Sample records for quantifying lewisite degradation

  1. Lewisite

    MedlinePlus

    ... place where the lewisite was released. If lewisite gas is released into the air, people may be exposed through skin contact or eye contact. They may also be exposed by breathing air that contains lewisite. If lewisite liquid is released into water, people may be exposed ...

  2. Topical efficacy of dimercapto-chelating agents against lewisite-induced skin lesions in SKH-1 hairless mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouret, Stéphane, E-mail: stephane.mouret@irba.fr; Wartelle, Julien; Emorine, Sandy

    2013-10-15

    Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated inmore » this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1 h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned. - Highlights: • Topically applied dimercapto-chelating agents reduce lewisite-induced skin damage. • One topical application of BAL or DMSA is sufficient to reverse lewisite effects. • Topical BAL is more effective than DMSA to counteract lewisite-induced skin

  3. [Measurements of IR absorption across section and spectrum simulation of lewisite].

    PubMed

    Zhang, Yuan-peng; Wang, Hai-tao; Zhang, Lin; Yang, Liu; Guo, Xiao-di; Bai, Yun; Sun, Hao

    2015-02-01

    The vapor infrared transmission spectra of varied concentration of lewisite-1 were measured by a long-path FT-IR spectrometer, and its characteristic frequencies are 814, 930, 1563 cm(-1); their infrared absorption cross section (a) were determined using Beer-Lambert law. The corresponding sigma values are 3.89 +/- 0.01, 1.43 +/- 0.06, 4.47 +/- 0.05 ( X 10(-20) cm2 x molecule(-1)). Two little teeny peaks, 1158, 1288 cm(-1) were found in the measured spectra. Density Functional Theory (DFT) was applied to calculated the infrared spectra of lewisite-1, -2, -3 on a b3lyp/6-311+g(d, p) level by Gauss09 package. The vibration modes were assigned by Gaussview5. 08. The calculated spectra and experimental spectra are in good agreement with each other in 600-1600 cm(-1) range, for the Person's r is 0.9991. The calculated spectra also showed three characteristic frequencies (293, 360, 374 cm(-1)) related to As atom. 0.977 was a scaling factor we determined for lewisite-1 through least-square error and its performance to scale lewisite-1, -2, -3 was acceptable. The results of this work are useful for monitoring environmental atmospheric concentrations of lewisite.

  4. Comprehensive DFT study on molecular structures of Lewisites in support of the Chemical Weapons Convention

    NASA Astrophysics Data System (ADS)

    Saeidian, Hamid; Sahandi, Morteza

    2015-11-01

    The structure of all of Lewisite's stereoisomers has been examined by B3LYP/6-311++G(3df,3pd) calculations. The geometry analysis for trans Lewisite L1-1 shows that the calculated bond angles, bond distances and dipole moment have a satisfactory relation compared with experimental values. HOMO-LUMO analysis of Lewisites reveals that L1-2 and L3-7 have the maximum and minimum electrophilicity index, respectively. The calculated chemical shifts were compared with experimental data, showing a very good agreement both for 1H and 13C. The vibrational and Raman frequencies of Lewisites have been precisely assigned and theoretical data were compared with the experimental vibrations. The bonding trends and Mulliken and atomic polar tensor charge distribution in Lewisites can be explained by the Bent's rule and the donor-acceptor interaction, respectively.

  5. Cutaneous exposure to lewisite causes acute kidney injury by invoking DNA damage and autophagic response.

    PubMed

    Srivastava, Ritesh K; Traylor, Amie M; Li, Changzhao; Feng, Wenguang; Guo, Lingling; Antony, Veena B; Schoeb, Trenton R; Agarwal, Anupam; Athar, Mohammad

    2018-06-01

    Lewisite (2-chlorovinyldichloroarsine) is an organic arsenical chemical warfare agent that was developed and weaponized during World Wars I/II. Stockpiles of lewisite still exist in many parts of the world and pose potential environmental and human health threat. Exposure to lewisite and similar chemicals causes intense cutaneous inflammatory response. However, morbidity and mortality in the exposed population is not only the result of cutaneous damage but is also a result of systemic injury. Here, we provide data delineating the pathogenesis of acute kidney injury (AKI) following cutaneous exposure to lewisite and its analog phenylarsine oxide (PAO) in a murine model. Both agents caused renal tubular injury, characterized by loss of brush border in proximal tubules and tubular cell apoptosis accompanied by increases in serum creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Interestingly, lewisite exposure enhanced production of reactive oxygen species (ROS) in the kidney and resulted in the activation of autophagic and DNA damage response (DDR) signaling pathways with increased expression of beclin-1, autophagy-related gene 7, and LC-3A/B-II and increased phosphorylation of γ-H 2 A.X and checkpoint kinase 1/2, respectively. Terminal deoxyribonucleotide-transferase-mediated dUTP nick-end labeling-positive cells were detected in renal tubules along with enhanced proapoptotic BAX/cleaved caspase-3 and reduced antiapoptotic BCL 2 . Scavenging ROS by cutaneous postexposure application of the antioxidant N-acetyl-l-cysteine reduced lewisite-induced autophagy and DNA damage. In summary, we provide evidence that topical exposure to lewisite causes AKI. The molecular mechanism underlying these changes involves ROS-dependent activation of autophagy and DDR pathway associated with the induction of apoptosis.

  6. Veterans at Risk: The Health Effects of Mustard Gas and Lewisite

    DTIC Science & Technology

    1993-01-01

    to Mustard Gas During WWII Testing Programs 370 F. Summary of the Department of the Army Report: Use of Volunteers in Chemical Agent Research 378 Key...concentrations of mustard agents or Lewisite in gas chambers or in field exercises over contaminated ground areas. The human subjects had experienced a...wide range of exposures to mustard agents or Lewisite, from mild (a drop of agent on the arm in "patch" tests) to quite severe (repeated gas chamber

  7. The sources, fate, and toxicity of chemical warfare agent degradation products.

    PubMed Central

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  8. Modeling the chelation of As(III) in lewisite by dithiols using density functional theory and solvent-assisted proton exchange.

    PubMed

    Harper, Lenora K; Bayse, Craig A

    2015-12-01

    Dithiols such as British anti-lewisite (BAL, rac-2,3-dimercaptopropanol) are an important class of antidotes for the blister agent lewisite (trans-2-chlorovinyldichloroarsine) and, more generally, are chelating agents for arsenic and other toxic metals. The reaction of the vicinal thiols of BAL with lewisite through the chelation of the As(III) center has been modeled using density functional theory (DFT) and solvent-assisted proton exchange (SAPE), a microsolvation method that uses a network of water molecules to mimic the role of bulk solvent in models of aqueous phase chemical reactions. The small activation barriers for the stepwise SN2-type nucleophilic attack of BAL on lewisite (0.7-4.9kcal/mol) are consistent with the favorable leaving group properties of the chloride and the affinity of As(III) for soft sulfur nucleophiles. Small, but insignificant, differences in activation barriers were found for the initial attack of the primary versus secondary thiol of BAL and the R vs S enantiomer. An examination of the relative stability of various dithiol-lewisite complexes shows that ethanedithiols like BAL form the most favorable chelation complexes because the angles formed in five-membered ring are most consistent with the hybridization of As(III). More obtuse S-As-S angles are required for larger chelate rings, but internal As⋯N or As⋯O interactions can enhance the stability of moderate-sized rings. The low barriers for lewisite detoxification by BAL and the greater stability of the chelation complexes of small dithiols are consistent with the rapid reversal of toxicity demonstrated in previously reported animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Determination of mustard and lewisite related compounds in abandoned chemical weapons (Yellow shells) from sources in China and Japan.

    PubMed

    Hanaoka, Shigeyuki; Nomura, Koji; Wada, Takeharu

    2006-01-06

    Knowledge of the states of the contents in chemical munitions that Japanese Imperial Forces abandoned at the end of World War II in Japan and China is gravely lacking. To unearth and recover these chemical weapons and detoxify the contents safely, it is essential to establish analytical procedures to definitely determine the CWA contents. We established such a procedure and applied it to the analysis of chemicals in the abandoned shells. Yellow shells are known to contain sulfur mustard, lewisite, or a mixture of both. Lewisite was analyzed without thiol derivatization, because it and its decomposition products yield the same substances in the derivatization. Analysis using our new procedure showed that both mustard and lewisite remained as the major components after the long abandonment of nearly 60 years. The content of mustard was 43% and that of lewisite 55%. The viscous material found was suggested to be mostly oligomers of mustard. Comparison of the components in the Yellow agents with mustard recovered in both Japan and China showed a difference in the impurities between the CWAs produced by the former Imperial navy and those by the former Imperial army.

  10. 38 CFR 3.316 - Claims based on chronic effects of exposure to mustard gas and Lewisite.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., scar formation, or the following cancers: Nasopharyngeal; laryngeal; lung (except mesothelioma); or squamous cell carcinoma of the skin. (2) Full-body exposure to nitrogen or sulfur mustard or Lewisite...

  11. 38 CFR 3.316 - Claims based on chronic effects of exposure to mustard gas and Lewisite.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., scar formation, or the following cancers: Nasopharyngeal; laryngeal; lung (except mesothelioma); or squamous cell carcinoma of the skin. (2) Full-body exposure to nitrogen or sulfur mustard or Lewisite...

  12. 38 CFR 3.316 - Claims based on chronic effects of exposure to mustard gas and Lewisite.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., scar formation, or the following cancers: Nasopharyngeal; laryngeal; lung (except mesothelioma); or squamous cell carcinoma of the skin. (2) Full-body exposure to nitrogen or sulfur mustard or Lewisite...

  13. 38 CFR 3.316 - Claims based on chronic effects of exposure to mustard gas and Lewisite.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., scar formation, or the following cancers: Nasopharyngeal; laryngeal; lung (except mesothelioma); or squamous cell carcinoma of the skin. (2) Full-body exposure to nitrogen or sulfur mustard or Lewisite...

  14. 38 CFR 3.316 - Claims based on chronic effects of exposure to mustard gas and Lewisite.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., scar formation, or the following cancers: Nasopharyngeal; laryngeal; lung (except mesothelioma); or squamous cell carcinoma of the skin. (2) Full-body exposure to nitrogen or sulfur mustard or Lewisite...

  15. Quantifying South East Asia's forest degradation using latest generation optical and radar satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Broich, M.; Tulbure, M. G.; Wijaya, A.; Weisse, M.; Stolle, F.

    2017-12-01

    Deforestation and forest degradation form the 2nd largest source of anthropogenic CO2 emissions. While deforestation is being globally mapped with satellite image time series, degradation remains insufficiently quantified. Previous studies quantified degradation for small scale, local sites. A method suitable for accurate mapping across large areas has not yet been developed due to the variability of the low magnitude and short-lived degradation signal and the absence of data with suitable resolution properties. Here we use a combination of newly available streams of free optical and radar image time series acquired by NASA and ESA, and HPC-based data science algorithms to innovatively quantify degradation consistently across Southeast Asia (SEA). We used Sentinel1 c-band radar data and NASA's new Harmonized Landsat8 (L8) Sentinel2 (S2) product (HLS) for cloud free optical images. Our results show that dense time series of cloud penetrating Sentinel 1 c-band radar can provide degradation alarm flags, while the HLS product of cloud-free optical images can unambiguously confirm degradation alarms. The detectability of degradation differed across SEA. In the seasonal forest of continental SEA the reliability of our radar-based alarm flags increased as the variability in landscape moisture decreases in the dry season. We reliably confirmed alarms with optical image time series during the late dry season, where degradation in open canopy forests becomes detectable once the undergrowth vegetation has died down. Conversely, in insular SEA landscape moisture is low, the radar time series generated degradation alarms flags with moderate to high reliability throughout the year, further confirmed with the HLS product. Based on the HLS product we can now confirm degradation within < 6 months on average as opposed to 1 year when using either L8 or S2 alone. In contrast to continental SEA, across insular SEA our degradation maps are not suitable to provide annual maps of total

  16. Quantifying the degradation of organic matter in marine sediments: A review and synthesis

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra; Jørgensen, B. B.; LaRowe, D. E.; Middelburg, J. J.; Pancost, R. D.; Regnier, P.

    2013-08-01

    Quantifying the rates of biogeochemical processes in marine sediments is essential for understanding global element cycles and climate change. Because organic matter degradation is the engine behind benthic dynamics, deciphering the impact that various forces have on this process is central to determining the evolution of the Earth system. Therefore, recent developments in the quantitative modeling of organic matter degradation in marine sediments are critically reviewed. The first part of the review synthesizes the main chemical, biological and physical factors that control organic matter degradation in sediments while the second part provides a general review of the mathematical formulations used to model these processes and the third part evaluates their application over different spatial and temporal scales. Key transport mechanisms in sedimentary environments are summarized and the mathematical formulation of the organic matter degradation rate law is described in detail. The roles of enzyme kinetics, bioenergetics, temperature and biomass growth in particular are highlighted. Alternative model approaches that quantify the degradation rate constant are also critically compared. In the third part of the review, the capability of different model approaches to extrapolate organic matter degradation rates over a broad range of temporal and spatial scales is assessed. In addition, the structure, functions and parameterization of more than 250 published models of organic matter degradation in marine sediments are analyzed. The large range of published model parameters illustrates the complex nature of organic matter dynamics, and, thus, the limited transferability of these parameters from one site to another. Compiled model parameters do not reveal a statistically significant correlation with single environmental characteristics such as water depth, deposition rate or organic matter flux. The lack of a generic framework that allows for model parameters to be

  17. Effect of quantifying peptide release on ruminal protein degradation determined using the inhibitor in vitro system.

    PubMed

    Colombini, S; Broderick, G A; Clayton, M K

    2011-04-01

    The aim of this work was to compare use of an o-phthaldialdehyde (OPA) colorimetric assay (OPA-C), which responds to both free AA and peptides, with an OPA fluorimetric assay (OPA-F), which is insensitive to peptides, to quantify rates of ruminal protein degradation in the inhibitor in vitro system using Michaelis-Menten saturation kinetics. Four protein concentrates (expeller-extracted soybean meal, ESBM; 2 solvent-extracted soybean meals, SSBM1 and SSBM2; and casein) were incubated in a ruminal in vitro system treated with hydrazine and chloramphenicol to inhibit microbial uptake of protein degradation products. Proteins were weighed to give a range of N concentrations (from 0.15 to 3 mg of N/mL of inoculum) and incubated with 10 mL of ruminal inoculum and 5 mL of buffer; fermentations were stopped after 2 h by adding trichloroacetic acid (TCA). Proteins were analyzed for buffer-soluble N and buffer extracts were treated with TCA to determine N degraded at t=0 (FD0). The TCA supernatants were analyzed for ammonia (phenol-hypochlorite assay), total AA (TAA; OPA-F), and TAA plus oligopeptides (OPA-C) by flow injection analysis. Velocity of protein degradation was computed from extent of release of 1) ammonia plus free TAA or 2) ammonia plus free TAA and peptides. Rate of degradation (kd) was quantified using nonlinear regression of the integrated Michaelis-Menten equation. The parameters Km (Michaelis constant) and kd (Vmax/Km), where Vmax=maximum velocity, were estimated directly; kd values were adjusted (Akd) for the fraction FD0 using the equation Akd=kd-FD0/2. The OPA-C assay yielded faster degradation rates due to the contribution of peptides to the fraction degraded (overall mean=0.280/h by OPA-C and 0.219/h by OPA-F). Degradation rates for SSBM samples (0.231/h and 0.181/h) and ESBM (0.086/h) obtained by the OPA-C assay were more rapid than rates reported by the National Research Council (NRC). Both assays indicated that the 2 SSBM differed in rumen

  18. Effect of quantifying peptide release on ruminal protein degradation determined using the inhibitor in vitro system

    USDA-ARS?s Scientific Manuscript database

    The aim of this work was to compare use of an o-phthaldialdehyde (OPA) colorimetric assay (OPA-C), which responds to both free AA and peptides, with an OPA fluorimetric assay (OPA-F), which is insensitive to peptides, to quantify rates of ruminal protein degradation in the inhibitor in vitro system ...

  19. Quantifying Osteogenic Cell Degradation of Silk Biomaterials

    PubMed Central

    Sengupta, Sejuti; Park, Sang-Hyug; Seok, Gil Eun; Patel, Atur; Numata, Keiji; Lu, Chia-Li; Kaplan, David L.

    2010-01-01

    The degradation of silk protein films by human mesenchymal stem cells (hMSCs), osteoblasts and osteoclasts, cells involved in osteogenic functions in normal and diseased bone, was assessed in vitro. The involvement of specific matrix metalloproteinases (MMPs) and integrin signaling in the degradation process was determined. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to quantitatively compare degradation by the different cell types using surface patterned silk films. Osteoblasts and osteoclasts demonstrated significant degradation of the silk films in vitro in comparison to the hMSCs and the film controls without cells. The osteoclasts degraded the silk films the most and also generated the highest level of MMPs 1 and 2. The osteoblasts upregulated integrins α5 and β1 while the osteoclasts upregulated integrins α2 and β1. There was significant contrast in responses on the silk matrices between osteogenic cells vs undifferentiated hMSCs to illustrate in vitro the role of cell type on matrix remodeling. These are important issues in matching biomaterial matrix features and studies in vitro to remodeling in vivo, in both normal and disease tissue systems. Cell populations and niche factors impact tissue regeneration, wound healing and physiological state and the ability to better understand the role of different cell types is critical to overall regenerative outcomes. PMID:21105641

  20. Quantifying the degradation of TNT and RDX in a saline environment with and without UV-exposure.

    PubMed

    Sisco, Edward; Najarro, Marcela; Bridge, Candice; Aranda, Roman

    2015-06-01

    Terrorist attacks in a maritime setting, such as the bombing of the USS Cole in 2000, or the detection of underwater mines, require the development of proper protocols to collect and analyse explosive material from a marine environment. In addition to proper analysis of the explosive material, protocols must also consider the exposure of the material to potentially deleterious elements, such as UV light and salinity, time spent in the environment, and time between storage and analysis. To understand how traditional explosives would be affected by such conditions, saline solutions of explosives were exposed to natural and artificial sunlight. Degradation of the explosives over time was then quantified using negative chemical ionization gas chromatography mass spectrometry (GC/NCI-MS). Two explosives, trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX), were exposed to different aqueous environments and light exposures with salinities ranging from freshwater to twice the salinity of ocean water. Solutions were then aged for up to 6 months to simulate different conditions the explosives may be recovered from. Salinity was found to have a negligible impact on the degradation of both RDX and TNT. RDX was stable in solutions of all salinities while TNT solutions degraded regardless of salinity. Solutions of varying salinities were also exposed to UV light, where accelerated degradation was seen for both explosives. Potential degradation products of TNT were identified using electrospray ionization mass spectrometry (ESI-MS), and correspond to proposed degradation products discussed in previously published works [1]. Published by Elsevier Ireland Ltd.

  1. Clinical progression of ocular injury following arsenical vesicant lewisite exposure.

    PubMed

    Tewari-Singh, Neera; Croutch, Claire R; Tuttle, Richard; Goswami, Dinesh G; Kant, Rama; Peters, Eric; Culley, Tara; Ammar, David A; Enzenauer, Robert W; Petrash, J Mark; Casillas, Robert P; Agarwal, Rajesh

    2016-12-01

    Ocular injury by lewisite (LEW), a potential chemical warfare and terrorist agent, results in edema of eyelids, inflammation, massive corneal necrosis and blindness. To enable screening of effective therapeutics to treat ocular injury from LEW, useful clinically-relevant endpoints are essential. Hence, we designed an efficient exposure system capable of exposing up to six New-Zealand white rabbits at one time, and assessed LEW vapor-induced progression of clinical ocular lesions mainly in the cornea. The right eye of each rabbit was exposed to LEW (0.2 mg/L) vapor for 2.5, 5.0, 7.5 and 10.0 min and clinical progression of injury was observed for 28 days post-exposure (dose-response study), or exposed to same LEW dose for 2.5 and 7.5 min and clinical progression of injury was observed for up to 56 days post-exposure (time-response study); left eye served as an unexposed control. Increasing LEW exposure caused corneal opacity within 6 h post-exposure, which increased up to 3 days, slightly reduced thereafter till 3 weeks, and again increased thereafter. LEW-induced corneal ulceration peaked at 1 day post-exposure and its increase thereafter was observed in phases. LEW exposure induced neovascularization starting at 7 days which peaked at 22-35 days post-exposure, and remained persistent thereafter. In addition, LEW exposure caused corneal thickness, iris redness, and redness and swelling of the conjunctiva. Together, these findings provide clinical sequelae of ocular injury following LEW exposure and for the first time establish clinically-relevant quantitative endpoints, to enable the further identification of histopathological and molecular events involved in LEW-induced ocular injury.

  2. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services

    NASA Astrophysics Data System (ADS)

    Wang, Dai; Coignard, Jonathan; Zeng, Teng; Zhang, Cong; Saxena, Samveg

    2016-11-01

    The risk of accelerated electric vehicle battery degradation is commonly cited as a concern inhibiting the implementation of vehicle-to-grid (V2G) technology. However, little quantitative evidence exists in prior literature to refute or substantiate these concerns for different grid services that vehicles may offer. In this paper, a methodology is proposed to quantify electric vehicle (EV) battery degradation from driving only vs. driving and several vehicle-grid services, based on a semi-empirical lithium-ion battery capacity fade model. A detailed EV battery pack thermal model and EV powertrain model are utilized to capture the time-varying battery temperature and working parameters including current, internal resistance and state-of-charge (SOC), while an EV is driving and offering various grid services. We use the proposed method to simulate the battery degradation impacts from multiple vehicle-grid services including peak load shaving, frequency regulation and net load shaping. The degradation impact of these grid services is compared against baseline cases for driving and uncontrolled charging only, for several different cases of vehicle itineraries, driving distances, and climate conditions. Over the lifetime of a vehicle, our results show that battery wear is indeed increased when vehicles offer V2G grid services. However, the increased wear from V2G is inconsequential compared with naturally occurring battery wear (i.e. from driving and calendar ageing) when V2G services are offered only on days of the greatest grid need (20 days/year in our study). In the case of frequency regulation and peak load shaving V2G grid services offered 2 hours each day, battery wear remains minimal even if this grid service is offered every day over the vehicle lifetime. Our results suggest that an attractive tradeoff exists where vehicles can offer grid services on the highest value days for the grid with minimal impact on vehicle battery life.

  3. Long-term neurological and neuropsychological complications of sulfur mustard and Lewisite mixture poisoning in Chinese victims exposed to chemical warfare agents abandoned at the end of WWII.

    PubMed

    Isono, O; Kituda, A; Fujii, M; Yoshinaka, T; Nakagawa, G; Suzuki, Y

    2018-09-01

    In August 2003, 44 victims were poisoned by chemical warfare agents (CWAs) leaked from five drums that were excavated at a construction site in Qiqihar, Northeast China. The drums were abandoned by the former Japanese imperial army during World War II and contained a mixture of Sulfur mustard (SM) and Lewisite. We carried out a total of six regular check-ups between 2006 and 2014, and from 2008 we added neurological evaluations including neuropsychological test and autonomic nervous function test in parallel with medical follow-up as much as was possible. Severe autonomic failure, such as hyperhidrosis, pollakiuria, diarrhoea, diminished libido, and asthenia appeared in almost all victims. Polyneuropathy occurred in 35% of the victims and constricted vision occurred in 20% of them. The rates of abnormal response on cold pressor test (CPT), active standing test (AST), Heart rate variability (CV R-R ), performed in 2014, were 63.1%, 31.6%, and 15.9%, respectively. On neuropsychological testing evaluated in 2010, a generalized cognitive decline was observed in 42% of the victims. Memories and visuospatial abilities were affected in the remaining victims. Finally, a 17-item PTSD questionnaire and the Beck Depression Inventory evaluated in 2014 revealed long-lasting severe PTSD symptoms and depression of the victims. Our findings suggest that an SM/Lewisite compound have significant adverse consequences directly in cognitive and emotional network and autonomic nervous systems in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Quantifying edge effect extent and its impacts on carbon stocks across a degraded landscape in the Amazon using airborne lidar.

    NASA Astrophysics Data System (ADS)

    dos-Santos, M. N.; Keller, M.; Morton, D. C.; Longo, M.; Scaranello, M. A., Sr.; Pinagé, E. R.; Correa Pabon, R.

    2017-12-01

    Ongoing tropical forest degradation and forest fragmentation increases forest edge area. Forest edges experience hotter, drier, and windier conditions and greater exposure to fires compared to interior areas, which elevate rates of tree mortality. Previous studies have suggested that forests within 100 m from the edge may lose 36% of biomass during the first two decades following fragmentation, although such estimates are based on a limited number of experimental plots. Degraded forests behave differently from intact forests and quantifying edge effect extension in a degraded forest landscape is more challenging compared to experimental studies. To overcome these limitations, we used airborne lidar data to quantify changes in forest structure near 91 edges in a heavily degraded tropical forest in Paragominas Municipality, eastern Brazilian Amazon. Paragominas was a center of timber production in the 1990s. Today, the landscape is a mosaic of different agricultural uses, degraded, secondary and unmanaged forests. A total of 3000 ha of high density (mean density of 17.9 points/m2) lidar data were acquired in August/September 2013 and June/July 2014 over 30 transects (200 x 5000m), systematically distributed over the study area, using the Optech Orion M-200 laser scanning system. We adopted lidar-measured forest heights as the edge effect criteria and found that mean extent of edge effect was highly variable across degraded forests (150 ± 354m) and secondary forest fragments (265 ± 365m). We related the extent of forest edges to the historical disturbances identified in Landsat imagery since 1984. Contrary to previous studies, we found that carbon stocks along forest edges were not significantly lower than forest core biomass when edges were defined by previously estimated range of 100 and 300m. In frontier forests, ecological edge effect may be masked by the cumulative impact of historic forest degradation - an anthropogenic edge effect that extends beyond the

  5. A real time sorbent based air monitoring system for determining low level airborne exposure levels to Lewisite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattin, F.G.; Paul, D.G.; Jakubowski, E.M.

    1994-12-31

    The Real Time Analytical Platform (RTAP) is designed to provide mobile, real-time monitoring support to ensure protection of worker safety in areas where military unique compounds are used and stored, and at disposal sites. Quantitative analysis of low-level vapor concentrations in air is accomplished through sorbent-based collection with subsequent thermal desorption into a gas chromatograph (GC) equipped with a variety of detectors. The monitoring system is characterized by its sensitivity (ability to measure at low concentrations), selectivity (ability to filter out interferences), dynamic range and linearity, real time mode (versus methods requiring extensive sample preparation procedures), and ability to interfacemore » with complimentary GC detectors. This presentation describes an RTAP analytical method for analyzing lewisite, an arsenical compound, that consists of a GC screening technique with an Electron Capture Detector (ECD), and a confirmation technique using an Atomic Emission Detector (AED). Included in the presentation is a description of quality assurance objectives in the monitoring system, and an assessment of method accuracy, precision and detection levels.« less

  6. Dilated cardiomyopathy and left bundle branch block associated with ingestion of colloidal gold and silver is reversed by British antiLewisite and vitamin E: The potential toxicity of metals used as health supplements

    PubMed Central

    Archer, Stephen Lawrence

    2008-01-01

    A case of left bundle branch block and a dilated, nonhypertrophic cardiomyopathy associated with ingestion of colloidal gold and silver as an ‘energy tonic’ is described. The cardiac disease was reversed within two months by a course of dimercaprol (Akorn Inc, USA) (British antiLewisite) and vitamin E. This is the first case of gold and silver cardiomyopathy in humans, and highlights the risks of these colloidal metal ‘health supplements’. PMID:18464946

  7. Quantifying rock mass strength degradation in coastal rock cliffs

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Lim, Michael; Rosser, Nick; Petley, David; Norman, Emma; Barlow, John

    2010-05-01

    Although rock cliffs are generally perceived to evolve through undercutting and cantilever collapse of material, the recent application of high-resolution three-dimensional monitoring techniques has suggested that the volumetric losses recorded from layers above the intertidal zone produce an equally significant contribution to cliff behaviour. It is therefore important to understand the controls on rockfalls in such layers. Here we investigate the progressive influence of subaerial exposure and weathering on the geotechnical properties of the rocks encountered within the geologically complex coastal cliffs of the northeast coast of England, UK. Through a program of continuous in situ monitoring of local environmental and tidal conditions and laboratory rock strength testing, we aim to better quantify the relationships between environmental processes and the geotechnical response of the cliff materials. We have cut fresh (not previously exposed) samples from the three main rock types (sandstone, mudstone and shale) found within the cliff to uniform size, shape and volume, thus minimizing variability and removing previous surface weathering effects. In order to characterise the intact strength of the rocks, we have undertaken unconfined compressive strength and triaxial strength tests using high pressure (400 kN maximum axial load; 64 MPa maximum cell pressure) triaxial testing apparatus. The results outline the peak strength characteristics of the unweathered materials. We then divided the samples of each lithology into different experimental groups. The first set of samples remained in the laboratory at constant temperature and humidity; this group provides our control. Samples from each of the three rock types were located at heights on the cliff face corresponding with the different lithologies: at the base (mudstone), in the mid cliff (shale) and at the top of the cliff (sandstone). This subjected them to the same conditions experienced by the in situ cliff

  8. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  9. Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta.

    PubMed

    Cheheltani, Rabee; McGoverin, Cushla M; Rao, Jayashree; Vorp, David A; Kiani, Mohammad F; Pleshko, Nancy

    2014-06-21

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues.

  10. Fourier Transform Infrared Spectroscopy to Quantify Collagen and Elastin in an In Vitro Model of Extracellular Matrix Degradation in Aorta

    PubMed Central

    Cheheltani, Rabee; McGoverin, Cushla M.; Rao, Jayashree; Vorp, David A.; Kiani, Mohammad F.; Pleshko, N.

    2014-01-01

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues. PMID:24761431

  11. A high-throughput cellular assay to quantify the p53-degradation activity of E6 from different human papillomavirus types.

    PubMed

    Gagnon, David; Archambault, Jacques

    2015-01-01

    A subset of human papillomaviruses (HPVs), known as the high-risk types, are the causative agents of cervical cancer and other malignancies of the anogenital region and oral mucosa. The capacity of these viruses to induce cancer and to immortalize cells in culture relies in part on a critical function of their E6 oncoprotein, that of promoting the poly-ubiquitination of the cellular tumor suppressor protein p53 and its subsequent degradation by the proteasome. Here, we describe a cellular assay to measure the p53-degradation activity of E6 from different HPV types. This assay is based on a translational fusion of p53 to Renilla luciferase (Rluc-p53) that remains sensitive to degradation by high-risk E6 and whose steady-state levels can be accurately measured in standard luciferase assays. The p53-degradation activity of any E6 protein can be tested and quantified in transiently transfected cells by determining the amount of E6-expression vector required to reduce by half the levels of RLuc-p53 luciferase activity (50 % effective concentration [EC50]). The high-throughput and quantitative nature of this assay makes it particularly useful to compare the p53-degradation activities of E6 from several HPV types in parallel.

  12. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  13. Quantifying Permafrost Extent, Condition, and Degradation at Department of Defense Installations in the Arctic

    NASA Astrophysics Data System (ADS)

    Edlund, C. A.

    2017-12-01

    The Department of Defense (DoD) is planning over $500M in military construction on Eielson Air Force Base (AFB) within the next three fiscal years. This construction program will expand the footprint of facilities and change the storm water management scheme, which will have second order effects on the underlying permafrost layer. These changes in permafrost will drive engineering decision making at local and regional levels, and help shape the overall strategy for military readiness in the Arctic. Although many studies have attempted to predict climate change induced permafrost degradation, very little site-specific knowledge exists on the anthropogenic effects to permafrost at this location. In 2016, the permafrost degradation rates at Eielson AFB were modeled using the Geophysics Institute Permafrost Laboratory (GIPL) 2.1 model and limited available geotechnical and climate data. Model results indicated a degradation of the discontinuous permafrost layer at Eielson AFB of up to 7 meters in depth over the next century. To further refine an understanding of the geophysics at Eielson AFB and help engineers and commanders make more informed decisions on engineering and operations in the arctic, this project established two permafrost monitoring stations near the future construction sites. Installation of the stations occurred in July 2017. Permafrost was located and characterized using two Electrical Resistivity Tomography surveys, as well as direct frost probe measurements. Using this data, the research team optimized the placement location and depth of two long term ground temperature monitoring stations, and then installed the stations for data collection. The data set generated by these stations are the first of their kind at Eielson AFB, and represent the first systematic effort in the DoD to quantify permafrost condition before, during, and after construction and other anthropogenic activities in order to fully understand the effects of that activity in the

  14. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework

    NASA Astrophysics Data System (ADS)

    Wang, Taihua; Yang, Hanbo; Yang, Dawen; Qin, Yue; Wang, Yuhan

    2018-03-01

    The source region of the Yellow River (SRYR) is greatly important for water resources throughout the entire Yellow River Basin. Streamflow in the SRYR has experienced great changes over the past few decades, which is closely related to the frozen ground degradation; however, the extent of this influence is still unclear. In this study, the air freezing index (DDFa) is selected as an indicator for the degree of frozen ground degradation. A water-energy balance equation within the Budyko framework is employed to quantify the streamflow response to the direct impact of climate change, which manifests as changes in the precipitation and potential evapotranspiration, as well as the impact of frozen ground degradation, which can be regarded as part of the indirect impact of climate change. The results show that the direct impact of climate change and the impact of frozen ground degradation can explain 55% and 33%, respectively, of the streamflow decrease for the entire SRYR from Period 1 (1965-1989) to Period 2 (1990-2003). In the permafrost-dominated region upstream of the Jimai hydrological station, the impact of frozen ground degradation can explain 71% of the streamflow decrease. From Period 2 (1990-2003) to Period 3 (2004-2015), the observed streamflow did not increase as much as the precipitation; this could be attributed to the combined effects of increasing potential evapotranspiration and more importantly, frozen ground degradation. Frozen ground degradation could influence streamflow by increasing the groundwater storage when the active layer thickness increases in permafrost-dominated regions. These findings will help develop a better understanding of the impact of frozen ground degradation on water resources in the Tibetan Plateau.

  15. Quantifying deforestation and forest degradation with thermal response.

    PubMed

    Lin, Hua; Chen, Yajun; Song, Qinghai; Fu, Peili; Cleverly, James; Magliulo, Vincenzo; Law, Beverly E; Gough, Christopher M; Hörtnagl, Lukas; Di Gennaro, Filippo; Matteucci, Giorgio; Montagnani, Leonardo; Duce, Pierpaolo; Shao, Changliang; Kato, Tomomichi; Bonal, Damien; Paul-Limoges, Eugénie; Beringer, Jason; Grace, John; Fan, Zexin

    2017-12-31

    Deforestation and forest degradation cause the deterioration of resources and ecosystem services. However, there are still no operational indicators to measure forest status, especially for forest degradation. In the present study, we analysed the thermal response number (TRN, calculated by daily total net radiation divided by daily temperature range) of 163 sites including mature forest, disturbed forest, planted forest, shrubland, grassland, savanna vegetation and cropland. TRN generally increased with latitude, however the regression of TRN against latitude differed among vegetation types. Mature forests are superior as thermal buffers, and had significantly higher TRN than disturbed and planted forests. There was a clear boundary between TRN of forest and non-forest vegetation (i.e. grassland and savanna) with the exception of shrubland, whose TRN overlapped with that of forest vegetation. We propose to use the TRN of local mature forest as the optimal TRN (TRN opt ). A forest with lower than 75% of TRN opt was identified as subjected to significant disturbance, and forests with 66% of TRN opt was the threshold for deforestation within the absolute latitude from 30° to 55°. Our results emphasized the irreplaceable thermal buffer capacity of mature forest. TRN can be used for early warning of deforestation and degradation risk. It is therefore a valuable tool in the effort to protect forests and prevent deforestation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems

    NASA Astrophysics Data System (ADS)

    Pastor-Fernández, Carlos; Uddin, Kotub; Chouchelamane, Gael H.; Widanage, W. Dhammika; Marco, James

    2017-08-01

    Degradation of Lithium-ion batteries is a complex process that is caused by a variety of mechanisms. For simplicity, ageing mechanisms are often grouped into three degradation modes (DMs): conductivity loss (CL), loss of active material (LAM) and loss of lithium inventory (LLI). State of Health (SoH) is typically the parameter used by the Battery Management System (BMS) to quantify battery degradation based on the decrease in capacity and the increase in resistance. However, the definition of SoH within a BMS does not currently include an indication of the underlying DMs causing the degradation. Previous studies have analysed the effects of the DMs using incremental capacity and differential voltage (IC-DV) and electrochemical impedance spectroscopy (EIS). The aim of this study is to compare IC-DV and EIS on the same data set to evaluate if both techniques provide similar insights into the causes of battery degradation. For an experimental case of parallelized cells aged differently, the effects due to LAM and LLI were found to be the most pertinent, outlining that both techniques are correlated. This approach can be further implemented within a BMS to quantify the causes of battery ageing which would support battery lifetime control strategies and future battery designs.

  17. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction

    PubMed Central

    Xu, Yichi; Meng, Haoye; Yin, Heyong; Sun, Zhen; Peng, Jiang; Xu, Xiaolong; Guo, Quanyi; Xu, Wenjing; Yu, Xiaoming; Yuan, Zhiguo; Xiao, Bo; Wang, Cheng; Wang, Yu; Liu, Shuyun; Lu, Shibi; Wang, Zhaoxu; Wang, Aiyuan

    2018-01-01

    Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12–24 (P<0.05), and continued degradation until the end of the 48-week experimental period. The magnesium content decreased as the implant degraded (P<0.05); however, the density of the material exhibited almost no change. Micro-CT results also demonstrated that pin volume, pin mineral density, mean ‘pin thickness’, bone surface/bone volume and trabecular separation decreased over time (P<0.05), and that the pin surface area/pin volume, bone volume fraction, trabecular thickness, trabecular number and tissue mineral density increased over time (P<0.05), indicating that the number of bones and density of new bone increased as magnesium degraded. These results support the positive effect of magnesium on osteogenesis. However, from the maximum inner diameter of the new bone loop and diameter of the pin in the same position, the magnesium alloy was not capable of creating sufficient bridges between the bones and biomaterials when there were preexisting gaps. Histological analyses indicated that there were no inflammatory responses around the implants. The results of the present study indicate that a micro-arc-oxidized AZ31 magnesium alloy is safe in vivo and efficiently degraded. Furthermore, the novel bone

  18. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction.

    PubMed

    Xu, Yichi; Meng, Haoye; Yin, Heyong; Sun, Zhen; Peng, Jiang; Xu, Xiaolong; Guo, Quanyi; Xu, Wenjing; Yu, Xiaoming; Yuan, Zhiguo; Xiao, Bo; Wang, Cheng; Wang, Yu; Liu, Shuyun; Lu, Shibi; Wang, Zhaoxu; Wang, Aiyuan

    2018-01-01

    Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12-24 (P<0.05), and continued degradation until the end of the 48-week experimental period. The magnesium content decreased as the implant degraded (P<0.05); however, the density of the material exhibited almost no change. Micro-CT results also demonstrated that pin volume, pin mineral density, mean 'pin thickness', bone surface/bone volume and trabecular separation decreased over time (P<0.05), and that the pin surface area/pin volume, bone volume fraction, trabecular thickness, trabecular number and tissue mineral density increased over time (P<0.05), indicating that the number of bones and density of new bone increased as magnesium degraded. These results support the positive effect of magnesium on osteogenesis. However, from the maximum inner diameter of the new bone loop and diameter of the pin in the same position, the magnesium alloy was not capable of creating sufficient bridges between the bones and biomaterials when there were preexisting gaps. Histological analyses indicated that there were no inflammatory responses around the implants. The results of the present study indicate that a micro-arc-oxidized AZ31 magnesium alloy is safe in vivo and efficiently degraded. Furthermore, the novel bone

  19. Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEX™ corn stover.

    PubMed

    Sarks, Cory; Higbee, Alan; Piotrowski, Jeff; Xue, Saisi; Coon, Joshua J; Sato, Trey K; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2016-04-01

    Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Quantifying Ballistic Armor Performance: A Minimally Invasive Approach

    NASA Astrophysics Data System (ADS)

    Holmes, Gale; Kim, Jaehyun; Blair, William; McDonough, Walter; Snyder, Chad

    2006-03-01

    Theoretical and non-dimensional analyses suggest a critical link between the performance of ballistic resistant armor and the fundamental mechanical properties of the polymeric materials that comprise them. Therefore, a test methodology that quantifies these properties without compromising an armored vest that is exposed to the industry standard V-50 ballistic performance test is needed. Currently, there is considerable speculation about the impact that competing degradation mechanisms (e.g., mechanical, humidity, ultraviolet) may have on ballistic resistant armor. We report on the use of a new test methodology that quantifies the mechanical properties of ballistic fibers and how each proposed degradation mechanism may impact a vest's ballistic performance.

  1. Flow injection trace gas analysis method for on-site determination of organoarsenicals

    DOEpatents

    Aldstadt, III, Joseph H.

    1997-01-01

    A method for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere.

  2. Antifoam degradation testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  3. Flow injection trace gas analysis method for on-site determination of organoarsenicals

    DOEpatents

    Aldstadt, J.H. III

    1997-06-24

    A method is described for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere. 2 figs.

  4. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    PubMed Central

    Sherry, Angela; Grant, Russell J.; Aitken, Carolyn M.; Jones, D. Martin; Head, Ian M.; Gray, Neil D.

    2014-01-01

    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5–nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12–nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12–nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers. PMID:24765087

  5. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation

    NASA Astrophysics Data System (ADS)

    Rappaport, Danielle I.; Morton, Douglas C.; Longo, Marcos; Keller, Michael; Dubayah, Ralph; Nara dos-Santos, Maiza

    2018-06-01

    Despite sustained declines in Amazon deforestation, forest degradation from logging and fire continues to threaten carbon stocks, habitat, and biodiversity in frontier forests along the Amazon arc of deforestation. Limited data on the magnitude of carbon losses and rates of carbon recovery following forest degradation have hindered carbon accounting efforts and contributed to incomplete national reporting to reduce emissions from deforestation and forest degradation (REDD+). We combined annual time series of Landsat imagery and high-density airborne lidar data to characterize the variability, magnitude, and persistence of Amazon forest degradation impacts on aboveground carbon density (ACD) and canopy structure. On average, degraded forests contained 45.1% of the carbon stocks in intact forests, and differences persisted even after 15 years of regrowth. In comparison to logging, understory fires resulted in the largest and longest-lasting differences in ACD. Heterogeneity in burned forest structure varied by fire severity and frequency. Forests with a history of one, two, and three or more fires retained only 54.4%, 25.2%, and 7.6% of intact ACD, respectively, when measured after a year of regrowth. Unlike the additive impact of successive fires, selective logging before burning did not explain additional variability in modeled ACD loss and recovery of burned forests. Airborne lidar also provides quantitative measures of habitat structure that can aid the estimation of co-benefits of avoided degradation. Notably, forest carbon stocks recovered faster than attributes of canopy structure that are critical for biodiversity in tropical forests, including the abundance of tall trees. We provide the first comprehensive look-up table of emissions factors for specific degradation pathways at standard reporting intervals in the Amazon. Estimated carbon loss and recovery trajectories provide an important foundation for assessing the long-term contributions from forest

  6. Decontamination and Disposal Methods for Chemical Agents - A Literature Survey

    DTIC Science & Technology

    1982-11-01

    aqueous copper (I) ammonia complex to give a red copper (1) acetylide precipitate. The precipitate was determined either iodometricaily (sensitivity of I...ppm in decontamination solution) or colorintrically by a copper (11) ammonia complex (12 ppm). Lewisite was also assayed by gas liquid chromatography...to ammonia (then degraded to nitrogen) and carbonate ion. The latter reaction is relatively slow. The reaction may thus be con- sidered to consist of

  7. BACTERIAL METHYLMERCURY DEGRADATION IN FLORIDA EVERGLADES PEAT SEDIMENT

    EPA Science Inventory

    Methylmercury (MeHg) degradation was investigated along an eutrophication gradient in the Florida Everglades by quantifying 14CH4 and 14CO2 production after incubation of anaerobic sediments with [14C]MeHg. Degradation rate constants (k) were consistently <=0.1 d-1 and decreased ...

  8. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    PubMed

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microfluidic Assessment of Frying Oil Degradation

    PubMed Central

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-01-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation. PMID:27312884

  10. A device for high-throughput monitoring of degradation in soft tissue samples.

    PubMed

    Tzeranis, D S; Panagiotopoulos, I; Gkouma, S; Kanakaris, G; Georgiou, N; Vaindirlis, N; Vasileiou, G; Neidlin, M; Gkousioudi, A; Spitas, V; Macheras, G A; Alexopoulos, L G

    2018-06-06

    This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 μm precision and <10 μm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Easily degradable carbon - an indicator of microbial hotspots and soil degradation

    NASA Astrophysics Data System (ADS)

    Wolińska, Agnieszka; Banach, Artur; Szafranek-Nakonieczna, Anna; Stępniewska, Zofia; Błaszczyk, Mieczysław

    2018-01-01

    The effect of arable soil was quantified against non-cultivated soil on easily degradable carbon and other selected microbiological factors, i.e. soil microbial biomass, respiration activity, and dehydrogenase activity. The intent was to ascertain whether easily degradable carbo can be useful as a sensitive indicator of both soil biological degradation and microbial hot-spots indication. As a result, it was found that soil respiration activity was significantly higher (p <0.0001) in all controls, ranging between 30-60 vs. 11.5-23.7 μmol CO2 kg d.m.-1 h-1 for the arable soils. Dehydrogenase activity was significantly lower in the arable soil (down to 35-40% of the control values, p <0.001) varying depending on the soil type. The microbial biomass was also significantly higher at the non-cultivated soil (512-2807 vs. 416-1429 µg g-1 d.m., p <0.001), while easily degradable carbon ranged between 620-1209 mg kg-1 non-cultivated soil and 497-877 mg kg-1 arable soil (p <0.0001). It was demonstrated that agricultural practices affected soil properties by significantly reducing the levels of the studied parameters in relation to the control soils. The significant correlations of easily degradable carbon-respiration activity (ρ = 0.77*), easily degradable carbon-dehydrogenase activity (ρ = 0.42*), and easily degradable carbon-microbial biomass (ρ = 0.53*) reveal that easily degradable carbon is a novel, suitable factor indicative of soil biological degradation. It, therefore, could be used for evaluating the degree of soil degradation and for choosing a proper management procedure.

  12. Detecting and monitoring deforestation and forest degradation: Issues and obstacles for Southeast Asia

    Treesearch

    Douglas Muchoney; Sharon Hamann

    2013-01-01

    Forest degradation can be defined as the loss of forest volume, biomass and/or forest productivity caused by natural or human influences. Achieving Reduced Emissions from Deforestation and Forest Degradation (REDD+) requires that deforestation and degradation can be efficiently, reliably, and cost-effectively detected and quantified, often where ground and aerial...

  13. Degradation Kinetics of VX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary S. Groenewold

    2010-12-01

    O-ethyl S-(2-diisopropylaminoethyl)phosphonothiolate (VX) is the most toxic of the conventional chemical warfare agents. It is a persistent compound, an attribute derived from its relative involatility and slow rates of hydrolysis. These properties suggest that VX can linger in an exposed environment for extended periods of time long after the air has cleared. Concern over prolonged risk from VX exposure is exacerbated by the fact that it poses a dermal contact hazard. Hence a detailed understanding of volatilization rates, and degradation pathways and rates occurring in various environments is needed. Historically, volatilization has not been considered to be an important mechanismmore » for VX depletion, but recent studies have shown that a significant fraction of VX may volatilize, depending on the matrix. A significant body of research has been conducted over the years to unravel VX degradation reaction pathways and to quantify the rates at which they proceed. Rigorous measurement of degradation rates is frequently difficult, and thus in many cases the degradation of VX has been described in terms of half lives, while in fewer instances rate constants have been measured. This variable approach to describing degradation kinetics reflects uncertainty regarding the exact nature of the degradation mechanisms. In this review, rates of VX degradation are compared on the basis of pseudo-first order rate constants, in order to provide a basis for assessing likelihood of VX persistence in a given environment. An issue of specific concern is that one VX degradation pathway produces S-2-(diisopropylaminoethyl) methylphosphonothioic acid (known as EA2192), which is a degradation product that retains much of the original toxicity of VX. Consequently degradation pathways and rates for EA2192 are also discussed.« less

  14. Visual degradation in Leonardo da Vinci's iconic self-portrait: A nanoscale study

    NASA Astrophysics Data System (ADS)

    Conte, A. Mosca; Pulci, O.; Misiti, M. C.; Lojewska, J.; Teodonio, L.; Violante, C.; Missori, M.

    2014-06-01

    The discoloration of ancient paper, due to the development of oxidized groups acting as chromophores in its chief component, cellulose, is responsible for severe visual degradation in ancient artifacts. By adopting a non-destructive approach based on the combination of optical reflectance measurements and time-dependent density functional theory ab-initio calculations, we describe and quantify the chromophores affecting Leonardo da Vinci's iconic self-portrait. Their relative concentrations are very similar to those measured in modern and ancient samples aged in humid environments. This analysis quantifies the present level of optical degradation of the Leonardo da Vinci's self-portrait which, compared with future measurements, will assess its degradation rate. This is a fundamental information in order to plan appropriate conservation strategies.

  15. Analysis of chemical warfare agents. II. Use of thiols and statistical experimental design for the trace level determination of vesicant compounds in air samples.

    PubMed

    Muir, Bob; Quick, Suzanne; Slater, Ben J; Cooper, David B; Moran, Mary C; Timperley, Christopher M; Carrick, Wendy A; Burnell, Christopher K

    2005-03-18

    Thermal desorption with gas chromatography-mass spectrometry (TD-GC-MS) remains the technique of choice for analysis of trace concentrations of analytes in air samples. This paper describes the development and application of a method for analysing the vesicant compounds sulfur mustard and Lewisites I-III. 3,4-Dimercaptotoluene and butanethiol were used to spike sorbent tubes and vesicant vapours sampled; Lewisite I and II reacted with the thiols while sulfur mustard and Lewisite III did not. Statistical experimental design was used to optimise thermal desorption parameters and the optimum method used to determine vesicant compounds in headspace samples taken from a decontamination trial. 3,4-Dimercaptotoluene reacted with Lewisites I and II to give a common derivative with a limit of detection (LOD) of 260 microg m(-3), while the butanethiol gave distinct derivatives with limits of detection around 30 microg m(-3).

  16. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Hawes, S. K.; Steward, R. G.; Baker, K. A.; Smith, R. C.; Mitchell, B. G.

    1991-01-01

    A reflectance model developed to estimate chlorophyll a concentrations in the presence of marine colored dissolved organic matter, pheopigments, detritus, and bacteria is presented. Nomograms and lookup tables are generated to describe the effects of different mixtures of chlorophyll a and these degradation products on the R(412):R(443) and R(443):R(565) remote-sensing reflectance or irradiance reflectance ratios. These are used to simulate the accuracy of potential ocean color satellite algorithms, assuming that atmospheric effects have been removed. For the California Current upwelling and offshore regions, with chlorophyll a not greater than 1.3 mg/cu m, the average error for chlorophyll a retrievals derived from irradiance reflectance data for degradation product-rich areas was reduced from +/-61 percent to +/-23 percent by application of an algorithm using two reflectance ratios rather than the commonly used algorithm applying a single reflectance ratio.

  17. Degradation and resilience of soils

    PubMed Central

    Lal, R.

    1997-01-01

    Debate on global soil degradation, its extent and agronomic impact, can only be resolved through understanding of the processes and factors leading to establishment of the cause-effect relationships for major soils, ecoregions, and land uses. Systematic evaluation through long-term experimentation is needed for establishing quantitative criteria of (i) soil quality in relation to specific functions; (ii) soil degradation in relation to critical limits of key soil properties and processes; and (iii) soil resilience in relation to the ease of restoration through judicious management and discriminate use of essential input. Quantitative assessment of soil degradation can be obtained by evaluating its impact on productivity for different land uses and management systems. Interdisciplinary research is needed to quantify soil degradation effects on decrease in productivity, reduction in biomass, and decline in environment quality throught pollution and eutrophication of natural waters and emission of radiatively-active gases from terrestrial ecosystems to the atmosphere. Data from long-term field experiments in principal ecoregions are specifically needed to (i) establish relationships between soil quality versus soil degradation and soil quality versus soil resilience; (ii) identify indicators of soil quality and soil resilience; and (iii) establish critical limits of important properties for soil degradation and soil resilience. There is a need to develop and standardize techniques for measuring soil resilience.

  18. Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment.

    PubMed

    Radford, Samantha A; Panuwet, Parinya; Hunter, Ronald E; Barr, Dana Boyd; Ryan, P Barry

    2018-02-02

    Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insecticides in beverages. Purified water, white grape juice, orange juice, and red wine were fortified with 500 ng/mL diazinon, malathion, chlorpyrifos, permethrin, cyfluthrin, cypermethrin, and deltamethrin, and aliquots were extracted several times over a 15-day storage period at 2.5 °C. Overall, statistically significant loss of at least one insecticide was observed in each matrix, and at least five out of seven insecticides demonstrated a statistically significant loss in all matrices except orange juice. An investigation of an alternative mechanism of insecticide loss-adsorption onto the glass surface of the storage jars-was carried out, which indicated that this mechanism of loss is insignificant. Results of this work suggest that insecticides degrade in these beverages, and this degradation may lead to pre-existing insecticide degradates in the beverages, suggesting that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk.

  19. Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; Barr, Dana Boyd; Ryan, P. Barry

    2018-01-01

    Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insecticides in beverages. Purified water, white grape juice, orange juice, and red wine were fortified with 500 ng/mL diazinon, malathion, chlorpyrifos, permethrin, cyfluthrin, cypermethrin, and deltamethrin, and aliquots were extracted several times over a 15-day storage period at 2.5 °C. Overall, statistically significant loss of at least one insecticide was observed in each matrix, and at least five out of seven insecticides demonstrated a statistically significant loss in all matrices except orange juice. An investigation of an alternative mechanism of insecticide loss—adsorption onto the glass surface of the storage jars—was carried out, which indicated that this mechanism of loss is insignificant. Results of this work suggest that insecticides degrade in these beverages, and this degradation may lead to pre-existing insecticide degradates in the beverages, suggesting that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk. PMID:29393904

  20. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon

    Treesearch

    Marcos Longo; Michael Keller; Maiza N. dos-Santos; Veronika Leitold; Ekena R. Pinagé; Alessandro Baccini; Sassan Saatchi; Euler M. Nogueira; Mateus Batistella; Douglas C. Morton

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n = 359) and airborne lidar data (18,000 ha)...

  1. PV Degradation Curves: Non-Linearities and Failure Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually,more » in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.« less

  2. Degradation of specific aromatic compounds migrating from PEX pipes into drinking water.

    PubMed

    Ryssel, Sune Thyge; Arvin, Erik; Lützhøft, Hans-Christian Holten; Olsson, Mikael Emil; Procházková, Zuzana; Albrechtsen, Hans-Jørgen

    2015-09-15

    Nine specific compounds identified to migrate from polyethylene (PE) and cross-linked polyethylene (PEX) to drinking water were investigated for their degradation in drinking water. Three sample types were studied: field samples (collected at consumer taps), PEX pipe water extractions, and water samples spiked with target compounds. Four compounds were quantified in field samples at concentrations of 0.15-8.0 μg/L. During PEX pipe water extraction 0.42 ± 0.20 mg NVOC/L was released and five compounds quantified (0.5-6.1 μg/L). The degradation of these compounds was evaluated in PEX-pipe water extractions and spiked samples. 4-ethylphenol was degraded within 22 days. Eight compounds were, however, only partially degradable under abiotic and biotic conditions within the timeframe of the experiments (2-4 weeks). Neither inhibition nor co-metabolism was observed in the presence of acetate or PEX pipe derived NVOC. Furthermore, the degradation in drinking water from four different locations with three different water works was similar. In conclusion, eight out of the nine compounds studied would - if being released from the pipes - reach consumers with only minor concentration decrease during water distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Crosstalk between Diverse Synthetic Protein Degradation Tags in Escherichia coli.

    PubMed

    Butzin, Nicholas C; Mather, William H

    2018-01-19

    Recently, a synthetic circuit in E. coli demonstrated that two proteins engineered with LAA tags targeted to the native protease ClpXP are susceptible to crosstalk due to competition for degradation between proteins. To understand proteolytic crosstalk beyond the single protease regime, we investigated in E. coli a set of synthetic circuits designed to probe the dynamics of existing and novel degradation tags fused to fluorescent proteins. These circuits were tested using both microplate reader and single-cell assays. We first quantified the degradation rates of each tag in isolation. We then tested if there was crosstalk between two distinguishable fluorescent proteins engineered with identical or different degradation tags. We demonstrated that proteolytic crosstalk was indeed not limited to the LAA degradation tag, but was also apparent between other diverse tags, supporting the complexity of the E. coli protein degradation system.

  4. Ecogeomorphology of semiarid rangelands: understanding and quantifying rates and feedbacks to prevent landscape degradation.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia; Azadi, Samira; Moreno-de las Heras, Mariano; Keesstra, Saskia

    2017-04-01

    In semiarid systems, hydrologic, geomorphic and ecological processes are tightly coupled through strong feedback mechanisms occurring across fine to coarse scales. These feedbacks have implications for equilibrium and resilience of the landscape and are particularly relevant for understanding the potential degradation effects of climate and anthropogenic pressures. The vegetation of these regions is sparse and often associated to the development and maintenance of spatially variable infiltration rates, with lower infiltration in the bare areas. These variable infiltration rates have been observed in many field studies and are responsible for the emergence of a runoff-runon system, and for the associated redistribution of water and sediments. We will present a modelling framework developed to understand the role of surface water connectivity in degradation processes in semiarid landscapes with patchy vegetation. Surface water connectivity in these systems is highly dynamic and emerges from non-linear feedbacks between vegetation patterns and the coevolving landforms. The model captures these feedbacks through the coupled nature of the processes included in the landform-vegetation modules. As increased surface runoff connectivity has been linked to degradation, we focus on evolving hydrologic connectivity patterns resulting from feedback effects and co-evolving structures. First, we will discuss some general results on the coevolution of semiarid rangelands, and the effects of varying abiotic and biotic conditions. Next we will present results in which we investigate changes in functional hydrologic connectivity, and the existence of tipping points as observed in several sites in Australia. These results are based on data from our recent studies along a precipitation gradient in the Mulga bioregion of Australia. The analysis from satellite images reveals a major role of surface connectivity on the spatial organization of patchy vegetation, suggesting that transitions

  5. Mechanisms of Glucagon Degradation at Alkaline pH

    PubMed Central

    Caputo, Nicholas; Castle, Jessica R.; Bergstrom, Colin P.; Carroll, Julie M.; Bakhtiani, Parkash A.; Jackson, Melanie A.; Roberts, Charles T.; David, Larry L.; Ward, W. Kenneth

    2014-01-01

    Glucagon is unstable and undergoes degradation and aggregation in aqueous solution. For this reason, its use in portable pumps for closed loop management of diabetes is limited to very short periods. In this study, we sought to identify the degradation mechanisms and the bioactivity of specific degradation products. We studied degradation in the alkaline range, a range at which aggregation is minimized. Native glucagon and analogs identical to glucagon degradation products were synthesized. To quantify biological activity in glucagon and in the degradation peptides, a protein kinase A-based bioassay was used. Aged, fresh, and modified peptides were analyzed by liquid chromatography with mass spectrometry (LCMS). Oxidation of glucagon at the Met residue was common but did not reduce bioactivity. Deamidation and isomerization were also common and were more prevalent at pH 10 than 9. The biological effects of deamidation and isomerization were unpredictable; deamidation at some sites did not reduce bioactivity. Deamidation of Gln 3, isomerization of Asp 9, and deamidation with isomerization at Asn 28 all caused marked potency loss. Studies with molecular-weight-cutoff membranes and LCMS revealed much greater fibrillation at pH 9 than 10. Further work is necessary to determine formulations of glucagon that minimize degradation and fibrillation. PMID:23651991

  6. Mechanisms of glucagon degradation at alkaline pH.

    PubMed

    Caputo, Nicholas; Castle, Jessica R; Bergstrom, Colin P; Carroll, Julie M; Bakhtiani, Parkash A; Jackson, Melanie A; Roberts, Charles T; David, Larry L; Ward, W Kenneth

    2013-07-01

    Glucagon is unstable and undergoes degradation and aggregation in aqueous solution. For this reason, its use in portable pumps for closed loop management of diabetes is limited to very short periods. In this study, we sought to identify the degradation mechanisms and the bioactivity of specific degradation products. We studied degradation in the alkaline range, a range at which aggregation is minimized. Native glucagon and analogs identical to glucagon degradation products were synthesized. To quantify biological activity in glucagon and in the degradation peptides, a protein kinase A-based bioassay was used. Aged, fresh, and modified peptides were analyzed by liquid chromatography with mass spectrometry (LCMS). Oxidation of glucagon at the Met residue was common but did not reduce bioactivity. Deamidation and isomerization were also common and were more prevalent at pH 10 than 9. The biological effects of deamidation and isomerization were unpredictable; deamidation at some sites did not reduce bioactivity. Deamidation of Gln 3, isomerization of Asp 9, and deamidation with isomerization at Asn 28 all caused marked potency loss. Studies with molecular-weight-cutoff membranes and LCMS revealed much greater fibrillation at pH 9 than 10. Further work is necessary to determine formulations of glucagon that minimize degradation and fibrillation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Podocytes Degrade Endocytosed Albumin Primarily in Lysosomes

    PubMed Central

    Carson, John M.; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B.; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, p<0.05). Cytokine production and cell death were significantly increased in HUPECs exposed to albumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and

  8. Podocytes degrade endocytosed albumin primarily in lysosomes.

    PubMed

    Carson, John M; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, p<0.05). Cytokine production and cell death were significantly increased in HUPECs exposed to albumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and

  9. Bacterial methylmercury degradation in Florida Everglades peat sediment

    USGS Publications Warehouse

    Marvin-DiPasquale, M. C.; Oremland, R.S.

    1998-01-01

    Methylmercury (MeHg) degradation was investigated along an eutrophication gradient in the Florida Everglades by quantifying 14CH4 and 14CO2 production after incubation of anaerobic sediments with [14C]MeHg. Degradation rate constants (k) were consistently ???0.1 d-1 and decreased with sediment depth. Higher k values were observed when shorter incubation times and lower MeHg amendment levels were used, and k increased 2-fold as in-situ MeHg concentrations were approached. The average floc layer k was 0.046 ?? 0.023 d-1 (n = 17) for 1-2 day incubations. In-situ degradation rates were estimated to be 0.02-0.5 ng of MeHg (g of dry sediment)-1 d-1, increasing from eutrophied to pristine areas. Nitrate-respiring bacteria did not demethylate MeHg, and NO3- addition partially inhibited degradation in some cases. MeHg degradation rates were not affected by PO43- addition. 14CO2 production in all samples indicated that oxidative demethylation (OD) was an important degradation mechanism. OD occurred over 5 orders of magnitude of applied MeHg concentration, with lowest limits [1-18 ng of MeHg (g of dry sediment)-1] in the range of in-situ MeHg levels. Sulfate reducers and methanogens were the primary agents of anaerobic OD, although it is suggested that methanogens dominate degradation at in-situ MeHg concentrations. Specific pathways of OD by these two microbial groups are proposed.Methylmercury (MeHg) degradation was investigated along an eutrophication gradient in the Florida Everglades by quantifying 14CH4 and 14CO2 production after incubation of anaerobic sediments with [14C]MeHg. Degradation rate constants (k) were consistently ???0.1 d-1 and decreased with sediment depth. Higher k values were observed when shorter incubation times and lower MeHg amendment levels were used, and k increased 2-fold as in-situ MeHg concentrations were approached. The average floc layer k was 0.046??0.023 d-1 (n = 17) for 1-2 day incubations. In-situ degradation rates were estimated to be 0

  10. Bearing performance degradation assessment based on time-frequency code features and SOM network

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei

    2017-04-01

    Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data.

  11. Quantifying landscape resilience using vegetation indices

    NASA Astrophysics Data System (ADS)

    Eddy, I. M. S.; Gergel, S. E.

    2014-12-01

    Landscape resilience refers to the ability of systems to adapt to and recover from disturbance. In pastoral landscapes, degradation can be measured in terms of increased desertification and/or shrub encroachment. In many countries across Central Asia, the use and resilience of pastoral systems has changed markedly over the past 25 years, influenced by centralized Soviet governance, private property rights and recently, communal resource governance. In Kyrgyzstan, recent governance reforms were in response to the increasing degradation of pastures attributed to livestock overgrazing. Our goal is to examine and map the landscape-level factors that influence overgrazing throughout successive governance periods. Here, we map and examine some of the spatial factors influencing landscape resilience in agro-pastoral systems in the Kyrgyzstan Republic where pastures occupy >50% of the country's area. We ask three questions: 1) which mechanisms of pasture degradation (desertification vs. shrub encroachment), are detectable using remote sensing vegetation indices?; 2) Are these degraded pastures associated with landscape features that influence herder mobility and accessibility (e.g., terrain, distance to other pastures)?; and 3) Have these patterns changed through successive governance periods? Using a chronosequence of Landsat imagery (1999-2014), NDVI and other VIs were used to identify trends in pasture condition during the growing season. Least-cost path distances as well as graph theoretic indices were derived from topographic factors to assess landscape connectivity (from villages to pastures and among pastures). Fieldwork was used to assess the feasibility and accuracy of this approach using the most recent imagery. Previous research concluded that low herder mobility hindered pasture use, thus we expect the distance from pasture to village to be an important predictor of pasture condition. This research will quantify the magnitude of pastoral degradation and test

  12. Development of Bioorthogonally Degradable Linkers and Polymers Using alpha-Azidoethers

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Chandrasekhar Ramasubramanian

    Degradable polymers have gained a lot of attention in recent years for applications in biotechnology and medicine. External control over polymer degradation can be obtained by incorporating functional groups that cleave in the presence of triggers that would normally be absent in biological environments, i.e. are bioorthogonal. This thesis explores the use of chemically cleavable alpha-azidoethers as a new method to obtain external control over the degradation behavior of polymers. My first goal is to illustrate the potential of alpha-azidoethers toward developing cleavable linkers. We have studied the relationship between alpha-azidoether structure and hydrolytic stability, to prepare linkers that withstand background hydrolytic cleavage until they are exposed to the cleaving trigger. The cleavage kinetics of the alpha-azidoether functional group was quantified. In addition to the conventionally used tris(2-carboxyethyl)phosphine (TCEP), dihydrolipoic acid (DHLA), a previously unexplored, biocompatible reducing agent, was also evaluated as a cleaving trigger. Based on these results, we have proposed design rules for utilizing alpha-azidoethers as cleavable linkers in applications that require bioorthogonal control over linker cleavage. Secondly, the alpha-azidoether cleavable linker chemistry was implemented into the development of polymeric materials. Two different types of polymers were developed. Polyamides incorporating alpha-azidoethers along the backbone were synthesized, and their physical properties and chemically triggered degradation behavior were characterized. The degradation timescale of these polymers can be tuned simply by manipulating the concentration of the externally applied chemical trigger. The alpha-azidoether functional group was then utilized to develop a unique triggered-release polymeric adhesive for potential applications in dental adhesive formulations. A methacrylamide-phosphonate adhesive monomer incorporating an alpha

  13. Soil organic matter as sole indicator of soil degradation

    Treesearch

    S.E. Obalum; G.U. Chibuike; S. Peth; Ying Ouyang

    2017-01-01

    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a...

  14. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giron, Nicholas H.; Celina, Mathew C.

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  15. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE PAGES

    Giron, Nicholas H.; Celina, Mathew C.

    2017-05-19

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  16. Methods And Systms For Analyzing The Degradation And Failure Of Mechanical Systems

    DOEpatents

    Jarrell, Donald B.; Sisk, Daniel R.; Hatley, Darrel D.; Kirihara, Leslie J.; Peters, Timothy J.

    2005-02-08

    Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.

  17. Comparison of symptomatology and performance degradation for motion and radiation sickness. Technical report, 6 January 1984-31 March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClellan, G.E.; Wiker, S.F.

    1985-05-31

    This report quantifies for the first time the relationship between the signs and symptoms of acute radiation sickness and those of motion sickness. With this relationship, a quantitative comparison is made between data on human performance degradation during motion sickness and estimates of performance degradation during radiation sickness. The comparison validates estimates made by the Intermediate Dose Program on the performance degradation from acute radiation sickness.

  18. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity

    PubMed Central

    Overholt, Will A.; Marks, Kala P.; Romero, Isabel C.; Hollander, David J.; Snell, Terry W.

    2015-01-01

    The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration. PMID:26546426

  19. Quantitative diagnosis and prognosis framework for concrete degradation due to alkali-silica reaction

    NASA Astrophysics Data System (ADS)

    Mahadevan, Sankaran; Neal, Kyle; Nath, Paromita; Bao, Yanqing; Cai, Guowei; Orme, Peter; Adams, Douglas; Agarwal, Vivek

    2017-02-01

    This research is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in nuclear power plants that are subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification, and prognosis. The current work focuses on degradation caused by ASR (alkali-silica reaction). Controlled concrete specimens with reactive aggregate are prepared to develop accelerated ASR degradation. Different monitoring techniques — infrared thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) — are studied for ASR diagnosis of the specimens. Both DIC and mechanical measurements record the specimen deformation caused by ASR gel expansion. Thermography is used to compare the thermal response of pristine and damaged concrete specimens and generate a 2-D map of the damage (i.e., ASR gel and cracked area), thus facilitating localization and quantification of damage. NIRAS and VAM are two separate vibration-based techniques that detect nonlinear changes in dynamic properties caused by the damage. The diagnosis results from multiple techniques are then fused using a Bayesian network, which also helps to quantify the uncertainty in the diagnosis. Prognosis of ASR degradation is then performed based on the current state of degradation obtained from diagnosis, by using a coupled thermo-hydro-mechanical-chemical (THMC) model for ASR degradation. This comprehensive approach of monitoring, data analytics, and uncertainty-quantified diagnosis and prognosis will facilitate the development of a quantitative, risk informed framework that will support continuous assessment and risk management of structural health and performance.

  20. Levels of circulating MMP-7 degraded elastin are elevated in pulmonary disorders.

    PubMed

    Kristensen, J H; Larsen, L; Dasgupta, B; Brodmerkel, C; Curran, M; Karsdal, M A; Sand, J M B; Willumsen, N; Knox, A J; Bolton, C E; Johnson, S R; Hägglund, P; Svensson, B; Leeming, D J

    2015-11-01

    Elastin is a signature protein of the lungs. Matrix metalloproteinase-7 (MMP-7) is important in lung defence mechanisms and degrades elastin. However, MMP-7 activity in regard to elastin degradation has never been quantified serologically in patients with lung diseases. An assay for the quantification of MMP-7 generated elastin fragments (ELM7) was therefore developed to investigate MMP-7 derived elastin degradation in pulmonary disorders such as idiopathic pulmonary fibrosis (IPF) and lung cancer. Monoclonal antibodies (mABs) were raised against eight carefully selected MMP-7 cleavage sites on elastin. After characterisation and validation of the mABs, one mAB targeting the ELM7 fragment was chosen. ELM7 fragment levels were assessed in serum samples from patients diagnosed with IPF (n=123, baseline samples, CTgov reg. NCT00786201), and lung cancer (n=40) and compared with age- and sex-matched controls. The ELM7 assay was specific towards in vitro MMP-7 degraded elastin and the ELM7 neoepitope but not towards other MMP-7 derived elastin fragments. Serum ELM7 levels were significantly increased in IPF (113%, p<0.0001) and lung cancer (96%, p<0.0001) compared to matched controls. MMP-7-generated elastin fragments can be quantified in serum and may reflect pathological lung tissue turnover in several important lung diseases. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Degradation kinetics of ptaquiloside in soil and soil solution.

    PubMed

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-02-01

    Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction was similar in all horizons, with the rate constant k(1F) ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k(1S) ranging between 0.00067 and 0.029/ h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils. Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled mainly by the residence time of pore water in soil, soil microbial activity, and content of organic matter and clay silicates.

  2. Multiprogramming performance degradation - Case study on a shared memory multiprocessor

    NASA Technical Reports Server (NTRS)

    Dimpsey, R. T.; Iyer, R. K.

    1989-01-01

    The performance degradation due to multiprogramming overhead is quantified for a parallel-processing machine. Measurements of real workloads were taken, and it was found that there is a moderate correlation between the completion time of a program and the amount of system overhead measured during program execution. Experiments in controlled environments were then conducted to calculate a lower bound on the performance degradation of parallel jobs caused by multiprogramming overhead. The results show that the multiprogramming overhead of parallel jobs consumes at least 4 percent of the processor time. When two or more serial jobs are introduced into the system, this amount increases to 5.3 percent

  3. The temporal degradation of bone collagen: A histochemical approach.

    PubMed

    Boaks, Amelia; Siwek, Donald; Mortazavi, Farzad

    2014-07-01

    As forensic anthropologists are currently unable to estimate reliably and quantitatively the postmortem interval (PMI) of skeletonized remains, the current study was conducted to determine if degradation of bone collagen over time could be quantified using sirius red/fast green staining, and whether the degradation would occur at a predictive rate such that it may be used to estimate the PMI of skeletonized individuals. Resin embedded 200-300μm cross-sections of pig (Sus scrofa) long bones with known provenience and PMIs ranging from fresh to 12 months were stained using a histochemical reaction which differentially stains collagenous (Co) and non-collagenous (NCo) proteins. Spectrophotometry was used to determine the concentration of Co and NCo proteins in each bone section, after which the ratio of these proteins was calculated. The results of this study revealed a significant decline in the ratios of Co/NCo protein concentrations over the time period studied (p<0.001). Furthermore, a significant negative correlation between the ratios of Co/NCo protein concentrations and time (r=-0.563, p<0.0001) was observed. Despite a significant correlation, the moderate r-value obtained suggests that, at present, this method is useful primarily for detecting and quantifying the degradation of Co and NCo proteins in bones. Future studies that include shorter time intervals and environmental factors, such as soil pH, temperature, and hydrology may prove to be critical for using this method for PMI estimation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Determining and quantifying specific sources of light alkane

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.

    2015-12-01

    Determining and quantifying specific sources of emission of methane (an important greenhouse gas) and light alkanes from abandoned gas and oil wells, hydraulic fracturing or associated with CO2 sequestration are a challenge in determining their contribution to the atmospheric greenhouse gas budget or to identify source of groundwater contamination. Here, we review organic biogeochemistry proprieties and isotopic fingerprinting of C1-C5 alkanes to address this problem. For instance, the concentration ratios of CH4 to C2-C5 alkanes can be used to distinguish between thermogenic and microbial generated CH4. Together C and H isotopes of CH4 are used to differentiate bacterial generated sources and thermogenic CH4 and may also identify processes such as alteration and source mixing. Carbon isotope ratios pattern of C1-C5 alkanes highlight sources and oxidation processes in the gas reservoirs. Stable carbon isotope measurements are a viable tool for monitoring the degradation progress of methane and light hydrocarbons. The carbon isotope ratios of the reactants and products are independent of the concentration and only depend on the relative progress of the particular reaction. Oxidation/degradation of light alkanes are typically associated with increasing ð13C values. Isotopic mass balances offer the possibility to independently determine the fractions coming from microbial versus thermogenic and would also permit differentiation of the isotope fractionations associated with degradation. Unlike conventional concentration measurements, this approach is constrained by the different isotopic signatures of various sources and sinks.

  5. Evaluation of fuel cell system efficiency and degradation at development and during commercialization

    NASA Astrophysics Data System (ADS)

    Gemmen, R. S.; Johnson, C. D.

    Two primary parameters stand out for characterizing fuel cell system performance. The first and most important parameter is system efficiency. This parameter is relatively easy to define, and protocols for its assessment are already available. Another important parameter yet to be fully considered is system degradation. Degradation is important because customers desire to know how long their purchased fuel cell unit will last. The measure of degradation describes this performance factor by quantifying, for example, how the efficiency of the unit degrades over time. While both efficiency and degradation concepts are readily understood, the coupling between these two parameters must also be understood so that proper testing and evaluation of fuel cell systems is achieved. Tests not properly performed, and results not properly understood, may result in improper use of the evaluation data, producing improper R&D planning decisions and financial investments. This paper presents an analysis of system degradation, recommends an approach to its measurement, and shows how these two parameters are related and how one can be "traded-off" for the other.

  6. Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters.

    PubMed

    Alexandrino, M; Knief, C; Lipski, A

    2001-10-01

    Deuterated styrene ([(2)H(8)]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [(2)H(8)]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [(2)H(8)]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.

  7. IN VITRO RUMINAL PROTEIN DEGRADATION AND MICROBIAL PROTEIN FORMATION OF SEED LEGUMES

    USDA-ARS?s Scientific Manuscript database

    Seed legumes such as peas, lupins, and faba beans are important feeds for dairy cows in Europe and other regions. Ruminal protein degradability was quantified using the inhibitor in vitro (IIV) system for samples of 5 seed legumes: 2 peas (cv. Alembo and Helena), 1 white lupin (Lupinus albus, cv. Mu...

  8. Children's interpretations of general quantifiers, specific quantifiers, and generics

    PubMed Central

    Gelman, Susan A.; Leslie, Sarah-Jane; Was, Alexandra M.; Koch, Christina M.

    2014-01-01

    Recently, several scholars have hypothesized that generics are a default mode of generalization, and thus that young children may at first treat quantifiers as if they were generic in meaning. To address this issue, the present experiment provides the first in-depth, controlled examination of the interpretation of generics compared to both general quantifiers ("all Xs", "some Xs") and specific quantifiers ("all of these Xs", "some of these Xs"). We provided children (3 and 5 years) and adults with explicit frequency information regarding properties of novel categories, to chart when "some", "all", and generics are deemed appropriate. The data reveal three main findings. First, even 3-year-olds distinguish generics from quantifiers. Second, when children make errors, they tend to be in the direction of treating quantifiers like generics. Third, children were more accurate when interpreting specific versus general quantifiers. We interpret these data as providing evidence for the position that generics are a default mode of generalization, especially when reasoning about kinds. PMID:25893205

  9. Comparative Thermal Degradation Patterns of Natural Yellow Colorants Used in Foods.

    PubMed

    Giménez, Pedro J; Fernández-López, José A; Angosto, José M; Obón, José M

    2015-12-01

    There is a great interest in natural yellow colorants due to warnings issued about certain yellow food colorings of synthetic origin. However, no comparative studies have been reported of their thermal stability. For this reason, the thermal stabilities of six natural yellow colorants used in foods--lutein, riboflavin, curcumin, ß-carotene, gardenia yellow and Opuntia betaxanthins--were studied in simple solutions over a temperature range 30-90 °C. Spectral properties and visual color were investigated during 6 h of heat treatment. Visual color was monitored from the CIEL*a*b* parameters. The remaining absorbance at maximum wavelength and the total color difference were used to quantify color degradation. The rate of color degradation increased as the temperature rose. The results showed that the thermal degradation of the colorants followed a first-order reaction kinetics. The reaction rate constants and half-life periods were determined as being central to understanding the color degradation kinetics. The temperature-dependent degradation was adequately modeled on the Arrhenius equation. Activation energies ranged from 3.2 kJmol(-1) (lutein) to 43.7 kJmol(-1) (Opuntia betaxanthins). ß-carotene and lutein exhibited high thermal stability, while betaxanthins and riboflavin degraded rapidly as temperature increased. Gardenia yellow and curcumin were in an intermediate position.

  10. Chlorpyrifos degradation in a biomixture of biobed at different maturity stages.

    PubMed

    Tortella, G R; Rubilar, O; Castillo, M d P; Cea, M; Mella-Herrera, R; Diez, M C

    2012-06-01

    The biomixture is a principal element controlling the degradation efficacy of the biobed. The maturity of the biomixture used in the biobed affects its overall performance of the biobed, but this is not well studied yet. The aim of this research was to evaluate the effect of using a typical composition of Swedish biomixture at different maturity stages on the degradation of chlorpyrifos. Tests were made using biomixture at three maturity stages: 0 d (BC0), 15 d (BC15) and 30 d (BC30); chlorpyrifos was added to the biobeds at final concentration of 200, 320 and 480 mg kg(-1). Chlorpyrifos degradation in the biomixture was monitored over time. Formation of TCP (3,5,6-trichloro-2-pyrinidol) was also quantified, and hydrolytic and phenoloxidase activities measured. The biomixture efficiently degraded chlorpyrifos (degradation efficiency >50%) in all the evaluated maturity stages. However, chlorpyrifos degradation decreased with increasing concentrations of the pesticide. TCP formation occurred in all biomixtures, but a major accumulation was observed in BC30. Significant differences were found in both phenoloxidase and hydrolytic activities in the three maturity stages of biomixture evaluated. Also, these two biological activities were affected by the increase in pesticide concentration. In conclusion, our results demonstrated that chlorpyrifos can be degraded efficiently in all the evaluated maturity stages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Degradation of Perchloroethene by zero-valent iron evaluated by carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Leitner, Simon; Watzinger, Andrea; Reichenauer, Thomas G.

    2014-05-01

    Perchloroethene (PCE) is a widely spread groundwater contaminant in formally used industrial sites. Zero valent iron (ZVI) is used for in situ chemical reduction (ISCR) of PCE contaminants in the groundwater. A key factor in the application of in situ remediation technologies is a proper monitoring of contaminant reduction. The measurement of the stable isotope ratio is a promising method that is already used for quantifying microbial degradation of chlorinated contaminants. The carbon isotope ratio of PCE, measured by - isotope ratio mass spectrometry coupled to a gas chromatograph via a combustion interface (GC-C-IRMS), increases during degradation of PCE and can be directly related to the degree of degradation. It can be used to directly quantify chemical degradation and thus serves as a useful monitoring tool for groundwater remediation. An experiment to determine the carbon isotopic fractionation factor was performed as a lab experiment using Nanofer Star (NANOIRON). Two different PCE concentrations (c1: 220mgL-1, c2: 110mgL-1) mixed with 0.5 g of ZVI were sealed under deoxygenated conditions in 250 ml glas bottles locked with mininert caps. The bottles were incubated on a shaker for 865 h. Samples were taken weekly to measure the change in the carbon isotopic ratio of PCE as well as its concentration. Results showed a strong increase in the carbon isotope ratio (δ-value) of PCE (start: -27 o end: -4 ), which indicates a significant dechlorination process of PCE. Beside PCE also one degradation product (Trichloroethylene - TCE) was measured. TCE was further dechlorinated as indicated by the δ-value change of TCE from -26 o to -4 oȦn unexpected intermediate value of -45 o for TCE was observed in the experiment. This fluctuation could be induced by the time depending concentration due to degradation and conversation processes. Furthermore, it seems that the progress of the δ-value is affected by the starting concentration of PCE (δ-value of c1 < c2) as

  12. Geospatial tools for assessing land degradation in Budgam district, Kashmir Himalaya, India

    NASA Astrophysics Data System (ADS)

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Romshoo, Shakil Ahmad

    2011-06-01

    Land degradation reduces the ability of the land to perform many biophysical and chemical functions. The main aim of this study was to determine the status of land degradation in the Budgam area of Kashmir Himalaya using remote sensing and geographic information system. The satellite data together with other geospatial datasets were used to quantify different categories of land degradation. The results were validated in the field and an accuracy of 85% was observed. Land use/land cover of the study area was determined in order to know the effect of land use on the rate of land degradation. Normalized differential vegetation index (NDVI) and slope of the area were determined using LANDSAT-enhanced thematic mapper plus (ETM+) data, advanced space borne thermal emission and reflection radiometer, and digital elevation model along with other secondary data were analysed to create various thematic maps, viz., land use/land cover, geology, NDVI and slopes used in modelling land degradation in the Kashmir Himalayan region. The vegetation condition, elevation and land use/land cover information of the area were integrated to assess the land degradation scenario in the area using the ArcGIS `Spatial Analyst Module'. The results reveal that about 13.19% of the study area has undergone moderate to high degradation, whereas about 44.12% of the area has undergone slight degradation.

  13. Effect of Abiotic Factors on Degradation of Imidacloprid.

    PubMed

    Mahapatra, Bibhab; Adak, Totan; Patil, Naveen K B; Pandi, G Guru P; Gowda, G Basana; Yadav, Manoj Kumar; Mohapatra, S D; Rath, P C; Munda, Sushmita; Jena, Mayabini

    2017-10-01

    The role of soil moisture, light and pH on imidacloprid dissipation was investigated. A high performance liquid chromatography (HPLC) based method was developed to quantify imidacloprid present in soil with a recovery of more than 82%. Rate of dissipation of imidacloprid from soil was faster in submerged condition compared to field capacity and air dried condition. Imidacloprid dissipated non-significantly between sterile and non-sterile soils, but at field capacity, the dissipation was faster in non-sterile soil compared to sterile soil after 60 days of incubation. Similarly, under submergence, the dissipation of imidacloprid was 66.2% and 79.8% of the initial in sterile and non-sterile soils, respectively. Imidacloprid was rather stable in acidic and neutral water but was prone to photo-degradation. Therefore, imidacloprid degradation will be faster under direct sunlight and at higher soil moisture.

  14. Metabolic adaptation via regulated enzyme degradation in the pathogenic yeast Candida albicans.

    PubMed

    Ting, S Y; Ishola, O A; Ahmed, M A; Tabana, Y M; Dahham, S; Agha, M T; Musa, S F; Muhammed, R; Than, L T L; Sandai, D

    2017-03-01

    The virulence of Candida albicans is dependent upon fitness attributes as well as virulence factors. These attributes include robust stress responses and metabolic flexibility. The assimilation of carbon sources is important for growth and essential for the establishment of infections by C. albicans. Previous studies showed that the C. albicans ICL1 genes, which encode the glyoxylate cycle enzymes isocitratelyase are required for growth on non-fermentable carbon sources such as lactate and oleic acid and were repressed by 2% glucose. In contrast to S. cerevsiae, the enzyme CaIcl1 was not destabilised by glucose, resulting with its metabolite remaining at high levels. Further glucose addition has caused CaIcl1 to lose its signal and mechanisms that trigger destabilization in response to glucose. Another purpose of this study was to test the stability of the Icl1 enzyme in response to the dietary sugars, fructose, and galactose. In the present study, the ICL1 mRNAs expression was quantified using Quantitative Real Time PCR, whereby the stability of protein was measured and quantified using Western blot and phosphoimager, and the replacing and cloning of ICL1 ORF by gene recombination and ubiquitin binding was conducted via co-immuno-precipitation. Following an analogous experimental approach, the analysis was repeated using S. cerevisiaeas a control. Both galactose and fructose were found to trigger the degradation of the ICL1 transcript in C. albicans. The Icl1 enzyme was stable following galactose addition but was degraded in response to fructose. C. albicans Icl1 (CaIcl1) was also subjected to fructose-accelerated degradation when expressed in S. cerevisiae, indicating that, although it lacks a ubiquitination site, CaIcl1 is sensitive to fructose-accelerated protein degradation. The addition of an ubiquitination site to CaIcl1 resulted in this enzyme becoming sensitive to galactose-accelerated degradation and increases its rate of degradation in the

  15. [Degradation of anthraquinone blue by Trametes trogii].

    PubMed

    Levin, L; Jordan, A; Forchiassin, F; Viale, A

    2001-01-01

    The ability of the white rot fungus Trametes trogii BAFC 463 (high producer of ligninolytic enzymes, especially laccase and manganese peroxidase) to degrade the dye anthraquinone blue, refractory to bacterial attack, was evaluated. Both tropho- and idiophasic T. trogii cultures in synthetic medium (glucose/asparagine) and complex medium (malt extract/glucose) were able to transform up to 88% dye in 4 hours. The activity of laccase, an oxygen-dependent phenoloxidase which was present at high levels in all the conditions assayed, might be related to the ability of the fungus to degrade the colorant. This is supported by the fact that in bioreactor experiences carried out at pH 4.5 the addition of anthraquinone blue caused a decrease in the levels of soluble oxygen. However, although high levels of laccase were produced at pH 7.5, the enzyme was not active, and neither dye transformation nor loss in the levels of soluble oxygen were quantified.

  16. Effects of Material Degradation on the Structural Integrity of Composite Materials: Experimental Investigation and Modeling of High Temperature Degradation Mechanisms

    NASA Technical Reports Server (NTRS)

    Cunningham, Ronan A.; McManus, Hugh L.

    1996-01-01

    It has previously been demonstrated that simple coupled reaction-diffusion models can approximate the aging behavior of PMR-15 resin subjected to different oxidative environments. Based on empirically observed phenomena, a model coupling chemical reactions, both thermal and oxidative, with diffusion of oxygen into the material bulk should allow simulation of the aging process. Through preliminary modeling techniques such as this it has become apparent that accurate analytical models cannot be created until the phenomena which cause the aging of these materials are quantified. An experimental program is currently underway to quantify all of the reaction/diffusion related mechanisms involved. The following contains a summary of the experimental data which has been collected through thermogravimetric analyses of neat PMR-15 resin, along with analytical predictions from models based on the empirical data. Thermogravimetric analyses were carried out in a number of different environments - nitrogen, air and oxygen. The nitrogen provides data for the purely thermal degradation mechanisms while those in air provide data for the coupled oxidative-thermal process. The intent here is to effectively subtract the nitrogen atmosphere data (assumed to represent only thermal reactions) from the air and oxygen atmosphere data to back-figure the purely oxidative reactions. Once purely oxidative (concentration dependent) reactions have been quantified it should then be possible to quantify the diffusion of oxygen into the material bulk.

  17. Bovine Intestinal Bacteria Inactivate and Degrade Ceftiofur and Ceftriaxone with Multiple β-Lactamases▿

    PubMed Central

    Wagner, R. Doug; Johnson, Shemedia J.; Cerniglia, Carl E.; Erickson, Bruce D.

    2011-01-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle. PMID:21876048

  18. Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases.

    PubMed

    Wagner, R Doug; Johnson, Shemedia J; Cerniglia, Carl E; Erickson, Bruce D

    2011-11-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle.

  19. Optical turbulence on underwater image degradation in natural environments.

    PubMed

    Hou, Weilin; Woods, Sarah; Jarosz, Ewa; Goode, Wesley; Weidemann, Alan

    2012-05-10

    It is a well-known fact that the major degradation source on electro-optical imaging underwater is from scattering by particles of various origins and sizes. Recent research indicates that, under certain conditions, the apparent degradation could also be caused by the variations of index of refraction associated with temperature and salinity microstructures in the ocean and lakes. The combined impact has been modeled previously through the simple underwater imaging model. The current study presents the first attempts in quantifying the level of image degradation due to optical turbulence in natural waters in terms of modulation transfer functions using measured turbulence dissipation rates. Image data collected from natural environments during the Skaneateles Optical Turbulence Exercise are presented. Accurate assessments of the turbulence conditions are critical to the model validation and were measured by two instruments to ensure consistency and accuracy. Optical properties of the water column in the field were also measured in coordination with temperature, conductivity, and depth. The results show that optical turbulence degrades the image quality as predicted and on a level comparable to that caused by the particle scattering just above the thermocline. Other contributing elements involving model closure, including temporal and spatial measurement scale differences among sensors and mitigation efforts, are discussed.

  20. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes

    NASA Astrophysics Data System (ADS)

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  1. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes.

    PubMed

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Microbial Community Transplant Results in Increased and Long-Term Oxalate Degradation

    PubMed Central

    Miller, Aaron W.; Oakeson, Kelly F.; Dale, Colin; Dearing, M. Denise

    2016-01-01

    Gut microbes are essential for the degradation of dietary oxalate, and this function may play a role in decreasing the incidence of kidney stones. However, many oxalate-degrading bacteria are susceptible to antibiotics and the use of oxalate-degrading probiotics has only led to an ephemeral reduction in urinary oxalate. The objective of the current study was to determine the efficacy of using whole-community microbial transplants from a wild mammalian herbivore, Neotoma albigula, to increase oxalate degradation over the long term in the laboratory rat, Rattus norvegicus. We quantified the change in total oxalate degradation in lab rats immediately after microbial transplants and at 2- and 9-month intervals following microbial transplants. Additionally, we tracked the fecal microbiota of the lab rats, with and without microbial transplants, using high-throughput Illumina sequencing of a hyper-variable region of the 16S rRNA gene. Microbial transplants resulted in a significant increase in oxalate degradation, an effect that persisted 9 months after the initial transplants. Functional persistence was corroborated by the transfer, and persistence of a group of bacteria previously correlated with oxalate consumption in N. albigula, including an anaerobic bacterium from the genus Oxalobacter known for its ability to use oxalate as a sole carbon source. The results of this study indicate that whole-community microbial transplants are an effective means for the persistent colonization of oxalate-degrading bacteria in the mammalian gut. PMID:27312892

  3. Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari.

    PubMed

    Xie, Xing-Guang; Dai, Chuan-Chao

    2015-03-01

    Biodegradation of ferulic acid, by an endophytic fungus called Phomopsis liquidambari was investigated in this study. This strain can use ferulic acid as the sole carbon for growth. Both in mineral salt medium and in soil, more than 97% of added ferulic acid was degraded within 48 h. The metabolites were identified and quantified using GC-MS and HPLC-MS. Ferulic acid was first decarboxylated to 4-vinyl guaiacol and then oxidized to vanillin and vanillic acid, followed by demethylation to protocatechuic acid, which was further degraded through the β-ketoadipate pathway. During degradation, ferulic acid decarboxylase, laccase and protocatechuate 3,4-dioxygenase activities and their gene transcription levels were significantly affected by the variation of substrate and product concentrations. Moreover, ferulic acid degradation was determined to some extent by P. liquidambari laccase. This study is the first report of an endophytic fungus that has a great potential for practical application in ferulic acid-contaminated environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Liquid chromatography/tandem mass spectrometry study of forced degradation of azilsartan medoxomil potassium.

    PubMed

    Swain, Debasish; Patel, Prinesh N; Palaniappan, Ilayaraja; Sahu, Gayatri; Samanthula, Gananadhamu

    2015-08-15

    Azilsartan medoxomil potassium (AZM) is a new antihypertensive drug introduced in the year 2011. The presence of degradation products not only affects the quality, but also the safety aspects of the drug. Thus, it is essential to develop an efficient analytical method which could be useful to selectively separate and identify the degradation products of azilsartan medoxomil potassium. AZM was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions. Separation of the drug and degradation products was achieved by a liquid chromatography (LC) method using an Acquity UPLC(®) C18 CSH column with mobile phase consisting of 0.02% trifluoroacetic acid and acetonitrile using a gradient method. Identification and characterization of the degradation products was carried out using LC/electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS). A total of five degradation products (DP 1 to DP 5) were formed under various stress conditions and their structures were proposed with the help of tandem mass spectrometry (MS/MS) experiments and accurate mass data. A common degradation product (DP 4) was observed under all the degradation conditions. DP 1, DP 2 and DP 5 were observed under acid hydrolytic conditions whereas DP 3 was observed under alkaline conditions. AZM was found to degrade under hydrolytic, oxidative and photolytic stress conditions. The structures of all the degradation products were proposed. The degradation pathway for the formation of degradation products was also hypothesized. A selective method was developed to quantify the drug in the presence of degradation products which is useful to monitor the quality of AZM. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Soil organic matter as sole indicator of soil degradation.

    PubMed

    Obalum, S E; Chibuike, G U; Peth, S; Ouyang, Y

    2017-04-01

    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a soil that impairs its quality. This paper aims at providing a generalized assessment of the current state of knowledge on the usefulness of SOM in monitoring soil degradation, based on its influence on the physical, chemical and biological properties and processes of soils. Emphasis is placed particularly on the effect of SOM on soil structure and availability of plant nutrients. Although these properties are discussed separately, the soil system is of dynamic and interactive nature, and changes in one property will likely affect other soil properties as well. Thus, functions of SOM almost always affect various soil properties and processes and engage in multiple reactions. In view of its role in soil aggregation and erosion control, in availability of plant nutrients and in ameliorating other forms of soil degradation than erosion, SOM has proven to be an important indicator of soil degradation. It has been suggested, however, that rather than the absolute amount, temporal change and potential amount of SOM be considered in its use as indicator of soil degradation, and that SOM may not be an all-purpose indicator. Whilst SOM remains a candidate without substitute as long as a one-parameter indicator of soil degradation is needed, narrowing down to the use of its labile and microbial components could be more appropriate, since early detection is important in the control and management of soil degradation.

  6. Age-Related Differences in Listening Effort During Degraded Speech Recognition.

    PubMed

    Ward, Kristina M; Shen, Jing; Souza, Pamela E; Grieco-Calub, Tina M

    The purpose of the present study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Twenty-five younger adults (YA; 18-24 years) and 21 older adults (OA; 56-82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants' responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners' performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (single task vs. dual task); and (3) per group (YA vs. OA). Speech recognition declined with increasing spectral degradation for both YA and OA when they performed the task in isolation or concurrently with the visual monitoring task. OA were slower and less accurate than YA on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared with single-task performance, OA experienced greater declines in secondary-task accuracy, but not reaction time, than YA. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. OA experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than YA. These

  7. Age-related differences in listening effort during degraded speech recognition

    PubMed Central

    Ward, Kristina M.; Shen, Jing; Souza, Pamela E.; Grieco-Calub, Tina M.

    2016-01-01

    Objectives The purpose of the current study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Design Twenty-five younger adults (18–24 years) and twenty-one older adults (56–82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants’ responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners’ performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (baseline vs. dual task); and (3) per group (younger vs. older adults). Results Speech recognition declined with increasing spectral degradation for both younger and older adults when they performed the task in isolation or concurrently with the visual monitoring task. Older adults were slower and less accurate than younger adults on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared to single-task performance, older adults experienced greater declines in secondary-task accuracy, but not reaction time, than younger adults. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. Conclusions Older

  8. Ecosystem recovery: a neglected factor in greenhouse gas emission from permafrost degradation.

    NASA Astrophysics Data System (ADS)

    van Huissteden, J.; Mi, Y.; Gallagher, A.; Budishchev, A.

    2012-04-01

    It is estimated that northern soils hold nearly twice as much carbon as the atmosphere. Permafrost degradation caused by a warming climate will destabilize this carbon store. Part of this carbon will enter the atmosphere as CO2 or CH4, contributing to a positive feedback on climate warming. However, a neglected factor is the recovery of ecosystems after permafrost thaw. Modeling of thaw lake expansion and drainage has shown that thaw lake expansion by climatic warming is strongly limited by lake drainage. Thaw lakes are drained or filled in with sediment, followed by recolonization by generally productive wetland ecosystems. Decomposition of soil carbon also releases nutrients, enhancing vegetation recolonization in types of permafrost degradation features. Examples from the Kytalyk/Chokurdagh research site in the Indigirka lowlands of northeastern Siberia illustrate that ecosystem recovery after localized permafrost degradation may effectively counteract carbon loss. The research site is located in a drained Early Holocene thaw lake basin, and is presently a greenhouse gas sink during the growing season. Formation of thaw ponds has increased strongly recently. Although fresh ponds may be emitting CO2 and CH4, they are rapidly invaded by vegetation which decreases net greenhouse gas emission, although the ponds continue to be a source of CH4. Areas of intense mass wasting by permafrost slides are colonized by a productive pioneer vegetation, contributing to stabilization of the soil and enhancing CO2 uptake. It is therefore essential that not only the greenhouse gas emission related to permafrost degradation is quantified, but also the carbon sinks and recovery rates. Paleo-environmental and geomorphological studies may help to quantify recovery processes, in particular those processes that leave their trace in the sedimentary record. For instance Pleistocene and younger thaw lake deposits in Europe and Siberia may provide information on carbon loss and carbon

  9. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.

    PubMed

    Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok

    2010-08-01

    Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.

  10. Moisture-temperature degradation in module encapsulants: The general problem of moisture in photovoltaic encapsulants

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1985-01-01

    A general research approach was outlined toward understanding water-module interactions and the influence of temperature involving the need to: quantify module performance loss versus level of accumulated degradation, establish the dependence of the degradation reaction rate on module moisture and temperature levels, and determine module moisture and temperature levels in field environments. These elements were illustrated with examples drawn from studies of the now relatively well understood module electrochemical degradation process. Research data presented include temperature and humidity-dependent equilibrium leakage current values for multiparameter module material and design configurations. The contributions of surface, volume, and interfacial conductivities was demonstrated. Research directions were suggested to more fully understand the contributions to overall module conductivity of surface, volume, and interfacial conductivities over ranges of temperature and relative humidity characteristic of field environments.

  11. Hypothermia as an Adjunct Therapy to Vesicant-induced Skin Injury

    PubMed Central

    Sawyer, Thomas W; Nelson, Peggy

    2008-01-01

    Objective: The notion that cooling vesicant-exposed tissue may ameliorate or prevent resultant injury is not a novel concept. During both World Wars, studies were conducted that investigated this potential mode of therapy with sulfur mustard and seemed to conclude that there might be merit in pursuing this research direction. However, it does not appear that these studies were followed up vigorously, and the literature that describes this work is not readily accessible. In this report, we compare the toxicities of lewisite and sulfur mustard in vitro and in vivo and also provide an overview of historical and recent work on the effect of temperature on the toxicity of these vesicating chemical warfare agents.Methods: Tissue culture and animal studies were utilized to examine the effects of hypothermia on vesicant-induced toxicity. Results: Cytotoxicity was either significantly delayed (lewisite) or prevented (sulfur mustard) when cultures were maintained at 25°C. However, the effects of hypothermia on sulfur mustard–induced cell death were reversible when the cells were returned to 37°C. Despite these in vitro results, animal studies demonstrated that the therapeutic cooling of both mustard sulfur–exposed and lewisite-exposed skin resulted in dramatic and permanent protection against injury. Cooling also increased the therapeutic window in which drugs were effective against vesicant agents in tissue culture and lewisite-induced skin injury. Conclusions: The simple and noninvasive application of cooling measures may not only provide significant therapeutic relief to vesicant-exposed skin but also increase the therapeutic window in which medical countermeasures against vesicant agents are useful. PMID:18516227

  12. Degradation of fipronil by Stenotrophomonas acidaminiphila isolated from rhizospheric soil of Zea mays.

    PubMed

    Uniyal, Shivani; Paliwal, Rashmi; Sharma, R K; Rai, J P N

    2016-06-01

    Fipronil is a widely used insecticide in agriculture and can cause potential health hazards to non-target soil invertebrates and nearby aquatic systems. In the present study, a fipronil degrading bacterium was isolated from fipronil contaminated soil, i.e. rhizospheric zone of Zea mays. Morphological, biochemical and molecular characterization of strain indicated that it clearly belongs to Stenotrophomonas acidaminiphila (accession no. KJ396942). A three-factor Box-Behnken experimental design combined with response surface modeling was employed to predict the optimum conditions for fipronil degradation. The optimum pH, temperature and total inocula biomass for the degradation of fipronil were 7.5, 35 °C and 0.175 g L -1 , respectively. The bacterial strain was able to metabolize 25 mg L -1 fipronil with 86.14 % degradation in Dorn's broth medium under optimum conditions. Metabolites formed as a result of fipronil degradation were characterized with gas liquid chromatograph. A novel fipronil degradation pathway was proposed for S. acidaminiphila on the basis of metabolites formed. Non-sterilized soil inoculated with S. acidaminiphila was found to follow first order kinetics with a rate constant of 0.046 d -1 . Fipronil sulfone, sulfide and amide were formed as the metabolites and were degraded below the quantifiable limit after 90 days of time period. Given the high fipronil degradation observed in the present study, S. acidaminiphila may have potential for use in bioremediation of fipronil contaminated soils.

  13. Satellite-based primary forest degradation assessment in the Democratic Republic of the Congo, 2000-2010

    NASA Astrophysics Data System (ADS)

    Zhuravleva, I.; Turubanova, S.; Potapov, P.; Hansen, M.; Tyukavina, A.; Minnemeyer, S.; Laporte, N.; Goetz, S.; Verbelen, F.; Thies, C.

    2013-06-01

    Primary forest extent, loss and degradation within the Democratic Republic of the Congo (DRC) were quantified from 2000 to 2010 by combining directly mapped forest cover extent and loss data (CARPE) with indirectly mapped forest degradation data (intact forest landscapes, IFL). Landsat data were used to derive both map inputs, and data from the GLAS (Geoscience Laser Altimetry System) sensor were employed to validate the discrimination of primary intact and primary degraded forests. In the year 2000, primary humid tropical forests occupied 104 455 kha of the country, with 61% of these forests classified as intact. From 2000 to 2010, 1.02% of primary forest cover was lost due to clearing, and almost 2% of intact primary forests were degraded due to alteration and fragmentation. While primary forest clearing increased by a factor of two between 2000-2005 and 2005-2010, the degradation of intact forests slightly decreased. Fragmentation and selective logging were the leading causes of intact forest degradation, accounting for 91% of IFL area change. The 10 year forest degradation rate within designated logging permit areas was 3.8 times higher compared to other primary forest areas. Within protected areas the forest degradation rate was 3.7 times lower than in other primary forest areas. Forest degradation rates were high in the vicinity of major urban areas. Given the observed forest degradation rates, we infer that the degradation of intact forests could increase up to two-fold over the next decade.

  14. Remaining useful life prediction of degrading systems subjected to imperfect maintenance: Application to draught fans

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Qiang; Hu, Chang-Hua; Si, Xiao-Sheng; Zio, Enrico

    2018-02-01

    Current degradation modeling and remaining useful life prediction studies share a common assumption that the degrading systems are not maintained or maintained perfectly (i.e., to an as-good-as new state). This paper concerns the issues of how to model the degradation process and predict the remaining useful life of degrading systems subjected to imperfect maintenance activities, which can restore the health condition of a degrading system to any degradation level between as-good-as new and as-bad-as old. Toward this end, a nonlinear model driven by Wiener process is first proposed to characterize the degradation trajectory of the degrading system subjected to imperfect maintenance, where negative jumps are incorporated to quantify the influence of imperfect maintenance activities on the system's degradation. Then, the probability density function of the remaining useful life is derived analytically by a space-scale transformation, i.e., transforming the constructed degradation model with negative jumps crossing a constant threshold level to a Wiener process model crossing a random threshold level. To implement the proposed method, unknown parameters in the degradation model are estimated by the maximum likelihood estimation method. Finally, the proposed degradation modeling and remaining useful life prediction method are applied to a practical case of draught fans belonging to a kind of mechanical systems from steel mills. The results reveal that, for a degrading system subjected to imperfect maintenance, our proposed method can obtain more accurate remaining useful life predictions than those of the benchmark model in literature.

  15. Levodopa in Mucuna pruriens and its degradation

    NASA Astrophysics Data System (ADS)

    Pulikkalpura, Haridas; Kurup, Rajani; Mathew, Paravanparampil Jacob; Baby, Sabulal

    2015-06-01

    Mucuna pruriens is the best known natural source of L-dopa, the gold standard for treatment of Parkinsonism. M. pruriens varieties are protein rich supplements, and are used as food and fodder worldwide. Here, we report L-dopa contents in seeds of fifty six accessions of four M. pruriens varieties, M. pruriens var. pruriens, M. pruriens var. hirsuta, M. pruriens var. utilis and M. pruriens var. thekkadiensis, quantified by HPTLC-densitometry. L-dopa contents varied between 0.58 to 6.42 (%, dr. wt.). High and low L-dopa yielding genotypes/chemotypes of M. pruriens could be multiplied for medicinal and nutritional purposes, respectively. HPTLC profiles of M. pruriens seeds on repeated extraction (24 h) in 1:1 formic acid-alcohol followed by development in butanol:acetic acid:water (4:1:1, v/v) showed consistent degradation of L-dopa (Rf 0.34 ± 0.02) into a second peak (Rf 0.41 ± 0.02). An average of 52.11% degradation of L-dopa was found in seeds of M. pruriens varieties. Since M. pruriens seeds and/or L-dopa are used for treatment of Parkinson’s disease and as an aphrodisiac both in modern and/or traditional systems of medicine, the finding of high level of L-dopa degradation (in pure form and in M. pruriens extracts) into damaging quinones and ROS is very significant.

  16. Levodopa in Mucuna pruriens and its degradation.

    PubMed

    Pulikkalpura, Haridas; Kurup, Rajani; Mathew, Paravanparampil Jacob; Baby, Sabulal

    2015-06-09

    Mucuna pruriens is the best known natural source of L-dopa, the gold standard for treatment of Parkinsonism. M. pruriens varieties are protein rich supplements, and are used as food and fodder worldwide. Here, we report L-dopa contents in seeds of fifty six accessions of four M. pruriens varieties, M. pruriens var. pruriens, M. pruriens var. hirsuta, M. pruriens var. utilis and M. pruriens var. thekkadiensis, quantified by HPTLC-densitometry. L-dopa contents varied between 0.58 to 6.42 (%, dr. wt.). High and low L-dopa yielding genotypes/chemotypes of M. pruriens could be multiplied for medicinal and nutritional purposes, respectively. HPTLC profiles of M. pruriens seeds on repeated extraction (24 h) in 1:1 formic acid-alcohol followed by development in butanol:acetic acid:water (4:1:1, v/v) showed consistent degradation of L-dopa (Rf 0.34 ± 0.02) into a second peak (Rf 0.41 ± 0.02). An average of 52.11% degradation of L-dopa was found in seeds of M. pruriens varieties. Since M. pruriens seeds and/or L-dopa are used for treatment of Parkinson's disease and as an aphrodisiac both in modern and/or traditional systems of medicine, the finding of high level of L-dopa degradation (in pure form and in M. pruriens extracts) into damaging quinones and ROS is very significant.

  17. Quantifiers more or less quantify online: ERP evidence for partial incremental interpretation

    PubMed Central

    Urbach, Thomas P.; Kutas, Marta

    2010-01-01

    Event-related brain potentials were recorded during RSVP reading to test the hypothesis that quantifier expressions are incrementally interpreted fully and immediately. In sentences tapping general knowledge (Farmers grow crops/worms as their primary source of income), Experiment 1 found larger N400s for atypical (worms) than typical objects (crops). Experiment 2 crossed object typicality with non-logical subject-noun phrase quantifiers (most, few). Off-line plausibility ratings exhibited the crossover interaction predicted by full quantifier interpretation: Most farmers grow crops and Few farmers grow worms were rated more plausible than Most farmers grow worms and Few farmers grow crops. Object N400s, although modulated in the expected direction, did not reverse. Experiment 3 replicated these findings with adverbial quantifiers (Farmers often/rarely grow crops/worms). Interpretation of quantifier expressions thus is neither fully immediate nor fully delayed. Furthermore, object atypicality was associated with a frontal slow positivity in few-type/rarely quantifier contexts, suggesting systematic processing differences among quantifier types. PMID:20640044

  18. Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan.

    PubMed

    Tuncer, M; Ball, A S

    2003-01-01

    To determine and quantify the products from the degradation of xylan by a range of purified xylan-degrading enzymes, endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase produced extracellularly by Thermomonospora fusca BD25. The amounts of reducing sugars released from oat-spelt xylan by the actions of endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase were equal to 28.1, 4.6 and 7% hydrolysis (as xylose equivalents) of the substrate used, respectively. However, addition of beta-xylosidase and alpha-l-arabinofuranosidase preparation to endoxylanase significantly enhanced (70 and 20% respectively) the action of endoxylanase on the substrate. The combination of purified endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase preparations produced a greater sugar yield (58.6% hydrolysis) and enhanced the total reducing sugar yield by around 50%. The main xylooligosaccharide products released using the action of endoxylanase alone on oat-spelt xylan were identified as xylobiose and xylopentose. alpha-l-Arabinofuranosidase was able to release arabinose and xylobiose from oat-spelt xylan. In the presence of all three purified enzymes the hydrolysis products of oat-spelt xylan were mainly xylose, arabinose and substituted xylotetrose with lesser amount of substituted xylotriose. The addition of the beta-xylosidase and alpha-l-arabinofuranosidase enzymes to purified xylanases more than doubled the degradation of xylan from 28 to 58% of the total substrate with xylose and arabinose being the major sugars produced. The results highlight the role of xylan de-branching enzymes in the degradation of xylan and suggest that the use of enzyme cocktails may significantly improve the hydrolysis of xylan in industrial processes.

  19. Validation of a headspace trap gas chromatography and mass spectrometry method for the quantitative analysis of volatile compounds from degraded rapeseed oil.

    PubMed

    Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme

    2016-05-01

    Due to lipid oxidation, off-flavors, characterized by a fishy odor, are emitted during the heating of rapeseed oil in a fryer and affect the flavor of rapeseed oil even at low concentrations. Thus, there is a need for analytical methods to identify and quantify these products. To study the headspace composition of degraded rapeseed oil, and more specifically the compounds responsible for the fishy odor, a headspace trap gas chromatography with mass spectrometry method was developed and validated. Six volatile compounds formed during the degradation of rapeseed oil were quantified: 1-penten-3-one, (Z)-4-heptenal, hexanal, nonanal, (E,E)-heptadienal, and (E)-2-heptenal. Validation using accuracy profiles allowed us to determine the valid ranges of concentrations for each compound, with acceptance limits of 40% and tolerance limits of 80%. This method was then successfully applied to real samples of degraded oils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    PubMed

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  1. Characterization of a Polycyclic Aromatic Hydrocarbon Degradation Gene Cluster in a Phenanthrene-Degrading Acidovorax Strain▿

    PubMed Central

    Singleton, David R.; Guzmán Ramirez, Liza; Aitken, Michael D.

    2009-01-01

    Acidovorax sp. strain NA3 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil that had been treated in a bioreactor and enriched with phenanthrene. The 16S rRNA gene of the isolate possessed 99.8 to 99.9% similarity to the dominant sequences recovered during a previous stable-isotope probing experiment with [U-13C]phenanthrene on the same soil (D. R. Singleton, S. N. Powell, R. Sangaiah, A. Gold, L. M. Ball, and M. D. Aitken, Appl. Environ. Microbiol. 71:1202-1209, 2005). The strain grew on phenanthrene as a sole carbon and energy source and could mineralize 14C from a number of partially labeled PAHs, including naphthalene, phenanthrene, chrysene, benz[a]anthracene, and benzo[a]pyrene, but not pyrene or fluoranthene. Southern hybridizations of a genomic fosmid library with a fragment of the large subunit of the ring-hydroxylating dioxygenase gene from a naphthalene-degrading Pseudomonas strain detected the presence of PAH degradation genes subsequently determined to be highly similar in both nucleotide sequence and gene organization to an uncharacterized Alcaligenes faecalis gene cluster. The genes were localized to the chromosome of strain NA3. To test for gene induction by selected compounds, RNA was extracted from amended cultures and reverse transcribed, and cDNA associated with the enzymes involved in the first three steps of phenanthrene degradation was quantified by quantitative real-time PCR. Expression of each of the genes was induced most strongly by phenanthene and to a lesser extent by naphthalene, but other tested PAHs and PAH metabolites had negligible effects on gene transcript levels. PMID:19270134

  2. "Dark" Singlet Oxygen and Electron Paramagnetic Resonance Spin Trapping as Convenient Tools to Assess Photolytic Drug Degradation.

    PubMed

    Persich, Peter; Hostyn, Steven; Joie, Céline; Winderickx, Guy; Pikkemaat, Jeroen; Romijn, Edwin P; Maes, Bert U W

    2017-05-01

    Forced degradation studies are an important tool for a systematic assessment of decomposition pathways and identification of reactive sites in active pharmaceutical ingredients (APIs). Two methodologies have been combined in order to provide a deeper understanding of singlet oxygen-related degradation pathways of APIs under light irradiation. First, we report that a "dark" singlet oxygen test enables the investigation of drug reactivity toward singlet oxygen independently of photolytic irradiation processes. Second, the photosensitizing properties of the API producing the singlet oxygen was proven and quantified by spin trapping and electron paramagnetic resonance analysis. A combination of these techniques is an interesting addition to the forced degradation portfolio as it can be used for (1) revealing unexpected degradation pathways of APIs due to singlet oxygen, (2) clarifying photolytic drug-drug interactions in fixed-dose combinations, and (3) synthesizing larger quantities of hardly accessible oxidative drug degradants. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. An Investigation of Black Carbon Degradation Potential in a Forest Soil Environment

    NASA Astrophysics Data System (ADS)

    William, H. C.; Lee, E.; Grannas, A.; Hatcher, P. G.

    2003-12-01

    Except for emission processes, there is currently little understanding of the mechanisms driving the degradation and biogeochemical cycling of black carbon (BC). Considering current estimates of the global BC pool (>2,500x1015gC), and its annual emission rates (55-205x1012 gC/year), BC represents roughly 16% of Earth's actively cycling organic carbon. Without significant chemical and biological degradation pathways, all of the actively cycling carbon on earth would have accumulated as charcoal in <100,000 years. This investigation show that charcoals recovered from experimental forest fires are altered significantly by microbial colonization, and mineral complexation during exposure to soil processes. Charcoal surface morphology and elemental composition were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and BET surface area measurements. The influence of 90 years aging upon carbon functionality was probed by solid-state 13C NMR spectroscopy. The prevalence of fungal mycorhizae in these forest soil charcoals also motivated an investigation of black carbon degradation via extracellular enzymes and acids known be exuded by mycelia. Degradation is quantified by carbon loss, and soluble products are examined by mass spectrometry.

  4. [Establishment and evaluation of an in vitro method for neutrophil extracellular trap generation and degradation].

    PubMed

    Li, Jinlong; Zhang, Yidan; Zhou, Xin; Ji, Wenjie; Zhao, Jihong; Wei, Luqing; Li, Yuming

    2014-09-01

    To evaluate a novel method for in vitro generation and degradation of neutrophil extracellular traps (NETs), which are a newly recognized structure that is involved in the pathogenesis of autoimmune diseases and thrombosis. Neutrophils from peripheral blood of healthy donors were obtained by Ficoll-Histopaque gradient separation. NET release was initiated by phorbol myristate acetate (PMA) and validated by immunofluorescence staining and agarose gel electrophoresis. NETs degraded by DNase I and healthy human plasma were quantified by fluorescence spectrometry after staining with PicoGreen. HE staining showed that the purity of neutrophils was up to 95% after Ficoll-Histopaque gradient separation. NET immunofluorescent staining revealed that the network structure was mainly composed of DNA and histones, with molecular length more than 10 kb as demonstrated by agarose gel electrophoresis. Moreover, both DNase and healthy human plasma could induce the degradation of NETs, in varying degrees. This work established an efficient method for in vitro generation and degradation of human NETs.

  5. Identification of Small Peptides in Human Cerebrospinal Fluid upon Amyloid-β Degradation.

    PubMed

    Mizuta, Naoki; Yanagida, Kanta; Kodama, Takashi; Tomonaga, Takeshi; Takami, Mako; Oyama, Hiroshi; Kudo, Takashi; Ikeda, Manabu; Takeda, Masatoshi; Tagami, Shinji; Okochi, Masayasu

    2017-01-01

    Amyloid-β (Aβ) degradation in brains of Alzheimer disease patients is a crucial focus for the clarification of disease pathogenesis. Nevertheless, the mechanisms underlying Aβ degradation in the human brain remain unclear. This study aimed to quantify the levels of small C-terminal Aβ fragments generated upon Aβ degradation in human cerebrospinal fluid (CSF). A fraction containing small peptides was isolated and purified from human CSF by high-pressure liquid chromatography. Degradation products of Aβ C termini were identified and measured by liquid chromatography-tandem mass spectrometry. The C-terminal fragments of Aβ in the conditioned medium of cultured cells transfected with the Swedish variant of βAPP (sw βAPP) were analyzed. These fragments in brains of PS1 I213T knock-in transgenic mice, overexpressing sw βAPP, were also analyzed. The peptide fragments GGVV and GVV, produced by the cleavage of Aβ40, were identified in human CSF as well as in the brains of the transgenic mice and in the conditioned medium of the cultured cells. Relative to Aβ40 levels, GGVV and GVV levels were 7.6 ± 0.81 and 1.5 ± 0.18%, respectively, in human CSF. Levels of the GGVV fragment did not increase by the introduction of genes encoding neprilysin and insulin-degrading enzyme to the cultured cells. Our results indicate that a substantial amount of Aβ40 in human brains is degraded via a neprilysin- or insulin-degrading enzyme-independent pathway. © 2017 S. Karger AG, Basel.

  6. Degradation Characterization of Thermal Interface Greases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J; Major, Joshua; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  7. Degradation Characterization of Thermal Interface Greases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Major, Joshua; Narumanchi, Sreekant V; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees C to 125 degrees C. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  8. Formation of brown lines in paper: characterization of cellulose degradation at the wet-dry interface.

    PubMed

    Souguir, Zied; Dupont, Anne-Laurence; de la Rie, E René

    2008-09-01

    Brown lines were generated at the wet-dry interface on Whatman paper No. 1 by suspending the sheet vertically in deionized water. Formic acid and acetic acid were quantified in three areas of the paper defined by the wet-dry boundary (above, below, and at the tideline) using capillary zone electrophoresis with indirect UV detection. Their concentration increased upon accelerated aging of the paper and was highest in the tideline. The hydroperoxides have been quantified using reverse phase high performance liquid chromatography with UV detection based on the determination of triphenylphosphine oxide produced from the reaction with triphenylphosphine, and their highest concentration was found in the tideline as well. For the first time, it was shown that various types of hydroperoxides were present, water-soluble and non-water-soluble, most probably in part hydroperoxide functionalized cellulose. After accelerated aging, a significant increase in hydroperoxide concentration was found in all the paper areas. The molar masses of cellulose determined using size-exclusion chromatography with multiangle light scattering detection showed that, upon aging, cellulose degraded significantly more in the tideline area than in the other areas of the paper. The area below the tideline was more degraded than the area above. A kinetic study of the degradation of cellulose allowed determining the constants for glycosidic bond breaking in each of the areas of the paper.

  9. Mechanism for the degradation of MmNi3.9Co0.6Mn0.3Al0.2 electrode and effects of additives on electrode degradation for Ni-MH secondary batteries

    NASA Astrophysics Data System (ADS)

    Jang, In-Su; Kalubarme, R. S.; Yang, Dong-Cheol; Kim, Tae-Sin; Park, Choong-Nyeon; Ryu, Hyun-Wook; Park, Chan-Jin

    2011-12-01

    Electrode degradation can affect the lifetime and safety of Ni-MH secondary batteries. This study examined the factors responsible for the degradation of metal hydride (MH) electrodes. The charge-discharge characteristics and cycle life of an MmNi3.9Co0.6Mn0.3Al0.2 (Mm: misch metal) type MH electrode were examined in a cell with a KOH electrolyte. After the charge-discharge cycles, the surface morphology of the electrodes was analyzed to monitor the extent of degradation. Electrochemical impedance spectroscopy provided information on the conductivity of the electrode. X-ray photon spectroscopy (XPS) was used to quantify the degradation of the electrode in terms of its composition. The MH electrodes degraded with cycling. This phenomenon was more prominent at higher C-rates and temperatures. The electrode degradation was attributed to the loss of active material from the current collector by the repeated absorption and desorption of hydrogen and the formation of an Al2O3 oxide layer on the electrode surface with cycling. In addition, the effects of the addition of Co nano and Y2O3 powder on the degradation of the MmNi3.9Co0.6Mn0.3Al0.2 electrode were examined. The addition of the Y2O3 and Co nano powder significantly improved the performance of the MH electrode by increasing the cycle life and initial activation rate.

  10. A Soil Service Index: Peatland soils as a case study for quantifying the value, vulnerability, and status of soils

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Harden, J. W.; Hugelius, G.

    2017-12-01

    What are the most important soil services valued by land stewards and planners? Which soil-data metrics can be used to quantify each soil service? What are the steps required to quantitatively index the baseline value of soil services and their vulnerability under different land-use and climate change scenarios? How do we simulate future soil service pathways (or trajectories) under changing management regimes using process-based ecosystem models? What is the potential cost (economic, social, and other) of soil degradation under these scenarios? How sensitive or resilient are soil services to prescribed management practices, and how does sensitivity vary over space and time? We are bringing together a group of scientists and conservation organizations to answer these questions by launching Soil Banker, an open and flexible tool to quantify soil services that can be used at any scale, and by any stakeholder. Our overarching goals are to develop metrics and indices to quantify peatland soil ecosystem services, monitor change of these services, and guide management. This paper describes our methodology applied to peatlands and presents two case studies (Indonesia and Patagonia) demonstrating how Peatland Soil Banker can be deployed as an accounting tool of peatland stocks, a quantitative measure of peatland health, and as a projection of peatland degradation or enhancement under different land-use cases. Why peatlands? They store about 600 billion tons of carbon that account for ⅓ of the world's soil carbon. Peatlands have dynamic GHG exchanges of CO2, CH4, and NOx with the atmosphere, which plays a role in regulating global climate; studies indicate that peatland degradation releases about 2-3 billion tons of CO2 to the atmosphere annually. These ecosystems also provide local and regional ecosystem services: they constitute important components of the N and P cycles, store about 10% of the world's freshwater and buffer large fluxes of freshwater on an annual basis

  11. SYNERGISTIC DEGRADATION OF DENTIN BY CYCLIC STRESS AND BUFFER AGITATION

    PubMed Central

    Orrego, Santiago; Romberg, Elaine; Arola, Dwayne

    2015-01-01

    Secondary caries and non-carious lesions develop in regions of stress concentrations and oral fluid movement. The objective of this study was to evaluate the influence of cyclic stress and fluid movement on material loss and subsurface degradation of dentin within an acidic environment. Rectangular specimens of radicular dentin were prepared from caries-free unrestored 3rd molars. Two groups were subjected to cyclic cantilever loading within a lactic acid solution (pH=5) to achieve compressive stresses on the inner (pulpal) or outer sides of the specimens. Two additional groups were evaluated in the same solution, one subjected to movement only (no stress) and the second held stagnant (control: no stress or movement). Exterior material loss profiles and subsurface degradation were quantified on the two sides of the specimens. Results showed that under cyclic stress material loss was significantly greater (p≤0.0005) on the pulpal side than on the outer side and significantly greater (p≤0.05) under compression than tension. However, movement only caused significantly greater material loss (p≤0.0005) than cyclic stress. Subsurface degradation was greatest at the location of highest stress, but was not influenced by stress state or movement. PMID:25637823

  12. Levodopa in Mucuna pruriens and its degradation

    PubMed Central

    Pulikkalpura, Haridas; Kurup, Rajani; Mathew, Paravanparampil Jacob; Baby, Sabulal

    2015-01-01

    Mucuna pruriens is the best known natural source of L-dopa, the gold standard for treatment of Parkinsonism. M. pruriens varieties are protein rich supplements, and are used as food and fodder worldwide. Here, we report L-dopa contents in seeds of fifty six accessions of four M. pruriens varieties, M. pruriens var. pruriens, M. pruriens var. hirsuta, M. pruriens var. utilis and M. pruriens var. thekkadiensis, quantified by HPTLC-densitometry. L-dopa contents varied between 0.58 to 6.42 (%, dr. wt.). High and low L-dopa yielding genotypes/chemotypes of M. pruriens could be multiplied for medicinal and nutritional purposes, respectively. HPTLC profiles of M. pruriens seeds on repeated extraction (24 h) in 1:1 formic acid-alcohol followed by development in butanol:acetic acid:water (4:1:1, v/v) showed consistent degradation of L-dopa (Rf 0.34 ± 0.02) into a second peak (Rf 0.41 ± 0.02). An average of 52.11% degradation of L-dopa was found in seeds of M. pruriens varieties. Since M. pruriens seeds and/or L-dopa are used for treatment of Parkinson’s disease and as an aphrodisiac both in modern and/or traditional systems of medicine, the finding of high level of L-dopa degradation (in pure form and in M. pruriens extracts) into damaging quinones and ROS is very significant. PMID:26058043

  13. Investigation of optimum conditions and costs estimation for degradation of phenol by solar photo-Fenton process

    NASA Astrophysics Data System (ADS)

    Gar Alalm, Mohamed; Tawfik, Ahmed; Ookawara, Shinichi

    2017-03-01

    In this study, solar photo-Fenton reaction using compound parabolic collectors reactor was assessed for removal of phenol from aqueous solution. The effect of irradiation time, initial concentration, initial pH, and dosage of Fenton reagent were investigated. H2O2 and aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. Complete degradation of phenol was achieved after 45 min of irradiation when the initial concentration was 100 mg/L. However, increasing the initial concentration up to 500 mg/L inhibited the degradation efficiency. The dosage of H2O2 and Fe+2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 3.1. Phenol degradation at different concentration was fitted to the pseudo-first order kinetic according to Langmuir-Hinshelwood model. Costs estimation for a large scale reactor based was performed. The total costs of the best economic condition with maximum degradation of phenol are 2.54 €/m3.

  14. Lidar-based multinomial classification algorithms for tropical forest degradation status: Implications for biomass estimation

    NASA Astrophysics Data System (ADS)

    Duffy, P.; Keller, M.; Longo, M.; Morton, D. C.; dos-Santos, M. N.; Pinagé, E. R.

    2017-12-01

    There is an urgent need to quantify the effects of land use and land cover change on carbon stocks in tropical forests to support REDD+ policies and improve characterization of global carbon budgets. This need is underscored by the fact that the variability in forest biomass estimates from global forest carbon maps is artificially low relative to estimates generated from forest inventory and high-resolution airborne lidar data. Both deforestation and degradation processes (e.g. logging, fire, and fragmentation) affect carbon fluxes at varying spatial and temporal scales. While the spatial extent and impact of deforestation has been relatively well characterized, the quantification of degradation processes is still poorly constrained. In the Brazilian Amazon, the largest source of uncertainty in CO2 emissions estimates is data on changes in tropical forest carbon stocks through time, followed closely by incomplete information on the carbon losses from forest degradation. In this work, we present a method for classifying the degradation status of tropical forests using higher order moments (skewness and kurtosis) of lidar return distributions aggregated at grids with resolution ranging from 50 m to 250 m. Across multiple spatial resolutions, we quantify the strength of the functional relationship between the lidar returns and the classification based on historical time series of Landsat imagery. Our results show that the higher order moments of the lidar return distributions provide sufficient information to build multinomial models that accurately classify the landscape into intact, logged, and burned forests. Model fit improved with coarser spatial resolution with Kappa statistics of 0.70 at 50 m, and 0.77 at 250 m. In addition, multi-class AUC was estimated as 0.87 at 50 m, and 0.95 at 250 m. This classification provides important information regarding the applicability of the use of lidar data for regional monitoring of recent logging, as well as the trajectory

  15. The effect of particle size on the in vivo degradation of poly(d,l-lactide-co-glycolide)/α-tricalcium phosphate micro- and nanocomposites.

    PubMed

    Bennett, Sarah M; Arumugam, Meera; Wilberforce, Samuel; Enea, Davide; Rushton, Neil; Zhang, Xiang C; Best, Serena M; Cameron, Ruth E; Brooks, Roger A

    2016-11-01

    This paper reports the effect of particle size within a resorbable composite on the in vivo degradation rate and host response. Resorbable composites based on poly(d,l-lactide-co-glycolide) (PLGA) reinforced with tricalcium phosphate (TCP) have shown suitable degradation, biological and mechanical properties for bone repair. Composites with nano-sized TCP particles degrade more homogenously in vitro than equivalent composites with micro-sized particles. In this study, PLGA and PLGA/TCP composites containing micro- or nano-sized α-TCP particles were implanted into an ovine distal femoral condyle defect and harvested at 6, 12, 18 and 24weeks. An intimate interface was observed between the new bone tissue and degrading implants. Visual scoring of histological images and semi-automated segmentation of X-ray images were used to quantify implant degradation and the growth of new bone tissue in the implant site. Bone growth into the implant site occurred at a similar rate for both composites and the PLGA control. However, the in vivo degradation rate of the nanocomposite was slower than that of the microcomposite and consequently more closely matched the rate of bone growth. For the first 6weeks, the rate of in vivo degradation matched that of in vitro degradation, but lagged significantly at longer time points. These results point to the potential use of ceramic particle size in controlling composite degradation whilst maintaining good bone formation. This paper concerns degradable composites for orthopaedic application. The effect of particle size on implant degradation in vivo is not yet well characterised and these results give the first opportunity to directly compare in vitro and in vivo degradation rates for composites with micro- and nano-sized particles. This type of data is vital for the validation of models of composite degradation behaviour, which will lead to the design and manufacture of composites with a tailored, predictable degradation profile. The

  16. Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlosser, Courtney Adam; Walter-Anthony, Katey; Zhuang, Qianlai

    2013-04-26

    Our overall goal was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically forced climate warming, and the extent to which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes in the extent of wetlands and lakes, especially thermokarst (thaw) lakes, over the Arctic. Through a coordinated effort of fieldmore » measurements, model development, and numerical experimentation with an integrated assessment model framework, we have investigated the following hypothesis: There exists a climate-warming threshold beyond which permafrost degradation becomes widespread and thus instigates strong and/or sharp increases in methane emissions (via thermokarst lakes and wetland expansion). These would outweigh any increased uptake of carbon (e.g. from peatlands) and would result in a strong, positive feedback to global climate warming.« less

  17. Quantification of the degradation of Ni-YSZ anodes upon redox cycling

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Ruiz-Trejo, Enrique; Bertei, Antonio; Brandon, Nigel P.

    2018-01-01

    Ni-YSZ anodes for Solid Oxide Fuel Cells are vulnerable to microstructural damage during redox cycling leading to a decrease in the electrochemical performance. This study quantifies the microstructural changes as a function of redox cycles at 800 °C and associates it to the deterioration of the mechanical properties and polarisation resistance. A physically-based model is used to estimate the triple-phase boundary (TPB) length from impedance spectra, and satisfactorily matches the TPB length quantified by FIB-SEM tomography: within 20 redox cycles, the TPB density decreases from 4.63 μm-2 to 1.06 μm-2. Although the polarisation resistance increases by an order of magnitude after 20 cycles, after each re-reduction the electrode polarisation improves consistently due to the transient generation of Ni nanoparticles around the TPBs. Nonetheless, the long-term degradation overshadows this transient improvement due to the nickel agglomeration. In addition, FIB-SEM tomography reveals fractures along YSZ grain boundaries, Ni-YSZ detachment and increased porosity in the composite that lead to irreversible mechanical damage: the elastic modulus diminishes from 36.4 GPa to 20.2 GPa and the hardness from 0.40 GPa to 0.15 GPa. These results suggest that microstructural, mechanical and electrochemical properties are strongly interdependent in determining the degradation caused by redox cycling.

  18. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.

    PubMed

    Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique

    2016-10-01

    Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Suspended solids moderate the degradation and sorption of waste water-derived pharmaceuticals in estuarine waters.

    PubMed

    Aminot, Yann; Fuster, Laura; Pardon, Patrick; Le Menach, Karyn; Budzinski, Hélène

    2018-01-15

    This study focuses on the fate of pharmaceuticals discharged into an estuarine environment, particularly into the Turbidity Maximum Zone (TMZ). Batch experiments were set up to investigate the factors regulating the degradation of 53 selected pharmaceuticals. Treated effluents from Bordeaux city (France) were mixed with water from the estuarine Garonne River during 4weeks under 6 characterized conditions in order to assess the influence of suspended particulates, sterilization, untreated wastewater input and dilution on the degradation kinetics. Of the 53 pharmaceuticals monitored, 43 were quantified at the initial time. Only 7 exhibited a persistent behavior (e.g. carbamazepine, meprobamate) while biotic degradation was shown to be the main attenuation process for 38 molecules (e.g. abacavir, ibuprofen highly degradable). Degradation was significantly enhanced by increasing concentrations of suspended solids. A persistence index based on the half-lives of the compounds has been calculated for each of the 43 pharmaceuticals to provide a practical estimate of their relative stability. The stability of pharmaceuticals in estuarine environments is likely to be highly variable and attenuated primarily by changes in suspended solid concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Using nitrate to quantify quick flow in a karst aquifer

    USGS Publications Warehouse

    Mahler, B.J.; Garner, B.D.

    2009-01-01

    In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with ??18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The ??18O- based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems. ?? 2008 National Ground Water Association.

  1. Quantifying resilience

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.

    2016-01-01

    Several frameworks to operationalize resilience have been proposed. A decade ago, a special feature focused on quantifying resilience was published in the journal Ecosystems (Carpenter, Westley & Turner 2005). The approach there was towards identifying surrogates of resilience, but few of the papers proposed quantifiable metrics. Consequently, many ecological resilience frameworks remain vague and difficult to quantify, a problem that this special feature aims to address. However, considerable progress has been made during the last decade (e.g. Pope, Allen & Angeler 2014). Although some argue that resilience is best kept as an unquantifiable, vague concept (Quinlan et al. 2016), to be useful for managers, there must be concrete guidance regarding how and what to manage and how to measure success (Garmestani, Allen & Benson 2013; Spears et al. 2015). Ideas such as ‘resilience thinking’ have utility in helping stakeholders conceptualize their systems, but provide little guidance on how to make resilience useful for ecosystem management, other than suggesting an ambiguous, Goldilocks approach of being just right (e.g. diverse, but not too diverse; connected, but not too connected). Here, we clarify some prominent resilience terms and concepts, introduce and synthesize the papers in this special feature on quantifying resilience and identify core unanswered questions related to resilience.

  2. Genomic, Proteomic, and Metabolite Characterization of Gemfibrozil-Degrading Organism Bacillus sp. GeD10.

    PubMed

    Kjeldal, Henrik; Zhou, Nicolette A; Wissenbach, Dirk K; von Bergen, Martin; Gough, Heidi L; Nielsen, Jeppe L

    2016-01-19

    Gemfibrozil is a widely used hypolipidemic and triglyceride lowering drug. Excess of the drug is excreted and discharged into the environment primarily via wastewater treatment plant effluents. Bacillus sp. GeD10, a gemfibrozil-degrader, was previously isolated from activated sludge. It is the first identified bacterium capable of degrading gemfibrozil. Gemfibrozil degradation by Bacillus sp. GeD10 was here studied through genome sequencing, quantitative proteomics and metabolite analysis. From the bacterial proteome of Bacillus sp. GeD10 1974 proteins were quantified, of which 284 proteins were found to be overabundant by more than 2-fold (FDR corrected p-value ≤0.032, fold change (log2) ≥ 1) in response to gemfibrozil exposure. Metabolomic analysis identified two hydroxylated intermediates as well as a glucuronidated hydroxyl-metabolite of gemfibrozil. Overall, gemfibrozil exposure in Bacillus sp. GeD10 increased the abundance of several enzymes potentially involved in gemfibrozil degradation as well as resulted in the production of several gemfibrozil metabolites. The potential catabolic pathway/modification included ring-hydroxylation preparing the substrate for subsequent ring cleavage by a meta-cleaving enzyme. The identified genes may allow for monitoring of potential gemfibrozil-degrading organisms in situ and increase the understanding of microbial processing of trace level contaminants. This study represents the first omics study on a gemfibrozil-degrading bacterium.

  3. Radiation and chemical degradation of UVR protection characteristics of fabrics.

    PubMed

    Khazova, M; O'Hagan, J B; Grainger, K J-L

    2007-01-01

    Clothing can provide substantial protection against solar ultraviolet radiation (UVR) and quantifying the amount of protection can have useful applications to recreational, occupational and medical situations. However, exposure of fabrics to sunlight and sea water can alter their physical and chemical properties, resulting in a change of UVR attenuation characteristics. The objective of the current study was to evaluate the effects of environmental degradation of fabrics on their UVR protection characteristics. The methodologies applied in this study can be used also for the assessment of protective clothing against occupational exposure.

  4. Loschmidt echo as a robust decoherence quantifier for many-body systems

    NASA Astrophysics Data System (ADS)

    Zangara, Pablo R.; Dente, Axel D.; Levstein, Patricia R.; Pastawski, Horacio M.

    2012-07-01

    We employ the Loschmidt echo, i.e., the signal recovered after the reversal of an evolution, to identify and quantify the processes contributing to decoherence. This procedure, which has been extensively used in single-particle physics, is employed here in a spin ladder. The isolated chains have 1/2 spins with XY interaction and their excitations would sustain a one-body-like propagation. One of them constitutes the controlled system S whose reversible dynamics is degraded by the weak coupling with the uncontrolled second chain, i.e., the environment E. The perturbative SE coupling is swept through arbitrary combinations of XY and Ising-like interactions, that contain the standard Heisenberg and dipolar ones. Different time regimes are identified for the Loschmidt echo dynamics in this perturbative configuration. In particular, the exponential decay scales as a Fermi golden rule, where the contributions of the different SE terms are individually evaluated and analyzed. Comparisons with previous analytical and numerical evaluations of decoherence based on the attenuation of specific interferences show that the Loschmidt echo is an advantageous decoherence quantifier at any time, regardless of the S internal dynamics.

  5. Degrading and non-degrading sex in popular music: a content analysis.

    PubMed

    Primack, Brian A; Gold, Melanie A; Schwarz, Eleanor B; Dalton, Madeline A

    2008-01-01

    Those exposed to more degrading sexual references in popular music are more likely to initiate intercourse at a younger age. The purpose of this study was to perform a content analysis of contemporary popular music with particular attention paid to the prevalence of degrading and non-degrading sexual references. We also aimed to determine if sexual references of each subtype were associated with other song characteristics and/or content. We used Billboard magazine to identify the top popular songs in 2005. Two independent coders each analyzed all of these songs (n = 279) for degrading and non-degrading sexual references. As measured with Cohen's kappa scores, inter-rater agreement on degrading vs. non-degrading sex was substantial. Mentions of substance use, violence, and weapon carrying were also coded. Of the 279 songs identified, 103 (36.9%) contained references to sexual activity. Songs with references to degrading sex were more common than songs with references to non-degrading sex (67 [65.0%] vs. 36 [35.0%], p < 0.001). Songs with degrading sex were most commonly Rap (64.2%), whereas songs with non-degrading sex were most likely Country (44.5%) or Rhythm & Blues/Hip-Hop (27.8%). Compared with songs that had no mention of sexual activity, songs with degrading sex were more likely to contain references to substance use, violence, and weapon carrying. Songs with non-degrading sex were no more likely to mention these other risk behaviors. References to sexual activity are common in popular music, and degrading sexual references are more prevalent than non-degrading references. References to degrading sex also frequently appear with references to other risky behaviors.

  6. Degradation Characterization of Thermal Interface Greases: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J; Major, Joshua; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  7. The Effect of Upscaling and Performance Degradation on Onshore Wind Turbine Lifetime Extension Decision Making

    NASA Astrophysics Data System (ADS)

    Rubert, T.; McMillan, D.; Niewczas, P.

    2017-11-01

    Ever greater rated wind turbine generators (WTGs) are reaching their end of design life in the near future. In addition, first research approaches quantified the impact of long-term performance degradation of WTGs. As a consequence, this work is aimed at discussing and analysing the impact of upscaling and performance degradation on the economics of wind turbine lifetime extension. Findings reveal that the lifetime extension levelised cost of energy (LCOE2) of an 18 MW wind farm comprising of 0.5 MW rated WTGs are within the order of £23.52 per MWh. Alternatively, if the same wind farm consists of fewer 2 or 3 MW WTGs, the LCOE2 reduces to £16.56 or £15.49 per MWh, respectively. Further, findings reveal that an annual performance degradation of 1.6% (0.2%) increases LCOE2 by 34-41% (3.6-4.3%).

  8. Aboveground Biomass Variability Across Intact and Degraded Forests in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Longo, Marcos; Keller, Michael; Dos-Santos, Maiza N.; Leitold, Veronika; Pinage, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, re, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained70 of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 +/- 2.5 and 31.9 +/- 10.8 kg C m(exp -2). Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 +/- 0.7 kg C m(-2)(94%) of ACD. Forests that burned nearly15 years ago had between 4.1 +/- 0.5 and 6.8 +/- 0.3 kg C m(exp -2) (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 +/- 0.3 and 4.4 +/- 0.4 kg C m(exp -2)(4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pan-tropical products consistently overestimated ACD in degraded forests, under-estimated ACD in intact forests, and showed little sensitivity to res and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation(REDD+).

  9. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    PubMed

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  10. Biotic and abiotic degradation of CL-20 and RDX in soils.

    PubMed

    Crocker, Fiona H; Thompson, Karen T; Szecsody, James E; Fredrickson, Herbert L

    2005-01-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d(-1)) and biologically attenuated soil controls (0.003 < k < 0.277 d(-1)). The addition of glucose to biologically active soil microcosms significantly increased CL-20 degradation rates (0.068 < k < 1.22 d(-1)). Extents of mineralization of (14)C-CL-20 to (14)CO(2) in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d(-1)) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d(-1). Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  11. Multitasking During Degraded Speech Recognition in School-Age Children

    PubMed Central

    Ward, Kristina M.; Brehm, Laurel

    2017-01-01

    Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children’s multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unprocessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children’s accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children’s dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children’s proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition. PMID:28105890

  12. Multitasking During Degraded Speech Recognition in School-Age Children.

    PubMed

    Grieco-Calub, Tina M; Ward, Kristina M; Brehm, Laurel

    2017-01-01

    Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children's multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unprocessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children's accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children's dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children's proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition.

  13. Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance.

    PubMed

    Biache, Coralie; Ouali, Salma; Cébron, Aurélie; Lorgeoux, Catherine; Colombano, Stéfan; Faure, Pierre

    2017-05-05

    A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity.

    PubMed

    Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G

    2016-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2015 John Wiley & Sons Ltd.

  15. Glutathione Degradation.

    PubMed

    Bachhawat, Anand Kumar; Kaur, Amandeep

    2017-11-20

    Glutathione degradation has for long been thought to occur only on noncytosolic pools. This is because there has been only one enzyme known to degrade glutathione (γ-glutamyl transpeptidase) and this localizes to either the plasma membrane (mammals, bacteria) or the vacuolar membrane (yeast, plants) and acts on extracellular or vacuolar pools. The last few years have seen the discovery of several new enzymes of glutathione degradation that function in the cytosol, throwing new light on glutathione degradation. Recent Advances: The new enzymes that have been identified in the last few years that can initiate glutathione degradation include the Dug enzyme found in yeast and fungi, the ChaC1 enzyme found among higher eukaryotes, the ChaC2 enzyme found from bacteria to man, and the RipAY enzyme found in some bacteria. These enzymes play roles ranging from housekeeping functions to stress responses and are involved in processes such as embryonic neural development and pathogenesis. In addition to delineating the pathways of glutathione degradation in detail, a critical issue is to find how these new enzymes impact cellular physiology and homeostasis. Glutathione degradation plays a far greater role in cellular physiology than previously envisaged. The differential regulation and differential specificities of various enzymes, each acting on distinct pools, can lead to different consequences to the cell. It is likely that the coming years will see these downstream effects being unraveled in greater detail and will lead to a better understanding and appreciation of glutathione degradation. Antioxid. Redox Signal. 27, 1200-1216.

  16. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development

    PubMed Central

    Yu, Xurun; Li, Bo; Wang, Leilei; Chen, Xinyu; Wang, Wenjun; Wang, Zhong; Xiong, Fei

    2015-01-01

    Although wheat (Triticum aestivum L.) pericarp starch granule (PSG) has been well-studied, our knowledge of its features and mechanism of accumulation and degradation during pericarp growth is poor. In the present study, developing wheat caryopses were collected and starch granules were extracted from their pericarp to investigate the morphological and structural characteristics of PSGs using microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Relative gene expression levels of ADP-glucose pyrophosphorylase (APGase), granule-bound starch synthase II (GBSS II), and α-amylase (AMY) were quantified by quantitative real-time polymerase chain reaction. PSGs presented as single or multiple starch granules and were synthesized both in the amyloplast and chloroplast in the pericarp. PSG degradation occurred in the mesocarp, beginning at 6 days after anthesis. Amylose contents in PSGs were lower and relative degrees of crystallinity were higher at later stages of development than at earlier stages. Short-range ordered structures in the external regions of PSGs showed no differences in the developing pericarp. When hydrolyzed by α-amylase, PSGs at various developmental stages showed high degrees of enzymolysis. Expression levels of AGPase, GBSS II, and AMY were closely related to starch synthesis and degradation. These results help elucidate the mechanisms of accumulation and degradation as well as the functions of PSG during wheat caryopsis development. PMID:26394305

  17. Neural basis for generalized quantifier comprehension.

    PubMed

    McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray

    2005-01-01

    Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.

  18. Use of dissolved and vapor‐phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich; Bekins, Barbara A.; Delin, Geoffrey N.; Williams, Randi L.

    2005-01-01

    At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor‐phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction‐induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N2 over Ar, in both the saturated and unsaturated zones near the free‐phase oil, suggests reactivity of N2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site.

  19. Detection of the spectroscopic signatures of explosives and their degradation products

    NASA Astrophysics Data System (ADS)

    Florian, Vivian; Cabanzo, Andrea; Baez, Bibiana; Correa, Sandra; Irrazabal, Maik; Briano, Julio G.; Castro, Miguel E.; Hernandez-Rivera, Samuel P.

    2005-06-01

    Detection and removal of antipersonnel and antitank landmines is a great challenge and a worldwide enviromental and humanitarian problem. Sensors tuned on the spectroscopic signature of the chemicals released from mines are a potential solution. Enviromental factors (temperature, relative humidity, rainfall precipitation, wind, sun irradiation, pressure, etc.) as well as soil characteristics (water content, compaction, porosity, chemical composition, particle size distribution, topography, vegetation, etc), have a direct impact on the fate and transport of the chemicals released from landmines. Chemicals such as TNT, DNT and their degradation products, are semi-volatile, and somewhat soluble in water. Also, they may adsorb strongly to soil particles, and are susceptible to degradation by microorganisms, light, or chemical agents. Here we show an experimental procedure to quantify the effect of the above variables on the spectroscopic signature. A number of soil tanks under controlled conditions are used to study the effect of temperature, water content, relative humidity and light radiation.

  20. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.

    2009-12-01

    This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.

  1. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2011-01-01

    The Mark III suit has multiple sizes of suit components (arm, leg, and gloves) as well as sizing inserts to tailor the fit of the suit to an individual. This study sought to determine a way to identify the point an ideal suit fit transforms into a bad fit and how to quantify this breakdown using mobility-based physical performance data. This study examined the changes in human physical performance via degradation of the elbow and wrist range of motion of the planetary suit prototype (Mark III) with respect to changes in sizing and as well as how to apply that knowledge to suit sizing options and improvements in suit fit. The methods implemented in this study focused on changes in elbow and wrist mobility due to incremental suit sizing modifications. This incremental sizing was within a range that included both optimum and poor fit. Suited range of motion data was collected using a motion analysis system for nine isolated and functional tasks encompassing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm only. The results were then compared across sizing configurations. The results of this study indicate that range of motion may be used as a viable parameter to quantify at what stage suit sizing causes a detriment in performance; however the human performance decrement appeared to be based on the interaction of multiple joints along a limb, not a single joint angle. The study was able to identify a preliminary method to quantify the impact of size on performance and to develop a means to gauge tolerances around optimal size. More work is needed to improve the assessment of optimal fit and to compensate for multiple joint interactions.

  2. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment.

    PubMed

    Solliec, Morgan; Roy-Lachapelle, Audrey; Gasser, Marc-Olivier; Coté, Caroline; Généreux, Mylène; Sauvé, Sébastien

    2016-02-01

    The fate of antimicrobial active compound residues in the environment, and especially antibiotics used in swine husbandry are of particular interest for their potential toxicity and contribution to antibiotic resistance. The presence of relatively high concentrations of bioactive compounds has been reported in agricultural areas but few information is available on their degradation products. Veterinary antibiotics reach terrestrial environments through many routes, including application of swine manure to soils. The objectives of this project were first, to develop an analytical method able to quantify and identify veterinary antibiotics and their degradation products in manure, soil and water samples; and second, to study the distribution of these target compounds in soils and drainage waters. A brief evaluation of their potential toxicity in the environment was also made. In order to achieve these objectives, liquid chromatography coupled to high-resolution mass spectrometry was used for its ability to quantify contaminants with sensitivity and selectivity, and its capacity to identify degradation products. Samples of manure, soil and water came from a long-term experimental site where swine manure containing veterinary antibiotics has been applied for many years. In this study, tetracycline antibiotics were found at several hundred μg L(-1) in the swine manure slurry used for fertilization, several hundred of ng L(-1) in drainage waters and several ng g(-1) in soils, while degradation products were sometimes found at concentrations higher than the parent compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Targeted polypeptide degradation

    DOEpatents

    Church, George M [Brookline, MA; Janse, Daniel M [Brookline, MA

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  4. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    NASA Astrophysics Data System (ADS)

    Reniers, Jorn M.; Mulder, Grietus; Ober-Blöbaum, Sina; Howey, David A.

    2018-03-01

    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions.

  5. Degradation and induction specificity in actinomycetes that degrade p-nitrophenol.

    PubMed Central

    Hanne, L F; Kirk, L L; Appel, S M; Narayan, A D; Bains, K K

    1993-01-01

    We have isolated two soil bacteria (identified as Arthrobacter aurescens TW17 and Nocardia sp. strain TW2) capable of degrading p-nitrophenol (PNP) and numerous other phenolic compounds. A. aurescens TW17 contains a large plasmid which correlated with the PNP degradation phenotype. Degradation of PNP by A. aurescens TW17 was induced by preexposure to PNP, 4-nitrocatechol, 3-methyl-4-nitrophenol, or m-nitrophenol, whereas PNP degradation by Nocardia sp. strain TW2 was induced by PNP, 4-nitrocatechol, phenol, p-cresol, or m-nitrophenol. A. aurescens TW17 initially degraded PNP to hydroquinone and nitrite. Nocardia sp. strain TW2 initially converted PNP to hydroquinone or 4-nitrocatechol, depending upon the inducing compound. PMID:8250573

  6. Quantifier Comprehension in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    McMillan, Corey T.; Clark, Robin; Moore, Peachie; Grossman, Murray

    2006-01-01

    In this study, we investigated patients with focal neurodegenerative diseases to examine a formal linguistic distinction between classes of generalized quantifiers, like "some X" and "less than half of X." Our model of quantifier comprehension proposes that number knowledge is required to understand both first-order and higher-order quantifiers.…

  7. The 'Geographic Emission Benchmark' model: a baseline approach to measuring emissions associated with deforestation and degradation.

    PubMed

    Kim, Oh Seok; Newell, Joshua P

    2015-10-01

    This paper proposes a new land-change model, the Geographic Emission Benchmark (GEB), as an approach to quantify land-cover changes associated with deforestation and forest degradation. The GEB is designed to determine 'baseline' activity data for reference levels. Unlike other models that forecast business-as-usual future deforestation, the GEB internally (1) characterizes 'forest' and 'deforestation' with minimal processing and ground-truthing and (2) identifies 'deforestation hotspots' using open-source spatial methods to estimate regional rates of deforestation. The GEB also characterizes forest degradation and identifies leakage belts. This paper compares the accuracy of GEB with GEOMOD, a popular land-change model used in the UN-REDD (Reducing Emissions from Deforestation and Forest Degradation) Program. Using a case study of the Chinese tropics for comparison, GEB's projection is more accurate than GEOMOD's, as measured by Figure of Merit. Thus, the GEB produces baseline activity data that are moderately accurate for the setting of reference levels.

  8. Research of Isolation and Degradation Conditions of Petroleum Degrading Marine

    NASA Astrophysics Data System (ADS)

    Fangrui, Guo

    2017-01-01

    A novel petroleum-degrading microbial strain was isolated from sediment samples in estuary of Bohai Sea estuary beaches. The strain was primarily identified as Alcanivorax sp. and named Alcanivorax sp. H34. Effect of PH values, temperature, nitrogen and phosphorus concentrations on degradation of H34 were investigated. The paraffinic components average degradation rate of H34 ungrowth cells under optimized conditions was studied. The results showed that the optimal growth conditions of H34 are were temperature of 30°C, initial PH of 7.0, nitrogen concentration of 3g/L, phosphorus concentration of 3g/L, and paraffinic components average degradation rates of H34 ungrowth cells was 41.6%, while total degradation rate was 45.5%.

  9. Electrochemical degradation of 5-FU using a flow reactor with BDD electrode: Comparison of two electrochemical systems.

    PubMed

    Ochoa-Chavez, A S; Pieczyńska, A; Fiszka Borzyszkowska, A; Espinoza-Montero, P J; Siedlecka, E M

    2018-06-01

    In this study, the electrochemical degradation process of 5-fluorouracil (5-FU) in aqueous media was performed using a continuous flow reactor in an undivided cell (system I), and in a divided cell with a cationic membrane (Nafion ® 424) (system II). In system I, 75% of 5-FU degradation was achieved (50 mg L -1 ) with a applied current density j app  = 150 A m -2 , volumetric flow rate qv = 13 L h -1 , after 6 h of electrolysis (k app  = 0.004 min -1 ). The removal efficiency of 5-FU was higher (95%) when the concentration was 5 mg L -1 under the same conditions. Nitrates (22% of initial amount of N), fluorides (27%) and ammonium (10%) were quantified after 6 h of electrolysis. System II, 77% of 5-FU degradation was achieved (50 mg L -1 ) after 6 h of electrolysis (k app  = 0.004 min -1 ). The degradation rate of 5-FU was complete when the concentration was 5 mg L -1 under the same conditions. Nitrates (29% of initial amount of N), fluorides (25%) and ammonium (5%) were quantified after 6 h of electrolysis. In addition, the main organic byproducts identified by mass spectroscopy were aliphatic compound with carbonyl and carboxyl functionalities. Due to, the mineralization of 5-FU with acceptable efficiency of 88% found in system II (j app of 200 A m -2 ), this system seems to be more promising in the cytostatic drug removal. Moreover the efficiency of 5-FU removal in diluted solutions is better in system II than in system I. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics

    USGS Publications Warehouse

    Loftin, K.A.; Adams, C.D.; Meyer, M.T.; Surampalli, R.

    2008-01-01

    Aqueous degradation rates, which include hydrolysis and epimerization, for chlorretracycline (CTC), oxytetracycline (OTC), tetracycline (TET), lincomycin (LNC), sulfachlorpyridazine (SCP), sulfadimethoxine (SDM), sulfathiazole (STZ), trimethoprim (TRM), and tylosin A (TYL) were studied as a function of ionic strength (0.0015, 0.050, or 0.084 mg/L as Na2HPO4), temperature (7, 22, and 35??C), and pH (2, 5, 7, 9, and 11). Multiple linear regression revealed that ionic strength did not significantly affect (?? = 0.05) degradation rates for all compounds, but temperature and pH affected rates for CTC, OTC, and TET significandy (?? = 0.05). Degradation also was observed for TYL at pH 2 and 11. No significant degradation was observed for LNC, SCR SDM, STZ, TRM, and TYL (pH 5, 7, and 9) under study conditions. Pseudo first-order rate constants, half-lives, and Arrhenius coefficients were calculated where appropriate. In general, hydrolysis rates for CTC, OTC, and TET increased as pH and temperature increased following Arrhenius relationships. Known degradation products were used to confirm that degradation had occurred, but these products were not quantified. Half-lives ranged from less than 6 h up to 9.7 wk for the tetracyclines and for TYL (pH 2 and 11), but no degradation of LIN, the sulfonamides, or TRM was observed during the study period. These results indicate that tetracyclines and TYL at pH 2 and 11 are prone to pH-mediated transformation and hydrolysis in some cases, but not the sulfonamides, LIN nor TRM are inclined to degrade under study conditions. This indicates that with the exception of CTC OTC, and TET, pH-mediated reactions such as hydrolysis and epimerization are not likely removal mechanisms in surface water, anaerobic swine lagoons, wastewater, and ground water. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  11. Diesel Emissions Quantifier (DEQ)

    EPA Pesticide Factsheets

    .The Diesel Emissions Quantifier (Quantifier) is an interactive tool to estimate emission reductions and cost effectiveness. Publications EPA-420-F-13-008a (420f13008a), EPA-420-B-10-035 (420b10023), EPA-420-B-10-034 (420b10034)

  12. Quantifying ruminal nitrogen metabolism using the omasal sampling technique in cattle--a meta-analysis.

    PubMed

    Broderick, G A; Huhtanen, P; Ahvenjärvi, S; Reynal, S M; Shingfield, K J

    2010-07-01

    Mixed model analysis of data from 32 studies (122 diets) was used to evaluate the precision and accuracy of the omasal sampling technique for quantifying ruminal-N metabolism and to assess the relationships between nonammonia-N flow at the omasal canal and milk protein yield. Data were derived from experiments in cattle fed North American diets (n=36) based on alfalfa silage, corn silage, and corn grain and Northern European diets (n=86) composed of grass silage and barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Linear regressions were used to predict microbial-N flow to the omasum from intake of dry matter (DM), organic matter (OM), or total digestible nutrients. Efficiency of microbial-N synthesis increased with DM intake and there were trends for increased efficiency with elevated dietary concentrations of crude protein (CP) and rumen-degraded protein (RDP) but these effects were small. Regression of omasal rumen-undegraded protein (RUP) flow on CP intake indicated that an average 32% of dietary CP escaped and 68% was degraded in the rumen. The slope from regression of observed omasal flows of RUP on flows predicted by the National Research Council (2001) model indicated that NRC predicted greater RUP supply. Measured microbial-N flow was, on average, 26% greater than that predicted by the NRC model. Zero ruminal N-balance (omasal CP flow=CP intake) was obtained at dietary CP and RDP concentrations of 147 and 106 g/kg of DM, corresponding to ruminal ammonia-N and milk urea N concentrations of 7.1 and 8.3mg/100mL, respectively. Milk protein yield was positively related to the efficiency of microbial-N synthesis and measured RUP concentration. Improved efficiency of microbial-N synthesis and reduced ruminal CP degradability were positively associated with efficiency of capture of dietary N as milk N. In conclusion, the results of this study indicate that the omasal sampling technique yields valuable estimates

  13. Critical Analysis of Forest Degradation in the Southern Eastern Ghats of India: Comparison of Satellite Imagery and Soil Quality Index

    PubMed Central

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai

    2016-01-01

    India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats’ total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation. PMID:26812397

  14. Sorption and degradation of neonicotinoid insecticides in tropical soils.

    PubMed

    Dankyi, Enock; Gordon, Chris; Carboo, Derick; Apalangya, Vitus A; Fomsgaard, Inge S

    2018-05-22

    Neonicotinoids are the most widely applied class of insecticides in cocoa farming in Ghana. Despite the intensive application of these insecticides, knowledge of their fate in the Ghanaian and sub-Saharan African environment remains low. This study examined the behavior of neonicotinoids in soils from cocoa plantations in Ghana by estimating their sorption and degradation using established kinetic models and isotherms. Studies of sorption were conducted using the batch equilibrium method on imidacloprid, thiamethoxam, clothianidin, acetamiprid and thiacloprid, while degradation of imidacloprid, thiamethoxam and their respective deuterated counterparts was studied using models proposed by the European forum for coordination of pesticide fate and their use (FOCUS). Analytes were extracted using the quick, easy, cheap, effective, rugged and safe (QuEChERS) procedure and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Average recoveries were high (≥ 85%) for all analytes. The findings from the study suggest that neonicotinoid insecticides may be persistent in the soils studied based on estimated half-lives > 150 days. The study also revealed generally low-sorption coefficients for neonicotinoids in soils, largely influenced by soil organic carbon.

  15. Compendium of photovoltaic degradation rates: Photovoltaic degradation rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Kurtz, Sarah R.; VanSant, Kaitlyn

    Published data on photovoltaic (PV) degradation measurements were aggregated and re-examined. The subject has seen an increased interest in recent years resulting in more than 11 000 degradation rates in almost 200 studies from 40 different countries. As studies have grown in number and size, we found an impact from sampling bias attributable to size and accuracy. Because of the correlational nature of this study we examined the data in several ways to minimize this bias. We found median degradation for x-Si technologies in the 0.5-0.6%/year range with the mean in the 0.8-0.9%/year range. Hetero-interface technology (HIT) and microcrystalline siliconmore » (..mu..c-Si) technologies, although not as plentiful, exhibit degradation around 1%/year and resemble thin-film products more closely than x-Si. Several studies showing low degradation for copper indium gallium selenide (CIGS) have emerged. Higher degradation for cadmium telluride (CdTe) has been reported, but these findings could reflect a convolution of less accurate studies and longer stabilization periods for some products. Significant deviations for beginning-of-life measurements with respect to nameplate rating have been documented over the last 35 years. Therefore, degradation rates that use nameplate rating as reference may be significantly impacted. Studies that used nameplate rating as reference but used solar simulators showed less variation than similar studies using outdoor measurements, even when accounting for different climates. This could be associated with confounding effects of measurement uncertainty and soiling that take place outdoors. Hotter climates and mounting configurations that lead to sustained higher temperatures may lead to higher degradation in some, but not all, products. Wear-out non-linearities for the worst performing modules have been documented in a few select studies that took multiple measurements of an ensemble of modules during the lifetime of the system. However, the

  16. Degradation of pentachlorophenol by selected species of white rot fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alleman, B.C.

    1991-01-01

    The focus of this research was to examine the potential for using white rot fungi to degrade pentachlorophenol (PCP) in water. Experiments were designed to determine the optimum growth conditions for 4 species of fungi, quantify toxicity of PCP to 18 species, and examine PCP degradation by both extracellular enzymes and whole cultures of 4 species. Optimum growth temperatures ranged from 25C for G. oregonense to 40C from P. chrysosporium with I. dryophilus and T. versicolor at approximately 30C. Optimum growth pH were 4.5 for P. chrysosporium and 6.0 for the other 3 species. Eighteen species tested for PCP sensitivitymore » were inhibited by 10 mg-PCP/L when grown on agar plates. Within 2 weeks, 17 of the 18 species grew in the inhibition zones. In liquid phase toxicity experiments, all 18 species were killed by 5 mg-PCP/L. Further liquid testing showed that P. chrysosporium and G. oregonense were among the most sensitive species while I. dryophilus and T. versicolor were more tolerant species, having lethal dosages of 17-34, 25-50, > 41, and > 85 {mu}g-PCP/mg-biomass, respectively. Extracellular enzymes produced in shallow batch cultures by P. chrysosporium and T. versicolor, degraded up to 50% and 75% of the PCP, respectively, when 40 mg-PCP/L was added to mycelia free culture broth. The pattern of chloride ion release resulting from dehalogenation of PCP was bimodal for both species. PCP was degraded by 10 species when PCP was added to whole cultures. Further testing with 4 species showed P. chrysosporium and T. versicolor were the more efficient at reducing aqueous organic chlorine concentrations.« less

  17. Degradation of mecoprop in polluted landfill leachate and waste water in a moving bed biofilm reactor.

    PubMed

    Escolà Casas, Mònica; Nielsen, Tue Kjærgaard; Kot, Witold; Hansen, Lars Hestbjerg; Johansen, Anders; Bester, Kai

    2017-09-15

    Mecoprop is a common pollutant in effluent-, storm- and groundwater as well as in leachates from derelict dumpsites. Thus, bioremediation approaches may be considered. We conducted batch experiments with moving bed biofilm (MBBR)-carriers to understand the degradation of mecoprop. As a model, the carriers were incubated in effluent from a conventional wastewater treatment plant which was spiked to 10, 50 and 100 μg L -1 mecoprop. Co-metabolic processes as well as mineralization were studied. Initial mecoprop concentration and mecoprop degradation impacted the microbial communities. The removal of (S)-mecoprop prevailed over the (R)-mecoprop. This was associated with microbial compositions, in which several operational taxonomic units (OTUs) co-varied positively with (S)-mecoprop removal. The removal-rate constant of (S)-mecoprop was 0.5 d -1 in the 10 μg L -1 set-up but it decreased in the 50 and 100 μg L -1 set-ups. The addition of methanol prolonged the removal of (R)-mecoprop. During mecoprop degradation, 4-chloro-2-methylphenol was formed and degraded. A new metabolite (4-chloro-2-methylphenol sulfate) was identified and quantified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Estimating degradation-related settlement in two landfill-reclaimed soils by sand-salt analogues.

    PubMed

    McDougall, J R; Fleming, I R; Thiel, R; Dewaele, P; Parker, D; Kelly, D

    2018-04-25

    Landfill reclaimed soil here refers to largely degraded materials excavated from old landfill sites, which after processing can be reinstated as more competent fill, thereby restoring the former landfill space. The success of the process depends on the presence of remaining degradable particles and their influence on settlement. Tests on salt-sand mixtures, from which the salt is removed, have been used to quantify the impact of particle loss on settlement. Where the amount of particle loss is small, say 10% by mass or less, settlements are small and apparently independent of lost particle size. A conceptual model is presented to explain this behaviour in terms of nestling particles and strong force chains. At higher percentages of lost particles, greater rates of settlement together with some sensitivity to particle size were observed. The conceptual model was then applied to two landfill reclaimed soils, the long-term settlements of which were found to be consistent with the conceptual model suggesting that knowledge of particle content and relative size are sufficient to estimate the influence of degradable particles in landfill reclaimed soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

    Treesearch

    Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz Aragao; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Chambers; Marcos H. Costa; Thierry Fanin; Laerte G. Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas Morton; Jean P. H. B. Ometto; Michael Palace; Carlos A. Peres; Divino Silverio; Susan Trumbore; Ima C. G. Vieira

    2015-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks...

  20. Quantifying Transmission.

    PubMed

    Woolhouse, Mark

    2017-07-01

    Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.

  1. Degradation Signatures of Open Ocean Microplastic Debris

    NASA Astrophysics Data System (ADS)

    Lavender Law, K. L.; Donohue, J. L.; Collins, T.; Proskurowsi, G.; Andrady, A. L.

    2016-02-01

    Microplastics collected from the open ocean offer few clues about their origin and history. There is currently no method to determine how long ocean plastic has undergone environmental weathering, how quickly fragmentation has occurred, or how small microplastic particles will ultimately become before (or if) they are fully degraded by microbial action. In the current absence of results from laboratory and field experiments designed to address these questions, we meticulously examined physical and chemical characteristics of open ocean microplastic particles collected over a 16-year period for clues about their weathering history. More than 1000 microplastic particles collected in the western North Atlantic between 1991 and 2007 were analyzed to determine polymer type, material density, mass and particle size, and were used to create a detailed catalogue of common microscopic surface features likely related to environmental exposure and weathering. Polyethylene and polypropylene, the two buoyant resins most commonly collected at the sea surface, can typically be distinguished by visual microscopy alone, and their particular characteristics lead us to hypothesize that these two resins weaken and fragment in different ways and on different time scales. A subset of resin pellets collected at sea were also analyzed using FTIR-ATR and/or FTIR microscopy for signatures of chemical degradation (e.g., carbonyl index) that are related to physical weathering characteristics such as color, quantified by the yellowness index.

  2. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials--determination of intermediates and reaction pathways.

    PubMed

    Doll, Tusnelda E; Frimmel, Fritz H

    2004-02-01

    The light-induced degradation of clofibric acid, carbamazepine, iomeprol and iopromide under simulated solar irradiation has been investigated in aqueous solutions suspended with different TiO2 materials (P25 and Hombikat UV100). Kinetic studies showed that P25 had a better photocatalytic activity for clofibric acid and carbamazepine than Hombikat UV100. For photocatalytic degradation of iomeprol Hombikat UV100 was more suitable than P25. The results can be explained by the higher adsorption capacity of Hombikat UV100 for iomeprol. The study also focuses on the identification and quantification of possible degradation products. The degradation process was monitored by determination of sum parameters and inorganic ions. In case of clofibric acid various aromatic and aliphatic degradation products have been identified and quantified. A possible multi-step degradation scheme for clofibric acid is proposed. This study proves the high potential of the photocatalytic oxidation process to transform and mineralize environmentally relevant pharmaceuticals and contrast media in water.

  3. Toxicity of vesicant agents scheduled for destruction by the Chemical Stockpile Disposal Program.

    PubMed Central

    Watson, A P; Griffin, G D

    1992-01-01

    The vesicant agents of the unitary chemical munitions stockpile include various formulations of sulfur mustard [bis-(2-chloroethyl) sulfide; agents H, HD, and HT] and small quantities of the organic arsenical Lewisite [dichloro(2-chlorovinyl) arsine; agent L]. These agents can be dispersed in liquid, aerosol, or vapor form and are capable of producing severe chemical burns upon direct contact with tissue. Moist tissues such as the eyes, respiratory tract, and axillary areas are particularly affected. Available data summarizing acute dose response in humans and laboratory animals are summarized. Vesicant agents are also capable of generating delayed effects such as chronic bronchitis, carcinogenesis, or keratitis/keratopathy of the eye under appropriate conditions of exposure and dose. These effects may not become manifest until years following exposure. Risk analysis derived from carcinogenesis data indicates that sulfur mustard possesses a carcinogenic potency similar to that of benzo[a]pyrene. Because mustard agents are alkylating compounds, they destroy individual cells by reaction with cellular proteins, enzymes, RNA, and DNA. Once begun, tissue reaction is irreversible. Mustard agents are mutagenic; data for cellular and laboratory animal assays are presented. Reproductive effects have not been demonstrated in the offspring of laboratory rats. Acute Lewisite exposure has been implicated in cases of Bowen's disease, an intraepidermal squamous cell carcinoma. Lewisite is not known to generate reproductive or teratogenic effects. PMID:1486858

  4. Hydroxyapatite degradation and biocompatibility

    NASA Astrophysics Data System (ADS)

    Wang, Haibo

    Hydroxyapatite (HA) is widely used as a bioactive ceramics since it forms a chemical bonding to bone. The disadvantage of this material is its poor mechanical properties. HA can be degraded in body, which is the reason for its bioactivity, but too fast degradation rate could cause negative effects, such as macrophage present, particle generation, and even implant clinical failure. HA degradation rate will be greatly changed under many conditions: purity, HA form (i.e. bulk form, porous form, coating, or HA/polymer composites), microstructure, implant site, body conditions, etc. Although much work has been done in HA properties and application areas, the HA degradation behavior and mechanism under these different conditions are still not clear. In this research, three aspects of HA degradation have been studied: (1) Two very common impurities---Tri-Calcium Phosphate (TCP) and Calcium Oxide and their influences on HA degradation in vitro and in vivo, (2) influence of HA/polymer composite form on HA degradation, (3) HA material particle generation and related mechanism. From the in vitro and in vivo tests on bulk HA disks with various Ca/P ratios, HA degradation can clearly be found. The degradation level is different in different Ca/P ratio samples as well as in different test environments. In same test environment, non-stoichiometric HA samples have higher degradation rate than stoichiometric HA. HA/PMMA composite design successfully intensifies HA degradation both in vitro and in vivo. Grain boundary damage can be found on in vivo test samples, which has not been clearly seen on bulk HA degraded surface. HA particle generation is found in in vitro and in vivo HA/PMMA composite surface and in vivo bulk HA surface. Sintering temperature and time does affect HA grain size, and this affect HA degradation rate. Intergranular fracture is found in a several micron zone close to the Ca/P ratio 1.62 and 1.67 sample degraded surfaces. At Ca/P ratio greater than 1.667, after

  5. The Timing and Effort of Lexical Access in Natural and Degraded Speech

    PubMed Central

    Wagner, Anita E.; Toffanin, Paolo; Başkent, Deniz

    2016-01-01

    Understanding speech is effortless in ideal situations, and although adverse conditions, such as caused by hearing impairment, often render it an effortful task, they do not necessarily suspend speech comprehension. A prime example of this is speech perception by cochlear implant users, whose hearing prostheses transmit speech as a significantly degraded signal. It is yet unknown how mechanisms of speech processing deal with such degraded signals, and whether they are affected by effortful processing of speech. This paper compares the automatic process of lexical competition between natural and degraded speech, and combines gaze fixations, which capture the course of lexical disambiguation, with pupillometry, which quantifies the mental effort involved in processing speech. Listeners’ ocular responses were recorded during disambiguation of lexical embeddings with matching and mismatching durational cues. Durational cues were selected due to their substantial role in listeners’ quick limitation of the number of lexical candidates for lexical access in natural speech. Results showed that lexical competition increased mental effort in processing natural stimuli in particular in presence of mismatching cues. Signal degradation reduced listeners’ ability to quickly integrate durational cues in lexical selection, and delayed and prolonged lexical competition. The effort of processing degraded speech was increased overall, and because it had its sources at the pre-lexical level this effect can be attributed to listening to degraded speech rather than to lexical disambiguation. In sum, the course of lexical competition was largely comparable for natural and degraded speech, but showed crucial shifts in timing, and different sources of increased mental effort. We argue that well-timed progress of information from sensory to pre-lexical and lexical stages of processing, which is the result of perceptual adaptation during speech development, is the reason why in ideal

  6. A thermo-degradable hydrogel with light-tunable degradation and drug release.

    PubMed

    Hu, Jingjing; Chen, Yihua; Li, Yunqi; Zhou, Zhengjie; Cheng, Yiyun

    2017-01-01

    The development of thermo-degradable hydrogels is of great importance in drug delivery. However, it still remains a huge challenge to prepare thermo-degradable hydrogels with inherent degradation, reproducible, repeated and tunable dosing. Here, we reported a thermo-degradable hydrogel that is rapidly degraded above 44 °C by a facile chemistry. Besides thermo-degradability, the hydrogel also undergoes rapid photolysis with ultraviolet light. By embedding photothermal nanoparticles or upconversion nanoparticles into the gel, it can release the entrapped cargoes such as dyes, enzymes and anticancer drugs in an on-demand and dose-tunable fashion upon near-infrared light exposure. The smart hydrogel works well both in vitro and in vivo without involving sophisticated syntheses, and is well suited for clinical cancer therapy due to the high transparency and non-invasiveness features of near-infrared light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein.

    PubMed

    Ishihara, Hirofumi; Obata, Toshihiro; Sulpice, Ronan; Fernie, Alisdair R; Stitt, Mark

    2015-05-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied (13)CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%-4% d(-1)), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Performance-based maintenance of gas turbines for reliable control of degraded power systems

    NASA Astrophysics Data System (ADS)

    Mo, Huadong; Sansavini, Giovanni; Xie, Min

    2018-03-01

    Maintenance actions are necessary for ensuring proper operations of control systems under component degradation. However, current condition-based maintenance (CBM) models based on component health indices are not suitable for degraded control systems. Indeed, failures of control systems are only determined by the controller outputs, and the feedback mechanism compensates the control performance loss caused by the component deterioration. Thus, control systems may still operate normally even if the component health indices exceed failure thresholds. This work investigates the CBM model of control systems and employs the reduced control performance as a direct degradation measure for deciding maintenance activities. The reduced control performance depends on the underlying component degradation modelled as a Wiener process and the feedback mechanism. To this aim, the controller features are quantified by developing a dynamic and stochastic control block diagram-based simulation model, consisting of the degraded components and the control mechanism. At each inspection, the system receives a maintenance action if the control performance deterioration exceeds its preventive-maintenance or failure thresholds. Inspired by realistic cases, the component degradation model considers random start time and unit-to-unit variability. The cost analysis of maintenance model is conducted via Monte Carlo simulation. Optimal maintenance strategies are investigated to minimize the expected maintenance costs, which is a direct consequence of the control performance. The proposed framework is able to design preventive maintenance actions on a gas power plant, to ensuring required load frequency control performance against a sudden load increase. The optimization results identify the trade-off between system downtime and maintenance costs as a function of preventive maintenance thresholds and inspection frequency. Finally, the control performance-based maintenance model can reduce

  9. Effects of railway track design on the expected degradation: Parametric study on energy dissipation

    NASA Astrophysics Data System (ADS)

    Sadri, Mehran; Steenbergen, Michaël

    2018-04-01

    This paper studies the effect of railway track design parameters on the expected long-term degradation of track geometry. The study assumes a geometrically perfect and straight track along with spatial invariability, except for the presence of discrete sleepers. A frequency-domain two-layer model is used of a discretely supported rail coupled with a moving unsprung mass. The susceptibility of the track to degradation is objectively quantified by calculating the mechanical energy dissipated in the substructure under a moving train axle for variations of different track parameters. Results show that, apart from the operational train speed, the ballast/substructure stiffness is the most significant parameter influencing energy dissipation. Generally, the degradation increases with the train speed and with softer substructures. However, stiff subgrades appear more sensitive to particular train velocities, in a regime which is mostly relevant for conventional trains (100-200 km/h) and less for high-speed operation, where a stiff subgrade is always favorable and can reduce the sensitivity to degradation substantially, with roughly a factor up to 7. Also railpad stiffness, sleeper distance and rail cross-sectional properties are found to have considerable effect, with higher expected degradation rates for increasing railpad stiffness, increasing sleeper distance and decreasing rail profile bending stiffness. Unsprung vehicle mass and sleeper mass have no significant influence, however, only against the background of the assumption of an idealized (invariant and straight) track. Apart from dissipated mechanical energy, the suitability of the dynamic track stiffness is explored as an engineering parameter to assess the sensitivity to degradation. It is found that this quantity is inappropriate to assess the design of an idealized track.

  10. Assessing the Impacts of forest degradation on water, energy, and carbon budgets in Amazon forest using the Functionally Assembled Terrestrial Ecosystem Simulator

    NASA Astrophysics Data System (ADS)

    Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2017-12-01

    Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach

  11. Degradation of degradable starch-polyethylene plastics in a compost environment.

    PubMed

    Johnson, K E; Pometto, A L; Nikolov, Z L

    1993-04-01

    The degradation performance of 11 types of commercially produced degradable starch-polyethylene plastic compost bags was evaluated in municipal yard waste compost sites at Iowa State University (Ames) and in Carroll, Dubuque, and Grinnell, Iowa. Masterbatches for plastic production were provided by Archer Daniels Midland Co. (Decatur, Ill.), St. Lawrence Starch Co. Ltd. (Mississauga, Ontario, Canada), and Fully Compounded Plastics (Decatur, Ill.). Bags differed in starch content (5 to 9%) and prooxidant additives (transition metals and a type of unsaturated vegetable oil). Chemical and photodegradation properties of each material were evaluated. Materials from St. Lawrence Starch Co. Ltd. and Fully Compounded Plastics photodegraded faster than did materials from Archer Daniels Midland Co., whereas all materials containing transition metals demonstrated rapid thermal oxidative degradation in 70 degrees C-oven (dry) and high-temperature, high-humidity (steam chamber) treatments. Each compost site was seeded with test strips (200 to 800 of each type) taped together, which were recovered periodically over an 8- to 12-month period. At each sampling date, the compost row temperature was measured (65 to 95 degrees C), the location of the recovered test strip was recorded (interior or exterior), and at least four strips were recovered for evaluation. Degradation was followed by measuring the change in polyethylene molecular weight distribution via high-temperature gel permeation chromatography. Our initial 8-month study indicated that materials recovered from the interior of the compost row demonstrated very little degradation, whereas materials recovered from the exterior degraded well. In the second-year study, however, degradation was observed in several plastic materials recovered from the interior of the compost row by month 5 at the Carroll site and almost every material by month 12 at the Grinnell site. The plastic bags collected from each community followed a

  12. Cooked blueberries: anthocyanin and anthocyanidin degradation and their radical-scavenging activity.

    PubMed

    Oliveira, Carla; Amaro, L Filipe; Pinho, Olivia; Ferreira, Isabel M P L V O

    2010-08-25

    This study examined anthocyanin and anthocyanidin composition and radical-scavenging activity of three cultivars of blueberries (Vaccinium corymbosum L., cv. Bluecrop, Bluetravel, and Ozarkblue) before and after cooking. A total of 13 anthocyanins were separated and monitored in methanolic extracts of raw fruits by high-performance liquid chromatography/diode array detector (HPLC/DAD). Principal component analysis using the anthocyanin profile as variables revealed differences according to cultivar origin. Of the six common anthocyanidins, four were identified and quantified in the hydrolysates, namely, malvidin, the most abundant, followed by cyanidin, petunidin, and delphynidin. A systematic evaluation of the degradation of anthocyanins and anthocyanidins of blueberries cooked in stuffed fish was performed. The percentage of anthocyanin degradation in cooked blueberries (by progressive heating from 12 to 99 °C for 60 min) ranged between 16 and 30% for Bluecrop, 30-42% for Bluetravel, and 12-41% for Ozarkblue. However, cooked blueberries maintained or increased radical-scavenging activity when evaluated by the 1,1'-diphenyl-2-picrylhydrazyl (DPPH) method. Overall, results show that cooked blueberries can serve as a good source of bioactive phytochemicals.

  13. The Fallacy of Quantifying Risk

    DTIC Science & Technology

    2012-09-01

    Defense AT&L: September–October 2012 18 The Fallacy of Quantifying Risk David E. Frick, Ph.D. Frick is a 35-year veteran of the Department of...a key to risk analysis was “choosing the right technique” of quantifying risk . The weakness in this argument stems not from the assertion that one...of information about the enemy), yet achiev- ing great outcomes. Attempts at quantifying risk are not, in and of themselves, objectionable. Prudence

  14. The influence of hydroxyapatite particles on in vitro degradation behavior of poly epsilon-caprolactone-based composite scaffolds.

    PubMed

    Guarino, Vincenzo; Taddei, Paola; Di Foggia, Michele; Fagnano, Concezio; Ciapetti, Gabriela; Ambrosio, Luigi

    2009-11-01

    The design of composite scaffolds with slow degradation kinetics imposes the assessment of the time-course of degradation to predict the long-term in vitro behavior. In this work, the effect of hydroxyapatite (HA) particles on the hydrolytic degradation of poly epsilon-caprolactone composite scaffold was investigated. The study of accelerated degradation mechanisms in alkaline medium enabled analysing comparable degradation profiles at different times. The accurate qualitative and quantitative study of morphology by scanning electron microscopy supported by image analysis demonstrated only a negligible effect on the structural porosity, to be ascribed to the addition of micrometric HA as a filler. Moreover, by comparing the Raman spectra with thermal analysis(thermogravimetry and differential scanning calorimetry) the role of HA on the composite degradation mechanism was defined, by separately quantifying the contribution of HA particles in the bulk and on the surface, on the bone formation as a function of modifications induced in the pore morphology, as well as physical and chemical properties of the polymer matrix. Indeed, HA particles alter the poly epsilon-caprolactone crystallinity inducing a "shielding" effect of the polymer matrix. Meanwhile, the slight reduction of pore size as a function of the increasing HA content and the improvement of the effective hydrophilicity of the scaffolds also influence the degradation by faster mechanisms. Finally, it has been proven that the presence of HA enhances the scaffold bioactivity and human osteoblast cell response, remarking the active role of bioactive signals on the promotion of the surface mineralization and, as a consequence, on the cell-material interaction.

  15. Degradation of microbial polyesters.

    PubMed

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  16. 7. INTERIOR OF BUILDING 514. VIEW TO WEST. Rocky ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR OF BUILDING 514. VIEW TO WEST. - Rocky Mountain Arsenal, Lewisite Reactor & Distilled Mustard Distillation Building, 420 feet South of December Seventh Avenue; 1070 feet East of D Street, Commerce City, Adams County, CO

  17. 8. INTERIOR OF BUILDING 514. VIEW TO EAST. Rocky ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR OF BUILDING 514. VIEW TO EAST. - Rocky Mountain Arsenal, Lewisite Reactor & Distilled Mustard Distillation Building, 420 feet South of December Seventh Avenue; 1070 feet East of D Street, Commerce City, Adams County, CO

  18. 9. INTERIOR OF BUILDING 514. VIEW TO WEST. Rocky ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR OF BUILDING 514. VIEW TO WEST. - Rocky Mountain Arsenal, Lewisite Reactor & Distilled Mustard Distillation Building, 420 feet South of December Seventh Avenue; 1070 feet East of D Street, Commerce City, Adams County, CO

  19. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?

    NASA Astrophysics Data System (ADS)

    Pfeifer, Marion; Lefebvre, Veronique; Turner, Edgar; Cusack, Jeremy; Khoo, MinSheng; Chey, Vun K.; Peni, Maria; Ewers, Robert M.

    2015-04-01

    Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in deadwood across a tropical forest degradation gradient at the landscape scale remains poorly documented. Many carbon stock studies have either focused exclusively on live standing biomass or have been carried out in primary forests that are unaffected by logging, despite the fact that coarse woody debris (deadwood with ≥10 cm diameter) can contain significant portions of a forest’s carbon stock. We used a field-based assessment to quantify how the relative contribution of deadwood to total above-ground carbon stock changes across a disturbance gradient, from unlogged old-growth forest to severely degraded twice-logged forest, to oil palm plantation. We measured in 193 vegetation plots (25 × 25 m), equating to a survey area of >12 ha of tropical humid forest located within the Stability of Altered Forest Ecosystems Project area, in Sabah, Malaysia. Our results indicate that significant amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased exponentially with increasing forest degradation 7-10 years after logging while deadwood accounted for >50% of above-ground carbon stocks in salvage-logged forest stands, more than twice the proportion commonly assumed in the literature. This carbon will be released as decomposition proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia, our findings have important implications for the calculation of current carbon stocks and sources as a result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout the tropics, our data may indicate a significant global challenge to calculating global carbon fluxes, as selectively-logged forests now represent more than one third of all standing tropical humid forests worldwide.

  20. Inhibition of ADAMTS-13 by Doxycycline Reduces von Willebrand Factor Degradation During Supraphysiological Shear Stress: Therapeutic Implications for Left Ventricular Assist Device-Associated Bleeding.

    PubMed

    Bartoli, Carlo R; Kang, Jooeun; Restle, David J; Zhang, David M; Shabahang, Cameron; Acker, Michael A; Atluri, Pavan

    2015-11-01

    The aim of this study was to investigate a potential therapy for left ventricular assist device (LVAD)-associated bleeding. Nonsurgical bleeding is the most frequent complication of LVAD support. Recent evidence has demonstrated that supraphysiological shear stress from continuous-flow LVADs accelerates von Willebrand factor (vWF) metabolism by the action of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13) (the vWF protease). An acquired vWF deficiency causes bleeding. This suggests that ADAMTS-13 is a clinical target to reduce vWF degradation. We tested the hypothesis that inhibition of ADAMTS-13 with doxycycline, an inexpensive, clinically approved drug, reduces vWF degradation during shear stress. Whole blood was collected from human donors (n = 15), and purified, recombinant ADAMTS-13 protein was obtained. An enzyme-linked immunosorbent assay (ELISA) was used to quantify the dose relationship between doxycycline and ADAMTS-13 activity prior to shear stress (n = 10). To determine the effect of shear stress, plasma and recombinant ADAMTS-13 were exposed to LVAD-like supraphysiological shear stress (approximately 175 dyne/cm(2)). vWF multimers and degradation fragments were characterized with electrophoresis and immunoblotting (n = 10). Förster resonance energy transfer was used to quantify plasma ADAMTS-13 activity (n = 10). An ELISA was used to quantify vWF:collagen binding activity. Platelet aggregometry was performed with adenosine 5'-diphosphate, collagen, and ristocetin (vWF-platelet pathway) agonism (n = 10). Doxycycline significantly decreased plasma ADAMTS-13 activity (p = 0.01) and the activity of recombinant human ADAMTS-13 protein by 21%. After plasma was exposed to shear stress, the same pattern of vWF degradation was observed as previously reported for LVAD patients, and vWF:collagen binding activity decreased significantly (p = 0.002). Doxycycline significantly decreased ADAMTS-13 activity (p = 0.04) and

  1. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process.

    PubMed

    Vieira, Gabriela A L; Magrini, Mariana Juventina; Bonugli-Santos, Rafaella C; Rodrigues, Marili V N; Sette, Lara D

    2018-05-03

    Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08mgmL -1 ) after 48h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology. Copyright © 2018. Published by Elsevier Editora Ltda.

  2. 4D in situ visualization of electrode morphology changes during accelerated degradation in fuel cells by X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    White, Robin T.; Wu, Alex; Najm, Marina; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-05-01

    A four-dimensional visualization approach, featuring three dimensions in space and one dimension in time, is proposed to study local electrode degradation effects during voltage cycling in fuel cells. Non-invasive in situ micro X-ray computed tomography (XCT) with a custom fuel cell fixture is utilized to track the same cathode catalyst layer domain throughout various degradation times from beginning-of-life (BOL) to end-of-life (EOL). With this unique approach, new information regarding damage features and trends are revealed, including crack propagation and catalyst layer thinning being quantified by means of image processing and analysis methods. Degradation heterogeneities as a result of local environmental variations under land and channel are also explored, with a higher structural degradation rate under channels being observed. Density and compositional changes resulting from carbon corrosion and catalyst layer collapse and thinning are observed by changes in relative X-ray attenuation from BOL to EOL, which also indicate possible vulnerable regions where crack initiation and propagation may occur. Electrochemical diagnostics and morphological features observed by micro-XCT are correlated by additionally collecting effective catalyst surface area, double layer capacitance, and polarization curves prior to imaging at various stages of degradation.

  3. Northern Islands, human error, and environmental degradation: A view of social and ecological change in the medieval North Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGovern, T.H.; Bigelow, G.; Amorosi, T.

    1988-09-01

    Between ca. 790 and 1,000 AD, Scandinavian settlers occupied the islands of the North Atlantic: Shetland, the Orkneys, the Hebrides, the Faroes, Iceland, and Greenland. These offshore islands initially supported stands of willow, alder, and birch, and a range of non-arboreal species suitable for pasture for the imported Norse domestic animals. Overstocking of domestic animals, fuel collection, ironworking, and construction activity seems to have rapidly depleted the dwarf trees, and several scholars argue that soil erosion and other forms of environmental degradation also resulted from Norse land-use practices in the region. Such degradation of pasture communities may have played amore » significant role in changing social relationships and late medieval economic decline in the western tier colonies of Iceland and Greenland. This paper presents simple quantified models for Scandinavian environmental impact in the region, and suggests some sociopolitical causes for ultimately maladaptive floral degradation.« less

  4. 4. EAST SIDE OF BUILDING 514. VIEW TO WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EAST SIDE OF BUILDING 514. VIEW TO WEST. - Rocky Mountain Arsenal, Lewisite Reactor & Distilled Mustard Distillation Building, 420 feet South of December Seventh Avenue; 1070 feet East of D Street, Commerce City, Adams County, CO

  5. 5. SOUTH SIDE OF BUILDING 514. VIEW TO NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTH SIDE OF BUILDING 514. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Lewisite Reactor & Distilled Mustard Distillation Building, 420 feet South of December Seventh Avenue; 1070 feet East of D Street, Commerce City, Adams County, CO

  6. In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition.

    PubMed

    Diez-Escudero, A; Espanol, M; Beats, S; Ginebra, M-P

    2017-09-15

    The capacity of calcium phosphates to be replaced by bone is tightly linked to their resorbability. However, the relative importance of some textural parameters on their degradation behavior is still unclear. The present study aims to quantify the effect of composition, specific surface area (SSA), and porosity at various length scales (nano-, micro- and macroporosity) on the in vitro degradation of different calcium phosphates. Degradation studies were performed in an acidic medium to mimic the osteoclastic environment. Small degradations were found in samples with interconnected nano- and micropores with sizes below 3µm although they were highly porous (35-65%), with maximum weight loss of 8wt%. Biomimetic calcium deficient hydroxyapatite, with high SSA and low crystallinity, presented the highest degradation rates exceeding even the more soluble β-TCP. A dependence of degradation on SSA was indisputable when porosity and pore sizes were increased. The introduction of additional macroporosity with pore interconnections above 20µm significantly impacted degradation, more markedly in the substrates with high SSA (>15m 2 /g), whereas in sintered substrates with low SSA (<1m 2 /g) it resulted just in a linear increase of degradation. Up to 30 % of degradation was registered in biomimetic substrates, compared to 15 % in β-TCP or 8 % in sintered hydroxyapatite. The incorporation of carbonate in calcium deficient hydroxyapatite did not increase its degradation rate. Overall, the study highlights the importance of textural properties, which can modulate or even outweigh the effect of other features such as the solubility of the compounds. The physicochemical features of calcium phosphates are crucial to tune biological events like resorption during bone remodeling. Understanding in vitro resorption can help to predict the in vivo behavior. Besides chemical composition, other parameters such as porosity and specific surface area have a strong influence on resorption

  7. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Subchronic Toxicity Study of Lewisite in Rats

    DTIC Science & Technology

    1989-07-31

    buffered formalin (NBF). To standardize the degree of distension of pulmonary alveoli with fixative, the lungs were fixed by inserting a blunted needle into...the thickness of the mucosa, submucosa and muscular layers of the stomach and involved the serosa. Epithelial hyperplasia and hyperkeratosis of the

  8. Teratology Studies of Lewisite and Sulfur Mustard Agents: Effects of Lewisite in Rats and Rabbits

    DTIC Science & Technology

    1987-12-31

    virus of mice (PCM), rat corona virus /sialodacryoadenitis virus (RCV/SDA), H-1 virus and Kilham rat virus (KRV) by Microbiological Associates...Pneumonia virus of mice RCV/SDA = Rat corona virus /sialodacryoadenitis virus RH = Relative humidity SC = Subcutaneous SD = Standard deviation SE = Standard... cat , rabbit and human but apparently did not cross the placental membranes readily. The accumulation of a sufficient quantity of arsenate to induce a

  9. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.; Elmore, R.; Kennedy, C.

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solarmore » Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.« less

  10. Analyzing bean extracts using time-dependent SDS trapping to quantify the kinetic stability of phaseolin proteins.

    PubMed

    Thibeault, Jane; Church, Jennifer; Ortiz-Perez, Brian; Addo, Samuel; Hill, Shakeema; Khalil, Areeg; Young, Malaney; Xia, Ke; Colón, Wilfredo

    2017-09-30

    In common beans and lima bean, the storage protein phaseolin is difficult to degrade and SDS-resistant, a sign of kinetic stability. Kinetically stable proteins (KSPs) are characterized by having a high-energy barrier between the native and denatured states that results in very slow unfolding. Such proteins are resistant to proteolytic degradation and detergents, such as SDS. Here the method SDS-Trapping of Proteins (S-TraP) is applied directly on bean extracts to quantify the kinetic stability of phaseolin in lima bean and several common beans, including black bean, navy bean, and small red bean. The bean extracts were incubated in SDS at various temperatures (60-75 °C) for different time periods, followed by SDS-PAGE analysis at room temperature, and subsequent band quantification to determine the kinetics of phaseolin unfolding. Eyring plot analysis showed that the phaseolin from each bean has high kinetic stability, with an SDS-trapping (i.e. unfolding) half-life ranging from about 20-100 years at 24 °C and 2-7 years at 37 °C. The remarkably high kinetic stability of these phaseolin proteins is consistent with the low digestibility of common beans and lima bean, as well as their relatively high germination temperatures. From a practical perspective, this work exemplifies that S-TraP is a useful and cost-effective method for quantifying the kinetic stability of proteins in biological extracts or lysates. Depending on the protein to be studied and its abundance, S-TraP may be performed directly on the extract without need for protein purification. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Estrogen Degraders and Estrogen Degradation Pathway Identified in an Activated Sludge.

    PubMed

    Chen, Yi-Lung; Fu, Han-Yi; Lee, Tzong-Huei; Shih, Chao-Jen; Huang, Lina; Wang, Yu-Sheng; Ismail, Wael; Chiang, Yin-Ru

    2018-05-15

    The environmental release and fate of estrogens are becoming an increasing public concern. Bacterial degradation has been considered the main process for eliminating estrogens from wastewater treatment plants. Various bacterial isolates are reportedly capable of aerobic estrogen degradation, and several estrogen degradation pathways have been proposed in proteobacteria and actinobacteria. However, the ecophysiological relevance of estrogen-degrading bacteria in the environment is unclear. In this study, we investigated the estrogen degradation pathway and corresponding degraders in activated sludge collected from the Dihua Sewage Treatment Plant, Taipei, Taiwan. Cultivation-dependent and cultivation-independent methods were used to assess estrogen biodegradation in the collected activated sludge. Estrogen metabolite profile analysis revealed the production of pyridinestrone acid and two A/B-ring cleavage products in activated sludge incubated with estrone (1 mM), which are characteristic of the 4,5- seco pathway. PCR-based functional assays detected sequences closely related to alphaproteobacterial oecC , a key gene of the 4,5- seco pathway. Metagenomic analysis suggested that Novosphingobium spp. are major estrogen degraders in estrone-amended activated sludge. Novosphingobium sp. strain SLCC, an estrone-degrading alphaproteobacterium, was isolated from the examined activated sludge. The general physiology and metabolism of this strain were characterized. Pyridinestrone acid and the A/B-ring cleavage products were detected in estrone-grown strain SLCC cultures. The production of pyridinestrone acid was also observed during the aerobic incubation of strain SLCC with 3.7 nM (1 μg/liter) estrone. This concentration is close to that detected in many natural and engineered aquatic ecosystems. The presented data suggest the ecophysiological relevance of Novosphingobium spp. in activated sludge. IMPORTANCE Estrogens, which persistently contaminate surface water

  12. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties

    PubMed Central

    Zustiak, Silviya P.

    2011-01-01

    The objective of this work was to create three-dimensional (3D) hydrogel matrices with defined mechanical properties, as well as tunable degradability for use in applications involving protein delivery and cell encapsulation. Thus, we report the synthesis and characterization of a novel hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel composed of PEG vinyl sulfone (PEG-VS) cross-linked with PEG-diester-dithiol. Unlike previously reported degradable PEG-based hydrogels, these materials are homogeneous in structure, fully hydrophilic and have highly specific cross-linking chemistry. We characterized hydrogel degradation and associated trends in mechanical properties, i.e., storage modulus (G′), swelling ratio (QM), and mesh size (ξ). Degradation time and the monitored mechanical properties of the hydrogel correlated with cross-linker molecular weight, cross-linker functionality, and total polymer density; these properties changed predictably as degradation proceeded (G′ decreased, whereas QM and ξ increased) until the gels reached complete degradation. Balb/3T3 fibroblast adhesion and proliferation within the 3D hydrogel matrices were also verified. In sum, these unique properties indicate that the reported degradable PEG hydrogels are well poised for specific applications in protein and cell delivery to repair soft tissue. PMID:20355705

  13. Degradation of Degradable Starch-Polyethylene Plastics in a Compost Environment †

    PubMed Central

    Johnson, Kenneth E.; Pometto, Anthony L.; Nikolov, Zivko L.

    1993-01-01

    The degradation performance of 11 types of commercially produced degradable starch-polyethylene plastic compost bags was evaluated in municipal yard waste compost sites at Iowa State University (Ames) and in Carroll, Dubuque, and Grinnell, Iowa. Masterbatches for plastic production were provided by Archer Daniels Midland Co. (Decatur, Ill.), St. Lawrence Starch Co. Ltd. (Mississauga, Ontario, Canada), and Fully Compounded Plastics (Decatur, Ill.). Bags differed in starch content (5 to 9%) and prooxidant additives (transition metals and a type of unsaturated vegetable oil). Chemical and photodegradation properties of each material were evaluated. Materials from St. Lawrence Starch Co. Ltd. and Fully Compounded Plastics photodegraded faster than did materials from Archer Daniels Midland Co., whereas all materials containing transition metals demonstrated rapid thermal oxidative degradation in 70°C-oven (dry) and high-temperature, high-humidity (steam chamber) treatments. Each compost site was seeded with test strips (200 to 800 of each type) taped together, which were recovered periodically over an 8- to 12-month period. At each sampling date, the compost row temperature was measured (65 to 95°C), the location of the recovered test strip was recorded (interior or exterior), and at least four strips were recovered for evaluation. Degradation was followed by measuring the change in polyethylene molecular weight distribution via high-temperature gel permeation chromatography. Our initial 8-month study indicated that materials recovered from the interior of the compost row demonstrated very little degradation, whereas materials recovered from the exterior degraded well. In the second-year study, however, degradation was observed in several plastic materials recovered from the interior of the compost row by month 5 at the Carroll site and almost every material by month 12 at the Grinnell site. The plastic bags collected from each community followed a similar degradation

  14. Long-term mesocosm experiments to investigate microbial degradation of fluorescent tracers

    NASA Astrophysics Data System (ADS)

    Fernández-Pascual, Elena; Zaman, Sameera; Lang, Friederike; Lange, Jens

    2017-04-01

    Uranine (UR) and sulforhodamine B (SRB) are two of the most commonly used fluorescent tracers in hydrology. Their suitability to be used as ideal tracers has been discussed since they might interact with the soil or become degraded. However, these properties have recently served to mimic processes of sorption and degradation of pollutants. The present study attempts to investigate to what extent UR and SRB could be used to imitate such processes in environments where saturation conditions are variable and the presence of plants might play an important role. For this purpose, both tracers were applied to 36 small mesocosms filled with a layer of 10 cm of gravel and 30 cm of sand in which 6 types of treatments, with 3 replicates each, were implemented based on the presence of two species of wetland plants (Typha latifolia and Phalaris arundinacea) and two types of hydrological conditions (saturated and unsaturated). The entire experiment lasted 10 months, during which two injections of equal concentration of tracers were performed. The first months served to ensure the adaptability of the plants and to achieve stationary conditions in the system. Water and sediment samples were collected weekly after the second injection while plants were measured at the end of the experiment distinguishing between roots and aerial parts. Mass balances of the tracers were combined with excitation emission matrix fluorescence spectroscopy (EEMS) to characterize dissolved organic matter in the water and soil. Degradation was quantified by subtracting the non-degraded tracer fraction (sorption and plant uptake) and the remaining non-degraded mass in the water from the tracer mass injected. Results revealed that most of the SRB accumulated in the sand in agreement with its sorption affinity, while UR was mainly found in the pore water. Both tracers showed more degradation in the treatments with plants than the controls. Overall, UR exhibited higher degradation than SRB. Differences

  15. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor.

    PubMed

    Fragoeiro, Silvia; Magan, Naresh

    2005-03-01

    In this study we examined the extracellular enzymatic activity of two white rot fungi (Phanerochaete chrysosporium and Trametes versicolor) in a soil extract broth in relation to differential degradation of a mixture of different concentrations (0-30 p.p.m.) of simazine, dieldrin and trifluralin under different osmotic stress (-0.7 and -2.8 MPa) and quantified enzyme production, relevant to P and N release (phosphomonoesterase, protease), carbon cycling (beta-glucosidase, cellulase) and laccase activity, involved in lignin degradation. Our results suggest that T. versicolor and P. chrysosporium have the ability to degrade different groups of pesticides, supported by the capacity for expression of a range of extracellular enzymes at both -0.7 and -2.8 MPa water potential. Phanerochaete chrysosporium was able to degrade this mixture of pesticides independently of laccase activity. In soil extract, T. versicolor was able to produce the same range of enzymes as P. chrysoporium plus laccase, even in the presence of 30 p.p.m. of the pesticide mixture. Complete degradation of dieldrin and trifluralin was observed, while about 80% of the simazine was degraded regardless of osmotic stress treatment in a nutritionally poor soil extract broth. The capacity of tolerance and degradation of high concentrations of mixtures of pesticides and production of a range of enzymes, even under osmotic stress, suggest potential bioremediation applications.

  16. Rapid, Quantitative Assessment of Submerged Cultural Resource Degradation Using Repeat Video Surveys and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Mertes, J. R.; Zant, C. N.; Gulley, J. D.; Thomsen, T. L.

    2017-08-01

    Monitoring, managing and preserving submerged cultural resources (SCR) such as shipwrecks can involve time consuming detailed physical surveys, expensive side-scan sonar surveys, the study of photomosaics and even photogrammetric analysis. In some cases, surveys of SCR have produced 3D models, though these models have not typically been used to document patterns of site degradation over time. In this study, we report a novel approach for quantifying degradation and changes to SCR that relies on diver-acquired video surveys, generation of 3D models from data acquired at different points in time using structure from motion, and differencing of these models. We focus our study on the shipwreck S.S. Wisconsin, which is located roughly 10.2 km southeast of Kenosha, Wisconsin, in Lake Michigan. We created two digital elevation models of the shipwreck using surveys performed during the summers of 2006 and 2015 and differenced these models to map spatial changes within the wreck. Using orthomosaics and difference map data, we identified a change in degradation patterns. Degradation was anecdotally believed to be caused by inward collapse, but maps indicated a pattern of outward collapse of the hull structure, which has resulted in large scale shifting of material in the central upper deck. In addition, comparison of the orthomosaics with the difference map clearly shows movement of objects, degradation of smaller pieces and in some locations, an increase in colonization of mussels.

  17. Effect of biochar and digestate on microbial respiration and pesticide degradation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Santanu; Tappe, Wolfgang; Hofmann, Diana; Köppchen, Stephan; Disko, Ulrich; Weihermüller, Lutz; Burauel, Peter; Vereecken, Harry

    2014-05-01

    degradation study was performed to determine the effects of biochar and digestate in different mixing rates on the metabolization behavior of the studied pesticides, and to identify and quantify the metabolites derived during the degradation process. The results from the 14C Bentazone study indicate that 5 % digestate and 5 % biochar mixture showed highest (nearly~ 15 %) and 1 % biochar lowest rate of mineralization (~1 %), whereby highest microbial activity was measured in the soil/digestate mixture.

  18. Effect of different surface treatments on the hydrothermal degradation of a 3Y-TZP ceramic for dental implants.

    PubMed

    Cattani-Lorente, M; Scherrer, S S; Durual, S; Sanon, C; Douillard, T; Gremillard, L; Chevalier, J; Wiskott, A

    2014-10-01

    Implant surface modifications are intended to enhance bone integration. The objective of this study was to assess the effect of different surface treatments on the resistance to hydrothermal degradation, hardness and elastic modulus of a 3Y-TZP ceramic used for dental implants. Samples grouped according to their surface morphologies (AS, as-sintered; C, coated; P, dry-polished; R, roughened; PA, polished and annealed; RA, roughened and annealed) were subjected to accelerated hydrothermal degradation (LTD) by exposure to water steam (134°C, 2bars) for 100h. The t-m phase transformation was quantified by grazing incidence X-ray diffraction (GIXDR) and by combined focused ion beam and scanning electron microscopy (FIB-SEM). Elastic modulus and hardness before- and after prolonged aging (100h) were assessed by nanoindentation. AS and C specimens presented a better resistance to hydrothermal degradation than P and R samples. After prolonged aging, the depth of the monoclinic transformed layer ranged from 11μm to 14μm. Hydrothermal degradation led to a significant decrease of elastic modulus and hardness. Surface treatments affected the resistance to hydrothermal degradation of the 3Y-TZP ceramic. Dry mechanical surface modifications should be avoided since a high t-m transformation rate associated to the initial monoclinic content was observed. Annealing was useful to reverse the initial t-m transformation, but did not improve the resistance to hydrothermal degradation. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2013-09-01

    In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. 1. NORTH AND EAST SIDES OF BUILDING 514. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTH AND EAST SIDES OF BUILDING 514. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Lewisite Reactor & Distilled Mustard Distillation Building, 420 feet South of December Seventh Avenue; 1070 feet East of D Street, Commerce City, Adams County, CO

  1. 6. DETAIL OF SOUTH SIDE OF BUILDING 514. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF SOUTH SIDE OF BUILDING 514. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Lewisite Reactor & Distilled Mustard Distillation Building, 420 feet South of December Seventh Avenue; 1070 feet East of D Street, Commerce City, Adams County, CO

  2. 3. SOUTH AND WEST SIDES OF BUILDING 514. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTH AND WEST SIDES OF BUILDING 514. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Lewisite Reactor & Distilled Mustard Distillation Building, 420 feet South of December Seventh Avenue; 1070 feet East of D Street, Commerce City, Adams County, CO

  3. 2. WEST AND NORTH SIDES OF BUILDING 514. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WEST AND NORTH SIDES OF BUILDING 514. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Lewisite Reactor & Distilled Mustard Distillation Building, 420 feet South of December Seventh Avenue; 1070 feet East of D Street, Commerce City, Adams County, CO

  4. Matrix Disruptions, Growth, and Degradation of Cartilage with Impaired Sulfation*

    PubMed Central

    Mertz, Edward L.; Facchini, Marcella; Pham, Anna T.; Gualeni, Benedetta; De Leonardis, Fabio; Rossi, Antonio; Forlino, Antonella

    2012-01-01

    Diastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is mild and normalizing with age, but the articular cartilage degrades with age and bones develop abnormally. To understand underlying mechanisms, we studied newborn dtd mice. We developed, verified and used high-definition infrared hyperspectral imaging of cartilage sections at physiological conditions, to quantify collagen and its orientation, noncollagenous proteins, and chondroitin chains, and their sulfation with 6-μm spatial resolution and without labeling. We found that chondroitin sulfation across the proximal femur cartilage varied dramatically in dtd, but not in the wild type. Corresponding undersulfation of dtd was mild in most regions, but strong in narrow articular and growth plate regions crucial for bone development. This undersulfation correlated with the chondroitin synthesis rate measured via radioactive sulfate incorporation, explaining the sulfation normalization with age. Collagen orientation was reduced, and the reduction correlated with chondroitin undersulfation. Such disorientation involved the layer of collagen covering the articular surface and protecting cartilage from degradation. Malformation of this layer may contribute to the degradation progression with age and to collagen and proteoglycan depletion from the articular region, which we observed in mice already at birth. The results provide clues to in vivo sulfation, DTD treatment, and cartilage growth. PMID:22556422

  5. Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62

    PubMed Central

    Metz, Philippe; Chiramel, Abhilash; Chatel-Chaix, Laurent; Alvisi, Gualtiero; Bankhead, Peter; Mora-Rodríguez, Rodrigo; Long, Gang; Hamacher-Brady, Anne

    2015-01-01

    ABSTRACT Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. In addition, endolysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable overexpression of p62 significantly suppressed DENV replication, suggesting a novel role for p62 as a viral restriction factor. Overall, our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an antiviral role, which is countered by DENV. IMPORTANCE Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the

  6. Quantifying Protein Synthesis and Degradation in Arabidopsis by Dynamic 13CO2 Labeling and Analysis of Enrichment in Individual Amino Acids in Their Free Pools and in Protein1[OPEN

    PubMed Central

    Fernie, Alisdair R.; Stitt, Mark

    2015-01-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied 13CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%–4% d−1), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. PMID:25810096

  7. Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Naphthalene-Degrading Comamonas sp. JB.

    PubMed

    Ji, Xiangyu; Xu, Jing; Ning, Shuxiang; Li, Nan; Tan, Liang; Shi, Shengnan

    2017-12-01

    Comamonas sp. JB was used to investigate the cometabolic degradation of dibenzofuran (DBF) and dibenzothiophene (DBT) with naphthalene as the primary substrate. Dehydrogenase and ATPase activity of the growing system with the presence of DBF and DBT were decreased when compared to only naphthalene in the growing system, indicating that the presence of DBF and DBT inhibited the metabolic activity of strain JB. The pathways and enzymes involved in the cometabolic degradation were tested. Examination of metabolites elucidated that strain JB cometabolically degraded DBF to 1,2-dihydroxydibenzofuran, subsequently to 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, and finally to catechol. Meanwhile, strain JB cometabolically degraded DBT to 1,2-dihydroxydibenzothiophene and subsequently to the ring cleavage product. A series of naphthalene-degrading enzymes including naphthalene dioxygenase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase, salicylate hydroxylase, and catechol 2,3-oxygenase have been detected, confirming that naphthalene was the real inducer of expression the degradation enzymes and metabolic pathways were controlled by naphthalene-degrading enzymes.

  8. Screening of high concentration phenol degrading strain and optimization of its phenol degradation performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yue-Hua; Li, Jing; Wang, Xue; Xue, Chun-Mei

    2018-03-01

    As phenol as the sole carbon source, the activated sludge was screened and acclimated to obtain the superior phenol-degrading bacteria capable of degrading high phenol concentration. The mixed bacteria completely degraded 1700mg/L phenol in 15h, to 102.9mg/L; the degradation rate reached 96.9%. After isolation and purification, four different single strains were obtained, and the genus of each strain was preliminarily identified. At the same time, the effects of initial phenol concentration, bacteria dosage, temperature and pH on the degradation of COD and phenol by phenol-degrading bacteria were also investigated. The mixed bacteria de-phenol effect is better than the four isolates were isolated.

  9. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle.

    PubMed

    Yalcin, Ozlem; Jani, Vivek P; Johnson, Paul C; Cabrales, Pedro

    2018-01-01

    The endothelial glycocalyx is a complex network of glycoproteins, proteoglycans, and glycosaminoglycans; it lines the vascular endothelial cells facing the lumen of blood vessels forming the endothelial glycocalyx layer (EGL). This study aims to investigate the microvascular hemodynamics implications of the EGL by quantifying changes in blood flow hydrodynamics post-enzymatic degradation of the glycocalyx layer. High-speed intravital microscopy videos of small arteries (around 35 μm) of the rat cremaster muscle were recorded at various time points after enzymatic degradation of the EGL. The thickness of the cell free layer (CFL), blood flow velocity profiles, and volumetric flow rates were quantified. Hydrodynamic effects of the presence of the EGL were observed in the differences between the thickness of CFL in microvessels with an intact EGL and glass tubes of similar diameters. Maximal changes in the thickness of CFL were observed 40 min post-enzymatic degradation of the EGL. Analysis of the frequency distribution of the thickness of CFL allows for estimation of the thickness of the endothelial surface layer (ESL), the plasma layer, and the glycocalyx. Peak flow, maximum velocity, and mean velocity were found to statistically increase by 24, 27, and 25%, respectively, after enzymatic degradation of the glycocalyx. The change in peak-to-peak maximum velocity and mean velocity were found to statistically increase by 39 and 32%, respectively, after 40 min post-enzymatic degradation of the EGL. The bluntness of blood flow velocity profiles was found to be reduced post-degradation of the EGL, as the exclusion volume occupied by the EGL increased the effective volume impermeable to RBCs in microvessels. This study presents the effects of the EGL on microvascular hemodynamics. Enzymatic degradation of the EGL resulted in a decrease in the thickness of CFL, an increase in blood velocity, blood flow, and decrease of the bluntness of the blood flow velocity profile in

  10. 2006, REMOTE SENSING AND GIS IN THE REMEDIATION OF CHEMICAL WEAPONS CONTAMINATION IN AN URBAN LANDSCAPE

    EPA Science Inventory

    This presentation will document the use of historical imagery, GIS, photogrammetry and hyperspectral remote sensing in locating and removing chemical weapons such as Mustard Gas, Phosgene, Ricin, and Lewisite from the environment and establishing a risk assessment methodology for...

  11. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  12. Relating the Chemical Composition of Dissolved Organic Matter Draining Permafrost Soils to its Photochemical Degradation in Arctic Surface Waters.

    NASA Astrophysics Data System (ADS)

    Ward, C.; Cory, R. M.

    2015-12-01

    Thawing permafrost soils are expected to shift the chemical composition of DOM exported to and degraded in arctic surface waters. While DOM photo-degradation is an important component of the freshwater C cycle in the Arctic, the molecular controls on DOM photo-degradation remain poorly understood, making it difficult to predict how shifting chemical composition may alter DOM photo-degradation in arctic surface waters. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer to complete photo-oxidation to CO₂ and partial photo-oxidation to compounds that remain in the DOM pool, and investigated changes in DOM chemical composition following sunlight exposure. DOM leached from the organic mat contained higher molecular weight, more oxidized and unsaturated aromatic species compared to permafrost DOM. Despite significant differences in initial chemical composition, permafrost and organic mat DOM had similar susceptibilities to complete photo-oxidation to CO₂. Concurrent losses of carboxyl moieties and shifts in chemical composition during photo-degradation indicated that carboxyl-rich tannin-like compounds in both DOM sources were likely photo-decarboxylated to CO₂. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic compounds that act as "antioxidants" and slow the oxidation of DOM. These results demonstrated how chemical composition controls the photo-degradation of DOM in arctic surface waters, and that DOM photo-degradation will likely remain an important component of the freshwater C budget in the Arctic with increased export of permafrost DOM to surface waters.

  13. Physical-chemical characterization of the textile dye Azo Ab52 degradation by corona plasma

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Torres-Arenas, A. J.; Vergara-Sánchez, J.; Torres, C.; Reyes, P. G.; Martínez, H.; Saldarriaga-Noreña, Hugo

    2017-10-01

    This work characterizes the degradation of the textile dye azo Acid Black 52 by measuring several physical and chemical parameters. A corona plasma was created at atmospheric pressure and applied on the liquid-air interface of water samples containing the dye. 1.0 mM of ferrous sulfate (FeSO4) was added to 1.0 mM dye solution, for a total volume of 250 mL. For each treatment, a number of parameters were quantified. These were voltage, current, temperature, loss of volume, pH, electrical conductivity, concentration, optical mission spectra, chemical oxygen demand (COD), total organic carbon (TOC), and the removal ratio. Because of the increase in the sample temperature, the volume lost by evaporation was explored. The results show that the efficiency of the dye degradation by plasma is a function of treatment time. Moreover, the reactive concentration of FeSO4 and the exposition time of the plasma were varied at a constant volume, leading to the determination of the concentrations and optimal times. Considering the degradation and removal parameters, at the maximum treated time of 80 min, it found that COD was of 96.36%, TOC of 93.93%, and the removal ratio of 97.47%.

  14. A simplified approach to predict performance degradation of a solid oxide fuel cell anode

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Zubair; Mehran, Muhammad Taqi; Song, Rak-Hyun; Lee, Jong-Won; Lee, Seung-Bok; Lim, Tak-Hyoung

    2018-07-01

    The agglomeration of nickel (Ni) particles in a Ni-cermet anode is a significant degradation phenomenon for solid oxide fuel cells (SOFCs). This work aims to predict the performance degradation of SOFCs due to Ni grain growth by using a simplified approach. Accelerated aging of Ni-scandia stabilized zirconia (SSZ) as an SOFC anode is carried out at 900 °C and subsequent microstructural evolution is investigated every 100 h up to 1000 h using scanning electron microscopy (SEM). The resulting morphological changes are quantified using a two-dimensional image analysis technique that yields the particle size, phase proportion, and triple phase boundary (TPB) point distribution. The electrochemical properties of an anode-supported SOFC are characterized using electrochemical impedance spectroscopy (EIS). The changes of particle size and TPB length in the anode as a function of time are in excellent agreement with the power-law coarsening model. This model is further combined with an electrochemical model to predict the changes in the anode polarization resistance. The predicted polarization resistances are in good agreement with the experimentally obtained values. This model for prediction of anode lifetime provides deep insight into the time-dependent Ni agglomeration behavior and its impact on the electrochemical performance degradation of the SOFC anode.

  15. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development

    PubMed Central

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron Z.; Berry, John P.

    2016-01-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification. PMID:26861395

  16. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development.

    PubMed

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron; Berry, John P

    2016-02-05

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification.

  17. Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging.

    PubMed

    Müller, Simon; Pietsch, Patrick; Brandt, Ben-Elias; Baade, Paul; De Andrade, Vincent; De Carlo, Francesco; Wood, Vanessa

    2018-06-14

    Capacity fade in lithium-ion battery electrodes can result from a degradation mechanism in which the carbon black-binder network detaches from the active material. Here we present two approaches to visualize and quantify this detachment and use the experimental results to develop and validate a model that considers how the active particle size, the viscoelastic parameters of the composite electrode, the adhesion between the active particle and the carbon black-binder domain, and the solid electrolyte interphase growth rate impact detachment and capacity fade. Using carbon-silicon composite electrodes as a model system, we demonstrate X-ray nano-tomography and backscatter scanning electron microscopy with sufficient resolution and contrast to segment the pore space, active particles, and carbon black-binder domain and quantify delamination as a function of cycle number. The validated model is further used to discuss how detachment and capacity fade in high-capacity materials can be minimized through materials engineering.

  18. Quantifying errors without random sampling.

    PubMed

    Phillips, Carl V; LaPole, Luwanna M

    2003-06-12

    All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling, error is almost never quantified and results are often reported in ways that dramatically overstate their precision. We argue that the precision implicit in typical reporting is problematic and sketch methods for quantifying the various sources of error, building up from simple examples that can be solved analytically to more complex cases. There are straightforward ways to partially quantify the uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting reported significant figures. We present simple methods for doing such quantifications, and for incorporating them into calculations. More complicated methods become necessary when multiple sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using available software, can estimate the uncertainty resulting from complicated calculations with many sources of uncertainty. We apply the method to the current estimate of the annual incidence of foodborne illness in the United States. Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty would more honestly represent study results, help show the probability that estimated values fall within some critical range, and facilitate better targeting of further research.

  19. A single-run liquid chromatography mass spectrometry method to quantify neuroactive kynurenine pathway metabolites in rat plasma.

    PubMed

    Orsatti, Laura; Speziale, Roberto; Orsale, Maria Vittoria; Caretti, Fulvia; Veneziano, Maria; Zini, Matteo; Monteagudo, Edith; Lyons, Kathryn; Beconi, Maria; Chan, Kelvin; Herbst, Todd; Toledo-Sherman, Leticia; Munoz-Sanjuan, Ignacio; Bonelli, Fabio; Dominguez, Celia

    2015-03-25

    Neuroactive metabolites in the kynurenine pathway of tryptophan catabolism are associated with neurodegenerative disorders. Tryptophan is transported across the blood-brain barrier and converted via the kynurenine pathway to N-formyl-L-kynurenine, which is further degraded to L-kynurenine. This metabolite can then generate a group of metabolites called kynurenines, most of which have neuroactive properties. The association of tryptophan catabolic pathway alterations with various central nervous system (CNS) pathologies has raised interest in analytical methods to accurately quantify kynurenines in body fluids. We here describe a rapid and sensitive reverse-phase HPLC-MS/MS method to quantify L-kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxy-L-kynurenine (3HK) and anthranilic acid (AA) in rat plasma. Our goal was to quantify these metabolites in a single run; given their different physico-chemical properties, major efforts were devoted to develop a chromatography suitable for all metabolites that involves plasma protein precipitation with acetonitrile followed by chromatographic separation by C18 RP chromatography, detected by electrospray mass spectrometry. Quantitation range was 0.098-100 ng/ml for 3HK, 9.8-20,000 ng/ml for KYN, 0.49-1000 ng/ml for KYNA and AA. The method was linear (r>0.9963) and validation parameters were within acceptance range (calibration standards and QC accuracy within ±30%). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Quantifying soil surface photolysis under conditions simulating water movement in the field: a new laboratory test design.

    PubMed

    Hand, Laurence H; Nichols, Carol; Kuet, Sui F; Oliver, Robin G; Harbourt, Christopher M; El-Naggar, Essam M

    2015-10-01

    Soil surface photolysis can be a significant dissipation pathway for agrochemicals under field conditions, although it is assumed that such degradation ceases once the agrochemical is transported away from the surface following rainfall or irrigation and subsequent drainage of soil porewater. However, as both downward and upward water movements occur under field conditions, relatively mobile compounds may return to the surface, prolonging exposure to ultraviolet light and increasing the potential for degradation by photolysis. To test this hypothesis, a novel experimental system was used to quantify the contribution of photolysis to the overall dissipation of a new herbicide, bicyclopyrone, under conditions that mimicked field studies more closely than the standard laboratory test guidance. Soil cores were taken from 3 US field study sites, and the surfaces were treated with [(14) C]-bicyclopyrone. The radioactivity was redistributed throughout the cores using a simulated rainfall event, following which the cores were incubated under a xenon-arc lamp with continuous provision of moisture from below and a wind simulator to induce evaporation. After only 2 d, most of the test compound had returned to the soil surface. Significantly more degradation was observed in the irradiated samples than in a parallel dark control sample. Degradation rates were very similar to those observed in both the thin layer photolysis study and the field dissipation studies and significantly faster than in the soil metabolism studies conducted in the dark. Thus, for highly soluble, mobile agrochemicals, such as bicyclopyrone, photolysis is not terminated permanently by rainfall or irrigation but can resume following transport to the surface in evaporating water. © 2015 SETAC.

  1. Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities.

    PubMed

    Barratt, S R; Ennos, A R; Greenhalgh, M; Robson, G D; Handley, P S

    2003-01-01

    To investigate the relationship between soil water holding capacity (WHC) and biodegradation of polyester polyurethane (PU) and to quantify and identify the predominant degrading micro-organisms in the biofilms on plastic buried in soil. High numbers of both fungi and bacteria were recovered from biofilms on soil-buried dumb-bell-shaped pieces of polyester PU after 44 days at 15-100% WHC. The tensile strength of the polyester PU was reduced by up to 60% over 20-80% soil WHC, but no reduction occurred at 15, 90 or 100% soil WHC. A PU agar clearance assay indicated that fungi, but not bacteria were, the major degrading organisms in the biofilms on polyester PU and 10-30% of all the isolated fungi were able to degrade polyester PU in this assay. A 5.8S rDNA sequencing identified 13 strains of fungi representing the three major colony morphology types responsible for PU degradation. Sequence homology matches identified these strains as Nectria gliocladioides (five strains), Penicillium ochrochloron (one strain) and Geomyces pannorum (seven strains). Geomyces pannorum was the predominant organism in the biofilms comprising 22-100% of the viable polyester PU degrading fungi. Polyester PU degradation was optimum under a wide range of soil WHC and the predominant degrading organisms were fungi. By identifying the predominant degrading fungi in soil and studying the optimum WHC conditions for degradation of PU it allows us to better understand how plastics are broken down in the environment such as in landfill sites.

  2. Iodinated contrast media electro-degradation: process performance and degradation pathways.

    PubMed

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Sensorineural hearing loss degrades behavioral and physiological measures of human spatial selective auditory attention

    PubMed Central

    Dai, Lengshi; Best, Virginia; Shinn-Cunningham, Barbara G.

    2018-01-01

    Listeners with sensorineural hearing loss often have trouble understanding speech amid other voices. While poor spatial hearing is often implicated, direct evidence is weak; moreover, studies suggest that reduced audibility and degraded spectrotemporal coding may explain such problems. We hypothesized that poor spatial acuity leads to difficulty deploying selective attention, which normally filters out distracting sounds. In listeners with normal hearing, selective attention causes changes in the neural responses evoked by competing sounds, which can be used to quantify the effectiveness of attentional control. Here, we used behavior and electroencephalography to explore whether control of selective auditory attention is degraded in hearing-impaired (HI) listeners. Normal-hearing (NH) and HI listeners identified a simple melody presented simultaneously with two competing melodies, each simulated from different lateral angles. We quantified performance and attentional modulation of cortical responses evoked by these competing streams. Compared with NH listeners, HI listeners had poorer sensitivity to spatial cues, performed more poorly on the selective attention task, and showed less robust attentional modulation of cortical responses. Moreover, across NH and HI individuals, these measures were correlated. While both groups showed cortical suppression of distracting streams, this modulation was weaker in HI listeners, especially when attending to a target at midline, surrounded by competing streams. These findings suggest that hearing loss interferes with the ability to filter out sound sources based on location, contributing to communication difficulties in social situations. These findings also have implications for technologies aiming to use neural signals to guide hearing aid processing. PMID:29555752

  4. Unusual infrared absorption increases in photo-degraded organic films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Satvik; Biswas, Rana; Koschny, Thomas

    Degradation is among the most pressing problems facing organic materials, occurring through ingress of moisture and oxygen, and light exposure. We determine the nanoscale pathways underlying degradation by light-soaking organic films in an environmental chamber, and performing infrared spectroscopy, to identify atomic bonding changes. We utilize as a prototype the low band gap PTB7-PCBM blend. Films light-soaked in the presence of oxygen show unusual increased absorption at 1727 cm –1 attributable to increased C=O modes, and a broad increase at 3240 cm –1 attributable to hydroxyl (O–H) groups bonded within the organic matrix. Films exposed to oxygen in the dark,more » or light-soaked in an inert atmosphere, do not exhibit significant absorption changes, suggesting simultaneous exposure of oxygen and light that creates singlet excited oxygen is the detrimental factor. Our ab initio electronic structure simulations interpret these by oxidation at the α-C site of the alkyl chains in PTB7, with an irreversible rupture of the alkyl chain and formation of new C=O and C–O–H conformations at the α-C. Infrared spectroscopy coupled with ab initio simulation can provide a powerful tool for quantifying photo-structural atomic bonding changes. As a result, understanding nanoscale light-induced structural changes will open avenues to designing more stable organic materials for organic electronics.« less

  5. Unusual infrared absorption increases in photo-degraded organic films

    DOE PAGES

    Shah, Satvik; Biswas, Rana; Koschny, Thomas; ...

    2017-06-05

    Degradation is among the most pressing problems facing organic materials, occurring through ingress of moisture and oxygen, and light exposure. We determine the nanoscale pathways underlying degradation by light-soaking organic films in an environmental chamber, and performing infrared spectroscopy, to identify atomic bonding changes. We utilize as a prototype the low band gap PTB7-PCBM blend. Films light-soaked in the presence of oxygen show unusual increased absorption at 1727 cm –1 attributable to increased C=O modes, and a broad increase at 3240 cm –1 attributable to hydroxyl (O–H) groups bonded within the organic matrix. Films exposed to oxygen in the dark,more » or light-soaked in an inert atmosphere, do not exhibit significant absorption changes, suggesting simultaneous exposure of oxygen and light that creates singlet excited oxygen is the detrimental factor. Our ab initio electronic structure simulations interpret these by oxidation at the α-C site of the alkyl chains in PTB7, with an irreversible rupture of the alkyl chain and formation of new C=O and C–O–H conformations at the α-C. Infrared spectroscopy coupled with ab initio simulation can provide a powerful tool for quantifying photo-structural atomic bonding changes. As a result, understanding nanoscale light-induced structural changes will open avenues to designing more stable organic materials for organic electronics.« less

  6. Quantifying soil surface change in degraded drylands: shrub encroachment and effects of fire and vegetation removal in a desert grassland

    USGS Publications Warehouse

    Sankey, Joel B.; Ravi, Sujith; Wallace, Cynthia S.A.; Webb, Robert H.; Huxman, Travis E.

    2012-01-01

    Woody plant encroachment, a worldwide phenomenon, is a major driver of land degradation in desert grasslands. Woody plant encroachment by shrub functional types ultimately leads to the formation of a patchy landscape with fertile shrub patches interspaced with nutrient-depleted bare soil patches. This is considered to be an irreversible process of land and soil degradation. Recent studies have indicated that in the early stages of shrub encroachment, when there is sufficient herbaceous connectivity, fires (prescribed or natural) might provide some reversibility to the shrub encroachment process by negatively affecting shrub demography and homogenizing soil resources across patches within weeks to months after burning. A comprehensive understanding of longer term changes in microtopography and spatial patterning of soil properties following fire in shrub-encroached grasslands is desirable. Here, we investigate the changes in microtopography with LiDAR (light detection and ranging), vegetation recovery, and spatial pattering of soil properties in replicated burned, clipped, and control areas in a shrub-grass transition zone in the northern Chihuahuan Desert four years after prescribed fire or clipping. Results indicate a greater homogeneity in soil, microtopography, and vegetation patterning on burned relative to clipped and control treatments. Findings provide further evidence that disturbance by prescribed fire may allow for reversal of the shrub encroachment process, if the event occurs in the early stages of the vegetation shift. Improved understanding of longer-term effects of fire and associated changes in soil patterning can inform the use and role of fire in the context of changing disturbance regimes and climate.

  7. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    USGS Publications Warehouse

    Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.

    2015-01-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  8. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.

    2015-11-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  9. Talker-specificity and adaptation in quantifier interpretation

    PubMed Central

    Yildirim, Ilker; Degen, Judith; Tanenhaus, Michael K.; Jaeger, T. Florian

    2015-01-01

    Linguistic meaning has long been recognized to be highly context-dependent. Quantifiers like many and some provide a particularly clear example of context-dependence. For example, the interpretation of quantifiers requires listeners to determine the relevant domain and scale. We focus on another type of context-dependence that quantifiers share with other lexical items: talker variability. Different talkers might use quantifiers with different interpretations in mind. We used a web-based crowdsourcing paradigm to study participants’ expectations about the use of many and some based on recent exposure. We first established that the mapping of some and many onto quantities (candies in a bowl) is variable both within and between participants. We then examined whether and how listeners’ expectations about quantifier use adapts with exposure to talkers who use quantifiers in different ways. The results demonstrate that listeners can adapt to talker-specific biases in both how often and with what intended meaning many and some are used. PMID:26858511

  10. Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.

    PubMed

    Wallenius, Kaisa; Lappi, Kaisa; Mikkonen, Anu; Wickström, Annika; Vaalama, Anu; Lehtinen, Taru; Suominen, Leena

    2012-02-01

    We describe a simplified microplate most-probable-number (MPN) procedure to quantify the bacterial naphthalene degrader population in soil samples. In this method, the sole substrate naphthalene is dosed passively via gaseous phase to liquid medium and the detection of growth is based on the automated measurement of turbidity using an absorbance reader. The performance of the new method was evaluated by comparison with a recently introduced method in which the substrate is dissolved in inert silicone oil and added individually to each well, and the results are scored visually using a respiration indicator dye. Oil-contaminated industrial soil showed slightly but significantly higher MPN estimate with our method than with the reference method. This suggests that gaseous naphthalene was dissolved in an adequate concentration to support the growth of naphthalene degraders without being too toxic. The dosing of substrate via gaseous phase notably reduced the work load and risk of contamination. The result scoring by absorbance measurement was objective and more reliable than measurement with indicator dye, and it also enabled further analysis of cultures. Several bacterial genera were identified by cloning and sequencing of 16S rRNA genes from the MPN wells incubated in the presence of gaseous naphthalene. In addition, the applicability of the simplified MPN method was demonstrated by a significant positive correlation between the level of oil contamination and the number of naphthalene degraders detected in soil.

  11. Evaluation of four commercial quantitative real-time PCR kits with inhibited and degraded samples.

    PubMed

    Holmes, Amy S; Houston, Rachel; Elwick, Kyleen; Gangitano, David; Hughes-Stamm, Sheree

    2018-05-01

    DNA quantification is a vital step in forensic DNA analysis to determine the optimal input amount for DNA typing. A quantitative real-time polymerase chain reaction (qPCR) assay that can predict DNA degradation or inhibitors present in the sample prior to DNA amplification could aid forensic laboratories in creating a more streamlined and efficient workflow. This study compares the results from four commercial qPCR kits: (1) Investigator® Quantiplex® Pro Kit, (2) Quantifiler® Trio DNA Quantification Kit, (3) PowerQuant® System, and (4) InnoQuant® HY with high molecular weight DNA, low template samples, degraded samples, and DNA spiked with various inhibitors.The results of this study indicate that all kits were comparable in accurately predicting quantities of high quality DNA down to the sub-picogram level. However, the InnoQuant(R) HY kit showed the highest precision across the DNA concentration range tested in this study. In addition, all kits performed similarly with low concentrations of forensically relevant PCR inhibitors. However, in general, the Investigator® Quantiplex® Pro Kit was the most tolerant kit to inhibitors and provided the most accurate quantification results with higher concentrations of inhibitors (except with salt). PowerQuant® and InnoQuant® HY were the most sensitive to inhibitors, but they did indicate significant levels of PCR inhibition. When quantifying degraded samples, each kit provided different degradation indices (DI), with Investigator® Quantiplex® Pro indicating the largest DI and Quantifiler® Trio indicating the smallest DI. When the qPCR kits were paired with their respective STR kit to genotype highly degraded samples, the Investigator® 24plex QS and GlobalFiler® kits generated more complete profiles when the small target concentrations were used for calculating input amount.

  12. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Horst, A.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  13. DDE remediation and degradation.

    PubMed

    Thomas, John E; Ou, Li-Tse; All-Agely, Abid

    2008-01-01

    DDT and its metabolites, DDD and DDE, have been shown to be recalcitrant to degradation. The parent compound, DDT, was used extensively worldwide starting in 1939 and was banned in the United States in 1973. The daughter compound, DDE, may result from aerobic degradation, abiotic dehydrochlorination, or photochemical decomposition. DDE has also occurred as a contaminant in commercial-grade DDT. The p,p'-DDE isomer is more biologically active than the o,p-DDE, with a reported half-life of -5.7 years. However, when DDT was repeatedly applied to the soil, the DDE concentration may remain unchanged for more than 20 yr. Remediation of DDE-contaminated soil and water may be done by several techniques. Phytoremediation involves translocating DDT, DDD, and DDE from the soil into the plant, although some aquatic species (duckweed > elodea > parrot feather) can transform DDT into predominantly DDD with some DDE being formed. Of all the plants that can uptake DDE, Cucurbita pepo has been the most extensively studied, with translocation values approaching "hyperaccumulation" levels. Soil moisture, temperature, and plant density have all been documented as important factors in the uptake of DDE by Cucurbita pepo. Uptake may also be influenced positively by amendments such as biosurfactants, mycorrhizal inoculants, and low molecular weight organic acids (e.g., citric and oxalic acids). DDE microbial degradation by dehalogenases, dioxygenases, and hydrolases occurs under the proper conditions. Although several aerobic degradation pathways have been proposed, none has been fully verified. Very few aerobic pure cultures are capable of fully degrading DDE to CO2. Cometabolism of DDE by Pseudomonas sp., Alicaligens sp., and Terrabacter sp. grown on biphenyl has been reported; however, not all bacterial species that produce biphenyl dioxygenase degraded DDE. Arsenic and copper inhibit DDE degradation by aerobic microorganisms. Similarly, metal chelates such as EDTA inhibit the

  14. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.

  15. PRESENTED 03/01/2006: 2006 REMOTE SENSING AND GIS IN THE REMEDIATION OF CHEMICAL WEAPONS CONTAMINATION IN AN URBAN LANDSCAPE

    EPA Science Inventory

    During World War 1, The American University in Washington, DC was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite

  16. Photoinitiator-Free Synthesis of Endothelial Cell Adhesive and Enzymatically Degradable Hydrogels

    PubMed Central

    Jones, Derek R.; Marchant, Roger E.; von Recum, Horst; Gupta, Anirban Sen; Kottke-Marchant, Kandice

    2015-01-01

    We report on a photoinitiator-free synthetic method of incorporating bioactivity into poly(ethylene glycol) (PEG) hydrogels in order to control physical properties, enzymatic biodegradability and cell-specific adhesiveness of the polymer network, while eliminating the need for UV-mediated photopolymerization. To accomplish this, hydrogel networks were polymerized using Michael addition with four-arm PEG acrylate (10 kDa), using a collagenase sensitive peptide (CSP) as a crosslinker, and introducing an endothelial cell adhesive peptide either terminally (RGD) or attached to the crosslinking peptide sequence (CSP-RGD). The efficiency of the Michael addition reactions were determined by NMR and Ellman’s assay. Successful decoupling of cell adhesivity and physical properties was demonstrated by quantifying and comparing the swelling ratios and Young’s Moduli of various hydrogel formulations. Degradation profiles were established by incubating functionalized hydrogels in collagenase solutions (0.0 – 1.0 µg/mL), demonstrating that functionalized hydrogels degraded at a rate dependent upon collagenase concentration. Moreover, it was shown that the degradation rate was independent of CSP-RGD concentration. Cell attachment and proliferation on functionalized hydrogels were compared for various RGD concentrations, providing evidence that cell attachment and proliferation were directly related to relative amounts of the CSP-RGD combination peptide. An increase in cell viability was achieved using Michael addition techniques when compared to UV-polymerization, and was assessed by a LIVE/DEAD fluorescence assay. This photoinitiator-free method shows promise in creating hydrogel-based tissue engineering scaffolds allow for decoupled cell adhesivity and physical properties and that render greater cell viability. PMID:25462848

  17. A National Approach to Quantify and Map Biodiversity ...

    EPA Pesticide Factsheets

    Ecosystem services, i.e., "services provided to humans from natural systems," have become a key issue of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human welfare. The degradation of natural ecosystems and climate variation impact the environment and society by affecting ecological integrity and ecosystems’ capacity to provide critical services (i.e., the contributions of ecosystems to human well-being). These challenges will require complex management decisions that can often involve significant trade-offs between societal desires and environmental needs. Evaluating trade-offs in terms of ecosystem services and human well-being provides an intuitive and comprehensive way to assess the broad implications of our decisions and to help shape policies that enhance environmental and social sustainability. In answer to this challenge, the U.S. government has created a partnership among the U.S. Environmental Protection Agency, other Federal agencies, academic institutions, and, Non-Governmental Organizations to develop the EnviroAtlas, an online Decision Support Tool that allows users (e.g., planners, policy-makers, resource managers, NGOs, private indu

  18. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradationmore » of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).« less

  19. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium.

    PubMed Central

    Yadav, J S; Reddy, C A

    1993-01-01

    Degradation of the BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes) group of organopollutants by the white-rot fungus Phanerochaete chrysosporium was studied. Our results show that the organism efficiently degrades all the BTEX components when these compounds are added either individually or as a composite mixture. Degradation was favored under nonligninolytic culture conditions in malt extract medium, in which extracellular lignin peroxidases (LIPs) and manganese-dependent peroxidases (MNPs) are not produced. The noninvolvement of LIPs and MNPs in BTEX degradation was also evident from in vitro studies using concentrated extracellular fluid containing LIPs and MNPs and from a comparison of the extents of BTEX degradation by the wild type and the per mutant, which lacks LIPs and MNPs. A substantially greater extent of degradation of all the BTEX compounds was observed in static than in shaken liquid cultures. Furthermore, the level of degradation was relatively higher at 25 than at 37 degrees C, but pH variations between 4.5 and 7.0 had little effect on the extent of degradation. Studies with uniformly ring-labeled [14C]benzene and [14C]toluene showed substantial mineralization of these compounds to 14CO2. PMID:8481002

  20. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments.

    PubMed

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Xiang, Huiming; Guo, Youluo

    2017-07-01

    Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (k obs ) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO 3 - or Cl - ) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO 4 • - or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal. Copyright © 2017. Published by Elsevier Inc.

  1. Depth-Resolved Quantification of Anaerobic Toluene Degraders and Aquifer Microbial Community Patterns in Distinct Redox Zones of a Tar Oil Contaminant Plume▿

    PubMed Central

    Winderl, Christian; Anneser, Bettina; Griebler, Christian; Meckenstock, Rainer U.; Lueders, Tillmann

    2008-01-01

    Microbial degradation is the only sustainable component of natural attenuation in contaminated groundwater environments, yet its controls, especially in anaerobic aquifers, are still poorly understood. Hence, putative spatial correlations between specific populations of key microbial players and the occurrence of respective degradation processes remain to be unraveled. We therefore characterized microbial community distribution across a high-resolution depth profile of a tar oil-impacted aquifer where benzene, toluene, ethylbenzene, and xylene (BTEX) degradation depends mainly on sulfate reduction. We conducted depth-resolved terminal restriction fragment length polymorphism fingerprinting and quantitative PCR of bacterial 16S rRNA and benzylsuccinate synthase genes (bssA) to quantify the distribution of total microbiota and specific anaerobic toluene degraders. We show that a highly specialized degrader community of microbes related to known deltaproteobacterial iron and sulfate reducers (Geobacter and Desulfocapsa spp.), as well as clostridial fermenters (Sedimentibacter spp.), resides within the biogeochemical gradient zone underneath the highly contaminated plume core. This zone, where BTEX compounds and sulfate—an important electron acceptor—meet, also harbors a surprisingly high abundance of the yet-unidentified anaerobic toluene degraders carrying the previously detected F1-cluster bssA genes (C. Winderl, S. Schaefer, and T. Lueders, Environ. Microbiol. 9:1035-1046, 2007). Our data suggest that this biogeochemical gradient zone is a hot spot of anaerobic toluene degradation. These findings show that the distribution of specific aquifer microbiota and degradation processes in contaminated aquifers are tightly coupled, which may be of value for the assessment and prediction of natural attenuation based on intrinsic aquifer microbiota. PMID:18083871

  2. Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system.

    PubMed

    Bradu, C; Magureanu, M; Parvulescu, V I

    2017-08-15

    A novel advanced oxidation process based on the combination of ozonation with non-thermal plasma generated in a pulsed corona discharge was developed for the oxidative degradation of recalcitrant organic pollutants in water. The pulsed corona discharge in contact with liquid, operated in oxygen, produced 3.5mgL -1 ozone, which was subsequently introduced in the ozonation reactor. The solution to be treated was continuously circulated between the plasma reactor and the ozonation reactor. The system was tested for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and considerably improved performance as compared to ozonation alone, both with respect to the removal of the target compound and to mineralization. The apparent reaction rate constant for 2,4-D removal was 0.195min -1 , more than two times higher than the value obtained in ozonation experiments. The mineralization reached more than 90% after 60min treatment and the chlorine balance confirms the absence of quantifiable amounts of chlorinated by-products. The energy efficiency was considerably enhanced by shortening the duration of the discharge pulses, which opens the way for further optimization of the electrical circuit design. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantifying arm nonuse in individuals poststroke.

    PubMed

    Han, Cheol E; Kim, Sujin; Chen, Shuya; Lai, Yi-Hsuan; Lee, Jeong-Yoon; Osu, Rieko; Winstein, Carolee J; Schweighofer, Nicolas

    2013-06-01

    Arm nonuse, defined as the difference between what the individual can do when constrained to use the paretic arm and what the individual does when given a free choice to use either arm, has not yet been quantified in individuals poststroke. (1) To quantify nonuse poststroke and (2) to develop and test a novel, simple, objective, reliable, and valid instrument, the Bilateral Arm Reaching Test (BART), to quantify arm use and nonuse poststroke. First, we quantify nonuse with the Quality of Movement (QOM) subscale of the Actual Amount of Use Test (AAUT) by subtracting the AAUT QOM score in the spontaneous use condition from the AAUT QOM score in a subsequent constrained use condition. Second, we quantify arm use and nonuse with BART by comparing reaching performance to visual targets projected over a 2D horizontal hemi-work space in a spontaneous-use condition (in which participants are free to use either arm at each trial) with reaching performance in a constrained-use condition. All participants (N = 24) with chronic stroke and with mild to moderate impairment exhibited nonuse with the AAUT QOM. Nonuse with BART had excellent test-retest reliability and good external validity. BART is the first instrument that can be used repeatedly and practically in the clinic to quantify the effects of neurorehabilitation on arm use and nonuse and in the laboratory for advancing theoretical knowledge about the recovery of arm use and the development of nonuse and "learned nonuse" after stroke.

  4. An efficient method to predict and include Bragg curve degradation due to lung-equivalent materials in Monte Carlo codes by applying a density modulation

    NASA Astrophysics Data System (ADS)

    Baumann, Kilian-Simon; Witt, Matthias; Weber, Uli; Engenhart-Cabillic, Rita; Zink, Klemens

    2017-05-01

    Sub-millimetre-sized heterogeneities such as lung parenchyma cause Bragg peak degradation which can lead to an underdose of the tumor and an overdose of healthy tissue when not accounted for in treatment planning. Since commonly used treatment-planning CTs do not resolve the fine structure of lungs, this degradation can hardly be considered. We present a mathematical model capable of predicting and describing Bragg peak degradation due to a lung-equivalent geometry consisting of sub-millimetre voxels filled with either lung tissue or air. The material characteristic ‘modulation power’ is introduced to quantify the Bragg peak degradation. A strategy was developed to transfer the modulating effects of such fine structures to rougher structures such as 2 mm thick CT voxels, which is the resolution of typically used CTs. This is done by using the modulation power to derive a density distribution applicable to these voxels. By replacing the previously used sub-millimetre voxels by 2 mm thick voxels filled with lung tissue and modulating the lung tissue’s density in each voxel individually, we were able to reproduce the Bragg peak degradation. Hence a solution is found to include Bragg curve degradation due to lung-equivalent materials in Monte Carlo-based treatment-planning systems.

  5. Photo-fenton degradation of diclofenac: identification of main intermediates and degradation pathway.

    PubMed

    Pérez-Estrada, Leónidas A; Malato, Sixto; Gernjak, Wolfgang; Agüera, Ana; Thurman, E Michael; Ferrer, Imma; Fernández-Alba, Amadeo R

    2005-11-01

    In recent years, the presence of pharmaceuticals in the aquatic environment has been of growing interest. These new contaminants are important because many of them are not degraded under the typical biological treatments applied in the wastewater treatment plants and represent a continuous input into the environment. Thus, compounds such as diclofenac are present in surface waters in all Europe and a crucial need for more enhanced technologies that can reduce its presence in the environment has become evident. In this sense, advanced oxidation processes (AOPs) represent a good choice for the treatment of hazardous nonbiodegradable pollutants. This work deals with the solar photodegradation of diclofenac, an antiinflammatory drug, in aqueous solutions by photo-Fenton reaction. A pilot-scale facility using a compound parabolic collector (CPC) reactor was used for this study. Results obtained show rapid and complete oxidation of diclofenac after 60 min, and total mineralization (disappearance of dissolved organic carbon, DOC) after 100 min of exposure to sunlight. Although diclofenac precipitates during the process at low pH, its degradation takes place in the homogeneous phase governed by a precipitation-redissolution-degradation process. Establishment of the reaction pathway was made possible by a thorough analysis of the reaction mixture identifying the main intermediate products generated. Gas chromatography-mass spectrometry (GC/ MS) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) were used to identify 18 intermediates, in two tentative degradation routes. The main one was based on the initial hydroxylation of the phenylacetic acid moiety in the C-4 position and subsequent formation of a quinone imine derivative that was the starting point for further multistep degradation involving hydroxylation, decarboxylation, and oxidation reactions. An alternative route was based on the transient preservation of the biphenyl amino moiety

  6. Abiotic, biotic and photolytic degradation affinity of 14 antibiotics and one metabolite - batch experiments and a model framework.

    PubMed

    Kaeseberg, Thomas; Zhang, Jin; Schubert, Sara; Oertel, Reinhard; Krebs, Peter

    2018-05-26

    In this study, degradation affinities of 14 antibiotics and one metabolite were determined in batch experiments. A modelling framework was applied to decrypt potential ranges of abiotic, biotic and photolytic degradation coefficients. In detail, we performed batch experiments with three different sewages in the dark at 7 °C and 22 °C. Additionally, we conducted further batch experiments with artificial irradiation and different dilutions of the sewage at 30 °C - de novo three different sewages were used. The batch experiments were initially spiked with a stock solution with 14 antibiotics and one metabolite to increase background concentrations by 1 μg L -1 for each compound. The final antibiotic concentrations were sub-inhibitory with regard to sewage bacteria. The here presented modelling framework based on the Activated Sludge Model No. 3 in combination with adsorption and desorption processes. The model was calibrated with monitored standard sewage compounds before antibiotic degradation rates were quantified. The model decrypted ranges of abiotic, biotic and photolytic degradation coefficients. In detail, six antibiotics were not abiotic degradable at 7 °C, five antibiotics not at 22 °C and only 2 antibiotics at 30 °C. Finally, nine antibiotics were not significantly biodegradable at 7 °C and 22 °C. The model determined the link between adsorption characteristics and biodegradation rates. In detail, the rate was significantly affected by the bio-solid partition coefficient and the duration until adsorption was balanced. All antibiotics and the metabolite were photolytic degradable. In general, photolytic degradation was the most efficient elimination pathway of presented antibiotics except for the given metabolite and penicillin antibiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Degraded Vowel Acoustics and the Perceptual Consequences in Dysarthria

    NASA Astrophysics Data System (ADS)

    Lansford, Kaitlin L.

    Distorted vowel production is a hallmark characteristic of dysarthric speech, irrespective of the underlying neurological condition or dysarthria diagnosis. A variety of acoustic metrics have been used to study the nature of vowel production deficits in dysarthria; however, not all demonstrate sensitivity to the exhibited deficits. Less attention has been paid to quantifying the vowel production deficits associated with the specific dysarthrias. Attempts to characterize the relationship between naturally degraded vowel production in dysarthria with overall intelligibility have met with mixed results, leading some to question the nature of this relationship. It has been suggested that aberrant vowel acoustics may be an index of overall severity of the impairment and not an "integral component" of the intelligibility deficit. A limitation of previous work detailing perceptual consequences of disordered vowel acoustics is that overall intelligibility, not vowel identification accuracy, has been the perceptual measure of interest. A series of three experiments were conducted to address the problems outlined herein. The goals of the first experiment were to identify subsets of vowel metrics that reliably distinguish speakers with dysarthria from non-disordered speakers and differentiate the dysarthria subtypes. Vowel metrics that capture vowel centralization and reduced spectral distinctiveness among vowels differentiated dysarthric from non-disordered speakers. Vowel metrics generally failed to differentiate speakers according to their dysarthria diagnosis. The second and third experiments were conducted to evaluate the relationship between degraded vowel acoustics and the resulting percept. In the second experiment, correlation and regression analyses revealed vowel metrics that capture vowel centralization and distinctiveness and movement of the second formant frequency were most predictive of vowel identification accuracy and overall intelligibility. The third

  8. Microbial Degradation of Propylene Glycol - Modelling Approach of a Batch Experiment

    NASA Astrophysics Data System (ADS)

    Dathe, Annette; Fernandez, Perrine; Bakken, Lars; Bloem, Esther; French, Helen

    2016-04-01

    De-icing chemicals are applied in large amounts at airports during winter conditions to keep the runways and aircrafts ice-free. At Gardermoen airport, Norway, most of the applied chemicals can be captured, but about 10 to 20 % infiltrate into the soil along the runways and during take-off. While the commonly used propylene glycol (PG) is easily degradable by local microbial communities, its biological oxygen demand is high, anoxic zones can develop and soluble Fe+2 and Mn+2 ions eventually can reach the groundwater. The objectives of the presented study are to quantify the mechanisms, which control the order of reduction processes in an unsaturated sandy soil, and to test whether measured redox potentials can help to determine underlying biogeochemical reactions. To investigate the mechanisms of microbial degradation, the water phase of soil samples from Gardermoen Airport was replaced by deionized water with 10 mMol PG or 10 mMol glutamate and the samples were incubated at 10°C for about two weeks. The gas phase was sampled and analyzed automatically every three hours. Microbial degradation of the substrate (PG or glutamate) was modelled following a Monod kinetics using the FME (Flexible Modelling Environment) package of R (Project for Statistical Computing). The model was calibrated against measurements of O2 depletion and CO2 production. The initial concentrations of O2, CO2 and PG or glutamate are known and microbial yields and stoichiometric constants can be calculated from the measurements. Parameter values for the initial microbial population size, maximum microbial growth rate, the half saturation constant, and microbial degradation and respiration rates were fitted using the FME package. The model accounts for carbon from the substrate (PG or glutamate) incorporated into the biomass. Results are promising, but because of the large number of parameters needed to fit a Monod kinetics it is challenging to accurately model a whole redox sequence. The

  9. Composition and dynamics of biostimulated indigenous oil-degrading microbial consortia from the Irish, North and Mediterranean Seas: a mesocosm study.

    PubMed

    Gertler, Christoph; Näther, Daniela J; Cappello, Simone; Gerdts, Gunnar; Quilliam, Richard S; Yakimov, Michail M; Golyshin, Peter N

    2012-09-01

    Diversity of indigenous microbial consortia and natural occurrence of obligate hydrocarbon-degrading bacteria (OHCB) are of central importance for efficient bioremediation techniques. To investigate the microbial population dynamics and composition of oil-degrading consortia, we have established a series of identical oil-degrading mesocosms at three different locations, Bangor (Menai Straits, Irish Sea), Helgoland (North Sea) and Messina (Messina Straits, Mediterranean Sea). Changes in microbial community composition in response to oil spiking, nutrient amendment and filtration were assessed by ARISA and DGGE fingerprinting and 16Sr RNA gene library analysis. Bacterial and protozoan cell numbers were quantified by fluorescence microscopy. Very similar microbial population sizes and dynamics, together with key oil-degrading microorganisms, for example, Alcanivorax borkumensis, were observed at all three sites; however, the composition of microbial communities was largely site specific and included variability in relative abundance of OHCB. Reduction in protozoan grazing had little effect on prokaryotic cell numbers but did lead to a decrease in the percentage of A. borkumensis 16S rRNA genes detected in clone libraries. These results underline the complexity of marine oil-degrading microbial communities and cast further doubt on the feasibility of bioaugmentation practices for use in a broad range of geographical locations. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. [Isolation and identification of imazethapyr degradable actinomyces S181 and its degradation characteristics].

    PubMed

    Huo, Ying; Xu, Jing-gang; Li, Shu-qin; Wang, Lei

    2011-05-01

    A selection of actinomyces that could degrade imazethapyr was conducted to provide actinomyces source for bioremediation of soil contaminated by imazethapyr. A strain of actinomyces was isolated from the samples of soil where imazethapyr had been applied for a long-term by use of bottle enriched culture and named S181. The strain had strong ability to degrade imazethapyr and could grow using mazethapyr as the sole nitrogen. The strain was related and shared characteristics to genus Streptomyces omiyaensis according to the physiological and biochemical properties as well as 16S rRNA sequence analysis. The influencing factors (temperature, pH, concentration and inoculum) were studied with fungus growth mass and degradation ratio as indexes. The results showed that the optimal degradation ratio occurred at the condition of inoculation ratio of 3%, 200 mg x L(-1) imazethapyr, at 30 degrees C and pH 7.0. Under these conditions, 84% imazethapyr had been degraded by S181 in medium Gao 1 without nitrogen after 5 days.

  11. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders.

    PubMed

    Ahmad, Mark; Taylor, Charles R; Pink, David; Burton, Kerry; Eastwood, Daniel; Bending, Gary D; Bugg, Timothy D H

    2010-05-01

    Two spectrophotometric assays have been developed to monitor breakdown of the lignin component of plant lignocellulose: a continuous fluorescent assay involving fluorescently modified lignin, and a UV-vis assay involving chemically nitrated lignin. These assays have been used to analyse lignin degradation activity in bacterial and fungal lignin degraders, and to identify additional soil bacteria that show activity for lignin degradation. Two soil bacteria known to act as aromatic degraders, Pseudomonas putida and Rhodococcus sp. RHA1, consistently showed activity in these assays, and these strains were shown in a small scale experiment to breakdown lignocellulose, producing a number of monocyclic phenolic products. Using milled wood lignin prepared from wheat straw, pine, and miscanthus, some bacterial lignin degraders were found to show specificity for lignin type. These assays could be used to identify novel lignin degraders for breakdown of plant lignocellulose.

  12. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2012-01-01

    The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.

  13. Inhibition of Insulin Degrading Enzyme and Insulin Degradation by UV-Killed Lactobacillus acidophilus.

    PubMed

    Neyazi, Nadia; Motevaseli, Elahe; Khorramizadeh, Mohammad Reza; Mohammadi Farsani, Taiebeh; Nouri, Zahra; Nasli Esfahani, Ensieh; Ghahremani, Mohammad Hossein

    2018-05-11

    Probiotics have beneficial effects on management of type 2 diabetes (T2D). The major hallmarks of T2D are insulin deficiency and insulin resistance which emphasize insulin therapy in onset of disease. Lactobacilli such as Lactobacillus acidophilus ( L. acidophilus ) have well known properties on prevention of T2D and insulin resistance but not on insulin degradation. Insulin-degrading enzyme (IDE) degrades insulin in the human body. We studied the effects of cell-free supernatant (CFS) and ultraviolet (UV)-killed L. acidophilus (ATCC 314) on IDE activity and insulin degradation in vitro. Cell growth inhibition by CFS and UV-killed L. acidophilus (ATCC 314) was studied and Western blotting and a fluoregenic assay was performed to determine IDE expression and its activity, respectively. Insulin degradation was evaluated by sandwich enzyme-linked immunosorbent assay(ELISA). IDE expression and activity was reduced by CFS and UV-killed L. acidophilus (ATCC 314). Although, decreased enzyme expression and activity was not significant for CFS in contrast to MRL (MRS with same pH as CFS). Also, reduction in IDE activity was not statistically considerable when compared to IDE expression. Insulin degradation was increased by CFS but decreased by UV-killed L. acidophilus (ATCC 314).

  14. Modeling the effect of terraces on land degradation in tropical upland agricultural area

    NASA Astrophysics Data System (ADS)

    Christanto, N.; Shrestha, D. P.; Jetten, V. G.; Setiawan, A.

    2012-04-01

    Java, the most populated Island in Indonesia, in the pas view decades suffer land degradation do to extreme weather, population pressure and landuse/cover change. The study area, Serayu sub-catchment, as part of Serayu catchment is one of the representative example of Indonesia region facing land use change and land degradation problem. The study attempted to simulate the effect of terraces on land degradation (Soil erosion and landslide hazard) in Serayu sub-catchment using deterministic modeling by means of PCRaster® simulation. The effect of the terraces on tropical upland agricultural area is less studied. This paper will discuss about the effect of terraces on land degradation assessment. Detail Dem is extremely difficult to obtain in developing country like Indonesia. Therefore, an artificial DEM which give an impression of the terraces was built. Topographical maps, Ikonos Image and average of height distribution based on field measurement were used to build the artificial DEM. The result is used in STARWARS model as an input. In combine with Erosion model and PROBSTAB, soil erosion and landslide hazard were quantified. The models were run in two different environment based on the: 1) normal DEM 2.) Artificial DEM (with terraces impression). The result is compared. The result shows that the models run in an artificial DEM give a significant increase on the probability of failure by 20.5%. In the other hand, the erosion rate has fall by 11.32% as compared to the normal DEM. The result of hydrological sensitivity analysis shows that soil depth was the most sensitive parameter. For the slope stability modeling, the most sensitive parameter was slope followed by friction angle and cohesion. The erosion modeling, the model was sensitive to the vegetation cover, soil erodibility followed by BD and KSat. Model validations were applied to assess the accuracy of the models. However, the results of dynamic modeling are ideal for land degradation assessment. Dynamic

  15. Degradation of polyvinyl alcohol (PVA) by UV/chlorine oxidation: Radical roles, influencing factors, and degradation pathway.

    PubMed

    Ye, Bei; Li, Yue; Chen, Zhuo; Wu, Qian-Yuan; Wang, Wen-Long; Wang, Ting; Hu, Hong-Ying

    2017-11-01

    Polyvinyl alcohol (PVA) is widely used in industry but is difficult to degrade. In this study, the synergistic effect of UV irradiation and chlorination on degradation of PVA was investigated. UV irradiation or chlorination alone did not degrade PVA. By contrast, UV/chlorine oxidation showed good efficiency for PVA degradation via generation of active free radicals, such as OH and Cl. The relative importance of these two free radicals in the oxidation process was evaluated, and it was shown that OH contributed more to PVA degradation than Cl did. The degradation of PVA followed pseudo first order kinetics. The rate constant k increased linearly from 0 min -1 to 0.3 min -1 with increasing chlorine dosage in range of 0 mg/L to 20 mg/L. However, when the chlorine dosage was increased above 20 mg/L, scavenging effect of free radicals occurred, and the degradation efficiency of PVA did not increase much more. Acidic media increased the degradation efficiency of PVA by UV/chlorine oxidation more than basic or neutral media because of the higher ratio of [HOCl]/[OCl - ], higher free radical quantum yields, and the lower free radical quenching effect under acidic conditions. Results of Fourier Transform Infrared Spectroscopy showed that carbonyl groups in degradation products were formed during UV/chlorine oxidation, and a possible degradation pathway via alcohol to carbonyl was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeanedeAbreuSa, Tatiana; deSouzaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2004-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  17. Bacteria-mediated bisphenol A degradation.

    PubMed

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  18. Processing of Numerical and Proportional Quantifiers

    ERIC Educational Resources Information Center

    Shikhare, Sailee; Heim, Stefan; Klein, Elise; Huber, Stefan; Willmes, Klaus

    2015-01-01

    Quantifier expressions like "many" and "at least" are part of a rich repository of words in language representing magnitude information. The role of numerical processing in comprehending quantifiers was studied in a semantic truth value judgment task, asking adults to quickly verify sentences about visual displays using…

  19. In vitro degradation of ribosomes.

    PubMed

    Mora, G; Rivas, A

    1976-12-01

    The cytoplasmic ribosomes from Euglena gracilis var. bacillaris are found to be of two types taking into consideration their stability "in vitro". In the group of unstable ribosomes the large subunit is degraded. The other group apparently does not suffer any degradation under the conditions described. However the RNAs extracted from both types of ribosomes are degraded during sucrose density gradients. The degradation of the largest RNA species has been reported previously, but no comment has been made about the stability of the ribosome itself.

  20. Lysosomal degradation of membrane lipids.

    PubMed

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium

    PubMed Central

    Bischofs, Ilka; Price, Gavin; Keasling, Jay; Arkin, Adam P.

    2008-01-01

    Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These “memory” effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy. PMID:18324309

  2. Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Chen, Hansheng; Yun, Fan; Qu, Jiangtao; Li, Yingfei; Cheng, Zhenxiang; Fang, Ruhao; Ye, Zhixiao; Ringer, Simon P.; Zheng, Rongkun

    2018-05-01

    Quantitative correlation between intrinsic coercivity and grain boundaries in three dimensions is critical to further improve the performance of sintered Nd-Fe-B permanent magnets. Here, we quantitatively reveal the local composition variation across and especially along grain boundaries using the powerful atomic-scale analysis technique known as atom probe tomography. We also estimate the saturation magnetization, magnetocrystalline anisotropy constant, and exchange stiffness of the grain boundaries on the basis of the experimentally determined structure and composition. Finally, using micromagnetic simulations, we quantify the intrinsic coercivity degradation caused by inhomogeneous grain boundaries. This approach can be applied to other magnetic materials for the analysis and optimization of magnetic properties.

  3. Scalar Quantifiers: Logic, Acquisition, and Processing

    ERIC Educational Resources Information Center

    Geurts, Bart; Katsos, Napoleon; Cummins, Chris; Moons, Jonas; Noordman, Leo

    2010-01-01

    Superlative quantifiers ("at least 3", "at most 3") and comparative quantifiers ("more than 2", "fewer than 4") are traditionally taken to be interdefinable: the received view is that "at least n" and "at most n" are equivalent to "more than n-1" and "fewer than n+1",…

  4. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data

    NASA Astrophysics Data System (ADS)

    Joshi, Neha; Mitchard, Edward TA; Woo, Natalia; Torres, Jorge; Moll-Rocek, Julian; Ehammer, Andrea; Collins, Murray; Jepsen, Martin R.; Fensholt, Rasmus

    2015-03-01

    Mapping anthropogenic forest disturbances has largely been focused on distinct delineations of events of deforestation using optical satellite images. In the tropics, frequent cloud cover and the challenge of quantifying forest degradation remain problematic. In this study, we detect processes of deforestation, forest degradation and successional dynamics, using long-wavelength radar (L-band from ALOS PALSAR) backscatter. We present a detection algorithm that allows for repeated disturbances on the same land, and identifies areas with slow- and fast-recovering changes in backscatter in close spatial and temporal proximity. In the study area in Madre de Dios, Peru, 2.3% of land was found to be disturbed over three years, with a false positive rate of 0.3% of area. A low, but significant, detection rate of degradation from sparse and small-scale selective logging was achieved. Disturbances were most common along the tri-national Interoceanic Highway, as well as in mining areas and areas under no land use allocation. A continuous spatial gradient of disturbance was observed, highlighting artefacts arising from imposing discrete boundaries on deforestation events. The magnitude of initial radar backscatter, and backscatter decrease, suggested that large-scale deforestation was likely in areas with initially low biomass, either naturally or since already under anthropogenic use. Further, backscatter increases following disturbance suggested that radar can be used to characterize successional disturbance dynamics, such as biomass accumulation in lands post-abandonment. The presented radar-based detection algorithm is spatially and temporally scalable, and can support monitoring degradation and deforestation in tropical rainforests with the use of products from ALOS-2 and the future SAOCOM and BIOMASS missions.

  5. Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus.

    PubMed

    Sharma Ghimire, Prakriti; Ouyang, Haomiao; Wang, Qian; Luo, Yuanming; Shi, Bo; Yang, Jinghua; Lü, Yang; Jin, Cheng

    2016-12-02

    Lignocelluloses contained in animal forage cannot be digested by pigs or poultry with 100% efficiency. On contrary, Aspergillus fumigatus, a saprophytic filamentous fungus, is known to harbor 263 glycoside hydrolase encoding genes, suggesting that A. fumigatus is an efficient lignocellulose degrader. Hence the present study uses corn, wheat, or soybean as a sole carbon source to culture A. fumigatus under animal physiological condition to understand how cellulolytic enzymes work together to achieve an efficient degradation of lignocellulose. Our results showed that A. fumigatus produced different sets of enzymes to degrade lignocelluloses derived from corn, wheat, or soybean cell wall. In addition, the cellulolytic enzymes produced by A. fumigatus were stable under acidic condition or at higher temperatures. Using isobaric tags for a relative and absolute quantification (iTRAQ) approach, a total of ∼600 extracellular proteins were identified and quantified, in which ∼50 proteins were involved in lignocellulolysis, including cellulases, hemicellulases, lignin-degrading enzymes, and some hypothetical proteins. Data are available via ProteomeXchange with identifier PXD004670. On the basis of quantitative iTRAQ results, 14 genes were selected for further confirmation by RT-PCR. Taken together, our results indicated that the expression and regulation of lignocellulolytic proteins in the secretome of A. fumigatus were dependent on both nature and complexity of cellulose, thus suggesting that a different enzyme system is required for degradation of different lignocelluloses derived from plant cells. Although A. fumigatus is a pathogenic fungus and cannot be directly used as an enzyme source, as an efficient lignocellulose degrader its strategy to synergistically degrade various lignocelluloses with different enzymes can be used to design enzyme combination for optimal digestion and absorption of corn, wheat, or soybean that are used as forage of pig and poultry.

  6. THE ROLE OF REMOTE SENSING IN IDENTIFYING BURIED WORLD WAR 1 MUNITIONS AT THE AMERICAN UNIVERSITY, WASHINGTON, D.C.

    EPA Science Inventory

    During World War 1, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite, among others. Afte...

  7. THE ROLE OF HISTORICAL AERIAL PHOTOGRAPHS IN THE REMEDIATION OF WWI CHEMICAL CONTAMINATION IN THE SPRING VALLEY SUPERFUND SITE, WASHINGTON, DC

    EPA Science Inventory

    During World War 1, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite, among others. Afte...

  8. THE ROLE OF REMOTE SENSING IN IDENTIFYING BURIED WORLD WAR I MUNITIONS AT THE AMERICAN UNIVERSITY, WASHINGTON, D.C.

    EPA Science Inventory

    During World War 1, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite, among others. Afte...

  9. THE ROLE OF REMOTE SENSING AND GIS IN IDENTIFYING BURIED WORLD WAR I MUNITIONS AT THE AMERICAN UNIVERSITY, WASHINGTON, DC

    EPA Science Inventory

    During World War 1, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite, among others. Afte...

  10. Quantifying the uncertainty in heritability.

    PubMed

    Furlotte, Nicholas A; Heckerman, David; Lippert, Christoph

    2014-05-01

    The use of mixed models to determine narrow-sense heritability and related quantities such as SNP heritability has received much recent attention. Less attention has been paid to the inherent variability in these estimates. One approach for quantifying variability in estimates of heritability is a frequentist approach, in which heritability is estimated using maximum likelihood and its variance is quantified through an asymptotic normal approximation. An alternative approach is to quantify the uncertainty in heritability through its Bayesian posterior distribution. In this paper, we develop the latter approach, make it computationally efficient and compare it to the frequentist approach. We show theoretically that, for a sufficiently large sample size and intermediate values of heritability, the two approaches provide similar results. Using the Atherosclerosis Risk in Communities cohort, we show empirically that the two approaches can give different results and that the variance/uncertainty can remain large.

  11. Quantifying the uncertainty in heritability

    PubMed Central

    Furlotte, Nicholas A; Heckerman, David; Lippert, Christoph

    2014-01-01

    The use of mixed models to determine narrow-sense heritability and related quantities such as SNP heritability has received much recent attention. Less attention has been paid to the inherent variability in these estimates. One approach for quantifying variability in estimates of heritability is a frequentist approach, in which heritability is estimated using maximum likelihood and its variance is quantified through an asymptotic normal approximation. An alternative approach is to quantify the uncertainty in heritability through its Bayesian posterior distribution. In this paper, we develop the latter approach, make it computationally efficient and compare it to the frequentist approach. We show theoretically that, for a sufficiently large sample size and intermediate values of heritability, the two approaches provide similar results. Using the Atherosclerosis Risk in Communities cohort, we show empirically that the two approaches can give different results and that the variance/uncertainty can remain large. PMID:24670270

  12. Pathway for recovery of photo-degraded polymer solar cells by post degradation thermal anneal

    DOE PAGES

    Bhattacharya, J.; Joshi, P. H.; Biswas, Rana; ...

    2017-02-16

    The photo-degradation of polymer solar cells is a critical challenge preventing its commercial deployment. We experimentally fabricate organic solar cells and characterize their degradation under solar simulators in an environmental chamber under nitrogen flow, without exposure to oxygen and moisture. We have developed a thermally stable inverted organic solar cell architecture in which light induced degradation of device characteristics can be reversibly annealed to the pristine values. The stable inverted cells utilized MoO x layers that are thermally treated immediately after their deposition on the organic layer, and before metal cathode deposition. Organic solar cells that are photo-degraded in themore » presence of oxygen, however show irreversible degradation that cannot be thermally recovered. The decrease of organic solar cell characteristics correlates with increases in mid-gap electronic states, measured using capacitance spectroscopy and dark current. It is likely the photo-induced defect states caused by local H motion from the alkyl chains to the aromatic backbone, can be reversibly annealed at elevated temperatures after photo-degradation. Finally, our results provide a pathway for improving the stability of organic photovoltaics.« less

  13. Pathway for recovery of photo-degraded polymer solar cells by post degradation thermal anneal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, J.; Joshi, P. H.; Biswas, Rana

    The photo-degradation of polymer solar cells is a critical challenge preventing its commercial deployment. We experimentally fabricate organic solar cells and characterize their degradation under solar simulators in an environmental chamber under nitrogen flow, without exposure to oxygen and moisture. We have developed a thermally stable inverted organic solar cell architecture in which light induced degradation of device characteristics can be reversibly annealed to the pristine values. The stable inverted cells utilized MoO x layers that are thermally treated immediately after their deposition on the organic layer, and before metal cathode deposition. Organic solar cells that are photo-degraded in themore » presence of oxygen, however show irreversible degradation that cannot be thermally recovered. The decrease of organic solar cell characteristics correlates with increases in mid-gap electronic states, measured using capacitance spectroscopy and dark current. It is likely the photo-induced defect states caused by local H motion from the alkyl chains to the aromatic backbone, can be reversibly annealed at elevated temperatures after photo-degradation. Finally, our results provide a pathway for improving the stability of organic photovoltaics.« less

  14. Evaluation of the degradation behavior of resorbable metal implants for in vivo osteosynthesis by synchrotron radiation based x-ray tomography and histology

    NASA Astrophysics Data System (ADS)

    Galli, Silvia; Hammel, Jörg U.; Herzen, Julia; Damm, Timo; Jimbo, Ryo; Beckmann, Felix; Wennerberg, Ann; Willumeit-Römer, Regine

    2016-10-01

    Magnesium(Mg)-alloys are promising candidates as temporary implants for orthopedic and cranio-facial applications. They can sustain tissues during healing, thanks to favorable mechanical properties, and then they slowly degrade into biocompatible products, avoiding the need of a second surgery for implant removal. They have the potential to benefit a vast number of patients, especially children and elderly patients. However, to be able to tailor their degradation to match the speed of tissue regeneration it is crucial to understand how they actually degrade in the living organism. We utilized high-resolution synchrotron-based tomography at the beamline P05 operated by HZG at the storage ring PETRA III at DESY to study the degradation of 3 novel Mg-alloys in rat bone and the consequent bone response. On threedimensional reconstructions of the bone-implant explants we were able to follow the dynamic transformation that the materials underwent at different healing times and on the basis of absorption coefficients we could distinguish and quantify the amount of remaining implants, the corrosion layers and the new bone. This was a great advantage compared to laboratory CT, for which the limitation in contrast and in resolution made impossible to discriminate between original alloy, degradation products and bone, leading to inaccurate determination of the materials degradation rates. The same samples imaged by tomography were used for non-decalcified histology. The combination of histological and tomographical images provided new insight on the nature of the bone-to-implant interface and of the degradation products, which appeared to have great similarities to the host bone.

  15. Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.

    PubMed

    Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario

    2015-01-01

    A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.

  16. Quantifying ubiquitin signaling.

    PubMed

    Ordureau, Alban; Münch, Christian; Harper, J Wade

    2015-05-21

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Quantifying Ubiquitin Signaling

    PubMed Central

    Ordureau, Alban; Münch, Christian; Harper, J. Wade

    2015-01-01

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850

  18. Microbial Enzymatic Degradation of Biodegradable Plastics.

    PubMed

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Isolation and characterization of an ether-type polyurethane-degrading micro-organism and analysis of degradation mechanism by Alternaria sp.

    PubMed

    Matsumiya, Y; Murata, N; Tanabe, E; Kubota, K; Kubo, M

    2010-06-01

    To degrade ether-type polyurethane (ether-PUR), ether-PUR-degrading micro-organism was isolated. Moreover, ether-PUR-degrading mechanisms were analysed using model compounds of ether-PUR. A fungus designated as strain PURDK2, capable of changing the configuration of ether-PUR, has been isolated. This isolated fungus was identified as Alternaria sp. Using a scanning electron microscope, the grid structure of ether-PUR was shown to be melted and disrupted by the fungus. The degradation of ether-PUR by the fungus was analysed, and the ether-PUR was degraded by the fungus by about 27.5%. To analyse the urethane-bond degradation by the fungus, a degraded product of ethylphenylcarbamate was analysed using GC/MS. Aniline and ethanol were detected by degradation with the supernatant, indicating that the fungus secreted urethane-bond-degrading enzyme(s). PURDK2 also degraded urea bonds when diphenylmethane-4,4'-dibutylurea was used as a substrate. The enzyme(s) from PURDK2 degraded urethane and urea bonds to convert the high molecular weight structure of ether-PUR to small molecules; and then the fungus seems to use the small molecules as an energy source. Ether-PUR-degrading fungus, strain PURDK2, was isolated, and the urethane- and urea-bonds-degrading enzymes from strain PURDK2 could contribute to the material recycling of ether-PUR.

  20. Anaerobic benzene degradation by bacteria

    PubMed Central

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans‐Hermann

    2011-01-01

    Summary Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen‐dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene‐degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. PMID:21450012

  1. THE ROLE OF THE REMOTE SENSING IN IDENTIFYING BURIED WORLD WAR I MUNITIONS AT THE AMERICAN UNIVERSITY, WASHINGTON, D.C.

    EPA Science Inventory



    During World War 1, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite, among othe...

  2. LOCATING BURIED WW1 MUNITIONS WITH REMOTE SENSING AND GIS

    EPA Science Inventory

    During World War I, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite. After the end of t...

  3. REMOTE SENSING IN DETECTING BURIED MUNITIONS FROM WORLD WAR I

    EPA Science Inventory



    During World War I, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite, among othe...

  4. REMOTE SENSING AND GIS IN THE REMEDIATION OF CHEMICAL WEAPONS CONTAMINATION IN AN URBAN LANDSCAPE

    EPA Science Inventory

    During World War I, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite. After the end of t...

  5. THER ROLE OF REMOTE SENSING AND GIS IN IDENTIFYING AND REMOVING BURIED WORLD WAR I MUNITIONS AT THE AMERICAN UNIVERSITY, WASHINGTON, DC

    EPA Science Inventory

    During World War I, The American University in Washington D.C. was used by the U.S. Am1y as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite, among others. Afte...

  6. LOCATING BURIED WORLD WAR I MUNITIONS WITH REMOTE SENSING AND GIS

    EPA Science Inventory

    During World War I, the American University in Washington, D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitons including chemcial weapons such as Mustard Gas, Phosgene, Ricin and Lewisite. After the end of ...

  7. Detecting volatile compounds from Kraft lignin degradation in the headspace of microbial cultures by selected ion flow tube mass spectrometry (SIFT-MS).

    PubMed

    Gibson, Andrew; Malek, Lada; Dekker, Robert F H; Ross, Brian

    2015-05-01

    Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) was used to quantify methanol and other volatile compounds in the headspace of one bacterial and 12 fungal lignin-degrading microbial cultures. Cultures were grown in 250 mL Erlenmeyer flasks capped with aluminum foil containing 40 mL of nutrient media using Kraft lignin (0.3% w/v) as the sole carbon source. Analysis was done using SIFT-MS with H3O(+) and NO(+) precursors. Product ions were identified with multiple ion mode (MIM). Full scan (FS) mode was used to identify other compounds of interest. Absidia cylindrospora, Ischnoderma resinosum and Pholiota aurivella increased headspace methanol concentration by 136 ppb, 1196 ppb and 278 ppb, respectively, while Flammulina velutipes and Laetiporus sulphureus decreased concentration below ambient levels. F. velutipes and L. sulphureus were found to produce products of methanol oxidation (formaldehyde and formic acid) and were likely metabolizing methanol. Some additional unidentified compounds generated by the fungal cultures are intriguing and will require further study. SIFT-MS can be used to quantify methanol and other volatile compounds in the headspace of microbial cultures and has the potential to be a rapid, sensitive, non-invasive tool useful in elucidating the mechanisms of lignin degradative pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Microbial Degradation of Asphalt1

    PubMed Central

    Phillips, U. A.; Traxler, R. W.

    1963-01-01

    Organisms of the genera Pseudomonas, Chromobacterium, and Bacillus capable of degrading asphalt were isolated by enrichment cultures. The asphalt degradation by these organisms varied from 3 to 25% after incubation for 1 week. The effects of temperature, pH, and atmosphere of incubation on asphalt degradation were investigated and were shown to vary with different organisms on the same substrate. PMID:16349633

  9. Chemical Composition, In vitro Gas Production, Ruminal Fermentation and Degradation Patterns of Diets by Grazing Steers in Native Range of North Mexico

    PubMed Central

    Murillo, M.; Herrera, E.; Carrete, F. O.; Ruiz, O.; Serrato, J. S.

    2012-01-01

    The objective of the study was to quantify annual and seasonal differences in the chemical composition, in vitro gas production, in situ degradability and ruminal fermentation of grazing steers’ diets. Diet samples were collected with four esophageal cannulated steers (350±3 kg BW); and four ruminally cannulated heifers (342±1.5 kg BW) were used to study the dry matter degradation and fermentation in rumen. Data were analyzed with repeated measurements split plot design. The crude protein, in vitro dry matter digestibility and metabolizable energy were higher during the first year of trial and in the summer (p<0.01). The values of calcium, phosphorus, magnesium, zinc and copper were higher in summer (p<0.05). The gas produced by the soluble and insoluble fractions, as well as the constant rate of gas production were greater in summer and fall (p<0.01). The ammonia nitrogen (NH3N) and total volatile fatty acids concentrations in rumen, the soluble and degradable fractions, the constant rate of degradation and the effective degradability of DM and NDF were affected by year (p<0.05) and season (p<0.01). Our study provides new and useful knowledge for the formulation of protein, energetic and mineral supplements that grazing cattle need to improve their productive and reproductive performance. PMID:25049495

  10. Quantifying renewable groundwater stress with GRACE

    NASA Astrophysics Data System (ADS)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min-Hui; Reager, John T.; Famiglietti, James S.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-07-01

    Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human-dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE-based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions.

  11. Quantifying renewable groundwater stress with GRACE

    PubMed Central

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Reager, John T.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human‐dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE‐based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions. PMID:26900185

  12. Seasonal survey of the composition and degradation state of particulate organic matter in the Rhone River using lipid tracers

    NASA Astrophysics Data System (ADS)

    Galeron, M.-A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J.-F.

    2014-10-01

    Lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France). This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant-derived particulate organic matter (POM), with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Major terrigenous contributors to our samples are gymnosperms, and more precisely their roots and stems, as evidenced by the presence of high proportions of ω-hydroxydocosanoic acid (a suberin biomarker). The high amounts of coprostanol detected clearly show that the Rhone River is significantly affected by sewage waters. Specific sterol degradation products were quantified and used to assess the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation-inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could affect the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea.

  13. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.

    PubMed

    Lee, Chi-Yuan; Lin, Ching-Hsing

    2006-01-01

    Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0-50 g l(-1) in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51-0.74 to 0.20-0.22 mg mg(-1) and the maximum specific rate of substrate utilization, q, declined from 0.25-0.42 to 0.07-0.11 h(-1), as the salinity increased from 0 to 50 NaCl g l(-1). The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K ( T(S)), were 22.7-29.7 g l(-1) for substrate degradation and K ( T(mu)), 13.0-19.0 g l(-1), for biomass formation. The calculated ratios for the bacterial maintenance rate, m (S), to q, further indicated that the percentage energy spent on maintenance increased from 19-24 to 86-91% as salinity level increased from 0 to 50 g l(-1). These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.

  14. Quantifying Qualitative Learning.

    ERIC Educational Resources Information Center

    Bogus, Barbara

    1995-01-01

    A teacher at an alternative school for at-risk students discusses the development of student assessment that increases students' self-esteem, convinces students that learning is fun, and prepares students to return to traditional school settings. She found that allowing students to participate in the assessment process successfully quantified the…

  15. Calorimetric analysis of fungal degraded wood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenhorn, P.R.; Baldwin, R.C.; Merrill, W. Jr.

    1980-01-01

    Endothermic transition and gross heat of combustion of aspenwood subjected to degradation by Lenzites trabea and Polyporus versicolor were determined by using differential scanning calorimetry (DSC) and an adiabatic O bomb. Endothermic peak areas of undegraded and fungi-degraded wood differed from each other at all levels of weight loss. The regression analysis of the DSC data vs. weight loss revealed a significant relations, although not highly correlated, for P. versicolor-degraded specimens and a nonsignificant relation for L. trabea-degraded specimens; weight loss and gross heat of combustion values of degraded specimens were significantly correlated.

  16. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low

  17. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    PubMed

    Lee, Sang-Yeop; Kim, Gun-Hwa; Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  18. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    PubMed Central

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  19. Assessing degradation of abandoned farmlands for conservation of the Monte Desert biome in Argentina.

    PubMed

    Yannelli, Florencia A; Tabeni, Solana; Mastrantonio, Leandro E; Vezzani, Nazareth

    2014-01-01

    Land abandonment is a major issue worldwide. In Argentina, the Monte Desert is the most arid rangeland, where the traditional conservation practices are based on successional management of areas excluded to disturbances or abandoned. Some areas subjected to this kind of management may be too degraded, and thus require active restoration. Therefore, the aim of this study was to assess whether passive succession-based management is a suitable approach by evaluating the status of land degradation in a protected area after 17-41 years of farming abandonment. Soil traits and plant growth forms were quantified and compared between sites according to time since abandonment and former land use (cultivation and grazing). Two variables were calculated using the CORINE-CEC method, i.e., potential (PSER) and actual (ASER) soil erosion risk. PSER indicates the erosion risk when no vegetation is present, while ASER includes the protective role of vegetation cover. Results showed that land use history had no significant effect on plant growth forms or soil traits (p > 0.05). After more than 25 years since abandonment of farming activities, soil conditions and vegetation cover had improved, thus having a lower ASER. Nevertheless, the present soil physical crusts may have delayed the full development of vegetation, enhancing erosion processes. Overall, this study indicates that succession-based management may not be the best practice in terms of conservation. Therefore, any effort for conservation in the Monte Desert should contemplate the current status of land degradation and potential vegetation recovery.

  20. Abiotic degradation of plastic films

    NASA Astrophysics Data System (ADS)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  1. Quantifiers are incrementally interpreted in context, more than less

    PubMed Central

    Urbach, Thomas P.; DeLong, Katherine A.; Kutas, Marta

    2015-01-01

    Language interpretation is often assumed to be incremental. However, our studies of quantifier expressions in isolated sentences found N400 event-related brain potential (ERP) evidence for partial but not full immediate quantifier interpretation (Urbach & Kutas, 2010). Here we tested similar quantifier expressions in pragmatically supporting discourse contexts (Alex was an unusual toddler. Most/Few kids prefer sweets/vegetables…) while participants made plausibility judgments (Experiment 1) or read for comprehension (Experiment 2). Control Experiments 3A (plausibility) and 3B (comprehension) removed the discourse contexts. Quantifiers always modulated typical and/or atypical word N400 amplitudes. However, only the real-time N400 effects only in Experiment 2 mirrored offline quantifier and typicality crossover interaction effects for plausibility ratings and cloze probabilities. We conclude that quantifier expressions can be interpreted fully and immediately, though pragmatic and task variables appear to impact the speed and/or depth of quantifier interpretation. PMID:26005285

  2. UV-vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants.

    PubMed

    Pires-Oliveira, Rafael; Joekes, Inés

    2014-11-01

    It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Degradation of linear alkylabenzene sulfonate (LAS) and its compounds in Donghu Lake (Hubei, P.R.C.) determined by high performance liquid chromatography (HPLC)

    NASA Astrophysics Data System (ADS)

    Ayfer, Yediler; Xu, Ying; Zhang, Yongyuan; Chen, Junjian

    1990-06-01

    Commercial linear alkylbenzene sulfonate (LAS), mixture of alkylchain lengths and phenyl position isomers (C10-C13), is widely used as a major constituent of household and industrial detergents in the People's Republic of China. Degradation process and behaviour of LAS compounds during an 82-hour lake water die-away study, with an added LAS concentration of 1.5mg·L-1, was quantified and accomplished by HPLO-UV after extractionon the SepPek C18 reversed-phase cartridges. The degradation rate became progressively faster with increasing chain length. The technique described in this study is fast, sensitive and specific, and can be used to determine low levels of LAS and for establishing water quality criteria and standards relating to LAS and its compounds.

  4. Synergistic Degradation of Linuron by a Bacterial Consortium and Isolation of a Single Linuron-Degrading Variovorax Strain

    PubMed Central

    Dejonghe, Winnie; Berteloot, Ellen; Goris, Johan; Boon, Nico; Crul, Katrien; Maertens, Siska; Höfte, Monica; De Vos, Paul; Verstraete, Willy; Top, Eva M.

    2003-01-01

    The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture. PMID:12620840

  5. Self-degradable Cementitious Sealing Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Butcher, T., Lance Brothers, Bour, D.

    2010-10-01

    A self-degradable alkali-activated cementitious material consisting of a sodium silicate activator, slag, Class C fly ash, and sodium carboxymethyl cellulose (CMC) additive was formulated as one dry mix component, and we evaluated its potential in laboratory for use as a temporary sealing material for Enhanced Geothermal System (EGS) wells. The self-degradation of alkali-activated cementitious material (AACM) occurred, when AACM heated at temperatures of {ge}200 C came in contact with water. We interpreted the mechanism of this water-initiated self-degradation as resulting from the in-situ exothermic reactions between the reactants yielded from the dissolution of the non-reacted or partially reacted sodium silicatemore » activator and the thermal degradation of the CMC. The magnitude of self-degradation depended on the CMC content; its effective content in promoting degradation was {ge}0.7%. In contrast, no self-degradation was observed from CMC-modified Class G well cement. For 200 C-autoclaved AACMs without CMC, followed by heating at temperatures up to 300 C, they had a compressive strength ranging from 5982 to 4945 psi, which is {approx}3.5-fold higher than that of the commercial Class G well cement; the initial- and final-setting times of this AACM slurry at 85 C were {approx}60 and {approx}90 min. Two well-formed crystalline hydration phases, 1.1 nm tobermorite and calcium silicate hydrate (I), were responsible for developing this excellent high compressive strength. Although CMC is an attractive, as a degradation-promoting additive, its addition to both the AACM and the Class G well cement altered some properties of original cementitious materials; among those were an extending their setting times, an increasing their porosity, and lowering their compressive strength. Nevertheless, a 0.7% CMC-modified AACM as self-degradable cementitious material displayed the following properties before its breakdown by water; {approx}120 min initial- and {approx}180 min

  6. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    PubMed

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  7. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias1

    PubMed Central

    Liu, Juanxu; Wei, Qian; Wang, Rongmin; Yang, Weiyuan; Ma, Yueyue; Chen, Guoju

    2017-01-01

    Petal senescence is a complex programmed process. It has been demonstrated previously that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on posttranslational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia (Petunia hybrida) transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome and ubiquitylome and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 h after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2 fold change > 1 and false discovery rate < 0.001), 284 down-regulated and 233 up-regulated proteins, and 320 up-regulated and 127 down-regulated ubiquitination sites using a 1.5-fold threshold (P < 0.05), indicating that global ubiquitination levels increase during ethylene-mediated corolla senescence in petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunia. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in endoplasmic reticulum-associated degradation. PMID:27810942

  8. Robust PV Degradation Methodology and Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk; Deline, Christopher A; Kurtz, Sarah

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less

  9. Robust PV Degradation Methodology and Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Deline, Chris; Kurtz, Sarah R.

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of photovoltaics (PV) systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this paper, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less

  10. Robust PV Degradation Methodology and Application

    DOE PAGES

    Jordan, Dirk C.; Deline, Chris; Kurtz, Sarah R.; ...

    2017-12-21

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of photovoltaics (PV) systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this paper, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less

  11. Recovering of images degraded by atmosphere

    NASA Astrophysics Data System (ADS)

    Lin, Guang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2017-08-01

    Remote sensing images are seriously degraded by multiple scattering and bad weather. Through the analysis of the radiative transfer procedure in atmosphere, an image atmospheric degradation model considering the influence of atmospheric absorption multiple scattering and non-uniform distribution is proposed in this paper. Based on the proposed model, a novel recovering method is presented to eliminate atmospheric degradation. Mean-shift image segmentation and block-wise deconvolution are used to reduce time cost, retaining a good result. The recovering results indicate that the proposed method can significantly remove atmospheric degradation and effectively improve contrast compared with other removal methods. The results also illustrate that our method is suitable for various degraded remote sensing, including images with large field of view (FOV), images taken in side-glance situations, image degraded by atmospheric non-uniform distribution and images with various forms of clouds.

  12. Estaurine Freshwater Entrainment By Oyster Reefs: Quantifying A Keystone Ecosystem Service

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Olabarrieta, M.; Frederick, P.; Valle-Levinson, A.; Seavey, J.

    2014-12-01

    Oyster reefs have been shown to provide myriad critical ecosystem services, however their role in directing flow and currents during non-storm conditions has been largely neglected. In many regions, oyster reefs form as linear structures perpendicular to the coast and across the path of streams and rivers, potentially entraining large volumes of freshwater flow and altering nearshore mixing. We hypothesize that these reefs have the potential to influence salinity over large areas, providing a "keystone" ecosystem service by supporting multiple estuarine functions. Here we present results from a field and modeling study to quantify the effects of reef extent and elevation on estuarine salinities under varying river discharge. We found salinity differences ranging from 2 to 16 g/kg between inshore and offshore sides of degraded oyster reefs in the Suwannee Sound (FL, USA), supporting the role of reefs as local-scale freshwater dams. Moreover, differences between inshore and offshore salinities were correlated with flow, with the most marked differences during periods of low flow. Hydrodynamic modeling using the 3-D Regional Ocean Modeling System (ROMS) suggests that the currently degraded reef system entrained greater volumes of freshwater in the past, buffering the landward advance of high salinities, particularly during low flow events related to droughts. Using ROMS, we also modeled a variety of hypothetical oyster bar morphology scenarios (historical, current, and "restored") to understand how changes in reef structure (elevation, extent, and completeness) impact estuarine mixing and near-shore salinities. Taken together, these results serve to: 1) elucidate a poorly documented ecosystem service of oyster reefs; 2) provide an estimate of the magnitude and sptial extent of the freshwater entrainment effect; and 3) offer quantitative information to managers and restoration specialists interested in restoring oyster habitat.

  13. Drug Release Kinetics and Transport Mechanisms of Non-degradable and Degradable Polymeric Delivery Systems

    PubMed Central

    Fu, Yao; Kao, Weiyuan John

    2010-01-01

    Importance of the field The advancement in material design and engineering has led to the rapid development of novel materials with increasing complexity and functions. Both non-degradable and degradable polymers have found wide applications in the controlled delivery field. Studies on drug release kinetics provide important information into the function of material systems. To elucidate the detailed transport mechanism and the structure-function relationship of a material system, it is critical to bridge the gap between the macroscopic data and the transport behavior at the molecular level. Areas covered in this review The structure and function information of selected non-degradable and degradable polymers have been collected and summarized from literatures published after 1990s. The release kinetics of selected drug compounds from various material systems will be discussed in case studies. Recent progresses in the mathematical models based on different transport mechanisms will be highlighted. What the reader will gain This article aims to provide an overview of structure-function relationships of selected non-degradable and degradable polymers as drug delivery matrices. Take home message Understanding the structure-function relationship of the material system is key to the successful design of a delivery system for a particular application. Moreover, developing complex polymeric matrices requires more robust mathematical models to elucidate the solute transport mechanisms. PMID:20331353

  14. On-orbit degradation of recent space-based solar instruments and understanding of the degradation processes

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Dominique, M.; BenMoussa, A.; Dammasch, I. E.; Bolsée, D.; Pereira, N.; Damé, L.; Bekki, S.; Hauchecorne, A.

    2017-05-01

    The space environment is considered hazardous to spacecraft, resulting in materials degradation. Understanding the degradation of space-based instruments is crucial in order to achieve the scientific objectives, which are derived from these instruments. This paper discusses the on-orbit performance degradation of recent spacebased solar instruments. We will focus on the instruments of three space-based missions such as the Project for On-Board Autonomy 2 (PROBA2) spacecraft, the Solar Monitoring Observatory (SOLAR) payload onboard the Columbus science Laboratory of the International Space Station (ISS) and the PICARD spacecraft. Finally, this paper intends to understand the degradation processes of these space-based solar instruments.

  15. A pantropical analysis of the impacts of forest degradation and conversion on local temperature.

    PubMed

    Senior, Rebecca A; Hill, Jane K; González Del Pliego, Pamela; Goode, Laurel K; Edwards, David P

    2017-10-01

    Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.

  16. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  17. Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars

    NASA Astrophysics Data System (ADS)

    Dartnell, Lewis R.; Patel, Manish R.

    2014-04-01

    Recent and proposed robotic missions to Mars are equipped with implements to expose or excavate fresh material from beneath the immediate surface. Once brought into the open, any organic molecules or potential biosignatures of present or past life will be exposed to the unfiltered solar ultraviolet (UV) radiation and face photolytic degradation over short time courses. The key question, then, is what is the window of opportunity for detection of recently exposed samples during robotic operations? Detection of autofluorescence has been proposed as a simple method for surveying or triaging samples for organic molecules. Using a Mars simulation chamber we conduct UV exposures on thin frozen layers of two model microorganisms, the radiation-resistant polyextremophile Deinococcus radiodurans and the cyanobacterium Synechocystis sp. PCC 6803. Excitation-emission matrices (EEMs) are generated of the full fluorescence response to quantify the change in signal of different cellular fluorophores over Martian equivalent time. Fluorescence of Deinococcus cells, protected by a high concentration of carotenoid pigments, was found to be relatively stable over 32 h of Martian UV irradiation, with around 90% of the initial signal remaining. By comparison, fluorescence from protein-bound tryptophan in Synechocystis is much more sensitive to UV photodegradation, declining to 50% after 64 h exposure. The signal most readily degraded by UV irradiation is fluorescence of the photosynthetic pigments - diminished to only 35% after 64 h. This sensitivity may be expected as the biological function of chlorophyll and phycocyanin is to optimize the harvesting of light energy and so they are readily photobleached. A significant increase in a ~450 nm emission feature is interpreted as accumulation of fluorescent cellular degradation products from photolysis. Accounting for diurnal variation in Martian sunlight, this study calculates that frozen cellular biosignatures would remain detectable by

  18. Direct Ubiquitin Independent Recognition and Degradation of a Folded Protein by the Eukaryotic Proteasomes-Origin of Intrinsic Degradation Signals

    PubMed Central

    Singh Gautam, Amit Kumar; Balakrishnan, Satish; Venkatraman, Prasanna

    2012-01-01

    Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases

  19. Assessment of DNA degradation induced by thermal and UV radiation processing: implications for quantification of genetically modified organisms.

    PubMed

    Ballari, Rajashekhar V; Martin, Asha

    2013-12-01

    DNA quality is an important parameter for the detection and quantification of genetically modified organisms (GMO's) using the polymerase chain reaction (PCR). Food processing leads to degradation of DNA, which may impair GMO detection and quantification. This study evaluated the effect of various processing treatments such as heating, baking, microwaving, autoclaving and ultraviolet (UV) irradiation on the relative transgenic content of MON 810 maize using pRSETMON-02, a dual target plasmid as a model system. Amongst all the processing treatments examined, autoclaving and UV irradiation resulted in the least recovery of the transgenic (CaMV 35S promoter) and taxon-specific (zein) target DNA sequences. Although a profound impact on DNA degradation was seen during the processing, DNA could still be reliably quantified by Real-time PCR. The measured mean DNA copy number ratios of the processed samples were in agreement with the expected values. Our study confirms the premise that the final analytical value assigned to a particular sample is independent of the degree of DNA degradation since the transgenic and the taxon-specific target sequences possessing approximately similar lengths degrade in parallel. The results of our study demonstrate that food processing does not alter the relative quantification of the transgenic content provided the quantitative assays target shorter amplicons and the difference in the amplicon size between the transgenic and taxon-specific genes is minimal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Heat-induced Protein Structure and Subfractions in Relation to Protein Degradation Kinetics and Intestinal Availability in Dairy Cattle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doiron, K.; Yu, P; McKinnon, J

    2009-01-01

    The objectives of this study were to reveal protein structures of feed tissues affected by heat processing at a cellular level, using the synchrotron-based Fourier transform infrared microspectroscopy as a novel approach, and quantify protein structure in relation to protein digestive kinetics and nutritive value in the rumen and intestine in dairy cattle. The parameters assessed included (1) protein structure a-helix to e-sheet ratio; (2) protein subfractions profiles; (3) protein degradation kinetics and effective degradability; (4) predicted nutrient supply using the intestinally absorbed protein supply (DVE)/degraded protein balance (OEB) system for dairy cattle. In this study, Vimy flaxseed protein wasmore » used as a model feed protein and was autoclave-heated at 120C for 20, 40, and 60 min in treatments T1, T2, and T3, respectively. The results showed that using the synchrotron-based Fourier transform infrared microspectroscopy revealed and identified the heat-induced protein structure changes. Heating at 120C for 40 and 60 min increased the protein structure a-helix to e-sheet ratio. There were linear effects of heating time on the ratio. The heating also changed chemical profiles, which showed soluble CP decreased upon heating with concomitant increases in nonprotein nitrogen, neutral, and acid detergent insoluble nitrogen. The protein subfractions with the greatest changes were PB1, which showed a dramatic reduction, and PB2, which showed a dramatic increase, demonstrating a decrease in overall protein degradability. In situ results showed a reduction in rumen-degradable protein and in rumen-degradable dry matter without differences between the treatments. Intestinal digestibility, determined using a 3-step in vitro procedure, showed no changes to rumen undegradable protein. Modeling results showed that heating increased total intestinally absorbable protein (feed DVE value) and decreased degraded protein balance (feed OEB value), but there were no

  1. [Microbial degradation of 3-phenoxybenzoic acid--A review].

    PubMed

    Deng, Weiqin; Liu, Shuliang; Yao, Kai

    2015-09-04

    3-phenoxybenzoic acid (3-PBA) with estrogen toxicity is one of the intermediate products of most pyrethroid pesticides. 3-PBA is difficult to degrade in the natural environment, and threatens food safety and human health. Microbial degradation of pyrethroids and their intermediate product (3-PBA) has become a hot topic in recent years. Here, we reviewed microbial species, degrading enzymes and degradation genes, degradation pathways of 3-PBA degrading and the application of 3-PBA degradation strains. This article provides references for the study of 3-PBA degradation by microorganisms.

  2. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent.

    PubMed

    Hong, Chang-Young; Park, Se-Yeong; Kim, Seon-Hong; Lee, Su-Yeon; Choi, Won-Sil; Choi, In-Gyu

    2016-10-01

    This study was carried out to better understand the characteristic modification mechanisms of monolignols by enzyme system of Abortiporus biennis and to induce the degradation of monolignols. Degradation and polymerization of monolignols were simultaneously induced by A. biennis. Whole cells of A. biennis degraded coniferyl alcohol to vanillin and coniferyl aldehyde, and degraded sinapyl alcohol to 2,6-dimethoxybenzene- 1,4-diol, with the production of dimers. The molecular weight of monolignols treated with A. biennis increased drastically. The activities of lignin degrading enzymes were monitored for 24 h to determine whether there was any correlation between monolignol biomodification and ligninolytic enzymes. We concluded that complex enzyme systems were involved in the degradation and polymerization of monolignols. To degrade monolignols, ascorbic acid was added to the culture medium as a reducing agent. In the presence of ascorbic acid, the molecular weight was less increased in the case of coniferyl alcohol, while that of sinapyl alcohol was similar to that of the control. Furthermore, the addition of ascorbic acid led to the production of various degraded compounds: syringaldehyde and acid compounds. Accordingly, these results demonstrated that ascorbic acid prevented the rapid polymerization of monolignols, thus stabilizing radicals generated by enzymes of A. biennis. Thereafter, A. biennis catalyzed the oxidation of stable monolignols. As a result, ascorbic acid facilitated predominantly monolignols degradation by A. biennis through the stabilization of radicals. These findings showed outstanding ability of A. biennis to modify the lignin compounds rapidly and usefully.

  3. Watershed health assessment to monitor land degradation

    NASA Astrophysics Data System (ADS)

    Hamidreza Sadeghi, Seyed; Hazbavi, Zeinab; Cerdà, Artemi

    2017-04-01

    Land degradation is a worldwide issue that affects the Planet and the fate of the humankind (Cerdà et al., 2009; Choudhury et al., 2016; Fernández et al., 2016; Ferreira et al., 2016). Several processes affect the sustainability of the ecosystems, from soil erosion to soil compation, deforestation, Climate Change or water, soil and air pollution (Sadeghi et al., 2015a; 2015b; Gómez-Acanta et al., 2016; Mengistu et al., 2016; Mukai, 2016). Several ecosystem theories have been presented in the scientific literatures to monitor land degradation (Cerdà et al., 2016; Davudirad et al., 2016; Fava et al., 2016; Mahyou et al., 2016; Soulard et al., 2016). Besides the scientific tasks of improving the indication, the conviction of the potential users to change their concepts toward a higher consideration of ecosystem attributes, and toward a fruitful application of the health or integrity concepts, will be a main task of future activities. Reliability, resilience and vulnerability (R-R-V) indicators are often used in combination for quantifying risk and decision making in many systems. However, the use of hydrological series data for R-R-V computations has been rather limited. Toward this, the overall objective of this paper is to conduct a risk assessment analysis on stream flow discharge from Shazand Watershed located in the south western of Markazi Province in Iran for the period of 1972-2014 using R-R-V indicators. Based on the R-R-V analysis conducted in this study, the stream flow discharge of the study region followed a cyclic pattern with a decreasing trend. The results further showed a decreasing trend in reliability and resilience and an increasing trend in vulnerability in the Shazand Watershed. It may be concluded that the Shazand Watershed was in overall in unhealthy condition from view of stream flow discharge. Acknowledgements This research was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant no. 603498 (RECARE Project

  4. Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation

    NASA Astrophysics Data System (ADS)

    Gazzarri, J. I.; Kesler, O.

    As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes.

  5. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection.

    PubMed

    Troupin, Andrea; Londono-Renteria, Berlin; Conway, Michael J; Cloherty, Erin; Jameson, Samuel; Higgs, Stephen; Vanlandingham, Dana L; Fikrig, Erol; Colpitts, Tonya M

    2016-09-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Degradation of connexins and gap junctions

    PubMed Central

    Falk, Matthias M.; Kells, Rachael M.; Berthoud, Viviana M.

    2014-01-01

    Connexin proteins are short-lived within the cell, whether present in the secretory pathway or in gap junction plaques. Their levels can be modulated by their rate of degradation. Connexins, at different stages of assembly, are degraded through the proteasomal, endo-/lysosomal, and phago-/lysosomal pathways. In this review, we summarize the current knowledge about connexin and gap junction degradation including the signals and protein-protein interactions that participate in their targeting for degradation. PMID:24486527

  7. Working session 1: Tubing degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharshafdjian, G.; Turluer, G.

    1997-02-01

    A general introductory overview of the purpose of the group and the general subject area of SG tubing degradation was given by the facilitator. The purpose of the session was described as to {open_quotes}develop conclusions and proposals on regulatory and technical needs required to deal with the issues of SG tubing degradation.{close_quotes} Types, locations and characteristics of tubing degradation in steam generators were briefly reviewed. The well-known synergistic effects of materials, environment, and stress and strain/strain rate, subsequently referred to by the acronym {open_quotes}MESS{close_quotes} by some of the group members, were noted. The element of time (i.e., evolution of thesemore » variables with time) was emphasized. It was also suggested that the group might want to consider the related topics of inspection capabilities, operational variables, degradation remedies, and validity of test data, and some background information in these areas was provided. The presentation given by Peter Millet during the Plenary Session was reviewed; Specifically, the chemical aspects and the degradation from the secondary side of the steam generator were noted. The main issues discussed during the October 1995 EPRI meeting on secondary side corrosion were reported, and a listing of the potential SG tube degradations was provided and discussed.« less

  8. Linking degradation status with ecosystem vulnerability to environmental change

    USGS Publications Warehouse

    Angeler, David G.; Baho, Didier L.; Allen, Craig R.; Johnson, Richard K.

    2015-01-01

    Environmental change can cause regime shifts in ecosystems, potentially threatening ecosystem services. It is unclear if the degradation status of ecosystems correlates with their vulnerability to environmental change, and thus the risk of future regime shifts. We assessed resilience in acidified (degraded) and circumneutral (undegraded) lakes with long-term data (1988–2012), using time series modeling. We identified temporal frequencies in invertebrate assemblages, which identifies groups of species whose population dynamics vary at particular temporal scales. We also assessed species with stochastic dynamics, those whose population dynamics vary irregularly and unpredictably over time. We determined the distribution of functional feeding groups of invertebrates within and across the temporal scales identified, and in those species with stochastic dynamics, and assessed attributes hypothesized to contribute to resilience. Three patterns of temporal dynamics, consistent across study lakes, were identified in the invertebrates. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second and third patterns appeared unrelated to the environmental changes we monitored. Acidified and the circumneutral lakes shared similar levels and patterns of functional richness, evenness, diversity, and redundancy for species within and across the observed temporal scales and for stochastic species groups. These similar resilience characteristics suggest that both lake types did not differ in vulnerability to the environmental changes observed here. Although both lake types appeared equally vulnerable in this study, our approach demonstrates how assessing systemic vulnerability by quantifying ecological resilience can help address uncertainty in predicting ecosystem responses to environmental change across ecosystems.

  9. Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Jianbo

    2017-01-01

    This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.

  10. Lipid oxidation and vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage.

    PubMed

    Mahmoodani, Fatemeh; Perera, Conrad O; Abernethy, Grant; Fedrizzi, Bruno; Chen, Hong

    2018-09-30

    Vitamin D3 levels are known to sometimes decline in fortified products, which could be due to its degradation, although the exact mechanism is unknown. In this study, the influence of processing and storage conditions on lipid oxidation and vitamin D3 degradation were studied. Simulated whole milk powders with and without heat treatment were stored for 12 months at two different storage temperatures (20 °C and 40 °C). Stored samples without heat treatment showed higher lipid oxidation products analyzed by PV and TBARS values compared to those with heat treatment. Higher storage temperature also resulted in higher levels of lipid oxidation products. The concentration of vitamin D3 was also analyzed using UHPLC-MS/MS after PTAD derivatization in stored samples. An inverse relationship was observed between lipid oxidation products and vitamin D3 content. Finally, previtamin D3 and vitamin D3 oxidation products were quantified in stored samples using MRM analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Microbial Degradation of Octamethylcyclotetrasiloxane

    PubMed Central

    Grümping, R.; Michalke, K.; Hirner, A. V.; Hensel, R.

    1999-01-01

    The microbial degradation of low-molecular-weight polydimethylsiloxanes was investigated through laboratory experiments. Octamethylcyclotetrasiloxane was found to be biodegraded under anaerobic conditions in composted sewage sludge, as monitored by the occurrence of the main polydimethylsiloxane degradation product, dimethylsilanediol, compared to that found in experiments with sterilized control samples. PMID:10224038

  12. Targeted protein degradation by PROTACs.

    PubMed

    Neklesa, Taavi K; Winkler, James D; Crews, Craig M

    2017-06-01

    Targeted protein degradation using the PROTAC technology is emerging as a novel therapeutic method to address diseases driven by the aberrant expression of a disease-causing protein. PROTAC molecules are bifunctional small molecules that simultaneously bind a target protein and an E3-ubiquitin ligase, thus causing ubiquitination and degradation of the target protein by the proteasome. Like small molecules, PROTAC molecules possess good tissue distribution and the ability to target intracellular proteins. Herein, we highlight the advantages of protein degradation using PROTACs, and provide specific examples where degradation offers therapeutic benefit over classical enzyme inhibition. Foremost, PROTACs can degrade proteins regardless of their function. This includes the currently "undruggable" proteome, which comprises approximately 85% of all human proteins. Other beneficial aspects of protein degradation include the ability to target overexpressed and mutated proteins, as well as the potential to demonstrate prolonged pharmacodynamics effect beyond drug exposure. Lastly, due to their catalytic nature and the pre-requisite ubiquitination step, an exquisitely potent molecules with a high degree of degradation selectivity can be designed. Impressive preclinical in vitro and in vivo PROTAC data have been published, and these data have propelled the development of clinically viable PROTACs. With the molecular weight falling in the 700-1000Da range, the delivery and bioavailability of PROTACs remain the largest hurdles on the way to the clinic. Solving these issues and demonstrating proof of concept clinical data will be the focus of many labs over the next few years. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Comparing aye-aye (Daubentonia madagascariensis) presence and distribution between degraded and non-degraded forest within Ranomafana National Park, Madagascar.

    PubMed

    Farris, Zach J; Morelli, Toni Lyn; Sefczek, Timothy; Wright, Patricia C

    2011-01-01

    The aye-aye is considered the most widely distributed lemur in Madagascar; however, the effect of forest quality on aye-aye abundance is unknown. We compared aye-aye presence across degraded and non-degraded forest at Ranomafana National Park, Madagascar. We used secondary signs (feeding sites, high activity sites) as indirect cues of aye-aye presence and Canarium trees as an indicator of resource availability. All 3 measured variables indicated higher aye-aye abundance within non-degraded forest; however, the differences across forest type were not significant. Both degraded and non-degraded forests showed a positive correlation between feeding sites and high activity sites. We found that Canarium, an important aye-aye food source, was rare and had limited dispersal, particularly across degraded forest. This preliminary study provides baseline data for aye-aye activity and resource utilization across degraded and non-degraded forests. Copyright © 2011 S. Karger AG, Basel.

  14. Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in Svalbard

    NASA Astrophysics Data System (ADS)

    Tonkin, T. N.; Midgley, N. G.; Cook, S. J.; Graham, D. J.

    2016-04-01

    Ice-cored lateral-frontal moraines are common at the margins of receding high-Arctic valley glaciers, but the preservation potential of these features within the landform record is unclear. Recent climatic amelioration provides an opportunity to study the morphological evolution of these landforms as they de-ice. This is important because high-Arctic glacial landsystems have been used as analogues for formerly glaciated areas in the mid-latitudes. This study uses SfM (Structure-from-Motion) photogrammetry and a combination of archive aerial and UAV (unmanned aerial vehicle) derived imagery to investigate the degradation of an ice-cored lateral-frontal moraine at Austre Lovénbreen, Svalbard. Across the study area as a whole, over an 11-year period, the average depth of surface lowering was - 1.75 ± 0.89 m. The frontal sections of the moraine showed low or undetectable rates of change. Spatially variable rates of surface lowering are associated with differences in the quantity of buried ice within the structure of the moraine. Morphological change was dominated by surface lowering, with limited field evidence of degradation via back-wastage. This permits the moraine a greater degree of stability than previously observed at other sites in Svalbard. It is unclear whether the end point will be a fully stabilised ice-cored moraine, in equilibrium with its environment, or an ice-free lateral-frontal moraine complex. Controls on geomorphological change (e.g. topography and climate) and the preservation potential of the lateral-frontal moraine are discussed. The methods used by this research also demonstrate the potential value of SfM photogrammetry and unmanned aerial vehicles for monitoring environmental change and are likely to have wider applications in other geoscientific sub-disciplines.

  15. Impact of heat and water management on proton exchange membrane fuel cells degradation in automotive application

    NASA Astrophysics Data System (ADS)

    Nandjou, F.; Poirot-Crouvezier, J.-P.; Chandesris, M.; Blachot, J.-F.; Bonnaud, C.; Bultel, Y.

    2016-09-01

    In Proton Exchange Membrane Fuel Cells, local temperature is a driving force for many degradation mechanisms such as hygrothermal deformation and creep of the membrane, platinum dissolution and bipolar plates corrosion. In order to investigate and quantify those effects in automotive application, durability testing is conducted in this work. During the ageing tests, the local performance and temperature are investigated using in situ measurements of a printed circuit board. At the end of life, post-mortem analyses of the aged components are conducted. The experimental results are compared with the simulated temperature and humidity in the cell obtained from a pseudo-3D multiphysics model in order to correlate the observed degradations to the local conditions inside the stack. The primary cause of failure in automotive cycling is pinhole/crack formation in the membrane, induced by high variations of its water content over time. It is also observed that water condensation largely increases the probability of the bipolar plates corrosion while evaporation phenomena induce local deposits in the cell.

  16. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products

    PubMed Central

    Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François

    2015-01-01

    We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274

  17. Microbial degradation of chloroethenes: a review.

    PubMed

    Dolinová, Iva; Štrojsová, Martina; Černík, Miroslav; Němeček, Jan; Macháčková, Jiřina; Ševců, Alena

    2017-05-01

    Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.

  18. Microbial Gutta-Percha Degradation Shares Common Steps with Rubber Degradation by Nocardia nova SH22a

    PubMed Central

    Luo, Quan; Hiessl, Sebastian; Poehlein, Anja

    2013-01-01

    Nocardia nova SH22a, a bacterium capable of degrading gutta-percha (GP) and natural rubber (NR), was used to investigate the GP degradation mechanism and the relations between the GP and NR degradation pathways. For this strain, a protocol of electroporation was systematically optimized, and an efficiency of up to 4.3 × 107 CFU per μg of plasmid DNA was achieved. By applying this optimized protocol to N. nova SH22a, a Tn5096-based transposon mutagenesis library of this bacterium was constructed. Among about 12,000 apramycin-resistant transformants, we identified 76 stable mutants defective in GP or NR utilization. Whereas 10 mutants were specifically defective in GP utilization, the growth of the other 66 mutants was affected on both GP and NR. This indicated that the two degradation pathways are quite similar and share many common steps. The larger number of GP-degrading defective mutants could be explained in one of two ways: either (i) the GP pathway is more complex and harbors more specific steps or (ii) the steps for both pathways are almost identical, but in the case of GP degradation there are fewer enzymes involved in each step. The analysis of transposition loci and genetic studies on interesting genes confirmed the crucial role of an α-methylacyl-coenzyme A racemase in the degradation of both GP and NR. We also demonstrated the probable involvement of enzymes participating in oxidoreduction reactions, β-oxidation, and the synthesis of complex cell envelope lipids in the degradation of GP. PMID:23220954

  19. Antimisting kerosene: Low temperature degradation and blending

    NASA Technical Reports Server (NTRS)

    Yavrouian, A.; Parikh, P.; Sarohia, V.

    1988-01-01

    The inline filtration characteristics of freshly blended and degraded antimisting fuels (AMK) at low temperature are examined. A needle valve degrader was modified to include partial recirculation of degraded fuel and heat addition in the bypass loop. A pressure drop across the needle valve of up to 4,000 psi was used. The pressure drop across a 325 mesh filter screen placed inline with the degrader and directly downstream of the needle valve was measured as a function of time for different values of pressure drop across the needle valve. A volume flux of 1 gpm/sq in was employed based on the frontal area of the screen. It was found that, at ambient temperatures, freshly blended AMK fuel could be degraded using a single pass degradation at 4,000 psi pressure drop across the needle valve to give acceptable filterability performance. At fuel temperatures below -20 C, degradation becomes increasingly difficult and a single pass technique results in unacceptable filtration performance. Recirculation of a fraction of the degraded fuel and heat addition in the bypass loop improved low temperature degradation performance. The problem is addressed of blending the AMK additive with Jet A at various base fuel temperatures.

  20. Colourful parrot feathers resist bacterial degradation

    PubMed Central

    Burtt, Edward H.; Schroeder, Max R.; Smith, Lauren A.; Sroka, Jenna E.; McGraw, Kevin J.

    2011-01-01

    The brilliant red, orange and yellow colours of parrot feathers are the product of psittacofulvins, which are synthetic pigments known only from parrots. Recent evidence suggests that some pigments in bird feathers function not just as colour generators, but also preserve plumage integrity by increasing the resistance of feather keratin to bacterial degradation. We exposed a variety of colourful parrot feathers to feather-degrading Bacillus licheniformis and found that feathers with red psittacofulvins degraded at about the same rate as those with melanin and more slowly than white feathers, which lack pigments. Blue feathers, in which colour is based on the microstructural arrangement of keratin, air and melanin granules, and green feathers, which combine structural blue with yellow psittacofulvins, degraded at a rate similar to that of red and black feathers. These differences in resistance to bacterial degradation of differently coloured feathers suggest that colour patterns within the Psittaciformes may have evolved to resist bacterial degradation, in addition to their role in communication and camouflage. PMID:20926430

  1. Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Hachem, R.; Roziere, E.; Grondin, F.

    2012-10-15

    This work aims to contribute to the design of durable concrete structures exposed to external sulphate attacks (ESA). Following a preliminary study aimed at designing a representative test, the present paper suggests a study on the effect of the water-to-cement (w/c) ratio and the cement composition in order to understand the degradation mechanisms. Length and mass measurements were registered continuously, leached calcium and hydroxide ions were also quantified. In parallel, scanning electron microscopy observations as well as X-ray microtomography were realised at different times to identify the formed products and the crack morphology. Test results provide information on the basicmore » aspects of the degradation mechanism, such as the main role of leaching and diffusion in the sulphate attack process. The mortar composition with a low w/c ratio leads to a better resistance to sulphate attack because the microstructure is less permeable. Reducing the C{sub 3}A content results in a macro-cracking decrease but it does not prevent expansion, which suggests the contribution of other expansive products, such as gypsum, in damage due to ESA. The observation of the cracks network in the microstructure helps to understand the micro-mechanisms of the degradation process.« less

  2. Placing a Disrupted Degradation Motif at the C Terminus of Proteasome Substrates Attenuates Degradation without Impairing Ubiquitylation*

    PubMed Central

    Alfassy, Omri S.; Cohen, Itamar; Reiss, Yuval; Tirosh, Boaz; Ravid, Tommer

    2013-01-01

    Protein elimination by the ubiquitin-proteasome system requires the presence of a cis-acting degradation signal. Efforts to discern degradation signals of misfolded proteasome substrates thus far revealed a general mechanism whereby the exposure of cryptic hydrophobic motifs provides a degradation determinant. We have previously characterized such a determinant, employing the yeast kinetochore protein Ndc10 as a model substrate. Ndc10 is essentially a stable protein that is rapidly degraded upon exposure of a hydrophobic motif located at the C-terminal region. The degradation motif comprises two distinct and essential elements: DegA, encompassing two amphipathic helices, and DegB, a hydrophobic sequence within the loosely structured C-terminal tail of Ndc10. Here we show that the hydrophobic nature of DegB is irrelevant for the ubiquitylation of substrates containing the Ndc10 degradation motif, but is essential for proteasomal degradation. Mutant DegB, in which the hydrophobic sequence was disrupted, acted as a dominant degradation inhibitory element when expressed at the C-terminal regions of ubiquitin-dependent and -independent substrates of the 26S proteasome. This mutant stabilized substrates in both yeast and mammalian cells, indicative of a modular recognition moiety. The dominant function of the mutant DegB provides a powerful experimental tool for evaluating the physiological implications of stabilization of specific proteasome substrates in intact cells and for studying the associated pathological effects. PMID:23519465

  3. Quantifying quantum coherence with quantum Fisher information.

    PubMed

    Feng, X N; Wei, L F

    2017-11-14

    Quantum coherence is one of the old but always important concepts in quantum mechanics, and now it has been regarded as a necessary resource for quantum information processing and quantum metrology. However, the question of how to quantify the quantum coherence has just been paid the attention recently (see, e.g., Baumgratz et al. PRL, 113. 140401 (2014)). In this paper we verify that the well-known quantum Fisher information (QFI) can be utilized to quantify the quantum coherence, as it satisfies the monotonicity under the typical incoherent operations and the convexity under the mixing of the quantum states. Differing from most of the pure axiomatic methods, quantifying quantum coherence by QFI could be experimentally testable, as the bound of the QFI is practically measurable. The validity of our proposal is specifically demonstrated with the typical phase-damping and depolarizing evolution processes of a generic single-qubit state, and also by comparing it with the other quantifying methods proposed previously.

  4. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, L.E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4-5), lack or loss of woody debris (35% scored 4-5), mistimed water level fluctuations (34% scored 4-5), and sedimentation (31% scored 4-5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  5. Analyzing complex networks evolution through Information Theory quantifiers

    NASA Astrophysics Data System (ADS)

    Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martín Gómez

    2011-01-01

    A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.

  6. Geodiversity and land degradation in Hungary

    NASA Astrophysics Data System (ADS)

    Őrsi, Anna

    2014-05-01

    Geodiversity represents a variety of natural values, but they are threatened by a series of anthropogenic activities and land degradation processes. Their effect depends on the intensity of the processes and the sensitivity of the area in question. As a consequence of land degradation processes not only biodiversity but also geodiversity can be damaged and deteriorated. The appearance of the natural landscape changes and natural processes may not have a decisive role in landscape development any more. Some of the damages are irreversible because fundamental changes happen in the landscape, or the processes having created the original forms are no longer in operation. Small scale land degradation processes may be reversible if nature is still capable of reproducing the original state. The most important land degradation processes are desertification and soil erosion. Mining, waste disposal, urbanisation and construction activities, agriculture, inaccurate forest and water management, tourism, unsuitable land use can also lead to severe land degradation problems. The objective of the paper is to show Hungarian examples to all land degradation processes that threaten geodiversity. The results will be shown on a series of maps showing land degradation processes endangering geodiversity in Hungary. A detailed analysis of smaller study sites will be provided to show the effects of certain land degradation processes on landform development and on the changes of geodiversity. This research is supported by the Hungarian Scientific Research Fund (OTKA), project Nr. 10875.

  7. Biodegradability of degradable plastic waste.

    PubMed

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  8. Degradations and Rearrangement Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  9. Quantification of MDL-induced signal degradation in MIMO-OFDM mode-division multiplexing systems.

    PubMed

    Tian, Yu; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Chen, Yuanxiang; He, Yongqi; Chen, Zhangyuan

    2016-08-22

    Mode-division multiplexing (MDM) transmission over few-mode optical fiber has emerged as a promising technology to enhance transmission capacity, in which multiple-input-multiple-output (MIMO) digital signal processing (DSP) after coherent detection is used to demultiplex the signals. Compared with conventional single-mode systems, MIMO-MDM systems suffer non-recoverable signal degradation induced by mode-dependent loss (MDL). In this paper, the MDL-induced signal degradation in orthogonal-frequency-division-multiplexing (OFDM) MDM systems is theoretically quantified in terms of mode-average error vector magnitude (EVM) through frequency domain norm analysis. A novel scalar MDL metric is proposed considering the probability distribution of the practical MDM input signals, and a closed-form expression for EVM measured after zero-force (ZF) MIMO equalization is derived. Simulation results show that the EVM estimations utilizing the novel MDL metric remain unbiased for unrepeated links. For a 6 × 100 km 20-mode MDM transmission system, the estimation accuracy is improved by more than 90% compared with that utilizing traditional condition number (CN) based MDL metric. The proposed MDL metric can be used to predict the MDL-induced SNR penalty in a theoretical manner, which will be beneficial for the design of practical MIMO-MDM systems.

  10. Degraded lands worth protecting: the biological importance of Southeast Asia's repeatedly logged forests

    PubMed Central

    Edwards, David P.; Larsen, Trond H.; Docherty, Teegan D. S.; Ansell, Felicity A.; Hsu, Wayne W.; Derhé, Mia A.; Hamer, Keith C.; Wilcove, David S.

    2011-01-01

    Southeast Asia is a hotspot of imperilled biodiversity, owing to extensive logging and forest conversion to oil palm agriculture. The degraded forests that remain after multiple rounds of intensive logging are often assumed to be of little conservation value; consequently, there has been no concerted effort to prevent them from being converted to oil palm. However, no study has quantified the biodiversity of repeatedly logged forests. We compare the species richness and composition of birds and dung beetles within unlogged (primary), once-logged and twice-logged forests in Sabah, Borneo. Logging had little effect on the overall richness of birds. Dung beetle richness declined following once-logging but did not decline further after twice-logging. The species composition of bird and dung beetle communities was altered, particularly after the second logging rotation, but globally imperilled bird species (IUCN Red List) did not decline further after twice-logging. Remarkably, over 75 per cent of bird and dung beetle species found in unlogged forest persisted within twice-logged forest. Although twice-logged forests have less biological value than primary and once-logged forests, they clearly provide important habitat for numerous bird and dung beetle species. Preventing these degraded forests from being converted to oil palm should be a priority of policy-makers and conservationists. PMID:20685713

  11. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Toward a Climate-Specific Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Hacke, Peter L.; Kempe, Michael D.

    2015-06-14

    Reduced optical transmittance of encapsulation resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of installations in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xe, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests. Index Terms -- reliability, durability, thermal activation.« less

  12. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal

    2015-06-14

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.« less

  13. Quantification of the Barkhausen noise method for the evaluation of time-dependent degradation

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Kwon, Dongil

    2003-02-01

    The Barkhausen noise (BN) method has long been applied to measure the bulk magnetic properties of magnetic materials. Recently, this important nondestructive testing (NDT) method has been applied to evaluate microstructure, stress distribution analysis, fatigue, creep and fracture characteristics. Until now the BN method has been used only qualitatively in evaluating the variation of BN with variations in material properties. For this reason, few NDT methods have been applied in industrial plants and laboratories. The present investigation studied the coercive force and BN while varying the microstructure of ultrafine-grained steels and SA508 cl.3 steels. This variation was carried out according to the second heat-treatment condition with rolling of ultrafine-grained steels and the simulated time-dependent degradation of SA 508 cl.3 steels. An attempt was also made to quantify BN from the relationship between the velocity of magnetic domain walls and the retarding force, using the coercive force of the domain wall movement. The microstructure variation was analyzed according to time-dependent degradation. Fracture toughness was evaluated quantitatively by measuring the BN from two intermediary parameters; grain size and distribution of nonmagnetic particles. From these measurements, the variation of microstructure and fracture toughness can be directly evaluated by the BN method as an accurate in situ NDT method.

  14. Capillary electrophoresis with electrospray ionisation-mass spectrometry for the characterisation of degradation products in aged papers.

    PubMed

    Dupont, Anne-Laurence; Seemann, Agathe; Lavédrine, Bertrand

    2012-01-30

    A methodology for capillary electrophoresis/electrospray ionisation mass spectrometry (CE/ESI-MS) was developed for the simultaneous analysis of degradation products from paper among two families of compounds: low molar mass aliphatic organic acids, and aromatic (phenolic and furanic) compounds. The work comprises the optimisation of the CE separation and the ESI-MS parameters for improved sensitivity with model compounds using two successive designs of experiments. The method was applied to the analysis of lignocellulosic paper at different stages of accelerated hygrothermal ageing. The compounds of interest were identified. Most of them could be quantified and several additional analytes were separated. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Sequential anaerobic-aerobic degradation of munitions waste.

    PubMed

    Ibeanusi, Victor; Jeilani, Yassin; Houston, Samantha; Doss, Danielle; Coley, Bianca

    2009-01-01

    A sequential anaerobic-aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied. The results demonstrated that: (i) a complete degradation of RDX was achieved within 20 days using a consortium of bacteria from a wastewater activated sludge, (ii) RDX degradation did not occur under aerobic conditions alone, (iii) RDX-degrading bacterial strain that was isolated from the activated sludge completely degraded RDX within 2 days, and (iv) RDX- induced protein expressions were observed in the RDX-degrading bacterial strain. Based on fatty acid composition and a confirmation with a 16S rRNA analysis, the RDX-degrading bacterial strain was identified as a Bacillus pumilus-GC subgroup B.

  16. Flood Protection Through Landscape Scale Ecosystem Restoration- Quantifying the Benefits

    NASA Astrophysics Data System (ADS)

    Pinero, E.

    2017-12-01

    Hurricane Harvey illustrated the risks associated with storm surges on coastal areas, especially during severe storms. One way to address storm surges is to utilize the natural ability of offshore coastal land to dampen their severity. In addition to helping reduce storm surge intensity and related damage, restoring the land will generate numerous co-benefits such as carbon sequestration and water quality improvement. The session will discuss the analytical methodology that helps define what is the most resilient species to take root, and to calculate quantified benefits. It will also address the quantification and monetization of benefits to make the business case for restoration. In 2005, Hurricanes Katrina and Rita damaged levees along the Gulf of Mexico, leading to major forest degradation, habitat deterioration and reduced wildlife use. As a result, this area lost an extensive amount of land, with contiguous sections of wetlands being converted to open water. The Restore the Earth Foundation's North American Amazon project intends to restore one million acres of forests and forested wetlands in the lower Mississippi River Valley. The proposed area for the first phase of this project was once an historic bald cypress forested wetland, which was degraded due to increased salinity levels and extreme fluctuations in hydrology. The Terrebonne and Lafourche Parishes, the "bayou parishes", communities with a combined population of over 200,000, sit on thin fingers of land that are protected by surrounding wetland swamps and wetlands, beyond which is the Gulf of Mexico. The Parishes depend on fishing, hunting, trapping, boat building, off-shore oil and gas production and support activities. Yet these communities are highly vulnerable to risks from natural hazards and future land loss. The ground is at or near sea level and therefore easily inundated by storm surges if not protected by wetlands. While some communities are protected by a levee system, the Terrebonne and

  17. Gains and Pitfalls of Quantifier Elimination as a Teaching Tool

    ERIC Educational Resources Information Center

    Oldenburg, Reinhard

    2015-01-01

    Quantifier Elimination is a procedure that allows simplification of logical formulas that contain quantifiers. Many mathematical concepts are defined in terms of quantifiers and especially in calculus their use has been identified as an obstacle in the learning process. The automatic deduction provided by quantifier elimination thus allows…

  18. Wood products : thermal degradation and fire

    Treesearch

    R.H. White; M.A. Dietenberger

    2001-01-01

    Wood is a thermally degradable and combustible material. Applications range from a biomass providing useful energy to a building material with unique properties. Wood products can contribute to unwanted fires and be destroyed as well. Minor amounts of thermal degradation adversely affect structural properties. Therefore, knowledge of the thermal degradation and fire...

  19. Degradation of cellulose under alkaline conditions: new insights from a 12 years degradation study.

    PubMed

    Glaus, Martin A; Van Loon, Luc R

    2008-04-15

    Cellulose degradation under alkaline conditions is of relevance to the mobility of many cations of the transition metal, lanthanide, and actinide series in the geosphere because strong complexants such as isosaccharinic acids, 3-deoxy-2-C-hydroxymethyl-D-erythro-pentonic acid (alpha-ISA) and 3-deoxy-2-C-hydroxymethyl-D-threo-pentonic acid (beta-ISA) may be formed. In the context of the long-term safety of cementitious repositories for low- and intermediate-level radioactive waste, where large amounts of cellulose may be present, the question of the time scales needed for the complete degradation of cellulose is important. The present paper reports the results of a 12 year study of the degradation of four different cellulosic materials (pure cellulose, tissue, cotton, paper) in an artificial cement pore water under anaerobic conditions at approximately 25 degrees C. The observed reaction characteristics can be divided into a fast reaction phase (2-3 years), dominated by the stepwise conversion of terminal glucose monomeric units to alpha-ISA and beta-ISA, and a very slow reaction phase during which the same products were found. The slow rate of the alkaline degradation of cellulose during this second reaction phase shows that previous kinetic models of cellulose degradation did not adequately describe the long-term behavior under alkaline conditions and need to be reassessed. It is postulated that a previously unknown mechanism by which crystalline or inaccessible reducing end groups of the polysaccharide chain become temporarily susceptible to alkaline attack is responsible for the slow rate of cellulose degradation.

  20. Deaf Learners' Knowledge of English Universal Quantifiers

    ERIC Educational Resources Information Center

    Berent, Gerald P.; Kelly, Ronald R.; Porter, Jeffrey E.; Fonzi, Judith

    2008-01-01

    Deaf and hearing students' knowledge of English sentences containing universal quantifiers was compared through their performance on a 50-item, multiple-picture task that required students to decide whether each of five pictures represented a possible meaning of a target sentence. The task assessed fundamental knowledge of quantifier sentences,…

  1. Degradation pathway of the naphthalene azo dye intermediate 1-diazo-2- naphthol-4-sulfonic acid using Fenton's reagent.

    PubMed

    Zhu, Nanwen; Gu, Lin; Yuan, Haiping; Lou, Ziyang; Wang, Liang; Zhang, Xin

    2012-08-01

    Degradation of naphthalene dye intermediate 1-diazo-2- naphthol-4-sulfonic acid (1,2,4-Acid) by Fenton process has been studied in depth for the purpose of learning more about the reactions involved in the oxidation of 1,2,4-Acid. During 1,2,4-Acid oxidation, the solution color initially takes on a dark red, then to dark black associated with the formation of quinodial-type structures, and then goes to dark brown and gradually disappears, indicating a fast degradation of azo group. The observed color changes of the solution are a result of main reaction intermediates, which can be an indicator of the level of oxidization reached. Nevertheless, complete TOC removal is not accomplished, in accordance with the presence of resistant carboxylic acids at the end of the reaction. The intermediates generated along the reaction time have been identified and quantified. UPLC-(ESI)-TOF-HRMS analysis allows the detection of 19 aromatic compounds of different size and complexity. Some of them share the same accurate mass but appear at different retention time, evidencing their different molecular structures. Heteroatom oxidation products like SO(4)(2-) have also been quantified and explanations of their release are proposed. Short-chain carboxylic acids are detected at long reaction time, as a previous step to complete the process of dye mineralization. Finally, considering all the findings of the present study and previous related works, the evolution from the original 1,2,4-Acid to the final products is proposed in a general reaction scheme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Degradation of [Dha7]MC-LR by a Microcystin Degrading Bacterium Isolated from Lake Rotoiti, New Zealand

    PubMed Central

    Somdee, Theerasak; Ruck, John; Lys, Isabelle; Allison, Margaret; Page, Rachel

    2013-01-01

    For the first time a microcystin-degrading bacterium (NV-3 isolate) has been isolated and characterized from a NZ lake. Cyanobacterial blooms in New Zealand (NZ) waters contain microcystin (MC) hepatotoxins at concentrations which are a risk to animal and human health. Degradation of MCs by naturally occurring bacteria is an attractive bioremediation option for removing MCs from drinking and recreational water sources. The NV-3 isolate was identified by 16S rRNA sequence analysis and found to have 100% nucleotide sequence homology with the Sphingomonas MC-degrading bacterial strain MD-1 from Japan. The NV-3 isolate (concentration of 1.0 × 108 CFU/mL) at 30°C degraded a mixture of [Dha7]MC-LR and MC-LR (concentration 25 μg/mL) at a maximum rate of 8.33 μg/mL/day. The intermediate by-products of [Dha7]MC-LR degradation were detected and similar to MC-LR degradation by-products. The presence of three genes (mlrA, mlrB, and mlrC), that encode three enzymes involved in the degradation of MC-LR, were identified in the NV-3 isolate. This study confirmed that degradation of [Dha7]MC-LR by the Sphingomonas isolate NV-3 occurred by a similar mechanism previously described for MC-LR by Sphingomonas strain MJ-PV (ACM-3962). This has important implications for potential bioremediation of toxic blooms containing a variety of MCs in NZ waters. PMID:23936728

  3. Structures of Degradation Products and Degradation Pathways of Aflatoxin B1 by High-Voltage Atmospheric Cold Plasma (HVACP) Treatment.

    PubMed

    Shi, Hu; Cooper, Bruce; Stroshine, Richard L; Ileleji, Klein E; Keener, Kevin M

    2017-08-02

    High-voltage atmospheric cold plasma (HVACP) is a novel nonthermal decontamination technology that has potential for use in the food industry. In this study, HVACP was applied to treat pure aflatoxin B 1 (AFB 1 ) powder on a glass slide. AFB 1 was degraded by 76% using a 5 min HVACP treatment in air having 40% relative humidity. The degradation products of AFB 1 were separated, and their molecular formulas were elucidated using liquid-chromatography time-of-flight mass spectrometry (HPLC-TOF-MS). Six main degradation products were observed. The structures of the degradation products were further clarified via orbitrap mass spectrometry by means of fragmentation of the parental ions. Two degradation pathways were proposed on the basis of the structure of the degradation products. Among the six degradation products, two were ozonolysis products of AFB 1 . The appearance of the other four degradation products indicates that AFB 1 was degraded by other reactive species besides ozone that were generated during HVACP treatment. Reactive oxygen gas species are suggested as the major agents for aflatoxin degradation during HVACP treatment. Two degradation pathways of AFB 1 by HVACP treatment were proposed. One pathway involves reactions in which H • , OH • , CHO • radicals are added. The other involves epoxidation by HO 2 • radicals and oxidation of AFB 1 by the combined effects of the oxidative species OH • , H 2 O 2 , and O 3 . According to the structure-bioactivity relationship of AFB 1 , the bioactivity of the AFB 1 samples subjected to HVACP treatment is significantly reduced because of the disappearance of the C8═C9 double bond in the furofuran ring in all of the major degradation products as well as the modification of the lactone ring, cyclopentanone, and the methoxyl group.

  4. Thermal degradation of deoxynivalenol during maize bread baking.

    PubMed

    Numanoglu, E; Gökmen, V; Uygun, U; Koksel, H

    2012-01-01

    The thermal degradation of deoxynivalenol (DON) was determined at isothermal baking conditions within the temperature range of 100-250°C, using a crust-like model, which was prepared with naturally contaminated maize flour. No degradation was observed at 100°C. For the temperatures of 150, 200 and 250°C, thermal degradation rate constants (k) were calculated and temperature dependence of DON degradation was observed by using Arrhenius equation. The degradation of DON obeyed Arrhenius law with a regression coefficient of 0.95. A classical bread baking operation was also performed at 250°C for 70 min and the rate of DON degradation in the bread was estimated by using the kinetic data derived from the model study. The crust and crumb temperatures recorded during bread baking were used to calculate the thermal degradation rate constants (k) and partial DON degradations at certain time intervals. Using these data, total degradation at the end of the entire baking process was predicted for both crust and crumb. This DON degradation was consistent with the experimental degradation data, confirming the accuracy of kinetic constants determined by means of the crust-like model.

  5. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4–5), lack or loss of woody debris (35% scored 4–5), mistimed water level fluctuations (34% scored 4–5), and sedimentation (31% scored 4–5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  6. Thermal degradation of aqueous 2-aminoethylethanolamine in CO2 capture; identification of degradation products, reaction mechanisms and computational studies.

    PubMed

    Saeed, Idris Mohamed; Lee, Vannajan Sanghiran; Mazari, Shaukat Ali; Si Ali, B; Basirun, Wan Jeffrey; Asghar, Anam; Ghalib, Lubna; Jan, Badrul Mohamed

    2017-01-01

    Amine degradation is the main significant problems in amine-based post-combustion CO 2 capture, causes foaming, increase in viscosity, corrosion, fouling as well as environmental issues. Therefore it is very important to develop the most efficient solvent with high thermal and chemical stability. This study investigated thermal degradation of aqueous 30% 2-aminoethylethanolamine (AEEA) using 316 stainless steel cylinders in the presence and absence of CO 2 for 4 weeks. The degradation products were identified by gas chromatography mass spectrometry (GC/MS) and liquid chromatography-time-of-flight-mass spectrometry (LC-QTOF/MS). The results showed AEEA is stable in the absence of CO 2 , while in the presence of CO 2 AEEA showed to be very unstable and numbers of degradation products were identified. 1-(2-Hydroxyethyl)-2-imidazolidinone (HEIA) was the most abundance degradation product. A possible mechanism for the thermal degradation of AEEA has been developed to explain the formation of degradation products. In addition, the reaction energy of formation of the most abundance degradation product HEIA was calculated using quantum mechanical calculation.

  7. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity.

    PubMed

    Ransom-Jones, Emma; McCarthy, Alan J; Haldenby, Sam; Doonan, James; McDonald, James E

    2017-01-01

    The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in landfill sites represent an unexplored resource of hydrolytic enzymes for biomass conversion. Here, to address the paucity of information on biomass-degrading microbial diversity beyond the gastrointestinal tract, cellulose (cotton) "baits" were incubated in landfill leachate microcosms to enrich the landfill cellulolytic microbial community for taxonomic and functional characterization. Metagenome and 16S rRNA gene amplicon sequencing demonstrated the dominance of Firmicutes , Bacteroidetes , Spirochaetes , and Fibrobacteres in the landfill cellulolytic community. Functional metagenome analysis revealed 8,371 carbohydrate active enzymes (CAZymes) belonging to 244 CAZyme families. In addition to observing biomass-degrading enzymes of anaerobic bacterial "cellulosome" systems of members of the Firmicutes , we report the first detection of the Fibrobacter cellulase system and the Bacteroidetes polysaccharide utilization locus (PUL) in landfill sites. These data provide evidence for the presence of multiple mechanisms of biomass degradation in the landfill microbiome and highlight the extraordinary functional diversity of landfill microorganisms as a rich source of biomass-degrading enzymes of potential biotechnological significance. IMPORTANCE The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused

  8. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity

    PubMed Central

    Ransom-Jones, Emma; McCarthy, Alan J.; Haldenby, Sam; Doonan, James

    2017-01-01

    ABSTRACT The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in landfill sites represent an unexplored resource of hydrolytic enzymes for biomass conversion. Here, to address the paucity of information on biomass-degrading microbial diversity beyond the gastrointestinal tract, cellulose (cotton) “baits” were incubated in landfill leachate microcosms to enrich the landfill cellulolytic microbial community for taxonomic and functional characterization. Metagenome and 16S rRNA gene amplicon sequencing demonstrated the dominance of Firmicutes, Bacteroidetes, Spirochaetes, and Fibrobacteres in the landfill cellulolytic community. Functional metagenome analysis revealed 8,371 carbohydrate active enzymes (CAZymes) belonging to 244 CAZyme families. In addition to observing biomass-degrading enzymes of anaerobic bacterial “cellulosome” systems of members of the Firmicutes, we report the first detection of the Fibrobacter cellulase system and the Bacteroidetes polysaccharide utilization locus (PUL) in landfill sites. These data provide evidence for the presence of multiple mechanisms of biomass degradation in the landfill microbiome and highlight the extraordinary functional diversity of landfill microorganisms as a rich source of biomass-degrading enzymes of potential biotechnological significance. IMPORTANCE The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have

  9. Degradation of a lyophilized formulation of BMS-204352: identification of degradants and role of elastomeric closures.

    PubMed

    Nassar, Munir N; Nesarikar, Vishwas V; Lozano, Ruben; Huang, Yande; Palaniswamy, Venkatapuram

    2005-01-01

    The purpose of this study was to identify two degradation products formed in the parenteral lyophilized formulation of BMS-204352, investigate the possible role of elastomeric closures in their formation, and develop a strategy to minimize/control their formation. The first degradant was identified as the hydroxymethyl derivative (formaldehyde adduct, BMS-215842) of the drug substance formed by the reaction of BMS-204352 with formaldehyde. Structure confirmation was based on liquid chromatography/mass spectroscopy (LC/MS), nuclear magnetic resonance (NMR), and chromatographic comparison to an authentic sample of the hydroxymethyl degradation product, BMS-215842. To confirm the hypothesis that formaldehyde originated from the rubber closure, migrated into the product, and reacted with BMS-204352 drug substance to form the hydroxymethyl degradant, lyophilized drug product was manufactured, the vials were stoppered with two different rubber closure formulations, and its stability was monitored. The formaldehyde adduct degradant was observed only in the drug product vials stoppered with one of the rubber closures that was evaluated. Although formaldehyde has not been detected historically as leachable and is not an added ingredient in the rubber formulation, information obtained from the stopper manufacturer indicated that the reinforcing agent used in the stopper formulation may be a potential source of formaldehyde. The second degradant was identified as the desfluoro hydroxy analog (BMS-188929) based on LC/MS, NMR, and chromatographic comparison to an authentic sample of the desfluoro hydroxy degradation product.

  10. Toxicology Studies of Lewisite and Sulfur Mustard Agents: Genetic Toxicity of Lewisite (L) in Chinese Hamster Ovary Cells

    DTIC Science & Technology

    1989-05-31

    Density at 20°C: 1.888 g/ml State: Dark, oily liquid (stable in steel and glass ) Vapor pressure at 200C: 0.394 m Decomposition temperature: >1000C...Bradley, M.O., B. Bhuyan, M.C. Francis, R. Langenbach, A. Peterson and E. Huberman !981 Mutagenesis by chemical agents in V79 Chinese haaster ceill : a

  11. Seasonal survey of the composition and degradation state of particulate organic matter in the Rhône River using lipid tracers

    NASA Astrophysics Data System (ADS)

    Galeron, M.-A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J.-F.

    2015-03-01

    Lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhône River (France). This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrestrial higher-plant contribution to the particulate organic matter (POM), with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Major terrigenous contributors to our samples are gymnosperms, and more precisely their roots and stems, as evidenced by the presence of high proportions of ω-hydroxydocosanoic acid (a suberin biomarker). The high amounts of coprostanol detected clearly show that the Rhône River is significantly affected by sewage waters. Specific sterol degradation products were quantified and used to assess the part of biotic and abiotic degradation of POM within the river. Higher-plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of mammal or human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation-inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could affect the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea.

  12. Quantifying the Restorable Water Volume of California's Sierra Nevada Meadows

    NASA Astrophysics Data System (ADS)

    Emmons, J. D.; Yarnell, S. M.; Fryjoff-Hung, A.; Viers, J.

    2013-12-01

    The Sierra Nevada is estimated to provide over 66% of California's water supply, which is largely derived from snowmelt. Global climate warming is expected to result in a decrease in snow pack and an increase in melting rate, making the attenuation of snowmelt by any means, an important ecosystem service for ensuring water availability. Montane meadows are dispersed throughout the mountain range and can act like natural reservoirs, and also provide wildlife habitat, water filtration, and water storage. Despite the important role of meadows in the Sierra Nevada, a large proportion is degraded from stream incision, which increases volume outflows and reduces overbank flooding, thus reducing infiltration and potential water storage. Restoration of meadow stream channels would therefore improve hydrological functioning, including increased water storage. The potential water holding capacity of restored meadows has yet to be quantified, thus this research seeks to address this knowledge gap by estimating the restorable water volume due to stream incision. More than 17,000 meadows were analyzed by categorizing their erosion potential using channel slope and soil texture, ultimately resulting in six general erodibility types. Field measurements of over 100 meadows, stratified by latitude, elevation, and geologic substrate, were then taken and analyzed for each erodibility type to determine average depth of incision. Restorable water volume was then quantified as a function of water holding capacity of the soil, meadow area and incised depth. Total restorable water volume was found to be 120 x 10^6 m3, or approximately 97,000 acre-feet. Using 95% confidence intervals for incised depth, the upper and lower bounds of the total restorable water volume were found to be 107 - 140 x 10^6 m3. Though this estimate of restorable water volume is small in regards to the storage capacity of typical California reservoirs, restoration of Sierra Nevada meadows remains an important

  13. Photocatalytic Degradation of 4-Nitrophenol by C, N-TiO2: Degradation Efficiency vs. Embryonic Toxicity of the Resulting Compounds

    NASA Astrophysics Data System (ADS)

    Osin, Oluwatomiwa A.; Yu, Tianyu; Cai, Xiaoming; Jiang, Yue; Peng, Guotao; Cheng, Xiaomei; Li, Ruibin; Qin, Yao; Lin, Sijie

    2018-06-01

    The photocatalytic activity of TiO2 based photocatalysts can be improved by structural modification and elemental doping. In this study, through rational design, one type of carbon and nitrogen co-doped TiO2 (C, N-TiO2) photocatalyst with mesoporous structure was synthesized with improved photocatalytic activity in degrading 4-nitrophenol under simulated sunlight irradiation. The photocatalytic degradation efficiency of the C, N-TiO2 was much higher than the anatase TiO2 (A-TiO2) based on absorbance and HPLC analyses. Moreover, using zebrafish embryos, we showed that the intermediate degradation compounds generated by photocatalytic degradation of 4-nitrophenol had higher toxicity than the parent compound. A repeated degradation process was necessary to render complete degradation and non-toxicity to the zebrafish embryos. Our results demonstrated the importance of evaluating the photocatalytic degradation efficiency in conjunction with the toxicity assessment of the degradation compounds.

  14. Photocatalytic Degradation of 4-Nitrophenol by C, N-TiO2: Degradation Efficiency vs. Embryonic Toxicity of the Resulting Compounds.

    PubMed

    Osin, Oluwatomiwa A; Yu, Tianyu; Cai, Xiaoming; Jiang, Yue; Peng, Guotao; Cheng, Xiaomei; Li, Ruibin; Qin, Yao; Lin, Sijie

    2018-01-01

    The photocatalytic activity of TiO 2 based photocatalysts can be improved by structural modification and elemental doping. In this study, through rational design, one type of carbon and nitrogen co-doped TiO 2 (C, N-TiO 2 ) photocatalyst with mesoporous structure was synthesized with improved photocatalytic activity in degrading 4-nitrophenol under simulated sunlight irradiation. The photocatalytic degradation efficiency of the C, N-TiO 2 was much higher than the anatase TiO 2 (A-TiO 2 ) based on absorbance and HPLC analyses. Moreover, using zebrafish embryos, we showed that the intermediate degradation compounds generated by photocatalytic degradation of 4-nitrophenol had higher toxicity than the parent compound. A repeated degradation process was necessary to render complete degradation and non-toxicity to the zebrafish embryos. Our results demonstrated the importance of evaluating the photocatalytic degradation efficiency in conjunction with the toxicity assessment of the degradation compounds.

  15. Cross-linguistic patterns in the acquisition of quantifiers.

    PubMed

    Katsos, Napoleon; Cummins, Chris; Ezeizabarrena, Maria-José; Gavarró, Anna; Kuvač Kraljević, Jelena; Hrzica, Gordana; Grohmann, Kleanthes K; Skordi, Athina; Jensen de López, Kristine; Sundahl, Lone; van Hout, Angeliek; Hollebrandse, Bart; Overweg, Jessica; Faber, Myrthe; van Koert, Margreet; Smith, Nafsika; Vija, Maigi; Zupping, Sirli; Kunnari, Sari; Morisseau, Tiffany; Rusieshvili, Manana; Yatsushiro, Kazuko; Fengler, Anja; Varlokosta, Spyridoula; Konstantzou, Katerina; Farby, Shira; Guasti, Maria Teresa; Vernice, Mirta; Okabe, Reiko; Isobe, Miwa; Crosthwaite, Peter; Hong, Yoonjee; Balčiūnienė, Ingrida; Ahmad Nizar, Yanti Marina; Grech, Helen; Gatt, Daniela; Cheong, Win Nee; Asbjørnsen, Arve; Torkildsen, Janne von Koss; Haman, Ewa; Miękisz, Aneta; Gagarina, Natalia; Puzanova, Julia; Anđelković, Darinka; Savić, Maja; Jošić, Smiljana; Slančová, Daniela; Kapalková, Svetlana; Barberán, Tania; Özge, Duygu; Hassan, Saima; Chan, Cecilia Yuet Hung; Okubo, Tomoya; van der Lely, Heather; Sauerland, Uli; Noveck, Ira

    2016-08-16

    Learners of most languages are faced with the task of acquiring words to talk about number and quantity. Much is known about the order of acquisition of number words as well as the cognitive and perceptual systems and cultural practices that shape it. Substantially less is known about the acquisition of quantifiers. Here, we consider the extent to which systems and practices that support number word acquisition can be applied to quantifier acquisition and conclude that the two domains are largely distinct in this respect. Consequently, we hypothesize that the acquisition of quantifiers is constrained by a set of factors related to each quantifier's specific meaning. We investigate competence with the expressions for "all," "none," "some," "some…not," and "most" in 31 languages, representing 11 language types, by testing 768 5-y-old children and 536 adults. We found a cross-linguistically similar order of acquisition of quantifiers, explicable in terms of four factors relating to their meaning and use. In addition, exploratory analyses reveal that language- and learner-specific factors, such as negative concord and gender, are significant predictors of variation.

  16. Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme

    PubMed Central

    Bailey, Lucas J; Tan, Yong Zi; Wei, Hui; Wang, Andrew; Farcasanu, Mara; Woods, Virgil A; McCord, Lauren A; Lee, David; Shang, Weifeng; Deprez-Poulain, Rebecca; Deprez, Benoit; Liu, David R; Koide, Akiko; Koide, Shohei; Kossiakoff, Anthony A

    2018-01-01

    Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type two diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies. PMID:29596046

  17. A highly sensitive peptide substrate for detecting two Aß-degrading enzymes: neprilysin and insulin-degrading enzyme.

    PubMed

    Chen, Po-Ting; Liao, Tai-Yan; Hu, Chaur-Jong; Wu, Shu-Ting; Wang, Steven S-S; Chen, Rita P-Y

    2010-06-30

    Neprilysin has been singled out as the most promising candidate for use in the degradation of Abeta as a therapy for Alzheimer's disease. In this study, a quenched fluorogenic peptide substrate containing the first seven residues of the Abeta peptide plus a C-terminal Cysteine residue was synthesized to detect neprilysin activity. A fluorophore was attached to the C-terminal Cysteine and its fluorescence was quenched by a quencher linked to the N-terminus of the peptide. When this peptide substrate was degraded by an endopeptidase, fluorescence was produced and proved to be a sensitive detection system for endopeptidase activity. Our results showed that this assay system was extremely sensitive to neprilysin and insulin-degrading enzyme, but insensitive, or much less sensitive, to other Abeta-degrading enzymes. As low as 0.1 nM of neprilysin and 0.2 nM of insulin-degrading enzyme can be detected. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators.

    PubMed

    Li, Chao; Nges, Ivo Achu; Lu, Wenjing; Wang, Haoyu

    2017-11-01

    Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Melanosome degradation: fact or fiction.

    PubMed

    Borovanský, Jan; Elleder, Milan

    2003-06-01

    Our mini review summarizes what is known about the (bio)degradation of melanosomes. Unlike melanosome biogenesis where our knowledge enables us to explain it in molecular terms posing many interesting questions on the relation between lysosomes and melanosomes, melanosome degradation has remained 'terra incognita'. Observations at optical and ultrastructural levels describe the disintegration of melanosomes in the lysosomal compartment (in auto- and heterophagosomes). Histochemical studies suggest the participation of acid hydrolases in the process of melanosome degradation. Biochemical data confirm the ability of lysosomal hydrolases to degrade melanosome constituents except the melanin moiety. The similarity of melanin structure to that of polycyclic aromatic hydrocarbons suggests that melanin should be sensitive mainly, if not exclusively, to oxidative breakdown. In vitro melanin can indeed be decomposed by an oxidative attack and the degradation is accompanied by fluorescence and decreasing absorbance. From enzymes engaged in the biotransformation of polycyclic hydrocarbons only phagosomal NADPH oxidase meets the criteria (particularly as for compartmental and catalytic properties) to be involved in melanin biodegradation. The in vivo biodegradation of melanin has so far been clearly demonstrated in Aspergillus and fungi melanins.

  20. Ensemble LUT classification for degraded document enhancement

    NASA Astrophysics Data System (ADS)

    Obafemi-Ajayi, Tayo; Agam, Gady; Frieder, Ophir

    2008-01-01

    The fast evolution of scanning and computing technologies have led to the creation of large collections of scanned paper documents. Examples of such collections include historical collections, legal depositories, medical archives, and business archives. Moreover, in many situations such as legal litigation and security investigations scanned collections are being used to facilitate systematic exploration of the data. It is almost always the case that scanned documents suffer from some form of degradation. Large degradations make documents hard to read and substantially deteriorate the performance of automated document processing systems. Enhancement of degraded document images is normally performed assuming global degradation models. When the degradation is large, global degradation models do not perform well. In contrast, we propose to estimate local degradation models and use them in enhancing degraded document images. Using a semi-automated enhancement system we have labeled a subset of the Frieder diaries collection.1 This labeled subset was then used to train an ensemble classifier. The component classifiers are based on lookup tables (LUT) in conjunction with the approximated nearest neighbor algorithm. The resulting algorithm is highly effcient. Experimental evaluation results are provided using the Frieder diaries collection.1

  1. Polychlorinated biphenyls degradation in subcritical water

    NASA Astrophysics Data System (ADS)

    Doctor, Ninad; Yang, Larry; Yang, Yu

    2017-08-01

    In this work, the degradation of PCB-118, PCB-156, and PCB-180 congeners under subcritical conditions has been investigated. Stainless reaction vessels were used to carry out the heating of reaction mixtures. Liquid-liquid extraction of the reaction mixtures was conducted prior to GC analysis. Approximately 30% PCBs were degraded by 30% hydrogen peroxide after 24 hours of reaction time but without heating the mixtures. The percent degradation of PCBs was however improved to approximately 60% after heating the mixtures at 300 °C for an hour. In general, the PCB degradation efficiency was enhanced by increasing the reaction temperature from 300 and 350 °C. The percent degradation of PCBs was mostly improved by increasing the heating time from 1 hour to 6 hours. In addition, increasing the percentage of hydrogen peroxide significantly increases the rate of PCB destruction.

  2. Agent-based modeling of porous scaffold degradation and vascularization: Optimal scaffold design based on architecture and degradation dynamics.

    PubMed

    Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali

    2015-11-01

    A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with

  3. A practical method for measuring the ion exchange capacity decrease of hydroxide exchange membranes during intrinsic degradation

    NASA Astrophysics Data System (ADS)

    Kreuer, Klaus-Dieter; Jannasch, Patric

    2018-01-01

    In this work we present a practical thermogravimetric method for quantifying the IEC (ion exchange capacity) decrease of hydroxide exchange membranes (HEMs) during intrinsic degradation mainly occurring through nucleophilic attack of the anion exchanging group by hydroxide ions. The method involves measuring weight changes under controlled temperature and relative humidity. These conditions are close to these in a fuel cell, i.e. the measured degradation rate includes all effects originating from the polymeric structure, the consumption of hydroxide ions and the release of water. In particular, this approach involves no added solvents or base, thereby avoiding inaccuracies that may arise in other methods due to the presence of solvents (other than water) or co-ions (such as Na+ or K+). We demonstrate the method by characterizing the decomposition of membranes consisting of poly(2,6-dimethyl-1,4-phenylene oxide) functionalized with trimethyl-pentyl-ammonium side chains. The decomposition rate is found to depend on temperature, relative humidity RH (controlling the hydration number λ) and the total water content (controlled by the actual IEC and RH).

  4. A bioanalytical HPLC method for coumestrol quantification in skin permeation tests followed by UPLC-QTOF/HDMS stability-indicating method for identification of degradation products.

    PubMed

    Bianchi, Sara E; Teixeira, Helder F; Kaiser, Samuel; Ortega, George G; Schneider, Paulo Henrique; Bassani, Valquiria L

    2016-05-01

    Coumestrol is present in several species of the Fabaceae family widely distributed in plants. The estrogenic and antioxidant activities of this molecule show its potential as skin anti-aging agent. These characteristics reveal the interest in developing analytical methodology for permeation studies, as well as to know the stability of coumestrol identifying the major degradation products. Thus, the present study was designed, first, to develop and validate a versatile liquid chromatography (HPLC) method to quantify coumestrol in a hydrogel formulation in different porcine skin layers (stratum corneum, epidermis, and dermis) in permeation tests. In the stability-indicating test coumestrol samples were exposed to stress conditions: temperature, UVC light, oxidative, acid and alkaline media. The degradation products, as well as the constituents extracted from the hydrogel, adhesive tape or skin were not eluted in the retention time of the coumestrol. Hence, the HPLC method showed to be versatile, specific, accurate, precise and robust showing excellent performance for quantifying coumestrol in complex matrices involving skin permeation studies. Coumestrol recovery from porcine ear skin was found to be in the range of 97.07-107.28 μg/mL; the intra-day precision (repeatability) and intermediate precision (inter-day precision), respectively lower than 4.71% and 2.09%. The analysis using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight high definition mass spectrometry detector (UPLC-QTOF/HDMS) suggest the MS fragmentation patterns and the chemical structure of the main degradation products. These results represent new and relevant findings for the development of coumestrol pharmaceutical and cosmetic products. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. An overview of degradable polymers

    USDA-ARS?s Scientific Manuscript database

    Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials, ...

  6. An overview of degradable polymers

    USDA-ARS?s Scientific Manuscript database

    Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials...

  7. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    EPA Science Inventory

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  8. Impacts and Uncertainties of +2°C of Climate Change and Soil Degradation on European Crop Calorie Supply

    NASA Astrophysics Data System (ADS)

    Balkovič, Juraj; Skalský, Rastislav; Folberth, Christian; Khabarov, Nikolay; Schmid, Erwin; Madaras, Mikuláš; Obersteiner, Michael; van der Velde, Marijn

    2018-03-01

    Even if global warming is kept below +2°C, European agriculture will be significantly impacted. Soil degradation may amplify these impacts substantially and thus hamper crop production further. We quantify biophysical consequences and bracket uncertainty of +2°C warming on calories supply from 10 major crops and vulnerability to soil degradation in Europe using crop modeling. The Environmental Policy Integrated Climate (EPIC) model together with regional climate projections from the European branch of the Coordinated Regional Downscaling Experiment (EURO-CORDEX) was used for this purpose. A robustly positive calorie yield change was estimated for the EU Member States except for some regions in Southern and South-Eastern Europe. The mean impacts range from +30 Gcal ha-1 in the north, through +25 and +20 Gcal ha-1 in Western and Eastern Europe, respectively, to +10 Gcal ha-1 in the south if soil degradation and heat impacts are not accounted for. Elevated CO2 and increased temperature are the dominant drivers of the simulated yield changes in high-input agricultural systems. The growth stimulus due to elevated CO2 may offset potentially negative yield impacts of temperature increase by +2°C in most of Europe. Soil degradation causes a calorie vulnerability ranging from 0 to 50 Gcal ha-1 due to insufficient compensation for nutrient depletion and this might undermine climate benefits in many regions, if not prevented by adaptation measures, especially in Eastern and North-Eastern Europe. Uncertainties due to future potentials for crop intensification are about 2-50 times higher than climate change impacts.

  9. Soil Degradation Evaluated by a 27 years Landsat image (Vis-Nir-Swir-Tir), climate and digital elevation derivatives

    NASA Astrophysics Data System (ADS)

    Dematte, J. A., Sr.; Santos, N. V.; de Almeida Malzoni, M. M.; Poppiel, R. R.; Fongaro, C. T.; Rizzo, R.; Safanelli, J. L.; Sayão, V. M.; Mendes, W. S.

    2017-12-01

    According to Food and Agriculture Organization of the United Nations, 30% of the global soils are degraded. Therefore, novel researches on soil degradation process are imperative to prevent damages on social and environmental dynamics. Since we have a wide world dimension, and few manpower, we have to focus on high dimensional evaluation techniques such as remote sensing. The main goal of this work was to develop a method, based on a 27 years time-series of satellite images (Landsat), from which determine the most important factors on soil degradation. The area is located in south Brazil with a 1400 km2 area. The steps of the method are as follows: a) we collected images from the area and based on a novel technique determined the areas with exposed soils; b) we quantified soil properties such as clay and capacity of ionic exchange based on pixel spectra signature; c) the technique also indicated how many times a single pixel was with bare soil during the period; d) we also determined the surface temperature based on band 6; e) using elevation model we created the layers LS factor, drainage density, topographic wetness index, solar radiation; f) we also determined climate information (water balance); g) organic matter (OM) was also estimated. All factors from item a to f were balanced and overlapped (GIS) to generate an index of soil degradation, SD (fig 1a) - values from 1 (low risk) to 5 (high risk). We concluded that 30% of the area is degraded. SD presented coherent values with OM and validate the method. We observed that areas with higher SD (5) contain 43.6% less OM than the ones with low risk (1). In addition, the soil spectral reflectance curve was analyzed concluding that degraded soils shows higher intensity. The current land use (fig 1b) was correlated demonstrating that a higher risk of SD happens mainly in sugar cane (41.6%) in contrast to pasture (16.9%) and forestry (11.7%). Therefore, this approach allows land uses decision-making and public policies.

  10. Biological and environmental hazards associated with exposure to chemical warfare agents: arsenicals.

    PubMed

    Li, Changzhao; Srivastava, Ritesh K; Athar, Mohammad

    2016-08-01

    Arsenicals are highly reactive inorganic and organic derivatives of arsenic. These chemicals are very toxic and produce both acute and chronic tissue damage. On the basis of these observations, and considering the low cost and simple methods of their bulk syntheses, these agents were thought to be appropriate for chemical warfare. Among these, the best-known agent that was synthesized and weaponized during World War I (WWI) is Lewisite. Exposure to Lewisite causes painful inflammatory and blistering responses in the skin, lung, and eye. These chemicals also manifest systemic tissue injury following their cutaneous exposure. Although largely discontinued after WWI, stockpiles are still known to exist in the former Soviet Union, Germany, Italy, the United States, and Asia. Thus, access by terrorists or accidental exposure could be highly dangerous for humans and the environment. This review summarizes studies that describe the biological, pathophysiological, toxicological, and environmental effects of exposure to arsenicals, with a major focus on cutaneous injury. Studies related to the development of novel molecular pathobiology-based antidotes against these agents are also described. © 2016 New York Academy of Sciences.

  11. Biological and environmental hazards associated with exposure to chemical warfare agents: arsenicals

    PubMed Central

    Li, Changzhao; Srivastava, Ritesh K.; Athar, Mohammad

    2016-01-01

    Arsenicals are highly reactive inorganic and organic derivatives of arsenic. These chemicals are very toxic and produce both acute and chronic tissue damage. Based on these observations, and considering the low cost and simple methods of their bulk syntheses, these agents were thought to be appropriate for chemical warfare. Among these, the most known agent synthesized and weaponized during World War I (WWI) is Lewisite. Exposure to Lewisite causes painful inflammatory and blistering responses in the skin, lung, and eye. These chemicals also manifest systemic tissue injury following their cutaneous exposure. Although largely discontinued after WWI, their stockpiles are still known to exist in the former Soviet Union, Germany, Italy, the United States, and Asia. Thus, their access by terrorists or accidental exposure could be highly dangerous for humans and the environment. This review summarizes studies which describe the biological, pathophysiological, toxicological, and environmental effects of exposure to arsenicals, with a major focus on cutaneous injury. Studies related to the development of novel molecular pathobiology–based antidotes against these agents are also described. PMID:27636894

  12. Isolation of an isocarbophos-degrading strain of Arthrobacter sp. scl-2 and identification of the degradation pathway.

    PubMed

    Rong, Li; Guo, Xinqiang; Chen, Kai; Zhu, Jianchun; Li, Shunpeng; Jiang, Jiandong

    2009-11-01

    Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. Strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. Strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a nondetectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2- dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism.

  13. High resolution satellite remote sensing used in a stratified random sampling scheme to quantify the constituent land cover components of the shifting cultivation mosaic of the Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Hansen, M.; Potapov, P.

    2016-12-01

    High resolution satellite imagery obtained from the National Geospatial Intelligence Agency through NASA was used to photo-interpret sample areas within the DRC. The area sampled is a stratifcation of the forest cover loss from circa 2014 that either occurred completely within the previosly mapped homogenous area of the Rural Complex, at it's interface with primary forest, or in isolated forest perforations. Previous research resulted in a map of these areas that contextualizes forest loss depending on where it occurs and with what spatial density, leading to a better understading of the real impacts on forest degradation of livelihood shifting cultivation. The stratified random sampling approach of these areas allows the characterization of the constituent land cover types within these areas, and their variability throughout the DRC. Shifting cultivation has a variable forest degradation footprint in the DRC depending on many factors that drive it, but it's role in forest degradation and deforestation had been disputed, leading us to investigate and quantify the clearing and reuse rates within the strata throughout the country.

  14. Autophagy degrades hypoxia inducible factors

    PubMed Central

    DePavia, Adela; Jonasch, Eric; Liu, Xian-De

    2016-01-01

    ABSTRACT Hypoxia inducible factors are subjected to degradation by the ubiquitin-proteasome system (UPS), macroautophagy, and chaperone-mediated autophagy. The E3 ligases, ubiquitination, autophagy receptor proteins, and oxygen are determinants that direct hypoxia-inducible factors to different degradation pathways. PMID:27308629

  15. Study on degrading graphene oxide in wastewater under different conditions for developing an efficient and economical degradation method.

    PubMed

    Li, Ting; Zhang, Chao-Zhi; Gu, Chengyue

    2017-12-01

    With popular application of graphene and graphene oxide (GO), they have been discharged into water. Graphene and GO harm organisms. However, an efficient and economical method for removing graphene and GO in wastewater has seldom been reported. Graphene can be oxidized by hydrogen peroxide to give GO; therefore, degradation of graphene oxide is an important step in the procedure of removal of graphene from water. In this paper, GO degradation via photo-Fenton reaction under different conditions was carried out. Experimental results suggested that GO in wastewater can be efficiently and economically degraded into carbon dioxide and H 2 O when pH value is 3, concentration of H 2 O 2 and FeCl 3 are 35 mM and 5 ppm, respectively. Degradation mechanism of GO was suggested based on UV-vis absorption spectra, scanning electron microscopy, X-ray diffraction and liquid chromatography-mass spectra data of degradation intermediates. This paper suggests an efficient and economical degradation way of GO in wastewater.

  16. Degradation of Triphenyltin by a Fluorescent Pseudomonad

    PubMed Central

    Inoue, Hiroyuki; Takimura, Osamu; Fuse, Hiroyuki; Murakami, Katsuji; Kamimura, Kazuo; Yamaoka, Yukiho

    2000-01-01

    Triphenyltin (TPT)-degrading bacteria were screened by a simple technique using a post-column high-performance liquid chromatography using 3,3′,4′,7-tetrahydroxyflavone as a post-column reagent for determination of TPT and its metabolite, diphenyltin (DPT). An isolated strain, strain CNR15, was identified as Pseudomonas chlororaphis on the basis of its morphological and biochemical features. The incubation of strain CNR15 in a medium containing glycerol, succinate, and 130 μM TPT resulted in the rapid degradation of TPT and the accumulation of approximately 40 μM DPT as the only metabolite after 48 h. The culture supernatants of strain CNR15, grown with or without TPT, exhibited a TPT degradation activity, whereas the resting cells were not capable of degrading TPT. TPT was stoichiometrically degraded to DPT by the solid-phase extract of the culture supernatant, and benzene was detected as another degradation product. We found that the TPT degradation was catalyzed by low-molecular-mass substances (approximately 1,000 Da) in the extract, termed the TPT-degrading factor. The other fluorescent pseudomonads, P. chlororaphis ATCC 9446, Pseudomonas fluorescens ATCC 13525, and Pseudomonas aeruginosa ATCC 15692, also showed TPT degradation activity similar to strain CNR15 in the solid-phase extracts of their culture supernatants. These results suggest that the extracellular low-molecular-mass substance that is universally produced by the fluorescent pseudomonad could function as a potent catalyst to cometabolite TPT in the environment. PMID:10919812

  17. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications.

    PubMed

    Xu, Cancan; Huang, Yihui; Wu, Jinglei; Tang, Liping; Hong, Yi

    2015-09-16

    Tissue engineered and bioactive scaffolds with different degradation rates are required for the regeneration of diverse tissues/organs. To optimize tissue regeneration in different tissues, it is desirable that the degradation rate of scaffolds can be manipulated to comply with various stages of tissue regeneration. Unfortunately, the degradation of most degradable polymers relies solely on passive controlled degradation mechanisms. To overcome this challenge, we report a new family of reduction-sensitive biodegradable elastomeric polyurethanes containing various amounts of disulfide bonds (PU-SS), in which degradation can be initiated and accelerated with the supplement of a biological product: antioxidant-glutathione (GSH). The polyurethanes can be processed into films and electrospun fibrous scaffolds. Synthesized materials exhibited robust mechanical properties and high elasticity. Accelerated degradation of the materials was observed in the presence of GSH, and the rate of such degradation depends on the amount of disulfide present in the polymer backbone. The polymers and their degradation products exhibited no apparent cell toxicity while the electrospun scaffolds supported fibroblast growth in vitro. The in vivo subcutaneous implantation model showed that the polymers prompt minimal inflammatory responses, and as anticipated, the polymer with the higher disulfide bond amount had faster degradation in vivo. This new family of polyurethanes offers tremendous potential for directed scaffold degradation to promote maximal tissue regeneration.

  18. Kinetic study and mechanism of Niclosamide degradation.

    PubMed

    Zaazaa, Hala E; Abdelrahman, Maha M; Ali, Nouruddin W; Magdy, Maimana A; Abdelkawy, M

    2014-11-11

    A spectrophotometric kinetic study of Niclosamide alkaline degradation as a function of drug concentration, alkaline concentration and temperature has been established utilizing double divisor-ratio spectra spectrophotometric method. The developed method allowed determination of Niclosamide in presence of its alkaline degradation products; namely; 2-chloro-4-nitro aniline (DEG I) and 5-chloro salicylic acid (DEG II) with characterization of its degradation mechanism. It was found that degradation kinetic of Niclosamide followed pseudo-first order under the established experimental conditions with a degradation rate constant (k) of 0.0829 mol/h and half life (t1/2) of 8.35 h. The overall degradation rate constant as a function of the temperature under the given conditions obeyed Arrhenius equation where the activation energy was calculated to be 3.41 kcal/mol. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The impact of soil degradation on soil functioning in Europe

    NASA Astrophysics Data System (ADS)

    Montanarella, Luca

    2010-05-01

    The European Commission has presented in September 2006 its Thematic Strategy for Soil Protection.The Thematic Strategy for Soil Protection consists of a Communication from the Commission to the other European Institutions, a proposal for a framework Directive (a European law), and an Impact Assessment. The Communication (COM(2006) 231) sets the frame. It defines the relevant soil functions for Europe and identifies the major threats. It explains why further action is needed to ensure a high level of soil protection, sets the overall objective of the Strategy and explains what kind of measures must be taken. It establishes a ten-year work program for the European Commission. The proposal for a framework Directive (COM(2006) 232) sets out common principles for protecting soils across the EU. Within this common framework, the EU Member States will be in a position to decide how best to protect soil and how use it in a sustainable way on their own territory. The Impact Assessment (SEC (2006) 1165 and SEC(2006) 620) contains an analysis of the economic, social and environmental impacts of the different options that were considered in the preparatory phase of the strategy and of the measures finally retained by the Commission. Since 2006 a large amount of new evidence has allowed to further document the extensive negative impacts of soil degradation on soil functioning in Europe. Extensive soil erosion, combined with a constant loss of soil organic carbon, have raised attention to the important role soils are playing within the climate change related processes. Other important processes are related to the loss of soil biodiversity, extensive soil sealing by housing and infrastructure, local and diffuse contamination by agricultural and industrial sources, compaction due to unsustainable agricultural practices and salinization by unsustainable irrigation practices. The extended impact assessment by the European Commission has attempted to quantify in monetary terms the

  20. Eicosapentaenoic acid and docosahexaenoic acid increase the degradation of amyloid-β by affecting insulin-degrading enzyme.

    PubMed

    Grimm, Marcus O W; Mett, Janine; Stahlmann, Christoph P; Haupenthal, Viola J; Blümel, Tamara; Stötzel, Hannah; Grimm, Heike S; Hartmann, Tobias

    2016-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β (Aβ) peptides as extracellular senile plaques in the brain. Total Aβ levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aβ-clearance mechanisms, including Aβ-degrading enzymes. Here we show that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase Aβ-degradation by affecting insulin-degrading enzyme (IDE), the major Aβ-degrading enzyme secreted into the extracellular space of neuronal and microglial cells. The identification of the molecular mechanisms revealed that EPA directly increases IDE enzyme activity and elevates gene expression of IDE. DHA also directly stimulates IDE enzyme activity and affects IDE sorting by increasing exosome release of IDE, resulting in enhanced Aβ-degradation in the extracellular milieu. Apart from the known positive effect of DHA in reducing Aβ production, EPA and DHA might ameliorate AD pathology by increasing Aβ turnover.

  1. Mechanisms of humic substances degradation by fungi

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hadar, Y.; Grinhut, T.

    2012-04-01

    Humic substances (HS) are formed by secondary synthesis reactions (humification) during the decay process and transformation of biomolecules originating from plants and other dead organisms. In nature, HS are extremely resistant to biological degradation. Thus, these substances are major components in the C cycle and in the biosphere and therefore, the understanding of the process leading to their formation and transformation and degradation is vital. Fungi active in the decomposition process of HS include mainly ascomycetes and basidiomycetes that are common in the upper layer of forest and grassland soils. Many basidiomycetes belong to the white-rot fungi (WRF) and litter-decomposing fungi (LDF). These fungi are considered to be the most efficient lignin degraders due to their nonspecific oxidizing enzymes: manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase. Although bacteria dominate compost and participate in the turnover of HS, their ability to degrade stable macromolecules such as lignin and HS is limited. The overall objectives of this research were to corroborate biodegradation processes of HS by WRF. The specific objectives were: (i) To isolate, identify and characterize HS degrading WRF from biosolids (BS) compost; (ii) To study the biodegradation process of three types of HS, which differ in their structure, by WRF isolated from BS compost; and (iii) To investigate the mechanisms of HA degradation by WRF using two main approaches: (a) Study the physical and chemical analyses of the organic compounds obtained from direct fungal degradation of HA as well as elucidation of the relevant enzymatic reactions; and (b) Study the enzymatic and biochemical mechanisms involved during HA degradation. In order to study the capability of fungi to degrade HS, seventy fungal strains were isolated from biosolids (BS) compost. Two of the most active fungal species were identified based on rDNA sequences and designated Trametes sp. M23 and Phanerochaetesp., Y6

  2. Degradation of caffeic acid in subcritical water and online HPLC-DPPH assay of degradation products.

    PubMed

    Khuwijitjaru, Pramote; Suaylam, Boonyanuch; Adachi, Shuji

    2014-02-26

    Caffeic acid was subjected to degradation under subcritical water conditions within 160-240 °C and at a constant pressure of 5 MPa in a continuous tubular reactor. Caffeic acid degraded quickly at these temperatures; the main products identified by liquid chromatography-diode array detection/mass spectrometry were hydroxytyrosol, protocatechuic aldehyde, and 4-vinylcatechol. The reaction rates for the degradation of caffeic acid and the formation of products were evaluated. Online high-performance liquid chromatography/2,2-diphenyl-1-picryhydrazyl assay was used to determine the antioxidant activity of each product in the solution. It was found that the overall antioxidant activity of the treated solution did not change during the degradation process. This study showed a potential of formation of antioxidants from natural phenolic compounds under these subcritical water conditions, and this may lead to a discovering of novel antioxidants compounds during the extraction by this technique.

  3. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal

    2015-08-12

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.« less

  4. 4. Photocopy of photograph, U.S. Army, ca. 1943 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of photograph, U.S. Army, ca. 1943 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). R.M.A. - 512 - M-1 FILLING LOOKING N.WEST. - Rocky Mountain Arsenal, Lewisite Filling & Distilled Mustard Filling Building, 420 feet South of December Seventh Avenue; 820 feet East of D Street, Commerce City, Adams County, CO

  5. 3. Photocopy of photograph, U.S. Army, ca. 1943 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of photograph, U.S. Army, ca. 1943 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). R.M.A. - 512 - M-1 FILLING LOOKING N.E. - Rocky Mountain Arsenal, Lewisite Filling & Distilled Mustard Filling Building, 420 feet South of December Seventh Avenue; 820 feet East of D Street, Commerce City, Adams County, CO

  6. 3. Photocopy of photograph, U.S. Army, ca. 1943 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of photograph, U.S. Army, ca. 1943 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). R.M.A. - 517 - M-1 CHANGE HOUSE LOOKING N.E. - Rocky Mountain Arsenal, Lewisite & Distilled Mustard Change House-Laboratory, 620 feet South of December Seventh Avenue; 820 feet East of D Street, Commerce City, Adams County, CO

  7. Non-destructive evaluation of specialty coating degradation using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Nicoletti, Carley R.; Cramer, Laura; Fletcher, Alan; Zimdars, David; Iqbal, Zafar; Federici, John F.

    2017-05-01

    The Terahertz Time Domain Reflection Spectroscopy (THz-TDS) method of paint layer diagnostics is a non-contact electromagnetic technique analogous to pulsed-ultrasound with the added capability of spectroscopic characterization. The THz-TDS sensor emits a near-single cycle electromagnetic pulse with a bandwidth from 0.1 to 3 THz. This wide bandwidth pulse is focused on the coating, and echo pulses are generated from each interface (air-coating, layer-layer, coating-substrate). In this paper, the THz-TDS method is applied to specialty aircraft coatings. The THz-TDS method is able to penetrate the whole coating stack and sample the properties of each layer. Because the reflected pulses from individual layers typically overlap in time, the complex permittivity function and thickness of each layer is determined by a best fit of the measured reflection (either in time or frequency domain) to a layered model of the paint. The THz- TDS method is applied to specialty coatings prior to and during accelerated aging on a series of test coupons. The coupons are also examined during aging using ATR (attenuated total reflectance)-FTIR spectroscopy, Raman scattering spectroscopy, and Scanning Electron Microscopy (SEM) to ascertain, quantify, and understand the breakdown mechanisms of the coatings. In addition, the same samples are characterized using THz-TDS techniques to determine if the THz-TDS method can be utilized as a non-destructive evaluation technique to sense degradation of the coatings. Our results suggest that the degradation mechanism begins in the top coat layer. In this layer, 254 nm UV illumination in combination with the presence of moisture works partially with oxides as catalysts to decompose the polymer matrix thereby creating porosity in the top coat layer. Since the catalytic effect is partial, loss of the oxides by chemical reaction can also occur. As the topcoat layer becomes more porous, it allows water vapor to permeate the topcoat layer and interact

  8. Method of degrading pollutants in soil

    DOEpatents

    Hazen, Terry C.; Lopez-De-Victoria, Geralyne

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  9. Degradation in finite-harmonic subcarrier demodulation

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Townes, S.; Pham, T.

    1995-01-01

    Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.

  10. Degradation of Glyphosate by Mn-Oxide May Bypass Sarcosine and Form Glycine Directly after C-N Bond Cleavage.

    PubMed

    Li, Hui; Wallace, Adam F; Sun, Mingjing; Reardon, Patrick; Jaisi, Deb P

    2018-02-06

    Glyphosate is the active ingredient of the common herbicide Roundup. The increasing presence of glyphosate and its byproducts has raised concerns about its potential impact on the environment and human health. In this research, we investigated abiotic pathways of glyphosate degradation as catalyzed by birnessite under aerobic and neutral pH conditions to determine whether certain pathways have the potential to generate less harmful intermediate products. Nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) were utilized to identify and quantify reaction products, and density functional theory (DFT) calculations were used to investigate the bond critical point (BCP) properties of the C-N bond in glyphosate and Mn(IV)-complexed glyphosate. We found that sarcosine, the commonly recognized precursor to glycine, was not present at detectable levels in any of our experiments despite the fact that its half-life (∼13.6 h) was greater than our sampling intervals. Abiotic degradation of glyphosate largely followed the glycine pathway rather than the AMPA (aminomethylphosphonic acid) pathway. Preferential cleavage of the phosphonate adjacent C-N bond to form glycine directly was also supported by our BCP analysis, which revealed that this C-N bond was disproportionately affected by the interaction of glyphosate with Mn(IV). Overall, these results provide useful insights into the potential pathways through which glyphosate may degrade via relatively benign intermediates.

  11. Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation.

    PubMed

    Mendiola-Alvarez, Sandra Yadira; Hernández-Ramírez, Ma Aracely; Guzmán-Mar, Jorge Luis; Garza-Tovar, Lorena Leticia; Hinojosa-Reyes, Laura

    2018-05-24

    Mesoporous phosphorous-doped TiO 2 (TP) with different wt% of P (0.5, 1.0, and 1.5) was synthetized by microwave-assisted sol-gel method. The obtained materials were characterized by XRD with cell parameters refinement approach, Raman, BET-specific surface area analysis, SEM, ICP-OES, UV-Vis with diffuse reflectance, photoluminescence, FTIR, and XPS. The photocatalytic activity under visible light was evaluated on the degradation of sulfamethazine (SMTZ) at pH 8. The characterization of the phosphorous materials (TP) showed that incorporation of P in the lattice of TiO 2 stabilizes the anatase crystalline phase, even increasing the annealing temperature. The mesoporous P-doped materials showed higher surface area and lower average crystallite size, band gap, and particle size; besides, more intense bands attributed to O-H bond were observed by FTIR analysis compared with bare TiO 2 . The P was substitutionally incorporated in the TiO 2 lattice network as P 5+ replacing Ti 4+ to form Ti-O-P bonds and additionally present as PO 4 3-  on the TiO 2 surface. All these characteristics explain the observed superior photocatalytic activity on degradation (100%) and mineralization (32%) of SMTZ under visible radiation by TP catalysts, especially for P-doped TiO 2 1.0 wt% calcined at 450 °C (TP1.0-450). Ammonium, nitrate, and sulfate ions released during the photocatalytic degradation were quantified by ion chromatography; the nitrogen and sulfur mass balance evidenced the partial mineralization of this recalcitrant molecule.

  12. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Qianlai; Schlosser, Courtney; Melillo, Jerry

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments thatmore » encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.« less

  13. Determination of the mechanism and extent of surface degradation in Ni-based cathode materials after repeated electrochemical cycling

    NASA Astrophysics Data System (ADS)

    Hwang, Sooyeon; Kim, Se Young; Chung, Kyung Yoon; Stach, Eric A.; Kim, Seung Min; Chang, Wonyoung

    2016-09-01

    We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime.

  14. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    PubMed

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments.

  15. Characterization of Insulin Degrading Enzyme and other Aβ Degrading Proteases in Human Serum: a Role in Alzheimer’s disease?

    PubMed Central

    Liu, Zhiheng; Zhu, Haihao; Fang, Guang Guang; Walsh, Kathryn; Mwamburi, Maya; Wolozin, Benjamin; Abdul-Hay, Same O.; Ikezu, Tsuneya; Lessring, Malcolm A.; Qiu, Wei Qiao

    2013-01-01

    Sporadic Alzheimer’s disease (AD) patients have low amyloid-β peptide (Aβ) clearance in the central nervous system (CNS). The peripheral Aβ clearance may also be important but its role in AD remains unclear. We aimed to study the Aβ degrading proteases including insulin degrading enzyme (IDE), angiotensin converting enzyme (ACE) and others in blood. Using the fluorogenic substrate V—a substrate of IDE and other metalloproteases, we showed that human serum degraded the substrate V, and the activity was inhibited by adding increasing dose of Aβ. The existence of IDE activity was demonstrated by the inhibition of insulin, amylin or EDTA, and further confirmed by immunocapture of IDE using monoclonal antibodies. The involvement of ACE was indicated by the ability of the ACE inhibitor, lisinopril, to inhibit the substrate V degradation. To test the variations of substrate V degradation in humans, we used serum samples from a homebound elderly population with cognitive diagnoses. Compared with the elderly who had normal cognition, those with probable AD and amnestic mild cognitive impairment (amnestic MCI) had lower peptidase activities. Probable AD or amnestic MCI as an outcome remained negatively associated with serum substrate V degradation activity after adjusting for the confounders. The elderly with probable AD had lower serum substrate V degradation activity compared with those who had vascular dementia. The blood proteases mediating Aβ degradation may be important for the AD pathogenesis. More studies are needed to specify each Aβ degrading protease in blood as a useful biomarker and a possible treatment target for AD. PMID:22232014

  16. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  17. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater.

    PubMed

    Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera

    2016-01-01

    An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples

  18. The Soil Degradation Subsystem of the Hungarian Environmental Information System

    NASA Astrophysics Data System (ADS)

    Szabó, József; Pirkó, Béla; Szabóné Kele, Gabriella; Dombos, Miklós; László, Péter; Koós, Sándor; Bakacsi, Zsófia; Laborczi, Annamária; Pásztor, László

    2013-04-01

    because of inappropriate land use and agricultural practice soil degradation occurs. To detect the soil degradation processes, and determine their type and degree, soil condition indicators were defined, which are based on analysis of the different soil state variables. In addition to state, also load indicators were defined based on the recorded data, for the determination of the type and level of loads in connection with the agro-technical elements of the agricultural cultivation. The indication models for determining the load indicators were quantified based on the relationship of the collected load parameters. The indication models as analytical queries were built into the TERRADEGRA system. Thus with the expansion and temporal repetition of the load- and status data an increasingly accurate picture of the environmental status of our soils can be drawn. Based on the built-in queries pilot data analysis were performed, whose results are available through a public web query-graphic surface (http://okir-tdr.helion.hu/). The web publication visualizes the load indicators related to agro-technical elements, the physical, chemical and biological degradation indicators of the identified human induced soil degradation processes as well as the load-state relationships using photos, thematic maps, diagrams and textual explanations.

  19. Human-Induced Vegetation Degradation in a Semi-Arid Rangeland

    NASA Astrophysics Data System (ADS)

    Jackson, Hasan

    Current assessments of anthropogenic land degradation and its impact on vegetation at regional scales are prone to large uncertainties due to the lack of an objective, transferable, spatially and temporally explicit measure of land degradation. These uncertainties have resulted in contradictory estimates of degradation extent and severity and the role of human activities. The uncertainties limit the ability to assess the effects on the biophysical environment and effectiveness of past, current, and future policies of land use. The overall objective of the dissertation is to assess degradation in a semi-arid region at a regional scale where the process of anthropogenic land degradation is evident. Net primary productivity (NPP) is used as the primary indicator to measure degradation. It is hypothesized that land degradation resulting from human factors on the landscape irreversibly reduces NPP below the potential set by environmental conditions. It is also hypothesized that resulting reductions in NPP are distinguishable from natural, spatial and temporal, variability in NPP. The specific goals of the dissertation are to (1) identify the extent and severity of degradation using productivity as the primary surrogate, (2) compare the degradation of productivity to other known mechanisms of degradation, and (3) relate the expression of degradation to components of vegetation and varying environmental conditions. This dissertation employed the Local NPP Scaling (LNS) approach to identify patterns of anthropogenic degradation of NPP in the Burdekin Dry Tropics (BDT) region of Queensland (14 million hectares), Australia from 2000 to 2013. The method started with land classification based on the environmental factors presumed to control NPP to group pixels having similar potential NPP. Then, satellite remotely sensing data were used to compare actual NPP with its potential. The difference, in units of mass of carbon fixed in NPP per unit area per monitoring interval and

  20. Quantifying noise in optical tweezers by allan variance.

    PubMed

    Czerwinski, Fabian; Richardson, Andrew C; Oddershede, Lene B

    2009-07-20

    Much effort is put into minimizing noise in optical tweezers experiments because noise and drift can mask fundamental behaviours of, e.g., single molecule assays. Various initiatives have been taken to reduce or eliminate noise but it has been difficult to quantify their effect. We propose to use Allan variance as a simple and efficient method to quantify noise in optical tweezers setups.We apply the method to determine the optimal measurement time, frequency, and detection scheme, and quantify the effect of acoustic noise in the lab. The method can also be used on-the-fly for determining optimal parameters of running experiments.

  1. Degraded character recognition based on gradient pattern

    NASA Astrophysics Data System (ADS)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  2. Photovoltaic failure and degradation modes

    DOE PAGES

    Jordan, Dirk C.; Silverman, Timothy J.; Wohlgemuth, John H.; ...

    2017-01-30

    The extensive photovoltaic field reliability literature was analyzed and reviewed. Future work is prioritized based upon information assembled from recent installations, and inconsistencies in degradation mode identification are discussed to help guide future publication on this subject. Reported failure rates of photovoltaic modules fall mostly in the range of other consumer products; however, the long expected useful life of modules may not allow for direct comparison. In general, degradation percentages are reported to decrease appreciably in newer installations that are deployed after the year 2000. However, these trends may be convoluted with varying manufacturing and installation quality world-wide. Modules inmore » hot and humid climates show considerably higher degradation modes than those in desert and moderate climates, which warrants further investigation. Delamination and diode/j-box issues are also more frequent in hot and humid climates than in other climates. The highest concerns of systems installed in the last 10 years appear to be hot spots followed by internal circuitry discoloration. Encapsulant discoloration was the most common degradation mode, particularly in older systems. In newer systems, encapsulant discoloration appears in hotter climates, but to a lesser degree. Lastly, thin-film degradation modes are dominated by glass breakage and absorber corrosion, although the breadth of information for thin-film modules is much smaller than for x-Si.« less

  3. Photovoltaic failure and degradation modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Silverman, Timothy J.; Wohlgemuth, John H.

    The extensive photovoltaic field reliability literature was analyzed and reviewed. Future work is prioritized based upon information assembled from recent installations, and inconsistencies in degradation mode identification are discussed to help guide future publication on this subject. Reported failure rates of photovoltaic modules fall mostly in the range of other consumer products; however, the long expected useful life of modules may not allow for direct comparison. In general, degradation percentages are reported to decrease appreciably in newer installations that are deployed after the year 2000. However, these trends may be convoluted with varying manufacturing and installation quality world-wide. Modules inmore » hot and humid climates show considerably higher degradation modes than those in desert and moderate climates, which warrants further investigation. Delamination and diode/j-box issues are also more frequent in hot and humid climates than in other climates. The highest concerns of systems installed in the last 10 years appear to be hot spots followed by internal circuitry discoloration. Encapsulant discoloration was the most common degradation mode, particularly in older systems. In newer systems, encapsulant discoloration appears in hotter climates, but to a lesser degree. Lastly, thin-film degradation modes are dominated by glass breakage and absorber corrosion, although the breadth of information for thin-film modules is much smaller than for x-Si.« less

  4. Method of degrading pollutants in soil

    DOEpatents

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  5. Isolation of nitrite-degrading strains from Douchi and their application to degrade high nitrite in Jiangshui.

    PubMed

    Guo, Xing; Liu, Bianfang; Gao, Lina; Zhou, Yuan; Shan, Yuanyuan; Lü, Xin

    2018-06-01

    Excessive nitrite in food is potentially harmful to human health because of its carcinogenic effects caused by nitroso-dervivatives. Douchi, which widely distributed throughout the country, is a traditional solid fermented soybean food with low nitrite content. In this study, bacterias which can degrade nitrite were isolated from Douchi and identified according to 16S rDNA sequence. Acinetobacter guillouiae, Acinetobacter bereziniae, Bacillus subtilis, Bacillus tequilensis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus aryabhattai and Bacillus methylotrophicus were selected. It was shown that all strains have nitrite degradation capability, in which 99.41 % nitrite can be degraded by Bacillus subtilis NDS1. The enzyme activities of these strains were determined at 24 h and 48 h, which corresponded to their nitrite degradation rates. The strains were firstly tried to inoculate in Jiangshui, which is a kind of traditional fermented vegetable in northwest China and often has high nitrite content. It was found that Bacillus subtilis NDS1, Bacillus tequilensis NDS3, Acinetobacter bereziniae NDS4, Bacillus subtilis NDS6, Bacillus subtilis NDS12 can degrade nitrite in Jiangshui more quickly, among which Acinetobacter bereziniae NDS4 degraded almost all nitrite in 48 h while it took 180 h for control. These results indicated that the selected strains have potential to become nitrite degradition agent in food. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Provisional Peer-Reviewed Toxicity Values for Lewisite

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  7. Characterization and Neutralization of Recovered Lewisite Munitions

    DTIC Science & Technology

    2006-12-01

    chlorine being rated as 1.0.51 Oxidative Species Relative Oxidizing Strength* Fluorine 2.23 Hydroxyl Radical 2.06 Atomic Oxygen 1.78 Hydrogen...containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile , the permnanganate ion is strongly attracted to the electrons

  8. Coupled Evolution of Transcription and mRNA Degradation

    PubMed Central

    Dori-Bachash, Mally; Shema, Efrat; Tirosh, Itay

    2011-01-01

    mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast. PMID:21811398

  9. Quantifiers More or Less Quantify On-Line: ERP Evidence for Partial Incremental Interpretation

    ERIC Educational Resources Information Center

    Urbach, Thomas P.; Kutas, Marta

    2010-01-01

    Event-related brain potentials were recorded during RSVP reading to test the hypothesis that quantifier expressions are incrementally interpreted fully and immediately. In sentences tapping general knowledge ("Farmers grow crops/worms as their primary source of income"), Experiment 1 found larger N400s for atypical ("worms") than typical objects…

  10. Thermal oxidative degradation reactions of linear perfluoroalky lethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1982-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoro alkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors are reported. The liner perfluoro alkylethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoro alkylether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating.

  11. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin.

    PubMed

    Yang, Jingjing; Feng, Yanmei; Zhan, Hui; Liu, Jie; Yang, Fang; Zhang, Kaiyang; Zhang, Lianhui; Chen, Shaohua

    2018-01-01

    D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100%) D-phenothrin at 50 mg⋅L -1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva . Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant ( K i ) of 482.1673 mg⋅L -1 and maximum specific degradation constant ( q max ) of 0.0455 h -1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L -1 . The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.

  12. Analysis to Quantify Significant Contribution

    EPA Pesticide Factsheets

    This Technical Support Document provides information that supports EPA’s analysis to quantify upwind state emissions that significantly contribute to nonattainment or interfere with maintenance of National Ambient Air Quality Standards in downwind states.

  13. Cathode Degradation in Thallium Bromide Devices

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Motakef, Shariar

    2015-06-01

    Thallium bromide (TlBr) is a wide bandgap, compound semiconductor with high gamma-ray stopping power and promising physical properties. However, performance degradation and the eventual irreversible failure of TlBr devices can occur rapidly at room temperature, due to “polarization”, caused by the electromigration of Tl+ and Br- ions to the electrical contacts across the device. Using the Accelerated Device Degradation (ADD) experiment, the degradation phenomena in TlBr devices have been visualized and recorded. This paper focuses on “ageing” of the device cathode at various temperatures. ADD is a fast and reliable direct characterization technique that can be used to identify the effects of various growth and post-growth process modifications on device degradation. Using this technique we have identified cathode degradation with the migration of Br- ions and an associated generation and growth of Thallium-rich fractal “ferns” from the cathode. Its effect on the radiation response of the device has also been discussed in this paper. The chemical changes in the cathode were characterized using Energy-dispersive X-ray spectroscopy.

  14. Methylmercury Uptake and Degradation by Methanotrophs

    DOE PAGES

    Lu, Xia; Gu, Wenyu; Zhao, Linduo; ...

    2017-05-31

    Methylmercury (CH 3Hg +) is a potent neurotoxin produced by certain anaerobic microorganisms in natural environments. While numerous studies have characterized the basis of mercury methylation, no studies have examined CH 3Hg + degradation by methanotrophs, despite their ubiquitous presence in the environment. We report that some methanotrophs (e.g., Methylosinus trichosporium OB3b) can take up and degrade CH 3Hg + rapidly, whereas others (e.g., Methylococcus capsulatus Bath) can take up but not degrade CH 3Hg +. Demethylation by M. trichosporium OB3b increases with increasing CH 3Hg + concentrations but is abolished in mutants deficient in methanobactin biosynthesis. Further, addition ofmore » methanol as a competing C1 substrate inhibits demethylation, suggesting that CH3Hg+ degradation by methanotrophs may involve an initial bonding of CH 3Hg + by methanobactin followed by cleavage of the C-Hg bond in CH 3Hg + by the methanol dehydrogenase. This new demethylation pathway by methanotrophs indicates possible broader involvement of C1-metabolizing aerobes in the environmental degradation of toxic CH3Hg+.« less

  15. Methylmercury Uptake and Degradation by Methanotrophs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xia; Gu, Wenyu; Zhao, Linduo

    Methylmercury (CH 3Hg +) is a potent neurotoxin produced by certain anaerobic microorganisms in natural environments. While numerous studies have characterized the basis of mercury methylation, no studies have examined CH 3Hg + degradation by methanotrophs, despite their ubiquitous presence in the environment. We report that some methanotrophs (e.g., Methylosinus trichosporium OB3b) can take up and degrade CH 3Hg + rapidly, whereas others (e.g., Methylococcus capsulatus Bath) can take up but not degrade CH 3Hg +. Demethylation by M. trichosporium OB3b increases with increasing CH 3Hg + concentrations but is abolished in mutants deficient in methanobactin biosynthesis. Further, addition ofmore » methanol as a competing C1 substrate inhibits demethylation, suggesting that CH3Hg+ degradation by methanotrophs may involve an initial bonding of CH 3Hg + by methanobactin followed by cleavage of the C-Hg bond in CH 3Hg + by the methanol dehydrogenase. This new demethylation pathway by methanotrophs indicates possible broader involvement of C1-metabolizing aerobes in the environmental degradation of toxic CH3Hg+.« less

  16. Modelling sulfamethoxazole degradation under different redox conditions

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, X.; Rodriguez-Escales, P.

    2015-12-01

    Sulfamethoxazole (SMX) is a low adsorptive, polar, sulfonamide antibiotic, widely present in aquatic environments. Degradation of SMX in subsurface porous media is spatially and temporally variable, depending on various environmental factors such as in situ redox potential, availability of nutrients, local soil characteristics, and temperature. It has been reported that SMX is better degraded under anoxic conditions and by co-metabolism processes. In this work, we first develop a conceptual model of degradation of SMX under different redox conditions (denitrification and iron reducing conditions), and second, we construct a mathematical model that allows reproducing different experiments of SMX degradation reported in the literature. The conceptual model focuses on the molecular behavior and contemplates the formation of different metabolites. The model was validated using the experimental data from Barbieri et al. (2012) and Mohatt et al. (2011). It adequately reproduces the reversible degradation of SMX under the presence of nitrite as an intermediate product of denitrification. In those experiments degradation was mediated by the transient formation of a diazonium cation, which was considered responsible of the substitution of the amine radical by a nitro radical, forming the 4-nitro-SMX. The formation of this metabolite is a reversible process, so that once the concentration of nitrite was back to zero due to further advancement of denitrification, the concentration of SMX was fully recovered. The forward reaction, formation of 4-nitro SMX, was modeled considering a kinetic of second order, whereas the backward reaction, dissociation of 4-nitro-SMX back to the original compound, could be modeled with a first order degradation reaction. Regarding the iron conditions, SMX was degraded due to the oxidation of iron (Fe2+), which was previously oxidized from goethite due to the degradation of a pool of labile organic carbon. As the oxidation of iron occurred on the

  17. Reference scenarios for deforestation and forest degradation in support of REDD: a review of data and methods

    NASA Astrophysics Data System (ADS)

    Olander, Lydia P.; Gibbs, Holly K.; Steininger, Marc; Swenson, Jennifer J.; Murray, Brian C.

    2008-04-01

    will have greater potential in 2007 and after. This paper focuses only on the methods for measuring changes in forest area, but this information must be coupled with estimates of change in forest carbon stocks in order to quantify emissions from deforestation and forest degradation.

  18. Interactive degraded document enhancement and ground truth generation

    NASA Astrophysics Data System (ADS)

    Bal, G.; Agam, G.; Frieder, O.; Frieder, G.

    2008-01-01

    Degraded documents are frequently obtained in various situations. Examples of degraded document collections include historical document depositories, document obtained in legal and security investigations, and legal and medical archives. Degraded document images are hard to to read and are hard to analyze using computerized techniques. There is hence a need for systems that are capable of enhancing such images. We describe a language-independent semi-automated system for enhancing degraded document images that is capable of exploiting inter- and intra-document coherence. The system is capable of processing document images with high levels of degradations and can be used for ground truthing of degraded document images. Ground truthing of degraded document images is extremely important in several aspects: it enables quantitative performance measurements of enhancement systems and facilitates model estimation that can be used to improve performance. Performance evaluation is provided using the historical Frieder diaries collection.1

  19. Degradation of malathion by salt-marsh microorganisms.

    PubMed Central

    Bourquin, A W

    1977-01-01

    Numerous bacteria from a salt-marsh environment are capable of degrading malathion, an organophosphate insecticide, when supplied with additional nutrients as energy and carbon sources. Seven isolates exhibited ability (48 to 90%) to degrade malathion as a sole carbon source. Gas and thin-layer chromatography and infrared spectroscopy confirmed malathion to be degraded via malathion-monocarboxylic acid to the dicarboxylic acid and then to various phosphothionates. These techniques also identified desmethyl-malathion, phosphorthionates, and four-carbon dicarboxylic acids as degradation products formed as a result of phosphatase activity. PMID:192147

  20. Marine bacterial degradation of brominated methanes

    USGS Publications Warehouse

    Goodwin, K.D.; Lidstrom, M.E.; Oremland, R.S.

    1997-01-01

    Brominated methanes are ozone-depleting compounds whose natural sources include marine algae such as kelp. Brominated methane degradation by bacteria was investigated to address whether bacterial processes might effect net emission of these compounds to the atmosphere. Bacteria in seawater collected from California kelp beds degraded CH2Br2 but not CHBr3. Specific inhibitors showed that methanotrophs and nitrifiers did not significantly contribute to CH2Br2 removal. A seawater enrichment culture oxidized 14CH2Br2 to 14CO2 as well as 14CH3Br to 14CO2. The rates of CH2Br2 degradation in laboratory experiments suggest that bacterial degradation of CH2Br2 in a kelp bed accounts for <1% of the CH2Br2 produced by the kelp. However, the half-life of CH2Br2 due to bacterial removal appears faster than hydrolysis and within an order of magnitude of volatilization to the atmosphere.Brominated methanes are ozone-depleting compounds whose natural sources include marine algae such as kelp. Brominated methane degradation by bacteria was investigated to address whether bacterial processes might effect net emission of these compounds to the atmosphere. Bacteria in seawater collected from California kelp beds degraded CH2Br2 but not CHBr3. Specific inhibitors showed that methanotrophs and nitrifiers did not significantly contribute to CH2Br2 removal. A seawater enrichment culture oxidized 14CH2Br2 to 14CO2 as well as 14CH3Br to 14CO2. The rates of CH2Br2 degradation in laboratory experiments suggest that bacterial degradation of CH2Br2 in a kelp bed accounts for <1% of the CH2Br2 produced by the kelp. However, the half-life of CH2Br2 due to bacterial removal appears faster than hydrolysis and within an order of magnitude of volatilization to the atmosphere.

  1. Draft Genome Sequence of Meiothermus ruber H328, Which Degrades Chicken Feathers, and Identification of Proteases and Peptidases Responsible for Degradation

    PubMed Central

    Inada, Shuhei

    2013-01-01

    Meiothermus ruber H328 was isolated from Arima Hot Springs, Kobe, Japan, as a moderate thermophile. It has a strong ability to degrade intact chicken feathers. The enzymatic mechanism of the strain for feather degradation is unclear. The draft genome suggests potent enzyme candidates for degradation of keratin, a hard-to-degrade protein found in feathers. PMID:23640376

  2. Fracture Fluid Additive and Formation Degradations

    EPA Pesticide Factsheets

    This presentation is on reactions that describe the degradation of fracturing fluids & formations during the hydraulic fracturing process & the clean‐up period. It contains a description of primary chemical reaction controls, & common degradation reactions

  3. Thermal oxidative degradation reactions of linear perfluoroalkyl ethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paclorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1983-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoroalkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors is reported. The linear perfluoroalkyl ethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoroalkyl ether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating. Previously announced in STAR as N82-26468

  4. Human-induced marine ecological degradation: micropaleontological perspectives

    PubMed Central

    Yasuhara, Moriaki; Hunt, Gene; Breitburg, Denise; Tsujimoto, Akira; Katsuki, Kota

    2012-01-01

    We analyzed published downcore microfossil records from 150 studies and reinterpreted them from an ecological degradation perspective to address the following critical but still imperfectly answered questions: (1) How is the timing of human-induced degradation of marine ecosystems different among regions? (2) What are the dominant causes of human-induced marine ecological degradation? (3) How can we better document natural variability and thereby avoid the problem of shifting baselines of comparison as degradation progresses over time? The results indicated that: (1) ecological degradation in marine systems began significantly earlier in Europe and North America (∼1800s) compared with Asia (post-1900) due to earlier industrialization in European and North American countries, (2) ecological degradation accelerated globally in the late 20th century due to post-World War II economic growth, (3) recovery from the degraded state in late 20th century following various restoration efforts and environmental regulations occurred only in limited localities. Although complex in detail, typical signs of ecological degradation were diversity decline, dramatic changes in total abundance, decrease in benthic and/or sensitive species, and increase in planktic, resistant, toxic, and/or introduced species. The predominant cause of degradation detected in these microfossil records was nutrient enrichment and the resulting symptoms of eutrophication, including hypoxia. Other causes also played considerable roles in some areas, including severe metal pollution around mining sites, water acidification by acidic wastewater, and salinity changes from construction of causeways, dikes, and channels, deforestation, and land clearance. Microfossils enable reconstruction of the ecological history of the past 102–103 years or even more, and, in conjunction with statistical modeling approaches using independent proxy records of climate and human-induced environmental changes, future research

  5. Human-induced marine ecological degradation: micropaleontological perspectives.

    PubMed

    Yasuhara, Moriaki; Hunt, Gene; Breitburg, Denise; Tsujimoto, Akira; Katsuki, Kota

    2012-12-01

    We analyzed published downcore microfossil records from 150 studies and reinterpreted them from an ecological degradation perspective to address the following critical but still imperfectly answered questions: (1) How is the timing of human-induced degradation of marine ecosystems different among regions? (2) What are the dominant causes of human-induced marine ecological degradation? (3) How can we better document natural variability and thereby avoid the problem of shifting baselines of comparison as degradation progresses over time? The results indicated that: (1) ecological degradation in marine systems began significantly earlier in Europe and North America (∼1800s) compared with Asia (post-1900) due to earlier industrialization in European and North American countries, (2) ecological degradation accelerated globally in the late 20th century due to post-World War II economic growth, (3) recovery from the degraded state in late 20th century following various restoration efforts and environmental regulations occurred only in limited localities. Although complex in detail, typical signs of ecological degradation were diversity decline, dramatic changes in total abundance, decrease in benthic and/or sensitive species, and increase in planktic, resistant, toxic, and/or introduced species. The predominant cause of degradation detected in these microfossil records was nutrient enrichment and the resulting symptoms of eutrophication, including hypoxia. Other causes also played considerable roles in some areas, including severe metal pollution around mining sites, water acidification by acidic wastewater, and salinity changes from construction of causeways, dikes, and channels, deforestation, and land clearance. Microfossils enable reconstruction of the ecological history of the past 10(2)-10(3) years or even more, and, in conjunction with statistical modeling approaches using independent proxy records of climate and human-induced environmental changes, future

  6. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation.

    PubMed

    Choi, Kang-Ho; Kim, Hyung-Seok; Park, Man-Seok; Lee, Eun-Bin; Lee, Jung-Kil; Kim, Joon-Tae; Kim, Ja-Hae; Lee, Min-Cheol; Lee, Hong-Joon; Cho, Ki-Hyun

    2016-10-18

    Cerebral edema from the disruption of the blood-brain barrier (BBB) after cerebral ischemia is a major cause of morbidity and mortality as well as a common event in patients with stroke. Caveolins (Cavs) are thought to regulate BBB functions. Here, we report for the first time that Cav-1 overexpression (OE) decreased brain edema from BBB disruption following ischemic insult. Edema volumes and Cav-1 expression levels were measured following photothrombosis and middle cerebral artery occlusion (MCAO). Endothelial cells that were transduced with a Cav-1 lentiviral expression vector were transplanted into rats. BBB permeability was quantified with Evans blue extravasation. Edema volume was determined from measures of the extravasation area, brain water content, and average fluorescence intensity after Cy5.5 injections. Tight junction (TJ) protein expression was measured with immunoblotting. Cav-1 expression levels and vasogenic brain edema correlated strongly after ischemic insult. Cav-1 expression and BBB disruption peaked 3 d after the MCAO. In addition, intravenous administration of endothelial cells expressing Cav-1 effectively increased the Cav-1 levels 3 d after the MCAO ischemic insult. Importantly, Cav-1 OE ameliorated the vasogenic edema by inhibiting the degradation of TJ protein expression in the acute phase of ischemic stroke. These results suggested that Cav-1 OE protected the integrity of the BBB mainly by preventing the degradation of TJ proteins in rats. These findings need to be confirmed in a clinical setting in human subjects.

  7. O-atom degradation mechanisms of materials

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Liang, Ranty H.; Chung, Shirley Y.; Smith, Keri Oda; Gupta, Amitava

    1987-01-01

    The low Earth orbit environment is described and the critical issues relating to oxygen atom degradation are discussed. Some analytic techniques for studying the problem and preliminary results on the underlying degradation mechanisms are presented.

  8. Degradation of ground ice in a changing climate: the potential impact of groundwater flow

    NASA Astrophysics Data System (ADS)

    de Grandpré, I.; Fortier, D.; Stephani, E.

    2011-12-01

    Climate changes affecting the North West portion of Canada alter the thermal state of the permafrost and promote ground ice degradation. Melting of ground ice leads to greater water flow into the ground and to significant hydraulic changes (i.e. drainage of peatland and lakes, triggering of thermokarst and new groundwater flow patterns). Road infrastructures built on permafrost are particularly sensitive to permafrost degradation. Road construction and maintenance induce heat flux into the ground by the increase of solar radiation absorption (comparing to natural ground), the increase of snow cover on side slopes, the infiltration of water in embankment material and the migration of surface water in the active layer. The permafrost under the roads is therefore submitted to a warmer environment than in natural ground and his behavior reflects how the permafrost will act in the future with the global warming trend. The permafrost degradation dynamic under a road was studied at the Beaver Creek (Yukon) experimental site located on the Alaska Highway. Permafrost was characterized as near-zero Celcius and highly susceptible to differential thaw-settlement due to the ground ice spatial distribution. Ice-rich cryostructures typical of syngenetic permafrost (e.g. microlenticular) were abundant in the upper and lower cryostratigraphic units of fine-grained soils (Units 1, 2A, and 2C). The middle ice-poor silt layer (Unit 2B) characterized by porous cryostructure comprised the top of a buried ice-wedge network extending several meters in the underlying layers and susceptible to degradation by thermo-erosion. These particular features of the permafrost at the study site facilitated the formation of taliks (unfrozen zones) under the road which leaded to a greater water flow. We believe that water flow is promoting an acceleration of permafrost degradation by advective heat transfer. This process remains poorly studied and quantified in permafrost environment. Field data on

  9. Degradation properties of protein and carbohydrate during sludge anaerobic digestion.

    PubMed

    Yang, Guang; Zhang, Panyue; Zhang, Guangming; Wang, Yuanyuan; Yang, Anqi

    2015-09-01

    Degradation of protein and carbohydrate is vital for sludge anaerobic digestion performance. However, few studies focused on degradation properties of protein and carbohydrate. This study investigated detailed degradation properties of sludge protein and carbohydrate in order to gain insight into organics removal during anaerobic digestion. Results showed that carbohydrate was more efficiently degraded than protein and was degraded prior to protein. The final removal efficiencies of carbohydrate and protein were 49.7% and 32.2%, respectively. The first 3 days were a lag phase for protein degradation since rapid carbohydrate degradation in this phase led to repression of protease formation. Kinetics results showed that, after initial lag phase, protein degradation followed the first-order kinetic with rate constants of 0.0197 and 0.0018 d(-1) during later rapid degradation phase and slow degradation phase, respectively. Carbohydrate degradation also followed the first-order kinetics with a rate constant of 0.007 d(-1) after initial quick degradation phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Degraded document image enhancement

    NASA Astrophysics Data System (ADS)

    Agam, G.; Bal, G.; Frieder, G.; Frieder, O.

    2007-01-01

    Poor quality documents are obtained in various situations such as historical document collections, legal archives, security investigations, and documents found in clandestine locations. Such documents are often scanned for automated analysis, further processing, and archiving. Due to the nature of such documents, degraded document images are often hard to read, have low contrast, and are corrupted by various artifacts. We describe a novel approach for the enhancement of such documents based on probabilistic models which increases the contrast, and thus, readability of such documents under various degradations. The enhancement produced by the proposed approach can be viewed under different viewing conditions if desired. The proposed approach was evaluated qualitatively and compared to standard enhancement techniques on a subset of historical documents obtained from the Yad Vashem Holocaust museum. In addition, quantitative performance was evaluated based on synthetically generated data corrupted under various degradation models. Preliminary results demonstrate the effectiveness of the proposed approach.

  11. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of 'b' fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater 'a' fraction, 'b' fraction, 'c' values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater

  12. Enzymatic degradation of thiolated chitosan.

    PubMed

    Laffleur, Flavia; Hintzen, Fabian; Rahmat, Deni; Shahnaz, Gul; Millotti, Gioconda; Bernkop-Schnürch, Andreas

    2013-10-01

    The objective of this study was to evaluate the biodegradability of thiolated chitosans in comparison to unmodified chitosan. Mediated by carbodiimide, thioglycolic acid (TGA) and mercaptonicotinic acid (MNA) were covalently attached to chitosan via formation an amide bond. Applying two different concentrations of carbodiimide 50 and 100 mM, two chitosan TGA conjugates (TGA A and TGA B) were obtained. According to chitosan solution (3% m/v) thiomer solutions were prepared and chitosanolytic enzyme solutions were added. Lysozyme, pectinase and cellulase were examined in chitosan degrading activity. The enzymatic degradability of these thiomers was investigated by viscosity measurements with a plate-plate viscometer. The obtained chitosan TGA conjugate A displayed 267.7 µmol and conjugate B displayed 116.3 µmol of immobilized thiol groups. With 325.4 µmol immobilized thiol groups, chitosan MNA conjugate displayed the most content of thiol groups. In rheological studies subsequently the modification proved that chitosan TGA conjugates with a higher coupling rate of thiol groups were not only degraded to a lesser extent by 20.9-26.4% but also more slowly. Chitosan mercaptonicotinic acid was degraded by 31.4-50.1% depending the investigated enzyme and even faster than unmodified chitosan. According to these results the biodegradability can be influenced by various modifications of the polymer which showed in particular that the rate of biodegradation is increased when MNA is the ligand, whereas the degradation is hampered when TGA is used as ligand for chitosan.

  13. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi.

    PubMed

    Chaucheyras-Durand, F; Ameilbonne, A; Bichat, A; Mosoni, P; Ossa, F; Forano, E

    2016-03-01

    To monitor the effect of a live yeast additive on feedstuff colonization by targeted fibrolytic micro-organisms and fibre degradation in the cow rumen. Abundance of adhering fibrolytic bacteria and fungi on feedstuffs incubated in sacco in the cow rumen was quantified by qPCR and neutral detergent fibre (NDF) degradation was measured. Saccharomyces cerevisiae I-1077 (SC) increased the abundance of fibre-associated Fibrobacter succinogenes on wheat bran (WB) and that of Ruminococcus flavefaciens on alfalfa hay (AH) and wheat silage (WS). The greatest effect was observed on the abundance of Butyrivibrio fibrisolvens on AH and soya hulls (SH) (P < 0·001). Fungal biomass increased on AH, SH, WS and WB in the presence of SC. NDF degradation of AH and SH was improved (P < 0·05) with SC supplementation. Live yeasts enhanced microbial colonization of fibrous materials, the degree of enhancement depended on their nature and composition. As an effect on rumen pH was not likely to be solely involved, the underlying mechanisms could involve nutrient supply or oxygen scavenging by the live yeast cells. Distribution of this microbial additive could be an interesting tool to increase fibre digestion in the rumen and thereby improve cow feed efficiency. © 2015 The Society for Applied Microbiology.

  14. Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films

    NASA Astrophysics Data System (ADS)

    Dupré, C.; Ernst, T.; Hartmann, J.-M.; Andrieu, F.; Barnes, J.-P.; Rivallin, P.; Faynot, O.; Deleonibus, S.; Fazzini, P. F.; Claverie, A.; Cristoloveanu, S.; Ghibaudo, G.; Cristiano, F.

    2007-11-01

    Based on electrical measurements and transmission electron microscopy (TEM) imaging, we propose an explanation for the electron and hole mobility degradation with gate length reduction in metal-oxide-semiconductor field effect transistors (MOSFETs). We demonstrate that ion implantation, normally used for source/drain doping, is responsible for transport degradation for short-channel devices. Implantation impact on electrons and holes mobility was investigated both on silicon-on-insulator (SOI) and tensile strained silicon-on-insulator (sSOI) substrates. Wafers with ultrathin Si films (from 8 to 35 nm) were Ge implanted at 3 keV and various concentrations (from 5×1014 to 2×1015 atoms cm-2), then annealed at 600 °C for 1 h. Secondary ion mass spectrometry enabled us to quantify the Ge-implanted atoms concentrations. The end-of-range defects impact on mobility was investigated with the pseudo-MOSFET technique. Measurements showed a mobility decrease as the implantation dose increased. We demonstrated that sSOI mobility is more sensitive to implantation than SOI mobility, without any implantation-induced strain relaxation in sSOI (checked using the ultraviolet Raman technique). A 36% (25%) holes (electrons) mobility degradation was measured for sSOI, while SOI presented a 21% mobility degradation for holes and 5% for electrons. Finally, the electrical results were compared with morphological studies. Plan-view TEM showed the presence of interstitial defects formed during ion implantation and annealing. The defect density was estimated to be two times higher in sSOI than in SOI, which is in full agreement with electrical results mentioned before. The results are relevant for the optimization of the source and drain regions of advanced nanoscale SOI and sSOI transistors.

  15. In vivo degradation in modern orthopaedic UHMWPE bearings and structural characterization of a novel alternative UHMWPE material

    NASA Astrophysics Data System (ADS)

    Reinitz, Steven D.

    Ultra-high molecular weight polyethylene (UHMWPE) remains the most common bearing material for total joint arthroplasty. Advances in radiation cross-linking and other post-consolidation treatments have led to a rapid differentiation of polyethylene products on the market, with more than twenty unique materials currently being sold by the five largest orthopaedic manufacturers alone. Through oxidation, cross-link density, and free radical measurements, this work demonstrates for the first time that in vivo material degradation is occurring in cross-linked UHMWPE materials. Based on the rate of the reaction in certain materials, it is concluded that oxidative degradation may compromise the mechanical properties of the bearings in as few as ten years, potentially leading to early clinical failure of the devices. Using the knowledge gained from this work as well as previously published observations about UHMWPE oxidation, a two-mechanism model of oxidation is proposed that offers an explanation for the observed in vivo changes. From this model it is concluded that oxidative degradation is in part the result of in vivo chemical species. The two-mechanism model of oxidation suggests that different processing techniques for UHMWPE may reduce the risk of oxidative degradation. It is concluded that by avoiding any radiation cross-linking step, Equal Channel Angular Processing (ECAP) can produce UHMWPE materials with a reduced risk for in vivo oxidation while at the same time offering superior mechanical properties compared to commercially available UHMWPE materials, as well as similar wear behavior. Using dynamic mechanical analysis, the entanglement density in ECAP materials is quantified, and is related back to the ECAP processing parameters. The relationship between entanglement density and resultant material properties is established. The results will allow informed processing parameter selection for producing optimized materials for orthopaedics and other applications.

  16. Metal peroxide- polymer composites for dye degradation

    NASA Astrophysics Data System (ADS)

    Anshu, Ashwini; Vijayaraghavan, R.

    2017-11-01

    Semiconductor metal oxides/its composites with polymers have been explored for dye degradation through photocatalytic mechanism; these require UV or visible light for activation. Hence, there is need to develop (photo) catalyst that work in absence/presence of light. Towards this objective we are exploring metal peroxides and its composites for dye degradation. Here, we report our work on magnesium peroxide and its composites for dye degradation by photochemical pathways. The nanocomposites are synthesized from monomers and peroxides. The synthesized composites have been characterized by IR, DRS and powder XRD. The composites did not degrade dyes in dark.

  17. Thermal oxidative degradation of ethylene tetrafluoroethylene copolymer systems

    NASA Astrophysics Data System (ADS)

    Elders, Jonathan Patrick

    Thermo-oxidative degradation of ethylene tetrafluoroethylene (ETFE) was investigated to determine how modifications for use in an electrical wire system affected its thermal stability. Modifications included electron irradiation and subsequent cross-linking during manufacture and contact with a metal surface. Samples with irradiation histories between 0 and 48 MRads were investigated. Degradation of ETFE was enhanced by contact with a metal "conductor" surface: silver - coated copper. Polymer degradation was analyzed by weight loss kinetics (thermogravimetric analysis (TGA)), changes in polymer morphology (differential scanning calorimetry (DSC)), optical microscopy, attenuated total reflectance (ATR) infrared spectroscopy, and gas chromatography - mass spectroscopy (GC/MS). Conductor aging (copper permeation through silver with subsequent oxidation) was investigated using scanning Auger Electron Spectroscopy (AES). Conductor aging is enhanced in the presence of the polymer surface. Interactions between conductor and polymer were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The rate of polymer degradation from 220°C to 280°C was independent of time and extent of degradation, and rate was proportional to irradiation dose. The activation energy for degradation of unirradiated ETFE was 227 kJ/mol and decreased from 150 to 138 kJ/mol for ETFE irradiated to doses between 6 and 48 MRads. Rates of degradation at 300°C to 320°C were dependent on the extent of degradation. Rates of degradation at temperatures between 230°C and 310°C were an order of magnitude larger in the presence of a conductor than in its absence, and activation energies for degradation in the presence of conductor were reduced to 120 kJ/mol. Degradation was modeled as the combination of bulk polymer degradation and catalytic degradation at the polymer-metal interface. ETFE aged at 250°C in the presence or absence of a conductor

  18. Analytical tools for assessing land degradation and its impact on soil quality

    NASA Astrophysics Data System (ADS)

    Bindraban, P. S.; Mantel, S.; Bai, Z.; de Jong, R.

    2010-05-01

    affects nutrient availability; in 20% of the potential maize growing areas productivity declined more then 50%. Overall, hydraulic soil functions were less affected by erosion in Kenya, still rain-fed yield decline exceeded 50 % on very steep lands. The simulated loss of topsoil in the Uruguay case mostly affected soil physical properties causing a reduction in rainfed wheat yields. Soil fertility status was little affected. In this paper we reflect on the use and effectiveness of these two approaches and discuss options for their (partial) integration as a means to better quantify extent, degree of degradation and the effects on soil quality. References Bai ZG, Dent DL, Olsson L and Schaepman ME 2008. Proxy global assessment of land degradation. Soil Use and Management 24, 223-234 Bindraban PS, Stoorvogel JJ, Jansen DM, Vlaming J and Groot JJR 2000. Land quality indicators for sustainable land management: proposed method for yield gap and soil nutrient balance. Agriculture, Ecosystems and the Environment 81, 103-112 Mantel S and van Engelen VWP 1999. Assessment of the impact of water erosion on productivity of maize in Kenya: an integrated modelling approach. Land Degradation & Development 10, 577-592 Mantel S, van Engelen VWP, Molfino JH and Resink JW 2000. Exploring biophysical potential and sustainability of wheat cultivation in Uruguay at the national level. Soil Use and Management 16, 270-278

  19. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    PubMed

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2017-04-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A-the control, B-natural zeolite addition, and C-3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites andDMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH 3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  20. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    PubMed

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  1. Nanobiocatalytic Degradation of Acid Orange 7

    NASA Astrophysics Data System (ADS)

    Hastings, Jason

    The catalytic properties of various metal nanoparticles have led to their use in environmental remediation applications. However, these remediation strategies are limited by their ability to deliver catalytic nanoparticles and a suitable electron donor to large treatment zones. Clostridium pasteurianum BC1 cells, loaded with bio-Pd nanoparticles, were used to effectively catalyze the reductive degradation and removal of Acid Orange 7 (AO7), a model azo compound. Hydrogen produced fermentatively by the C. pasteurianum BC1 acted as the electron donor for the process. Pd-free bacterial cultures or control experiments conducted with heat-killed cells showed limited reduction of AO7. Experiments also showed that the in situ biological production of H2 by C. pasteurianum BC1 was essential for the degradation of AO7, which suggests a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of AO7. The differences in initial degradation rate for experiments conducted using catalyst concentrations of 1ppm Pd and 5ppm Pd and an azo dye concentration of 100ppm AO7 was 0.39 /hr and 1.94 /hr respectively, demonstrating the importance of higher concentrations of active Pd(0). The degradation of AO7 was quick as demonstrated by complete reductive degradation of 50ppm AO7 in 2 hours in experiments conducted using a catalyst concentration of 5ppm Pd. Dye degradation products were analyzed via Gas Chromatograph-Mass Spectrometer (GCMS), High Performance Liquid Chromatography (HPLC), UltraViolet-Visible spectrophotometer (UV-Vis) and Matrix-Assisted Laser Desorption/Ionization (MALDI) spectrometry. The presence of 1-amino 2-naphthol, one of the hypothesized degradation products, was confirmed using mass spectrometry.

  2. Degradable Networks Containing Silyl Ether Bonds

    NASA Astrophysics Data System (ADS)

    Bassampour, Zahra S.

    Degradable networks possess applications in many fields such as medical implants, electrical devices, industrial coatings, adhesives, and aerospace. Silyl ether bonds are reactive functionalities capable of degrading under physiological condition without significantly affecting the pH of the surrounding environment. This dissertation focuses on preparative methods of degradable networks utilizing silyl ether functionalities. Epoxy polymers are broadly utilized in many different applications. Despite the broad utilization of epoxy polymer thermosets in long-term applications, these thermosets are not very popular candidates in short-term applications. This unpopularity is mostly due to the fact that epoxy networks are non-degradable systems, which results in their recycling being very costly and environmentally unfriendly. In the first and second part of this dissertation, the synthesis of various amine and thiol curing agents containing hydrolyzable silyl ether bonds is described. Using these curing agents, thermosetting epoxy polymers with degradable properties were prepared. The degradation behavior and thermal properties of the cured networks were studied. Age-related macular degeneration (AMD) is a leading cause of vision loss in the industrialized world. The high prevalence of AMD and the complications and shortcomings of available treatment options give rise to a great need for the development of novel types of biodegradable implants to provide sustainable drug release. The third part of this dissertation describes the utilization of hydrolyzable silyl ether bonds in the synthesis of novel implants capable of reserving and releasing a drug in a controlled manner in order to treat AMD. Base- catalyzed thiol-Michael reactions were exploited to prepare a series of biodegradable cross- linked networks. The networks were characterized by FTIR, TGA, and DMA. The effect of monomer structure on degradation, release behavior, and thermal properties was investigated.

  3. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation.

    PubMed

    Huang, Nan; Wang, Ting; Wang, Wen-Long; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying

    2017-05-01

    Benzalkonium chlorides (BACs), as typical cationic surfactants and biocides widely applied in household and industrial products, have been frequently detected as micropollutants in many aquatic environments. In this study, the combination of UV irradiation and chlorine (UV/chlorine), a newly interested advanced oxidation process, was used to degrade dodecylbenzyldimethylammonium chloride (DDBAC). UV/chlorine showed synergistic effects on DDBAC degradation comparing to UV irradiation or chlorination alone. Radical quenching experiments indicated that degradation of DDBAC by UV/chlorine involved both UV photolysis and radical species oxidation, which accounted for 48.4% and 51.6%, respectively. Chlorine dosage and pH are essential parameters affecting the treatment efficiency of UV/chlorine. The pseudo first order rate constant (k obs, DDBAC ) increased from 0.046 min -1 to 0.123 min -1 in response to chlorine dosage at 0-150 mg/L, and the degradation percentage of DDBAC within 12 min decreased from 81.4% to 56.6% at pH 3.6-9.5. Five main intermediates were identified and semi-quantified using HPLC-MS/MS and a possible degradation pathway was proposed. The degradation mechanisms of DDBAC by UV/chlorine included cleavage of the benzyl-nitrogen bond and hydrogen abstraction of the alkyl chain. Trichloromethane (TCM), chloral hydrate (CH), trichloropropanone (TCP), dichloropropanone (DCP) and dichloroacetonitrile (DCAN) were detected using GC-ECD. The formation of chlorinated products increased rapidly initially, then decreased (TCM, TCP, DCP and DCAN) or remained stable (CH) with extended treatment. The actual formation of TCM peaked at 30 min (50.3 μg/L), while other chlorinated products did not exceed 10 μg/L throughout the process. Based on the luminescent bacterial assay, DDBAC solution underwent almost complete detoxification subjected to UV/chlorine treatment for 120 min, which is more effective than UV irradiation or chlorination alone. Copyright

  4. Incremental comprehension of spoken quantifier sentences: Evidence from brain potentials.

    PubMed

    Freunberger, Dominik; Nieuwland, Mante S

    2016-09-01

    Do people incrementally incorporate the meaning of quantifier expressions to understand an unfolding sentence? Most previous studies concluded that quantifiers do not immediately influence how a sentence is understood based on the observation that online N400-effects differed from offline plausibility judgments. Those studies, however, used serial visual presentation (SVP), which involves unnatural reading. In the current ERP-experiment, we presented spoken positive and negative quantifier sentences ("Practically all/practically no postmen prefer delivering mail, when the weather is good/bad during the day"). Different from results obtained in a previously reported SVP-study (Nieuwland, 2016) sentence truth-value N400 effects occurred in positive and negative quantifier sentences alike, reflecting fully incremental quantifier comprehension. This suggests that the prosodic information available during spoken language comprehension supports the generation of online predictions for upcoming words and that, at least for quantifier sentences, comprehension of spoken language may proceed more incrementally than comprehension during SVP reading. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Autophagy mediates degradation of nuclear lamina.

    PubMed

    Dou, Zhixun; Xu, Caiyue; Donahue, Greg; Shimi, Takeshi; Pan, Ji-An; Zhu, Jiajun; Ivanov, Andrejs; Capell, Brian C; Drake, Adam M; Shah, Parisha P; Catanzaro, Joseph M; Ricketts, M Daniel; Lamark, Trond; Adam, Stephen A; Marmorstein, Ronen; Zong, Wei-Xing; Johansen, Terje; Goldman, Robert D; Adams, Peter D; Berger, Shelley L

    2015-11-05

    Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.

  6. Phenomenology of BWR fuel assembly degradation

    NASA Astrophysics Data System (ADS)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  7. Biochemistry of microbial polyvinyl alcohol degradation.

    PubMed

    Kawai, Fusako; Hu, Xiaoping

    2009-08-01

    Effect of minor chemical structures such as 1,2-diol content, ethylene content, tacticity, a degree of polymerization, and a degree of saponification of the main chain on biodegradability of polyvinyl alcohol (PVA) is summarized. Most PVA-degraders are Gram-negative bacteria belonging to the Pseudomonads and Sphingomonads, but Gram-positive bacteria also have PVA-degrading abilities. Several examples show symbiotic degradation of PVA by different mechanisms. Penicillium sp. is the only reported eukaryotic degrader. A vinyl alcohol oligomer-utilizing fungus, Geotrichum fermentans WF9101, has also been reported. Lignolytic fungi have displayed non-specific degradation of PVA. Extensive published studies have established a two-step process for the biodegradation of PVA. Some bacteria excrete extracellular PVA oxidase to yield oxidized PVA, which is partly under spontaneous depolymerization and is further metabolized by the second step enzyme (hydrolase). On the other hand, PVA (whole and depolymerized to some extent) must be taken up into the periplasmic space of some Gram-negative bacteria, where PVA is oxidized by PVA dehydrogenase, coupled to a respiratory chain. The complete pva operon was identified in Sphingopyxis sp. 113P3. Anaerobic biodegradability of PVA has also been suggested.

  8. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  9. Degradable vinyl polymers for biomedical applications.

    PubMed

    Delplace, Vianney; Nicolas, Julien

    2015-10-01

    Vinyl polymers have been the focus of intensive research over the past few decades and are attractive materials owing to their ease of synthesis and their broad diversity of architectures, compositions and functionalities. Their carbon-carbon backbones are extremely resistant to degradation, however, and this property limits their uses. Degradable polymers are an important field of research in polymer science and have been used in a wide range of applications spanning from (nano)medicine to microelectronics and environmental protection. The development of synthetic strategies to enable complete or partial degradation of vinyl polymers is, therefore, of great importance because it will offer new opportunities for the application of these materials. This Review captures the most recent and promising approaches to the design of degradable vinyl polymers and discusses the potential of these materials for biomedical applications.

  10. Degradation of Lignin by Cyathus Species

    PubMed Central

    Abbott, Thomas P.; Wicklow, Donald T.

    1984-01-01

    The ability of 12 Cyathus species to degrade 14C-labeled lignin in kenaf was studied. The sum of 14C released into solution plus 14C released into the gas phase over a 32-day fermentation period was used to determine average daily rates of lignin biodegradation. Cyathus pallidus. C. africanus, and C. berkeleyanus delignified kenaf most rapidly. C. canna showed the greatest preference for lignin degradation over other plant components, and its rate of lignin degradation was only slightly lower than the three most active species. The apparent ability of fungi to metabolize low-molecular-weight lignin breakdown products correlated well with their overall delignification rates. C. stercoreus metabolized degradation products of lignin from wheat straw better than those from kenaf lignin, based on the amount of low-molecular-weight products left in solution. PMID:16346497

  11. Lignin degradation in wood-feeding insects.

    PubMed

    Geib, Scott M; Filley, Timothy R; Hatcher, Patrick G; Hoover, Kelli; Carlson, John E; Jimenez-Gasco, Maria del Mar; Nakagawa-Izumi, Akiko; Sleighter, Rachel L; Tien, Ming

    2008-09-02

    The aromatic polymer lignin protects plants from most forms of microbial attack. Despite the fact that a significant fraction of all lignocellulose degraded passes through arthropod guts, the fate of lignin in these systems is not known. Using tetramethylammonium hydroxide thermochemolysis, we show lignin degradation by two insect species, the Asian longhorned beetle (Anoplophora glabripennis) and the Pacific dampwood termite (Zootermopsis angusticollis). In both the beetle and termite, significant levels of propyl side-chain oxidation (depolymerization) and demethylation of ring methoxyl groups is detected; for the termite, ring hydroxylation is also observed. In addition, culture-independent fungal gut community analysis of A. glabripennis identified a single species of fungus in the Fusarium solani/Nectria haematococca species complex. This is a soft-rot fungus that may be contributing to wood degradation. These results transform our understanding of lignin degradation by wood-feeding insects.

  12. Chemical Stockpile Disposal Program. Chemical Weapons Movement History Compilation.

    DTIC Science & Technology

    1987-06-12

    Arsenal, Edgewood Arsenal, and Dugway Proving Ground . (2) The Army has transferred agent fram certain munitions into other containers or munitions...Aberdeen Proving Ground , Maryland (Historical Volume). - ~ - - - - -.. , 27. Sea Dump of 700 Tons of Lewisite and Mustard , NAD, Concord, California, 1958... Proving Ground , Maryland (Historical Volumes). 42. SITREP File, SFTCM II, 1980; Chemical Agent Identification Sets (CAIS) Historical File; Information

  13. Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi.

    PubMed

    Matavulj, M; Molitoris, H P

    1992-12-01

    The current problems with decreasing fossile resources and increasing environmental pollution by petrochemical-based plastics have stimulated investigations to find biosynthetic materials which are also biodegradable. Bacterial reserve materials such as polyhydroxyalkanoates (PHA) have been discovered to possess thermoplastic properties and can be synthesized from renewable resources. Poly-beta-hydroxybutyric acid (PHB) is at present the most promising PHA; and BIOPOL, its copolymer with poly-beta-hydroxy-valerate (PHV), is already industrially produced (ICI, UK), and used as packaging material (WELLA, FRG). According to the literature, PHA degradation has so far mainly been observed in bacteria; only under certain environmental conditions has fungal degradation of PHAs been indicated. Since fungi constitute an important part of microbial populations participating in degradation processes, a simple screening method for fungal degradation of BIOPOL, a PHA-based plastic, was developed. Several media with about 150 fungal strains from different terrestrial environments and belonging to different systematic and ecological groups were used. PHA depolymerization was tested on three PHB-based media, each with 0.1% BIOPOL or PHB homopolymer causing turbidity of the medium. The media contained either a comparatively low or high content of organic carbon (beside PHA) or were based on mineral medium with PHA as the principal source of carbon. The degradation activity was detectable due to formation of a clear halo around the colony (Petri plates) or a clear zone under the colony (test tubes).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Bioinformatics Analysis and Characterization of Highly Efficient Polyvinyl Alcohol (PVA)-Degrading Enzymes from the Novel PVA Degrader Stenotrophomonas rhizophila QL-P4.

    PubMed

    Wei, Yahong; Fu, Jing; Wu, Jianying; Jia, Xinmiao; Zhou, Yunheng; Li, Cuidan; Dong, Mengxing; Wang, Shanshan; Zhang, Ju; Chen, Fei

    2018-01-01

    Polyvinyl alcohol (PVA) is used widely in industry, and associated environmental pollution is a serious problem. Herein, we report a novel, efficient PVA degrader, Stenotrophomonas rhizophila QL-P4, isolated from fallen leaves from a virgin forest in the Qinling Mountains. The complete genome was obtained using single-molecule real-time (SMRT) technology and corrected using Illumina sequencing. Bioinformatics analysis revealed eight PVA/vinyl alcohol oligomer (OVA)-degrading genes. Of these, seven genes were predicted to be involved in the classic intracellular PVA/OVA degradation pathway, and one (BAY15_3292) was identified as a novel PVA oxidase. Five PVA/OVA-degrading enzymes were purified and characterized. One of these, BAY15_1712, a PVA dehydrogenase (PVADH), displayed high catalytic efficiency toward PVA and OVA substrate. All reported PVADHs only have PVA-degrading ability. Most importantly, we discovered a novel PVA oxidase (BAY15_3292) that exhibited higher PVA-degrading efficiency than the reported PVADHs. Further investigation indicated that BAY15_3292 plays a crucial role in PVA degradation in S. rhizophila QL-P4. Knocking out BAY15_3292 resulted in a significant decline in PVA-degrading activity in S. rhizophila QL-P4. Interestingly, we found that BAY15_3292 possesses exocrine activity, which distinguishes it from classic PVADHs. Transparent circle experiments further proved that BAY15_3292 greatly affects extracellular PVA degradation in S. rhizophila QL-P4. The exocrine characteristics of BAY15_3292 facilitate its potential application to PVA bioremediation. In addition, we report three new efficient secondary alcohol dehydrogenases (SADHs) with OVA-degrading ability in S. rhizophila QL-P4; in contrast, only one OVA-degrading SADH was reported previously. IMPORTANCE With the widespread application of PVA in industry, PVA-related environmental pollution is an increasingly serious issue. Because PVA is difficult to degrade, it accumulates in aquatic

  15. Screening and biological characteristics of fufenozide degrading bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Chenhao; Gong, Mingfu; Guan, Qinlan; Deng, Xia; Deng, Hongyan; Huang, Jiao

    2018-04-01

    Fufenozide was a novel pesticide for the control of Lepidoptera pests, which was highly toxic to silkworm. Fufenozide-contaminated soil samples were collected and the bacteria that degrade fufenozide were isolated and screened by selective medium. The colony characteristics, cell characteristics and degradation characteristics in different concentrations fufenozide of the fufenozide degrading bacteria were studied. The results indicated that seven strains of fufenozide degradeing bacteria, named as DDH01, DDH03, DDH04, DDH04, DDH05, DDH07 and DDH07 respectively, were isolated from soil contaminated with fufenozide. DDH01, DDH02, DDH04 and DDH05 of seven fufenozide degrading bacteria, was gram-positive bacteria, and DDH03, DDH06 and DDH07 was gram-negative bacteria. All of seven strains of fufenozide degrading bacteria were not spores, weeks flagella, rod-shaped bacteria. DDH06 and DDH07 had capsules, and the remaining five strains had not capsule. The colonies formed by seven strains of fufenozide degradation bacteria on beef extract peptone medium plate were milky white colonies with irregular edges, thinner lawn, smaller colony with smooth surface. The growth of 7 strains of fufenozide degradation bacteria was significantly affected by the concentration of fufenozide, All of 7 strains grown in the range from 0.00025 g/mL to 1 g/mL of 10% fufenozide suspension. DDH2 was the best among the 7 strains of fufenozide degrading bacteria grown in 10% fufenozide suspension medium.

  16. Anaerobic Degradation of Benzene and Polycyclic Aromatic Hydrocarbons.

    PubMed

    Meckenstock, Rainer U; Boll, Matthias; Mouttaki, Housna; Koelschbach, Janina S; Cunha Tarouco, Paola; Weyrauch, Philip; Dong, Xiyang; Himmelberg, Anne M

    2016-01-01

    Aromatic hydrocarbons such as benzene and polycyclic aromatic hydrocarbons (PAHs) are very slowly degraded without molecular oxygen. Here, we review the recent advances in the elucidation of the first known degradation pathways of these environmental hazards. Anaerobic degradation of benzene and PAHs has been successfully documented in the environment by metabolite analysis, compound-specific isotope analysis and microcosm studies. Subsequently, also enrichments and pure cultures were obtained that anaerobically degrade benzene, naphthalene or methylnaphthalene, and even phenanthrene, the largest PAH currently known to be degradable under anoxic conditions. Although such cultures grow very slowly, with doubling times of around 2 weeks, and produce only very little biomass in batch cultures, successful proteogenomic, transcriptomic and biochemical studies revealed novel degradation pathways with exciting biochemical reactions such as for example the carboxylation of naphthalene or the ATP-independent reduction of naphthoyl-coenzyme A. The elucidation of the first anaerobic degradation pathways of naphthalene and methylnaphthalene at the genetic and biochemical level now opens the door to studying the anaerobic metabolism and ecology of anaerobic PAH degraders. This will contribute to assessing the fate of one of the most important contaminant classes in anoxic sediments and aquifers. © 2016 S. Karger AG, Basel.

  17. Soil Degradation: A North American perspective

    USDA-ARS?s Scientific Manuscript database

    Soil can be degraded through erosion and formation of undesirable physical, chemical, or biological properties due to industrialization or use of inappropriate farming practices that supersede natural regeneration. Soil degradation reflects unsustainable resource management that is global in scope a...

  18. Thermal decomposition of wood: kinetics and degradation mechanisms.

    PubMed

    Poletto, Matheus; Zattera, Ademir J; Santana, Ruth M C

    2012-12-01

    The influence of wood components and cellulose crystallinity on the kinetic degradation of different wood species has been investigated using thermogravimetry. Four wood species were studied: Pinus elliottii (PIE), Eucalyptus grandis (EUG), Mezilaurus itauba (ITA) and Dipteryx odorata (DIP). Thermogravimetric results showed that higher extractive contents in the wood accelerate the degradation process and promote an increase in the conversion values at low temperatures. Alternatively, the results indicated that the cellulose crystallinity inhibits wood degradation; organized cellulose regions slow the degradation process because the well-packed cellulose chains impede heat diffusion, which improves the wood's thermal stability. The wood degradation mechanism occurs by diffusion processes when the conversion values are below 0.4. When the conversion values are above 0.5, the degradation is a result of random nucleation with one nucleus in each particle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Role of Benzoate in Anaerobic Degradation of Terephthalate

    PubMed Central

    Kleerebezem, Robbert; Pol, Look W. Hulshoff; Lettinga, Gatze

    1999-01-01

    The effects of acetate, benzoate, and periods without substrate on the anaerobic degradation of terephthalate (1,4-benzene-dicarboxylate) by a syntrophic methanogenic culture were studied. The culture had been enriched on terephthalate and was capable of benzoate degradation without a lag phase. When incubated with a mixture of benzoate and terephthalate, subsequent degradation with preference for benzoate was observed. Both benzoate and acetate inhibited the anaerobic degradation of terephthalate. The observed inhibition is partially irreversible, resulting in a decrease (or even a complete loss) of the terephthalate-degrading activity after complete degradation of benzoate or acetate. Irreversible inhibition was characteristic for terephthalate degradation only because the inhibition of benzoate degradation by acetate could well be described by reversible noncompetitive product inhibition. Terephthalate degradation was furthermore irreversibly inhibited by periods without substrate of only a few hours. The inhibition of terephthalate degradation due to periods without substrate could be overcome through incubation of the culture with a mixture of benzoate and terephthalate. In this case no influence of a period without substrate was observed. Based on these observations it is postulated that decarboxylation of terephthalate, resulting in the formation of benzoate, is strictly dependent on the concomitant fermentation of benzoate. In the presence of higher concentrations of benzoate, however, benzoate is the favored substrate over terephthalate, and the culture loses its ability to degrade terephthalate. In order to overcome the inhibition of terephthalate degradation by benzoate and acetate, a two-stage reactor system is suggested for the treatment of wastewater generated during terephthalic acid production. PMID:10049877

  20. Optical properties of anodically degraded ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messerschmidt, Daniel, E-mail: daniel.messerschmidt@bosch.com; Gnehr, Wolf-Michael; Eberhardt, Jens

    2014-03-07

    We discuss the optical properties of non-degraded and anodically degraded boron-doped zinc oxide (ZnO:B) deposited by low-pressure chemical vapour deposition on soda-lime glass. The optical model used to simulate the infrared reflectance in the wavelength range between 1.2 and 25 μm is based on the Maxwell-Garnett effective-medium theory. The model is sensitive to the conditions at the grain boundaries of the investigated polycrystalline ZnO:B films. We confirm that the presence of defect-rich grain boundaries, especially after degradation, causes a highly resistive ZnO:B film. Furthermore, indications of a degraded zinc oxide layer next to the ZnO:B/glass interface with different refractive index aremore » found. We present evidence for the creation of oxygen vacancies, based on Raman investigations, which correlate with a shift of the optical absorption edge of the ZnO:B. Investigations with scanning and transmission electron microscopy show microvoids at the grain boundaries after anodic degradation. This indicates that the grain/grain interfaces are the principle location of defects after degradation.« less