 5 dogs with naturally acquired diabetes mellitus. Dogs were treated with acarbose and placebo for 2 months each: in 1 of 2 randomly assigned treatment sequences. Dogs that weighed < or = 10 kg (22 lb; n = 3) or > 10 kg (2) were given 25 or 50 mg of acarbose, respectively, at each meal for 2 weeks, then 50 or 100 mg of acarbose, respectively, at each meal for 6 weeks, with a 1-month interval between treatments. Caloric intake, type of insulin, and frequency of insulin administration were kept constant, and insulin dosage was adjusted as needed to maintain control of glycemia. Serum glucose concentrations, blood glycosylated hemoglobin concentration, and serum fructosamine concentration were determined. Significant differences in mean body weight and daily insulin dosage among dogs treated with acarbose and placebo were not found. Mean preprandial serum glucose concentration, 8-hour mean serum glucose concentration, and blood glycosylated hemoglobin concentration were significantly lower in dogs treated with insulin and acarbose, compared with insulin and placebo. Semisoft to watery feces developed in 3 dogs treated with acarbose. Acarbose may be useful as an adjunctive treatment in diabetic dogs in which cause for poor glycemic control cannot be identified, and insulin treatment alone is ineffective.
Vyas, Kaetan J.; Danz, David; Gilman, Robert H.; Wise, Robert A.; León-Velarde, Fabiola; Jaime Miranda, J.
2015-01-01
Abstract Vyas, Kaetan J., David Danz, Robert H. Gilman, Robert A. Wise, Fabiola León-Velarde, J. Jaime Miranda, and William Checkley. Noninvasive assessment of excessive erythrocytosis as a screening method for chronic mountain sickness at high altitude. High Alt Med Biol 16:162–168, 2015.—Globally, over 140 million people are at risk of developing chronic mountain sickness, a common maladaptation to life at high altitude (>2500 meters above sea level). The diagnosis is contingent upon the identification of excessive erythrocytosis (EE). Current best practices to identify EE require a venous blood draw, which is cumbersome for large-scale surveillance. We evaluated two point-of-care biomarkers to screen for EE: noninvasive spot-check tests of total hemoglobin and oxyhemoglobin saturation (Pronto-7, Masimo Corporation). We conducted paired evaluations of total serum hemoglobin from a venous blood draw and noninvasive, spot-check testing of total hemoglobin and oxyhemoglobin saturation with the Pronto-7 in 382 adults aged ≥35 years living in Puno, Peru (3825 meters above sea level). We used the Bland-Altman method to measure agreement between the noninvasive hemoglobin assessment and the gold standard lab hemoglobin analyzer. Mean age was 58.8 years and 47% were male. The Pronto-7 test was unsuccessful in 21 (5%) participants. Limits of agreement between total hemoglobin measured via venous blood draw and the noninvasive, spot-check test ranged from −2.8 g/dL (95% CI −3.0 to −2.5) to 2.5 g/dL (95% CI 2.2 to 2.7), with a bias of −0.2 g/dL (95% CI −0.3 to −0.02) for the difference between total hemoglobin and noninvasive hemoglobin concentrations. Overall, the noninvasive spot-check test of total hemoglobin had a better area under the receiver operating characteristic curve compared to oxyhemoglobin saturation for the identification of EE as measured by a gold standard laboratory hemoglobin analyzer (0.96 vs. 0.82; p<0.001). Best cut-off values to screen for EE with the Pronto 7 were ≥19.9 g/dL in males and ≥17.5 g/dL in females. At these cut-points, sensitivity and specificity were both 92% and 89% for males and females, respectively. A noninvasive, spot-check test of total hemoglobin had low bias and high discrimination for the detection of EE in high altitude Peru, and may be a useful point-of-care tool for large-scale surveillance in high-altitude settings. PMID:25973777
Aptamer-based surface plasmon resonance sensing of glycated human blood proteins
NASA Astrophysics Data System (ADS)
Reaver, Nathan G. F.; Zheng, Rui; Kim, Dong-Shik; Cameron, Brent D.
2013-02-01
The concentration ratio of glycated to non-glycated forms of various blood proteins can be used as a diagnostic measure in diabetes to determine a history of glycemic compliance. Depending on a protein's half-life in blood, compliance can be assessed from a few days to several months in the past, which can then be used to provide additional therapeutic guidance. Current glycated protein detection methods are limited in their ability to measure multiple proteins, and are susceptible to interference from other blood pathologies. In this study, we developed and characterized DNA aptamers for use in Surface Plasmon Resonance (SPR) sensors to assess the blood protein hemoglobin. The aptamers were developed by way of a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process which selects DNA sequences that have a high binding affinity to a specific protein. DNA products resulting from this process are sequenced and identified aptamers are then synthesized. The SELEX process was performed to produce aptamers for a glycated form of hemoglobin. Equilibrium dissociation constants for the binding of the identified aptamer to glycated hemoglobin, hemoglobin, and fibrinogen were calculated from fitted Langmuir isotherms obtained through SPR. These constants were determined to be 94 nM, 147 nM, and 244 nM respectively. This aptamer can potentially be used to create a SPR aptamer based biosensor for detection of glycated hemoglobin, a technology that has the potential to deliver low-cost and immediate glycemic compliance assessment in either a clinical or home setting.
Effects of Radon Inhalation on Some Biophysical Properties of Blood in Rats
NASA Astrophysics Data System (ADS)
Essa, M. F.; Shahin, Fayez M.; Ahmed, Ashour M.; Abdel-Salam, Omar
2013-03-01
The major source of human exposure to natural radiation arises from the inhalation of radon (222Rn) gas. Exposure to high concentrations of radon 222Rn and its daughters for long period leads to pathological effects like lung cancer, leukaemia, skin cancer and kidney diseases. The present study was performed on rats to investigate the effect of radon exposure on the absorption spectra of hemoglobin. Measurements have been performed in a radon chamber where rats were exposed to radon for 1, 5 or 7 weeks. The inhalation of radon resulted in decrease in intensity of the absorption bands characterizing the hemoglobin molecular structure with increased radon doses.
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Sheng; Wang, Chun-Yang; Ling, Yo-Wei; Chuang, Ming-Lung; Chuang, Ching-Cheng; Tsai, Jui-che; Lu, Chih-Wei; Sun, Chia-Wei
2010-02-01
Diffuse optical spectroscopic imaging (DOSI) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues and provides the monitoring of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. In our preliminary study, the temporal tracings of hemodynamic oxygenation are measured with DOSI and venous occlusion test (VOT) from normal subjects, patients with heart failure and patients with sepsis in intensive care unit (ICU). In experiments, the obvious differences of hemodynamic signals can be observed among the three groups. The physiological relevance of VOT hemodynamics with respect to diseases is also discussed in this paper.
User's instructions for the erythropoiesis regulatory model
NASA Technical Reports Server (NTRS)
1978-01-01
The purpose of the model provides a method to analyze some of the events that could account for the decrease in red cell mass observed in crewmen returning from space missions. The model is based on the premise that erythrocyte production is governed by the balance between oxygen supply and demand at a renal sensing site. Oxygen supply is taken to be a function of arterial oxygen tension, mean corpuscular hemoglobin concentration, oxy-hemoglobin carrying capacity, hematocrit, and blood flow. Erythrocyte destruction is based on the law of mass action. The instantaneous hematocrit value is derived by integrating changes in production and destruction rates and accounting for the degree of plasma dilution.
Chatterjee, Sabyasachi; Kumar, Gopinatha Suresh
2016-06-01
The molecular interaction between hemoglobin (HHb), the major human heme protein, and the acridine dyes acridine orange (AO) and 9-aminoacridine (9AA) was studied by various spectroscopic, calorimetric and molecular modeling techniques. The dyes formed stable ground state complex with HHb as revealed from spectroscopic data. Temperature dependent fluorescence data showed the strength of the dye-protein complexation to be inversely proportional to temperature and the fluorescence quenching was static in nature. The binding-induced conformational change in the protein was investigated using circular dichroism, synchronous fluorescence, 3D fluorescence and FTIR spectroscopy results. Circular dichroism data also quantified the α-helicity change in hemoglobin due to the binding of acridine dyes. Calorimetric studies revealed the binding to be endothermic in nature for both AO and 9AA, though the latter had higher affinity, and this was also observed from spectroscopic data. The binding of both dyes was entropy driven. pH dependent fluorescence studies revealed the existence of electrostatic interaction between the protein and dye molecules. Molecular modeling studies specified the binding site and the non-covalent interactions involved in the association. Overall, the results revealed that a small change in the acridine chromophore leads to remarkable alteration in the structural and thermodynamic aspects of binding to HHb. Copyright © 2016 Elsevier B.V. All rights reserved.
Association of Testosterone Levels With Anemia in Older Men
Roy, Cindy N.; Snyder, Peter J.; Stephens-Shields, Alisa J.; Artz, Andrew S.; Bhasin, Shalender; Cohen, Harvey J.; Farrar, John T.; Gill, Thomas M.; Zeldow, Bret; Cella, David; Barrett-Connor, Elizabeth; Cauley, Jane A.; Crandall, Jill P.; Cunningham, Glenn R.; Ensrud, Kristine E.; Lewis, Cora E.; Matsumoto, Alvin M.; Molitch, Mark E.; Pahor, Marco; Swerdloff, Ronald S.; Cifelli, Denise; Hou, Xiaoling; Resnick, Susan M.; Walston, Jeremy D.; Anton, Stephen; Basaria, Shehzad; Diem, Susan J.; Wang, Christina; Schrier, Stanley L.; Ellenberg, Susan S.
2017-01-01
Importance In one-third of older men with anemia, no recognized cause can be found. Objective To determine if testosterone treatment of men 65 years or older with unequivocally low testosterone levels and unexplained anemia would increase their hemoglobin concentration. Design, Setting, and Participants A double-blinded, placebo-controlled trial with treatment allocation by minimization using 788 men 65 years or older who have average testosterone levels of less than 275 ng/dL. Of 788 participants, 126 were anemic (hemoglobin Š12.7 g/dL), 62 of whom had no known cause. The trial was conducted in 12 academic medical centers in the United States from June 2010 to June 2014. Interventions Testosterone gel, the dose adjusted to maintain the testosterone levels normal for young men, or placebo gel for 12 months. Main Outcomes and Measures The percent of men with unexplained anemia whose hemoglobin levels increased by 1.0 g/dL or more in response to testosterone compared with placebo. The statistical analysis was intent-to-treat by a logistic mixed effects model adjusted for balancing factors. Results The men had a mean age of 74.8 years and body mass index (BMI) (calculated as weight in kilograms divided by height in meters squared) of 30.7; 84.9% were white. Testosterone treatment resulted in a greater percentage of men with unexplained anemia whose month 12 hemoglobin levels had increased by 1.0 g/dL or more over baseline (54%) than did placebo (15%) (adjusted OR, 31.5; 95% CI, 3.7-277.8; P = .002) and a greater percentage of men who at month 12 were no longer anemic (58.3%) compared with placebo (22.2%) (adjusted OR, 17.0; 95% CI, 2.8-104.0; P = .002). Testosterone treatment also resulted in a greater percentage of men with anemia of known cause whose month 12 hemoglobin levels had increased by 1.0 g/dL or more (52%) than did placebo (19%) (adjusted OR, 8.2; 95% CI, 2.1-31.9; P = .003). Testosterone treatment resulted in a hemoglobin concentration of more than 17.5 g/dL in 6 men who had not been anemic at baseline. Conclusions and Relevance Among older men with low testosterone levels, testosterone treatment significantly increased the hemoglobin levels of those with unexplained anemia as well as those with anemia from known causes. These increases may be of clinical value, as suggested by the magnitude of the changes and the correction of anemia in most men, but the overall health benefits remain to be established. Measurement of testosterone levels might be considered in men 65 years or older who have unexplained anemia and symptoms of low testosterone levels. PMID:28241237
Richardson, Sarah L; Swietach, Pawel
2016-10-25
During capillary transit, red blood cells (RBCs) must exchange large quantities of CO 2 and O 2 in typically less than one second, but the degree to which this is rate-limited by diffusion through cytoplasm is not known. Gas diffusivity is intuitively assumed to be fast and this would imply that the intracellular path-length, defined by RBC shape, is not a factor that could meaningfully compromise physiology. Here, we evaluated CO 2 diffusivity (D CO2 ) in RBCs and related our results to cell shape. D CO2 inside RBCs was determined by fluorescence imaging of [H + ] dynamics in cells under superfusion. This method is based on the principle that H + diffusion is facilitated by CO 2 /HCO 3 - buffer and thus provides a read-out of D CO2 . By imaging the spread of H + ions from a photochemically-activated source (6-nitroveratraldehyde), D CO2 in human RBCs was calculated to be only 5% of the rate in water. Measurements on RBCs containing different hemoglobin concentrations demonstrated a halving of D CO2 with every 75 g/L increase in mean corpuscular hemoglobin concentration (MCHC). Thus, to compensate for highly-restricted cytoplasmic diffusion, RBC thickness must be reduced as appropriate for its MCHC. This can explain the inverse relationship between MCHC and RBC thickness determined from >250 animal species.
Richardson, Sarah L.; Swietach, Pawel
2016-01-01
During capillary transit, red blood cells (RBCs) must exchange large quantities of CO2 and O2 in typically less than one second, but the degree to which this is rate-limited by diffusion through cytoplasm is not known. Gas diffusivity is intuitively assumed to be fast and this would imply that the intracellular path-length, defined by RBC shape, is not a factor that could meaningfully compromise physiology. Here, we evaluated CO2 diffusivity (DCO2) in RBCs and related our results to cell shape. DCO2 inside RBCs was determined by fluorescence imaging of [H+] dynamics in cells under superfusion. This method is based on the principle that H+ diffusion is facilitated by CO2/HCO3− buffer and thus provides a read-out of DCO2. By imaging the spread of H+ ions from a photochemically-activated source (6-nitroveratraldehyde), DCO2 in human RBCs was calculated to be only 5% of the rate in water. Measurements on RBCs containing different hemoglobin concentrations demonstrated a halving of DCO2 with every 75 g/L increase in mean corpuscular hemoglobin concentration (MCHC). Thus, to compensate for highly-restricted cytoplasmic diffusion, RBC thickness must be reduced as appropriate for its MCHC. This can explain the inverse relationship between MCHC and RBC thickness determined from >250 animal species. PMID:27777410
Orsi, Ricardo O; Santos, Vivian G Dos; Pezzato, Luiz E; Carvalho, Pedro L P F DE; Teixeira, Caroline P; Freitas, Jakeline M A; Padovani, Carlos R; Sartori, Maria M P; Barros, Margarida M
2017-01-01
The effect of the ethanolic extract of propolis (EEP) on Aeromonas hydrophila was analyzed by determination of minimum inhibitory concentration (MIC). Then, the effects of crude propolis powder (CPP) on growth, hemato-immune parameters of the Nile tilapia, as well as its effects on resistance to A. hydrophila challenge were investigated. The CPP (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0%) was added to the diet of 280 Nile tilapia (50.0 ± 5.7 g fish-1). Hemato-immune parameters were analyzed before and after the bacterial challenge. Red blood cell, hematocrit, hemoglobin, mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and hydrogen peroxide (H2O2) and nitric oxide (NO) were evaluated. The MIC of the EEP was 13% (v/v) with a bactericidal effect after 24 hours. Growth performance was significantly lower for those fish fed diets containing 2.5 and 3% of CPP compared to the control diet. Differences in CPP levels affected fish hemoglobin, neutrophils number and NO following the bacterial challenge. For others parameters no significant differences were observed. Our results show that although propolis has bactericidal properties in vitro, the addition of crude propolis powder to Nile tilapia extruded diets does not necessarily lead to an improvement of fish health.
Douglas, Nicholas M.; Lampah, Daniel A.; Kenangalem, Enny; Simpson, Julie A.; Poespoprodjo, Jeanne R.; Sugiarto, Paulus; Anstey, Nicholas M.; Price, Ric N.
2013-01-01
Background The burden of anemia attributable to non-falciparum malarias in regions with Plasmodium co-endemicity is poorly documented. We compared the hematological profile of patients with and without malaria in southern Papua, Indonesia. Methods and Findings Clinical and laboratory data were linked for all patients presenting to a referral hospital between April 2004 and December 2012. Data were available on patient demographics, malaria diagnosis, hemoglobin concentration, and clinical outcome, but other potential causes of anemia could not be identified reliably. Of 922,120 patient episodes (837,989 as outpatients and 84,131 as inpatients), a total of 219,845 (23.8%) were associated with a hemoglobin measurement, of whom 67,696 (30.8%) had malaria. Patients with P. malariae infection had the lowest hemoglobin concentration (n = 1,608, mean = 8.93 [95% CI 8.81–9.06]), followed by those with mixed species infections (n = 8,645, mean = 9.22 [95% CI 9.16–9.28]), P. falciparum (n = 37,554, mean = 9.47 [95% CI 9.44–9.50]), and P. vivax (n = 19,858, mean = 9.53 [95% CI 9.49–9.57]); p-value for all comparisons <0.001. Severe anemia (hemoglobin <5 g/dl) was present in 8,151 (3.7%) patients. Compared to patients without malaria, those with mixed Plasmodium infection were at greatest risk of severe anemia (adjusted odds ratio [AOR] 3.25 [95% CI 2.99–3.54]); AORs for severe anaemia associated with P. falciparum, P. vivax, and P. malariae were 2.11 (95% CI 2.00–2.23), 1.87 (95% CI 1.74–2.01), and 2.18 (95% CI 1.76–2.67), respectively, p<0.001. Overall, 12.2% (95% CI 11.2%–13.3%) of severe anemia was attributable to non-falciparum infections compared with 15.1% (95% CI 13.9%–16.3%) for P. falciparum monoinfections. Patients with severe anemia had an increased risk of death (AOR = 5.80 [95% CI 5.17–6.50]; p<0.001). Not all patients had a hemoglobin measurement, thus limitations of the study include the potential for selection bias, and possible residual confounding in multivariable analyses. Conclusions In Papua P. vivax is the dominant cause of severe anemia in early infancy, mixed P. vivax/P. falciparum infections are associated with a greater hematological impairment than either species alone, and in adulthood P. malariae, although rare, is associated with the lowest hemoglobin concentration. These findings highlight the public health importance of integrated genus-wide malaria control strategies in areas of Plasmodium co-endemicity. Please see later in the article for the Editors' Summary PMID:24358031
Arteta, Manuel; Campbell, Andrew; Nouraie, Mehdi; Rana, Sohail; Onyekwere, Onyinye; Ensing, Gregory; Sable, Craig; Dham, Niti; Darbari, Deepika; Luchtman-Jones, Lori; Kato, Gregory J.; Gladwin, Mark T.; Castro, Oswaldo L.; Minniti, Caterina P.; Gordeuk, Victor R.
2015-01-01
Obstructive and restrictive pulmonary changes develop in children with sickle cell disease, but reports conflict as to the type of change that predominates. We prospectively performed spirometry, plethysmography and lung diffusing capacity in 146 children aged 7–20 years with hemoglobin SS or Sβ0-thalassemia. Nineteen percent of the patients had obstructive physiology as defined according to guidelines of the American Thoracic Society. In addition, 9% had restrictive physiology and 11% had abnormal but not categorized physiology. Increasing age, patient- or family-reported history of asthma or wheezing, and higher lactate dehydrogenase concentration were independent predictors of obstruction as reflected in lower FEV1/FVC. In conclusion, abnormal pulmonary function, most often obstructive, is common in children with hemoglobin SS and Sβ0-thalassemia. Full pulmonary function testing should be performed in children with hemoglobin SS or Sβ0 thalassemia, especially with history of asthma or wheezing and accentuated elevations in hemolytic markers. PMID:24309610
Kusum; Raina, R; Verma, P K; Pankaj, N K; Kant, V; Kumar, J; Srivastava, A K
2010-07-01
Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils.
Kusum; Raina, R.; Verma, P. K.; Pankaj, N. K.; Kant, V.; Kumar, J.; Srivastava, A. K.
2010-01-01
Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils. PMID:21170251
Vitreous Fluid and/or Urine Glucose Concentrations in 1,335 Civil Aviation Accident Pilot Fatalities
2008-05-01
glucose, and in those cases wherein glucose levels are elevated, blood hemoglobin A1c ( HbA1c ) is measured. These analyses are conducted to monitor...diabetes. In this study, the prevalence of elevated glucose concentrations in fatally injured civilian pilots is evaluated. Glucose and HbA1c are measured...whom samples were received during 1998–2005 and whose vitreous fluid and/or urine glucose concentrations were measured. HbA1c levels and information
Kawai, Kosuke; Villamor, Eduardo; Mugusi, Ferdinand M; Saathoff, Elmar; Urassa, Willy; Bosch, Ronald J; Spiegelman, Donna; Fawzi, Wafaie W
2012-01-01
BACKGROUND Patients with tuberculosis (TB) often suffer from profound malnutrition. OBJECTIVE To examine the patterns and predictors of change in nutritional and hemoglobin status during and after TB treatment. METHODS A total of 471 HIV-positive and 416 HIV-negative adults with pulmonary TB were prospectively followed in Dar es Salaam, Tanzania. All patients received 8 months TB treatment following enrollment. RESULTS About 40% of HIV-positive and 47% of HIV-negative TB patients had BMI <18.5 kg/m2 at baseline. About 94% of HIV-positive and 84% of HIV-negative participants were anemic at baseline. Both HIV-positive and HIV-negative patients experienced increases in BMI and hemoglobin concentrations over the course of TB treatment. Among HIV-positive patients, older age, low CD4 cell counts, and high viral load were independently associated with a smaller increase in BMI from baseline to 8 months. Female sex, older age, low CD4 cell counts, previous TB infection, and less money spent on food were independently associated with a smaller improvement in hemoglobin among HIV-positive patients during treatment. CONCLUSION HIV- positive TB patients, especially those with low CD4 cell counts, showed poor nutritional recovery during TB treatment. Adequate nutritional support should be considered during TB treatment. PMID:22283899
Mechanisms of Human Erythrocytic Bioactivation of Nitrite*
Liu, Chen; Wajih, Nadeem; Liu, Xiaohua; Basu, Swati; Janes, John; Marvel, Madison; Keggi, Christian; Helms, Christine C.; Lee, Amber N.; Belanger, Andrea M.; Diz, Debra I.; Laurienti, Paul J.; Caudell, David L.; Wang, Jun; Gladwin, Mark T.; Kim-Shapiro, Daniel B.
2015-01-01
Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood. PMID:25471374
Multi-spectral imaging of oxygen saturation
NASA Astrophysics Data System (ADS)
Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.
2008-06-01
The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.
NASA Astrophysics Data System (ADS)
González-Domínguez, J. L.; Hernández-Aguilar, C.; Domínguez-Pacheco, F. A.; Martínez-Ortiz, E.; Cruz-Orea, A.; Sánchez-Sinencio, F.
2012-11-01
This study reports the absorption peaks α, β, γ in the Soret band of photoacoustic (PA) signals and their covariance with age and hemoglobin in human blood samples through PA spectroscopy. Samples were taken randomly from a masculine population grouped in three categories according to age: infants, young adults, and senior adults. Samples were prepared with two drops of blood from a 0.5 mL insulin syringe with a needle gauge 31G over 5 mm circles of filter paper. It was observed that the PA signal, the amplitude as a function of the wavelength, has a behavior as that reported for human blood for the three absorption peaks α, β, γ. In particular, the ratio γ/ β is due to electronic transitions associated with charge-transfer interactions of iron orbitals with the ligand states. Through an evaluation of optical absorption peaks in blood samples and their covariance with age and hemoglobin concentration, a relationship was found for the ratio peaks γ/ β and γ/ α with such parameters. Specifically, a negative covariance in the Soret band of the ratio peaks γ/ β and γ/ α with respect to both age and hemoglobin was found. This showed a tendency in their behavior. Further experiments of different populations may corroborate these conclusions.
Kawai, K; Villamor, E; Mugusi, F M; Saathoff, E; Urassa, W; Bosch, R J; Spiegelman, D; Fawzi, W W
2011-10-01
Patients with tuberculosis (TB) often suffer from profound malnutrition. To examine the patterns and predictors of change in nutritional and hemoglobin status during and after TB treatment. A total of 471 human immunodeficiency virus (HIV) positive and 416 HIV-negative adults with pulmonary TB were prospectively followed in Dar es Salaam, Tanzania. All patients received 8 months' TB treatment following enrollment. About 40% of HIV-positive and 47% of HIV-negative TB patients had body mass index (BMI) < 18.5 kg/m 2 at baseline, while about 94% of HIV-positive and 84% of HIV-negative participants were anemic at baseline. Both HIV-positive and HIV-negative patients experienced increases in BMI and hemoglobin concentrations over the course of TB treatment. Among HIV- positive patients, older age, low CD4 cell counts, and high viral load were independently associated with a smaller increase in BMI from baseline to 8 months. Fe- male sex, older age, low CD4 cell counts, previous TB infection and less money spent on food were independently associated with a smaller improvement in hemoglobin levels among HIV-positive patients during treatment. HIV-positive TB patients, especially those with low CD4 cell counts, showed poor nutritional recovery during TB treatment. Adequate nutritional support should be considered during TB treatment.
Determinants of Anemia and Hemoglobin Concentration in Haitian School-Aged Children
Iannotti, Lora L.; Delnatus, Jacques R.; Odom, Audrey R.; Eaton, Jacob C.; Griggs, Jennifer J.; Brown, Sarah; Wolff, Patricia B.
2015-01-01
Anemia diminishes oxygen transport in the body, resulting in potentially irreversible growth and developmental consequences for children. Limited evidence for determinants of anemia exists for school-aged children. We conducted a cluster randomized controlled trial in Haiti from 2012 to 2013 to test the efficacy of a fortified school snack. Children (N = 1,047) aged 3–13 years were followed longitudinally at three time points for hemoglobin (Hb) concentrations, anthropometry, and bioelectrical impedance measures. Dietary intakes, infectious disease morbidities, and socioeconomic and demographic factors were collected at baseline and endline. Longitudinal regression modeling with generalized least squares and logit models with random effects identified anemia risk factors beyond the intervention effect. At baseline, 70.6% of children were anemic and 2.6% were severely anemic. Stunting increased the odds of developing anemia (adjusted odds ratio [OR]: 1.48, 95% confidence interval [CI]: 1.05–2.08) and severe anemia (adjusted OR: 2.47, 95% CI: 1.30–4.71). Parent-reported vitamin A supplementation and deworming were positively associated with Hb concentrations, whereas fever and poultry ownership showed a negative relationship with Hb concentration and increased odds of severe anemia, respectively. Further research should explore the full spectrum of anemia etiologies in school children, including genetic causes. PMID:26350448
Flores-Santin, Josele; Rojas Antich, Maria; Tazawa, Hiroshi; Burggren, Warren W
2018-04-01
Hematology and its regulation in developing birds have been primarily investigated in response to relatively short-term environmental challenges in the embryo. Yet, whether any changes induced in the embryo persist into adulthood as a hematological form of "fetal programming" is unknown. We hypothesized that: 1) chronic as opposed to acute hypoxic incubation will alter hematological respiratory variables in embryos of bobwhite quail (Colinus virginianus), and 2) alterations first appearing in the embryo will persist into hatchlings through into adulthood. To test these hypotheses, we first developed an embryo-to-adult profile of normal hematological development by measuring hematocrit (Hct), red blood cell concentration ([RBC]), hemoglobin concentration ([Hb]), mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration, as well plasma osmolality. Hct, [RBC] and [Hb] in normoxic-incubated birds (controls) steadily increased from ~22%, ~1.6 × 10 6 μL -1 and ~7 g% in day 12 embryos to almost double the values at maturity in adult birds. Both cohort and sex affected hematology of normoxic-incubated birds. A second population, incubated from day 0 (d0) in 15% O 2 , surprisingly revealed little or no significant difference from controls in hematology in embryos. In hatchlings and adults, hypoxic incubation caused no significant modification to any variables. Compared to major hematological effects caused by hypoxic incubation in chickens, the hematology of the bobwhite quail embryo appears to be minimally affected by hypoxic incubation, with very few effects induced during hypoxic incubation actually persisting into adulthood. Copyright © 2018 Elsevier Inc. All rights reserved.
2012-01-01
Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306
Näsi, Tiina; Mäki, Hanna; Kotilahti, Kalle; Nissilä, Ilkka; Haapalahti, Petri; Ilmoniemi, Risto J.
2011-01-01
Hemodynamic responses evoked by transcranial magnetic stimulation (TMS) can be measured with near-infrared spectroscopy (NIRS). This study demonstrates that cerebral neuronal activity is not their sole contributor. We compared bilateral NIRS responses following brain stimulation to those from the shoulders evoked by shoulder stimulation and contrasted them with changes in circulatory parameters. The left primary motor cortex of ten subjects was stimulated with 8-s repetitive TMS trains at 0.5, 1, and 2 Hz at an intensity of 75% of the resting motor threshold. Hemoglobin concentration changes were measured with NIRS on the stimulated and contralateral hemispheres. The photoplethysmograph (PPG) amplitude and heart rate were recorded as well. The left shoulder of ten other subjects was stimulated with the same protocol while the hemoglobin concentration changes in both shoulders were measured. In addition to PPG amplitude and heart rate, the pulse transit time was recorded. The brain stimulation reduced the total hemoglobin concentration (HbT) on the stimulated and contralateral hemispheres. The shoulder stimulation reduced HbT on the stimulated shoulder but increased it contralaterally. The waveforms of the HbT responses on the stimulated hemisphere and shoulder correlated strongly with each other (r = 0.65–0.87). All circulatory parameters were also affected. The results suggest that the TMS-evoked NIRS signal includes components that do not result directly from cerebral neuronal activity. These components arise from local effects of TMS on the vasculature. Also global circulatory effects due to arousal may affect the responses. Thus, studies involving TMS-evoked NIRS responses should be carefully controlled for physiological artifacts and effective artifact removal methods are needed to draw inferences about TMS-evoked brain activity. PMID:21887362
Näsi, Tiina; Mäki, Hanna; Kotilahti, Kalle; Nissilä, Ilkka; Haapalahti, Petri; Ilmoniemi, Risto J
2011-01-01
Hemodynamic responses evoked by transcranial magnetic stimulation (TMS) can be measured with near-infrared spectroscopy (NIRS). This study demonstrates that cerebral neuronal activity is not their sole contributor. We compared bilateral NIRS responses following brain stimulation to those from the shoulders evoked by shoulder stimulation and contrasted them with changes in circulatory parameters. The left primary motor cortex of ten subjects was stimulated with 8-s repetitive TMS trains at 0.5, 1, and 2 Hz at an intensity of 75% of the resting motor threshold. Hemoglobin concentration changes were measured with NIRS on the stimulated and contralateral hemispheres. The photoplethysmograph (PPG) amplitude and heart rate were recorded as well. The left shoulder of ten other subjects was stimulated with the same protocol while the hemoglobin concentration changes in both shoulders were measured. In addition to PPG amplitude and heart rate, the pulse transit time was recorded. The brain stimulation reduced the total hemoglobin concentration (HbT) on the stimulated and contralateral hemispheres. The shoulder stimulation reduced HbT on the stimulated shoulder but increased it contralaterally. The waveforms of the HbT responses on the stimulated hemisphere and shoulder correlated strongly with each other (r = 0.65-0.87). All circulatory parameters were also affected. The results suggest that the TMS-evoked NIRS signal includes components that do not result directly from cerebral neuronal activity. These components arise from local effects of TMS on the vasculature. Also global circulatory effects due to arousal may affect the responses. Thus, studies involving TMS-evoked NIRS responses should be carefully controlled for physiological artifacts and effective artifact removal methods are needed to draw inferences about TMS-evoked brain activity.
NASA Astrophysics Data System (ADS)
Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio
2011-02-01
Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.
Yaméogo, C W; Cichon, B; Fabiansen, C; Rytter, M J H; Faurholt-Jepsen, D; Stark, K D; Briend, A; Shepherd, S; Traoré, A S; Christensen, V B; Michaelsen, K F; Friis, H; Lauritzen, L
2017-07-13
Severe acute malnutrition (SAM) has been associated with low polyunsaturated fatty acid (PUFA) status. However, investigations regarding PUFA status and correlates in children with moderate acute malnutrition (MAM) from low-income countries are scarce. The aim of this study was to describe whole-blood PUFA levels in children with moderate acute malnutrition (MAM) and to identify correlates of PUFAs. We conducted a cross-sectional study using baseline data from a prospective nutritional intervention trial among 1609 children with MAM aged 6-23 months in Burkina Faso,West Africa. Whole-blood PUFAs were measured by gas chromatography and expressed as percent of total whole-blood fatty acids (FA%). Potential correlates of PUFAs including infection, inflammation, hemoglobin, anthropometry (difference between children diagnosed as having MAM based on low mid-upper-arm-circumference (MUAC) only, low MUAC and weight-for-height z-score (WHZ), or low WHZ only) and diet were assessed by linear regression adjusted for age and sex. Children with MAM had low concentrations of whole-blood PUFAs, particularly n-3 PUFAs. Moreover, children diagnosed with MAM based only on low MUAC had 0.32 (95% confidence interval (CI), 0.14; 0.50) and 0.40 (95% CI, 0.16; 0.63) FA% lower arachidonic acid (AA) than those recruited based on both low WHZ as well as low MUAC and those recruited with low WHZ only, respectively. Infection and inflammation were associated with low levels of all long-chain (LC)-PUFAs, while hemoglobin was positively associated with whole-blood LC-PUFAs. While PUFA deficiency was not a general problem, overall whole-blood PUFA concentrations, especially of n-3 PUFAs, were low. Infection, inflammation, hemoglobin, anthropometry and diet were correlates of PUFAs concentrations in children with MAM. The trial is registered at http://www.isrctn.com ( ISRCTN42569496 ).
Static structures and dynamics of hemoglobin vesicle (HBV) developed as a transfusion alternative.
Sato, Takaaki; Sakai, Hiromi; Sou, Keitaro; Medebach, Martin; Glatter, Otto; Tsuchida, Eishun
2009-06-18
Hemoglobin vesicle (HbV) is an artificial oxygen carrier that encapsulates solution of purified and highly concentrated (ca. 38 g dL(-1)) human hemoglobin. Its exceptionally high concentration as a liposomal product (ca. 40% volume fraction) achieves an oxygen-carrying capacity comparable to that of blood. We use small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) to investigate the hierarchical structures and dynamics of HbVs in concentrated suspensions. SAXS data revealed unilamellar shell structure and internal density profile of the artificial cell membrane for Hb encapsulation. The SAXS intensity of HbV at scattering vector q > 0.5 nm(-1) manifests dissolution states of the encapsulated Hbs in the inner aqueous phase of the vesicle having ca. 240 nm diameter. The peak position as well as the height and width of static structure factor of Hb before and after encapsulation are almost identical, demonstrating the preserved protein-protein interactions in the confined space. To overcome multiple scattering from turbid samples, we employed thin layer-cell DLS combined with the so-called bruteforce and echo techniques, which allows us to observe collective diffusion dynamics of HbVs without dilution. A pronounced slowdown of the HbV diffusion and eventual emergence of dynamically arrested state in the presence of high-concentration plasma substitutes (water-soluble polymers), such as dextran, modified fluid gelatin, and hydroxylethyl starch, can be explained by depletion interaction. A significantly weaker effect of recombinant human serum albumin on HbV flocculation and viscosity enhancement than those induced by other polymers is clearly attributed to the specificity as a protein; its compact structure efficiently reduces the reservoir polymer volume fraction that determines the depth of the attractive potential between HbVs. These phenomena are technically essential for controlling the suspension rheology, which is advantageous for versatile clinical applications.
Shirima, Candida P; Kinabo, Joyce L
2005-01-01
Studies that link adolescence pregnancies, nutritional status, and birth outcomes in Tanzania are scarce. We examined the nutritional status and birth outcomes of pregnant adolescent girls from rural and urban areas of three regions in Tanzania. The study was carried out in the regions of Dar es Salaam (Chamazi and Gezaulole dispensaries and Round Table Maternity Home), Coast (Tumbi Regional Hospital and Mlandizi Health Center), and Morogoro (Regional Hospital, Uhuru Clinic, and Mlali Health Center). One hundred eighty pregnant adolescent girls ages 15 to 19 y were recruited and interviewed, and their nutritional status measurements were taken at the seven health facilities. Information concerning date of birth, marital status, educational status, sex education, and income status was collected with a structured questionnaire. Height, weight, and mid-upper arm circumference were measured according to standard techniques. Hemoglobin concentration was measured with a hemoglobinometer and the HemoCue technique. Nutritional status was assessed by body mass index, and hemoglobin concentration was determined by cutoff points of the World Health Organization. Suitable statistical analysis was done with SPSS 9.0. Weekly weight gain during pregnancy was measured in 123 subjects who kept their appointments and reported back after 2 wk. Fifty-seven subjects did not keep their appointments and were lost to follow-up. Records of infants' birth weights and mode of delivery were obtained from 50 subjects who delivered at the study sites. The height of about 54% of the subjects was shorter than 151 cm, suggestive of short maternal height. Severe wasting was observed in 27% of subjects. Mean weekly weight gain during pregnancy was 317 +/-110 g (-500 to 500 g). No significant differences were observed between rural and urban settings. Mean infant birth weight was 2600 +/- 480 g. About 48% of infants had low birth weight (<2500 g) and only 14% of infants had birth weight greater than 3000 g. About 14% of infants were born by cesarean section. Nearly 86% of the pregnant adolescent girls were anemic. A hemoglobin concentration below 7 g/dL was observed in 5% of subjects. Most subjects (55%) had hemoglobin concentrations from 7 to lower than 10 g/dL. There was a weak correlation between infant birth weight and weekly weight gain of the girls during pregnancy (r = 0.36, P < or = 0.01). However, a strong correlation was observed between birth weight and hemoglobin level of adolescent girls during pregnancy (r = 0.67, P = 0.01). Short stature was observed to contribute toward cesarean delivery (P = 0.05) because more cesarean deliveries were performed in short girls (<151 cm tall). The nutritional status of pregnant adolescent girls in the study areas was poor and resulted in poor pregnancy outcome. Girls should be educated about reproductive health at the primary level of education.
Transfusion associated peak in hb HPLC chromatogram - a case report.
Jain, Sonal; Dass, Jasmita; Pati, Hara Prasad
2012-01-01
High performance liquid chromatography (HPLC) and electrophoresis are commonly used to diagnose various hemoglobinopathies. However, insufficient information about the transfusion history can lead to unexpected and confusing results. We are reporting a case of Juvenile myelomonocytic leukemia (JMML) in which HbHPLC was done to quantify fetal hemoglobin (HbF). The chromatogram showed elevated HbF along with a peak in the HbD window. A transfusion acquired peak was suspected based on the unexpectedly low percentage of HbD and was subsequently confirmed using parental HbHPLC.
Transfusion Associated Peak in Hb HPLC Chromatogram – a Case Report
Jain, Sonal; Dass, Jasmita; Pati, Hara Prasad
2012-01-01
High performance liquid chromatography (HPLC) and electrophoresis are commonly used to diagnose various hemoglobinopathies. However, insufficient information about the transfusion history can lead to unexpected and confusing results. We are reporting a case of Juvenile myelomonocytic leukemia (JMML) in which HbHPLC was done to quantify fetal hemoglobin (HbF). The chromatogram showed elevated HbF along with a peak in the HbD window. A transfusion acquired peak was suspected based on the unexpectedly low percentage of HbD and was subsequently confirmed using parental HbHPLC. PMID:22348188
Prevalence of anaemia in pregnant women during the last trimester: consequense for birth weight.
Demmouche, A; Lazrag, A; Moulessehoul, S
2011-04-01
Iron deficiency continues to be one of the most prevalent single-nutrient deficiencies in the world. The current study aimed to estimate the prevalence of iron deficiency anemia (IDA) among pregnant women who attend Antenatal Care Centers in Sidi Bel Abbes, Algeria. The effect of anaemia on infant birth weight was also examined. The study was conducted during the period March-Mai, 2010 and the sample consisted of 207 pregnant women (in the third trimesters) in the age group (17-41) years. The subjects were not taking iron, folate or vitamin B12 supplements at the time of the study. Blood samples were collected from each pregnant woman and a questionnaire was completed at the time of blood collection. A series of determinations was conducted to determine hemoglobin concentration (Hb); packed cell volume (PCV); corpuscular hemoglobin concentration (MCHC), corpuscular volume (MCV). The effect of anemia on the weight of new born babies was examined by calculating the correlation coefficient of birth weight and hematological indexes. The overall prevalence of anemia was found to be 46.86%. According to the severity anemia was 36.08% mild, 49.48% moderate and 14.43% severe anemia. The mean values (+/- SD) of haematological indexes were as follows: Hb 9.00 +/- 1.57 g/dl; PCV 27 +/- 5.37%; mean corpuscular haemoglobin concentration (MCHC) 33.75 +/- 2.69 g/dl and mean corpuscular volume (MCV) 75.7 +/- 10.4 fl. The results have shown that 46.39% of the subjects had MCV values less than standard value of 75 fl suggesting a microcytic anemia. The mean haemoglobin concentration was 9 +/- 1.57 g/dl while the mean birth weight was 3201.54 +/- 566.71 g. There was a not significant correlation between the Hb level and the birth weight of the infants (r = 0.28, p > 0.05). The prevalence of low birth weight was 9.2%. There was no statistically significant haemoglobin concentration /foetal birth weight difference among the various hemoglobin concentration (Chi square test = 0.34, p > 0.05). Anemia had no significant obstetric adverse effects in our pregnant population (Fischer test = 0.06, p > 0.05). There was no statistically significant difference in mean birth weight among the various haemoglobin groups suggesting that other parameters may play important roles in influencing the birth weight than the maternal haemoglobin concentration.
Red cell volume with changes in plasma osmolarity during maximal exercise.
NASA Technical Reports Server (NTRS)
Van Beaumont, W.
1973-01-01
The volume of the red cell in vivo was measured during acute changes in plasma osmolarity evoked through short (6 to 8 min) maximal exercise in six male volunteer subjects. Simultaneous measurements of mean corpuscular red cell volume (MCV), hematocrit, blood hemoglobin, mean corpuscular hemoglobin concentration (MCHC), and plasma osmolarity showed that there was no change in the MCV or MCHC with a concomitant rise of nearly 6% in plasma osmolarity. Apparently, in vivo, the volume of the red cell in exercising healthy human subjects does not change measurably, in spite of significant changes in osmotic pressure of the surrounding medium. Consequently, it is not justified to correct postexercise hematocrit measurements for changes in plasma osmolarity.
Developmental expression of human hemoglobins mediated by maturation of their subunit interfaces
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio; Chait, Brian T; Russell, J Eric; Manning, James M
2010-01-01
Different types of human hemoglobins (Hbs) consisting of various combinations of the embryonic, fetal, and adult Hb subunits are present at certain times during development representing a major paradigm of developmental biology that is still not understood and one which we address here. We show that the subunit interfaces of these Hbs have increasing bonding strengths as demonstrated by their distinct distribution of tetramers, dimers, and monomers during gel filtration at very low-Hb concentration. This maturation is mediated by competition between subunits for more favorable partners with stronger subunit interactions. Thus, the protein products of gene expression can themselves have a role in the developmental process due to their intrinsic properties. PMID:20572018
Röcker, Lothar; Hinz, Katrin; Holland, Karsten; Gunga, Hanns-Christian; Vogelgesang, Jens; Kiesewetter, Holger
2002-01-01
Numerous reports have described a poor iron status in female endurance athletes. However, the traditionally applied indicators of iron status (hemoglobin, ferritin, transferrin) may not truly reflect the iron status. Therefore we studied the newly developed soluble transferrin receptor and other indicators of iron status in twelve female endurance athletes before and after a triathlon race. Resting values showed a poor iron status in the participants of the race. Serum TfR concentration increased slightly after the race. However, if the values are corrected for hemoconcentration no change could be found. Hemoglobin, serum ferritin and transferrin values were increased after the race.
Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut
2010-01-01
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO2, was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO2 changes in adults, continuously, at the bed-side and in real time. PMID:21258561
Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut
2010-11-19
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO(2), was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO(2) changes in adults, continuously, at the bed-side and in real time.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation.
Yu, Chun Hong; Suriguga; Li, Yang; Li, Yi Ran; Tang, Ke Ya; Jiang, Liang; Yi, Zong Chun
2014-03-01
The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation was investigated. After K562 cells were treated with hydroquinone for 24 h, and hemin was later added to induce erythroid differentiation for 48 h, hydroquinone inhibited hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells in a concentration-dependent manner. The 24-h exposure to hydroquinone also caused a concentration-dependent increase at an intracellular ROS level, while the presence of N- acetyl-L-cysteine prevented hydroquinone- induced ROS production in K562 cells. The presence of N-acetyl-L-cysteine also prevented hydroquinone inhibiting hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells. These evidences indicated that ROS production played a role in hydroquinone-induced inhibition of erythroid differentiation. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Nieminen, Petteri; Huitu, Otso; Henttonen, Heikki; Finnilä, Mikko A J; Voutilainen, Liina; Itämies, Juhani; Kärjä, Vesa; Saarela, Seppo; Halonen, Toivo; Aho, Jari; Mustonen, Anne-Mari
2015-09-01
The dynamics of animal populations are greatly influenced by interactions with their natural enemies and food resources. However, quantifying the relative effects of these factors on demographic rates remains a perpetual challenge for animal population ecology. Food scarcity is assumed to limit the growth and to initiate the decline of cyclic herbivore populations, but this has not been verified with physiological health indices. We hypothesized that individuals in declining populations would exhibit signs of malnutrition-induced deterioration of physiological condition. We evaluated the association of body condition with population cycle phase in bank voles (Myodes glareolus) during the increase and decline phases of a population cycle. The bank voles had lower body masses, condition indices and absolute masses of particular organs during the decline. Simultaneously, they had lower femoral masses, mineral contents and densities. Hemoglobin and hematocrit values and several parameters known to respond to food deprivation were unaffected by the population phase. There were no signs of lymphopenia, eosinophilia, granulocytosis or monocytosis. Erythrocyte counts were higher and plasma total protein levels and tissue proportions of essential polyunsaturated fatty acids lower in the population decline. Ectoparasite load was lower and adrenal gland masses or catecholamine concentrations did not suggest higher stress levels. Food availability seems to limit the size of voles during the decline but they can adapt to the prevailing conditions without clear deleterious health effects. This highlights the importance of quantifying individual health state when evaluating the effects of complex trophic interactions on the dynamics of wild animal populations. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanical Blood Trauma in Assisted Circulation: Sublethal RBC Damage Preceding Hemolysis
Olia, Salim E.; Maul, Timothy M.; Antaki, James F.; Kameneva, Marina V.
2016-01-01
After many decades of improvements in mechanical circulatory assist devices (CADs), blood damage remains a serious problem during support contributing to variety of adverse events, and consequently affecting patient survival and quality of life. The mechanisms of cumulative cell damage in continuous-flow blood pumps are still not fully understood despite numerous in vitro, in vivo, and in silico studies of blood trauma. Previous investigations have almost exclusively focused on lethal blood damage, namely hemolysis, which is typically negligible during normal operation of current generation CADs. The measurement of plasma free hemoglobin (plfHb) concentration to characterize hemolysis is straightforward, however sublethal trauma is more difficult to detect and quantify since no simple direct test exists. Similarly, while multiple studies have focused on thrombosis within blood pumps and accessories, sublethal blood trauma and its sequelae have yet to be adequately documented or characterized. This review summarizes the current understanding of sublethal trauma to red blood cells (RBCs) produced by exposure of blood to flow parameters and conditions similar to those within CADs. It also suggests potential strategies to reduce and/or prevent RBC sublethal damage in a clinically-relevant context, and encourages new research into this relatively uncharted territory. PMID:27034320
Pixel-based absorption correction for dual-tracer fluorescence imaging of receptor binding potential
Kanick, Stephen C.; Tichauer, Kenneth M.; Gunn, Jason; Samkoe, Kimberley S.; Pogue, Brian W.
2014-01-01
Ratiometric approaches to quantifying molecular concentrations have been used for decades in microscopy, but have rarely been exploited in vivo until recently. One dual-tracer approach can utilize an untargeted reference tracer to account for non-specific uptake of a receptor-targeted tracer, and ultimately estimate receptor binding potential quantitatively. However, interpretation of the relative dynamic distribution kinetics is confounded by differences in local tissue absorption at the wavelengths used for each tracer. This study simulated the influence of absorption on fluorescence emission intensity and depth sensitivity at typical near-infrared fluorophore wavelength bands near 700 and 800 nm in mouse skin in order to correct for these tissue optical differences in signal detection. Changes in blood volume [1-3%] and hemoglobin oxygen saturation [0-100%] were demonstrated to introduce substantial distortions to receptor binding estimates (error > 30%), whereas sampled depth was relatively insensitive to wavelength (error < 6%). In response, a pixel-by-pixel normalization of tracer inputs immediately post-injection was found to account for spatial heterogeneities in local absorption properties. Application of the pixel-based normalization method to an in vivo imaging study demonstrated significant improvement, as compared with a reference tissue normalization approach. PMID:25360349
3D quantitative photoacoustic image reconstruction using Monte Carlo method and linearization
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Tsujita, Kazuhiro; Kushibiki, Toshihiro; Ishihara, Miya
2018-02-01
To quantify the functional and structural information of peripheral blood vessels for diagnoses of diseases which affects peripheral blood vessels such as diabetes and peripheral vascular disease, a 3D quantitative photoacoustic tomography (QPAT) reconstructing the optical properties such as the absorption coefficient reflecting microvascular structures and hemoglobin concentration and oxygenation saturation is studied. QPAT image reconstruction algorithms based on radiative transfer equation (RTE) and photon diffusion equation (PDE) have been proposed. However, it is not easy to use RTE in the clinical practice because of the huge computational load and long calculation time. On the other hand, it is always considered problematic to use PDE, because it does not approximate RTE well near the illuminating position. In this study, we developed the 3D QPAT image reconstruction using Monte Carlo (MC) method which approximates RTE better than PDE to reconstruct the optical properties in the region near the illuminating surface. To reduce the calculation time, we applied linearization. The QPAT image reconstruction algorithm with MC method and linearization was examined in numerical simulations and phantom experiment by use of a scanning system with a single probe consisting of P(VDF-TrFE) piezo electric film and optical fiber.
Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D
2002-07-01
Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.
Leroy, Jef L; Olney, Deanna; Ruel, Marie
2016-08-01
Despite their popularity, food-assisted maternal and child health and nutrition (MCHN) programs have not been evaluated rigorously, and evidence of their impacts on maternal and child outcomes is scant. This study estimated the impact of Tubaramure, a food-assisted MCHN program implemented by Catholic Relief Services and partners in eastern Burundi, on hemoglobin and anemia (primary outcome) in children aged 0-23.9 mo and their mothers and explored the impact pathways. The program targeted women and their children during their first 1000 d of life and included 1) food rations, 2) strengthening and promotion of the use of health services, and 3) behavior change communication. This was a cluster-randomized controlled study to assess program impact by using cluster fixed-effects double-difference models with repeated cross-sectional data (baseline and follow-up 2 y later). We explored impact pathways by estimating impact on intermediary factors addressed by Tubaramure that are known determinants of hemoglobin and anemia and by regressing hemoglobin and anemia on each determinant to assess the plausibility that the effect operated through each determinant. Hemoglobin decreased and anemia increased markedly from baseline to follow-up, but Tubaramure had a significant (P < 0.05) beneficial effect on both children [6.1 percentage points (pps)] and mothers who had given birth in the previous 3 mo (34.9 pps). The program also had significant (P < 0.05) impacts on factors along the hypothesized impact pathways: dietary diversity, consumption of iron-rich foods, morbidity, and fever for child hemoglobin and dietary diversity, consumption of iron-rich foods, and current bed-net use for maternal anemia. We showed, for the first time to our knowledge, that a food-assisted MCHN program had a positive impact on anemia and hemoglobin in both mothers and children. The plausible pathways identified highlight the importance of addressing multiple determinants of anemia. This trial was registered at clinicaltrials.gov as NCT01072279. © 2016 American Society for Nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papaconstantinou, J.; Stewart, J.A.; Rabek, J.P.
The dimethylsulfoxide (Me/sub 2/SO)-mediated induction of hemoglobin synthesis in Friend erythroleukemia cells is inhibited by the glucocorticoids hydrocortisone, dexamethasone, and fluocinolone acetonide; hydrocortisone, at concentrations of 10/sup -5/ to 10/sup -8/ M inhibits by 90-30% and fluocinolone acetonide at concentrations of 10/sup -8/ to 10/sup -11/ M shows a greater than 90% inhibition. At these concentrations the hormones have no effect on cell growth or viability. In this study it has been shown that there is a group of proteins, including the ..cap alpha..- and ..beta..-globins, whose regulation is associated with the induction of Friend erythroleukemia cell differentiation, and thatmore » the expression of these, in addition to ..cap alpha..- and ..beta..-globin, is affected by glucocorticoids. It is concluded that, although the translation of ..cap alpha..- and ..beta..-globin mRNA is a major site of inhibition by glucocorticoids, there is a detectable amount of ..cap alpha..- and ..beta..-globin mRNA translation which results in unequal amounts of globin synthesis and an overall more potent inhibition of hemoglobin formation.« less
Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.; Miller, Teresa Y.
1987-01-01
A space continuous flow electrophoresis system (CFES) was developed that would incorporate specific modifications to laboratory instruments to take advantage of weightlessness. The specific objectives were to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the CFES instrument and compare its separation resolution and sample throughput with related devices on Earth and to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as primary samples. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was due to the mismatch of electrical conductivity between the sample and the buffer. On STS-7 the major objective was to evaluate the influence of the electrical properties of the sample constituents on the resolution of the CFES. As expected, the polystyrene latex microspheres dispersed in a solution with 3 times the electrical conductivity of the curtain buffer separated with a larger band spread than in the 2nd experiment.
NASA Astrophysics Data System (ADS)
Hulvershorn, Justin; Bloy, Luke; Leigh, John S.; Elliott, Mark A.
2003-09-01
A continuous wave near infrared three-wavelength laser diode spectroscopic (NIRS) system designed for use in magnetic resonance imaging (MRI) scanners is described. This system measures in vivo changes in the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) in humans. An algorithm is implemented to map changes in light intensity to changes in the concentrations of Hb and HbO. The system's signal to noise ratio is 3.4×103 per wavelength on an intralipid phantom with 10 Hz resolution. To demonstrate the system's performance in vivo, data taken on the human forearm during arterial occlusion, as well as data taken on the forehead during extended breath holds, are presented. The results show that the instrument is an extremely sensitive detector of hemodynamic changes in human tissue at high temporal resolution. NIRS directly measures changes in the concentrations of hemoglobin species. For this reason, NIRS will be useful in determining the sources of MRI signal changes in the body due to hemodynamic causes, while the precise anatomic information provided by MRI will aid in localizing NIRS contrast and improving the accuracy of models of light transport through tissue.
The relation of maternal blood arsenic to anemia during pregnancy.
Vigeh, Mohsen; Yokoyama, Kazuhito; Matsukawa, Takehisa; Shinohara, Atsuko; Ohtani, Katsumi
2015-01-01
To clarify the relationship of prenatal arsenic exposure to hemoglobin concentrations and anemia during pregnancy, a longitudinal study was conducted of 364 participants during early pregnancy from October 2006 to March 2011 in Tehran, Iran. Maternal whole blood (taken between 8-12 and 20-24 weeks of gestation, and at delivery) and umbilical cord blood samples were collected for arsenic measurement. The mean concentration of maternal blood arsenic in the first trimester of pregnancy was significantly lower in anemic women compared with non-anemic participants (mean ± SD: 12.4 ± 3.4 versus 14.8 ± 4.0 μg/L, respectively, p < 0.001). Maternal whole blood arsenic levels in the first and third trimesters were significantly (p < 0.05) correlated with hemoglobin concentrations measured throughout gestation (r = 0.312, 0.424, and 0.183). Multiple logistic regression analysis demonstrated that increased maternal blood arsenic levels in the first trimester were significantly negatively associated to anemia during pregnancy (OR = 0.85, CI: 0.77-0.94, p < 0.01). The present study showed that prenatal blood arsenic exposure was not a risk factor for the occurrence of anemia.
Teległów, Aneta; Marchewka, Jakub; Tabarowski, Zbigniew; Rembiasz, Konrad; Głodzik, Jacek; Scisłowska-Czarnecka, Anna
2015-01-01
The aim of the study was to examine potential differences in the morphological, rheological and biochemical blood parameters of winter swimmers who remained physically active during the period between the end of one winter swimming season and the beginning of another. The study included a group of healthy winter swimmers (n = 17, all between 30 and 60 years of age). Six months following the end of winter season, the levels of mean corpuscular hemoglobin concentration and mean corpuscular hemoglobin turned out to be significantly higher, while erythrocyte count and hematocrit level significantly lower than at the baseline. Moreover, the break in winter swimming was reflected by a significant increase in median erythrocyte elongation index at all shear stress levels ≥ 1.13 Pa. The only significant changes in biochemical parameters of the blood pertained to an increase in the concentration of transferrin and to a decrease in the total protein, albumin and beta-1 globulin concentrations. Seasonal effort of winter swimmers between the end of one winter swimming season and the beginning of another has a positive influence on morphological, rheological and biochemical blood parameters.
Effects of feeding and fasting on wolf blood and urine characteristics
DelGiudice, G.D.; Seal, U.S.; Mech, L.D.
1987-01-01
Feeding and fasting trials were conducted with 2 groups (A and B) of 4 gray wolves (Canis lupus) each during January 1980. The groups were fed for 9 days and fasted for 10 days in a cross-over design. Blood and urine samples and weight data were collected every 2-3 days during each trial. Hemoglobin (Hb) concentrations, red blood cell (RBC) counts, and hematocrits (HCT) were elevated in both groups during fasting. White blood cell (WBC) counts, serum urea nitrogen (SUN), triiodothyronine (T3), and insulin concentrations decreased during fasting in Groups A and B. Mean corpuscular hemoglobin concentration (MCHC), serum cholesterol, triglyceride, and iron (Fe) concentrations were diminished in fasted Group A wolves compared to fed Group B. Creatine phosphokinase (CPK) concentrations were elevated in fed Group A wolves. Serum creatinine (C) concentrations were reduced in both groups during feeding. Urinary urea: creatinine (U:C), potassium:creatine (K:C), and sodium:creatinine (Na:C, pooled Group A and B data) ratios decreased in fasted wolves. Differences were not found between fed and fasted wolves for mean corpuscular volume (MCV), serum cortisol, glucose, calcium (Ca), bilirubin, serum glutamate-oxaloacetate transaminase (SGOT), serum glutamate-pyruvate transaminase (SGOT), serum glutamate-pyruvate transaminase (SGPT), alkaline phosphatase, and luteinizing hormone (LH) concentrations, total iron binding capacity (TIBC), and urinary calcium: creatine (Ca:C) ratios. Analysis of multiple blood or urine samples collected from free-ranging wolves would be useful in enabling researches and managers to identify the nutritional status and general health of wolves over time.
Effectiveness of disease-management programs for improving diabetes care: a meta-analysis.
Pimouguet, Clément; Le Goff, Mélanie; Thiébaut, Rodolphe; Dartigues, Jean François; Helmer, Catherine
2011-02-08
We conducted a meta-analysis of randomized controlled trials to assess the effectiveness of disease-management programs for improving glycemic control in adults with diabetes mellitus and to study which components of programs are associated with their effectiveness. We searched several databases for studies published up to December 2009. We included randomized controlled trials involving adults with type 1 or 2 diabetes that evaluated the effect of disease-management programs on glycated hemoglobin (hemoglobin A₁(C)) concentrations. We performed a meta-regression analysis to determine the effective components of the programs. We included 41 randomized controlled trials in our review. Across these trials, disease-management programs resulted in a significant reduction in hemoglobin A₁(C) levels (pooled standardized mean difference between intervention and control groups -0.38 [95% confidence interval -0.47 to -0.29], which corresponds to an absolute mean difference of 0.51%). The finding was robust in the sensitivity analyses based on quality assessment. Programs in which the disease manager was able to start or modify treatment with or without prior approval from the primary care physician resulted in a greater improvement in hemoglobin A₁(C) levels (standardized mean difference -0.60 v. -0.28 in trials with no approval to do so; p < 0.001). Programs with a moderate or high frequency of contact reported a significant reduction in hemoglobin A₁(C) levels compared with usual care; nevertheless, only programs with a high frequency of contact led to a significantly greater reduction compared with low-frequency contact programs (standardized mean difference -0.56 v. -0.30, p = 0.03). Disease-management programs had a clinically moderate but significant impact on hemoglobin A₁(C) levels among adults with diabetes. Effective components of programs were a high frequency of patient contact and the ability for disease managers to adjust treatment with or without prior physician approval.
Böhmer, Anke; Pich, Andreas; Schmidt, Mario; Haghikia, Arash; Tsikas, Dimitrios
2016-04-15
Previously we found by HPLC with fluorescence detection that inorganic nitrite induces oxidation of glutathione (GSH) to its disulfide (GSSG) in intact and more abundantly in lyzed red blood cells (RBCs) from healthy humans. In the present work, we performed MS-based protein analysis and observed that nitrite (range, 0-20mM) induces formation of S-glutathionyl hemoglobin (HbSSG) at cysteine (Cys) β93 and β112 of oxyhemoglobin (HbO2) in lyzed human RBCs (range, 6-8mM HbO2). Hemoglobin species were isolated from incubation mixtures of nitrite in lyzed RBCs by ultrafiltration or affinity chromatography and analyzed by HPLC and LC-MS/MS. The mechanism likely involves inhibition of catalase activity by nitrite (IC50, 9 μM), which allows H2O2 to accumulate and oxidize Cys moieties of oxyhemoglobin and erythrocytic GSH to form HbSSG in addition to GSSG. In freshly prepared hemolysate samples, nitrite induced release of superoxide and molecular oxygen. In the presence of paracetamol and nitrite in hemolysate samples, 3-nitro-paracetamol was detected. Nitrite also induced S-nitroso hemoglobin (HbSNO) formation in low yield (i.e., 0.1%). Synthetic cysteine (Cys), glutathione (GSH), N-acetylcysteine (NAC) and N-acetylcysteine ethyl ester (NACET) inhibited nitrite-induced modifications of oxyhemoglobin including methemoglobin, HbSSG (CysSH > NACET > GSH ≈ NAC; thiol concentration, 50 μM) and HbSNO. Nitrite-induced oxidative modifications may alter physiological hemoglobin functions and may require alternative treatments for conditions associated with oxidized hemoglobin like in nitrite-induced methemoglobinemia. Accumulation of soluble Cys in RBCs via oral administration of NACET could be a new promising strategy to prevent nitrite-induced methemoglobinemia by nitrite and other oxidants. Copyright © 2016 Elsevier B.V. All rights reserved.
Márquez-Ibarra, Adriana; Huerta, Miguel; Villalpando-Hernández, Salvador; Ríos-Silva, Mónica; Díaz-Reval, María I; Cruzblanca, Humberto; Mancilla, Evelyn; Trujillo, Xóchitl
2016-01-01
Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance. Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin. Healthy rats were fed identical diets, but without the capsaicin supplement. We then measured the parameters listed above, using the Student t-test and ANOVA, to compare groups. Healthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin, in patients.
Effectiveness of disease-management programs for improving diabetes care: a meta-analysis
Pimouguet, Clément; Le Goff, Mélanie; Thiébaut, Rodolphe; Dartigues, Jean François; Helmer, Catherine
2011-01-01
Background We conducted a meta-analysis of randomized controlled trials to assess the effectiveness of disease-management programs for improving glycemic control in adults with diabetes mellitus and to study which components of programs are associated with their effectiveness. Methods We searched several databases for studies published up to December 2009. We included randomized controlled trials involving adults with type 1 or 2 diabetes that evaluated the effect of disease-management programs on glycated hemoglobin (hemoglobin A1C) concentrations. We performed a meta-regression analysis to determine the effective components of the programs. Results We included 41 randomized controlled trials in our review. Across these trials, disease-management programs resulted in a significant reduction in hemoglobin A1C levels (pooled standardized mean difference between intervention and control groups −0.38 [95% confidence interval −0.47 to −0.29], which corresponds to an absolute mean difference of 0.51%). The finding was robust in the sensitivity analyses based on quality assessment. Programs in which the disease manager was able to start or modify treatment with or without prior approval from the primary care physician resulted in a greater improvement in hemoglobin A1C levels (standardized mean difference −0.60 v. −0.28 in trials with no approval to do so; p < 0.001). Programs with a moderate or high frequency of contact reported a significant reduction in hemoglobin A1C levels compared with usual care; nevertheless, only programs with a high frequency of contact led to a significantly greater reduction compared with low-frequency contact programs (standardized mean difference −0.56 v. −0.30, p = 0.03). Interpretation Disease-management programs had a clinically moderate but significant impact on hemoglobin A1C levels among adults with diabetes. Effective components of programs were a high frequency of patient contact and the ability for disease managers to adjust treatment with or without prior physician approval. PMID:21149524
Dong, C; Chadwick, R S; Schechter, A N
1992-01-01
The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In sickle cell disease, the intracellular polymerization of sickle hemoglobin upon deoxygenation leads to a marked increase in intracellular viscosity and elastic stiffness as well as having indirect effects on the cell membrane. To estimate the components of abnormal cell rheology due to the polymerization process and that due to the membrane abnormalities, we have developed a simple mathematical model of whole cell deformability in narrow vessels. This model uses hydrodynamic lubrication theory to describe the pulsatile flow in the gap between a cell and the vessel wall. The interior of the cell is modeled as a Voigt viscoelastic solid with parameters for the viscous and elastic moduli, while the membrane is assigned an elastic shear modulus. In response to an oscillatory fluid shear stress, the cell--modeled as a cylinder of constant volume and surface area--undergoes a conical deformation which may be calculated. We use published values of normal and sickle cell membrane elastic modulus and of sickle hemoglobin viscous and elastic moduli as a function of oxygen saturation, to estimate normalized tip displacement, d/ho, and relative hydrodynamic resistance, Rr, as a function of polymer fraction of hemoglobin for sickle erythrocytes. These results show the transition from membrane to internal polymer dominance of deformability as oxygen saturation is lowered. More detailed experimental data, including those at other oscillatory frequencies and for cells with higher concentrations of hemoglobin S, are needed to apply fully this approach to understanding the deformability of sickle erythrocytes in the microcirculation. The model should be useful for reconciling the vast and disparate sets of data available on the abnormal properties of sickle cell hemoglobin and sickle erythrocyte membranes, the two main factors that lead to pathology in patients with this disease. PMID:1420913
NASA Astrophysics Data System (ADS)
Davies-Shaw, Dana; Huser, Thomas R.
2008-02-01
We report on the successful development of a custom in vitro system that provides a physiologically relevant means of demonstrating optical methodologies for the calibration and validation of oxygen delivery and hemoglobin oxygen binding dynamics in the brain. While measured optical signals have generally been equated to heme absorbance values that are, in turn, presumed to correspond to oxygen delivery, there has been little specific study of the sigmoidal oxygen binding dynamics of hemoglobin, a tetrameric protein, within physiologically relevant parameters. Our development of this novel analytical device addresses this issue, and is a significant step towards the minimally invasive and real-time monitoring of spatially resolved cognitive processes. As such, it is of particular interest for the detection of autistic brain activity in infants and young children. Moreover, our device and approach bring with them the ability to quantify and spatially resolve oxygen delivery down to volumes relevant to individual cell oxygen uptake, without any oxygen consumption, and with a temporal resolution that is physically unachievable by any oxygen tracking modality such as fMRI etc. Such a capability opens up myriad possibilities for further investigation, such as real-time tumor biopsy and resection; the tracking and quantification of cellular proliferation, as well as metabolic measures of tissue viability, to name but a few. Our system has also been engineered to be synergistic with virtually all imaging techniques, optical and otherwise.