Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants
John W. Coulston; Gretchen C. Smith; William D. Smith
2003-01-01
Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...
Ozone and haze pollution effects on the contemporary land carbon cycle
NASA Astrophysics Data System (ADS)
Unger, N.
2016-12-01
Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. Here, I present new results from three assessment studies that employ Earth system modeling and multiple measurement datasets. First, we quantify the separate and combined effects of anthropogenic ozone and aerosol pollution on the global land carbon uptake. Second, we evaluate benefits to land ecosystem health from selective emission reductions in specific pollution sources and sectors. Finally, I show that the long-term climatic effects of mid-latitude air pollution boosts plant productivity in the Amazon by 10% on the annual average today.
Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.
Fares, S; Loreto, F; Kleist, E; Wildt, J
2008-01-01
Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.
Response of giant sequoia canopy foliage to elevated concentrations of atmospheric ozone.
Grulke, N E; Miller, P R; Scioli, D
1996-06-01
We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a height of 34 m. No visible symptoms of foliar ozone damage were apparent throughout the 61-day exposure period and none of the ozone treatments affected branch growth. Despite the similarity in ozone concentrations in the branch chambers within a treatment, the trees exhibited different physiological responses to increasing ozone uptake. Differences in diurnal and seasonal patterns of g(s) among the trees led to a 2-fold greater ozone uptake in tree No. 2 compared with trees Nos. 1 and 3. Tree No. 3 had significantly higher CER and g(s) at 0.25x ambient ozone than trees Nos. 1 and 2, and g(s) and CER of tree No. 3 declined with increasing ozone uptake. The y-intercept of the regression for dark respiration versus ozone uptake was significantly lower for tree No. 2 than for trees Nos. 1 and 3. In the 0.25x and 1x ozone treatments, the chlorophyll concentration of current-year foliage of trees Nos. 1 and 2 was significantly higher than that of current-year foliage of tree No. 3. Chlorophyll concentration of current-year foliage on tree No. 1 did not decline with increasing ozone uptake. In all trees, total needle water potential decreased with increasing ozone uptake, but turgor was constant. Although tree No. 2 had the greatest ozone uptake, g(s) was highest and foliar chlorophyll concentration was lowest in tree No. 3 in the 0.25x and 1x ambient atmospheric ozone treatments.
Bergweiler, Chris; Manning, William J; Chevone, Boris I
2008-03-01
Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.
Panek, Jeanne A
2004-03-01
This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destaillats, Hugo; Chen, Wenhao; Apte, Michael
Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to {approx}150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50percent RH).more » Ozone breakthrough was recorded for each sample over periods of {approx}1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L/min (face velocity = 0.013 m/s), and a few tests were also run at higher rates (8 to 10 L/min). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction - Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives, rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.« less
Ozone exposure, uptake, and response of different-sized black cherry trees
Todd S. Frederickson; John M. Skelly; Kim C. Steiner; Thomas E. Kolb
1996-01-01
Differences in exposure, uptake and relative sensitivity to ozone between seedling, sapling, and canopy black cherry (Prunus serotina Ehrh.) trees were characterized during two growing seasons in north central Pennsylvania. Open-grown trees of all sizes received a similar amount of ozone exposure. Seedlings had greater foliar ozone injury, expressed...
Response of different-aged black cherry trees to ambient ozone exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredericksen, T.S.; Joyce, B.J.; Kouterick, K.B.
1994-06-01
Black cherry (Prunus serotina Ehrh.) is a valuable commercial timber species which is also highly sensitive to ozone relative to other eastern deciduous tree species. Studies of ozone effects on forest trees have been restricted mostly to experiments using small seedlings under controlled conditions. Yet, mature trees may differ from seedlings in physiology, morphology, and exposure to air pollutants. An experiment was conducted in 1993 to determine differences in ozone uptake and foliar injury symptoms between open-ground seedlings, forest saplings, and mature forest trees of black cherry in northcentral Pennsylvania. Seedlings grew under the highest ozone concentrations and also hadmore » greater seasonal ozone uptake due to higher rates of stomatal conductance. However, because of their indeterminate growth habit, seedlings had lower cumulative ozone uptake per leaf lifespan than saplings or mature trees, both of which had determinate shoot growth. Although greater initially for seedlings, foliar injury was nearly identical between size classes by the end of the growing season. Leaves in the lower crown of larger trees had lower ozone uptake than leaves in the upper crown, but exhibited more foliar injury symptoms. Lower crown leaves received more effective exposure to ozone because of their thinner leaves and had less available photosynthate for repair or replacement of damaged tissue.« less
Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian
2010-09-01
For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Franz, Martina; Simpson, David; Arneth, Almut; Zaehle, Sönke
2017-01-01
Ozone (O3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O3 transport from 45 m height to leaf level, (b) O3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O3 uptake over the lifetime of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O3 surface resistances, O3 deposition velocities, and stomatal to total O3 flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O3 transport and O3 deposition, in particular the stomatal O3 uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O3 uptake and accumulation, because aerodynamic resistance and non-stomatal O3 destruction reduce the predicted leaf-level O3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O3 impacts the regional carbon and water cycling less than expected from previous studies. This study presents a first step towards the integration of atmospheric chemistry and ecosystem dynamics modelling, which would allow for assessing the wider feedbacks between vegetation ozone uptake and tropospheric ozone burden.
Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing
2016-01-01
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions.
Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing
2016-01-01
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions. PMID:26760509
An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem.
Panek, Jeanne A; Kurpius, Meredith R; Goldstein, Allen H
2002-01-01
Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at all times of the growing season. This may be inaccurate in regions with a Mediterranean climate, such as California and the Pacific Northwest, where peak physiological activity occurs early in the season to take advantage of high soil moisture and does not correspond to peak ozone concentrations. It may also misrepresent ecosystems experiencing non-average climate conditions such as drought years. We compared direct measurements of ozone flux into a ponderosa pine canopy with a suite of the most common ozone exposure metrics to determine which best correlated with actual ozone uptake by the forest. Of the metrics we assessed, SUM0 (the sum of all daytime ozone concentrations > 0) best corresponded to ozone uptake by ponderosa pine, however the correlation was only strong at times when the stomata were unconstrained by site moisture conditions. In the early growing season (May and June). SUM0 was an adequate metric for forest ozone exposure. Later in the season, when stomatal conductance was limited by drought. SUM0 overestimated ozone uptake. A better metric for seasonally drought-stressed forests would be one that incorporates forest physiological activity, either through mechanistic modeling, by weighting ozone concentrations by stomatal conductance, or by weighting concentrations by site moisture conditions.
Modeling ozone uptake by urban and peri-urban forest: a case study in the Metropolitan City of Rome.
Fusaro, Lina; Mereu, Simone; Salvatori, Elisabetta; Agliari, Elena; Fares, Silvano; Manes, Fausto
2018-03-01
Urban and peri-urban forests are green infrastructures (GI) that play a substantial role in delivering ecosystem services such as the amelioration of air quality by the removal of air pollutants, among which is ozone (O 3 ), which is the most harmful pollutant in Mediterranean metropolitan areas. Models may provide a reliable estimate of gas exchanges between vegetation and atmosphere and are thus a powerful tool to quantify and compare O 3 removal in different contexts. The present study modeled the O 3 stomatal uptake at canopy level of an urban and a peri-urban forest in the Metropolitan City of Rome in two different years. Results show different rates of O 3 fluxes between the two forests, due to different exposure to the pollutant, management practice effects on forest structure and functionality, and environmental conditions, namely, different stressors affecting the gas exchange rates of the two GIs. The periodic components of the time series calculated by means of the spectral analysis show that seasonal variation of modeled canopy transpiration is driven by precipitation in peri-urban forests, whereas in the urban forest seasonal variations are driven by vapor pressure deficit of ambient air. Moreover, in the urban forest high water availability during summer months, owing to irrigation practice, leads to an increase in O 3 uptake, thus suggesting that irrigation may enhance air phytoremediation in urban areas.
Influence of volatile terpenes on the capacity of leaves to uptake and detoxify ozone. (Invited)
NASA Astrophysics Data System (ADS)
Loreto, F.; Fares, S.
2009-12-01
Tropospheric ozone is considered the most dangerous air pollutant for plant ecosystems, and its concentration is increasing throughout the earth. Oxidative damage takes place when ozone penetrates inside the leaves through the stomata and the cuticles. The latest guidelines suggest considering the dose entering stomata to evaluate ozone risk on vegetation. We have shown that this metric may not consider important detoxification mechanisms activated by the production of volatile antioxidants, especially terpenes. We review here how volatile terpenes may increase ozone uptake by leaves yet reducing the risk of damage to internal leaf structures. We also argue that volatile terpene production by plants phases-in with episodes on high ozone whereas other detoxification mechanisms are phased-out. Our results suggests that volatile isoprenoids play a major role in determining the capacity of ozone removal and detoxification by vegetation.
NASA Astrophysics Data System (ADS)
Christian, Kenneth E.; Brune, William H.; Mao, Jingqiu; Ren, Xinrong
2018-02-01
Making sense of modeled atmospheric composition requires not only comparison to in situ measurements but also knowing and quantifying the sensitivity of the model to its input factors. Using a global sensitivity method involving the simultaneous perturbation of many chemical transport model input factors, we find the model uncertainty for ozone (O3), hydroxyl radical (OH), and hydroperoxyl radical (HO2) mixing ratios, and apportion this uncertainty to specific model inputs for the DC-8 flight tracks corresponding to the NASA Intercontinental Chemical Transport Experiment (INTEX) campaigns of 2004 and 2006. In general, when uncertainties in modeled and measured quantities are accounted for, we find agreement between modeled and measured oxidant mixing ratios with the exception of ozone during the Houston flights of the INTEX-B campaign and HO2 for the flights over the northernmost Pacific Ocean during INTEX-B. For ozone and OH, modeled mixing ratios were most sensitive to a bevy of emissions, notably lightning NOx, various surface NOx sources, and isoprene. HO2 mixing ratios were most sensitive to CO and isoprene emissions as well as the aerosol uptake of HO2. With ozone and OH being generally overpredicted by the model, we find better agreement between modeled and measured vertical profiles when reducing NOx emissions from surface as well as lightning sources.
OZONE UPTAKE IN THE INTACT HUMAN RESPIRATORY TRACT - RELATIONSHIP BETWEEN INHALED AND ACTUAL DOSE
Inhaled concentration (C), minute volume (MV), and exposure duration (T) are factors that may affect the uptake of ozone (03) within the respiratory tract. Ten healthy adult nonsmokers participated in four sessions, inhaling 0.2 or 0.4 ppm 03 through an oral mask while exercisi...
WATER STRESS REDUCES OZONE INJURY VIA A STOMATAL MECHANISM
Various studies have shown that water-stressed plants are more tolerant of ozone exposures than are unstressed plants. Two probable explanations for this tolerance are (a) stomatal closure which reduces ozone uptake and (b) biochemical or anatomical changes within the leaves. Pha...
NASA Astrophysics Data System (ADS)
Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.
2017-12-01
Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry deposition vs. isoprene emissions to quantify the impact of each process on surface ozone seasonal cycles and compare to the changes induced by declining anthropogenic NOx emissions (RCP8.5).
Interannual variability in ozone removal by a temperate deciduous forest
NASA Astrophysics Data System (ADS)
Clifton, O. E.; Fiore, A. M.; Munger, J. W.; Malyshev, S.; Horowitz, L. W.; Shevliakova, E.; Paulot, F.; Murray, L. T.; Griffin, K. L.
2017-01-01
The ozone (O3) dry depositional sink and its contribution to observed variability in tropospheric O3 are both poorly understood. Distinguishing O3 uptake through plant stomata versus other pathways is relevant for quantifying the O3 influence on carbon and water cycles. We use a decade of O3, carbon, and energy eddy covariance (EC) fluxes at Harvard Forest to investigate interannual variability (IAV) in O3 deposition velocities (vd,O3). In each month, monthly mean vd,O3 for the highest year is twice that for the lowest. Two independent stomatal conductance estimates, based on either water vapor EC or gross primary productivity, vary little from year to year relative to canopy conductance. We conclude that nonstomatal deposition controls the substantial observed IAV in summertime vd,O3 during the 1990s over this deciduous forest. The absence of obvious relationships between meteorology and vd,O3 implies a need for additional long-term, high-quality measurements and further investigation of nonstomatal mechanisms.
Transboundary Contributions To Surface Ozone In California's Central Valley
NASA Astrophysics Data System (ADS)
Post, A.; Faloona, I. C.; Conley, S. A.; Lighthall, D.
2014-12-01
Rising concern over the impacts of exogenous air pollution in California's Central Valley has prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County, under the auspices of the Monterey Institute for Research in Astronomy. Two and a half years of continuous ozone data are presented in the context of long-range transport and its potential impact on surface air quality in the San Joaquin Valley (SJV). Past attempts to quantify the impact of transboundary ozone on surface levels have relied on uncertain model estimates, or have been limited to weekly ozonesonde data. Here, we present an observationally derived quantification of the contribution of free tropospheric ozone to surface sites in the San Joaquin Valley throughout three ozone seasons (June through September, 2012-2014). The diurnal ozone patterns at Chews Ridge, and their correlations with ozone aloft over the Valley, have been presented previously. Furthermore, reanalysis data of geopotential heights indicate consistent flow from Chews Ridge to the East, directly over the SJV. In a related airborne project we quantify the vertical exchange, or entrainment, rate over the Southern SJV from a series of focused flights measuring ozone concentrations during peak photochemical hours in conjunction with local meteorological data to quantify an ozone budget for the area. By applying the entrainment rates observed in that study here we are able to quantify the seasonal contributions of free tropospheric ozone measured at Chews Ridge to surface sites in the San Joaquin Valley, and compare prior model estimates to our observationally derived values.
Alexeeff, Stacey E; Pfister, Gabriele G; Nychka, Doug
2016-03-01
Climate change is expected to have many impacts on the environment, including changes in ozone concentrations at the surface level. A key public health concern is the potential increase in ozone-related summertime mortality if surface ozone concentrations rise in response to climate change. Although ozone formation depends partly on summertime weather, which exhibits considerable inter-annual variability, previous health impact studies have not incorporated the variability of ozone into their prediction models. A major source of uncertainty in the health impacts is the variability of the modeled ozone concentrations. We propose a Bayesian model and Monte Carlo estimation method for quantifying health effects of future ozone. An advantage of this approach is that we include the uncertainty in both the health effect association and the modeled ozone concentrations. Using our proposed approach, we quantify the expected change in ozone-related summertime mortality in the contiguous United States between 2000 and 2050 under a changing climate. The mortality estimates show regional patterns in the expected degree of impact. We also illustrate the results when using a common technique in previous work that averages ozone to reduce the size of the data, and contrast these findings with our own. Our analysis yields more realistic inferences, providing clearer interpretation for decision making regarding the impacts of climate change. © 2015, The International Biometric Society.
Fagnano, Massimo; Maggio, Albino
2018-03-01
The main environmental stresses of Italian croplands are discussed in relation to their interactions with ozone effects on crops. Water deficit and salinization are frequent in Mediterranean environments during spring-summer causing a decrease of soil water potential and water uptake by roots and consequently stomatal closure. These stresses also stimulate secondary metabolism and antioxidant accumulation, which also serves as a stress protection mechanism. High concentrations of tropospheric ozone are common all over Italy during the spring-summer season. Ozone injuries to vegetation are related to its penetration into plant tissues, mostly via stomatal uptake, rather than to tropospheric concentrations per se. In several crops, closure of stomata due to drought/salinization reduces ozone entering into leaf tissues and counteracts possible ozone damages. Furthermore, the stimulation of antioxidant synthesis as a response to environmental stresses can represent a further protection factor from ozone injuries for Mediterranean crops.The co-existence of stress-induced stomatal closure and high ozone levels during spring-summer in Mediterranean environments implies that models that do not take into account physiological responses of crops to drought and salinity stress may overestimate ozone damages when stress responses overlap with seasonal ozone peaks. The shift from concentration-based to flux-based approaches has improved the accuracy of models to assess ozone effects on agricultural crops. It is, however, necessary to further refine the flux concept with respect to the plant abiotic stress defense capacity that can differ among genotypes, climatic conditions, and physiological states.
Impacts of Central American Fires on Ozone Air Quality in Texas
NASA Astrophysics Data System (ADS)
Wang, S. C.; Wang, Y.; Lei, R.; Talbot, R. W.
2016-12-01
Background ozone represents the portion of ozone level in one day that cannot be reduced by local emission controls. One of the important factors causing high background ozone events is wildfires. Satellite observations have documented frequent transport of wildfire smoke from Mexico and Central America to the southern US, particularly Texas, causing haze and exceedance of fine particle matters. However, the impact of those fires on background ozone in Texas is poorly understood. In this study, the effects of the Central America fire emissions in spring (Apr-May) from 2000 to 2013 on high background ozone events in Texas are investigated and quantified. We first examine through back trajectory analysis if any high background ozone days in cities of Texas such as Houston can be traced back to fire events in Central America. The GEOS-Chem global chemical transport model and its nested-grid version over North America are used to simulate the periods of the selected cases studies of Central American fires. Long-large transport of gaseous emissions (NOx, VOCs, and CO) from Central American fires are simulated and background ozone concentrations variations in Texas region due to those fire events are also quantified through the difference in model results with and without fire emissions in Central America. Finally, this study connects those fires and high background ozone events, and also quantifies the contribution of fire emissions from Central America on Texas ozone air quality.
Finco, Angelo; Marzuoli, Riccardo; Chiesa, Maria; Gerosa, Giacomo
2017-12-01
The upper vegetation belts like larch forests are supposed to be under great pressure because of climate change in the next decades. For this reason, the evaluation of the risks due to abiotic stressors like ozone is a key step. Two different approaches were used here: mapping AOT40 index by means of passive samplers and direct measurements of ozone deposition.Measurements of ozone fluxes using the eddy-correlation technique were carried out for the first time over a larch forest in Paspardo (I) at 1750 m a.s.l. Two field campaigns were run: the first one in 2010 from July to October and the second one in the following year from June to September. Vertical exchange of ozone, energy, and momentum were measured on a tower platform at 26 m above ground level to study fluxes dynamics over this ecosystem. Since the tower was located on a gentle slope, an "ad hoc" methodology was developed to minimize the effects of the terrain inclination. The larch forest uptake was estimated by means of a two-layer model to separate the understorey uptake from the larch one. Even if the total ozone fluxes were generally high, up to 30-40 nmol O 3 m -2 s -1 in both years, the stomatal uptake by the larch forest was relatively low (around 15% of the total deposition).Ozone risk was assessed considering the POD 1 received by the larch forest and the exposure index AOT40 estimated with both local data and data from the map obtained by the passive samplers monitoring.
Li, Shuai; Harley, Peter C; Niinemets, Ülo
2017-09-01
Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre-exposure to lower O 3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol -1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol -1 O 3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O 3 priming than in light and without priming. After low O 3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. © 2017 John Wiley & Sons Ltd.
Li, Shuai; Harley, Peter C.; Niinemets, Ülo
2018-01-01
Acute ozone exposure triggers major emissions of volatile organic compounds (VOC), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e., pre-exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol-1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol-1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. PMID:28623868
Patrick J. Temple; Paul R. Miller
1998-01-01
Ambient ozone was monitored from 1992 to 1994 near a forested site dominated by mature Jeffrey and ponderosa pines (Pinus jeffrey Grev. & Balf. and Pinus ponderosa Dougl. ex Laws.) at 2,000 m in the San Bernardino Mountains of southern California. Ozone injury symptoms, including percent chlorotic mottle and foliage retention,...
USDA-ARS?s Scientific Manuscript database
Ozone uptake by plants leads to an increase in reactive oxygen species (ROS) in the intercellular space of leaves and induces signalling processes reported to involve the membrane-bound heterotrimeric G-protein complex. Therefore, potential G-protein-mediated response mechanisms to ozone were compar...
Sludge reduction by ozone: Insights and modeling of the dose-response effects.
Fall, C; Silva-Hernández, B C; Hooijmans, C M; Lopez-Vazquez, C M; Esparza-Soto, M; Lucero-Chávez, M; van Loosdrecht, M C M
2018-01-15
Applying ozone to the return flow in an activated sludge (AS) process is a way for reducing the residual solids production. To be able to extend the activated sludge models to the ozone-AS process, adequate prediction of the tri-atoms effects on the particulate COD fractions is needed. In this study, the biomass inactivation, COD mineralization, and solids dissolution were quantified in batch tests and dose-response models were developed as a function of the reacted ozone doses (ROD). Three kinds of model-sludge were used. S1 was a lab-cultivated synthetic sludge with two components (heterotrophs X H and X P ). S2 was a digestate of S1 almost made by the endogenous residues, X P . S3 was from a municipal activated sludge plant. The specific ozone uptake rate (SO 3 UR, mgO 3 /gCOD.h) was determined as a tool for characterizing the reactivity of the sludges. SO 3 UR increased with the X H fraction and decreased with more X P . Biomass inactivation was exponential (e -β.ROD ) as a function of the ROD doses. The percentage of solids reduction was predictable through a linear model (C Miner + Y sol ROD), with a fixed part due to mineralization (C Miner ) and a variable part from the solubilization process. The parameters of the models, i.e. the inactivation and the dissolution yields (β, 0.008-0.029 (mgO 3 /mgCOD ini ) -1 vs Y sol , 0.5-2.8 mg COD sol /mgO 3 ) varied in magnitude, depending on the intensity of the scavenging reactions and potentially the compactness of the flocs for each sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols
NASA Astrophysics Data System (ADS)
Mao, J.; Fan, S.; Jacob, D. J.; Travis, K.; Naik, V.; Horowitz, L. W.
2012-12-01
The hydroperoxyl radical (HO2) is a major precursor of OH and tropospheric ozone. OH is the main atmospheric oxidant, while tropospheric ozone is an important surface pollutant and greenhouse gas. Standard gas-phase models for atmospheric chemistry tend to overestimate observed HO2 concentrations, and this has been tentatively attributed to heterogeneous uptake by aerosol particles. It is generally assumed that HO2 uptake by aerosol involves conversion to H2O2, but this is of limited efficacy as an HO2 sink because H2O2 can photolyze to regenerate OH and from there HO2. Joint atmospheric observations of HO2 and H2O2 suggest that HO2 uptake by aerosols may in fact not produce H2O2. Here we propose a catalytic mechanism involving coupling of the transition metal ions (TMI) Cu(I)/Cu(II) and Fe(II)/Fe(III) to rapidly convert HO2 to H2O in aerosols. The implied HO2 uptake significantly affects global model predictions of tropospheric OH, ozone, and other species, improving comparisons to observations, and may have a major and previously unrecognized impact on atmospheric oxidant chemistry.
NASA Astrophysics Data System (ADS)
Bowman, K. W.; Lee, M.
2015-12-01
Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.
Quantifying the effects of ozone on plant reproductive growth and development
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone is a harmful air pollutant that can negatively impact plant growth and development. Current ozone concentrations negatively impact forest productivity and crop yields, and future ozone concentrations will increase if current emission rates continue. However, the specific effects o...
EFFECTS OF OZONE ON ROOT PROCESSES
Ozone alters root growth and root processes by first reducing photosynthesis and altering foliar metabolic pathways. The alteration in foliar metabolism is reflected in lowered carbohydrate levels in the roots. This can reduce key metabolic processes such as mineral uptake and sy...
USE OF AUXILIARY DATA FOR SPATIAL INTERPOLATION OF OZONE EXPOSURE IN SOUTHEASTERN FORESTS
In order to assess the impact of tropospheric ozone on forests, it is necessary to quantify ozone exposure on regional scales. Since ozone monitoring stations are widely scattered and mostly concentrate in urban and suburban areas, some form of spatial interpolation is necessary ...
NASA Technical Reports Server (NTRS)
Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong
2016-01-01
Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.
NASA Astrophysics Data System (ADS)
Pleijel, H.; Danielsson, H.; Emberson, L.; Ashmore, M. R.; Mills, G.
Applications of a parameterised Jarvis-type multiplicative stomatal conductance model with data collated from open-top chamber experiments on field grown wheat and potato were used to derive relationships between relative yield and stomatal ozone uptake. The relationships were based on thirteen experiments from four European countries for wheat and seven experiments from four European countries for potato. The parameterisation of the conductance model was based both on an extensive literature review and primary data. Application of the stomatal conductance models to the open-top chamber experiments resulted in improved linear regressions between relative yield and ozone uptake compared to earlier stomatal conductance models, both for wheat ( r2=0.83) and potato ( r2=0.76). The improvement was largest for potato. The relationships with the highest correlation were obtained using a stomatal ozone flux threshold. For both wheat and potato the best performing exposure index was AF st6 (accumulated stomatal flux of ozone above a flux rate threshold of 6 nmol ozone m -2 projected sunlit leaf area, based on hourly values of ozone flux). The results demonstrate that flux-based models are now sufficiently well calibrated to be used with confidence to predict the effects of ozone on yield loss of major arable crops across Europe. Further studies, using innovations in stomatal conductance modelling and plant exposure experimentation, are needed if these models are to be further improved.
NASA Technical Reports Server (NTRS)
Massman, W. J.; Pederson, J.; Delany, A.; Grantz, D.; Hertog, G. Den; Neumann, H. H.; Oncley, S. P.; Pearson, R., Jr.; Shaw, R. H.
1994-01-01
Plants and soils act as major sinks for the destruction of tropospheric ozone, especially during daylight hours when plant stomata open and are thought to provide the dominant pathway for the uptake of ozone. The present study, part of the California Ozone Deposition Experiment, compares predictions of the regional acid deposition model ozone surface conductance module with surface conductance data derived from eddy covariance measurements of ozone flux taken at a grape, a cotton, and a grassland site in the San Joaquin Valley of California during the summer of 1991. Results indicate that the model (which was developed to provide long-term large-area estimates for the eastern United States) significantly overpredicts the surface conductance at all times of the day for at least two important types of plant cover of the San Joaquin Valley and that it incorrectly partitions the ozone flux between transpiring and nontranspiring components of the surface at the third site. Consequently, the model either overpredicts or inaccurately represents the observed deposition velocities. Other results indicate that the presence of dew does not reduce the rate of ozone deposition, contradicting to model assumptions, and that model assumptions involving the dependency of stomata upon environmental temperature are unnecessary. The effects of measurement errors and biases, arising from the presence of the roughness sublayer and possible photochemical reactions, are also discussed. A simpler model for ozone surface deposition (at least for the San Joaquin Valley) is proposed and evaluated.
Isentropic Transport of Ozone Across the Tropopause on 345K
NASA Astrophysics Data System (ADS)
Jing, P.; Cunnold, D.
2002-05-01
Quantifying the transport of ozone from the stratosphere to the troposphere has been a challenge for many years. There are two types of cross-tropopause transport: the vertical diabatic transport and the quasi-horizontal isentropic transport. Because isentropic transport generally occurs more frequently than diabatic transport [Chen, 1995], it is a potentially important path for ozone to exchange between the stratosphere and the troposphere and to influence the chemistry in both regions. Based on the technique of contour advection, a method is developed to quantify the isentropic transport of ozone across the tropopause on the isentropic surface of 345K for the year 1990. This study employs the GSFC Data Assimilation Office assimilated products. It is shown that isentropic transport of ozone is a two-way process, but the annually integrated isentropic mass flux of ozone across the tropopause is directed from the stratosphere into the troposphere. The seasonality of the isentropic transport of ozone is also analyzed.
Ozone pollution will compromise efforts to increase global wheat production.
Mills, Gina; Sharps, Katrina; Simpson, David; Pleijel, Håkan; Broberg, Malin; Uddling, Johan; Jaramillo, Fernando; Davies, William J; Dentener, Frank; Van den Berg, Maurits; Agrawal, Madhoolika; Agrawal, Shahibhushan B; Ainsworth, Elizabeth A; Büker, Patrick; Emberson, Lisa; Feng, Zhaozhong; Harmens, Harry; Hayes, Felicity; Kobayashi, Kazuhiko; Paoletti, Elena; Van Dingenen, Rita
2018-03-31
Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
The role of plant phenology in stomatal ozone flux modeling.
Anav, Alessandro; Liu, Qiang; De Marco, Alessandra; Proietti, Chiara; Savi, Flavia; Paoletti, Elena; Piao, Shilong
2018-01-01
Plant phenology plays a pivotal role in the climate system as it regulates the gas exchange between the biosphere and the atmosphere. The uptake of ozone by forest is estimated through several meteorological variables and a specific function describing the beginning and the termination of plant growing season; actually, in many risk assessment studies, this function is based on a simple latitude and topography model. In this study, using two satellite datasets, we apply and compare six methods to estimate the start and the end dates of the growing season across a large region covering all Europe for the year 2011. Results show a large variability between the green-up and dormancy dates estimated using the six different methods, with differences greater than one month. However, interestingly, all the methods display a common spatial pattern in the uptake of ozone by forests with a marked change in the magnitude, up to 1.9 TgO 3 /year, and corresponding to a difference of 25% in the amount of ozone that enters the leaves. Our results indicate that improved estimates of ozone fluxes require a better representation of plant phenology in the models used for O 3 risk assessment. © 2017 John Wiley & Sons Ltd.
Ozone adsorption on carbon nanoparticles
NASA Astrophysics Data System (ADS)
Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis
2014-05-01
Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3 (or O2) and were chosen because it is believed to form the same reactive oxygen intermediates than ozone. A weak water physisorption on soot was observed revealing hydrophobic properties of particles. Oxygen atoms were found to be strongly reactive. A Langmuir behavior was observed for oxygen atoms adsorption on carbon particles and we were able to determine an initial uptake coefficient of approximately 2.10-2. [1] Fenidel, W., et al., Interaction between carbon or iron aerosol particles and ozone. Atmospheric Environment, 1995. 29(9): p. 967-973. [2] Smith, D. and A. Chughtai, Reaction kinetics of ozone at low concentrations with n-hexane soot. Journal of geophysical research, 1996. 101(D14): p. 19607-19,620. [3] Kamm, S., et al., The heterogeneous reaction of ozone with soot aerosol. Atmospheric Environment, 1999. 33(28): p. 4651-4661. [4] Stephens, S., M.J. Rossi, and D.M. Golden, The heterogeneous reaction of ozone on carbonaceous surfaces. International journal of chemical kinetics, 1986. 18(10): p. 1133-1149. [5] Pöschl, U., et al., Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo [a] pyrene: O3 and H2O adsorption, benzo [a] pyrene degradation, and atmospheric implications. The Journal of Physical Chemistry A, 2001. 105(16): p. 4029-4041.
High ozone increases soil perchlorate but does not affect foliar perchlorate content
USDA-ARS?s Scientific Manuscript database
Ozone (O3) is implicated in the natural source inventory of perchlorate (ClO4-), a hydrophilic salt that migrates to ground water and interferes with uptake of iodide in mammals, including humans. Tropospheric O3 is elevated in many areas. We previously showed (Grantz et al., 2013; Environmental Pol...
de la Torre, Daniel
2008-01-01
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid. PMID:19082416
de la Torre, Daniel
2008-12-14
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid.
Quantifying Uncertainty in Projections of Stratospheric Ozone Over the 21st Century
NASA Technical Reports Server (NTRS)
Charlton-Perez, A. J.; Hawkins, E.; Eyring, V.; Cionni, I.; Bodeker, G. E.; Kinnison, D. E.; Akiyoshi, H.; Frith, S. M.; Garcia, R.; Gettelman, A.;
2010-01-01
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an ensemble of opportunity of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for 10 ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21 st century, up-to and after the time when ozone concentrations 15 return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy; Parra, Amanda; Russell, Marion
Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirredmore » tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.« less
Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution
NASA Astrophysics Data System (ADS)
Wild, O.; Prather, M. J.
2005-12-01
Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.
Global tropospheric ozone modeling: Quantifying errors due to grid resolution
NASA Astrophysics Data System (ADS)
Wild, Oliver; Prather, Michael J.
2006-06-01
Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.
ERIC Educational Resources Information Center
Boyes, Edward; Stanisstreet, Martin
1997-01-01
Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…
Impact of physical properties on ozone removal by several porous materials.
Gall, Elliott T; Corsi, Richard L; Siegel, Jeffrey A
2014-04-01
Models of reactive uptake of ozone in indoor environments generally describe materials through aerial (horizontal) projections of surface area, a potentially limiting assumption for porous materials. We investigated the effect of changing porosity/pore size, material thickness, and chamber fluid mechanic conditions on the reactive uptake of ozone to five materials: two cellulose filter papers, two cementitious materials, and an activated carbon cloth. Results include (1) material porosity and pore size distributions, (2) effective diffusion coefficients for ozone in materials, and (3) material-ozone deposition velocities and reaction probabilities. At small length scales (0.02-0.16 cm) increasing thickness caused increases in estimated reaction probabilities from 1 × 10(-6) to 5 × 10(-6) for one type of filter paper and from 1 × 10(-6) to 1 × 10(-5) for a second type of filter paper, an effect not observed for materials tested at larger thicknesses. For high porosity materials, increasing chamber transport-limited deposition velocities resulted in increases in reaction probabilities by factors of 1.4-2.0. The impact of physical properties and transport effects on values of the Thiele modulus, ranging across all materials from 0.03 to 13, is discussed in terms of the challenges in estimating reaction probabilities to porous materials in scenarios relevant to indoor environments.
Shikimic Acid Ozonolysis is Influenced by its Physical State
NASA Astrophysics Data System (ADS)
Steimer, S.; Krieger, U. K.; Lampimäki, M.; Peter, T.; Ammann, M.
2013-12-01
Atmospheric aerosols play an important role in climate, air quality and human health. They undergo continuous transformation, changing their physical and chemical properties. Recent findings show that secondary organic aerosol (SOA) particles can form amorphous solids and semi-solids under atmospheric conditions [1]. Such physical states are highly viscous, leading to a decreased diffusivity within the bulk of the material. Inhibited mass transport could slow down chemical reactions, thereby increasing the lifetime of the organic compounds involved. First indications of such behavior were recently shown for the reaction of thin protein films with ozone [2] and formation of organonitrogen from ammonia uptake to α-pinene secondary organic material [3]. In this study, we investigated the influence of physical state on the ozonolysis of shikimic acid. This carboxylic acid is a constituent of biomass burning aerosols and used here as a proxy for oxygenated organic aerosol. The viscosity of the organic material was adjusted by varying the humidity of the system between 0% and 92% RH, assuming a correlation between the two parameters since water acts as a plasticizer. The system was probed with two complementary techniques: coated wall flow tube measurements, where the uptake of ozone is measured via loss from the gas phase and in situ X-ray microspectroscopy on single particles, where oxidation of the bulk can be observed. Additionally, data from electrodynamic balance measurements and kinetic modeling were used to facilitate data analysis. The dependence of the ozonolysis on relative humidity was clearly observed with both techniques. The coated wall flow tube measurements showed a long term, gradually changing ozone uptake over more than 15 hours, the magnitude of which varied over nearly two orders between driest and wettest conditions. It was possible to separate the uptake into two distinct kinetic regimes, the first of which displayed a Langmuir-Hinshelwood type behavior regarding the ozone gas phase concentration. Microspectroscopy showed that the speed at which the characteristic double bond peak of shikimic acid disappeared was humidity dependent. The measured humidity dependence supports the hypothesis that the uptake coefficient is highly dependent on the diffusion coefficients of ozone and/or shikimic acid in the organic film. [1] Nature, 2010, 467, 824-827. [2] Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 11003-11008. [3] Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 17354-17359.
NASA Astrophysics Data System (ADS)
Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.
2017-12-01
Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.
Quantification of source region influences on the ozone burden
NASA Astrophysics Data System (ADS)
Treffeisen, Renate; Grunow, Katja; Möller, Detlev; Hainsch, Andreas
A project was performed to quantify different influences on the ozone burden. It could be shown that large-scale meteorological influences determine a very large percentage of the ozone concentration. Local measures intended to reduce peak ozone concentrations in summer turn out to be not very effective as a result. The aim of this paper is to quantify regional emission influences on the ozone burden. The investigation of these influences is possible by comparison of the ozone (O 3) and oxidant (O x=O 3+NO 2) concentrations at high-elevation sites downwind and upwind of a source region by using back trajectories. It has been shown that a separation between large-scale influenced meteorological and regional ozone burdens at these sites is possible. This method is applied for an important emission area in Germany—the Ruhrgebiet. On average, no significant ozone contribution of this area to the regional ozone concentration could be found. A large part of the ozone concentration is highly correlated with synoptic weather systems, which exhibit a dominant influence on the local ozone concentrations. Significant contributions of related photochemical ozone formation of the source area of 13-15% have been found only during favourable meteorological situations, identified by the hourly maximum day temperature being above 25°C. This is important with respect to the EU daughter directive to EU 96/62/EC (Official Journal L296 (1996) 55) because Member States should explore the possibilities of local measures to avoid the exceedance of threshold values and, if effective local measures exist, to implement them.
How is ozone pollution reducing our food supply?
Wilkinson, Sally; Mills, Gina; Illidge, Rosemary; Davies, William J
2012-01-01
Ground-level ozone pollution is already decreasing global crop yields (from ∼2.2-5.5% for maize to 3.9-15% and 8.5-14% for wheat and soybean, respectively), to differing extents depending on genotype and environmental conditions, and this problem is predicted to escalate given climate change and increasing ozone precursor emissions in many areas. Here a summary is provided of how ozone pollution affects yield in a variety of crops, thus impacting global food security. Ozone causes visible injury symptoms to foliage; it induces early senescence and abscission of leaves; it can reduce stomatal aperture and thereby carbon uptake, and/or directly reduce photosynthetic carbon fixation; it can moderate biomass growth via carbon availability or more directly; it can decrease translocation of fixed carbon to edible plant parts (grains, fruits, pods, roots) due either to reduced availability at source, redirection to synthesis of chemical protectants, or reduced transport capabilities via phloem; decreased carbon transport to roots reduces nutrient and water uptake and affects anchorage; ozone can moderate or bring forward flowering and induce pollen sterility; it induces ovule and/or grain abortion; and finally it reduces the ability of some genotypes to withstand other stresses such as drought, high vapour pressure deficit, and high photon flux density via effects on stomatal control. This latter point is emphasized here, given predictions that atmospheric conditions conducive to drought formation that also give rise to intense precursor emission events will become more severe over the coming decades.
NASA Astrophysics Data System (ADS)
Tran, H. N. Q.; Tran, T. T.; Mansfield, M. L.; Lyman, S. N.
2014-12-01
Contributions of emissions from oil and gas activities to elevated ozone concentrations in the Uintah Basin - Utah were evaluated using the CMAQ Integrated Source Apportionment Method (CMAQ-ISAM) technique, and were compared with the results of traditional budgeting methods. Unlike the traditional budgeting method, which compares simulations with and without emissions of the source(s) in question to quantify its impacts, the CMAQ-ISAM technique assigns tags to emissions of each source and tracks their evolution through physical and chemical processes to quantify the final ozone product yield from the source. Model simulations were performed for two episodes in winter 2013 of low and high ozone to provide better understanding of source contributions under different weather conditions. Due to the highly nonlinear ozone chemistry, results obtained from the two methods differed significantly. The growing oil and gas industry in the Uintah Basin is the largest contributor to the elevated zone (>75 ppb) observed in the Basin. This study therefore provides an insight into the impact of oil and gas industry on the ozone issue, and helps in determining effective control strategies.
NASA Astrophysics Data System (ADS)
Wieser, G.; Emberson, L. D.
It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.
A reanalysis of ozone on Mars from assimilation of SPICAM observations
NASA Astrophysics Data System (ADS)
Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck
2018-03-01
We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.
Ecological issues related to ozone: agricultural issues.
Fuhrer, Jürg; Booker, Fitzgerald
2003-06-01
Research on the effects of ozone on agricultural crops and agro-ecosystems is needed for the development of regional emission reduction strategies, to underpin practical recommendations aiming to increase the sustainability of agricultural land management in a changing environment, and to secure food supply in regions with rapidly growing populations. Major limitations in current knowledge exist in several areas: (1) Modelling of ozone transfer and specifically stomatal ozone uptake under variable environmental conditions, using robust and well-validated dynamic models that can be linked to large-scale photochemical models lack coverage. (2) Processes involved in the initial reactions of ozone with extracellular and cellular components after entry through the stomata, and identification of key chemical species and their role in detoxification require additional study. (3) Scaling the effects from the level of individual cells to the whole-plant requires, for instance, a better understanding of the effects of ozone on carbon transport within the plant. (4) Implications of long-term ozone effects on community and whole-ecosystem level processes, with an emphasis on crop quality, element cycling and carbon sequestration, and biodiversity of pastures and rangelands require renewed efforts. The UNECE Convention on Long Range Trans-boundary Air Pollution shows, for example, that policy decisions may require the use of integrated assessment models. These models depend on quantitative exposure-response information to link quantitative effects at each level of organization to an effective ozone dose (i.e., the balance between the rate of ozone uptake by the foliage and the rate of ozone detoxification). In order to be effective in a policy, or technological context, results from future research must be funnelled into an appropriate knowledge transfer scheme. This requires data synthesis, up-scaling, and spatial aggregation. At the research level, interactions must be considered between the effects of ozone and factors that are either directly manipulated by man through crop management, or indirectly changed. The latter include elevated atmospheric CO(2), particulate matter, other pollutants such as nitrogen oxides, UV-B radiation, climate and associated soil moisture conditions.
Nikolov, Ned; Zeller, Karl F
2003-01-01
A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems.
Cheadle, Lucy; Deanes, Lauren; Sadighi, Kira; Gordon Casey, Joanna; Collier-Oxandale, Ashley; Hannigan, Michael
2017-09-10
Recent advances in air pollution sensors have led to a new wave of low-cost measurement systems that can be deployed in dense networks to capture small-scale spatio-temporal variations in ozone, a pollutant known to cause negative human health impacts. This study deployed a network of seven low-cost ozone metal oxide sensor systems (UPods) in both an open space and an urban location in Boulder, Colorado during June and July of 2015, to quantify ozone variations on spatial scales ranging from 12 m between UPods to 6.7 km between open space and urban measurement sites with a measurement uncertainty of ~5 ppb. The results showed spatial variability of ozone at both deployment sites, with the largest differences between UPod measurements occurring during the afternoons. The peak median hourly difference between UPods was 6 ppb at 1:00 p.m. at the open space site, and 11 ppb at 4:00 p.m. at the urban site. Overall, the urban ozone measurements were higher than in the open space measurements. This study evaluates the effectiveness of using low-cost sensors to capture microscale spatial and temporal variation of ozone; additionally, it highlights the importance of field calibrations and measurement uncertainty quantification when deploying low-cost sensors.
Current and future climate- and air pollution-mediated impacts on human health.
Doherty, Ruth M; Heal, Mathew R; Wilkinson, Paul; Pattenden, Sam; Vieno, Massimo; Armstrong, Ben; Atkinson, Richard; Chalabi, Zaid; Kovats, Sari; Milojevic, Ai; Stevenson, David S
2009-12-21
We describe a project to quantify the burden of heat and ozone on mortality in the UK, both for the present-day and under future emission scenarios. Mortality burdens attributable to heat and ozone exposure are estimated by combination of climate-chemistry modelling and epidemiological risk assessment. Weather forecasting models (WRF) are used to simulate the driving meteorology for the EMEP4UK chemistry transport model at 5 km by 5 km horizontal resolution across the UK; the coupled WRF-EMEP4UK model is used to simulate daily surface temperature and ozone concentrations for the years 2003, 2005 and 2006, and for future emission scenarios. The outputs of these models are combined with evidence on the ozone-mortality and heat-mortality relationships derived from epidemiological analyses (time series regressions) of daily mortality in 15 UK conurbations, 1993-2003, to quantify present-day health burdens. During the August 2003 heatwave period, elevated ozone concentrations > 200 microg m-3 were measured at sites in London and elsewhere. This and other ozone photochemical episodes cause breaches of the UK air quality objective for ozone. Simulations performed with WRF-EMEP4UK reproduce the August 2003 heatwave temperatures and ozone concentrations. There remains day-to-day variability in the high ozone concentrations during the heatwave period, which on some days may be explained by ozone import from the European continent.Preliminary calculations using extended time series of spatially-resolved WRF-EMEP4UK model output suggest that in the summers (May to September) of 2003, 2005 & 2006 over 6000 deaths were attributable to ozone and around 5000 to heat in England and Wales. The regional variation in these deaths appears greater for heat-related than for ozone-related burdens.Changes in UK health burdens due to a range of future emission scenarios will be quantified. These future emissions scenarios span a range of possible futures from assuming current air quality legislation is fully implemented, to a more optimistic case with maximum feasible reductions, through to a more pessimistic case with continued strong economic growth and minimal implementation of air quality legislation. Elevated surface ozone concentrations during the 2003 heatwave period led to exceedences of the current UK air quality objective standards. A coupled climate-chemistry model is able to reproduce these temperature and ozone extremes. By combining model simulations of surface temperature and ozone with ozone-heat-mortality relationships derived from an epidemiological regression model, we estimate present-day and future health burdens across the UK. Future air quality legislation may need to consider the risk of increases in future heatwaves.
Influence of physical state on the ozonolysis of shikimic acid
NASA Astrophysics Data System (ADS)
Steimer, Sarah; Krieger, Ulrich; Lampimäki, Markus; Peter, Thomas; Ammann, Markus
2014-05-01
Atmospheric aerosols are an important focus of environmental research due to their effect on climate, air quality and human health. They undergo continuous transformation, changing their physical and chemical properties. Recent findings show that secondary organic aerosol (SOA) particles can form amorphous solids and semi-solids under atmospheric conditions [1]. Since such physical states are highly viscous, diffusivity within the bulk decreases. The decrease in mass transport could slow down chemical reactions, thereby increasing the lifetime of the organic compounds involved. First indications of such behavior were recently shown for reaction of thin protein films with ozone [2], formation of organonitrogen from ammonia uptake to α-pinene secondary organic material [3] and reaction of SOA-coated benzo[a]pyrene with ozone [4]. In this study, we investigated the influence of physical state on the ozonolysis of shikimic acid. Said carboxylic acid is a constituent of biomass burning aerosols and used here as a proxy for oxygenated organic material. Its viscosity was adjusted by varying the humidity of the system between 0% and 92% RH, assuming correlation between the two parameters since water acts as a plasticizer. The system was probed with three complementary techniques: an electrodynamic balance (EDB), measuring the response of single particles to changes in humidity, coated wall flow tube measurements, where uptake of ozone is measured via loss from the gas phase and in situ X-ray microspectroscopy on single particles, where oxidation of the bulk can be observed. Additionally, a kinetic model was used to facilitate data analysis. EDB measurements showed clear evidence of humidity dependent glass formation and correlation of water content and water diffusivity. The dependence of the ozonolysis on relative humidity was observed with both flow tube and microspectroscopy measurements. The coated wall flow tube experiments showed a long term, gradually changing ozone uptake over more than 15 hours, the magnitude of which varied over nearly two orders between lowest and highest humidity. It was possible to separate the uptake into two distinct kinetic regimes, the first of which displayed a Langmuir-Hinshelwood type behavior regarding the ozone gas phase concentration. Microspectroscopy showed that the speed at which the characteristic double bond peak of shikimic acid disappeared was humidity dependent. The measured dependence of the reaction kinetics on humidity supports the hypothesis that the uptake coefficient is highly dependent on the diffusion coefficients of ozone and/or shikimic acid in the organic film. [1] Virtanen, A., et al., An amorphous solid state of biogenic secondary organic aerosol particles. Nature, 2010. 467(7317): p. 824-827. [2] Shiraiwa, M., et al., Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(27): p. 11003-11008. [3] Kuwata, M. and Martin, S. T., Phase of atmospheric secondary organic material affects its reactivity. Proceedings of the National Academy of Sciences of the United States of America, 109(43): p. 17354-17359. [4] Zhou, S., et al., Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discussions, 2013. 165: p. 391-406.
Dynamic evaluation of the CMAQv5.0 modeling system during the NOx SIP Call time period indicates that the model underestimates the observed ozone decrease in eastern U.S. Utilizing novel cross simulations we are able to separately quantify the impact on ozone predictions stemmin...
Schneider, Gerald F; Cheesman, Alexander W; Winter, Klaus; Turner, Benjamin L; Sitch, Stephen; Kursar, Thomas A
2017-04-01
Tropospheric ozone (O 3 ) is a major air pollutant and greenhouse gas, affecting carbon dynamics, ecological interactions, and agricultural productivity across continents and biomes. Elevated [O 3 ] has been documented in tropical evergreen forests, the epicenters of terrestrial primary productivity and plant-consumer interactions. However, the effects of O 3 on vegetation have not previously been studied in these forests. In this study, we quantified ambient O 3 in a region shared by forests and urban/commercial zones in Panama and found levels two to three times greater than in remote tropical sites. We examined the effects of these ambient O 3 levels on the growth and chemistry of seedlings of Ficus insipida, a regionally widespread tree with high stomatal conductance, using open-top chambers supplied with ozone-free or ambient air. We evaluated the differences across treatments in biomass and, using UPLC-MS-MS, leaf secondary metabolites and membrane lipids. Mean [O 3 ] in ambient air was below the levels that induce chronic stress in temperate broadleaved trees, and biomass did not differ across treatments. However, leaf secondary metabolites - including phenolics and a terpenoid - were significantly downregulated in the ambient air treatment. Membrane lipids were present at lower concentrations in older leaves grown in ambient air, suggesting accelerated senescence. Thus, in a tree species with high O 3 uptake via high stomatal conductance, current ambient [O 3 ] in Panamanian forests are sufficient to induce chronic effects on leaf chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.
EFFECTS OF CO2 AND O3 ON CARBON FLUX FOR PONDEROSA PINE PLANT/LITTER/SOIL SYSTEM
Carbon dioxide (CO2), a main contributor to global climate change, also adds carbon to forests. In contrast, tropospheric ozone (O3) can reduce carbon uptake and increase carbon loss by forests. Thus, the net balance of carbon uptake and loss for forests can be affected by concu...
Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery
NASA Technical Reports Server (NTRS)
Newchurch, M. J.; Yang, Eun-Su; Cunnold, D. M.; Reinsel, C.; Zawodny, J. M.; Russell, James M., III
2003-01-01
Global ozone trends derived from the Stratospheric Aerosol and Gas Experiment I and II (SAGE I/II) combined with the more recent Halogen Occultation Experiment (HALOE) observations provide evidence of a slowdown in stratospheric ozone losses since 1997. This evidence is quantified by the cumulative sum of residual differences from the predicted linear trend. The cumulative residuals indicate that the rate of ozone loss at 35- 45 km altitudes globally has diminished. These changes in loss rates are consistent with the slowdown of total stratospheric chlorine increases characterized by HALOE HCI measurements. These changes in the ozone loss rates in the upper stratosphere are significant and constitute the first stage of a recovery of the ozone layer.
Indicators for technological, environmental and economic sustainability of ozone contactors.
Zhang, Jie; Tejada-Martinez, Andres E; Lei, Hongxia; Zhang, Qiong
2016-09-15
Various studies have attempted to improve disinfection efficiency as a way to improve the sustainability of ozone disinfection which is a critical unit process for water treatment. Baffling factor, CT10, and log-inactivation are commonly used indicators for quantifying disinfection credits. However the applicability of these indicators and the relationship between these indicators have not been investigated in depth. This study simulated flow, tracer transport, and chemical species transport in a full-scale ozone contactor operated by the City of Tampa Water Department and six other modified designs using computational fluid dynamics (CFD). Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone contactor designs and upgrades and developed a composite indicator to quantify the sustainability in technological, environmental and economic dimensions. Copyright © 2016 Elsevier Ltd. All rights reserved.
W. J. Massman
2004-01-01
Present air quality standards to protect vegetation from ozone are based on measured concentrations (i.e., exposure) rather than on plant uptake rates (or dose). Some familiar cumulative exposure-based indices include SUM06, AOT40, and W126. However, plant injury is more closely related to dose, or more appropriately to effective dose, than to exposure. This study...
Performance evaluation of a tailor-made passive sampler for monitoring of tropospheric ozone.
Ozden, Ozlem; Döğeroğlu, Tuncay
2012-09-01
This study presents the performance evaluation of a tailor-made passive sampler developed for the monitoring of tropospheric ozone. The performance of the passive sampler was tested in the field conditions in terms of accuracy, precision, blank values, detection limit, effects of some parameters such as sampling site characteristics and sampling period on the field blanks, self-consistency, experimental and theoretical uptake rates, shelf life and comparison with commercial passive samplers. There was an agreement (R (2) = 0.84) between the responses of passive sampler and the continuous automatic analyser. The accuracy of the sampler, expressed as percent relative error, was obtained lower than 15%. Method precision in terms of coefficient of variance for three simultaneously applied passive samplers was 12%. Sampler detection limit was 2.42 μg m(-3) for an exposure period of 1 week, and the sampler can be stored safely for a period of up to 8 weeks before exposure. Satisfactory self-consistency results showed that extended periods gave the same integrated response as a series of short-term samplers run side by side. The uptake rate of ozone was found to be 10.21 mL min(-1) in a very good agreement with the theoretical uptake rate (10.32 mL min(-1)). The results of the comparison study conducted against a commercially available diffusion tube (Gradko diffusion tube) showed a good linear relationship (R (2) = 0.93) between two passive samplers. The sampler seems suitable to be used in large-scale measurements of ozone where no data are available or the number of existing automated monitors is not sufficient.
Albedo enhancement by stratospheric sulfur injections: More research needed
NASA Astrophysics Data System (ADS)
Robock, Alan
2016-12-01
Research on albedo enhancement by stratospheric sulfur injection inspired by Paul Crutzen's paper a decade ago has made clear that it may present serious risks and concerns as well as benefits if used to address the global warming problem. While volcanic eruptions were suggested as innocuous examples of stratospheric aerosols cooling the planet, the volcano analog also argues against stratospheric geoengineering because of ozone depletion and regional hydrologic responses. Continuous injection of SO2 into the lower stratosphere would reduce global warming and some of its negative impacts, and would increasing the uptake of CO2 by plants, but research in the past decade has pointed out a number of potential negative impacts of stratospheric geoengineering. More research is needed to better quantify the potential benefits and risks so that if society is tempted to implement geoengineering in the future it will be able to make an informed decision.
Gerosa, G; Marzuoli, R; Desotgiu, R; Bussotti, F; Ballarin-Denti, A
2009-05-01
This paper summarises some of the main results of a two-year experiment carried out in an Open-Top Chambers facility in Northern Italy. Seedlings of Populus nigra, Fagus sylvatica, Quercus robur and Fraxinus excelsior have been subjected to different ozone treatments (charcoal-filtered and non-filtered air) and soil moisture regimes (irrigated and non-irrigated plots). Stomatal conductance models were applied and parameterised under South Alpine environmental conditions and stomatal ozone fluxes have been calculated. The flux-based approach provided a better performance than AOT40 in predicting the onset of foliar visible injuries. Critical flux levels, related to visible leaf injury, are proposed for P. nigra and F. sylvatica (ranging between 30 and 33 mmol O(3) m(-2)). Soil water stress delayed visible injury appearance and development by limiting ozone uptake. Data from charcoal-filtered treatments suggest the existence of an hourly flux threshold, below which may occur a complete ozone detoxification.
NASA Technical Reports Server (NTRS)
Wargan, K.; Nielsen, J. E.
2017-01-01
A faithful representation of polar stratospheric chemistry in models and its connection with dynamical variability is essential for our understanding of the evolution of the ozone layer in a changing climate and during the projected continuing decline of ozone depleting substances in the atmosphere. We use a new configuration of the Goddard Earth Observing System Data Assimilation System with a stratospheric chemistry model to study ozone depletion in the Arctic polar stratosphere during the exceptionally cold (in the stratosphere) winters 2015/2016 and 2010/2011.
Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol.
Chipperfield, M P; Dhomse, S S; Feng, W; McKenzie, R L; Velders, G J M; Pyle, J A
2015-05-26
Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ∼2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ∼15% by 2013.
Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol
NASA Astrophysics Data System (ADS)
Chipperfield, M. P.; Dhomse, S. S.; Feng, W.; McKenzie, R. L.; Velders, G. J. M.; Pyle, J. A.
2015-05-01
Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ~2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ~15% by 2013.
Chemical and Dynamical Impacts of Stratospheric Sudden Warmings on Arctic Ozone Variability
NASA Technical Reports Server (NTRS)
Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.
2016-01-01
We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90N column O3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O3 from an assumed climatological mean is due to variations in O3 resupply and 13 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion.
Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics.
Grulke, N E; Alonso, R; Nguyen, T; Cascio, C; Dobrowolski, W
2004-09-01
Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) is widely distributed in the western USA. We report the lack of stomatal closure at night in early summer for ponderosa pine at two of three sites investigated. Trees at a third site with lower nitrogen dioxide and nitric acid exposure, but greater drought stress, had slightly open stomata at night in early summer but closed stomata at night for the rest of the summer. The three sites had similar background ozone exposure during the summer of measurement (2001). Nighttime stomatal conductance (gs) ranged from one tenth to one fifth that of maximum daytime values. In general, pole-sized trees (< 40 years old) had greater nighttime gs than mature trees (> 250 years old). In late summer, nighttime gs was low (< 3.0 mmol H2O m(-2) s(-1)) for both tree size classes at all sites. Measurable nighttime gs has also been reported in other conifers, but the values we observed were higher. In June, nighttime ozone (O3) uptake accounted for 9, 5 and 3% of the total daily O3 uptake of pole-sized trees from west to east across the San Bernardino Mountains. In late summer, O3 uptake at night was < 2% of diel uptake at all sites. Nocturnal O3 uptake may contribute to greater oxidant injury development, especially in pole-sized trees in early summer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Glenn Charles
1999-12-01
In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, andmore » separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10 -7, 10 -5, and 10 -5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10 -5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.« less
NASA Astrophysics Data System (ADS)
Kefauver, Shawn C.; Peñuelas, Josep; Ustin, Susan L.
2012-12-01
The impacts of tropospheric ozone on conifer health in the Sierra Nevada of California, USA, and the Pyrenees of Catalonia, Spain, were measured using field assessments and GIS variables of landscape gradients related to plant water relations, stomatal conductance and hence to ozone uptake. Measurements related to ozone injury included visible chlorotic mottling, needle retention, needle length, and crown depth, which together compose the Ozone Injury Index (OII). The OII values observed in Catalonia were similar to those in California, but OII alone correlated poorly to ambient ozone in all sites. Combining ambient ozone with GIS variables related to landscape variability of plant hydrological status, derived from stepwise regressions, produced models with R2 = 0.35, p = 0.016 in Catalonia, R2 = 0.36, p < 0.001 in Yosemite and R2 = 0.33, p = 0.007 in Sequoia/Kings Canyon National Parks in California. Individual OII components in Catalonia were modeled with improved success compared to the original full OII, in particular visible chlorotic mottling (R2 = 0.60, p < 0.001). The results show that ozone is negatively impacting forest health in California and Catalonia and also that modeling ozone injury improves by including GIS variables related to plant water relations.
The World Already Avoided: Quantifying the Ozone Benefits Achieved by the Montreal Protocol
NASA Astrophysics Data System (ADS)
Chipperfield, Martyn; Dhomse, Sandip; Feng, Wuhu; McKenzie, Richard; Velders, Guus; Pyle, John
2015-04-01
Chlorine and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic Ozone Hole expected to disappear by ~2050. However, we show that by 2014 the Montreal Protocol has already achieved significant benefits for the ozone layer. Using an off-line 3-D atmospheric chemistry model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with benefits for surface UV and climate. A deep Arctic Ozone Hole, with column values <120 DU, would have occurred given the meteorological conditions in 2011. The Antarctic Ozone Hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The ozone decline over northern hemisphere middle latitudes would have continued, more than doubling to ~15% by 2013.
NASA Astrophysics Data System (ADS)
Leung, F.
2016-12-01
Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop functional types in JULES are necessary. The model will thus contribute to a complete understanding of the impacts of climate change on food production. JULES will be later coupled with the Unified Model to quantify the impact of tropospheric O3 on crops productivity including feedbacks between the land-surface, atmospheric chemistry and climate change.
Leon S. Dochinger; Keith F. Jensen; Keith F. Jensen
1990-01-01
Seedlings represent an important linkage for assessing the effect of air pollution on forests. This study examines the foliar responses of white ash seedlings to ozone and acid precipitation as a means of identifying atmospheric deposition effects on forests.
Surface Ozone Background in the United States: Canadian and Mexican Pollution Influences
We use a global chemical transport model (GEOS-Chem) with 1° x 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-h average ozone concentrations in U.S.surface air.
Fate of pathologically bound oxygen resulting from inhalation of labeled ozone in rats
Inhaled ozone (03) reacts chemically with respiratory tissues where it forms adducts with most biomolecules. We quantified the plasma concentrations and urinary excretion of 18O in rats exposed to 1803 in order to gain insight into 0 injury and repair. Male Fischer 344 rats were ...
NASA Astrophysics Data System (ADS)
Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val
2017-02-01
Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.
Oxidation of atmospheric humic like substances by ozone: a kinetic and structural analysis approach.
Baduel, Christine; Monge, Maria E; Voisin, Didier; Jaffrezo, Jean-Luc; George, Christian; Haddad, Imad El; Marchand, Nicolas; D'Anna, Barbara
2011-06-15
This work explores the heterogeneous reaction between HUmic-LIke Substances (so-called HULIS) and ozone. Genuine atmospheric HULIS were extracted from aerosol samples collected in Chamonix (France) in winter and used in coated flow tube experiments to evaluate heterogeneous uptake of O₃ on such mixtures. The uptake coefficient (γ) was investigated as a function of pH (from 2.5 to 10), O₃ concentration (from 8 to 33 × 10¹¹ molecules cm⁻³), relative humidity (20 to 65%) and photon flux (from 0 to 1.66 × 10¹⁵ photons cm⁻² s⁻¹). Reactive uptake was found to increase in the irradiated experiment with pH, humidity and photon flux. The extract was characterized before and after exposure to O₃ and/or UV light in the attempt to elucidate the effect of the photochemical aging. Carbon content measurements, UV-vis spectroscopy and functional groups analysis revealed a decrease of the UV absorbance as well as of the carbon mass content, while the functionalization rate (COOH and C═O) and therefore the polarity increased during the simulated photochemical exposure.
Diagnosing ozone recovery using the O3-N2O relationship
NASA Astrophysics Data System (ADS)
Butler, A. H.; Gao, R. S.; Maycock, A.; Portmann, R. W.; Thornberry, T. D.; Rosenlof, K. H.; Fahey, D. W.
2016-12-01
The ubiquitous compact correlation between collocated values of stratospheric ozone (O3) and the tracer nitrous oxide (N2O) results from the stratospheric photochemical processes that produce ozone and destroy N2O combined with common transport and mixing processes. Changes in the correlation slope under certain circumstances reflect changes in the production and loss balance of ozone. This approach has been used extensively to diagnose and quantify ozone loss in polar spring. Using a coupled atmosphere-ocean model with interactive chemistry (CESM/WACCM), we show that this relationship can be used to diagnose ozone recovery in the lower extratropical stratosphere. We then consider in situ measurements of O3 and N2O from ATTREX, GloPac, and HIPPO as well as satellite measurements from ACE and Aura MLS to consider whether ozone recovery can be detected in observations during the period 2004-2016.
Change in ozone trends at southern high latitudes
NASA Technical Reports Server (NTRS)
Yang, E.-S.; Cunnold, D. M.; Newchurch, M. J.; Salawitch, R. J.
2005-01-01
Long-term ozone variations at 60-70degS in spring are investigated using ground-based and satellite measurements. Strong positive correlation is shown between year-to-year variations of ozone and temperature in the Antarctic collar region in Septembers and Octobers. Based on this relationship, the effect of year-to-year variations in vortex dynamics has been filtered out. This process results in an ozone time series that shows increasing springtime ozone losses over the Antarctic until the mid-1990s. Since approximately 1997 the ozone losses have leveled off. The analysis confirms that this change is consistent across all instruments and is statistically significant at the 95% confidence level. This analysis quantifies the beginning of the recovery of the ozone hole, which is expected from the leveling off of stratospheric halogen loading due to the ban on CFCs and other halocarbons initiated by the Montreal Protocol.
Insights into Tropical Tropospheric Ozone from Satellite and Sonde Data
NASA Technical Reports Server (NTRS)
Thompson, Anne M.
2003-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The data reside at: http://code916.gsfc.nasa.gov/Data_services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this. In addition to leading the SHADOZ network, we have been producing near-real tropical tropospheric ozone ('TTO') data from the Total Ozone Mapping Spectrometer (TOMS) since 1997 with Prof. Hudson and students at the University of Maryland: http://metosrv2.umd.edu/tropo. Further perspective on the complexity of tropospheric ozone variability is shown using satellite observations.
Products and kinetics of the heterogeneous reaction of suspended vinclozolin particles with ozone.
Gan, Jie; Yang, Bo; Zhang, Yang; Shu, Xi; Liu, Changgeng; Shu, Jinian
2010-11-25
Vinclozolin is a widely used fungicide that can be released into the atmosphere via application and volatilization. This paper reports an experimental investigation on the heterogeneous ozonation of vinclozolin particles. The ozonation of vinclozolin adsorbed on azelaic acid particles under pseudo-first-order conditions is investigated online with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The ozonation products are analyzed with a combination of VUV-ATOFMS and GC/MS. Two main ozonation products are observed. The formation of the ozonation products results from addition of O(3) on the C-C double bond of the vinyl group. The heterogeneous reactive rate constant of vinclozolin particles under room temperature is (2.4 ± 0.4) × 10(-17) cm(3) molecules(-1) s(-1), with a corresponding lifetime at 100 ppbv O(3) of 4.3 ± 0.7 h, which is almost comparable with the estimated lifetime due to the reaction with atmospheric OH radicals (∼1.7 h). The reactive uptake coefficient for O(3) on vinclozolin particles is (6.1 ± 1.0) × 10(-4).
Rebouças, Deborah Moura; De Sousa, Yuri Maia; Bagard, Matthieu; Costa, Jose Helio; Jolivet, Yves; De Melo, Dirce Fernandes; Repellin, Anne
2017-03-03
The interactive effects of drought and ozone on the physiology and leaf membrane lipid content, composition and metabolism of cowpea (Vigna unguiculata (L.) Walp.) were investigated in two cultivars (EPACE-1 and IT83-D) grown under controlled conditions. The drought treatment (three-week water deprivation) did not cause leaf injury but restricted growth through stomatal closure. In contrast, the short-term ozone treatment (130 ppb 12 h daily during 14 day) had a limited impact at the whole-plant level but caused leaf injury, hydrogen peroxide accumulation and galactolipid degradation. These effects were stronger in the IT83-D cultivar, which also showed specific ozone responses such as a higher digalactosyl-diacylglycerol (DGDG):monogalactosyldiacylglycerol (MGDG) ratio and the coordinated up-regulation of DGDG synthase (VuDGD2) and ω-3 fatty acid desaturase 8 (VuFAD8) genes, suggesting that membrane remodeling occurred under ozone stress in the sensitive cultivar. When stresses were combined, ozone did not modify the stomatal response to drought and the observed effects on whole-plant physiology were essentially the same as when drought was applied alone. Conversely, the drought-induced stomatal closure appeared to alleviate ozone effects through the reduction of ozone uptake.
Moura Rebouças, Deborah; Maia De Sousa, Yuri; Bagard, Matthieu; Costa, Jose Helio; Jolivet, Yves; Fernandes De Melo, Dirce; Repellin, Anne
2017-01-01
The interactive effects of drought and ozone on the physiology and leaf membrane lipid content, composition and metabolism of cowpea (Vigna unguiculata (L.) Walp.) were investigated in two cultivars (EPACE-1 and IT83-D) grown under controlled conditions. The drought treatment (three-week water deprivation) did not cause leaf injury but restricted growth through stomatal closure. In contrast, the short-term ozone treatment (130 ppb 12 h daily during 14 day) had a limited impact at the whole-plant level but caused leaf injury, hydrogen peroxide accumulation and galactolipid degradation. These effects were stronger in the IT83-D cultivar, which also showed specific ozone responses such as a higher digalactosyl-diacylglycerol (DGDG):monogalactosyl-diacylglycerol (MGDG) ratio and the coordinated up-regulation of DGDG synthase (VuDGD2) and ω-3 fatty acid desaturase 8 (VuFAD8) genes, suggesting that membrane remodeling occurred under ozone stress in the sensitive cultivar. When stresses were combined, ozone did not modify the stomatal response to drought and the observed effects on whole-plant physiology were essentially the same as when drought was applied alone. Conversely, the drought-induced stomatal closure appeared to alleviate ozone effects through the reduction of ozone uptake. PMID:28273829
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konings, A.W.
1986-01-01
The direct action of ozone on viability and survival of normal and modified mouse lung fibroblasts has been studied. By cell manipulation of fibroblasts in culture, the content of polyunsaturated fatty acids (PUFA) in the phospholipids was increased from about 6% to about 40%. The cellular content of alpha-tocopherol (alpha-T) (vitamin E) could be drastically enhanced. Vitamin E supplementation to the cell did not influence the PUFA manipulation. Normal, PUFA, and PUFA(alpha-T) fibroblasts were exposed to ozone by bubbling 10 ppm through the cell suspensions for different periods of time (0-6 h). No significant effects of the ozone exposure couldmore » be established when normal fibroblasts were used. The PUFA fibroblasts, however, were very vulnerable to ozone toxicity, both in terms of dye uptake (Trypan blue) and cell death (clonogenic ability). When alpha-tocopherol was present in the cell (200 ng/10(6) cells), a clear protection against ozone toxicity was found. It is concluded that ozone toxicity might be higher under conditions of a relative high amount of polyunsaturated fatty acids in the membrane phospholipids of the cell and a low cellular antioxidant capacity. Cellular membranes are probably an important target for ozone-induced cell death.« less
Reactive nitrogen partitioning and its relationship to winter ozone events in Utah
NASA Astrophysics Data System (ADS)
Wild, R. J.; Edwards, P. M.; Bates, T. S.; Cohen, R. C.; de Gouw, J. A.; Dubé, W. P.; Gilman, J. B.; Holloway, J.; Kercher, J.; Koss, A.; Lee, L.; Lerner, B.; McLaren, R.; Quinn, P. K.; Roberts, J. M.; Stutz, J.; Thornton, J. A.; Veres, P. R.; Warneke, C.; Williams, E.; Young, C. J.; Yuan, B.; Brown, S. S.
2015-08-01
High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013, and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NOx(NO+NO2), remained remarkably similar all three years. Roughly half of the more oxidized forms of nitrogen were composed of nitric acid in 2013, with nighttime nitric acid formation through heterogeneous uptake of N2O5 contributing approximately 6 times more than daytime formation. The nighttime N2O5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor 2.6, and much of this is due to higher aerosol surface area in the high ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NOx and ozone concentrations to nighttime processes.
Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol
Chipperfield, M. P.; Dhomse, S. S.; Feng, W.; McKenzie, R. L.; Velders, G.J.M.; Pyle, J. A.
2015-01-01
Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ∼2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ∼15% by 2013. PMID:26011106
The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRFE), which estimates the ...
NASA Astrophysics Data System (ADS)
Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.
2016-01-01
Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time. Influence of temperature and humidity on ozone-surface reactivity was not strong.
Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH.
Rangel-Mendez, J R; Streat, M
2002-03-01
The surface of activated carbon cloth (ACC), based on polyacrylonitrile fibre as a precursor, was oxidised using nitric acid, ozone and electrochemical oxidation to enhance cadmium ion exchange capacity. Modified adsorbents were physically and chemically characterised by pH titration, direct titration, X-ray photoelectron spectroscopy, elemental analysis, surface area and porosimetry, and scanning electron microscopy. BET surface area decreased after oxidation, however, the total ion exchange capacity increased by a factor of approximately 3.5 compared to the commercial as-received ACC. A very significant increase in cadmium uptake, by a factor of 13, was observed for the electrochemically oxidised ACC. Equilibrium sorption isotherms were determined at pH 4, 5 and 6 and these showed that cadmium uptake increased with increasing pH. There was clear evidence of physical damage to ozone-oxidised fibre, however, acid and electrochemically oxidised samples were completely stable.
NASA Astrophysics Data System (ADS)
Derwent, Richard G.; Parrish, David D.; Galbally, Ian E.; Stevenson, David S.; Doherty, Ruth M.; Naik, Vaishali; Young, Paul J.
2018-05-01
Recognising that global tropospheric ozone models have many uncertain input parameters, an attempt has been made to employ Monte Carlo sampling to quantify the uncertainties in model output that arise from global tropospheric ozone precursor emissions and from ozone production and destruction in a global Lagrangian chemistry-transport model. Ninety eight quasi-randomly Monte Carlo sampled model runs were completed and the uncertainties were quantified in tropospheric burdens and lifetimes of ozone, carbon monoxide and methane, together with the surface distribution and seasonal cycle in ozone. The results have shown a satisfactory degree of convergence and provide a first estimate of the likely uncertainties in tropospheric ozone model outputs. There are likely to be diminishing returns in carrying out many more Monte Carlo runs in order to refine further these outputs. Uncertainties due to model formulation were separately addressed using the results from 14 Atmospheric Chemistry Coupled Climate Model Intercomparison Project (ACCMIP) chemistry-climate models. The 95% confidence ranges surrounding the ACCMIP model burdens and lifetimes for ozone, carbon monoxide and methane were somewhat smaller than for the Monte Carlo estimates. This reflected the situation where the ACCMIP models used harmonised emissions data and differed only in their meteorological data and model formulations whereas a conscious effort was made to describe the uncertainties in the ozone precursor emissions and in the kinetic and photochemical data in the Monte Carlo runs. Attention was focussed on the model predictions of the ozone seasonal cycles at three marine boundary layer stations: Mace Head, Ireland, Trinidad Head, California and Cape Grim, Tasmania. Despite comprehensively addressing the uncertainties due to global emissions and ozone sources and sinks, none of the Monte Carlo runs were able to generate seasonal cycles that matched the observations at all three MBL stations. Although the observed seasonal cycles were found to fall within the confidence limits of the ACCMIP members, this was because the model seasonal cycles spanned extremely wide ranges and there was no single ACCMIP member that performed best for each station. Further work is required to examine the parameterisation of convective mixing in the models to see if this erodes the isolation of the marine boundary layer from the free troposphere and thus hides the models' real ability to reproduce ozone seasonal cycles over marine stations.
Implications of CO Bias for Ozone and Methane Lifetime in a CCM
NASA Technical Reports Server (NTRS)
Strode, Sarah; Duncan, Bryan Neal; Yegorova, Elena; Douglass, Anne
2013-01-01
A low bias in carbon monoxide compared to observations at high latitudes is a common feature of chemistry climate models. CO bias can both indicate and contribute to a bias in modeled OH and methane lifetime. This study examines possible causes of CO bias in the ACCMIP simulation of the GEOSCCM, and considers how attributing the CO bias to uncertainty in CO emissions versus biases in other constituents impacts the relationship between CO bias and methane lifetime. We use a simplified model of CO tagged by source with specified OH to quantify the sensitivity of the CO bias to changes in CO emissions or OH concentration, comparing the modeled CO to surface and MOPITT observations. The simplified model shows that decreasing OH in the northern hemisphere removes most of the global mean and inter-hemispheric bias in surface CO. We then use results from this analysis to explore how adjusting CO sources in the CCM impacts the concentrations of ozone, OH and methane. The CCM simulation also exhibits biases in ozone and water vapor compared to observations. We use a parameterized CO-OH-CH4 model that takes ozone and water vapor as inputs to the parameterization to examine whether correcting water and ozone biases can alter OH enough to remove the CO bias. Through this analysis, we aim to better quantify the relationship between CO bias and model biases in ozone concentrations and methane lifetime.
Immobilization of naringin onto chitosan substrates by using ozone activation.
Li, Chung Hsing; Wang, Jing Wei; Ho, Ming Hua; Shih, Jia Lin; Hsiao, Sheng Wen; Thien, Doan Van Hong
2014-03-01
Ozone oxidation can easily produce peroxides containing active free radicals that can be used for the surface modification of biomaterials. This process is highly efficient and nontoxic. In this research, naringin, an HMG-CoA reductase inhibitor that can promote bone formation, was immobilized onto a chitosan film using ozone activation. First, a chitosan film was treated by ozone to produce peroxides; these peroxides were then quantified and their amount was optimized by an iodide assay. For the in vitro delivery of naringin, a chitosan-naringin substrate was immersed in phosphate-buffered saline to quantify the released amount of naringin. It was found that the immobilized naringin was slowly released over the course of two weeks, where its concentration in the medium was controlled by this delivery process. The results of cell culture showed that cell viability and early osteogenic differentiation, as measured by alkaline phosphatase expression, were promoted with the immobilized naringin on chitosan substrates. The expression of osteogenic proteins, including type-I collagen, bone siloprotein, and osteocalcin, were also enhanced. According to the results of Smad1 and Smad6 phosphorylation, immobilized naringin on ozonated chitosan substrates would be able to initiate bone morphogenetic protein-Smad signaling by activating receptor Smad and by suppressing inhibitory Smad. The results in this research demonstrated that the naringin-chitosan substrate produced by biocompatible ozone activation was highly osteoconductive without cytotoxicity. Copyright © 2013 Elsevier B.V. All rights reserved.
The impact of climate change on surface level ozone is examined through a multi-scale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the Relative Response Factor (RRFE), which es...
NASA Technical Reports Server (NTRS)
Zerefos, Christos S.; Balis, Dimitrios S.; Bais, Alkiviadis F.; Ziomas, Ioannis C.; Tourpali, Kleareti; Meleti, Chariklea; Tzoumaka, Paraskevi; Mantis, Homer T.; Repapis, Christos C.; Fioletov, Vitali E.
1994-01-01
The evolution of ozone anomalies over the middle and high latitudes of the Northern Hemisphere during the winter 1991-1992 is studied in this work. The largest monthly mean negative deviations in the middle latitudes of the Northern Hemisphere were about 10 percent in November and December, and up to 20 percent in January, February, and March over Eurasian territories, and much smaller over the Canadian sector. At the end of January, on individual days, total ozone values of 190-210 D.U. were observed over Eastern Europe and European part of Russia, that is 40-45 percent below normal. On the whole, the 1991-1992 winter was one of the most anomalous over all the period of ozone observations. Finally, an attempt is made to quantify the contribution of transport in the ozone layer changes over Europe during this period.
NASA Astrophysics Data System (ADS)
McDuffie, E. E.; Fibiger, D. L.; Womack, C.; Dube, W. P.; Lopez-Hilfiker, F.; Goldberger, L.; Thornton, J. A.; Shah, V.; Jaegle, L.; Guo, H.; Weber, R. J.; Schroder, J. C.; Campuzano Jost, P.; Jimenez, J. L.; Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.
2017-12-01
Chemical mechanisms that underlie wintertime air pollution, including tropospheric ozone and aerosol nitrate, are poorly characterized. Due to colder temperatures and fewer hours of solar radiation, nocturnal heterogeneous uptake of N2O5 plays a relatively larger role during wintertime in controlling the oxidation of NOx (=NO+NO2) and its influence on ozone and soluble nitrate. After uptake to aerosol, N2O5 can act as both a nocturnal NOx reservoir and sink depending on the partitioning between its nitric acid and photo labile, ClNO2 reaction products. In addition, N2O5 itself can act as a NOx reservoir if the aerosol uptake coefficient is small. As a result, the nocturnal fate of N2O5 dictates the amount of NOx in an air parcel and the subsequent formation of aerosol nitrate and following-day ozone. Models of winter air pollution therefore require accurate parameterization of the N2O5 uptake coefficient, as well as factors that control its magnitude and N2O5 product partitioning. There are currently only a small number of ambient N2O5 and ClNO2 observations during the winter season concurrent with measurements of relevant variables such as aerosol size distributions and composition. The Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign conducted 10 nighttime research flights with the NCAR C-130 over the eastern U.S. during February and March, 2015. The more recent Utah Wintertime Fine Particulate Study (UWFPS) conducted over 20 research flights with the NOAA twin otter aircraft during January-February 2017 in three mountain basins near and including Salt Lake City, Utah. The two campaigns were similarly instrumented and have provided the first aircraft observations of N2O5, ClNO2, and aerosol composition in the wintertime boundary layer in these urban-influenced regions. Analysis of heterogeneous chemistry under a wide range of real environmental conditions provides insight into the factors controlling the N2O5 uptake coefficient, product partitioning, and contribution of N2O5 to wintertime pollution events in urban regions across the U.S.
Source Attribution of Tropospheric Ozone using a Global Model
NASA Astrophysics Data System (ADS)
Coates, J.; Lupascu, A.; Butler, T. M.; Zhu, S.
2016-12-01
Tropospheric ozone is both a short-lived climate forcing pollutant and a radiatively active greenhouse gas. Ozone is not directly emitted into the troposphere but photochemically produced from chemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). Emissions of ozone precursors (NOx and VOCs) have both natural and anthropogenic sources and may be transported away from their sources to produce ozone downwind. Also, transport of ozone from the stratosphere into the troposphere also influences tropospheric ozone levels in some regions. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used to inform the emission reduction strategies of ozone precursors by indicating which emission sources could be targeted for effective reductions thus reducing the burden of ozone pollution. We use a "tagging" approach within the CESM global model to attribute ozone levels to their source emissions. We use different tags to quantify the impact from natural (soils, lightning, stratospheric transport) and anthropogenic (aircraft, biomass burning) sources of NOx and VOCs (including methane) on ozone levels. These source sectors of different global regions are assigned based on the global emissions specified by HTAPv2.2. Using these results, we develop a transboundary source-receptor relationship of ozone concentration to its precursor emission regions. Additionally, the transport of ozone precursors from regional anthropogenic sources is analysed to illustrate the extent to which mitigation strategies of regional emissions aid in mitigating global ozone levels.
Ozone risk for crops and pastures in present and future climates
NASA Astrophysics Data System (ADS)
Fuhrer, Jürg
2009-02-01
Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.
NASA Astrophysics Data System (ADS)
Neu, J. L.; Schimel, D.; Lerdau, M.; Drewry, D.; Fu, D.; Payne, V.; Bowman, K. W.; Worden, J. R.
2016-12-01
Tropospheric ozone concentrations are increasing in many regions of the world, and this ozone can severely damage vegetation. Ozone enters plants through their stomata and oxidizes tissues, inhibiting physiology and decreasing ecosystem productivity. Ozone has been experimentally shown to reduce crop production, with important implications for global food security as concentrations rise. Ozone damage to forests also alters productivity and carbon storage and may drive changes in species distributions and biodiversity. Process-based quantitative estimates of these ozone impacts on terrestrial ecosystems at continental to global scales as well as of feedbacks to air quality via production of volatile organic compounds (VOCs) are thus crucial to sustainable development planning. We demonstrate that leveraging planned and proposed missions to measure ozone, formaldehyde, and isoprene along with solar-induced fluorescence (SiF), evapotranspiration, and plant nitrogen content can meet the requirements of an integrated observing system for air quality-ecosystem interactions while also meeting the needs of the individual Air Quality, Carbon Cycle, and Ecosystems communities.
The climate benefits of high-sugar grassland may be compromised by ozone pollution.
Hewitt, D K L; Mills, G; Hayes, F; Davies, W
2016-09-15
High sugar ryegrasses (HSG) have been developed to improve the uptake, digestion and nitrogen (N)-utilisation of grazing stock, with the potential to increase production yields and benefit climate by reducing methane (CH4) and nitrous oxide (N2O) emissions from livestock farming. In this study, the effects of tropospheric ozone pollution on the seasonal growth dynamics of HSG pasture mesocosms containing Lolium perenne cv. AberMagic and Trifolium repens cv. Crusader were investigated. Species-specific ozone (O3) dose-response relationships (seasonal means: 35, 41, 47, 51, 59 & 67ppb) based on the Phytotoxic Ozone Dose (PODy) were constructed for above and below ground biomass, injury, N-fixation and forage quality. The dynamics of effects of ozone exposure on HSG pasture changed over the course of a season, with the strongest responses occurring in the first 4-8weeks. Overall, strong negative responses to ozone flux were found for root biomass, root nodule mass and N-fixation rates, and ozone adversely impacted a range of forage quality parameters including total sugar content and relative and consumable food values. These results indicate that increasing ozone pollution could decrease the N-use efficiency and reduce the sugar content of managed pasture, and thereby partially detract from some of the suggested benefits of HSG. Copyright © 2016 Elsevier B.V. All rights reserved.
Reactive nitrogen partitioning and its relationship to winter ozone events in Utah
NASA Astrophysics Data System (ADS)
Wild, R. J.; Edwards, P. M.; Bates, T. S.; Cohen, R. C.; de Gouw, J. A.; Dubé, W. P.; Gilman, J. B.; Holloway, J.; Kercher, J.; Koss, A. R.; Lee, L.; Lerner, B. M.; McLaren, R.; Quinn, P. K.; Roberts, J. M.; Stutz, J.; Thornton, J. A.; Veres, P. R.; Warneke, C.; Williams, E.; Young, C. J.; Yuan, B.; Zarzana, K. J.; Brown, S. S.
2016-01-01
High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013 and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NOx (NO + NO2) remained remarkably similar all three years. Nitric acid comprised roughly half of NOz ( ≡ NOy - NOx) in 2013, with nighttime nitric acid formation through heterogeneous uptake of N2O5 contributing approximately 6 times more than daytime formation. In 2012, N2O5 and ClNO2 were larger components of NOz relative to HNO3. The nighttime N2O5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor of 2.6, and much of this is due to higher aerosol surface area in the high-ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NOx and ozone concentrations to nighttime processes.
Lee, Ming-Tao; Brown, Matthew A; Kato, Shunsuke; Kleibert, Armin; Türler, Andreas; Ammann, Markus
2015-05-14
A more detailed understanding of the heterogeneous chemistry of halogenated species in the marine boundary layer is required. Here, we studied the reaction of ozone (O3) with NaBr solutions in the presence and absence of citric acid (C6H8O7) under ambient conditions. Citric acid is used as a proxy for oxidized organic material present at the ocean surface or in sea spray aerosol. On neat NaBr solutions, the observed kinetics is consistent with bulk reaction-limited uptake, and a second-order rate constant for the reaction of O3 + Br(-) is 57 ± 10 M(-1) s(-1). On mixed NaBr-citric acid aqueous solutions, the uptake kinetics was faster than that predicted by bulk reaction-limited uptake and also faster than expected based on an acid-catalyzed mechanism. X-ray photoelectron spectroscopy (XPS) on a liquid microjet of the same solutions at 1.0 × 10(-3)-1.0 × 10(-4) mbar was used to obtain quantitative insight into the interfacial composition relative to that of the bulk solutions. It revealed that the bromide anion becomes depleted by 30 ± 10% while the sodium cation gets enhanced by 40 ± 20% at the aqueous solution-air interface of a 0.12 M NaBr solution mixed with 2.5 M citric acid in the bulk, attributed to the role of citric acid as a weak surfactant. Therefore, the enhanced reactivity of bromide solutions observed in the presence of citric acid is not necessarily attributable to a surface reaction but could also result from an increased solubility of ozone at higher citric acid concentrations. Whether the acid-catalyzed chemistry may have a larger effect on the surface than in the bulk to offset the effect of bromide depletion also remains open.
NASA Astrophysics Data System (ADS)
Tai, A. P. K.
2016-12-01
Surface ozone is an air pollutant of significant concerns due to its harmful effects on human health, vegetation and crop productivity. Chronic ozone exposure is shown to reduce photosynthesis and interfere with gas exchange in plants, thereby influencing surface energy balance and biogeochemical fluxes with important ramifications for climate and atmospheric composition, including possible feedbacks onto ozone itself that are not well understood. Ozone damage on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to the effects of ozone-vegetation coupling on air quality, ecosystems and agriculture. Using the Community Earth System Model (CESM), we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is enhanced by up to 6 ppbv North America, Europe and East Asia. This strong positive feedback on ozone air quality via ozone-vegetation coupling arises mainly from reduced stomatal conductance, which induces two feedback pathways: 1) reduced dry deposition and ozone uptake; and 2) reduced evapotranspiration that enhances vegetation temperature and thus isoprene emission. Using the same ozone-vegetation scheme in a crop model within CESM, we further examine the impacts of historical ozone exposure on global crop production. We contrast our model results with a separate statistical analysis designed to characterize the spatial variability of crop-ozone-temperature relationships and account for the confounding effect of ozone-temperature covariation, using multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures. We find that several crops (especially C4 crops such as maize) exhibit stronger sensitivities to ozone than found by field studies or in CESM simulations. We also find a strong anticorrelation between crop sensitivities and average ozone levels, reflecting biological adaptive ozone resistance that is not accounted for in current generation of crop models. Our results show that a more complete understanding of ozone-vegetation interactions is necessary to derive more realistic future projections of climate, air quality, ecosystem functions and food security.
An Overview of the Uintah Basin Winter Ozone Study Intensives: 2012, 2013, and 2014
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Edwards, P. M.; Brown, S. S.; Ahmadov, R.; Bates, T. S.; De Gouw, J. A.; Gilman, J.; Graus, M.; Helmig, D.; Koss, A.; Langford, A. O.; Lefer, B. L.; Lerner, B. M.; Li, R.; Li, S. M.; Liggio, J.; McKeen, S. A.; McLaren, R.; Parrish, D. D.; Quinn, P.; Senff, C. J.; Stutz, J.; Thompson, C. R.; Tsai, J. Y.; Veres, P. R.; Washenfelder, R. A.; Warneke, C.; Wild, R. J.; Young, C.; Yuan, B.
2014-12-01
Ground level ozone frequently exceeds the National Ambient Air Quality Standard in the Uintah Basin in northeastern Utah during the winter season. The basin is home to some of the most intensive oil and gas production in the region, activities that have been accelerated by new technologies in that industry. High ozone episodes are coincident with the presence of snow and "cold pool" conditions during which a stable shallow boundary layer persists for periods of up to 10 days. Local emissions of NOx and VOCs build up within this layer, but the sources of radicals that initiate the photochemistry have been unclear since low photolysis rates and water vapor make the traditional channel, ozone photolysis, quite inefficient. Intensive studies over the past 3 winter seasons have shown that unconventional radical sources; primarily carbonyls, and to a lesser extent nitryl chloride and nitrous acid, are responsible for radical production in this environment. The role of snow cover is to restrict vertical mixing, enhance photolysis rates through increased albedo, and reduce ozone deposition. The uptake and production of photo-labile species on the snow surface were observed, but appear to have only minor influences on the ozone photochemistry.
Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation
NASA Technical Reports Server (NTRS)
Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke
2015-01-01
The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.
NASA Astrophysics Data System (ADS)
Goldberg, D. L.; Canty, T. P.; Hembeck, L.; Vinciguerra, T.; Carpenter, S. F.; Anderson, D. C.; Salawitch, R. J.; Dickerson, R. R.
2014-12-01
The amount of air pollution crossing state lines has great policy implications. Using the ozone source apportionment tool (OSAT) in the Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10, we can quantify how much ozone is generated locally versus transported from upwind locations. Initial results show that up to 70% of the surface ozone in Maryland during poor air quality days in the summer of July 2011 can be attributed to pollution from outside of the state's borders. Modifications to the CB05 gas-phase chemistry mechanism, supported by literature recommendations and improve agreement with NASA's DISCOVER-AQ Maryland aircraft campaign, can further increase this percentage. Additionally, we show the role of upwind sources and background ozone has become increasingly important as local emissions of ozone precursors continue to drop, starting with the steep reductions imposed in 2002 in response to Maryland's State Implementation Plan submitted to EPA. This study suggests future efforts to control surface ozone must include a meaningful strategy for dealing with cross-state transport of ozone precursors.
Spatial distribution of tropospheric ozone in western Washington, USA
Cooper, S.M.; Peterson, D.L.
2000-01-01
We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.
NASA Technical Reports Server (NTRS)
Osterman, G. B.; Salawitch, R. J.; Sen, B.; Toon, G. C.; Stachnik, R. A.; Pickett, H. M.; Margitan, J. J.; Blavier, J.-F.; Peterson, D. B.
1997-01-01
Measurements of hydrogen, nitrogen and chlorine radicals from a balloon flight on 25 September 1993 from Ft. Sumner, NM provide an opportunity to quantify photochemical production and loss of stratospheric ozone. Ozone loss rates determined using measured radical concentrations agree fairly well with loss rates calculated using a photochemical model. Catalytic cycles involving OH and HO2 are shown to dominate photochemical loss of ozone for altitudes between 44 and 50 km. Reactions involving NO and NO2 are the dominant sink for ozone between 25 and 38 km. The total ozone loss rate determined from the measurements balances calculated production rates for altitudes between 30 and 40 km. However, loss of ozone exceeds production by -35% between 42 and 50 km. The imbalance between production and loss of ozone above 42 km is larger than the uncertainty of any one of the critical kinetic parameters or species concentrations. No single adjustment to any of these parameters can simultaneously resolve the imbalance and satisfy constraints imposed by measured OH, HO2, NO2 and ClO. Our results are consistent with an additional mechanism for ozone production above 40 km other than photolysis of ground state O2.
Rapid removal of nitrobenzene in a three-phase ozone loaded system with gas-liquid-liquid
Li, Shiyin; Zhu, Jiangpeng; Wang, Guoxiang; Ni, Lixiao; Zhang, Yong; Green, Christopher T.
2015-01-01
This study explores the removal rate of nitrobenzene (NB) using a new gas-liquid-liquid (G-L-L) three-phase ozone loaded system consisting of a gaseous ozone, an aqueous solvent phase, and a fluorinated solvent phase (perfluorodecalin, or FDC). The removal rate of NB was quantified in relation to six factors including 1) initial pH, 2) initial NB dosage, 3) gaseous ozone dosage, 4) free radical scavenger, 5) FDC pre-aerated gaseous ozone, and 6) reuse of FDC. The NB removal rate is positively affected by the first three factors. Compared with the conventional gas-liquid (water) (G-L) two-phase ozonation system, the free radical scavenger (tertiary butyl alcohol) has much less influence on the removal rate of NB in the G-L-L system. The FDC loaded ozone acts as an ozone reservoir and serves as the main reactive phase in the G-L-L three-phase system. The reuse of FDC has little influence on the removal rate of NB. These experimental results suggest that the oxidation efficiency of ozonation in the G-L-L three-phase system is better than that in the conventional G-L two-phase system.
Spatial patterns of tropospheric ozone in the mount rainier region of the cascade mountains, USA
NASA Astrophysics Data System (ADS)
Brace, Sarah; Peterson, David L.
Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 -2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.
Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, USA
Brace, S.; Peterson, D.L.
1998-01-01
Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 a??2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.
Human Health and Economic Impacts of Ozone Reductions by Income Group.
Saari, Rebecca K; Thompson, Tammy M; Selin, Noelle E
2017-02-21
Low-income households may be disproportionately affected by ozone pollution and ozone policy. We quantify how three factors affect the relative benefits of ozone policies with household income: (1) unequal ozone reductions; (2) policy delay; and (3) economic valuation methods. We model ozone concentrations under baseline and policy conditions across the full continental United States to estimate the distribution of ozone-related health impacts across nine income groups. We enhance an economic model to include these impacts across household income categories, and present its first application to evaluate the benefits of ozone reductions for low-income households. We find that mortality incidence rates decrease with increasing income. Modeled ozone levels yield a median of 11 deaths per 100 000 people in 2005. Proposed policy reduces these rates by 13%. Ozone reductions are highest among low-income households, which increases their relative welfare gains by up to 4% and decreases them for the rich by up to 8%. The median value of reductions in 2015 is either $30 billion (in 2006 U.S. dollars) or $1 billion if reduced mortality risks are valued with willingness-to-pay or as income from increased life expectancy. Ozone reductions were relatively twice as beneficial for the lowest- compared to the highest-income households. The valuation approach affected benefits more than a policy delay or differential ozone reductions with income.
NASA Astrophysics Data System (ADS)
Parker, L. K.; Morris, R. E.; Zapert, J.; Cook, F.; Koo, B.; Rasmussen, D.; Jung, J.; Grant, J.; Johnson, J.; Shah, T.; Pavlovic, T.
2015-12-01
The Colorado Air Resource Management Modeling Study (CARMMS) was funded by the Bureau of Land Management (BLM) to predict the impacts from future federal and non-federal energy development in Colorado and Northern New Mexico. The study used the Comprehensive Air Quality Model with extensions (CAMx) photochemical grid model (PGM) to quantify potential impacts from energy development from BLM field office planning areas. CAMx source apportionment technology was used to track the impacts from multiple (14) different emissions source regions (i.e. field office areas) within one simulation, as well as to assess the cumulative impact of emissions from all source regions combined. The energy development emissions estimates were for the year 2021 for three different development scenarios: (1) low; (2) high; (3) high with emissions mitigation. Impacts on air quality (AQ) including ozone, PM2.5, PM10, NO2, SO2, and air quality related values (AQRVs) such as atmospheric deposition, regional haze and changes in Acid Neutralizing Capacity (ANC) of lakes were quantified, and compared to establish threshold levels. In this presentation, we present a brief summary of the how the emission scenarios were developed, we compare the emission totals for each scenario, and then focus on the ozone impacts for each scenario to assess: (1). the difference in potential ozone impacts under the different development scenarios and (2). to establish the sensitivity of the ozone impacts to different emissions levels. Region-wide ozone impacts will be presented as well as impacts at specific locations with ozone monitors.
NASA Astrophysics Data System (ADS)
Barrett, S.; Brooks, A.; Moussa, Y.; Spencer, T.; Thompson, J.
2013-12-01
Tropospheric ozone, formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with sunlight, is a significant threat to the health of US National Forests. Approximately one third of ozone is absorbed by plants during the uptake of carbon dioxide. This increases the vegetation's susceptibility to drought, beetle infestation, and wildfire. Currently the US Forest Service has ground monitoring stations sparsely located across the country. This project looks specifically at the area surrounding several Class I Wilderness Areas in the Appalachian region. These areas are the highest priority for protection from air pollutants. The Forest Service must interpolate ozone concentrations for areas between these monitoring stations. Class I Wilderness Areas are designated by the Forest Service and are defined as a total 5000 acres or greater when the Clean Air Act was passed in 1977. This Act mandated that the EPA create national ambient air quality standards (NAAQS) for six major air pollutants including ground-level ozone. This project assessed the feasibility of incorporating NASA ozone data into Forest Service ozone monitoring in an effort to enhance the accuracy and precision of ozone exposure measurements in Class I Wilderness Areas and other federally managed lands in order to aid in complying with the Clean Air Act of 1977. This was accomplished by establishing a method of comparison between a preliminary data product produced at the Goddard Space Flight Center that uses OMI/MLS data to derive global tropospheric ozone measurements and Forest Service ozone monitoring station measurements. Once a methodology for comparison was established, statistical comparisons of these data were performed to assess the quantitative differences.
Fares, Silvano; Vargas, Rodrigo; Detto, Matteo; Goldstein, Allen H; Karlik, John; Paoletti, Elena; Vitale, Marcello
2013-08-01
High ground-level ozone concentrations are typical of Mediterranean climates. Plant exposure to this oxidant is known to reduce carbon assimilation. Ozone damage has been traditionally measured through manipulative experiments that do not consider long-term exposure and propagate large uncertainty by up-scaling leaf-level observations to ecosystem-level interpretations. We analyzed long-term continuous measurements (>9 site-years at 30 min resolution) of environmental and eco-physiological parameters at three Mediterranean ecosystems: (i) forest site dominated by Pinus ponderosa in the Sierra Mountains in California, USA; (ii) forest site composed of a mixture of Quercus spp. and P. pinea in the Tyrrhenian sea coast near Rome, Italy; and (iii) orchard site of Citrus sinensis cultivated in the California Central Valley, USA. We hypothesized that higher levels of ozone concentration in the atmosphere result in a decrease in carbon assimilation by trees under field conditions. This hypothesis was tested using time series analysis such as wavelet coherence and spectral Granger causality, and complemented with multivariate linear and nonlinear statistical analyses. We found that reduction in carbon assimilation was more related to stomatal ozone deposition than to ozone concentration. The negative effects of ozone occurred within a day of exposure/uptake. Decoupling between carbon assimilation and stomatal aperture increased with the amount of ozone pollution. Up to 12-19% of the carbon assimilation reduction in P. ponderosa and in the Citrus plantation was explained by higher stomatal ozone deposition. In contrast, the Italian site did not show reductions in gross primary productivity either by ozone concentration or stomatal ozone deposition, mainly due to the lower ozone concentrations in the periurban site over the shorter period of investigation. These results highlight the importance of plant adaptation/sensitivity under field conditions, and the importance of continuous long-term measurements to explain ozone damage to real-world forests and calculate metrics for ozone-risk assessment. © 2013 John Wiley & Sons Ltd.
THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING
A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...
Bounding the heterogeneous gas uptake on aerosols and ground using resistance model
NASA Astrophysics Data System (ADS)
Su, H.; Li, M.; Cheng, Y.
2017-12-01
Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.
California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements
NASA Astrophysics Data System (ADS)
Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.
2016-12-01
Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.
NASA Astrophysics Data System (ADS)
Roberts, Tjarda
2013-04-01
Volcanic plumes are regions of high chemical reactivity. Instrumented research aircraft that probed the 2010 Icelandic Eyjafjallajökull eruption plume identified in-plume ozone depletion and reactive halogens (Cl, BrO), the latter also detected by satellite. These measurements add to growing evidence that volcanic plumes support rapid reactive halogen chemistry, with predicted impacts including depletion of atmospheric oxidants and mercury deposition. However, attempts to simulate volcanic plume halogen chemistry and predict impacts are subject to considerable uncertainties. e.g. in rate constants for HOBr reactive uptake (see this session: EGU2013-6076), or in the high-temperature initialisation. Model studies attempting to replicate volcanic plume halogen chemistry are restricted by a paucity of field data that is required both for model tuning and verification, hence reported model 'solutions' are not necessarily unique. To this end, the aircraft, ground-based and satellite studies of the Eyjafjallajökull eruption provide a valuable combination of datasets for improving our understanding of plume chemistry and impacts. Here, PlumeChem simulations of Eyjafjallajökull plume reactive halogen chemistry and impacts are presented and verified by observations for the first time. Observed ozone loss, a function of plume strength and age, is quantitatively reproduced by the model. Magnitudinal agreement to reported downwind BrO and Cl is also shown. The model predicts multi-day impacts, with reactive bromine mainly as BrO, HOBr and BrONO2 during daytime, and Br2 and BrCl at night. BrO/SO2 is reduced in more dispersed plumes due to enhanced partitioning to HOBr, of potential interest to satellite studies of BrO downwind of volcanoes. Additional predicted impacts of Eyjafjallajökull volcanic plume halogen chemistry include BrO-mediated depletion of HOx that reduces the rate of SO2 oxidation to H2SO4, hence the formation of sulphate aerosol. The model predicts NOx is rapidly converted into nitric acid (via BrONO2). Such HNO3-formation might contribute towards new particle formation, noting reported very high in-plume particle nucleation rates in Eyjafjallajökull plume. Thus, plume halogen chemistry influences on aerosol formation and growth are emphasized regarding studies of climatic and health impacts of volcanic aerosol. As the plume disperses, in-plume ozone concentrations partially recover due to entrainment of O3-rich background air. However, the cumulative net impact on ozone depletion continues. Whilst the global tropospheric impact of Eyjafjallajokull is small, up-scaling of the model findings in the context of present day global volcanic degassing and recent historic eruptions indicates potential for significant impacts of global volcanic halogen emissions on tropospheric ozone, particularly during periods of enhanced volcanic activity. Notably, this model-observation study of Eyjafjallajökull plume exhibits contrasts to a related model-observation study that quantified ozone loss in Redoubt volcano eruption plume (Kelly et al., JVGR in press). Meteorological and volcanological causes for these differences in plume halogen evolution (hence impacts) are discussed. This has implications for wider atmospheric modelling efforts to quantify global impacts from volcanic halogen emissions and highlights the useful role of fully-flexible and computationally inexpensive models such as PlumeChem to inform larger (regional or global) model studies regarding model initialisation and particularly near-source plume chemistry.
Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone
NASA Technical Reports Server (NTRS)
Williams, Cassandra K.; Peterson, C. B.; Morris, V. R.
1997-01-01
The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor is an instrument designed to collect size-fractionated distributions of aerosols on a series of quartz crystals and employ SAW devices coated with chemical sensors for gas detection. We are calibrating the cascade impactor in our laboratory for future deployment for in-situ experiments to measure ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. The characteristics of mass loading, saturation limits, mass-frequency relationships, sensitivity, and the loss of ozone on different materials have been quantified.
Tropospheric ozone in the Nisqually River Drainage, Mount Rainier National Park
Peterson, D.L.; Bowers, Darci
1999-01-01
We quantified the summertime distribution of tropospheric ozone in the topographically complex Nisqually River drainage of Mount Rainier National Park from 1994 to 1997. Passive ozone samplers were used along an elevational transect to measure weekly average ozone concentrations ranging from 570 m to 2040 m elevation. Weekly average ozone concentrations were positively correlated with elevation, with the highest concentrations consistently measured at the highest sampling site (Panorama Point). Weekly average ozone concentrations at Mount Rainier National Park are considerably higher than those in the Seattle-Tacoma metropolitan area to the west. The anthropogenic contribution to ozone within the Nisqually drainage was evaluated by comparing measurements at this location with measurements from a 'reference' site in the western Olympic Mountains. The comparison suggests there is a significant anthropogenic source of ozone reaching the Cascade Range via atmospheric transport from urban areas to the west. In addition. temporal (week to week) variation in ozone distribution is synchronous within the Nisqually drainage, which indicates that subregional patterns are detectable with weekly averages. The Nisqually drainage is likely the 'hot spot' for air pollution in Mount Rainier National Park. By using passive ozone samplers in this drainage in conjunction with a limited number of continuous analyzers, the park will have a robust monitoring approach for measuring tropospheric ozone over time and protecting vegetative and human health.
Quantifying stratospheric ozone trends: Complications due to stratospheric cooling
NASA Astrophysics Data System (ADS)
McLinden, C. A.; Fioletov, V.
2011-02-01
Recent studies suggest that ozone turnaround (the second stage of ozone recovery) is near. Determining precisely when this occurs, however, will be complicated by greenhouse gas-induced stratospheric cooling as ozone trends derived from profile data in different units and/or vertical co-ordinates will not agree. Stratospheric cooling leads to simultaneous trends in air density and layer thicknesses, confounding the interpretation of ozone trends. A simple model suggests that instruments measuring ozone in different units may differ as to the onset of turnaround by a decade, with some indicting a continued decline while others an increase. This concept was illustrated by examining the long-term (1979-2005) ozone trends in the SAGE (Stratospheric Aerosol and Gas Experiment) and SBUV (Solar Backscatter Ultraviolet) time series. Trends from SAGE, which measures number density as a function of altitude, and SBUV, which measures partial column as a function of pressure, are known to differ by 4-6%/decade in the upper stratosphere. It is shown that this long-standing difference can be reconciled to within 2%/decade when the trend in temperature is properly accounted for.
Effect of ozone on biopolymers in biofiltration and ultrafiltration processes.
Siembida-Lösch, Barbara; Anderson, William B; Wang, Yulang Michael; Bonsteel, Jane; Huck, Peter M
2015-03-01
The focus of this full-scale study was to determine the effect of ozone on biopolymer concentrations in biofiltration and ultrafiltration (UF) processes treating surface water from Lake Ontario. Ozonation was out of service for maintenance for 9 months, hence, it was possible to investigate ozone's action on biologically active carbon contactors (BACCs) and UF, in terms of biopolymer removal. Given the importance of biopolymers for fouling, this fraction was quantified using a chromatographic technique. Ozone pre-treatment was observed to positively impact the active biomass in biofilters. However, since an increase of the active biomass did not result in higher biopolymer removal, active biomass concentration cannot be a surrogate for biofiltration performance. It was evident that increasing empty bed contact time (EBCT) from 4 to 19 min only had a positive effect on biopolymer removal through BACCs when ozone was out of service. However, as a mass balance experiment showed, ozone-free operation resulted in higher deposition of biopolymers on a UF membrane and slight deterioration in its performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ozone reactions with indoor materials during building disinfection
NASA Astrophysics Data System (ADS)
Poppendieck, D.; Hubbard, H.; Ward, M.; Weschler, C.; Corsi, R. L.
There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000-1200 ppm in the inlet streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively constant, and typically low, value after approximately 11 h. The four materials with the highest sustained deposition velocities were ceiling tile, office partition, medium density fiberboard and gypsum wallboard backing. Analysis of ozone reaction probabilities indicated that throughout each experiment, and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office partition, and medium density fiberboard each released greater than 38 mg m -2 of by-products.
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.; Hudson, Robert D.
2004-01-01
We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter. Three soundings with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. This analysis also indicates a mechanism for such extended transport. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions outside the late-winter period. Clearly brown-cloud aerosol affects tropospheric ozone, both limiting its chemical production and also potentially obscuring its detection by the TOMS instrument. Introductory statistical studies will be presented, evaluating the role of tropopause meteorology, aerosol, and other factors in the modifying the relationship between true tropospheric ozone measured by SHADOZ and the TTO product, with suggestions for extending the product.
Ozone pollution will compromise efforts to increase global wheat production
USDA-ARS?s Scientific Manuscript database
Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global ...
Detection and quantification of reactive oxygen species (ROS) in indoor air.
Montesinos, V Nahuel; Sleiman, Mohamad; Cohn, Sebastian; Litter, Marta I; Destaillats, Hugo
2015-06-01
Reactive oxygen species (ROS), such as free radicals and peroxides, are environmental trace pollutants potentially associated with asthma and airways inflammation. These compounds are often not detected in indoor air due to sampling and analytical limitations. This study developed and validated an experimental method to sample, identify and quantify ROS in indoor air using fluorescent probes. Tests were carried out simultaneously using three different probes: 2',7'-dichlorofluorescin (DCFH) to detect a broad range of ROS, Amplex ultra Red® (AuR) to detect peroxides, and terephthalic acid (TPA) to detect hydroxyl radicals (HO(•)). For each test, air samples were collected using two impingers in series kept in an ice bath, containing each 10 mL of 50 mM phosphate buffer at pH 7.2. In tests with TPA, that probe was also added to the buffer prior to sampling; in the other two tests, probes and additional reactants were added immediately after sampling. The concentration of fluorescent byproducts was determined fluorometrically. Calibration curves were developed by reacting DCFH and AuR with known amounts of H2O2, and using known amounts of 2-hydroxyterephthalic acid (HTPA) for TPA. Low detection limits (9-13 nM) and quantification limits (18-22 nM) were determined for all three probes, which presented a linear response in the range 10-500 nM for AuR and TPA, and 100-2000 nM for DCFH. High collection efficiency (CE) and recovery efficiency (RE) were observed for DCFH (CE=RE=100%) and AuR (CE=100%; RE=73%) by sampling from a laboratory-developed gas phase H2O2 generator. Interference of co-occurring ozone was evaluated and quantified for the three probes by sampling from the outlet of an ozone generator. The method was demonstrated by sampling air emitted by two portable air cleaners: a strong ozone generator (AC1) and a plasma generator (AC2). High ozone levels emitted by AC1 did not allow for simultaneous determination of ROS levels due to high background levels associated with ozone decomposition in the buffer. However, emitted ROS were quantified at the outlet of AC2 using two of the three probes. With AuR, the concentration of peroxides in air emitted by the air cleaner was 300 ppt of H2O2 equivalents. With TPA, the HO(•) concentration was 47 ppt. This method is best suited to quantify ROS in the presence of low ozone levels. Published by Elsevier B.V.
Gottardini, Elena; Cristofori, Antonella; Cristofolini, Fabiana; Bussotti, Filippo; Ferretti, Marco
2010-12-01
Specific visible foliar injuries were demonstrated to occur on plants of Viburnum lantana L. (wayfaring tree) when exposed to ozone in open-top chamber experiments. However, although evidence of visible injury was reported even for native plants, no comprehensive testing has been carried out under real field conditions. Thus, the extent to which V. lantana may match the requirements to be used as an in situ bioindicator is not fully known. To investigate the actual responsiveness of native V. lantana plants to ozone under field condition, two 1 × 1 km quadrates (named "Margone" and "Lasino"), for which the occurrence of different ozone levels was known, were considered. There, a fully randomized design was adopted to ensure within-quadrate replications and to select V. lantana plants. Measurements confirmed different exposure levels (Margone, Accumulated ozone concentrations Over a Threshold of 40 ppb h (AOT40): 31 952 ppb h; Lasino, AOT40: 23 259 ppb h). Ozone visible foliar symptoms (i) matched the known symptomatology, (ii) were easy to be identified, (iii) confirmed by microscopical validation, and (iv) observed at both quadrates. However, higher frequency of symptoms, earlier date of onset and faster development occurred at the quadrate with the highest ozone exposure (Margone), although not always proportionally with the difference in ozone exposure. This may be partly due to inherent covariation of environmental variables (higher ozone exposure occurred at the sites with higher relative humidity and cooler air temperature, a set of conditions that may promote ozone uptake), and partly due to a set of (unmeasured) other factors that may cause additional oxidative stress to plants. Implications for biomonitoring are discussed.
A cloud-ozone data product from Aura OMI and MLS satellite measurements
NASA Astrophysics Data System (ADS)
Ziemke, Jerald R.; Strode, Sarah A.; Douglass, Anne R.; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D.; Liu, Junhua; Strahan, Susan E.; Bhartia, Pawan K.; Haffner, David P.
2017-11-01
Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004-April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ˜ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden-Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.
A Cloud-Ozone Data Product from Aura OMI and MLS Satellite Measurements.
Ziemke, Jerald R; Strode, Sarah A; Douglass, Anne R; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D; Liu, Junhua; Strahan, Susan E; Bhartia, Pawan K; Haffner, David P
2017-01-01
Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphere/boundary layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H 2 O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30°S to 30°N for October 2004 - April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ~10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intra-seasonal/Madden-Julian Oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary layer pollution and elevated ozone inside thick clouds over land-mass regions including southern Africa and India/east Asia.
Nie, Yafeng; Qiang, Zhimin; Ben, Weiwei; Liu, Junxin
2014-06-01
Sludge ozonation is considered as a promising technology to achieve a complete reduction of excess sludge, but as yet its effects on the removal of endocrine-disrupting chemicals (EDCs) and conventional pollutants (i.e., COD, N and P) in the activated sludge process are still unclear. In this study, two lab-scale continuous-operating activated sludge treatment systems were established: one was operated in conjunction with ozonation for excess sludge reduction, and the other was operated under normal conditions as control. The results indicate that an ozone dose of 100 mg O₃ g(-1)SS led to a zero yield of excess sludge in the sludge-reduction system during a continuous-operating period of 45d. Although ozonation gave a relatively lower specific oxygen uptake rate of activated sludge, it had little effect on the system's removal performance of COD and nitrogen substances. As a plus, sludge ozonation contributed a little more removal of target EDCs (estrone, 17β-estrodiol, estriol, 17α-ethinylestradiol, bisphenol A, and 4-nonylphenol). However, the total phosphorus removal declined notably due to its accumulation in the sludge-reduction system, which necessitates phosphorus recovery for the activated sludge process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantifying isentropic stratosphere-troposphere exchange of ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huang; Chen, Gang; Tang, Qi
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
Quantifying isentropic stratosphere-troposphere exchange of ozone
Yang, Huang; Chen, Gang; Tang, Qi; ...
2016-03-25
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
NASA Astrophysics Data System (ADS)
Chipperfield, M.; Feng, W.; Dhomse, S.; Hossaini, R.
2016-12-01
Long-lived ozone-depleting substances (ODSs), such as chlorofluorocarbons, halons and other gases, are controlled by the Montreal Protocol. Consequently, their atmospheric abundance has started to decline. This has led to a decrease in the overall loading of inorganic chlorine and bromine in the stratosphere and our expectation of recovery of the ozone layer. While observations of atmospheric composition are largely consistent with this picture, there remain some quantitative issues, which are investigated here using multi-decadal simulations of a three-dimensional chemical transport model. For example, atmospheric carbon tetrachloride has been decreasing at a slower rate than expected based on lifetime estimates and known emissions. We use the 3-D model to investigate the impact of uncertainties in the loss process. Also, increases in uncontrolled anthropogenic very short-lived species (VSLS), such as CH2Cl2, may offset some of the decline in chlorine from long-lived species, thereby delaying ozone recovery. We will quantify this impact using the 3-D model. Overall, we will use the model to test the agreement between observed changes in the near-surface abundance of ODSs and changes to stratospheric chlorine and bromine. For example, past studies have noted that variability in stratospheric dynamics (i.e. age of stratospheric air) can complicate the detection of composition trends. Finally, we will use the model to quantify the expected extent of ozone recovery from the combined effect of ODS decreases by late 2016.
NASA Astrophysics Data System (ADS)
Zenone, T.; Hendriks, C.; Brilli, F.; Gioli, B.; Portillo Estrada, M.; Schaap, M.; Ceulemans, R.
2015-12-01
The emissions of Biogenic volatile organic compounds (BVOCs) from vegetation, mainly in form of isoprenoids, play an important role in the tropospheric ozone (O3) formation. The potential large expansion of isoprene emitter species (e.g. poplar) as biofuels feedstock might impact the ground level O3 formation. Here we report the simultaneous observations, using the eddy covariance (EC) technique, of isoprene, O3 and CO2 fluxes in a short rotation coppice (SRC) of poplar. The impact of current poplar plantations and associated isoprene emissions on ground level ozone concentrations for Europe was evaluated using a chemistry transport model (CTM) LOTOS-EUROS. The isoprene fluxes showed a well-defined seasonal and daily cycle that mirrored with the stomata O3 uptake. The isoprene emission and the stomata O3 uptake showed significant statistical relationship especially at elevated temperature. Isoprene was characterized by a remarkable peak of emissions (e.g. 38 nmol m-2s-1) occurring for few days as a consequence of the rapid variation of the air and surface temperature. During these days the photosynthetic apparatus (i.e. the CO2 fluxes) and transpiration rates did not show significant variation while we did observe a variation of the energy exchange and a reduction of the bowen ratio. The response of isoprene emissions to ambient O3 concentration follows the common form of the hormetic dose-response curve with a considerable reduction of the isoprene emissions at [O3] > 80 ppbv indicating a potential damping effect of the O3 levels on isoprene. Under the current condition the impact of SRC plantations on ozone concentrations / formation is very limited in Europe. Our findings indicate that, even with future scenarios with more SRC, or conventional poplar plantations, the impact on Ozone formation is negligible.
NASA Astrophysics Data System (ADS)
Palancar, Gustavo G.; Olcese, Luis E.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.
2017-09-01
Global ultraviolet-B irradiance (UV-B, 280-315 nm) measurements made at the campus of the University of Córdoba, Argentina were analyzed to quantify the effects of ozone and aerosols on surface UV-B erythemal irradiance (UVER). The measurements have been carried out with a YES Pyranometer during the period 2000-2013. The effect of ozone and aerosols has been quantified by means of the Radiation Amplification Factor (RAF) and by an aerosol factor (AF, analogous to RAF), respectively. The overall mean RAF under cloudless conditions was (1.2 ± 0.3) %, ranging from 0.67 to 2.10% depending on solar zenith angle (SZA) and on Aerosol Optical Depth (AOD). The RAF increased with the SZA with a clear trend. Similarly, the aerosol effect under almost-constant ozone and SZA showed that, on average, a 1% increase in AOD forced a decrease of (0.15 ± 0.04) % in the UVER, with a range of 0.06 to 0.27 and no defined trend as a function of the SZA. To analyze the effect of absorbing aerosols, an effective single scattering albedo (SSA) was determined by comparing the experimental UVER with calculations carried out with the TUV radiative transfer model.
NASA Astrophysics Data System (ADS)
Fares, S.; Schnitzhofer, R.; Hansel, A.; Petersson, F.; Matteucci, G.; Scarascia Mugnozza, G.; Jiang, X.; Guenther, A. B.; Loreto, F.
2012-12-01
Mediterranean plant ecosystems are exposed to abiotic stressors that may be exacerbated by climate change dynamics. Moreover, plants need now to cope with increasing anthropogenic pressures, often associated with expanding impacts of urbanization. Anthropogenic stressors include harmful gases (e.g. ozone,) that are transported from anthropogenic pollution sources to the vegetation. They may alter ecophysiology and compromise metabolism of Mediterranean plants. A disproportionate number of Mediterranean ecosystems, many dominated by forest trees, are being transformed into "urban or pre-urban forests". This is in particular the case for Castelporziano Estate, a 6,000 ha Mediterranean forest located just 25 km from Rome downtown at the coast of the Mediterranean Sea. In September 2011 an intensive field campaign was performed in Castelporziano to investigate ozone deposition and biogenic emissions of volatile organic compounds (BVOC) from a mixed Mediterranean forest, mainly composed by Quercus suber, Quercus ilex, Pinus pinea. Measurements were performed at canopy level with fast real-time instruments (a fast ozone analyzer and a Proton Transfer Reaction-Time of Flight Mass Spectrometer) that allowed eddy covariant flux measurements of ozone and BVOC. In the transitional period from a warm and dry summer to a wet and moderately cool fall we typically observed tropospheric ozone volume mixing ratios (VMR) of 60 ppb at around noon, with high deposition fluxes (up to -10 nmol m-2 s-1) into the forest canopy. Canopy models were used to to calculate that up to 90% of ozone uptake can be attributed to non-stomatal sinks, suggesting that chemical reactions between ozone and reactive BVOC may have played an important role. The concentrations of reactive isoprenoids (e.g. sesquiterpenes) were indeed observed to decrease during the central hours of the day, in coincidence with increased ozone concentrations. Concentrations and fluxes of isoprenoid-ozone-oxidation-(methyl-vinyl-ketone and methacrolein) were found to increase during the day time hours, matching the dynamic pattern of non-stomatal ozone uptake. Monoterpenes were the most abundant BVOC emitted by the forest with fluxes up to 10 nmol m-2 s-1 in the warm days, followed by the oxygenated BVOCs: methanol, acetone, acetaldehyde. Isoprene was emitted at a low rate (less than 1 nmol m-2 s-1), and observations used to develop a new parameterization data for modelling activity. MEGAN was used to predict biogenic emissions from Mediterranean ecosystems. Model results using new basal emission factors (BEF) estimated from the collected data-set revealed considerable differences in the emission estimates compared with the standard parameterization, thus suggesting the importance of including basal emission factors from monoterpene-emitting Mediterranean ecosystems to obtain an accurate estimate in the global model. Future research by chemical transport modelling and smog chamber experiments are planned to investigate the "ex-situ" ozone-forming potential of emitted BVOC, to fully understand the role of Mediterranean urban forests in the complex interactions between biosphere and atmosphere over large Mediterranean conurbations.
Savarino, J; Bhattacharya, S K; Morin, S; Baroni, M; Doussin, J-F
2008-05-21
Atmospheric nitrate shows a large oxygen isotope anomaly (Delta 17 O), characterized by an excess enrichment of 17 O over 18 O, similar to the ozone molecule. Modeling and observations assign this specific isotopic composition mainly to the photochemical steady state that exists in the atmosphere between ozone and nitrate precursors, namely, the nitrogen oxides (NOx=NO+NO2). However, this transfer is poorly quantified and is built on unverified assumptions about which oxygen atoms of ozone are transferred to NO(x), greatly weakening any interpretation of the nitrate oxygen isotopic composition in terms of chemical reaction pathways and the oxidation state of the atmosphere. With the aim to improve our understanding and quantify how nitrate inherits this unusual isotopic composition, we have carried out a triple isotope study of the reaction NO+O3. Using ozone intramolecular isotope distributions available in the literature, we have found that the central atom of the ozone is abstracted by NO with a probability of (8+/-5)%(+/-2 sigma) at room temperature. This result is at least qualitatively supported by dynamical reaction experiments, the non-Arrhenius behavior of the kinetic rate of this reaction, and the kinetic isotope fractionation factor. Finally, we have established the transfer function of the isotope anomaly of O3 to NO2, which is described by the linear relationship Delta 17 O(NO2)=A x Delta 17 O(O3)+B, with A=1.18+/-0.07(+/-1 sigma) and B=(6.6+/-1.5)[per thousand](+/-1 sigma). Such a relationship can be easily incorporated into models dealing with the propagation of the ozone isotope anomaly among oxygen-bearing species in the atmosphere and should help to better interpret the oxygen isotope anomaly of atmospheric nitrate in terms of its formation reaction pathways.
Atmospheric Chemistry Insights from the SHADOZ Data: An IGAC Paradigm
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)
2002-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from ten sites comprising the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: http://code9l6.gsfc.nasa.gov/ Data-services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Coetzee, G. J. R.; Hoegger, Bruno; Kirchhoff, V. W. J. H.; Ogawa, Toshihiro; Kawakami, Shuji; Posny, Francoise
2002-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at:
Quantifying TOLNet Ozone Lidar Accuracy During the 2014 DISCOVER-AQ and FRAPPE Campaigns
NASA Technical Reports Server (NTRS)
Wang, Lihua; Newchurch, Michael J.; Alvarez, Raul J., II; Berkoff, Timothy A.; Brown, Steven S.; Carrion, William; De Young, Russell J.; Johnson, Bryan J.; Ganoe, Rene; Gronoff, Guillaume;
2017-01-01
The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry Experiment (FRAPPA) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than +/-15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than +/-5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.
Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns
NASA Astrophysics Data System (ADS)
Wang, Lihua; Newchurch, Michael J.; Alvarez, Raul J., II; Berkoff, Timothy A.; Brown, Steven S.; Carrion, William; De Young, Russell J.; Johnson, Bryan J.; Ganoe, Rene; Gronoff, Guillaume; Kirgis, Guillaume; Kuang, Shi; Langford, Andrew O.; Leblanc, Thierry; McDuffie, Erin E.; McGee, Thomas J.; Pliutau, Denis; Senff, Christoph J.; Sullivan, John T.; Sumnicht, Grant; Twigg, Laurence W.; Weinheimer, Andrew J.
2017-10-01
The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than ±15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than ±5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.
Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models
NASA Astrophysics Data System (ADS)
Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.
2017-12-01
Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.
Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone
NASA Astrophysics Data System (ADS)
Anav, Alessandro; Proietti, Chiara; Menut, Laurent; Carnicelli, Stefano; De Marco, Alessandra; Paoletti, Elena
2018-04-01
Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability has often been neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite the fact that plants remove a large amount of atmospheric compounds from the lower troposphere through stomata. The main aim of this study is to evaluate, within the chemistry transport model CHIMERE, the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 TgO3, while using a dynamic layer that ensures that plants maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition ( ˜ 7.7 TgO3). Although dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere, with a significant impact on ozone concentration (up to 4 ppb) extending from the surface to the upper troposphere (up to 650 hPa). Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy) as they have significant implications for concentration of gases in the lower troposphere and resulting risk assessments for vegetation or human health.
Key drivers of ozone change and its radiative forcing over the 21st century
NASA Astrophysics Data System (ADS)
Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.
2018-05-01
Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.
NASA Astrophysics Data System (ADS)
Fleming, Z. L.; Doherty, R. M.; von Schneidemesser, E.; Cooper, O. R.; Malley, C.; Colette, A.; Xu, X.; Pinto, J. P.; Simpson, D.; Schultz, M. G.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.
2017-12-01
Using stations from the TOAR surface ozone database, this study quantifies present-day global and regional distributions of five ozone metrics relevant for both short-term and long-term human exposure. These metrics were explored at ozone monitoring sites globally, and re-classified for this project as urban or non-urban using population densities and night-time lights. National surface ozone limit values are usually related to an annual number of exceedances of daily maximum 8-hour running mean (MDA8), with many countries not even having any ozone limit values. A discussion and comparison of exceedances in the different ozone metrics, their locations and the seasonality of exceedances provides clues as to the regions that potentially have more serious ozone health implications. Present day ozone levels (2010-2014) have been compared globally and show definite geographical differences (see Figure showing the annual 4th highest MDA8 for present day ozone for all non-urban stations). Higher ozone levels are seen in western compared to eastern US, and between southern and northern Europe, and generally higher levels in east Asia. The metrics reflective of peak concentrations show highest values in western North America, southern Europe and East Asia. A number of the metrics show similar distributions of North-South gradients, most prominent across Europe and Japan. The interquartile range of the regional ozone metrics was largest in East Asia, higher for urban stations in Asia but higher for non-urban stations in Europe and North America. With over 3000 monitoring stations included in this analysis and despite the higher densities of monitoring stations in Europe, north America and East Asia, this study provides the most comprehensive global picture to date of surface ozone levels in terms of health-relevant metrics.
On Springtime Ozone Enhancements in the Lower Troposphere Over Beijing
NASA Astrophysics Data System (ADS)
Huang, J.; Liu, H.; Chan, C.; Crawford, J. H.; Considine, D. B.; Zhang, Y.; Zheng, X.; Oltmans, S. J.; Liu, S. C.; Thouret, V.
2012-12-01
Tropospheric ozone is an important greenhouse gas, the primary source of hydroxyl radical (OH) that controls the tropospheric oxidizing capacity, and a major air pollutant near the surface. Previous studies showed that ozone concentrations in the lower troposphere (LT) over Beijing have increased over the past two decades as a result of rapid industrialization in China. As part of an ozonesonde sounding campaign, called Transport of Air Pollutants and Tropospheric Ozone over China (TAPTO-China), intensive measurements of ozone vertical profiles (16 in total) were conducted in Beijing during April 11 - May 15, 2005. Thirteen vertical profiles were also sampled by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program during April 3 - May 29, 2005. High ozone concentrations (up to 94.7 ppbv) were frequently observed in the LT (~1.5-2km) during this period. We evaluate here the capability of a 3-D chemical transport model (GEOS-Chem at 2°x2.5° resolution) to reproduce these ozone enhancements, and use the model to examine transport pathways for ozone pollution and quantify their sources. The model captures the occurrences but significantly underestimates the magnitude of ozone enhancements. By tagging ozone produced in different source regions and conducting sensitivity simulations with the model, we show that Asian troposphere and Asian anthropogenic pollution made the major contributions to those ozone enhancements. Contributions from European and North American troposphere and anthropogenic pollution reduced during these events, compared to those days without ozone enhancements. We find that most of the ozone enhancements observed in the LT occurred under southerly wind and warmer conditions. Their occurrence frequency appears to be related to the onset of Asian summer monsoon. The influence of regional transport from different source regions in East Asia will also be discussed.
Ozone risk and foliar injury on Viburnum lantana L.: a meso-scale epidemiological study.
Gottardini, Elena; Cristofolini, Fabiana; Cristofori, Antonella; Ferretti, Marco
2014-09-15
A stratified random sampling design was adopted to contrast sites with different ozone exposure levels (≤ 18,000 and >18,000 μg m(-3) h) in order to define whether and to what extent a relationship exists between potential risk (estimated by exposure to ozone) and the response of Viburnum lantana L. in terms of foliar symptoms. The study was designed over a meso-scale (6200 km(2)), carried out in 2010 and repeated in 2012 on a subset of sites. No difference was found between the occurrences of symptoms in relation to soil moisture or plant size. Although no direct significant exposure-response function could be identified, when data were aggregated according to ozone exposure levels the symptoms (in terms of number of symptomatic plants and symptomatic leaves per plant) were found to be significantly more frequent at sites with higher exposure (AOT40>18,000 μg m(-3) h), especially at high elevations (>700 ma.s.l.). The 2012 results confirmed the 2010 findings. Although ozone levels in the region were almost similar between 2010 and 2012, symptoms were significantly less frequent in 2012. This was likely due to drier conditions in 2012 (+1.1 °C; -23% precipitation), a situation that may have prevented in part ozone uptake and therefore the expression of symptoms. These results are useful in several respects: (i) for identifying areas where ozone is likely to impact vegetation; (ii) for testing the appropriateness of EU standards to protect vegetation from ozone; and (iii) for designing biomonitoring surveys. We suggest that V. lantana is a suitable indicator for assessing qualitatively (but not quantitatively) the potential risk of ozone damage to vegetation over remote, large areas. Copyright © 2014 Elsevier B.V. All rights reserved.
Ray, Debajyoti; Malongwe, Joseph K'Ekuboni; Klán, Petr
2013-07-02
The kinetics of the ozonation reaction of 1,1-diphenylethylene (DPE) on the surface of ice grains (also called "artificial snow"), produced by shock-freezing of DPE aqueous solutions or DPE vapor-deposition on pure ice grains, was studied in the temperature range of 268 to 188 K. A remarkable and unexpected increase in the apparent ozonation rates with decreasing temperature was evaluated using the Langmuir-Hinshelwood and Eley-Rideal kinetic models, and by estimating the apparent specific surface area of the ice grains. We suggest that an increase of the number of surface reactive sites, and possibly higher ozone uptake coefficients are responsible for the apparent rate acceleration of DPE ozonation at the air-ice interface at lower temperatures. The increasing number of reactive sites is probably related to the fact that organic molecules are displaced more to the top of a disordered interface (or quasi-liquid) layer on the ice surface, which makes them more accessible to the gas-phase reactants. The effect of NaCl as a cocontaminant on ozonation rates was also investigated. The environmental implications of this phenomenon for natural ice/snow are discussed. DPE was selected as an example of environmentally relevant species which can react with ozone. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that its half-life on the ice surface would decrease from ∼5 days at 258 K to ∼13 h at 188 K at submonolayer DPE loadings.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)
2002-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on an Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approximately 7 hPa and relative humidity to approximately 200 hPa, reside at:
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Bhartia, Pawan (Technical Monitor)
2002-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at:
NASA Astrophysics Data System (ADS)
Schnell, Russell C.; Johnson, Bryan J.; Oltmans, Samuel J.; Cullis, Patrick; Sterling, Chance; Hall, Emrys; Jordan, Allen; Helmig, Detlev; Petron, Gabrielle; Ahmadov, Ravan; Wendell, James; Albee, Robert; Boylan, Patrick; Thompson, Chelsea R.; Evans, Jason; Hueber, Jacques; Curtis, Abigale J.; Park, Jeong-Hoo
2016-09-01
As part of the Uinta Basin Winter Ozone Study, January-February 2013, we conducted 937 tethered balloon-borne ozone vertical and temperature profiles from three sites in the Uinta Basin, Utah (UB). Emissions from oil and gas operations combined with snow cover were favorable for producing high ozone-mixing ratios in the surface layer during stagnant and cold-pool episodes. The highly resolved profiles documented the development of approximately week-long ozone production episodes building from regional backgrounds of 40 ppbv to >165 ppbv within a shallow cold pool up to 200 m in depth. Beginning in midmorning, ozone-mixing ratios increased uniformly through the cold pool layer at rates of 5-12 ppbv/h. During ozone events, there was a strong diurnal cycle with each succeeding day accumulating 4-8 ppbv greater than the previous day. The top of the elevated ozone production layer was nearly uniform in altitude across the UB independent of topography. Above the ozone production layer, mixing ratios decreased with height to 400 m above ground level where they approached regional background levels. Rapid clean-out of ozone-rich air occurred within a day when frontal systems brought in fresh air. Solar heating and basin topography led to a diurnal flow pattern in which daytime upslope winds distributed ozone precursors and ozone in the Basin. NOx-rich plumes from a coal-fired power plant in the eastern sector of the Basin did not appear to mix down into the cold pool during this field study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landry, L.G.; Pell, E.J.
Hybrid poplar clones exposed to ozone exhibit symptoms of accelerated senescence, including early decline in activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). The authors examined the hypothesis that ozone-induced reduction in rubisco occurred as a result of increased protease activity. To test this hypothesis, saplings of Populus maximowizii x trichocarpa were exposed to 0.08 {mu}l/l ozone, 4 h/day, from initiation of sample leaf expansion to foliar abscission. Periodically throughout the treatment the sample leaf was analyzed for chlorophyll content, total protein content, rubisco activity, and proteolytic activity at pH 4.5 and 7.8. At the time of peak rubisco activity, protein was subjectmore » to SDS-PAGE to quantify rubisco. Total protein content of sample leaves was unaffected by ozone treatment. Proteolysis measured under acidic conditions was lower in ozone-treated than control plants throughout the exposure. Proteolysis determined under alkaline conditions only revealed decreases in the second half of the experiment. Ozone induced a more rapid decline in rubisco activity than occurred in control tissue. Quantitative effects of rubisco reflected results of activity assays. It did not appear that enhanced proteolysis could explain the ozone-induced accelerated decline in rubisco.« less
Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system.
Bradu, C; Magureanu, M; Parvulescu, V I
2017-08-15
A novel advanced oxidation process based on the combination of ozonation with non-thermal plasma generated in a pulsed corona discharge was developed for the oxidative degradation of recalcitrant organic pollutants in water. The pulsed corona discharge in contact with liquid, operated in oxygen, produced 3.5mgL -1 ozone, which was subsequently introduced in the ozonation reactor. The solution to be treated was continuously circulated between the plasma reactor and the ozonation reactor. The system was tested for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and considerably improved performance as compared to ozonation alone, both with respect to the removal of the target compound and to mineralization. The apparent reaction rate constant for 2,4-D removal was 0.195min -1 , more than two times higher than the value obtained in ozonation experiments. The mineralization reached more than 90% after 60min treatment and the chlorine balance confirms the absence of quantifiable amounts of chlorinated by-products. The energy efficiency was considerably enhanced by shortening the duration of the discharge pulses, which opens the way for further optimization of the electrical circuit design. Copyright © 2017 Elsevier B.V. All rights reserved.
Optical Measurements of Air Plasma
2008-05-05
beam impact ionization of air was studied in the context of optical diagnostics . The electron beam originates in a pulsed 100 keV 20-mA source and...range of 636 Torr to 1 mTorr with pulse durations from 1 ms to 10 ms. Microwave diagnostics were used to quantify electron density and power; and an...optical diagnostic was used to quantify ozone production. An additional effort to quantify byproducts of electron impact ionization, that are
Mechanisms and Feedbacks Causing Changes in Upper Stratospheric Ozone in the 21st Century
NASA Technical Reports Server (NTRS)
Oman, Luke; Waugh, D. W.; Kawa, S. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.
2009-01-01
Stratospheric ozone is expected to increase during the 21st century as the abundance of halogenated ozone-depleting substances decrease to 1960 values. However, climate change will likely alter this "recovery" of stratospheric ozone by changing stratospheric temperatures, circulation, and abundance of reactive chemical species. Here we quantity the contribution of different mechanisms to changes in upper stratospheric ozone from 1960 to 2100 in the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM), using multiple linear regression analysis applied to simulations using either Alb or A2 greenhouse gas (GHG) scenarios. In both these scenarios upper stratospheric ozone has a secular increase over the 21st century. For the simulation using the Alb GHG scenario, this increase is determined by the decrease in halogen amounts and the greenhouse gas induced cooling, with roughly equal contributions from each mechanism. There is a larger cooling in the simulation using the A2 GHG scenario, but also enhanced loss from higher NOy and HOx concentrations, which nearly offsets the increase due to cooler temperatures. The resulting ozone evolutions are similar in the A2 and Alb simulations. The response of ozone due to feedbacks from temperature and HOx changes, related to changing halogen concentrations, are also quantified using simulations with fixed halogen concentrations.
Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration
O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.
2010-01-01
This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.
Drift-corrected Odin-OSIRIS ozone product: algorithm and updated stratospheric ozone trends
NASA Astrophysics Data System (ADS)
Bourassa, Adam E.; Roth, Chris Z.; Zawada, Daniel J.; Rieger, Landon A.; McLinden, Chris A.; Degenstein, Douglas A.
2018-01-01
A small long-term drift in the Optical Spectrograph and Infrared Imager System (OSIRIS) stratospheric ozone product, manifested mostly since 2012, is quantified and attributed to a changing bias in the limb pointing knowledge of the instrument. A correction to this pointing drift using a predictable shape in the measured limb radiance profile is implemented and applied within the OSIRIS retrieval algorithm. This new data product, version 5.10, displays substantially better both long- and short-term agreement with Microwave Limb Sounder (MLS) ozone throughout the stratosphere due to the pointing correction. Previously reported stratospheric ozone trends over the time period 1984-2013, which were derived by merging the altitude-number density ozone profile measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II satellite instrument (1984-2005) and from OSIRIS (2002-2013), are recalculated using the new OSIRIS version 5.10 product and extended to 2017. These results still show statistically significant positive trends throughout the upper stratosphere since 1997, but at weaker levels that are more closely in line with estimates from other data records.
Chys, Michael; Demeestere, Kristof; Ingabire, Ange Sabine; Dries, Jan; Van Langenhove, Herman; Van Hulle, Stijn W H
2017-07-01
Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA 254 as an online measured surrogate parameter.
Effect of N fertilization and tillage on nitrous oxide (N2O) loss from soil under wheat production
Bansal, Sheel; Aberle, Ezra; Teboh, Jasper; Yuja, Szilvia; Liebig, Mark; Meier, Jacob; Boyd, Alec
2017-01-01
Nitrous oxide (N2O-N) is one of the most important gases in the atmosphere because it is 300 times more powerful than carbon dioxide in its ability to trap heat, and is a key chemical agent of ozone depletion. The amount of N2O-N emitted from agricultural fields can be quite high, depending on the complex interplay between N fertility and residue management, plant N uptake, microbial processes, environmental conditions, and wet-up and dry-down events. High N fertilizer rates generally increase yields, but may disproportionately increase N2O-N losses due to prolonged residence time in soil when not used by the crop, and incomplete decomposition of excess N-compounds by microbes. Tillage could also affect N2O-N losses through changes in soil moisture content. Though nitrogen monoxide (NO) is one form of N lost from the soil, especially under conventional tillage, this study objective was to quantify N2O loss in wheat fields from applied urea on soil under no-till (NT) versus incorporated urea under conventional till (CT).
NASA Technical Reports Server (NTRS)
Hassler, B.; Petropavlovskikh, I.; Staehelin, J.; August, T.; Bhartia, P. K.; Clerbaux, C.; Degenstein, D.; Maziere, M. De; Dinelli, B. M.; Dudhia, A.;
2014-01-01
Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.
Foreign and Domestic Contributions to Springtime Ozone Pollution over China
NASA Astrophysics Data System (ADS)
Ni, R.; Lin, J.; Yan, Y.; Lin, W.; Chen, H.
2017-12-01
Ozone is a critical air pollutant that damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China. Here, we use a global-regional two-way coupled model system based on GEOS-Chem to quantify the contributions to springtime ozone over China from anthropogenic emissions in major source regions across the globe. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone pollution. Together, foreign anthropogenic emissions enhance springtime surface ozone over China by 3 12 ppb. Of all ozone over China produced by global anthropogenic emissions, foreign emissions contribute 40% near the surface, and the contribution increases with altitude until a value of 80% in the upper troposphere. Impact from Japan and Korea is 1 2 ppb over east coastal regions, and negligible in inland. Anthropogenic emissions of South and South-East Asia increase ozone over Tibet and the Yunnan-Guizhou Plateau by up to 5 ppb, and their contribution increases with height due to strong vertical transport. Pollution from North America and Europe mainly accompanies strong westerly winds and frequent cyclonic activities that are favorable to long-range transport. European anthropogenic pollution enhances surface ozone by 1 3 ppb over West and North China. Despite a much longer transport distance, the contribution from North America is greater than European contribution due to the nearly doubled amount of anthropogenic NMVOC emissions. The high percentage contribution of foreign anthropogenic emissions to China's ozone pollution can be partly explained by excessive domestic NOx emissions that suppress ozone production efficiency and even destroy ozone. Our study is relevant to Chinese ozone pollution control and global environmental protection collaboration.
NASA Astrophysics Data System (ADS)
Tang, Q.; Prather, M. J.
2012-03-01
We examine whether the individual ozone (O3) measurements from the four Aura instruments can quantify the stratosphere-troposphere exchange (STE) flux of O3, an important term of the tropospheric O3 budget. The level 2 (L2) Aura swath data and the nearly coincident ozone sondes for the years 2005-2006 are compared with the 4-D, high-resolution (1° × 1° × 40-layer × 0.5 h) model simulation of atmospheric ozone for the same period from the University of California, Irvine chemistry transport model (CTM). The CTM becomes a transfer standard for comparing individual profiles from these five, not-quite-coincident measurements of atmospheric ozone. Even with obvious model discrepancies identified here, the CTM can readily quantify instrument-instrument biases in the tropical upper troposphere and mid-latitude lower stratosphere. In terms of STE processes, all four Aura datasets have some skill in identifying stratosphere-troposphere folds, and we find several cases where both model and measurements see evidence of high-O3 stratospheric air entering the troposphere. In many cases identified in the model, however, the individual Aura profile retrievals in the upper troposphere and lower stratosphere show too much noise, as expected from their low sensitivity and coarse vertical resolution at and below the tropopause. These model-measurement comparisons of individual profiles do provide some level of confidence in the model-derived STE O3 flux, but it will be difficult to integrate this flux from the satellite data alone.
Ozone gradients in a spruce forest stand in relation to wind speed and time of the day
NASA Astrophysics Data System (ADS)
Pleijel, H.; Wallin, G.; Karlsson, P. E.; Skärby, L.
Ozone concentrations were measured outside and inside a 60-year-old 15-20 m tall spruce forest at a wind-exposed forest edge in southwest Sweden, at 3 and 13 m height 15 m outside the forest, and at 3 and 13 m height inside the forest 45 m from the forest edge. Measurements at 3 m were made with three replicate tubes on each site, the replicates being separated by 10 m. In addition, horizontal and vertical wind speeds were measured at 8 m height outside and inside the forest. During daytime, the concentrations inside the forest were generally slightly lower. Negative ozone concentration gradients from the open field into the forest were observed at 3 m height when the wind speed was below approximately 1.5 m s -1. At very low wind speeds, mainly occurring during the night, the ozone concentrations at 3 m height were frequently higher inside the forest than outside the forest. This may be caused by a very large aerodynamic resistance to ozone deposition, due to very small air movements inside the forest under stable conditions. It is concluded that ozone uptake by the trees is likely to be very small at night, even if stomata are not entirely closed. Results from open-top chamber experiments are also discussed.
Quantifying the ozone "weekend effect" at various locations in Phoenix, Arizona
NASA Astrophysics Data System (ADS)
Atkinson-Palombo, Carol M.; Miller, James A.; Balling, Robert C.
Analysis of pollution data from a network of monitors in Maricopa County, Arizona, reveals considerable variation in the magnitude of the ozone "weekend effect" depending on how and where it is measured. We used four separate methods to calculate the weekend effect, all of which showed that the phenomenon is stronger in the urban core, where ozone is produced. Spatial linear regressions show that the magnitude of the weekend effect and the goodness of fit of weekly harmonic cycles in ozone is a function of urbanization, described quantitatively using an index of traffic counts, population, and employment within a 4 km buffer zone of monitoring sites. Analysis of diurnal patterns of ozone as well as oxides of nitrogen (NO x) at a representative site in the urban core supports the hypothesis that lower levels of NO x on Sundays reduce the degree to which ozone is titrated, resulting in a higher minimum and hence mean for that day of the week (DOW). Fringe sites, where ozone concentrations are higher in absolute terms than in the urban core, show almost no "weekend effect," regardless of which of the four individual methods we used. Alternative quantification methods show statistically significant DOW differences in ozone levels in urban fringe locations, albeit out of phase with the weekly cycling of ozone in the urban core. Our findings suggest that multiple metrics need to be used to test for the weekend effect and that the causes of DOW differences in ozone concentrations may be location specific.
Choi, Inseon-S; Takizawa, Hajime; Rhim, TaiYoun; Lee, June-Hyuk; Park, Sung-Woo; Park, Choon-Sik
2005-01-01
Allergic airway diseases are related to exposure to atmospheric pollutants, which have been suggested to be one factor in the increasing prevalence of asthma. Little is known about the effect of ozone and diesel exhaust particulates (DEP) on the development or aggravation of asthma. We have used a mouse asthma model to determine the effect of ozone and DEP on airway hyperresponsiveness and inflammation. Methacholine enhanced pause (Penh) was measured. Levels of IL-4 and IFN-γ were quantified in bronchoalveolar lavage fluids by enzyme immunoassays. The OVA-sensitized-challenged and ozone and DEP exposure group had higher Penh than the OVA-sensitized-challenged group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone exposure group. Levels of IFN-γ were decreased in the OVA-sensitized-challenged and DEP exposure group and the OVA-sensitized-challenged and ozone and DEP exposure group compared to the OVA-sensitized-challenged and ozone exposure group. Levels of IL-4 were increased in the OVA-sensitized-challenged and ozone exposure group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone and DEP exposure group compared to OVA-sensitized-challenged group. Co-exposure of ozone and DEP has additive effect on airway hyperresponsiveness by modulation of IL-4 and IFN-γ suggesting that DEP amplify Th2 immune response. PMID:16224148
Ozone-initiated chemistry in an occupied simulated aircraft cabin.
Weschler, Charles J; Wisthaler, Armin; Cowlin, Shannon; Tamás, Gyöngyi; Strøm-Tejsen, Peter; Hodgson, Alfred T; Destaillats, Hugo; Herrington, Jason; Zhang, Junfeng; Nazaroff, William W
2007-09-01
We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 (h-1)), <2 ppb ozone; low air exchange, 61-64 ppb ozone; high air exchange (8.8 h(-1)), <2 ppb ozone; and high air exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from approximately 70 to 130 ppb at the lower air exchange rate and from approximately 30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.
2015-10-01
The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of <10 %. This new and optimized vertical-resolution scheme retains the ability to resolve fluctuations in the known ozone profile, but it now allows near-field signals to be more appropriately smoothed. With these revisions to the previous TROPOZ retrieval, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt had an overall mean improvement of 3.5 %, and large improvements (upwards of 10-15 % as compared to the previous algorithm) were apparent between 4.5 and 9 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes are mostly within the TROPOZopt retrieval uncertainty bars, which implies that this exercise was quite successful.
Exposure-Relevant Ozone Chemistry in Occupied Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Beverly Kaye
2009-04-01
Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, andmore » ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m -3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and byproduct yield) were explored. In Chapter 5, the reaction of ozone with permethrin, a residual insecticide used in aircraft cabins, to form phosgene is investigated. A derivatization technique was developed to detect phosgene at low levels, and chamber experiments were conducted with permethrin-coated cabin materials. It was determined that phosgene formation, if it occurs in the aircraft cabin, is not likely to exceed the relevant, health-based phosgene exposure guidelines.« less
Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone
NASA Astrophysics Data System (ADS)
Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.
2018-03-01
Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.
Investigation of air quality on mood
NASA Astrophysics Data System (ADS)
Isaac, L.
2017-12-01
My project evaluated the effect of air quality on mood. We quantified people's mood using an online survey and then looked at the relationship between mood and pm 2.5 and ozone concentrations. Mood was quantified using the Positive and Negative Affect Schedule (PANAS). I found that with increasing ozone AQI the positive score for mood decreased and the negative score for mood increased. The trend was not significant (p=0.414 for positive and p=0.158 for negative). I also found that the positive score decreased with increasing PM2.5 AQI (p=0.19); however there was no pattern between the negative scores and PM 2.5 AQI. In summary, air quality does look to have a negative effect on mood; however more data is needed to confirm this relationship.
2007-08-29
cell plasma code ( MAGIC ) and an air-chemistry code are used to quantify beam propagation through an electron-beam transmission window into air and the...to generate and maintain plasma in air on the timescale of 1 ms. 15. SUBJECT TERMS Air Chemistry, Air Plasma, MAGIC Modeling, Plasma, Power, Test-Cell...Microwave diagnostics quantify electron number density and optical diagnostics quantify ozone production. A particle in cell plasma code ( MAGIC ) and an
Huijbregts, Mark A J; Gilijamse, Wim; Ragas, Ad M J; Reijnders, Lucas
2003-06-01
The evaluation of uncertainty is relatively new in environmental life-cycle assessment (LCA). It provides useful information to assess the reliability of LCA-based decisions and to guide future research toward reducing uncertainty. Most uncertainty studies in LCA quantify only one type of uncertainty, i.e., uncertainty due to input data (parameter uncertainty). However, LCA outcomes can also be uncertain due to normative choices (scenario uncertainty) and the mathematical models involved (model uncertainty). The present paper outlines a new methodology that quantifies parameter, scenario, and model uncertainty simultaneously in environmental life-cycle assessment. The procedure is illustrated in a case study that compares two insulation options for a Dutch one-family dwelling. Parameter uncertainty was quantified by means of Monte Carlo simulation. Scenario and model uncertainty were quantified by resampling different decision scenarios and model formulations, respectively. Although scenario and model uncertainty were not quantified comprehensively, the results indicate that both types of uncertainty influence the case study outcomes. This stresses the importance of quantifying parameter, scenario, and model uncertainty simultaneously. The two insulation options studied were found to have significantly different impact scores for global warming, stratospheric ozone depletion, and eutrophication. The thickest insulation option has the lowest impact on global warming and eutrophication, and the highest impact on stratospheric ozone depletion.
Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina
2010-04-01
The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.
Does coupled ocean enhance ozone-hole-induced Southern Hemisphere circulation changes?
NASA Astrophysics Data System (ADS)
Son, S. W.; Han, B. R.; Kim, S. Y.; Park, R.
2017-12-01
The ozone-hole-induced Southern Hemisphere (SH) circulation changes, such as poleward shift of westerly jet and Hadley cell widening, have been typically explored with either coupled general circulation models (CGCMs) prescribing stratospheric ozone or chemistry-climate models (CCMs) prescribing surface boundary conditions. Only few studies have utilized ocean-coupled CCMs with a relatively coarse resolution. To better quantify the role of interactive chemistry and coupled ocean in the ozone-hole-induced SH circulation changes, the present study examines a set of CGCM and CCM simulations archived for the Coupled Model Intercomparison Project phase 5 (CMIP5) and CCM initiative (CCMI). Although inter-model spread of Antarctic ozone depletion is substantially large especially in the austral spring, both CGCMs with relatively simple ozone chemistry and CCMs with fully interactive comprehensive chemistry reasonably well reproduce long-term trends of Antarctic ozone and the associated polar-stratospheric temperature changes. Most models reproduce a poleward shift of SH jet and Hadley-cell widening in the austral summer in the late 20th century as identified in reanalysis datasets. These changes are quasi-linearly related with Antarctic ozone changes, confirming the critical role of Antarctic ozone depletion in the austral-summer zonal-mean circulation changes. The CGCMs with simple but still interactive ozone show slightly stronger circulation changes than those with prescribed ozone. However, the long-term circulation changes in CCMs are largely insensitive to the coupled ocean. While a few models show the enhanced circulation changes when ocean is coupled, others show essentially no changes or even weakened circulation changes. This result suggests that the ozone-hole-related stratosphere-troposphere coupling in the late 20th century may be only weakly sensitive to the coupled ocean.
Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone Dial
NASA Technical Reports Server (NTRS)
Sullivan, John T.; McGee, Thomas J.; Hoff, Raymond M.; Sumnicht, Grant; Twigg, Laurence
2015-01-01
Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZDIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins,Colorado.The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase a loft during recirculation episodes has been historically difficult, results indicate that an increase of 20 -30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region.
Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment
Johan Uddling; Alan J. Hogg; Ronald M. Teclaw; Mary Anne Carroll; David S. Ellsworth
2010-01-01
Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated...
NASA Astrophysics Data System (ADS)
Neu, J. L.; Prather, M. J.
2012-04-01
Uptake and removal of soluble trace gases and aerosols by precipitation represents a major uncertainty in the processes that control the vertical distribution of atmospheric trace species. Model representations of precipitation scavenging vary greatly in their complexity, and most are divorced from the physics of precipitation formation and transformation. Here, we describe a new large-scale precipitation scavenging algorithm, developed for the UCI chemistry-transport model (UCI-CTM), that represents a step toward a more physical treatment of scavenging through improvements in the formulation of the removal in sub-gridscale cloudy and ambient environments and their overlap within the column as well as ice phase uptake of soluble species. The UCI algorithm doubles the lifetime of HNO3 in the upper troposphere relative to a scheme with commonly used fractional cloud cover assumptions and ice uptake determined by Henry's Law and provides better agreement with HNO3 observations. We find that the process of ice phase scavenging of HNO3 is a critical component of the tropospheric O3 budget, but that NOx and O3 mixing ratios are relatively insensitive to large differences in the removal rate. Ozone abundances are much more sensitive to the lifetime of HNO4, highlighting the need for better understanding of its interactions with ice and for additional observational constraints.
Foliar Symptoms Triggered by Ozone Stress in Irrigated Holm Oaks from the City of Madrid, Spain
Guerrero, Carlos Calderón; Günthardt-Goerg, Madeleine S.; Vollenweider, Pierre
2013-01-01
Background Despite abatement programs of precursors implemented in many industrialized countries, ozone remains the principal air pollutant throughout the northern hemisphere with background concentrations increasing as a consequence of economic development in former or still emerging countries and present climate change. Some of the highest ozone concentrations are measured in regions with a Mediterranean climate but the effect on the natural vegetation is alleviated by low stomatal uptake and frequent leaf xeromorphy in response to summer drought episodes characteristic of this climate. However, there is a lack of understanding of the respective role of the foliage physiology and leaf xeromorphy on the mechanistic effects of ozone in Mediterranean species. Particularly, evidence about morphological and structural changes in evergreens in response to ozone stress is missing. Results Our study was started after observing ozone -like injury in foliage of holm oak during the assessment of air pollution mitigation by urban trees throughout the Madrid conurbation. Our objectives were to confirm the diagnosis, investigate the extent of symptoms and analyze the ecological factors contributing to ozone injury, particularly, the site water supply. Symptoms consisted of adaxial and intercostal stippling increasing with leaf age. Underlying stippling, cells in the upper mesophyll showed HR-like reactions typical of ozone stress. The surrounding cells showed further oxidative stress markers. These morphological and micromorphological markers of ozone stress were similar to those recorded in deciduous broadleaved species. However, stippling became obvious already at an AOT40 of 21 ppm•h and was primarily found at irrigated sites. Subsequent analyses showed that irrigated trees had their stomatal conductance increased and leaf life -span reduced whereas the leaf xeromorphy remained unchanged. These findings suggest a central role of water availability versus leaf xeromorphy for ozone symptom expression by cell injury in holm oak. PMID:23894424
Sánchez-Polo, M; von Gunten, U; Rivera-Utrilla, J
2005-09-01
Based on previous findings (Jans, U., Hoigné, J., 1998. Ozone Sci. Eng. 20, 67-87), the activity of activated carbon for the transformation of ozone into *OH radicals including the influence of operational parameters (carbon dose, ozone dose, carbon-type and carbon treatment time) was quantified. The ozone decomposition constant (k(D)) was increased by the presence of activated carbon in the system and depending on the type of activated carbon added, the ratio of the concentrations of *OH radicals and ozone, the R(ct) value ([*OH]/[O3]), was increased by a factor 3-5. The results obtained show that the surface chemical and textural characteristics of the activated carbon determines its activity for the transformation of ozone into *OH radicals. The most efficient carbons in this process are those with high basicity and large surface area. The obtained results show that the interaction between ozone and pyrrol groups present on the surface of activated carbon increase the concentration of O2*- radicals in the system, enhancing ozone transformation into *OH radicals. The activity of activated carbon decreases for extended ozone exposures. This may indicate that activated carbon does not really act as a catalyst but rather as a conventional initiator or promoter for the ozone transformation into *OH radicals. Ozonation of Lake Zurich water ([O3] = 1 mg/L) in presence of activated carbon (0.5 g/L) lead to an increase in the k(D) and R(ct) value by a factor of 10 and 39, respectively, thereby favouring the removal of ozone-resistant contaminants. Moreover, the presence of activated carbon during ozonation of Lake Zurich water led to a 40% reduction in the content of dissolved organic carbon during the first 60 min of treatment. The adsorption of low concentrations of dissolved organic matter (DOM) on activated carbon surfaces did not modify its capacity to initiate/promote ozone transformation into *OH radicals.
Revisiting Antarctic Ozone Depletion
NASA Astrophysics Data System (ADS)
Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf
2015-04-01
Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.
How Well Can We Assess Atmospheric Ozone Changes? The OzoneSonde Data Quality Assessment (O3S-DQA)
NASA Astrophysics Data System (ADS)
Tarasick, D. W.; Smit, H. G. J.; Thompson, A. M.; Morris, G. A.; Witte, J. C.; Davies, J.
2017-12-01
Ozonesondes are the backbone of the global ozone observing network, making inexpensive, accurate measurements of ozone from the ground to 30km, with high vertical resolution ( 100 m), for more than 50 years. The data are used extensively for validation of satellite data products, and are also part of merged satellite data sets and climatologies that are used for trend analyses and as a priori data for satellite retrievals. The importance of ECC sondes for trend analyses and as a stable reference for satellite validation recommends research effort to better quantify uncertainties in ECC data and to understand changes therein. Comparison with UV-absorption measurements in a number of studies (e.g. JOSIE, BESOS) has shown that small changes in sensor type, preparation or sensing solution can introduce significant inhomogenities in long-term sounding records. The major goal of the O3S-DQA is the homogenization of ozonesonde data sets. Essential aspects of this are the detailed estimation of uncertainties and documentation of the reprocessing. Corrections to historical data for known issues may reduce biases but introduce additional uncertainties. We take a systematic approach to quantifying these uncertainties by considering the physical and chemical processes involved, and attempt to place our estimates on a firm theoretical or empirical footing. We discuss stoichiometry, sensing solutions, background current, humidity and temperature corrections to pump flow rate, altitude-dependent pump flow corrections, variations in radiosonde pressure offsets, and normalization of sonde total ozone to spectrophotometric measurements. In the past 20 years ozonesonde precision has improved by a factor of 2, primarily through the adoption of strict standard operating procedures. We identify remaining quality assurance issues that can be better evaluated with further research. We present a "roadmap" for achieving a goal of better than 5% overall uncertainty throughout the global ozonesonde network. Finally, we note that the global network is very uneven. Additional sites would be of global benefit. Objective methods of quantifying spatial representativeness can optimize future network design. International cooperation and data sharing will continue to be of immense importance.
Ozone dose-response relationships for spring oilseed rape and broccoli
NASA Astrophysics Data System (ADS)
De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine
2011-03-01
Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p < 0.001) for the accumulated hourly O 3 exposure over a threshold of 40 ppb (AOT40) and the phytotoxic ozone dose above a threshold of 6 nmol m -2 s -1 (POD 6) respectively. Estimated critical levels, above which 5% yield reduction is expected, were 3.7 ppm h and 4.4 mmol m -2 respectively. Our results also confirm that a threshold value of 6 nmol s -1 m -2 projected leaf area, as recommended for agricultural crops (UNECE, Mills, 2004), can indeed be applied for spring oilseed rape. The reduction of oilseed rape yield showed the highest correlation with the ozone uptake during the vegetative growth stage: when only the first 47 days after emergence were used to calculate POD 6, R2 values increased up to 0.476 or even 0.545 when the first 23 days were excluded. The highest ozone treatments, corresponding to the future ambient level by 2100 (IPCC, Meehl et al., 2007), led to a reduction of approximately 30% in oilseed rape seed yield in comparison to the current ozone concentrations. Oil percentage was also significantly reduced in response to ozone ( p < 0.001). As a consequence oil yield was even more severely affected by elevated ozone exposure compared to seed yield: critical levels for oil yield dropped to 3.2 ppm h and 3.9 mmol m -2. For broccoli the applied ozone doses had no effect on yield.
Turbulent mixing and removal of ozone within an Amazon rainforest canopy
NASA Astrophysics Data System (ADS)
Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.
2017-03-01
Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Douglas-firs near Eatonville, Washington - 70 miles south of Seattle - are getting doses of ozone pollution at levels regularly found in Los Angeles. Ozone levels of 220 parts per billion (ppb) can make your eyes smart and give your Aunt Edna a doozy of a headache. University of Washington researchers are now trying to find if Douglas-fir is adversely affected by 220 ppb of ozone. They are also studying whether individual branches can reveal how whole trees respond to pollutants. Studying entire trees is tough so researchers hope to take the pulse of a tree by examining its branches.more » At the university's experimental forest, researchers have placed 12-foot-tall plastic-covered corrals around six Douglas-firs, each nine or 10 years old and up to 15 feet tall. Three of the trees receive filtered air while three others are blasted with 220 ppb of ozone for eight hours each day. Four individual branches on each tree are encased in their own plastic chambers. Two are dosed with filtered air and two with ozone. To date, the UW research is the only study in the US combining branch chambers with whole tree measurements. Now in its second year, the experiment is expected to yield information about growth and foliage health by measuring respiration, chlorophyll, photosynthesis, and nutrient uptake. Loss of tree vigor could lead to increased problems with pathogens and insects. In the summer of '88, surprisingly high levels of ozone - up to 196 ppb - were detected in forests downwind from Seattle, worse than the urban areas themselves.« less
Depletion of tropospheric ozone associated with mineral dust outbreaks.
Soler, Ruben; Nicolás, J F; Caballero, S; Yubero, E; Crespo, J
2016-10-01
From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %.
Kinetics of Ozone Inactivation of Infectious Prion Protein
Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Mitchell, Gordon; Belosevic, Miodrag
2013-01-01
The kinetics of ozone inactivation of infectious prion protein (PrPSc, scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrPSc was quantified by determining the in vitro destruction of PrPSc templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrPSc was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater. PMID:23416994
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.
2004-01-01
We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.
Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution.
Monteagudo, J M; Carmona, M; Durán, A
2005-08-01
The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.
Xian, G.
2007-01-01
Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi‐year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night‐time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, G.R.; Potra, F.
1998-10-06
A major goal of this research was to quantify the interactions between UVR, ozone and aerosols. One method of quantification was to calculate sensitivity coefficients. A novel aspect of this work was the use of Automatic Differentiation software to calculate the sensitivities. The authors demonstrated the use of ADIFOR for the first time in a dimensional framework. Automatic Differentiation was used to calculate such quantities as: sensitivities of UV-B fluxes to changes in ozone and aerosols in the stratosphere and the troposphere; changes in ozone production/destruction rates to changes in UV-B flux; aerosol properties including loading, scattering properties (including relativemore » humidity effects), and composition (mineral dust, soot, and sulfate aerosol, etc.). The combined radiation/chemistry model offers an important test of the utility of Automatic Differentiation as a tool in atmospheric modeling.« less
NASA Astrophysics Data System (ADS)
Henneman, Lucas R. F.; Holmes, Heather A.; Mulholland, James A.; Russell, Armistead G.
2015-10-01
The effectiveness of air pollution regulations and controls are evaluated based on measured air pollutant concentrations. Air pollution levels, however, are highly sensitive to both emissions and meteorological fluctuations. Therefore, an assessment of the change in air pollutant levels due to emissions controls must account for these meteorological fluctuations. Two empirical methods to quantify the impact of meteorology on pollutant levels are discussed and applied to the 13-year time period between 2000 and 2012 in Atlanta, GA. The methods employ Kolmogorov-Zurbenko filters and linear regressions to detrended pollutant signals into long-term, seasonal, weekly, short-term, and white-noise components. The methods differ in how changes in weekly and holiday emissions are accounted for. Both can provide meteorological adjustments on a daily basis for future use in acute health analyses. The meteorological impact on daily signals of ozone, NOx, CO, SO2, PM2.5, and PM species are quantified. Analyses show that the substantial decreases in seasonal averages of NOx and SO2 correspond with controls implemented in the metropolitan Atlanta area. Detrending allows for the impacts of some controls to be observed with averaging times of as little as 3 months. Annual average concentrations of NOx, SO2, and CO have all fallen by at least 50% since 2000. Reductions in NOx levels, however, do not lead to uniform reductions in ozone. While average detrended summer average maximum daily average 8 h ozone (MDA8h O3) levels fell by 4% (2.2 ± 2 ppb) between 2000 and 2012, winter averages have increased by 12% (3.8 ± 1.4 ppb), providing further evidence that high ozone levels are NOx-limited and lower ozone concentrations are NOx-inhibited. High ozone days (with MDA8h O3 greater than 60 ppb) decreased both in number and in magnitude over the study period.
Nicotiana tabacum as model for ozone - plant surface reactions
NASA Astrophysics Data System (ADS)
Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin
2015-04-01
Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the difference of ozone measured before and after the plant cuvette was investigated as a function of stomatal opening. Switching from dark to light conditions and thus opening the stomata only a small increase in ozone loss was observed for the Ambalema variety (25%). In the case of the 3H02 variety, a line known to emit almost no diterpenoids, the ozone loss increased by more than 100% when changing from dark to light conditions. It is anticipated that the described effect is of importance also for other plant species emitting low-volatility unsaturated organic compounds (e.g. in form of exudates or resins).
Measurements of the potential ozone production rate in a forest
NASA Astrophysics Data System (ADS)
Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.
2017-12-01
Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.
Oxidation and ozonation of waste activated sludge.
Mines, Richard O; Northenor, C Brett; Murchison, Mitchell
2008-05-01
In this bench-scale study, the treatment of waste activated sludge (WAS) was evaluated using aerobic digestion and ozonation. Two, 2-L batch digesters, one aerated and the other one ozonated, were operated for 30 days in each phase of the study. The aerated digester simulated the aerobic digestion process and served as control to the ozonated digester. In Phase I, the aerated digester was supplied 810 mg O(2) min(- 1), whereas, the ozonated digester was supplied 0.88 mg O(3) min(- 1). In Phase II, the oxygenation rate to the aerobic digester was increased to 1,200 mg O(2) min(- 1) while the ozonation rate was reduced to 0.44 mg O(3) min(- 1). Ozone was more effective than air at oxidizing and reducing both total solids (TS) and volatile solids (VS) in the WAS. TS removals of 50% and 56% were observed for the ozonated digester versus TS removals of 23% and 35% for the aerated digester. VS removals of 40% and 42% were observed for the aerobic digester versus 57% and 74% for the ozonated digester. Aerobic digestion barely met the 38% reduction in VS required by the U.S. Environmental Protection Agency (EPA). The degradation rate constant (K(d)) based on degradable TS for the ozonated digester varied from 0.082 to 0.11 days(- 1) and from 0.067 to 0.09 days(- 1) for the aerobic digester. Total chemical oxygen demand (TCOD) removal in the aerobic digester increased from 30% to 40% from Phase I to Phase II. TCOD removal increased slightly from 57% to 58% in the ozonated digester from Phase I to Phase II. Soluble chemical oxygen demand (SCOD) concentrations in the sludge supernatant increased with digestion time, especially in the ozonated digester. Approximately 0.12 to 0.22 mg SCOD was produced per mg of TS destroyed during ozonation. The specific oxygen uptake rate (SOUR) was consistently below the EPA standard of 1.5 mg O(2) per hr per g TS, indicating that the sludge was well stabilized. The average quantity of oxygen required during aerobic digestion was 1.53 g O(2) per g of TS destroyed. Actual ozone consumption rates were 0.57 mg O(3) per mg TS destroyed and 1.09 mg O(3) per mg TS destroyed for Phase II and Phase I, respectively.
Hemispheric Differences in Tropical Lower Stratospheric Transport and Tracers Annual Cycle
NASA Technical Reports Server (NTRS)
Tweedy, Olga; Waugh, D.; Stolarski, R.; Oman, L.
2016-01-01
Transport of long-lived tracers (such as O, CO, and N O) in the lower stratosphere largely determines the composition of the entire stratosphere. Stratospheric transport includes the mean residual circulation (with air rising in the tropics and sinking in the polar and middle latitudes), plus two-way isentropic (quasi-horizontal) mixing by eddies. However, the relative importance of two transport components remains uncertain. Previous studies quantified the relative role of these processes based on tropics-wide average characteristics under common assumption of well-mixed tropics. However, multiple instruments provide us with evidence that show significant differences in the seasonal cycle of ozone between the Northern (0-20N) and Southern (0-20S) tropical (NT and ST respectively) lower stratosphere. In this study we investigate these differences in tracer seasonality and quantify transport processes affecting tracers annual cycle amplitude using simulations from Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and Whole Atmosphere Community Climate Model (WACCM) and compare them to observations from the Microwave Limb Sounder (MLS) on the Aura satellite. We detect the observed contrast between the ST and NT in GEOSCCM and WACCM: annual cycle in ozone and other chemical tracers is larger in the NT than in the ST but opposite is true for the annual cycle in vertical advection. Ozone budgets in the models, analyzed based on the Transformed Eulerian Mean (TEM) framework, demonstrate a major role of quasi-horizontal mixing vertical advection in determining the NTST ozone distribution and behavior. Analysis of zonal variations in the NT and ST ozone annual cycles further suggests important role of North American and Asian Summer Monsoons (associated with strong isentropic mixing) on the lower stratospheric ozone in the NT. Furthermore, multi model comparison shows that most CCMs reproduce the observed characteristic of ozone annual cycle quite well. Thus, latitudinal variations within the tropics have to be considered in order to understand the balance between upwelling and quasi- horizontal mixing in the tropical lower stratosphere and the paradigm of well mixed tropics has to be reconsidered.
The impact on the ozone layer from NOx produced by terrestrial gamma ray flashes
NASA Astrophysics Data System (ADS)
Cramer, E. S.; Briggs, M. S.; Liu, N.; Mailyan, B.; Dwyer, J. R.; Rassoul, H. K.
2017-05-01
The motivation of this work is to understand the effects of terrestrial gamma ray flashes (TGFs) on the ozone layer. One of the main ozone-destroying mechanisms is the production of NOx in the stratospheric region. NOx from lightning has been considered as a possible cause of ozone depletion, but probably little of this NOx is transported from the tropopause to the stratosphere. Since the energetic particles of TGFs travel from ≈12 km to space, the resulting ionization can produce NOx directly in the stratosphere. In order to quantify the production of stratospheric NOx from TGFs, we use the Runaway Electron Avalanche Model to simulate a typical setup of the acceleration region inside a thundercloud. The photons are then transported through the Earth's atmosphere, where they deposit some of their energy as ionization in the ozone layer. We then calculate the number of NOx molecules produced by considering the average energy required to produce one electron-ion pair. Finally, the effect of TGF NOx production is estimated using the global annual rate of TGFs. It is estimated that the NOx production of TGFs is completely negligible compared to other sources, and therefore, TGFs have no effect on the ozone layer.
An analysis of the impacts of global climate and emissions changes on regional tropospheric ozone
NASA Technical Reports Server (NTRS)
John, Kuruvilla; Crist, Kevin C.; Carmichael, Gregory R.
1994-01-01
Many of the synergistic impacts resulting from future changes in emissions as well as changes in ambient temperature, moisture, and UV flux have not been quantified. A three-dimensional regional-scale photo-chemical model (STEM-2) is used in this study to evaluate these perturbations to trace gas cycles over the eastern half of the United States of America. The model was successfully used to simulate a regional-scale ozone episode (base case - June 1984) and four perturbations scenarios - viz., perturbed emissions, temperature, water vapor column, and incoming UV flux cases, and a future scenario (for the year 2034). The impact of these perturbation scenarios on the distribution of ozone and other major pollutants such as SO2 and sulfates were analyzed in detail. The spatial distribution and the concentration of ozone at the surface increased by about 5-15 percent for most cases except for the perturbed water vapor case. The regional scale surface ozone concentration distribution for the year 2034 (future scenario) showed an increase of non-attainment areas. The rural areas of Pennsylvania, West Virginia, and Georgia showed the largest change in the surface ozone field for the futuristic scenario when compared to the base case.
The response of ozone to transportation technology and policy options
NASA Astrophysics Data System (ADS)
Holloway, T.
2008-12-01
As the global economy grows, there is a corresponding increase in the number of passenger cars on the road and in the volume of goods shipped. Building on novel methods to estimate these transportation emissions, we evaluate the regional air quality impacts of personal vehicles and heavy-duty diesel vehicles (HDDV) for freight transport. In particular, we quantify the potential of technological and policy-based solutions to reduce mean ozone concentrations and the frequency of high ozone events. Although transportation contributes to a range of air quality challenges, ozone chemistry is particularly sensitive to vehicle emissions, with on-road vehicles accounting for 44 percent of all man-made U.S. NOx emissions, and HDDV accounting for nearly 42 percent of this on-road contribution. Our studies focus on the Upper Midwestern United States, where urban development, agricultural activities, lake effect meteorology, and cross-continental freight transport are all major drivers of ozone chemistry and transport. Results will be presented from a range of recently completed and ongoing studies evaluating the ozone impacts of urban vehicle travel, the response of freight emissions to fuel-conserving speed reduction measures, and the consequences of increased biofuel use.
Novel test procedure to evaluate the treatability of wastewater with ozone.
Schindler Wildhaber, Yael; Mestankova, Hana; Schärer, Michael; Schirmer, Kristin; Salhi, Elisabeth; von Gunten, Urs
2015-05-15
Organic micropollutants such as pharmaceuticals, estrogens or pesticides enter the environment continuously through the effluent of municipal wastewater treatment plants (WWTPs). Enhanced treatment of wastewater (WW) by ozone (O3) is probably one of the simplest measures for abatement of organic micropollutants to avoid their discharge to the aquatic environment. During ozonation most organic micropollutants present in treated WW are oxidized either by a direct reaction with O3 or by secondarily formed hydroxyl radicals (OH). However, undesired oxidation by-products from the oxidative transformation of matrix components can also be formed. A modular laboratory decision tool based on the findings of previous investigations is presented to test the feasibility of ozonation as an option to upgrade specific WWTPs. These modules consist of investigations to assess (i) the matrix effects on ozone stability, (ii) the efficiency of micropollutant removal, (iii) the oxidation by-product formation, as well as (iv) bioassays to measure specific and unspecific toxicity of the treated WWs. Matrix effects on ozone stability (quantified as O3 and OH exposures) can give first indications on the suitability of an ozonation step. Ozonation of WWs yielding O3 and OH exposures and micropollutant abatement similar to reference values evoked a significant improvement of the water quality as indicated by a broad range of bioassays. Irregular behavior of the ozonation points towards unknown compounds, possibly leading to the formation of undesired degradation products. It has been observed that in such WWs ozonation partly enhanced toxicity. In summary, the presented tiered laboratory test procedure represents a relatively cheap and straight-forward methodology to evaluate the feasibility of ozonation to upgrade specific WWTPs for micropollutant removal based on chemical and biological measurements. Copyright © 2015 Elsevier Ltd. All rights reserved.
A passive ozone sampler based on a reaction with iodide.
Yanagisawa, Y
1994-02-01
A new passive sampler for ozone and its simple analytical system have been developed. Because it is small and sensitive, the sampler can be used for determining personal exposures to ozone and oxidants and for multilocation measurements. The sampler consists of an electrode, a spacer, and several layers of membrane filters and Teflon meshes. The electrode is a carbon paper disk coated with nylon-6 polymer and potassium iodide. The membrane filters are used to remove interferences. A sampling rate of ozone is controlled by the spacer and Teflon meshes. Iodine is liberated by an oxidation reaction of potassium iodide with ozone. The iodine is stabilized by forming a charge transfer complex with nylon-6 and is accumulated in the nylon-6 layer. The amount of iodine, which is proportional to the level of ozone exposure, is quantified by constant current coulometry. The discharge time of a galvanic battery is measured using the electrode as a positive electrode and a zinc plate as a counter electrode. A time-weighted average concentration of ozone is derived from the discharge time after exposing the electrode to ozone. The effects of various environmental conditions on the sampler's performance were investigated. The results indicated that the sampler showed a linear response to ozone exposure up to 1,450 parts per billion for every hour of use (ppb.hour). The minimum detectable exposure was about 400 ppb.hour. The effects of surface wind velocity, temperature, and humidity were small. However, a relative humidity below 20% resulted in an underestimation of the ozone concentration. Because the electrode requires no pretreatment and the analytical method is very simple, this method is suitable for large-scale studies of personal exposures to ozone and oxidants using multilocation measurements.
NASA Astrophysics Data System (ADS)
Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.
2015-12-01
During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen oxides to the observed ozone production in the boundary layer.
Within-canopy sesquiterpene ozonolysis in Amazonia
NASA Astrophysics Data System (ADS)
Jardine, K.; YañEz Serrano, A.; Arneth, A.; Abrell, L.; Jardine, A.; van Haren, J.; Artaxo, P.; Rizzo, L. V.; Ishida, F. Y.; Karl, T.; Kesselmeier, J.; Saleska, S.; Huxman, T.
2011-10-01
Through rapid reactions with ozone, which can initiate the formation of secondary organic aerosols, the emission of sesquiterpenes from vegetation in Amazonia may have significant impacts on tropospheric chemistry and climate. Little is known, however, about sesquiterpene emissions, transport, and chemistry within plant canopies owing to analytical difficulties stemming from very low ambient concentrations, high reactivities, and sampling losses. Here, we present ambient sesquiterpene concentration measurements obtained during the 2010 dry season within and above a primary tropical forest canopy in Amazonia. We show that by peaking at night instead of during the day, and near the ground instead of within the canopy, sesquiterpene concentrations followed a pattern different from that of monoterpenes, suggesting that unlike monoterpene emissions, which are mainly light dependent, sesquiterpene emissions are mainly temperature dependent. In addition, we observed that sesquiterpene concentrations were inversely related with ozone (with respect to time of day and vertical concentration), suggesting that ambient concentrations are highly sensitive to ozone. These conclusions are supported by experiments in a tropical rain forest mesocosm, where little atmospheric oxidation occurs and sesquiterpene and monoterpene concentrations followed similar diurnal patterns. We estimate that the daytime dry season ozone flux of -0.6 to -1.5 nmol m-2 s-1 due to in-canopy sesquiterpene reactivity could account for 7%-28% of the net ozone flux. Our study provides experimental evidence that a large fraction of total plant sesquiterpene emissions (46%-61% by mass) undergo within-canopy ozonolysis, which may benefit plants by reducing ozone uptake and its associated oxidative damage.
NASA Technical Reports Server (NTRS)
Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka
2016-01-01
Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.
NASA Astrophysics Data System (ADS)
Parrington, Mark; Palmer, Paul I.; Rickard, Andrew; Young, Jennifer; Lewis, Ally; Lee, James; Henze, Daven; Tarasick, David; Hyer, Edward; Yantosca, Robert; Bowman, Kevin; Worden, John; Griffin, Debora; Franklin, Jonathan; Helmig, Detlev
2013-04-01
We use the GEOS-Chem chemistry transport model to quantify the impact of boreal biomass burning on tropospheric oxidant chemistry over the North Atlantic region during summer of 2011. The GEOS-Chem model is used at a spatial resolution of 1/2 degree latitude by 2/3 degree longitude for a domain covering eastern North America, the North Atlantic Ocean and western Europe. We initialise the model with biomass burning emissions from the Fire Locating and Monitoring of Burning Emissions (FLAMBE) inventory and use a modified chemical mechanism providing a detailed description of ozone photochemistry in boreal biomass burning outflow derived from the Master Chemical Mechanism (MCM). We evaluate the 3-D model distribution of ozone and tracers associated with biomass burning against measurements made by the UK FAAM BAe-146 research aircraft, ozonesondes, ground-based and satellite instruments as part of the BORTAS experiment between 12 July and 3 August 2011. We also use the GEOS-Chem model adjoint to fit the model to BORTAS measurements to analyse the sensitivity of the model chemical mechanism and ozone distribution to wildfire emissions in central Canada.
Monitoring air quality in mountains: Designing an effective network
Peterson, D.L.
2000-01-01
A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.
P. J Mulholland; J. L. Tanks; J. R. Webster; W. B. Bowden; W. K Dodds; S. V. Gregory; N. B Grimm; J. L. Meriam; J. L. Meyer; B. J. Peterson; H. M. Valett; W. M. Wollheim
2002-01-01
Nutrient uptake length is an important parnmeter tor quantifying nutrient cycling in streams. Although nutrient tracer additions are the preierred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more irequently been used to estimate uptake length in streams. Theoretical analysis of the relationship...
Satellite Remote Sensing of Ozone Change, Air Quality and Climate
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest; Bhartia, Pawan K. (Technical Monitor)
2001-01-01
To date satellite remote sensing of ozone depletion has been very successful. Data sets have been validated and measured trends are in agreement with model calculations. Technology developed for sensing the stratosphere is now being employed to study air quality and climate with promising results. These new data show that air quality is a transcontinental issue, but that better instrumentation is needed. Recent data show a connection between the stratosphere, troposphere and climate, which will require new technology to quantify these relationships. NASA and NOAA (National Oceanic and Atmospheric Administration) are planning and developing new missions. Recent results from TOMS (Total Ozone Mapping Spectrometer), SeaWiffs, and Terra will be discussed and upcoming missions to study atmospheric chemistry will be discussed.
The influence of changing UVB radiation in near-surface ozone time series
NASA Astrophysics Data System (ADS)
BröNnimann, Stefan; Voigt, Stefan; Wanner, Heinz
2000-04-01
UVB radiation plays an important role in tropospheric photochemistry since it determines the rate of ozone photolysis J(O1D) and subsequent formation of OH radicals. Consequently, changes of UVB radiation, for example due to changes of the stratospheric ozone amount, could alter the concentration of reactive tropospheric gases including ozone. An observation-based attempt is made to quantify the effect of changing UVB radiation on surface ozone peaks on a day-to-day scale using a time series of measurements at a Swiss mountain site. Seven years data of ozone, NO, NOx, and meteorological measurements from Chaumont (1140 m above sea level (asl)), total ozone and UVB measurements from Arosa (1847 m asl), and surface albedo from satellite observations are investigated. The study is restricted to fair weather days with moderately high NOx concentrations. Multiple regression analysis is performed using chemical, meteorological, and UV dependent variables to predict afternoon ozone peaks. From autumn to spring, positive deviations of ozone peaks are clearly connected with positive UVB deviations. The relation is statistically significant only in part of the seasonal data subsets; however, it is consistent with model studies. The estimated net effect on ozone peaks is normally within a range of 4 ppb, a range of about 6 ppb is predicted for large UVB changes. Applying the coefficients for the large interannual variability of the stratospheric ozone layer observed in spring in the last 10 years results in a range of variation of at most 1 to 1.5 ppb for monthly mean ozone peaks. For trends of J(O1D) from 1970 to 1990, a trend bias of surface ozone peaks on polluted fair weather days of less than 0.12 ppb/yr is calculated. Although the numbers are rather small, they may play a role in certain circumstances.
NASA Technical Reports Server (NTRS)
Stajner, Ovanka; Riishojgaard, Lars Peter; Rood, Richard B.
2000-01-01
In a data assimilation system (DAS), model forecast atmospheric fields, observations and their respective statistics are combined in an attempt to produce the best estimate of these fields. Ozone observations from two instruments are assimilated in the Goddard Earth Observing System (GEOS) ozone DAS: the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) instrument. The assimilated observations are complementary; TOMS provides a global daily coverage of total column ozone, without profile information, while SBUV measures ozone profiles and total column ozone at nadir only. The purpose of this paper is to examine the performance of the ozone assimilation system in the absence of observations from one of the instruments as it can happen in the event of a failure of an instrument or when there are problems with an instrument for a limited time. Our primary concern is for the performance of the GEOS ozone DAS when it is used in the operational mode to provide near real time analyzed ozone fields in support of instruments on the Terra satellite. In addition, we are planning to produce a longer term ozone record by assimilating historical data. We want to quantify the differences in the assimilated ozone fields that are caused by the changes in the TOMS or SBUV observing network. Our primary interest is in long term and large scale features visible in global statistics of analysis fields, such as differences in the zonal mean of assimilated ozone fields or comparisons with independent observations, While some drifts in assimilated fields occur immediately, after assimilating just one day of different observations, the others develop slowly over several months. Thus, we are also interested in the length of time, which is determined from time series, that is needed for significant changes to take place.
NASA Astrophysics Data System (ADS)
He, H.; Liang, X.-Z.; Lei, H.; Wuebbles, D. J.
2014-10-01
A regional chemical transport model (CTM) is used to quantify the relative contributions of future US ozone pollution from regional emissions, climate change, long-range transport (LRT) of pollutants, and model deficiency. After incorporating dynamic lateral boundary conditions (LBCs) from a global CTM, the representation of present-day US ozone pollution is notably improved. This nested system projects substantial surface ozone trends for 2050's: 6-10 ppbv decreases under the "clean" A1B scenario and ~15 ppbv increases under the "dirty" A1Fi scenario. Among the total trends, regional emissions changes dominate, contributing negative 20-50% in A1B and positive 20-40% in A1Fi, while LRT effects through chemical LBCs and climate changes account for respectively 15-50% and 10-30% in both scenarios. The projection uncertainty due to model biases is region dependent, ranging from -10 to 50%. It is shown that model biases of present-day simulations can propagate into future projections systematically but nonlinearly, and the accurate specification of LBCs is essential for US ozone projections.
Assess and improve the sustainability of water treatment facility using Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tejada-Martinez, Andres; Lei, Hongxia; Zhang, Qiong
2016-11-01
Fluids problems in water treatment industry are often simplified or omitted since the focus is usually on chemical process only. However hydraulics also plays an important role in determining effluent water quality. Recent studies have demonstrated that computational fluid dynamics (CFD) has the ability to simulate the physical and chemical processes in reactive flows in water treatment facilities, such as in chlorine and ozone disinfection tanks. This study presents the results from CFD simulations of reactive flow in an existing full-scale ozone disinfection tank and in potential designs. Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT (the product of disinfectant concentration and contact time) obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone disinfection tank designs and developed a composite indicator to quantify the sustainability of ozone disinfection tank in technological, environmental and economic dimensions.
NASA Astrophysics Data System (ADS)
Haman, Christine Lanier
Houston, Texas frequently exceeds the standard for ground-level ozone during the spring and fall. The large commuting population and vast number of industrial sources provide the necessary ingredients for photochemical ozone production in the presence of favorable meteorological conditions. The lack of continuous boundary layer (BL) observations prevents a comprehensive understanding of its role in ozone evolution. In this study, almost two years of BL observations are utilized to investigate the impacts of synoptic and micrometeorological-scale forcings on ozone. Aerosol gradients derived from ceilometer backscatter retrievals are used to identify the BL and residual layers (RL). Overall agreement is found between ceilometer and sonde estimates of the RL and BL heights (BLH), but difficulty detecting the layers occurs during cloud periods or immediately following precipitation. Large monthly variability is present in the peak afternoon BLH (e.g. mean August and December peaks are ˜2000 and 1100 m, respectively). Monthly nocturnal BLHs display much smaller differences. The majority of ozone exceedances occur during large-scale subsidence and weak winds in a postfrontal environment. These conditions result in turbulent kinetic energy, mechanical mixing, and ventilation processes that are 2--3 times weaker on exceedance days, which inhibit morning BL growth by an average of ˜100 m·hr-1 compared to low ozone days. The spring has higher nocturnal ozone levels, which is likely attributable to longer day lengths (˜78 minutes), stronger winds (˜0.78 m·s -1), and higher background ozone (˜5 ppbv) compared to the fall. Boundary layer entrainment plays an important role in ozone evolution. Exceedance days show a characteristic early morning rapid rise of ozone. Vertical ozone profiles indicate the RL ozone peak is ˜60 ppbv on exceedance days, which is ˜25 ppbv (+/- 10 ppbv) greater than low ozone days. The Integrated Profile Mixing (IPM) and Photochemical Budget (PB) methods are used to quantify ozone transport and photochemical production. On low ozone days, both the IPM and PB methods indicate ozone entrainment is ˜3--4 ppbv·hr-1 in this low photochemical environment of ˜1--4 ppbv·hr-1. During the rapid early morning ozone rise on exceedance days, RL entrainment and photochemical ozone production rates are 5--10 and 10--15 ppbv·hr -1, respectively.
Foliar ozone injury on different-sized Prumus serotina Ehrh. trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredericksen, T.S.; Skelly, J.M.; Steiner, K.C.
1995-06-01
Black cherry (Prunus serotina Ehrh.) is a common tree species in the eastern U.S. that is highly sensitive to ozone relative to other associated deciduous tree species. Because of difficulties in conducting exposure-response experiments on large trees, air pollution studies have often utilized seedlings and extrapolated the results to predict the potential response of larger forest trees. However, physiological differences between seedlings and mature forest trees may alter responses to air pollutants. A comparative study of seedling, sapling, and canopy black cherry trees was conducted to determine the response of different-sized trees to known ozone exposures and amounts of ozonemore » uptake. Apparent foliar sensitivity to ozone, observed as a dark adaxial leaf stipple, decreased with increasing tree size. An average of 46% of seedling leaf area was symptomatic by early September, compared to 15% - 20% for saplings and canopy trees. In addition to visible symptoms, seedlings also appeared to have greater rates of early leaf abscission than larger trees. Greater sensitivity (i.e., foliar symptoms) per unit exposure with decreasing tree size was closely correlated with rates of stomatal conductance. However, after accounting for differences in stomatal conductance, sensitivity appeared to increase with tree size.« less
NASA Technical Reports Server (NTRS)
Doughty, D. C.; Thompson, A. M.; Schoeberl, M. R.; Stajner, I.; Wargan, K.; Hui, W. C. J.
2011-01-01
Two recently developed methods for quantifying tropospheric ozone abundances based on Aura data, the Trajectory-enhanced Tropospheric Ozone Residual (TTOR) and an assimilation of Aura data into Goddard Earth Observing System Version 4 (ASM), are compared to ozone measurements from ozonesonde data collected in April-May 2006 during the INTEX Ozonesonde Network Study 2006 (IONS-06) campaign. Both techniques use Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) observations. Statistics on column ozone amounts for both products are presented. In general, the assimilation compares better to sonde integrated ozone to 200 hPa (28.6% difference for TTOR versus 2.7% difference for ASM), and both products are biased low. To better characterize the performance of ASM, ozone profiles based on the assimilation are compared to those from ozonesondes. We noted slight negative biases in the lower troposphere, and slight positive biases in the upper troposphere/lower stratosphere (UT/ LS), where we observed the greatest variability. Case studies were used to further understand ASM performance. We examine one case from 17 April 2006 at Bratt's Lake, Saskatchewan, where geopotential height gradients appear to be related to an underestimation in the ASM in the UT/LS region. A second case, from 21 April 2006 at Trinidad Head, California, is a situation where the overprediction of ozone in the UT/LS region does not appear to be due to current dynamic conditions but seems to be related to uncertainty in the flow pattern and large differences in MLS observations upstream.
Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015
NASA Astrophysics Data System (ADS)
Stone, Kane A.; Solomon, Susan; Kinnison, Doug E.; Pitts, Michael C.; Poole, Lamont R.; Mills, Michael J.; Schmidt, Anja; Neely, Ryan R.; Ivy, Diane; Schwartz, Michael J.; Vernier, Jean-Paul; Johnson, Bryan J.; Tully, Matthew B.; Klekociuk, Andrew R.; König-Langlo, Gert; Hagiya, Satoshi
2017-11-01
The Southern Hemisphere Antarctic stratosphere experienced two noteworthy events in 2015: a significant injection of sulfur from the Calbuco volcanic eruption in Chile in April and a record-large Antarctic ozone hole in October and November. Here we quantify Calbuco's influence on stratospheric ozone depletion in austral spring 2015 using observations and an Earth system model. We analyze ozonesondes, as well as data from the Microwave Limb Sounder. We employ the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (WACCM) in a specified dynamics setup, which includes calculations of volcanic effects. The Cloud-Aerosol Lidar with Orthogonal Polarization data indicate enhanced volcanic liquid sulfate 532 nm backscatter values as far poleward as 68°S during October and November (in broad agreement with WACCM). Comparison of the location of the enhanced aerosols to ozone data supports the view that aerosols played a major role in increasing the ozone hole size, especially at pressure levels between 150 and 100 hPa. Ozonesonde vertical ozone profiles from the sites of Syowa, South Pole, and Neumayer display the lowest individual October or November measurements at 150 hPa since the 1991 Mount Pinatubo eruption period, with Davis showing similarly low values, but no available 1990 data. The analysis suggests that under the cold conditions ideal for ozone depletion, stratospheric volcanic aerosol particles from the moderate-magnitude eruption of Calbuco in 2015 greatly enhanced austral ozone depletion, particularly at 55-68°S, where liquid binary sulfate aerosols have a large influence on ozone concentrations.
Removing PAHs from urban runoff water by combining ozonation and carbon nano-onions.
Sakulthaew, Chainarong; Comfort, Steve D; Chokejaroenrat, Chanat; Li, Xu; Harris, Clifford E
2015-12-01
Ozone (O3) is a chemical oxidant capable of transforming polycyclic aromatic hydrocarbons (PAHs) in urban runoff within minutes but complete oxidation to CO2 can take days to weeks. We developed and tested a flow-through system that used ozone to quickly transform PAHs in a runoff stream and then removed the ozone-transformed PAHs via adsorption to carbon nano-onions (CNOs). To quantify the efficacy of this approach, (14)C-labeled phenanthrene and benzo(a)pyrene, as well as a mixture of 16 unlabeled PAHs were used as test compounds. These PAHs were pumped from a reservoir into a flow-through reactor that continuously ozonated the solution. Outflow from the reactor then went to a chamber that contained CNOs to adsorb the ozone-transformed PAHs and allowed clean water to pass. By adding a microbial consortium to the CNOs following adsorption, we observed that bacteria were able to degrade the adsorbed products and release more soluble, biodegradable products back into solution. Control treatments confirmed that parent PAH structures (i.e., non-ozonated) were not biologically degraded following CNO adsorption and that O3-transformed PAHs were not released from the CNOs in the absence of bacteria. These results support the combined use of ozone, carbon nano-onions with subsequent biological degradation as a means of removing PAHs from urban runoff or a commercial waste stream. Copyright © 2015 Elsevier Ltd. All rights reserved.
Health effects of acid aerosols formed by atmospheric mixtures.
Kleinman, M T; Phalen, R F; Mautz, W J; Mannix, R C; McClure, T R; Crocker, T T
1989-01-01
Under ambient conditions, sulfur and nitrogen oxides can react with photochemical products and airborne particles to form acidic vapors and aerosols. Inhalation toxicological studies were conducted, exposing laboratory animals, at rest and during exercise, to multicomponent atmospheric mixtures under conditions favorable to the formation of acidic reaction products. Effects of acid and ozone mixtures on early and late clearance of insoluble radioactive particles in the lungs of rats appeared to be dominated by the oxidant component (i.e., the mixture did cause effects that were significantly different from those of ozone alone). Histopathological evaluations showed that sulfuric acid particles alone did not cause inflammatory responses in centriacinar units of rat lung parenchyma (expressed in terms of percent lesion area) but did cause significant damage (cell killing followed by a wave of cell replication) in nasal respiratory epithelium, as measured by uptake of tritiated thymidine in the DNA of replicating cells. Mixtures of ozone and nitrogen dioxide, which form nitric acid, caused significant inflammatory responses in lung parenchyma (in excess of effects seen in rats exposed to ozone alone), but did not damage nasal epithelium. Mixtures containing acidic sulfate particles, ozone, and nitrogen dioxide damaged both lung parenchyma and nasal epithelia. In rats exposed at rest, the response of the lung appeared to be dominated by the oxidant gas-phase components, while responses in the nose were dominated by the acidic particles. In rats exposed at exercise, however, mixtures of ozone and sulfuric acid particles significantly (2.5-fold) elevated the degree of lung lesion formation over that seen in rats exposed to ozone alone under an identical exercise protocol. PMID:2707193
Chemical Controls of Ozone Dry Deposition to the Sea Surface Microlayer
NASA Astrophysics Data System (ADS)
Carpenter, L.; Chance, R.; Tinel, L.; Saint, A.; Sherwen, T.; Loades, D.; Evans, M. J.; Boxhall, P.; Hamilton, J.; Stolle, C.; Wurl, O.; Ribas-Ribas, M.; Pereira, R.
2017-12-01
Oceanic dry deposition of atmospheric ozone (O3) is both the largest and most uncertain O3 depositional sink, and is widely acknowledged to be controlled largely by chemical reactions in the sea surface microlayer (SML) involving iodide (I-) and dissolved organic material (DOM). These reactions not only determine how quickly O3 can be removed from the atmosphere, but also result in emissions of trace gases including volatile organic compounds and may constitute a source of secondary organic aerosols to the marine atmosphere. Iodide concentrations at the sea surface vary by approximately an order of magnitude spatially, leading to more than fivefold variation in ozone deposition velocities (and volatile iodine fluxes). Sea-surface temperature is a reasonable predictor of [I-], however two recent parameterisations for surface I- differ by a factor of two at low latitudes. The nature and reactivity of marine DOM to O3 is almost completely unknown, although studies have suggested approximately equivalent chemical control of I- and DOM on ozone deposition. Here we present substantial new measurements of oceanic I- in both bulk seawater and the overlying SML, and show improved estimates of the global sea surface iodide distribution. We also present analyses of water-soluble DOM isolated from the SML and bulk seawater, and corresponding laboratory studies of ozone uptake to bulk and SML seawater, with the aim of characterizing the reactivity of O3 towards marine DOM.
Measurements made aloft by a twin-engine aircraft to support the SCOS97-NARSTO study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.A.; Blumenthal, D.L.
1999-05-01
During the summer of 1997, the Southern California Ozone Study (SCOS97) was conducted to update aerometric and emissions databases and model applications for ozone episodes in southern California and to quantify the contributions of interbasin transport to exceedances of the ozone standards in neighboring air basins. One of six SCOS97 sampling aircraft was a Piper Aztec. The Aztec performed northern-boundary measurements of aloft air quality and meteorology in the southern Mojave Desert and northern Los Angeles basin. The aircraft also served as a backup for another SCOS97 aircraft that performed flights in the western part of the study domain. Themore » Aztec data were reviewed to identify the occurrence and types of ozone layers aloft and to estimate the initial and boundary conditions in the Desert on the first day of Intensive Operational Periods (IOPs). Ozone carryover aloft was seen on all mornings in vertical spiral measurements in the Basin. Detached layers above the boundary layer were seen on about 20% of Basin morning and afternoon spirals. Offshore elevated ozone layers of up to 184 ppb were seen below 500 m. The morning ozone concentrations in the Desert ranged from 40 to 70 ppb and the Noy concentrations ranged from 2 to 4 ppb, indicating relatively clean, but not pristine boundary conditions.« less
Attribution of Trends and Variability in Surface Ozone over the United States
NASA Technical Reports Server (NTRS)
Strode, Sarah; Cooper, Owen; Damo, Megan; Logan, Jennifer; Rodriquez, Jose; Strahan, Susan; Witte, Jacquie
2013-01-01
Concentrations of tropospheric ozone, a greenhouse gas and air pollutant, are impacted by changes in precursor emissions as well meteorology and influx from the stratosphere. Observations show a decreasing trend in summertime surface ozone at rural stations in the eastern United States, while some western stations show increasing trends, particularly in springtime. We use the Global Modeling Initiative (GMI) global chemical transport model to investigate the roles of precursor emission changes, meteorological variability, and stratosphere-troposphere exchange (STE) in explaining observed trends in surface ozone from rural sites in the United States from 1991-2010. The model's interannual variability shows significant correlations with observations from many of the surface sites. We also compare the simulated ozone to ozonesonde data for several locations with sufficiently long records. We compare a simulation with time-dependent precursor emissions, including emission reductions over the United States and Europe and increases over Asia, to a simulation with fixed emissions to quantify the impact of changing emissions on the surface trends. The simulation with varying emissions reproduces much of the east-west difference in summertime ozone over the U.S., although it generally underestimates the negative trend in the East. In contrast, the fixed-emission simulation shows increasing ozone at both eastern and western sites. We will discuss possible causes of this behavior, including long-range transport and STE.
NASA Astrophysics Data System (ADS)
Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos
2014-05-01
In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.
Winter Photochemistry Underlying High Ozone in an Oil and Gas Producing Region
NASA Astrophysics Data System (ADS)
Brown, S. S.; Edwards, P. M.; Roberts, J. M.; Ahmadov, R.; Banta, R. M.; De Gouw, J. A.; Dube, W. P.; Field, R. A.; Gilman, J.; Graus, M.; Helmig, D.; Koss, A.; Langford, A. O.; Lefer, B. L.; Lerner, B. M.; McKeen, S. A.; Li, S. M.; Murphy, S. M.; Parrish, D. D.; Senff, C. J.; Stutz, J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Warneke, C.; Wild, R. J.; Young, C.; Yuan, B.; Zamora, R. J.; Washenfelder, R. A.
2014-12-01
Ozone formation during wintertime in oil and gas producing basins of the Rocky Mountain West now accounts for some of the highest ozone pollutant concentrations observed in the U.S. These events are scientifically challenging, occurring only during cold, snow covered periods when meteorological inversions concentrate pollutants near the surface, but when incident solar actinic flux that initiates photochemical reactions is at or near its minimum. A near-explicit chemical model that incorporates detailed measurements obtained during three successive winter field studies in the Uintah Basin, Utah, accurately reproduces the observed buildup of ozone and other photochemically generated species. It also identifies the sources of free radicals that drive this unusual photochemistry, and quantifies their relative contributions. Although sharing the same basic atmospheric chemistry, winter ozone formation differs from its summertime, urban counterpart in its dependence upon the relative concentrations of volatile organic compounds (VOCs) and nitrogen oxide (NOx) precursors. Observed NOx mixing ratios in the Uintah basin are lower than is typical of urban areas, while VOC levels are significantly larger. These extreme VOC concentrations allow for nearly optimal efficiency of ozone production from the available NOx. This analysis will inform the design of mitigation strategies and provide insight into the response of winter ozone to primary air pollutants in other regions, particularly those where oil and gas development is contemplated.
Nitrogen Uptake and Denitrification in Restored and Unrestored Streams in Urban Maryland, USA
There is growing interest in rates of nitrate uptake and denitrification in restored streams to better understand the effects of restoration on nitrogen processing. This study quantified nitrate uptake in 2 restored and 2 unrestored streams in Baltimore, Maryland, U.S.A. using n...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duriscoe, D.M.
1990-08-01
The yellow pine populations in Saguaro National Monument, Yosemite National Park, and Sequoia and Kings Canyon National Parks were surveyed in 1986 to evaluate and quantify the extent and severity of ozone injury (chlorotic mottle) to foliage of ponderosa and Jeffrey pines. A total of 3780 trees were observed. Severity of ozone injury was quantified, using an approximate square root transformation of the percentage of foliage exhibiting chlorotic mottle in branches pruned from each tree. Foliage of different ages was examined separately. Of all trees examined at Saguaro National Monument, 15% had visible chlorotic mottle; at Yosemite, 28%; and atmore » Sequoia and Kings Canyon, 39%. Severity of injury averaged very slight for all three parks, with least injury at Saguaro and greatest at Sequoia and Kings Canyon.« less
About the Sterilization of Chitosan Hydrogel Nanoparticles
Galante, Raquel; Rediguieri, Carolina F.; Kikuchi, Irene Satiko; Vasquez, Pablo A. S.; Colaço, Rogério; Pinto, Terezinha J. A.
2016-01-01
In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles. PMID:28002493
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.
2015-04-01
The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical and aloft ozone concentrations, especially during air quality episodes. To better characterize tropospheric ozone, the Tropospheric Ozone Lidar Network (TOLNet) has recently been developed, which currently consists of five different ozone DIAL instruments, including the TROPOZ. This paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and develops a primary standard for retrieval consistency and optimization within TOLNet. This paper is focused on ensuring the TROPOZ and future TOLNet algorithms are properly quantifying ozone concentrations and the following paper will focus on defining a systematic uncertainty analysis standard for all TOLNet instruments. Although this paper is used to optimize the TROPOZ retrieval, the methodology presented may be extended and applied to most other DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone (e.g. temperature or water vapor). The analysis begins by computing synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile, thereby identifying any areas that may need refinement for a new operational version of the TROPOZ retrieval algorithm. A new vertical resolution scheme is presented, which was upgraded from a constant vertical resolution to a variable vertical resolution, in order to yield a statistical uncertainty of <10%. The optimized vertical resolution scheme retains the ability to resolve fluctuations in the known ozone profile and now allows near field signals to be more appropriately smoothed. With these revisions, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt has reduced the mean profile bias by 3.5% and large reductions in bias (near 15 %) were apparent above 4.5 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes agree well with the retrieval and are mostly within the TROPOZopt retrieval uncertainty bars (which implies that this exercise was quite successful). A final mean percent difference plot is shown between the TROPOZopt and ozonesondes, which indicates that the new operational retrieval is mostly within 10% of the ozonesonde measurement and no systematic biases are present. The authors believe that this analysis has significantly added to the confidence in the TROPOZ instrument and provides a standard for current and future TOLNet algorithms.
Characteristics of sludge reduction in an integrated pretreatment and aerobic digestion process.
Hwang, S; Jang, H; Lee, M; Song, J; Kim, S
2006-01-01
In this study, integrated pretreatments and aerobic digestion processes were investigated in order to provide a feasible alternative that can achieve effective sludge reduction. An ozone treatment in the presence of ionic manganese, a catalyst, increased the sludge reduction ratio three times higher than that of a single ozonation, presumably due to an increase in OH radical production. The ozone treatment yielded the effective sludge reduction ratio with an increasing ozone dosage, and an effective dosage of the catalyst was found to be 4 mg-Mn/g-TS. When a mechanical pretreatment and an ozone/catalyst were applied in a series, the integrated process, even at a half mechanical intensity and a half level of ozone dosage, showed higher and faster sludge reduction than each single process did. In addition, the integrated pretreatment process showed the highest dewaterability of the treated sludges. A ratio of sludge cake generation, which was newly introduced to quantify overall performance of sludge treatment processes, showed that the integrated pretreatment followed by the aerobic digestion yielded approximately a half of the sludge cake volume compared to the single aerobic digestion. Therefore, the integrated pretreatment can be a feasible method for the effective reduction of total suspended solid and the final volume.
Lakey, P S J; Wisthaler, A; Berkemeier, T; Mikoviny, T; Pöschl, U; Shiraiwa, M
2017-07-01
Ozone reacts with skin lipids such as squalene, generating an array of organic compounds, some of which can act as respiratory or skin irritants. Thus, it is important to quantify and predict the formation of these products under different conditions in indoor environments. We developed the kinetic multilayer model that explicitly resolves mass transport and chemical reactions at the skin and in the gas phase (KM-SUB-Skin). It can reproduce the concentrations of ozone and organic compounds in previous measurements and new experiments. This enabled the spatial and temporal concentration profiles in the skin oil and underlying skin layers to be resolved. Upon exposure to ~30 ppb ozone, the concentrations of squalene ozonolysis products in the gas phase and in the skin reach up to several ppb and on the order of ~10 mmol m -3 . Depending on various factors including the number of people, room size, and air exchange rates, concentrations of ozone can decrease substantially due to reactions with skin lipids. Ozone and dicarbonyls quickly react away in the upper layers of the skin, preventing them from penetrating deeply into the skin and hence reaching the blood. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Simulation of summer ozone episodes in Southeast Louisiana during 2006-2015
NASA Astrophysics Data System (ADS)
Guo, H.; Zhang, H.
2017-12-01
Southeast Louisiana experiences high ozone (O3) events due to immense emissions from industrial and urban sources and unique meteorology conditions of high temperatures, intensive solar radiation and land-sea breeze circulation. The Community Multi-scale Air Quality (CMAQ) model with modified photochemical mechanism is used to investigate the contributions of regional transport to ozone (O3) and its precursors to Southeast Louisiana in summer months from 2006 to 2015. The meteorological and CMAQ model performance are validated. Spatial and temporal variations of O3 are investigated during summer episodes in 10 years. Contributions of different source types and regions to 1 hour O3 are also quantified. Changes in the contributions of different source types and regions are also obtained to help design intelligent control measures.
Recent changes in the ventilation of the southern oceans.
Waugh, Darryn W; Primeau, Francois; Devries, Tim; Holzer, Mark
2013-02-01
Surface westerly winds in the Southern Hemisphere have intensified over the past few decades, primarily in response to the formation of the Antarctic ozone hole, and there is intense debate on the impact of this on the ocean's circulation and uptake and redistribution of atmospheric gases. We used measurements of chlorofluorocarbon-12 (CFC-12) made in the southern oceans in the early 1990s and mid- to late 2000s to examine changes in ocean ventilation. Our analysis of the CFC-12 data reveals a decrease in the age of subtropical subantarctic mode waters and an increase in the age of circumpolar deep waters, suggesting that the formation of the Antarctic ozone hole has caused large-scale coherent changes in the ventilation of the southern oceans.
Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Juno; Prather, Michael J.
Stratosphere-troposphere exchange (STE) of ozone (O 3) is key in the budget of tropospheric O 3, in turn affecting climate forcing and global air quality. We compare three commonly used diagnostics meant to quantify cross-tropopause O 3 fluxes with a Chemistry-Transport Model driven by two distinct European Centre forecast fields. Here, our reference case calculates accurate, geographically resolved net transport across an isosurface in artificial tracer e90 representing the tropopause. Hemispheric fluxes derived from the ozone mass budget of the lowermost stratosphere yield similar results. Use of the Brewer-Dobson residual vertical velocity as a scaled proxy for ozone flux, however,more » fails to capture the interannual variability. Thus, the common notion that the strength of stratospheric overturning circulation is a good measure for global STE does not apply to O 3. Finally, climatic variability in the modeled O 3 flux needs to be diagnosed directly rather than indirectly through the overturning circulation.« less
Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone?
Hsu, Juno; Prather, Michael J.
2014-12-20
Stratosphere-troposphere exchange (STE) of ozone (O 3) is key in the budget of tropospheric O 3, in turn affecting climate forcing and global air quality. We compare three commonly used diagnostics meant to quantify cross-tropopause O 3 fluxes with a Chemistry-Transport Model driven by two distinct European Centre forecast fields. Here, our reference case calculates accurate, geographically resolved net transport across an isosurface in artificial tracer e90 representing the tropopause. Hemispheric fluxes derived from the ozone mass budget of the lowermost stratosphere yield similar results. Use of the Brewer-Dobson residual vertical velocity as a scaled proxy for ozone flux, however,more » fails to capture the interannual variability. Thus, the common notion that the strength of stratospheric overturning circulation is a good measure for global STE does not apply to O 3. Finally, climatic variability in the modeled O 3 flux needs to be diagnosed directly rather than indirectly through the overturning circulation.« less
Revisiting the contribution of land transport and shipping emissions to tropospheric ozone
NASA Astrophysics Data System (ADS)
Mertens, Mariano; Grewe, Volker; Rieger, Vanessa S.; Jöckel, Patrick
2018-04-01
We quantify the contribution of land transport and shipping emissions to tropospheric ozone for the first time with a chemistry-climate model including an advanced tagging method (also known as source apportionment), which considers not only the emissions of nitrogen oxides (NOx, NO, and NO2), carbon monoxide (CO), and volatile organic compounds (VOC) separately, but also their non-linear interaction in producing ozone. For summer conditions a contribution of land transport emissions to ground-level ozone of up to 18 % in North America and Southern Europe is estimated, which corresponds to 12 and 10 nmol mol-1, respectively. The simulation results indicate a contribution of shipping emissions to ground-level ozone during summer on the order of up to 30 % in the North Pacific Ocean (up to 12 nmol mol-1) and 20 % in the North Atlantic Ocean (12 nmol mol-1). With respect to the contribution to the tropospheric ozone burden, we quantified values of 8 and 6 % for land transport and shipping emissions, respectively. Overall, the emissions from land transport contribute around 20 % to the net ozone production near the source regions, while shipping emissions contribute up to 52 % to the net ozone production in the North Pacific Ocean. To put these estimates in the context of literature values, we review previous studies. Most of them used the perturbation approach, in which the results for two simulations, one with all emissions and one with changed emissions for the source of interest, are compared. For a better comparability with these studies, we also performed additional perturbation simulations, which allow for a consistent comparison of results using the perturbation and the tagging approach. The comparison shows that the results strongly depend on the chosen methodology (tagging or perturbation approach) and on the strength of the perturbation. A more in-depth analysis for the land transport emissions reveals that the two approaches give different results, particularly in regions with large emissions (up to a factor of 4 for Europe). Our estimates of the ozone radiative forcing due to land transport and shipping emissions are, based on the tagging method, 92 and 62 mW m-2, respectively. Compared to our best estimates, previously reported values using the perturbation approach are almost a factor of 2 lower, while previous estimates using NOx-only tagging are almost a factor of 2 larger. Overall our results highlight the importance of differentiating between the perturbation and the tagging approach, as they answer two different questions. In line with previous studies, we argue that only the tagging approach (or source apportionment approaches in general) can estimate the contribution of emissions, which is important to attribute emission sources to climate change and/or extreme ozone events. The perturbation approach, however, is important to investigate the effect of an emission change. To effectively assess mitigation options, both approaches should be combined. This combination allows us to track changes in the ozone production efficiency of emissions from sources which are not mitigated and shows how the ozone share caused by these unmitigated emission sources subsequently increases.
Quantifying Uncontrolled Air Emissions from Two Florida Landfills
Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...
Health benefits from large-scale ozone reduction in the United States.
Berman, Jesse D; Fann, Neal; Hollingsworth, John W; Pinkerton, Kent E; Rom, William N; Szema, Anthony M; Breysse, Patrick N; White, Ronald H; Curriero, Frank C
2012-10-01
Exposure to ozone has been associated with adverse health effects, including premature mortality and cardiopulmonary and respiratory morbidity. In 2008, the U.S. Environmental Protection Agency (EPA) lowered the primary (health-based) National Ambient Air Quality Standard (NAAQS) for ozone to 75 ppb, expressed as the fourth-highest daily maximum 8-hr average over a 24-hr period. Based on recent monitoring data, U.S. ozone levels still exceed this standard in numerous locations, resulting in avoidable adverse health consequences. We sought to quantify the potential human health benefits from achieving the current primary NAAQS standard of 75 ppb and two alternative standard levels, 70 and 60 ppb, which represent the range recommended by the U.S. EPA Clean Air Scientific Advisory Committee (CASAC). We applied health impact assessment methodology to estimate numbers of deaths and other adverse health outcomes that would have been avoided during 2005, 2006, and 2007 if the current (or lower) NAAQS ozone standards had been met. Estimated reductions in ozone concentrations were interpolated according to geographic area and year, and concentration-response functions were obtained or derived from the epidemiological literature. We estimated that annual numbers of avoided ozone-related premature deaths would have ranged from 1,410 to 2,480 at 75 ppb to 2,450 to 4,130 at 70 ppb, and 5,210 to 7,990 at 60 ppb. Acute respiratory symptoms would have been reduced by 3 million cases and school-loss days by 1 million cases annually if the current 75-ppb standard had been attained. Substantially greater health benefits would have resulted if the CASAC-recommended range of standards (70-60 ppb) had been met. Attaining a more stringent primary ozone standard would significantly reduce ozone-related premature mortality and morbidity.
Health Benefits from Large-Scale Ozone Reduction in the United States
Berman, Jesse D.; Fann, Neal; Hollingsworth, John W.; Pinkerton, Kent E.; Rom, William N.; Szema, Anthony M.; Breysse, Patrick N.; White, Ronald H.
2012-01-01
Background: Exposure to ozone has been associated with adverse health effects, including premature mortality and cardiopulmonary and respiratory morbidity. In 2008, the U.S. Environmental Protection Agency (EPA) lowered the primary (health-based) National Ambient Air Quality Standard (NAAQS) for ozone to 75 ppb, expressed as the fourth-highest daily maximum 8-hr average over a 24-hr period. Based on recent monitoring data, U.S. ozone levels still exceed this standard in numerous locations, resulting in avoidable adverse health consequences. Objectives: We sought to quantify the potential human health benefits from achieving the current primary NAAQS standard of 75 ppb and two alternative standard levels, 70 and 60 ppb, which represent the range recommended by the U.S. EPA Clean Air Scientific Advisory Committee (CASAC). Methods: We applied health impact assessment methodology to estimate numbers of deaths and other adverse health outcomes that would have been avoided during 2005, 2006, and 2007 if the current (or lower) NAAQS ozone standards had been met. Estimated reductions in ozone concentrations were interpolated according to geographic area and year, and concentration–response functions were obtained or derived from the epidemiological literature. Results: We estimated that annual numbers of avoided ozone-related premature deaths would have ranged from 1,410 to 2,480 at 75 ppb to 2,450 to 4,130 at 70 ppb, and 5,210 to 7,990 at 60 ppb. Acute respiratory symptoms would have been reduced by 3 million cases and school-loss days by 1 million cases annually if the current 75-ppb standard had been attained. Substantially greater health benefits would have resulted if the CASAC-recommended range of standards (70–60 ppb) had been met. Conclusions: Attaining a more stringent primary ozone standard would significantly reduce ozone-related premature mortality and morbidity. PMID:22809899
NASA Astrophysics Data System (ADS)
Hossaini, Ryan; Chipperfield, Martyn; Montzka, Steven; Rap, Alex; Dhomse, Sandip; Feng, Wuhu
2015-04-01
Halogenated very short-lived substances (VSLS) of both natural and anthropogenic origin are a significant source of atmospheric bromine, chlorine and iodine. Due to relatively short atmospheric lifetimes (typically <6 months), VSLS breakdown in the upper troposphere-lower stratosphere (UTLS), where ozone perturbations drive a disproportionately large climate impact compared to other altitudes. Here we present chemical transport model simulations that quantify VSLS-driven ozone loss in the UTLS and infer the climate relevance of these ozone perturbations using a radiative transfer model. Our results indicate that through their impact on UTLS ozone, VSLS are efficient at influencing climate. We calculate a whole atmosphere global mean radiative effect (RE) of -0.20 (-0.16 to -0.23) Wm-2 from natural and anthropogenic VSLS-driven ozone loss, including a tropospheric contribution of -0.12 Wm-2. In the stratosphere, the RE due to ozone loss from natural bromine-containing VSLS (e.g. CHBr3, CH2Br2) is almost half of that from long-lived anthropogenic compounds (e.g. CFCs) and normalized by equivalent chlorine is ~4 times larger. We show that the anthropogenic chlorine-containing VSLS, not regulated by the Montreal Protocol, also contribute to ozone loss in the UTLS and that the atmospheric concentration of dichloromethane (CH2Cl2), the most abundant of these, is increasing rapidly. Finally, we present evidence that VSLS have made a small yet previously unrecognized contribution to the ozone-driven radiative forcing of climate since pre-industrial times of -0.02 (-0.01 to -0.03) Wm-2. Given the climate leverage that VSLS possess, future increases to their emissions, either through continued industrial or altered natural processes, may be important for future climate forcing.
NASA Astrophysics Data System (ADS)
Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Brown, S. S.; Commane, R.; Daube, B. C.; Gouw, J. A.; Dubé, W. P.; Flynn, J.; Frost, G. J.; Gilman, J. B.; Grossberg, N.; Holloway, J. S.; Kofler, J.; Kort, E. A.; Kuster, W. C.; Lang, P. M.; Lefer, B.; Lueb, R. A.; Neuman, J. A.; Nowak, J. B.; Novelli, P. C.; Peischl, J.; Perring, A. E.; Roberts, J. M.; Santoni, G.; Schwarz, J. P.; Spackman, J. R.; Wagner, N. L.; Warneke, C.; Washenfelder, R. A.; Wofsy, S. C.; Xiang, B.
2011-11-01
Airborne and ground-based measurements during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May/June 2010 show a weekend effect in ozone in the South Coast Air Basin (SoCAB) consistent with previous observations. The well-known and much-studied weekend ozone effect has been attributed to weekend reductions in nitrogen oxide (NOx = NO + NO2) emissions, which affect ozone levels via two processes: (1) reduced ozone loss by titration and (2) enhanced photochemical production of ozone due to an increased ratio of non-methane volatile organic compounds (VOCs) to NOx. In accord with previous assessments, the 2010 airborne and ground-based data show an average decrease in NOx of 46 ± 11% and 34 ± 4%, respectively, and an average increase in VOC/NOxratio of 48 ± 8% and 43 ± 22%, respectively, on weekends. This work extends current understanding of the weekend ozone effect in the SoCAB by identifying its major causes and quantifying their relative importance from the available CalNex data. Increased weekend production of a VOC-NOxoxidation product, peroxyacetyl nitrate, compared to a radical termination product, nitric acid, indicates a significant contribution from increased photochemical production on weekends. Weekday-to-weekend differences in the products of NOx oxidation show 45 ± 13% and 42 ± 12% more extensive photochemical processing and, when compared with odd oxygen (Ox = O3 + NO2), 51 ± 14% and 22 ± 17% greater ozone production efficiency on weekends in the airborne and ground-based data, respectively, indicating that both contribute to higher weekend ozone levels in the SoCAB.
NASA Astrophysics Data System (ADS)
Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Brown, S. S.; Commane, R.; Daube, B. C.; de Gouw, J. A.; Dubé, W. P.; Flynn, J.; Frost, G. J.; Gilman, J. B.; Grossberg, N.; Holloway, J. S.; Kofler, J.; Kort, E. A.; Kuster, W. C.; Lang, P. M.; Lefer, B.; Lueb, R. A.; Neuman, J. A.; Nowak, J. B.; Novelli, P. C.; Peischl, J.; Perring, A. E.; Roberts, J. M.; Santoni, G.; Schwarz, J. P.; Spackman, J. R.; Wagner, N. L.; Warneke, C.; Washenfelder, R. A.; Wofsy, S. C.; Xiang, B.
2012-02-01
Airborne and ground-based measurements during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May/June 2010 show a weekend effect in ozone in the South Coast Air Basin (SoCAB) consistent with previous observations. The well-known and much-studied weekend ozone effect has been attributed to weekend reductions in nitrogen oxide (NOx = NO + NO2) emissions, which affect ozone levels via two processes: (1) reduced ozone loss by titration and (2) enhanced photochemical production of ozone due to an increased ratio of non-methane volatile organic compounds (VOCs) to NOx. In accord with previous assessments, the 2010 airborne and ground-based data show an average decrease in NOx of 46 ± 11% and 34 ± 4%, respectively, and an average increase in VOC/NOx ratio of 48 ± 8% and 43 ± 22%, respectively, on weekends. This work extends current understanding of the weekend ozone effect in the SoCAB by identifying its major causes and quantifying their relative importance from the available CalNex data. Increased weekend production of a VOC-NOx oxidation product, peroxyacetyl nitrate, compared to a radical termination product, nitric acid, indicates a significant contribution from increased photochemical production on weekends. Weekday-to-weekend differences in the products of NOx oxidation show 45 ± 13% and 42 ± 12% more extensive photochemical processing and, when compared with odd oxygen (Ox = O3 + NO2), 51 ± 14% and 22 ± 17% greater ozone production efficiency on weekends in the airborne and ground-based data, respectively, indicating that both contribute to higher weekend ozone levels in the SoCAB.
On the role of ozone feedback in the ENSO amplitude response under global warming
NASA Astrophysics Data System (ADS)
Nowack, P. J.; Braesicke, P.; Abraham, N. L.; Pyle, J. A.
2017-12-01
The El Niño-Southern Oscillation (ENSO) in the tropical Pacific is of key importance to global climate and weather. However, climate models still disagree on the ENSO's response under climate change. Here we show that typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations (i.e. standard abrupt 4xCO2). We mainly explain this effect by the lapse rate adjustment of the tropical troposphere to ozone changes in the upper troposphere and lower stratosphere (UTLS) under 4xCO2. The ozone-induced lapse rate changes modify the Walker circulation response to the CO2 forcing and consequently tropical Pacific surface temperature gradients. Therefore, not including ozone feedbacks increases the number of extreme ENSO events in our model. In addition, we demonstrate that even if ozone changes in the tropical UTLS are included in the simulations, the neglect of the ozone response in the middle-upper stratosphere still leads to significantly larger ENSO amplitudes (compared to simulations run with a fully interactive atmospheric chemistry scheme). Climate modeling studies of the ENSO often neglect changes in ozone. Our results imply that this could affect the inter-model spread found in ENSO projections and, more generally, surface climate change simulations. We discuss the additional complexity in quantifying such ozone-related effects that arises from the apparent model dependency of chemistry-climate feedbacks and, possibly, their range of surface climate impacts. In conclusion, we highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability. Reference: Nowack PJ, Braesicke P, Abraham NL, and Pyle JA (2017), On the role of ozone feedback in the ENSO amplitude response under global warming, Geophys. Res. Lett. 44, 3858-3866, doi:10.1002/2016GL072418.
NASA Astrophysics Data System (ADS)
Wilkins, J. L.
2015-12-01
A series of 32 ozonesondes were launched from St. Louis, Missouri, from 8 Aug - 23 Sept 2013, as part of the SouthEast American Consortium for Intensive Ozone Network Study (SEACIONS) mission. The time during which this site operated coincided with two large wildfires, Idaho's Beaver Creek fire and California's RIM fire, in addition to widespread agricultural fires in the Midwest. As part of our analyses, we examined multiple satellite-derived products that have been used in the analysis of tropospheric pollution, fires, and air mass flow patterns. The Fire Locating and Modeling of Burning Emissions (FLAMBE) inventory was used as an input to FLEXPART-WRF to quantify the contribution of particle trajectories and injection heights from the various sources. Trajectories from the sonde launch sites and fire locations were used as input for the two FLEXPART-WRF Model simulations to determine the origins of pollution plumes. The first simulation was conducted to model fire emissions within the planetary boundary layer (<3500m), while the second was added to investigate transportation effects from locations identified to have pyro-convective cumulonimbus. The Goddard Earth Observing System Model, Version 5 (GEOS-5) potential vorticity was used to analyze the stratospheric component of ozone enhancements. We examined three meteorological test cases: 1) a cut-off low, 2) a blocking high pressure, and 3) a frontal passage, which involve mixed-layer O3 enhancements, which can be spotted at several sites within SEACIONS. We look to quantify the contribution of these ozone enhancement sources to local air quality.
NASA Astrophysics Data System (ADS)
Tang, Q.; Prather, M. J.
2011-09-01
We examine whether the instantaneous ozone (O3) measurements from the four Aura instruments can quantify the stratosphere-troposphere exchange (STE) flux of O3, an important term of the tropospheric O3 budget. Comparing the level 2 (L2) Aura swaths and ozone sondes with the coincident, high-resolution (1°×1°×40-layer×0.5 h) simulations using the University of California, Irvine chemistry transport model (CTM) for years 2005-2006, it is revealed in many cases that all four Aura datasets have some skill in catching the STE process, while missing many of them. Despite a few cases, the individual retrievals in the upper troposphere and lower stratosphere contain too much noise preventing the quantification and integration of STE flux with Aura L2 data. The CTM is applied as a transfer standard to compare with different Aura observations. The statistics of exact matching CTM-Aura comparisons identify the model's high biases in the lower stratosphere and the inconsistency amongst different instruments, such as from tropics to Northern Hemisphere mid-latitudes in July 2005 at 215 hPa and over tropics at 147 hPa for July 2005 and January 2006.
Legacy of historic ozone exposure on plant community and food web structure.
Martínez-Ghersa, M Alejandra; Menéndez, Analía I; Gundel, Pedro E; Folcia, Ana M; Romero, Ana M; Landesmann, Jennifer B; Ventura, Laura; Ghersa, Claudio M
2017-01-01
Information on whole community responses is needed to predict direction and magnitude of changes in plant and animal abundance under global changes. This study quantifies the effect of past ozone exposure on a weed community structure and arthropod colonization. We used the soil seed bank resulting from a long-term ozone exposure to reestablish the plant community under a new low-pollution environment. Two separate experiments using the same original soil seed bank were conducted. Plant and arthropod richness and species abundance was assessed during two years. We predicted that exposure to episodic high concentrations of ozone during a series of growing cycles would result in plant assemblies with lower diversity (lower species richness and higher dominance), due to an increase in dominance of the stress tolerant species and the elimination of the ozone-sensitive species. As a consequence, arthropod-plant interactions would also be changed. Species richness of the recruited plant communities from different exposure histories was similar (≈ 15). However, the relative abundance of the dominant species varied according to history of exposure, with two annual species dominating ozone enriched plots (90 ppb: Spergula arvensis, and 120 ppb: Calandrinia ciliata). Being consistent both years, the proportion of carnivore species was significantly higher in plots with history of higher ozone concentration (≈3.4 and ≈7.7 fold higher in 90 ppb and 120 ppb plots, respectively). Our study provides evidence that, past history of pollution might be as relevant as management practices in structuring agroecosystems, since we show that an increase in tropospheric ozone may influence biotic communities even years after the exposure.
Estimation of NOx Production from Terrestrial Gamma-ray Flashes
NASA Astrophysics Data System (ADS)
Cramer, E. S.; Briggs, M. S.; Liu, N.; Mailyan, B.; Rassoul, H.; Dwyer, J. R.
2016-12-01
The motivation of this work is to understand the effects of TGFs on the ozone layer. One of the main ozone-destroying mechanisms is the production of NOx in the stratospheric region. We first review the mechanisms for NOx production in this region, specifically looking at the global rate produced by lightning. Terrestrial Gamma-ray Flashes, with runaway electron avalanches and the subsequent bremsstrahlung gamma rays, produce atmospheric ionization at all altitudes of the atmosphere. TGFs might have a greater impact on the ozone concentration in the stratosphere since they directly produce ionization and thus NOx in the ozone layer. In order to study the effect from TGFs, we use the runaway electron avalanche model (REAM) to simulate a typical TGF. The photons are then transported through Earth's atmosphere, where they deposit some of their energy as ionization in the ozone layer. We then calculate the number of NOx molecules produced by considering the average energy required to produce one electron-ion pair (W = 35 eV). The W factor has been experimentally quantified and is constant for various types of radiation and over large energy ranges and electric fields. Finally, the effect of TGF NOx production is estimated using the global annual rate of TGFs.
El Masri, Ahmad; Laversin, Hélène; Chakir, Abdelkhaleq; Roth, Estelle
2016-12-01
Heterogeneous oxidation of chlorpyrifos ethyl (CLP) coated sand particles by gaseous ozone was studied. Mono-size sand was coated with CLP at different coating levels between 10 and 100 μg g -1 and exposed to ozone. Results were analyzed thanks to Gas Surface Reaction and Surface Layer Reaction Models. Kinetic parameters derived from these models were analyzed and led to several conclusions. The equilibrium constant of O 3 between the gas phase and the CLP-coated sand was independent on the sand contamination level. Ozone seems to have similar affinity for coated or uncoated sand surface. Meanwhile, the kinetic parameters decreased with an increasing coating level. Chlorpyrifos Oxon, (CLPO) has been identified and quantified as an ozonolysis product. The product yield of CLPO remains constant (53 ± 10%) for the different coating level. The key parameter influencing the CLP reactivity towards ozone was the CLP-coating level. This dependence had a great influence on the lifetime of the CLP coated on sand particles, with respect to ozone, which could reach several years at high contamination level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ozone as a Sink for Atmospheric Carbon Aerosols
NASA Astrophysics Data System (ADS)
Stephens, Sherry Lynn
Critical information necessary for examining the chemical removal of smoke in the atmosphere by the reaction with ozone has been obtained. The kinetics, products and temperature dependence of the reaction of ozone with carbonaceous material were determined. This information can be included in models examining the fate of ozone and smoke in the atmosphere. In the first study, the rate of ozone loss was followed in its reaction with carbon black at room temperature. In addition to the ozone loss, the gaseous products, CO, CO _2 and O_2 were quantified with a phase locking mass spectrometer attached to a two-chamber Knudsen cell reactor. An oxygen molecule was detected for every ozone lost. It was observed that the initial loss rate was much greater than that seen after extended exposure to ozone. Oxygen atoms were desorbed 30% of the time as CO or CO_2 and those left behind on the surface were responsible for the decrease in rate. Heating the surface following this exposure would liberate CO and CO_2 and restore the initial reactivity. In the second study, the reaction of ozone with different types of soot was examined by following the decrease of optical depth of soot deposited on a quartz slide as a result of flowing a known concentration of ozone over the slide at temperatures from 21^circ to 175^circC. The reaction kinetics were very similar for the four types of soot used in this study. Treating all types together the activation energy and the order with respect to ozone were 10.9 (+/-1.0) kcal mol ^{-1} and 0.89 (+/- 0.14), respectively. The lifetime of soot under atmospheric conditions was calculated to be on the order of years to decades. The reaction of ozone with acetylene smoke suspended in air was the final method of examining the reaction. The change of acetylene smoke size distribution and ozone concentration was monitored while controlling the temperature. Irreproducibility caused this study to be unsuccessful. This was believed to be due to contamination leaking into the teflon bags in which the experiments were conducted. Several attempts to alleviate this problem were unsuccessful.
NASA Astrophysics Data System (ADS)
Heimsch, Florian; Kreilein, Heiner; Rauf, Abdul; Knohl, Alexander
2016-04-01
Rainforests in general and montane rainforests in particular have rarely been studied over longer time periods. We aim to provide baseline information of a montane tropical forest's carbon uptake over time in order to quantify possible losses through land-use change. Thus we conducted a re-inventory of 22 10-year old forest inventory plots, giving us a rare opportunity to quantify carbon uptake over such a long time period by traditional methods. We discuss shortfalls of such techniques and why our estimate of 1.5 Mg/ha/a should be considered as the lower boundary and not the mean carbon uptake per year. At the same location as the inventory, CO2 fluxes were measured with the Eddy-Covariance technique. Measurements were conducted at 48m height with an LI 7500 open-path infrared gas analyser. We will compare carbon uptake estimates from these measurements to those of the more conventional inventory method and discuss, which factors are probably responsible for differences.
Remote Sensing of Bioindicators for Forest Health Assessment
NASA Astrophysics Data System (ADS)
Kefauver, Shawn Carlisle
The impacts of tropospheric ozone on forest health in Mediterranean type climates in California, USA and Catalonia, Spain were investigated using a combination of remote sensing, Geographic Information System (GIS), and field studies focused on sensitive bioindicator conifer species and ambient ozone monitoring. For the field validation of impacts of tropospheric ozone on conifer health, the Ozone Injury Index (OII) was applied to the bioindicator species Pinus ponderosa, Pinus jeffreyi, and Pinus uncinata. Combining these three tools, it was possible to build meaningful ecological models covering large areas to enhance our understanding of the biotic and abiotic interactions which affect forest health. Regression models predicting ozone injury improved considerably when incorporating ozone exposure with GIS related to plant water status, including water availability and water usage, as a proxies for estimating the stomatal conductance and ozone uptake R2=0.35, p = 0.016 in Catalonia, R2=0.36, p < 0.001 in Yosemite and R2=0.33, p = 0.007 in Sequoia/Kings Canyon National Parks in California). Individual OII components in Catalonia were modeled with improved success compared to the original full OII, in particular visible chlorotic mottling (R2=0.60, p < 0.001). The visual chlorotic mottling component of the OII was the most strongly correlated to remote sensing indices, in particular the photochemical reflectance index (PRI; R2=0.28, p=0.0044 for OIIVI-amount and R 2=0.33 and p=0.0016 for OIIVI -severity). Regression models assessing ozone injury to conifers using imaging spectroscopy techniques also improved when incorporating the GIS proxies of stomatal conductance (R 2=0.59, p<0.0001 for OII in California and R2=0.68, p<0.0001 for OIIVI in Catalonia). Finally, taking advantage of a time series of ambient ozone monitoring in Catalonia, it was found that all models improved when incorporating the cumulative exposure to ozone over a period of three years (R2=0.56, p<0.0001 with imaging spectroscopy indices alone and R2=0.77, p<0.0001 with GIS added) and that it was possible to model the three year average ambient ozone using a modified version of the OII (P<0.0001, R2=0.53, RMSE=2.73 with only the OII subcomponents VI-Severity and FWHORL and P<0.0001, R2 = 0.90, RMSE = 1.35 with GIS).
NASA Astrophysics Data System (ADS)
Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.
2018-03-01
Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for air-sea exchange that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean and 722.8 ± 87.3 Tg O3 yr-1 globally. The new estimate of the ocean component is approximately a third of the current model estimates. This reduction corresponds to an approximately 20 % decrease in the total global ozone dry deposition, which (with all other components being unchanged) is equivalent to an increase of approximately 5 % in the modelled tropospheric ozone burden and a similar increase in tropospheric ozone lifetime.
Reductions in India's crop yield due to ozone
NASA Astrophysics Data System (ADS)
Ghude, Sachin D.; Jena, Chinmay; Chate, D. M.; Beig, G.; Pfister, G. G.; Kumar, Rajesh; Ramanathan, V.
2014-08-01
This bottom-up modeling study, supported by emission inventories and crop production, simulates ozone on local to regional scales. It quantifies, for the first time, potential impact of ozone on district-wise cotton, soybeans, rice, and wheat crops in India for the first decade of the 21st century. Wheat is the most impacted crop with losses of 3.5 ± 0.8 million tons (Mt), followed by rice at 2.1 ± 0.8 Mt, with the losses concentrated in central and north India. On the national scale, this loss is about 9.2% of the cereals required every year (61.2 Mt) under the provision of the recently implemented National Food Security Bill (in 2013) by the Government of India. The nationally aggregated yield loss is sufficient to feed about 94 million people living below poverty line in India.
Improvement of a respiratory ozone analyzer.
Ultman, J S; Ben-Jebria, A; Mac Dougall, C S; Rigas, M L
1997-10-01
The breath-to-breath measurement of total respiratory ozone (O3) uptake requires monitoring O3 concentration at the airway opening with an instrument that responds rapidly relative to the breathing frequency. Our original chemiluminescent analyzer, using 2-methyl-2-butene as the reactant gas, had a 10% to 90% step-response time of 110 msec and a minimal detectable concentration of 0.018 parts per million (ppm) O3 (Ben-Jebria et al. 1990). This instrument was suitable for respiratory O3 monitoring during quiet breathing and light exercise. For this study, we constructed a more self-contained analyzer with a faster response time using ethylene as the reactant gas. When the analyzer was operated at a reaction chamber pressure of 350 torr, an ethylene-to-sample flow ratio of 4:1, and a sampling flow of 0.6 liters per minute (Lpm), it had a 10% to 90% step-response time of 70 msec and a minimal detectable concentration of 0.006 ppm. These specifications make respiratory O3 monitoring possible during moderate-to-heavy exercise. In addition, the nonlinear calibration and the carbon dioxide (CO2) interference exhibited by the original analyzer were eliminated. In breath-to-breath measurements in two healthy men, the fractional uptake of O3 during one minute of quiet breathing was comparable to the results obtained by using a slowly responding commercial analyzer with a quasi-steady material balance method (Wiester et al. 1996). In fact, fractional uptake was about 0.8 regardless of O3 exposure concentration (0.11 to 0.43 ppm) or ventilation rate (4 to 41 Lpm/m2).
Dynamic evaluation of CMAQ part I: Separating the effects of ...
A dynamic evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.0.1 was conducted to evaluate the model's ability to predict changes in ozone levels between 2002 and 2005, a time period characterized by emission reductions associated with the EPA's Nitrogen Oxides State Implementation Plan as well as significant reductions in mobile source emissions. Model results for the summers of 2002 and 2005 were compared to simulations from a previous version of CMAQ to assess the impact of model updates on predicted pollutant response. Changes to the model treatment of emissions, meteorology and chemistry had substantial impacts on the simulated ozone concentrations. While the median bias for high summertime ozone decreased in both years compared to previous simulations, the observed decrease in ozone from 2002 to 2005 in the eastern US continued to be underestimated by the model. Additional “cross” simulations were used to decompose the model predicted change in ozone into the change due to emissions, the change due to meteorology and any remaining change not explained individually by these two components. The decomposition showed that the emission controls led to a decrease in modeled high summertime ozone close to twice as large as the decrease attributable to changes in meteorology alone. Quantifying the impact of retrospective emission controls by removing the impacts of meteorology during the control period can be a valuable approac
Mínguez, P; Gómez de Iturriaga, A; Fernández, I L; Rodeño, E
To obtain the necessary acquisition and calibration parameters in order to evaluate the possibility of detecting and quantifying 223 Ra uptake in bone metastases of patients treated for castration resistant prostate carcinoma. Furthermore, in the cases in which the activity can be quantified, to determine the absorbed dose. Acquisitions from a Petri dish filled with 223 Ra were performed in the gamma camera. Monte Carlo simulations were also performed to study the partial volume effect. Formulae to obtain the detection and quantification limits of 223 Ra uptake were applied to planar images of two patients 7 days post-administration of 55kBq/kg of 223 Ra. In order to locate the lesions in advance, whole-body scans and SPECT/CT images were acquired after injecting 99m Tc-HDP. The optimal energy window was found to be at 82keV with a medium-energy collimator MEGP. Of the lesions found in the patients, only those that had been detected in both the AP and PA projections could be quantified. These lesions were those which had shown a higher 99m Tc-HDP uptake. The estimated values of absorbed doses ranged between 0.7Gy and 7.8Gy. Of the lesions that can be detected, it is not possible to quantify the activity uptake in some of them, which means that the absorbed dose cannot be determined either. This does not mean that the absorbed dose in these lesions can be regarded as negligible. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Atmospheric changes caused by galactic cosmic rays over the period 1960-2010
NASA Astrophysics Data System (ADS)
Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.; Mertens, Christopher J.; Fleming, Eric L.
2016-05-01
The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960-2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NOx increases of 4-15 % are computed in the Southern polar troposphere with associated ozone increases of 1-2 %. NOx increases of ˜ 1-6 % are calculated for the lower stratosphere with associated ozone decreases of 0.2-1 %. The primary impact of GCRs on ozone was due to their production of NOx. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NOx and ClOx ozone loss cycles (e.g., the ClO + NO2+ M → ClONO2+ M reaction) and the change in the importance of ClOx in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. This will be corrected in future works.
Fann, Neal; Nolte, Christopher G; Dolwick, Patrick; Spero, Tanya L; Brown, Amanda Curry; Phillips, Sharon; Anenberg, Susan
2015-05-01
In this United States-focused analysis we use outputs from two general circulation models (GCMs) driven by different greenhouse gas forcing scenarios as inputs to regional climate and chemical transport models to investigate potential changes in near-term U.S. air quality due to climate change. We conduct multiyear simulations to account for interannual variability and characterize the near-term influence of a changing climate on tropospheric ozone-related health impacts near the year 2030, which is a policy-relevant time frame that is subject to fewer uncertainties than other approaches employed in the literature. We adopt a 2030 emissions inventory that accounts for fully implementing anthropogenic emissions controls required by federal, state, and/or local policies, which is projected to strongly influence future ozone levels. We quantify a comprehensive suite of ozone-related mortality and morbidity impacts including emergency department visits, hospital admissions, acute respiratory symptoms, and lost school days, and estimate the economic value of these impacts. Both GCMs project average daily maximum temperature to increase by 1-4°C and 1-5 ppb increases in daily 8-hr maximum ozone at 2030, though each climate scenario produces ozone levels that vary greatly over space and time. We estimate tens to thousands of additional ozone-related premature deaths and illnesses per year for these two scenarios and calculate an economic burden of these health outcomes of hundreds of millions to tens of billions of U.S. dollars (2010$). Near-term changes to the climate have the potential to greatly affect ground-level ozone. Using a 2030 emission inventory with regional climate fields downscaled from two general circulation models, we project mean temperature increases of 1 to 4°C and climate-driven mean daily 8-hr maximum ozone increases of 1-5 ppb, though each climate scenario produces ozone levels that vary significantly over space and time. These increased ozone levels are estimated to result in tens to thousands of ozone-related premature deaths and illnesses per year and an economic burden of hundreds of millions to tens of billions of U.S. dollars (2010$).
NASA Astrophysics Data System (ADS)
Liao, Kuo-Jen; Hou, Xiangting; Baker, Debra Ratterman
2014-02-01
The impacts of interstate transport of anthropogenic nitrogen oxides (NOx) and volatile organic compound (VOC) emissions on peak ozone formation in four nonattainment areas (i.e., Baltimore, Philadelphia-Wilmington-Atlantic City, Pittsburgh-Beaver Valley and Washington, DC) in the Mid-Atlantic U.S. were quantified in this study. Regional air quality and sensitivities of ground-level ozone to emissions from four regions in the eastern U.S. were simulated for three summer months (June, July and August) in 2007 using the U.S. EPA's Community Multiscale Air Quality model with the decoupled direct method 3D. The emissions inventory used in this study was the 2007 Mid-Atlantic Regional Air Management Association Level 2 inventory, developed for State Implementation Plan screening modeling for the Ozone Transport Commission region. The modeling results show that responses of peak ozone levels at specific locations to emissions from EGU (i.e., electric generating unit) and non-EGU sources could be different. Therefore, emissions from EGU and non-EGU sources should be considered as two different control categories when developing regional air pollution mitigation strategies. Based on the emission inventories used in this study, reductions in anthropogenic NOx emissions (including those from EGU and non-EGU sources) from the Great Lake region as well as northeastern and southeastern U.S. would be effective for decreasing area-mean peak ozone concentrations during the summer of 2007 in the Mid-Atlantic ozone air quality nonattainment areas. The results also show that reductions in anthropogenic VOC emissions from the northeastern U.S. would also be effective for decreasing area-mean peak ozone concentrations over the Mid-Atlantic U.S. In some cases, reductions in anthropogenic NOx emissions from the Great Lake and northeastern U.S. could slightly increase area-mean peak ozone concentrations at some ozone monitors in the Pittsburgh-Beaver Valley and Washington, DC areas. However, the disbenefit of the slight increase in ozone concentrations attributed to the NOx emission controls was far outweighed by the overall ozone air quality benefits over the Mid-Atlantic region.
Hess-Erga, Ole-Kristian; Blomvågnes-Bakke, Bente; Vadstein, Olav
2010-10-01
Transport of ballast water with ships represents a risk for introduction of foreign species. If ballast water is treated during uptake, there will be a recolonization of the ballast water by heterotrophic bacteria during transport. We investigated survival and succession of heterotrophic bacteria after disinfection of seawater in the laboratory, representing a model system of ballast water treatment and transport. The seawater was exposed to ultraviolet (UV) irradiation, ozone (2 doses) or no treatment, incubated for 16 days and examined with culture-dependent and -independent methods. The number of colony-forming units (CFU) was reduced below the detection level after disinfection with UV and high ozone dose (700 mV), and 1% of the initial level for the low ozone dose (400 mV). After less than 3 days, the CFU was back or above the starting point for the control, UV and low ozone treatment, whereas it took slightly more than 6 days for the high ozone treatment. Disinfection increased substrate availability and reduced cell densities. Lack of competition and predation induced the recolonization by opportunistic bacteria (r-strategists), with significant increase in bacterial numbers and a low diversity (based on DGGE band pattern). All cultures stabilized after the initial recolonization phase (except Oz700) where competition due to crowding and nutrient limitation favoured bacteria with high substrate affinity (K-strategists), resulting in higher species richness and diversity (based on DGGE band pattern). The bacterial community was significantly altered qualitatively and quantitatively and may have a higher potential as invaders in the recipient depending on disinfection method and the time of release. These results have implications for the treatment strategy used for ballast water. Copyright © 2010 Elsevier Ltd. All rights reserved.
Escher, Beate I; Bramaz, Nadine; Ort, Christoph
2009-10-01
Tertiary treatment of wastewater with ozone is a promising technique for removing residual micropollutants that remain after secondary biological treatment. We monitored the performance of a full-scale ozonation reactor on a sewage treatment plant in Switzerland with a screening battery of bioassays. Six toxicity endpoints were selected that covered non-specific toxicity, as well as selected receptor-mediated modes of action and reactive toxicity. Non-specific toxicity was assessed with two bioassays, the bioluminescence inhibition of the marine luminescent bacterium Vibrio Fischeri and the growth inhibition of the green algae Pseudokirchneriella subcapitata. Treatment efficiency was around 90% for the secondary treatment, but only 65% and 76% for the ozonation step in the two non-specific endpoints, respectively. This finding is consistent with this type of oxidation reaction because ozone only modifies the organic molecules but does not mineralize them fully leaving residual toxicity of the transformation products. In contrast, the specific receptor-mediated endpoints of inhibition of photosystem II in algae and estrogenicity were largely reduced by ozonation. While compounds inhibiting photosynthesis proved to be rather recalcitrant toward biological treatment with only 47% removal, an additional 86% removal by ozonation yielded an overall treatment efficiency in the entire treatment chain of 89%. The effect on estrogenicity, quantified with the yeast estrogen screen, was even more significant: A treatment efficiency of 95% in the secondary treatment, 86% during ozonation plus a small effect by biological sand filtration yielded an overall treatment efficiency of 99.5%. Insecticides that inhibit acetylcholinesterase were fairly resistant to degradation, but an overall treatment efficiency of 91% was achieved in two steps: 72% in biological treatment and 60% during ozonation. Finally, no significant genotoxicity was observed with the umuC test after ozonation, while the influent showed a genotoxic response when it was enriched by a factor of 15 to 60. Treatment efficiency increased with the ozone dose and remained virtually unchanged over ozone doses above 500 g ozone per kg dissolved organic carbon. The reduction of toxicity can be rationalized by the chemical oxidation processes likely to occur for each group of chemicals that are typical for a given mode of toxic action. For comparison, tertiary treatment with powdered activated carbon was also evaluated, which poses a viable alternative to ozonation with respect to removal of micropollutants.
NASA Astrophysics Data System (ADS)
Chen, Min
The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the period of 2003-2010. Ecosystem heterotrophic respiration (RH) was negatively affected by the aerosol loading. These results support previous conclusions of the advantage of aerosol light scattering effect on plant productions in other studies but suggest there is strong spatial variation. This study finds indirect aerosol effects on terrestrial ecosystem carbon dynamics through affecting plant phenology, thermal and hydrological environments. All these evidences suggested that the aerosol direct radiative effect on global terrestrial ecosystem carbon dynamics should be considered to better understand the global carbon cycle and climate change. An ozone sub-model is developed in this dissertation and fully coupled with iTem. The coupled model, named iTemO3 considers the processes of ozone stomatal deposition, plant defense to ozone influx, ozone damage and plant repairing mechanism. By using a global atmospheric chemical transport model (GACTM) estimated ground-level ozone concentration data, the model estimated global annual stomatal ozone deposition is 234.0 Tg O3 yr-1 and indicates which regions have high ozone damage risk. Different plant functional types, sunlit and shaded leaves are shown to have different responses to ozone. The model predictions suggest that ozone has caused considerable change on global terrestrial ecosystem carbon storage and carbon exchanges over the study period 2004-2008. The study suggests that uncertainty of the key parameters in iTemO3 could result in large errors in model predictions. Thus more experimental data for better model parameterization is highly needed.
Urban ecosystem services: tree diversity and stability of tropospheric ozone removal.
Manes, Fausto; Incerti, Guido; Salvatori, Elisabetta; Vitale, Marcello; Ricotta, Carlo; Costanza, Robert
2012-01-01
Urban forests provide important ecosystem services, such as urban air quality improvement by removing pollutants. While robust evidence exists that plant physiology, abundance, and distribution within cities are basic parameters affecting the magnitude and efficiency of air pollution removal, little is known about effects of plant diversity on the stability of this ecosystem service. Here, by means of a spatial analysis integrating system dynamic modeling and geostatistics, we assessed the effects of tree diversity on the removal of tropospheric ozone (O3) in Rome, Italy, in two years (2003 and 2004) that were very different for climatic conditions and ozone levels. Different tree functional groups showed complementary uptake patterns, related to tree physiology and phenology, maintaining a stable community function across different climatic conditions. Our results, although depending on the city-specific conditions of the studied area, suggest a higher function stability at increasing diversity levels in urban ecosystems. In Rome, such ecosystem services, based on published unitary costs of externalities and of mortality associated with O3, can be prudently valued to roughly US$2 and $3 million/year, respectively.
Experimental Findings from Aircraft Measurements in the Residual Layer
NASA Astrophysics Data System (ADS)
Caputi, D.; Conley, S. A.; Faloona, I. C.; Trousdell, J.
2016-12-01
The southern San Joaquin Valley of California is home to some of the highest ozone pollution in the United States. Thus, a complete understanding of boundary layer dynamics in this area during high ozone events is crucial for better ozone forecasting and effective attainment planning. This work will discuss the results from five aircraft deployments, spanning two summers, in which a Mooney aircraft operated by Scientific Aviation Inc. was flown between Fresno and Bakersfield throughout the diurnal cycle, measuring ozone, NOx, and methane. Under a simple budgeting model, changes in any species within the boundary layer can occur from advection, chemical production or loss, surface fluxes or deposition, and entrainment between the boundary layer and free troposphere. The advection of ozone appears to be most appreciable at night with stronger winds in the residual layer, and are on the order of 2 to 4 ppb hr-1. The nighttime chemical loss of ozone due to interaction with NO2 can be estimated by simple numerical modeling of observed quantities and reaction rates, and is found to often roughly compensate for the advection, with typical calculated values of -1 to -3 ppb hr-1. The mixing component is more difficult to directly quantify, but attempts are being made to estimate eddy viscosity by solving for this term in the budget equation. Additionally, small-scale features, such as nocturnal elevated mixed layers, localized BRN (bulk Richardson number) minimums, and low level jets are spotted in systematic ways throughout the flight data, and it is speculated that these may have a role in the transfer of ozone from the residual layer to the surface layer. Ultimately, the preliminary data is promising for the eventual goal of linking together the observed boundary layer evolution with ozone production during air pollution episodes.
Legacy of historic ozone exposure on plant community and food web structure
Menéndez, Analía I.; Gundel, Pedro E.; Folcia, Ana M.; Romero, Ana M.; Landesmann, Jennifer B.; Ventura, Laura; Ghersa, Claudio M.
2017-01-01
Information on whole community responses is needed to predict direction and magnitude of changes in plant and animal abundance under global changes. This study quantifies the effect of past ozone exposure on a weed community structure and arthropod colonization. We used the soil seed bank resulting from a long-term ozone exposure to reestablish the plant community under a new low-pollution environment. Two separate experiments using the same original soil seed bank were conducted. Plant and arthropod richness and species abundance was assessed during two years. We predicted that exposure to episodic high concentrations of ozone during a series of growing cycles would result in plant assemblies with lower diversity (lower species richness and higher dominance), due to an increase in dominance of the stress tolerant species and the elimination of the ozone-sensitive species. As a consequence, arthropod-plant interactions would also be changed. Species richness of the recruited plant communities from different exposure histories was similar (≈ 15). However, the relative abundance of the dominant species varied according to history of exposure, with two annual species dominating ozone enriched plots (90 ppb: Spergula arvensis, and 120 ppb: Calandrinia ciliata). Being consistent both years, the proportion of carnivore species was significantly higher in plots with history of higher ozone concentration (≈3.4 and ≈7.7 fold higher in 90 ppb and 120 ppb plots, respectively). Our study provides evidence that, past history of pollution might be as relevant as management practices in structuring agroecosystems, since we show that an increase in tropospheric ozone may influence biotic communities even years after the exposure. PMID:28796821
NASA Astrophysics Data System (ADS)
Akimoto, H.; Li, J.; Wang, Z.; Yamaji, K.; Pochanart, P.; Ohara, T.; Uno, I.; Gao, C.; Wang, X.; Tanimoto, H.; Kurokawa, J.
2007-12-01
Form satellite observational data, east-central China covering the North China Plain (NCP) and Yanzi Delta (YZD) has been identified as the most widely spread source area of air pollutants in the East Asian Pacific region. In order to quantify transport and chemical production of ozone in this region, both of observational and modeling studies in both of source and outflow region are necessary. In the present study, we investigated the budgets of ozone over East Asia by using regional chemical transport models (NAQPMS and CMAQ) based on observations at newly founded three mountain sites (Mt. Tai, Hua and Huang) in east-central China, and several sites from EANET and regional WMO/GAW. The observations show that a striking pattern of two sharp high ozone peaks in May-June and September-October at the three mountain sites. The budget analysis by the model confirms that maximum of net photochemical ozone production reaches 31.8, 15.1 and 11.4 ppb/day at Mt. Tai, Hua and Huang, respectively. The net chemical production dominates the formation of ozone maximum at Mt. Tai and Hua in June, and the importing transport also plays a comparable importance at Mt. Huang. In the outflow region at Oki, Japan, transport of ozone produced by East Asian emissions accounts up to 21 ppb in summer but less than 3 ppb in winter agreeing with the model analysis. The contribution of ozone due to East Asian emission is the largest (53.6%) in July-August, and somewhat smaller in May-June (34.0%) and September-October (30.7%) on the transect between Japan and the Asian continent.
Padaki, Amit; Ultman, James S.; Borhan, Ali
2009-01-01
Three-dimensional simulations of the transport and uptake of a reactive gas such as O3 were compared between an idealized model of the larynx, trachea, and first bifurcation and a second “control” model in which the larynx was replaced by an equivalent, cylindrical, tube segment. The Navier-Stokes equations, Spalart-Allmaras turbulence equation, and convection-diffusion equation were implemented at conditions reflecting inhalation into an adult human lung. Simulation results were used to analyze axial velocity, turbulent viscosity, local fractional uptake, and regional uptake. Axial velocity data revealed a strong laryngeal jet with a reattachment point in the proximal trachea. Turbulent viscosity data indicated that jet turbulence occurred only at high Reynolds numbers and was attenuated by the first bifurcation. Local fractional uptake data affirmed hotspots previously reported at the first carina, and suggested additional hotspots at the glottal constriction and jet reattachment point in the proximal trachea. These laryngeal effects strongly depended on inlet Reynolds number, with maximal effects (approaching 15%) occurring at maximal inlet flow rates. While the increase in the regional uptake caused by the larynx subsided by the end of the model, the effect of the larynx on cumulative uptake persisted further downstream. These results suggest that with prolonged exposure to a reactive gas, entire regions of the larynx and proximal trachea could show signs of tissue injury. PMID:22949744
Emily E. Puckett; Michelle J. Serpiglia; Alyssa M. DeLeon; Stephanie Long; Rakesh Minocha; Lawrence B. Smart
2012-01-01
Studies of arsenate and phosphate uptake by plants in hydroponic and soil systems indicate a common transport mechanism via the phosphate transporters (PHTs) due to structural similarity of the anions. Typically, the presence of phosphate decreases plant uptake and translocation of arsenate in hydroponic solution. This study quantified arsenic (As) uptake related to...
Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model
NASA Astrophysics Data System (ADS)
Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael
2017-01-01
A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.
Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier
2012-06-01
Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fishman, J.; Seiler, W.
1983-01-01
The small-scale vertical variability of troposheric O3 and CO is examined using a set of simultaneous measurements obtained in July and August 1974 between 55 deg S and 67 deg N. From this set of vertical profiles, it is found that many of the fluctuations are coincident in both species, and a method is presented that quantifies the correlation between the observed O3 and CO variability. A two-dimensional depiction of the distribution of these O3-CO correlations reveals that there are regions in the troposphere where these trace gases are positively correlated and that, at the same time, there are preferred locations where these two species are primarily anticorrelated. The regions of anticorrelation are found to be consistent with the traditional picture of the tropospheric ozone cycle, suggesting that this gas is chemically unreactive in the troposphere. On the other hand, the location and magnitude of the region in which these two species are positively correlated indicates that there is considerable in situ production of tropospheric ozone.
U.S. EPA'S RESEARCH TO UPDATE GUIDANCE FOR QUANTIFYING LANDFILL GAS EMISSIONS
Landfill emissions, if left uncontrolled, contribute to air toxics, climate change, tropospheric ozone, and urban smog. EPA's Office of Research and Development is conducting research to help update EPA's landfill gas emission factors. The last update to EPA's landfill gas emiss...
NASA Astrophysics Data System (ADS)
Lasry, Fanny; Coll, Isabelle; Buisson, Emmanuel
2005-03-01
High ozone concentrations are observed more and more frequently in the lower troposphere. The development of such polluted episodes is linked to a complex set of chemical, physical and dynamical parameters that interact with each other. To improve air quality, it is necessary to understand and quantify the role of all these processes on the intensity of ozone formation. The ESCOMPTE program, especially dedicated to the numerical simulation of photochemical episodes, offers an ideal frame to investigate details of the roles of many of these processes through 3D modeling. This paper presents the analysis, with a 3D eulerian model, of a severe and local episode of ozone pollution that occurred on the 21st of March 2001 in the ESCOMPTE region. This episode is particularly interesting due to the intensity of the observed ozone peaks (450 μg/m 3 during 15 mn) but also because it did not occur in summer but at the beginning of spring. As part of the premodeling work of the ESCOMPTE program, this study focuses on the sensitivity of the simulated ozone peaks to various chemical and physical phenomena (long-range transport, industrial emissions, local dynamic phenomena…) to determine their influence on the rise of high local photooxidant concentrations and to better picture the photochemistry of the ESCOMPTE region. Through sensitivity tests to dynamical calculation resolution and emissions, this paper shows how the combination of sea and pond breezes with emissions of reactive VOCs can generate local intense ozone peaks.
NASA Technical Reports Server (NTRS)
Li, Feng; Newman, Paul; Pawson, Steven; Perlwitz, Judith
2018-01-01
The relative impacts of greenhouse gas (GHG) increase and stratospheric ozone depletion on stratospheric mean age of air in the 1960-2010 period are quantified using the Goddard Earth Observing System Chemistry-�Climate Model. The experiment compares controlled simulations using a coupled atmosphere-�ocean version of the Goddard Earth Observing System Chemistry-�Climate Model, in which either GHGs or ozone depleting substances, or both factors evolve over time. The model results show that GHGs and ozone-depleting substances have about equal contributions to the simulated mean age decrease, but GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. It is also found that both the acceleration of the diabatic circulation and the decrease of the mean age difference between downwelling and upwelling regions are mainly caused by GHG forcing. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: (1) a seasonal delay in the Antarctic polar vortex breakup that inhibits young midlatitude air from mixing with the older air inside the vortex, and (2) enhanced Antarctic downwelling that brings older air from middle and upper stratosphere into the lower stratosphere.
NASA Technical Reports Server (NTRS)
Folmer, M.; Zavodsky, Bradley; Molthan, Andrew
2012-01-01
The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES ]R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters decision aid tools that can improve the quality of forecast products.
Brunet, J; Pauly, A; Dubois, M; Rodriguez-Mendez, M L; Ndiaye, A L; Varenne, C; Guérin, K
2014-09-01
A new and original gas sensor-system dedicated to the selective monitoring of nitrogen dioxide in air and in the presence of ozone, has been successfully achieved. Because of its high sensitivity and its partial selectivity towards oxidizing pollutants (nitrogen dioxide and ozone), copper phthalocyanine-based chemoresistors are relevant. The selectivity towards nitrogen dioxide results from the implementation of a high efficient and selective ozone filter upstream the sensing device. Thus, a powdered indigo/nanocarbons hybrid material has been developed and investigated for such an application. If nanocarbonaceous material acts as a highly permeable matrix with a high specific surface area, immobilized indigo nanoparticles are involved into an ozonolysis reaction with ozone leading to the selective removal of this analytes from air sample. The filtering yields towards each gas have been experimentally quantified and establish the complete removal of ozone while having the concentration of nitrogen dioxide unchanged. Long-term gas exposures reveal the higher durability of hybrid material as compared to nanocarbons and indigo separately. Synthesis, characterizations by many complementary techniques and tests of hybrid filters are detailed. Results on sensor-system including CuPc-based chemoresistors and indigo/carbon nanotubes hybrid material as in-line filter are illustrated. Sensing performances will be especially discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ayoub, Mohammed; Ackermann, Luis; Fountoukis, Christos; Gladich, Ivan
2016-04-01
The Qatar Environment and Energy Research Institute (QEERI) operates a network of air quality monitoring stations (AQMS) around the Doha metropolitan area and an ozonesonde station with regular weekly launches and occasional higher frequency launch experiments (HFLE). Six ozonesondes were launched at 0700 LT/0400 UTC and 1300 LT/1000 UTC over a three day period between 10-12 September, 2013. We present the analysis of the ozonesonde data coupled with regional chemical transport modeling over the same time period using WRF-Chem validated against both the ozonesonde and surface AQMS measurements. The HFLE and modeling show evidence of both subsidence and transboundary transport of ozone during the study period, coupled with a strong sea breeze circulation on the 11th of September resulting in elevated ozone concentrations throughout the boundary layer. The development of the sea breeze during the course of the day and influence of the early morning residual layer versus daytime production is quantified. The almost complete titration of ozone in the morning hours of 11 September, 2013 is attributed to local vehicular emissions of NOx and stable atmospheric conditions prevailing over the Doha area. The relative contribution of long range transport of ozone along the Arabian Gulf coast and local urban emissions are discussed.
The OMPS Limb Profiler instrument
NASA Astrophysics Data System (ADS)
Rault, D. F.; Xu, P.
2011-12-01
The Ozone Mapping and Profiler Suite (OMPS) will continue the monitoring of the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. OMPS is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in October 2011. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance, from which ozone profile will be retrieved from the upper tropopause uo to 60km. End-to-end studies of the sensor and retrieval algorithm indicate the following expected performance for ozone: accuracy of 5% or better from the tropopause up to 50 km, precision of about 3-5% from 18 to 50 km, and vertical resolution of 1.5-2 km with vertical sampling of 1 km and along-track horizontal sampling of 1 deg latitude. The paper will describe the mission, discuss the retrieval algorithm, and summarize the expected performance. If available, the paper will also present early on-orbit data.
Ozone depleting substances: a key forcing of the Brewer-Dobson circulation
NASA Astrophysics Data System (ADS)
Abalos, M.; Polvani, L. M.; Garcia, R. R.; Kinnison, D. E.; Randel, W. J.
2017-12-01
In contrast with monotonically-increasing greenhouse gases (GHG), Ozone Depleting Substances (ODS) peak approximately on the year 2000 and decrease thereafter, thanks to the Montreal Protocol. We examine the influence of these anthropogenic emissions on the Brewer-Dobson circulation (BDC) using specifically designed runs of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM). Consistent with previous works, we find a dominant role of ODSs on the observed BDC acceleration up to 2000 in the SH summer, through dynamical changes induced by the ozone hole. We extend the analyses to quantify the influence of ODSs on the BDC for different regions and seasons, and compare the model results to observational estimates. Finally, we show that ODSs will substantially reduce the GHG-induced BDC acceleration in the future. Specifically, the trends in stratospheric mean age of air will be 4 times smaller in the period 2000-2080 as compared to the period 1965-2000.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Liu, H.; Crawford, J. H.; Considine, D. B.; Chan, C.; Scientific Team Of Tapto
2010-12-01
The Transport of Air Pollutant and Tropospheric Ozone over China (TAPTO-China) science initiative is a two-year (TAPTO 2004 and 2005) field measurement campaign to help improve our understanding of the physical and chemical processes that control the tropospheric ozone budget over the Chinese subcontinent (including the Asian Pacific rim) and its surrounding SE Asia. In this paper, we use two state-of-the-art 3-D global chemical transport models (GEOS-Chem and Global Modeling Initiative or GMI) to examine the characteristics of vertical distribution and quantify the sources of tropospheric ozone by analysis of TAPTO in-situ ozonesonde data obtained at five stations in South China during spring (April and May) 2004: Lin’an (30.30N, 119.75E), Tengchong (25.01N, 98.30E), Taipei (25.0N, 121.3E), Hong Kong (22.21N, 114.30E) and Sanya (18.21N, 110.31E). The observed tropospheric ozone concentrations show strong spatial and temporal variability, which is largely captured by the models. The models simulate well the observed vertical gradients of tropospheric ozone at higher latitudes but are too low at lower latitudes. Model tagged ozone simulations suggest that stratosphere has a large impact on the upper and middle troposphere (UT/MT) at Lin’an and Tengchong. Continental SE Asian biomass burning emissions are maximum in March but still contribute significantly to the photochemical production of tropopheric ozone in South China in early April. Asian anthropogenic emissions are the major contribution to lower tropospheric ozone at all stations. On the other hand, there are episodes of influence from European/North American anthropogenic emissions. For example, model tagged ozone simulations show that over Lin’an in April 2004, stratosphere contributes 20% (13 ppbv) at 5 km, Asian boundary layer contributes 70% (46 ppbv) to ozone in the boundary layer, European boundary layer contributes 5% (3-4 ppbv) at 1.2 km, and North American boundary layer contributes 4.5% (3 ppbv) at 1.2 km. Lastly, our analysis suggests that lightning NOx emissions have substantial impact on the UT/MT ozone over South China. We argue that model underestimate of ozone concentrations, especially at lower latitudes, is likely due to too low lightning NOx emissions.
USE OF OXYGEN-18 ISOTOPE LABELING FOR MEASUREMENT OF OXIDATIVE STRESS
Oxygen-18 (18-O) labeling provides a sensitive means for quantifying oxygen
binding that occurs during in vivo oxidations. Oxidants (ozone, nitrogen
oxides, hydrogen peroxide, etc.) are first synthesized using 18-O, then cells
or tissues are exposed to the labeled ...
Andersen, Stephen O; Halberstadt, Marcel L; Borgford-Parnell, Nathan
2013-06-01
In 1974, Mario Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer that protects Earth from harmful ultraviolet radiation. In the decade after scientists documented the buildup and long lifetime of CFCs in the atmosphere; found the proof that CFCs chemically decomposed in the stratosphere and catalyzed the depletion of ozone; quantified the adverse effects; and motivated the public and policymakers to take action. In 1987, 24 nations plus the European Community signed the Montreal Protocol. Today, 25 years after the Montreal Protocol was agreed, every United Nations state is a party (universal ratification of 196 governments); all parties are in compliance with the stringent controls; 98% of almost 100 ozone-depleting chemicals have been phased out worldwide; and the stratospheric ozone layer is on its way to recovery by 2065. A growing coalition of nations supports using the Montreal Protocol to phase down hydrofluorocarbons, which are ozone safe but potent greenhouse gases. Without rigorous science and international consensus, emissions of CFCs and related ozone-depleting substances (ODSs) could have destroyed up to two-thirds of the ozone layer by 2065, increasing the risk of causing millions of cancer cases and the potential loss of half of global agricultural production. Furthermore, because most, ODSs are also greenhouse gases, CFCs and related ODSs could have had the effect of the equivalent of 24-76 gigatons per year of carbon dioxide. This critical review describes the history of the science of stratospheric ozone depletion, summarizes the evolution of control measures and compliance under the Montreal Protocol and national legislation, presents a review of six separate transformations over the last 100 years in refrigeration and air conditioning (A/C) technology, and illustrates government-industry cooperation in continually improving the environmental performance of motor vehicle A/C.
Andersen, Stephen O; Halberstadt, Marcel L; Borgford-Parnell, Nathan
2013-06-01
In 1974, Mario Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer that protects Earth from harmful ultraviolet radiation. In the decade after, scientists documented the buildup and long lifetime of CFCs in the atmosphere; found the proof that CFCs chemically decomposed in the stratosphere and catalyzed the depletion of ozone; quantified the adverse effects; and motivated the public and policymakers to take action. In 1987, 24 nations plus the European Community signed the Montreal Protocol. Today, 25 years after the Montreal Protocol was agreed, every United Nations state is a party (universal ratification of 196 governments); all parties are in compliance with the stringent controls; 98% of almost 100 ozone-depleting chemicals have been phased out worldwide; and the stratospheric ozone layer is on its way to recovery by 2065. A growing coalition of nations supports using the Montreal Protocol to phase down hydrofluorocarbons, which are ozone safe but potent greenhouse gases. Without rigorous science and international consensus, emissions of CFCs and related ozone-depleting substances (ODSs) could have destroyed up to two-thirds of the ozone layer by 2065, increasing the risk of causing millions of cancer cases and the potential loss of half of global agricultural production. Furthermore, because most ODSs are also greenhouse gases, CFCs and related ODSs could have had the effect of the equivalent of 24-76 gigatons per year of carbon dioxide. This critical review describes the history of the science of stratospheric ozone depletion, summarizes the evolution of control measures and compliance under the Montreal Protocol and national legislation, presents a review of six separate transformations over the last 100 years in refrigeration and air conditioning (A/C) technology, and illustrates government-industry cooperation in continually improving the environmental performance of motor vehicle A/C. [Box: see text].
Avdalovic, Mark V; Tyler, Nancy K; Putney, Lei; Nishio, Susie J; Quesenberry, Sherri; Singh, Parmjit J; Miller, Lisa A; Schelegle, Edward S; Plopper, Charles G; Vu, Thiennu; Hyde, Dallas M
2012-10-01
Exposure to oxidant air pollutants in early childhood, with ozone as the key oxidant, has been linked to significant decrements in pulmonary function in young adults and exacerbation of airway remodeling in asthma. Development of lung parenchyma in rhesus monkeys is rapid during the first 2 years of life (comparable to the first 6 years in humans). Our hypothesis is that ozone inhalation during infancy alters alveolar morphogenesis. We exposed infant rhesus monkeys biweekly to 5, 8 hr/day, cycles of 0.5 ppm ozone with or without house dust mite allergen from 1 to 3 or 1 to 6 months of age. Monkeys were necropsied at 3 and 6 months of age. A morphometric approach was used to quantify changes in alveolar volume and number, the distribution of alveolar size, and capillary surface density per alveolar septa. Quantitative real time PCR was used to measure the relative difference in gene expression over time. Monkeys exposed to ozone alone or ozone combined with allergen had statistically larger alveoli that were less in number at 3 months of age. Alveolar capillary surface density was also decreased in the ozone exposed groups at 3 months of age. At 6 months of age, the alveolar number was similar between treatment groups and was associated with a significant rise in alveolar number from 3 to 6 months of age in the ozone exposed groups. This increase in alveolar number was not associated with any significant increase in microvascular growth as measured by morphometry or changes in angiogenic gene expression. Inhalation of ozone during infancy alters the appearance and timing of alveolar growth and maturation. Understanding the mechanism involved with this altered alveolar growth may provide insight into the parenchymal injury and repair process that is involved with chronic lung diseases such as severe asthma and COPD. Copyright © 2012 Wiley Periodicals, Inc.
Observations on the Stomatal Control of NO2 Exchange.
NASA Astrophysics Data System (ADS)
Kesselmeier, J.; Chaparro-Suarez, I. G.; Meixner, F. X.
2005-12-01
Nitrogen oxides play a central role in tropospheric chemistry especially in the formation of tropospheric ozone, acid rain and hydroxyl radical as well as in CH4 and CO oxidation processes. NO2 can be assimilated and emitted by the plant leaves as well. We investigated the impact of the stomatal regulation with four tree species (Betula pendula, Fagus sylvatica, Quercus ilex und Pinus sylvestris) by exposure of leaves to the hormone abscisic acid inducing stomatal closure. The results showed that the NO2 uptake was strongly dependent on stomatal aperture. The uptake correlated linearly with stomatal (leaf) conductance in case of all four tree species investigated. In contrast an NO2 emission was observed with beech in the dark when stomata were basically closed.
Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie
2016-01-01
Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.
Open-path FTIR ozone measurements in Korea
NASA Astrophysics Data System (ADS)
Walter, William T.; Perry, Stephen H.; Han, Jin-Seok; Park, Chul-Jin
1999-02-01
In July 1997 the Republic of Korea became the 15th country to exceed 10-million registered motor vehicles. The number of cars has been increasing exponentially in Korea for the past 12 years opening an era of one car per household in this nation with a population of 44 million. The air quality effects of the growth of increasingly congested motor vehicle traffic in Seoul, home to more than one-fourth of the entire population, is of great concern to Korea's National Institute of Environmental Research (NIER). AIL's Open-Path FTIR air quality monitor, RAM 2000TM, has been used to quantify the ozone increase over the course of a warm summer day. The RAM 2000 instrument was setup on the roof of the 6-story NIER headquarters. The retroreflector was sited 180-m away across a major highway where it was tripod-mounted on top of the 6- story Korean National Institute of Health facility. During the Open-Path FTIR data taking, NIER Air Physics Division research team periodically tethered an airborne balloon containing pump and a potassium iodide solution to obtain absolute ozone concentration results which indicated that the ambient ozone level was 50 ppb when the Open-Path FTIR measurements began. Total ozone concentrations exceeded 120 ppb for five hours between 11:30 AM and 4:30 PM. The peak ozone concentration measured was 199 ppb at 12:56 PM. The averaged concentration for five and a half hours of data collection was 145 ppb. Ammonia concentrations were also measured.
NASA Astrophysics Data System (ADS)
Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Trachsel, Jürg; Avak, Sven; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten
2017-04-01
Tropospheric ozone depletion events (ODEs) via halogen activation are observed in both cold and warm climates [1-3]. Very recently, it was suggested that this multiphase halogen activation chemistry dominates in the tropical and subtropical upper troposphere [4]. These occurrences beg the question of temperature dependence of halogen activation in sea-salt aerosol, which are often mixtures of sea-salt and organic molecules [3, 5]. With the application of flow-tubes, the aim of this study is to investigate the temperature dependence of bromine activation via ozone interaction in a bromide containing film as a proxy for mixed organic - sea-salt aersol. Citric acid is used in this study as a hygroscopically characterized matrix and a proxy for oxidized organics, which is of relevance to atmospheric chemistry. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. With available knowledge, we have reproduced the measured uptake with modelled bulk uptake while accounting for temperature dependence of the substrate's properties as diffusivity, viscosity, and gas solubility. This work is part of a cross-disciplinary project with the aim to investigate the impact of metamorphism on impurity location in aging snow and its consequences for chemical reactivity. Metamorphism drastically shapes the structure and physical properties of snow, which has impacts on heat transfer, albedo, and avalanche formation. Such changes can be driven by water vapour fluxes in dry metamorphism with a mass turnover of as much as 60% per day - much greater than previously thought [6]. The consequences for atmospheric science are a current question of research [7]. Here, we show first results of a joint experiment to probe the re-distribution of impurities during snow metamorphism in artificial snow combined with an investigation of the samples structural changes. Future work is planned with the goal to investigate to which extend the observed re-distribution of impurities can explain the varying reactivity of the natural snow cover. 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Schmidt, J. A., et al., Journal of Geophysical Research, 2016 121: 11,819-11,835. 5. O'Dowd, C.D., et al., Nature, 2004. 431(7009): p. 672-6. 6. B. Pinzer et al., The Cryosphere, 6, 1141-1155, (2012). 7. T. Bartels-Rausch et al., Atmos. Chem. Phys., 14, 1587-1633 (2014).. https://www.psi.ch/luc/miso
NASA Astrophysics Data System (ADS)
Wang, T.; Wang, W.; Yun, H.; Tham, Y. J.; Xia, M.; Yu, C.; Wang, Z.; Zhang, N.; Cui, L.; Poon, S.; Lee, S.; Ou, Y.; Yue, D.; Zhai, Y.
2017-12-01
In the past decade, heterogeneous uptake of dinitrogen pentoxide (N2O5) on aerosol and subsequent production of nitryl chloride (ClNO2) have been found to impact the oxidative capacity, NOx fate, and the formation of aerosol nitrate and photochemical ozone. However, the detailed processes and effects are not completely understand for diverse environments of the globe. Our previous measurements at a mountain top (957 m a.s.l) in Hong Kong in winter 2013 revealed elevated concentrations of N2O5 (up to 7.7 ppb) and ClNO2 (up to 4.7 ppb) and that the polluted air masses originated from inland urban areas of the Pearl River delta (PRD). To understand the detailed uptake processes, an intensive measurement campaign was conducted at the same site (Tai Mo Shan, TMS) during October-December 2016 and at a semi-rural site (Heshan) in the center of the PRD in January 2017. Key parameters related to N2O5 and ClNO2 processes, including aerosol ionic composition, aerosol number and size, volatile organic compounds as well as ozone, NOx and NOy, were measured during the two campaigns. Elevated (up to 3.4 ppb) ClNO2 concentrations were observed at the mountain site on many nights a few hours after sunset, and extremely high levels of ClNO2 (up to 8.3 ppb) were measured in the inland site during a heavy pollution event. The meteorological conditions and variations of ClNO2 will be examined with concurrently measured parameters to elucidate factors determining N2O5 uptake and ClNO2 production. The 2016 results at TMS will be compared with those from 2013.
NASA Astrophysics Data System (ADS)
Xu, Wanyun; Xu, Xiaobin; Lin, Meiyun; Lin, Weili; Tarasick, David; Tang, Jie; Ma, Jianzhong; Zheng, Xiangdong
2018-01-01
Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l.) on the Tibetan Plateau over the period of 1994-2013 has increased significantly by 0.2-0.3 ppbv yr-1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry-climate model hindcast simulations (GFDL AM3), a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ˜ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr-1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr-1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why summertime ozone measured at WLG shows no significant trend despite ozone increases in eastern China. Analysis of the Trajectory-mapped Ozonesonde data set for the Stratosphere and Troposphere (TOST) and trajectory residence time reveals increases in direct ozone transport from the eastern sector during autumn, which adds to the autumnal ozone increase. We further examine the links of ozone variability at WLG to the quasi-biennial oscillation (QBO), the East Asian summer monsoon (EASM), and the sunspot cycle. Our results suggest that the 2-3-, 3-7-, and 11-year periodicities are linked to the QBO, EASM index, and sunspot cycle, respectively. A multivariate regression analysis is performed to quantify the relative contributions of various factors to surface ozone concentrations at WLG. Through an observational and modelling analysis, this study demonstrates the complex relationships between surface ozone at remote locations and its dynamical and chemical influencing factors.
NASA Astrophysics Data System (ADS)
Liu, H.; Chan, C.; Huang, J.; Zhang, Y.; Choi, H.; Crawford, J. H.; Considine, D. B.; Zheng, X.; Oltmans, S. J.; Liu, S. C.; Zhang, L.; Liu, X.; Thouret, V.
2012-12-01
Tropospheric ozone concentrations and emissions of NOx have both increased significantly over China as a result of rapid industrialization during the past decade. These trends degrade local and regional air quality and have important effects on background tropospheric ozone and surface ozone over downwind North Pacific and North America. In-situ observations of tropospheric ozone over China are therefore essential to testing and improving our understanding of the impact of Asian anthropogenic (versus natural) emissions and various chemical, physical, and dynamical processes on both regional and global tropospheric ozone. Despite their critical importance, in-situ observations of tropospheric ozone profiles over China have been few and far between in most of the country. To investigate the ensemble of processes that control the distribution, variability, and sources of springtime tropospheric ozone over China and its surrounding regions, an intensive ozonesonde sounding campaign, called Transport of Air Pollutants and Tropospheric Ozone over China (TAPTO-China), was conducted at nine locations across China in the springs of 2004 (South China) and 2005 (North China). In this paper, we use a global 3-D model of tropospheric chemistry (GEOS-Chem) to examine the characteristics of distribution and variability and quantify various sources of tropospheric ozone over North China by analysis of intensive ozonesonde data obtained at four stations in North / Northwest China during the second phase of TAPTO-China (April-May 2005). These four stations include Xining (36.43N, 101.45E), Beijing (39.80N, 116.18E), Longfengshan (44.44N, 127.36E), and Aletai (47.73N, 88.08E). We drive GEOS-Chem with two sets of assimilated meteorological observations (GEOS-4 and GEOS-5) from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GAMO), allowing us to examine the impacts of variability in meteorology. We show that the observed tropospheric ozone mixing ratios exhibit strong spatio-temporal variability. The model generally simulates well the ozonesonde observations but tends to underestimate ozone in the upper troposphere over Beijing and Longfengshan. We find that Asian fossil fuel emissions, stratospheric ozone, African lightning NOx emissions, as well as intercontinental transport are the main contributors to tropospheric ozone over North China in spring. While the lower-tropospheric ozone is largely influenced by Asian fossil fuel emissions (except over Aletai, Northwest China), lightning NOx emissions have a larger impact on the upper-tropospheric ozone than Asian fossil fuel emissions (except over Longfengshan, Northeast China). Model simulations suggest that the European fossil fuel emissions contribute more to the lower-tropospheric ozone over Aletai than the Asian fossil fuel emissions. We will also show that tropospheric ozone measurements by Tropospheric Emission Spectrometer (TES) aboard the NASA EOS Aura satellite can be used to study tropospheric ozone variability at Xining.
Laboratory Investigations Of Mechanisms For 1,4-Dioxane Destruction By Ozone In Water (Presentation)
Advances in analytical detection methods have made it possible to quantify 1,4-dioxane contamination in groundwater, even a well-characterized sites where it had not been previously detected. Although 1,4-dioxane is difficult to treat because of its chemical and physical propert...
Ultraviolet B radiation (UV-B) has increased globally over the last several decades due to reduction of stratospheric ozone. UV-B may also increase when climate change alters cloud cover, rainfall, and distributions of vegetation. In aquatic systems, these factors can also intera...
Laboratory Investigation Of Mechanisms For 1,4-Dioxane Destruction By Ozone In Water
Advances in analytical detection methods have made it possible to quantify 1,4-dioxane contamination in groundwater, even at well-characterized sites where it had not been previously detected. Although 1,4-dioxane is difficult to treat because of its chemical and physical proper...
NASA Astrophysics Data System (ADS)
Toro, C.; Jobson, B. T.; Haselbach, L.; Shen, S.; Chung, S. H.
2016-08-01
This work reports uptake coefficients and by-product yields of ozone precursors onto two photocatalytic paving materials (asphalt and concrete) treated with a commercial TiO2 surface application product. The experimental approach used a continuously stirred tank reactor (CSTR) and allowed for testing large samples with the same surface morphology encountered with real urban surfaces. The measured uptake coefficient (γgeo) and surface resistances are useful for parametrizing dry deposition velocities in air quality model evaluation of the impact of photoactive surfaces on urban air chemistry. At 46% relative humidity, the surface resistance to NO uptake was ∼1 s cm-1 for concrete and ∼2 s cm-1 for a freshly coated older roadway asphalt sample. HONO and NO2 were detected as side products from NO uptake to asphalt, with NO2 molar yields on the order of 20% and HONO molar yields ranging between 14 and 33%. For concrete samples, the NO2 molar yields increased with the increase of water vapor, ranging from 1% to 35% and HONO was not detected as a by-product. Uptake of monoaromatic VOCs to the asphalt sample set displayed a dependence on the compound vapor pressure, and was influenced by competitive adsorption from less volatile VOCs. Formaldehyde and acetaldehyde were detected as byproducts, with molar yields ranging from 5 to 32%.
Multiannual tropical tropospheric ozone columns and the case of the 2015 el Niño event
NASA Astrophysics Data System (ADS)
Leventidou, Elpida; Eichmann, Kai-Uwe; Weber, Mark; Burrows, John P.
2016-04-01
Stratospheric ozone is well known for protecting the surface from harmful ultraviolet solar radiation whereas ozone in the troposphere plays a more complex role. In the lower troposphere ozone can be extremely harmful for human health as it can oxidize biological tissues and causes respiratory problems. Several studies have shown that the tropospheric ozone burden (300±30Tg (IPCC, 2007)) increases by 1-7% per decade in the tropics (Beig and Singh, 2007; Cooper et al., 2014) which makes the need to monitor it on a global scale crucial. Remote sensing from satellites has been proven to be very useful in providing consistent information of tropospheric ozone concentrations over large areas. Tropical tropospheric ozone columns can be retrieved with the Convective Cloud Differential (CCD) technique (Ziemke et al. 1998) using retrieved total ozone columns and cloud parameters from space-borne observations. We have developed a CCD-IUP algorithm which was applied to GOME/ ERS-2 (1995-2003), SCIAMACHY/ Envisat (2002-2012), and GOME-2/ MetOpA (2007-2012) weighting function DOAS (Coldewey-Egbers et al., 2005, Weber et al., 2005) total ozone data. A unique long-term record of monthly averaged tropical tropospheric ozone columns (20°S - 20°N) was created starting in 1996. This dataset has been extensively validated by comparisons with SHADOZ (Thompson et al., 2003) ozonesonde data and limb-nadir Matching (Ebojie et al. 2014) tropospheric ozone data. The comparison shows good agreement with respect to range, inter-annual variation, and variance. Biases where found to be within 5DU and the RMS errors less than 10 DU. This 17-years dataset has been harmonized into one consistent time series, taking into account the three instruments' difference in ground pixel size. The harmonised dataset is used to determine tropical tropospheric ozone trends and climatological values. The 2015 el Niño event has been characterised as one of the top three strongest el Niños since 1950. El Niño events are major sources of the tropospheric ozone variability (Ziemke and Chandra,2003) due to changes in the convection pattern and large-scale circulation in the tropical Pacific region. More clouds and rainfall appear in the central and/or eastern Pacific whereas more dryness over Indonesia and as a result strongest forest fires. These effects cause enhanced tropospheric ozone columns over the Indonesian region and reduced over the eastern Pacific. The focus of this work is to present the first results of tropospheric ozone trends the last 17 years as long as to understand and quantify the tropical tropospheric ozone (TTCO) anomalies due to the 2015 el Niño event.
Yesil, Mustafa; Kasler, David R; Huang, En; Yousef, Ahmed E
2017-07-01
Foodborne disease outbreaks associated with the consumption of fresh produce pose a threat to public health, decrease consumer confidence in minimally processed foods, and negatively impact the sales of these commodities. The aim of the study was to determine the influence of population size of inoculated pathogen on its inactivation by gaseous ozone treatment during vacuum cooling. Spinach leaves were spot inoculated with Escherichia coli O157:H7 at approximate initial populations of 10 8 , 10 7 , and 10 5 CFU/g. Inoculated leaves were vacuum cooled (28.5 inHg; 4°C) in a custom-made vessel and then were subjected to a gaseous ozone treatment under the following conditions: 1.5 g of ozone per kg of gas mixture, vessel pressure at 10 lb/in 2 gauge, 94 to 98% relative humidity, and 30 min of holding time at 9°C. Treatment of the leaves, having the aforementioned inocula, decreased E. coli populations by 0.2, 2.1, and 2.8 log CFU/g, respectively, compared with the inoculated untreated controls. Additionally, spinach leaves were inoculated at 1.4 × 10 3 CFU/g, which approximates natural contamination level, and the small populations remaining after ozone treatment were quantified using the most-probable-number (MPN) method. Vacuum and ozone sequential treatment decreased this E. coli O157:H7 population to <3 MPN/g (i.e., greater than 3-log reduction). Resulting log reductions were greater (P < 0.05) at the lower rather than the higher inoculum levels. In conclusion, treatment of spinach leaves with gaseous ozone is effective against pathogen loads comparable to those found in naturally contaminated fresh produce, but efficacy decreases as inoculum level increases.
Ozonation-based decolorization of food dyes for recovery of fruit leather wastes.
Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Brehm-Stecher, Byron F; Ozsoy, H Duygu; van Leeuwen, J Hans
2013-08-28
Commercial manufacture of fruit leathers (FL) usually results in a portion of the product that is out of specification. The disposition of this material poses special challenges in the food industry. Because the material remains edible and contains valuable ingredients (fruit pulp, sugars, acidulates, etc.), an ideal solution would be to recover this material for product rework. A key practical obstacle to such recovery is that compositing of differently colored wastes results in an unsalable gray product. Therefore, a safe and scalable method for decolorization of FL prior to product rework is needed. This research introduces a novel approach utilizing ozonation for color removal. To explore the use of ozonation as a decolorization step, we first applied it to simple solutions of the commonly used food colorants 2-naphthalenesulfonic acid (Red 40), tartrazine (Yellow 5), and erioglaucine (Blue 1). Decolorization was measured by UV/vis spectrometry at visible wavelengths and with a Hunter colorimeter. Volatile and semivolatile byproducts from ozone-based colorant decomposition were identified and quantified with solid phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Removal of Yellow 5, Red 40 and Blue 1 of about 65%, 80%, and 90%, respectively, was accomplished with 70 g of ozone applied per 1 kg of redissolved and resuspended FL. Carbonyl compounds were identified as major byproducts from ozone-induced decomposition of the food colorants. A conservative risk assessment based on quantification results and published toxicity information of potentially toxic byproducts, determined that ozone-based decolorization of FL before recycling is acceptable from a safety standpoint. A preliminary cost estimate based on recycling of 1000 tons of FL annually suggests a potential of $275,000 annual profit from this practice at one production facility alone.
NASA Technical Reports Server (NTRS)
Pickering, K. E.; Ziemke, J.; Bucsela, E.; Gleason, J.; Marufu, L.; Dickerson, R.; Mathur, R.; Davidson, P.; Duncan, B.; Bhartia, P. K.
2006-01-01
The Ozone Monitoring Instrument (OMI) on board NASA s Aura satellite was launched in July 2004, and is now providing daily global observations of total column ozone, NO2, and SO2, as well as aerosol information. Algorithms have also been developed to produce daily tropospheric ozone and NO2 products. The tropospheric ozone product reported here is a tropospheric residual computed through use of Aura Microwave Limb Sounder (MLS) ozone profile data to quantify stratospheric ozone. We are investigating the applicability of OMI products for use in air quality modeling, forecasting, and analysis. These investigations include comparison of the OMI tropospheric O3 and NO2 products with global and regional models and with lower tropospheric aircraft observations. Large-scale transport of pollution seen in the OM1 tropospheric O3 data is compared with output from NASA's Global Modeling Initiative global chemistry and transport model. On the regional scale we compare the OMI tropospheric O3 and NO2 with fields from the National Oceanic and Atmospheric Administration and Environmental Protection Agency (NOAA/EPA) operational Eta/CMAQ air quality forecasting model over the eastern United States. This 12-km horizontal resolution model output is roughly of equivalent resolution to the OMI pixel data. Correlation analysis between lower tropospheric aircraft O3 profile data taken by the University of Maryland over the Mid-Atlantic States and OMI tropospheric column mean volume mixing ratio for O3 will be presented. These aircraft data are representative of the lowest 3 kilometers of the atmosphere, the region in which much of the locally-generated and regionally-transported ozone exists.
Ozone Observations by the Gas and Aerosol Measurement Sensor during SOLVE II
NASA Technical Reports Server (NTRS)
Pitts, M. C.; Thomason, L. W.; Zawodny, J. M.; Wenny, B. N.; Livingston, J. M.; Russell, P. B.; Yee, J.-H.; Swartz, W. H.; Shetter, R. E.
2006-01-01
The Gas and Aerosol Measurement Sensor (GAMS) was deployed aboard the NASA DC-8 aircraft during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). GAMS acquired line-of-sight (LOS) direct solar irradiance spectra during the sunlit portions of ten science flights of the DC-8 between 12 January and 4 February 2003. Differential line-of-sight (DLOS) optical depth spectra are produced from the GAMS raw solar irradiance spectra. Then, DLOS ozone number densities are retrieved from the GAMS spectra using a multiple linear regression spectral fitting technique. Both the DLOS optical depth spectra and retrieved ozone data are compared with coincident measurements from two other solar instruments aboard the DC-8 platform to demonstrate the robustness and stability of the GAMS data. The GAMS ozone measurements are then utilized to evaluate the quality of the Wulf band ozone cross sections, a critical component of the SAGE III aerosol, water vapor, and temperature/pressure retrievals. Results suggest the ozone cross section compilation of Shettle and Anderson currently used operationally in SAGE III data processing may be in error by as much as 10-20% in theWulf bands, and their lack of reported temperature dependence is a significant deficiency. A second, more recent, cross section database compiled for the SCIAMACHY satellite mission appears to be of much better quality in the Wulf bands, but still may have errors as large as 5% near the Wulf band absorption peaks, which is slightly larger than their stated uncertainty. Additional laboratory measurements of the Wulf band cross sections should be pursued to further reduce their uncertainty and better quantify their temperature dependence.
Atmospheric changes caused by galactic cosmic rays over the period 1960–2010
Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.; ...
2016-05-13
The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960–2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NO x increases of 4–15 % are computed in the Southern polar troposphere with associated ozone increases of 1–2 %. NO x increases of ~1–6 % are calculated for the lower stratosphere with associated ozone decreasesmore » of 0.2–1 %. The primary impact of GCRs on ozone was due to their production of NO x. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NO x and ClO x ozone loss cycles (e.g., the ClO + NO 2+ M → ClONO 2+ M reaction) and the change in the importance of ClO x in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. Furthermore, this will be corrected in future works.« less
NASA Astrophysics Data System (ADS)
Antón, M.; Koukouli, M. E.; Kroon, M.; McPeters, R. D.; Labow, G. J.; Balis, D.; Serrano, A.
2010-10-01
This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around ˜3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (˜1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter ultraviolet/2 data as external references, and therefore, they are no longer considered as independent observations.
Atmospheric changes caused by galactic cosmic rays over the period 1960–2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.
The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960–2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NO x increases of 4–15 % are computed in the Southern polar troposphere with associated ozone increases of 1–2 %. NO x increases of ~1–6 % are calculated for the lower stratosphere with associated ozone decreasesmore » of 0.2–1 %. The primary impact of GCRs on ozone was due to their production of NO x. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NO x and ClO x ozone loss cycles (e.g., the ClO + NO 2+ M → ClONO 2+ M reaction) and the change in the importance of ClO x in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. Furthermore, this will be corrected in future works.« less
NASA Astrophysics Data System (ADS)
Silva, R.; West, J.; Anenberg, S.; Lamarque, J.; Shindell, D. T.; Bergmann, D. J.; Berntsen, T.; Cameron-Smith, P. J.; Collins, B.; Ghan, S. J.; Josse, B.; Nagashima, T.; Naik, V.; Plummer, D.; Rodriguez, J. M.; Szopa, S.; Zeng, G.
2012-12-01
Climate change can adversely affect air quality, through changes in meteorology, atmospheric chemistry, and emissions. Future changes in air pollutant emissions will also profoundly influence air quality. These changes in air quality can affect human health, as exposure to ground-level ozone and fine particulate matter (PM2.5) has been associated with premature human mortality. Here we will quantify the global mortality impacts of past and future climate change, considering the effects of climate change on air quality isolated from emission changes. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has simulated the past and future surface concentrations of ozone and PM2.5 from each of several GCMs, for emissions from 1850 ("preindustrial") to 2000 ("present-day"), and for the IPCC AR5 Representative Concentration Pathways (RCPs) scenarios to 2100. We will use ozone and PM2.5 concentrations from simulations from five or more global models of atmospheric dynamics and chemistry, for a base year (present-day), pre-industrial conditions, and future scenarios, considering changes in climate and emissions. We will assess the mortality impacts of past climate change by using one simulation ensemble with present emissions and climate and one with present emissions but 1850 climate. We will similarly quantify the potential impacts of future climate change under the four RCP scenarios in 2030, 2050 and 2100. All model outputs will be regridded to the same resolution to estimate multi-model medians and range in each grid cell. Resulting premature deaths will be calculated using these medians along with epidemiologically-derived concentration-response functions, and present-day or future projections of population and baseline mortality rates, considering aging and transitioning disease rates over time. The spatial distributions of current and future global premature mortalities due to ozone and PM2.5 outdoor air pollution will be presented separately. These results will strengthen our understanding of the impacts of climate change today, and in future years considering different plausible scenarios.
Correlation between quantified breast densities from digital mammography and 18F-FDG PET uptake.
Lakhani, Paras; Maidment, Andrew D A; Weinstein, Susan P; Kung, Justin W; Alavi, Abass
2009-01-01
To correlate breast density quantified from digital mammograms with mean and maximum standardized uptake values (SUVs) from positron emission tomography (PET). This was a prospective study that included 56 women with a history of suspicion of breast cancer (mean age 49.2 +/- 9.3 years), who underwent 18F-fluoro-2-deoxyglucose (FDG)-PET imaging of their breasts as well as digital mammography. A computer thresholding algorithm was applied to the contralateral nonmalignant breasts to quantitatively estimate the breast density on digital mammograms. The breasts were also classified into one of four Breast Imaging Reporting and Data System categories for density. Comparisons between SUV and breast density were made using linear regression and the Student's t-test. Linear regression of mean SUV versus average breast density showed a positive relationship with a Pearson's correlation coefficient of R(2) = 0.83. The quantified breast densities and mean SUVs were significantly greater for mammographically dense than nondense breasts (p < 0.0001 for both). The average quantified densities and mean SUVs of the breasts were significantly greater for premenopausal than postmenopausal patients (p < 0.05). 8/51 (16%) of the patients had maximum SUVs that equaled 1.6 or greater. There is a positive linear correlation between quantified breast density on digital mammography and FDG uptake on PET. Menopausal status affects the metabolic activity of normal breast tissue, resulting in higher SUVs in pre- versus postmenopausal patients.
A multi-sites analysis on the ozone effects on Gross Primary Production of European forests.
Proietti, C; Anav, A; De Marco, A; Sicard, P; Vitale, M
2016-06-15
Ozone (O3) is both a greenhouse gas and a secondary air pollutant causing adverse impacts on forests ecosystems at different scales, from cellular to ecosystem level. Specifically, the phytotoxic nature of O3 can impair CO2 assimilation that, in turn affects forest productivity. This study aims to evaluate the effects of tropospheric O3 on Gross Primary Production (GPP) at 37 European forest sites during the time period 2000-2010. Due to the lack of carbon assimilation data at O3 monitoring stations (and vice-versa) this study makes a first attempt to combine high resolution MODIS Gross Primary Production (GPP) estimates and O3 measurement data. Partial Correlations, Anomalies Analysis and the Random Forests Analysis (RFA) were used to quantify the effects of tropospheric O3 concentration and its uptake on GPP and to evaluate the most important factors affecting inter-annual GPP changes. Our results showed, along a North-West/South-East European transect, a negative impact of O3 on GPP ranging from 0.4% to 30%, although a key role of meteorological parameters respect to pollutant variables in affecting GPP was found. In particular, meteorological parameters, namely air temperature (T), soil water content (SWC) and relative humidity (RH) are the most important predictors at 81% of test sites. Moreover, it is interesting to highlight a key role of SWC in the Mediterranean areas (Spanish, Italian and French test sites) confirming that, soil moisture and soil water availability affect vegetation growth and photosynthesis especially in arid or semi-arid ecosystems such as the Mediterranean climate regions. Considering the pivotal role of GPP in the global carbon balance and the O3 ability to reduce primary productivity of the forests, this study can help in assessing the O3 impacts on ecosystem services, including wood production and carbon sequestration. Copyright © 2016 Elsevier B.V. All rights reserved.
Impact of drought on the North America carbon balance: implications for global carbon mitigation.
NASA Astrophysics Data System (ADS)
Bowman, K. W.; Liu, J.; Parazoo, N.; Bloom, A. A.; Wunch, D.; Jiang, Z.; Gurney, K. R.; Schimel, D.
2017-12-01
Drought and heat events are significant contributors to the interanual variability of terrestrial biosphere carbon flux in temperate North America. In order to be understand the drivers of this variability, we quantified the impact of two drought events in Texas and Mexico in 2011 as wells as the United States Midwest in 2012 on Net Biome Exchange, Gross Primary Productivity, Biomass Burning, and total ecosystem respiration using the NASA Carbon Monitoring System Flux (CMS-Flux) carbon cycle data assimilation system constrained with a suite of satellite observations. The global spatial distribution of NBE was constrained by column CO2 (XCO2) observations from the Greenhouse Gases Observing Satellite (GOSAT) accounting for fossil fuel contributions, while GPP was estimated with Solar Induced Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2), and biomass burning was computed from CO emissions constrained by MOPITT. Total ecosystem respiration (TER) was calculated as a residual term. We found that both drought events greatly reduced NBE and GPP during the seasonal peak, but had quite different effects on the annual NBE. Due to the year-long duration of the 2011 Texas-Northern Mexico (Tex-Mex) drought, the annual net uptake was reduced by 0.28 ± 0.10 GtC, which was dominated by the reduction of GPP (-0.34 ± 0.14 GtC). The regional contribution to the atmospheric CO2 growth, which is the sum of fossil fuel emissions and the biosphere net uptake, increased by more than a factor of 3 from an average of 0.09 GtC to 0.30 GtC in 2011. In contrast, a seasonally enhanced NBE in the Midwest partially offset the drought leading to an annual NBE reduction of only 0.16 ± 0.16 GtC. The reduction of net carbon uptake from the 2011 and 2012 drought impact was 50% and 25% respectively of the regional annual fossil fuel emissions. The results show that climate variability needs to be considered in order to relate carbon mitigation strategies to regional and global CO2 growth rates.
Ozone deposition velocities, reaction probabilities and product yields for green building materials
NASA Astrophysics Data System (ADS)
Lamble, S. P.; Corsi, R. L.; Morrison, G. C.
2011-12-01
Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (
Impacts of Central American Fires on Ozone Air Quality along the US Gulf Coast
NASA Astrophysics Data System (ADS)
Wang, S. C.; Wang, Y.; Estes, M. J.; Lei, R.; Talbot, R. W.
2017-12-01
Biomass burning in Central America is associated with agriculture activities and occurs regularly during April and May every year. Satellite observations have documented frequent transport of wildfire smoke from Mexico and Central America to the southern US, causing haze and exceedance of fine particle matter. However, the impacts of those fires on surface ozone in the US are poorly understood. This study uses both observations and modeling to examine the effects of the springtime Central America fire emissions on surface ozone over the Gulf coastal regions over a long-term time period (2002-2015). Passive tracer simulation in the nested-grid version of the GEOS-Chem chemical transport model over North America is used to identify the days when Central American fire plumes reached the US Gulf Coast. During the identified fire-impact days, Central American fires are estimated to result in an average of 9 ppbv enhancement of regional background ozone over the Houston-Galveston-Brazoria (HGB) region. Satellite-observed distributions of AOD and CO are used to examine the transport pathways and effects of those fires on atmospheric composition. Finally, we integrate satellite observations, ground measurements, and modeling to quantify the impact of Central American fires on springtime ozone air quality along the US Gulf Coast in terms of both long-term (2002-2015) mean and extreme cases.
Sensitivity of Polar Stratospheric Ozone Loss to Uncertainties in Chemical Reaction Kinetics
NASA Technical Reports Server (NTRS)
Kawa, S. Randolph; Stolarksi, Richard S.; Douglass, Anne R.; Newman, Paul A.
2008-01-01
Several recent observational and laboratory studies of processes involved in polar stratospheric ozone loss have prompted a reexamination of aspects of our understanding for this key indicator of global change. To a large extent, our confidence in understanding and projecting changes in polar and global ozone is based on our ability to simulate these processes in numerical models of chemistry and transport. The fidelity of the models is assessed in comparison with a wide range of observations. These models depend on laboratory-measured kinetic reaction rates and photolysis cross sections to simulate molecular interactions. A typical stratospheric chemistry mechanism has on the order of 50- 100 species undergoing over a hundred intermolecular reactions and several tens of photolysis reactions. The rates of all of these reactions are subject to uncertainty, some substantial. Given the complexity of the models, however, it is difficult to quantify uncertainties in many aspects of system. In this study we use a simple box-model scenario for Antarctic ozone to estimate the uncertainty in loss attributable to known reaction kinetic uncertainties. Following the method of earlier work, rates and uncertainties from the latest laboratory evaluations are applied in random combinations. We determine the key reactions and rates contributing the largest potential errors and compare the results to observations to evaluate which combinations are consistent with atmospheric data. Implications for our theoretical and practical understanding of polar ozone loss will be assessed.
NASA Astrophysics Data System (ADS)
Stewart, D. R.; Stockwell, W. R.; Morris, V. R.; Fitzgerald, R. M.
2016-12-01
The major photochemical processes that produce ozone and aerosols are coupled together strongly in the polluted urban atmosphere. Aerosols are either directly emitted or formed through the same kind of chemistry that leads to the production of ozone. The aerosols produced through atmospheric chemistry are known as secondary aerosols and they may be composed of inorganic (nitrates, sulfates) or organic compounds. Wind blown dust and soot are two examples of primary aerosols. The component of secondary inorganic aerosols includes compounds such as ammonium nitrate, ammonium bisulfate and ammonium sulfate. Secondary organic aerosols are a very important component of PM with strong implications for health. The formation of secondary organic aerosol is linked with ozone photochemistry through the reactions of volatile organic compounds (VOC). The oxidation of VOC produces radicals that convert nitric oxide to nitrogen dioxide that photolyze to produce ozone. Larger VOC (those with more carbon atoms) undergo a number of oxidation cycles that add oxygen atoms to large organic molecules. The vapor pressure of many of these highly oxidized compounds is sufficiently low that they condense to produce secondary organic aerosols. The Community Multi-scale Air Quality model (CMAQ) and other chemical simulations have been made to quantify the relationship between varying emissions of VOC and NOx and the production of inorganic and secondary organic aerosols. The results from this analysis will be presented.
Oguntimehin, Ilemobayo; Eissa, Fawzy; Sakugawa, Hiroshi
2010-07-01
Ozone (O(3)) fumigated at 120 microg L(-1) for 12 hd(-1) was combined with 10 microM fluoranthene, and other treatments, including Mannitol solution to investigate the interaction of the two pollutants on tomato plant (Lycopersicon esculentum Mill). Using ten treatments including Mannitol solution and a control, exposure experiment was conducted for 34 d inside six growth chambers used for monitoring the resulted ecophysiological changes. Visible foliar injury, chlorophyll a fluorescence, leaf pigment contents, CO(2) uptake and water vapor exchange were monitored in tomato. Ozone or fluoranthene independently affected some ecophysiological traits of the tomato. In addition, simultaneous treatments with the duo had increased (additive) negative effects on the photosynthesis rate (A(max)), stomatal conductance (g(s)), chlorophyll pigment contents (Chl a, Chl b and Chl((a+b))) and visible foliar symptoms. Contrarily, alleviation of the negative effects of O(3) on the leaf chlorophyll a fluorescence variables by fluoranthene occurred. Mannitol solution, which functioned as a reactive oxygen species scavenger was able to mitigate some negative effects of the two pollutants on the tomato plants. Copyright (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Malley, C. S.; Heal, M. R.; Mills, G.; Braban, C. F.
2015-04-01
Analyses have been undertaken of the spatial and temporal trends and drivers of the distributions of ground-level O3 concentrations associated with potential impacts on human health and vegetation using measurements at the two UK European Monitoring and Evaluation Program (EMEP) supersites of Harwell and Auchencorth. These two sites provide representation of rural O3 over the wider geographic areas of south-east England and northern UK respectively. The O3 exposures associated with health and vegetation impacts were quantified respectively by the SOMO10 and SOMO35 metrics and by the flux-based PODY metrics for wheat, potato, beech and Scots pine. Statistical analyses of measured O3 and NOx concentrations were supplemented by analyses of meteorological data and NOx emissions along air-mass back trajectories. The findings highlight the differing responses of impact metrics to the decreasing contribution of regional O3 episodes in determining O3 concentrations at Harwell between 1990 and 2013, associated with European NOx emission reductions. An improvement in human health-relevant O3 exposure observed when calculated by SOMO35, which decreased significantly, was not observed when quantified by SOMO10. The decrease in SOMO35 is driven by decreases in regionally produced O3 which makes a larger contribution to SOMO35 than to SOMO10. For the O3 vegetation impacts at Harwell, no significant trend was observed for the PODY metrics of the four species, in contrast to the decreasing trend in vegetation-relevant O3 exposure perceived when calculated using the crop AOT40 metric. The decreases in regional O3 production have not decreased PODY as climatic and plant conditions reduced stomatal conductance and uptake of O3 during regional O3 production. Ozone concentrations at Auchencorth (2007-2013) were more influenced by hemispheric background concentrations than at Harwell. For health-related O3 exposures this resulted in lower SOMO35 but similar SOMO10 compared with Harwell; for vegetation PODY values, this resulted in greater impacts at Auchencorth for vegetation types with lower exceedance ("Y") thresholds and longer growing seasons (i.e. beech and Scots pine). Additionally, during periods influenced by regional O3 production, a greater prevalence of plant conditions which enhance O3 uptake (such as higher soil water potential) at Auchencorth compared to Harwell resulted in exacerbation of vegetation impacts at Auchencorth, despite being further from O3 precursor emission sources. These analyses indicate that quantifications of future improvement in health-relevant O3 exposure achievable from pan-European O3 mitigation strategies are highly dependent on the choice of O3 concentration cut-off threshold, and reduction in potential health impact associated with more modest O3 concentrations requires reductions in O3 precursors on a larger (hemispheric) spatial scale. Additionally, while further reduction in regional O3 is more likely to decrease O3 vegetation impacts within the spatial domain of Auchencorth compared to Harwell, larger reductions in vegetation impact could be achieved across the UK from reduction of hemispheric background O3 concentrations.
NASA Astrophysics Data System (ADS)
Malley, C. S.; Heal, M. R.; Mills, G.; Braban, C. F.
2015-01-01
Analyses have been undertaken of the trends and drivers of the distributions of ground-level O3 concentrations associated with potential impacts on human health and vegetation using measurements at the two UK EMEP supersites of Harwell and Auchencorth. These two sites provide representation of rural O3 over the wider geographic areas of south-east England and northern UK, respectively. The O3 exposures associated with health and vegetation impacts were quantified, respectively, by the SOMO10 and SOMO35 metrics, and by the flux-based PODY metrics for wheat, potato, beech and Scots pine. Statistical analyses of measured O3 and NOx concentrations was supplemented by analyses of meteorological data and NOx emissions along air-mass back trajectories. The findings highlight the differing responses of impact metrics to the decreasing contribution of regional O3 episodes in determining O3 concentrations at Harwell between 1990 and 2013, associated with European NOx emission reductions. An improvement in human health-relevant O3 exposure observed when calculated by SOMO35, which decreased significantly, was not observed when quantified by SOMO10. The decrease in SOMO35 is driven by decreases in regionally-produced O3 which makes a larger contribution to SOMO35 than to SOMO10. For the O3 vegetation impacts at Harwell, no significant trend was observed for the PODY metrics of the four species, in contrast to the decreasing trend in vegetation-relevant O3 exposure perceived when calculated using the crop AOT40 metric. The decreases in regional O3 production have not decreased PODY as climatic and plant conditions reduced stomatal conductance and uptake of O3 during regional O3 production. Ozone concentrations at Auchencorth (2007-2013) were more influenced by hemispheric background concentrations than at Harwell. For health-related O3 exposures this resulted in lower SOMO35 but similar SOMO10 compared with Harwell; for vegetation PODY values, this resulted in greater impacts at Auchencorth for vegetation types with lower exceedance ("Y") thresholds and longer growing seasons (i.e. beech and Scots pine). Additionally, during periods influenced by regional O3 production, a greater prevalence of plant conditions which enhance O3 uptake (such as higher soil water potential) at Auchencorth compared to Harwell resulted in exacerbation of vegetation impacts at Auchencorth, despite being further from O3 precursor emissions sources. These analyses indicate that quantifications of future improvement in health-relevant O3 exposure achievable from pan-European O3 mitigation strategies is highly dependent on the choice of O3 concentration cut-off threshold, and reduction in potential health impact associated with more modest O3 concentrations requires reductions in O3 precursors on a larger (hemispheric) spatial scale. Additionally, while further reduction in regional O3 is more likely to decrease O3 vegetation impacts within the spatial domains of Auchencorth compared to Harwell, larger reductions in vegetation impact could be achieved across the UK from reduction of hemispheric background O3 concentrations.
NASA Astrophysics Data System (ADS)
Lin, M.; Fiore, A. M.; Horowitz, L. W.; Naik, V.; Oltmans, S. J.; Levy, H.; Cooper, O. R.; Johnson, B. J.
2011-12-01
Understanding the drivers of inter-annual variability and long-term changes of tropospheric ozone is crucial for designing appropriate control policies. Advancing this knowledge will also enable process-oriented assessments of chemistry-climate models, which are needed to build confidence in their utility for projecting tropospheric ozone under future climate scenarios. We examine here the response of North American background ozone over the past 30 years (1980-2010) to changes in atmospheric circulation and chemistry, both in the stratosphere and in the troposphere, through an integrated analysis of observational records from satellite, ozonesonde and ground-based networks with the GFDL AM3 global chemistry-climate model (nudged to reanalysis winds to allow for exact space-time comparisons with the observational datasets). Comparing the model simulation with ~30 years of ozone measurements at Mauna Loa ground station (~3397 m a.s.l.) and Hilo sonde (550-450 hPa) in Hawaii, we find that mid-tropospheric ozone in the eastern Pacific extratropics is enhanced by ~5-10 ppbv (~10-20% deviations from the climatological mean) during strong El Niño events (i.e. 1982-1983, 1997-1998, 2009-2010), presumably reflecting stronger transport from the stratosphere and Asia due to the eastward extension of the Pacific storm tracks and amplified subtropical jet. The La Niña condition typically manifests in the opposite sign, with ozone decreasing north of Hawaii. Over the western U.S., however, both cyclonic and anticyclonic circulation following strong El Niño and La Niña winters, respectively, may enhance deep stratosphere-to-troposphere transport in spring. Both ozonesonde and model results sampled at Trinidad Head, California, indicate ~25% positive deviations in UT/LS ozone during the El Niño winters of 1997-1998 and 2009-2010. We find that this ENSO-related UT/LS ozone variability is also captured in satellite-derived total column ozone from TOMS and AIRS over the Northwest U.S. in May. In contrast, enhanced lower tropospheric ozone over the western U.S. during strong La Niña years (e.g. 1999) mostly reflect changes in atmospheric dynamics rather than lower stratospheric ozone. The model indicates a 0.2 ppb/yr increase in mid-tropospheric ozone over the past 25 years. We are implementing a stratospheric ozone tracer in the model to quantify the springtime stratospheric enhancement to the high tail of daily maximum 8-hour surface ozone frequency during both phases of ENSO. We expect that the associated variability should provide insights regarding potential responses to climate shifts as well as inform air quality planning and control strategies to attain the national standard.
Zhuang, Minghao; Lam, Shu Kee; Li, Yingchun; Chen, Shuanglin
2017-01-15
The increase in tropospheric ozone (O 3 ) affects plant physiology and ecosystem processes, and consequently the cycle of nutrients. While mineral nutrients are critical for plant growth, the effect of elevated tropospheric O 3 concentration on the uptake and allocation of mineral nutrients by plants is not well understood. Using open top chambers (OTCs), we investigated the effect of elevated O 3 on calcium (Ca), magnesium (Mg) and iron (Fe) in mature bamboo species Phyllostachys edulis and Oligostachyum lubricum. Our results showed that elevated O 3 decreased the leaf biomass of P. edulis and O. lubricum by 35.1% and 26.7%, respectively, but had no significant effect on the biomass of branches, stem or root. For P. edulis, elevated O 3 increased the nutrient (Ca, Mg and Fe) concentration and allocation in leaf but reduced the concentration in other organs. In contrast, elevated O 3 increased the nutrient concentration and allocation in the branch of O. lubricum but decreased that of other organs. We also found that that P. edulis and O. lubricum responded differently to elevated O 3 in terms of nutrient (Ca, Mg and Fe) uptake and allocation. This information is critical for nutrient management and adaptation strategies for sustainable growth of P. edulis and O. lubricum under global climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.
2018-03-01
This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.
NASA Astrophysics Data System (ADS)
Zagury, Frederic
2012-10-01
The color of the sky in day-time and at twilight is studied by means of spectroscopy, which provides an unambiguous way to understand and quantify why a sky is blue, pink, or red. The colors a daylight sky can take primarily owe to Rayleigh extinction and ozone absorption. Spectra of the sky illuminated by the sun can generally be represented by a generic analytical expression which involves the Rayleigh function R ≈ 1/λ^4 e(?a/λ^4), ozone absorption, and, to a lesser extend, aerosol extinction. This study is based on a representative sample of spectra selected from a few hundred observations taken in different places, times, and dates, with a portable fiber spectrometer.
Quantifying Transport Between the Tropical and Mid-Latitude Lower Stratosphere
Volk; Elkins; Fahey; Salawitch; Dutton; Gilligan; Proffitt; Loewenstein; Podolske; Minschwaner; Margitan; Chan
1996-06-21
Airborne in situ observations of molecules with a wide range of lifetimes (methane, nitrous oxide, reactive nitrogen, ozone, chlorinated halocarbons, and halon-1211), used in a tropical tracer model, show that mid-latitude air is entrained into the tropical lower stratosphere within about 13.5 months; transport is faster in the reverse direction. Because exchange with the tropics is slower than global photochemical models generally assume, ozone at mid-latitudes appears to be more sensitive to elevated levels of industrial chlorine than is currently predicted. Nevertheless, about 45 percent of air in the tropical ascent region at 21 kilometers is of mid-latitude origin, implying that emissions from supersonic aircraft could reach the middle stratosphere.
Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A
2013-10-15
Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.
Influence of low ozone episodes on erythemal UV-B radiation in Austria
NASA Astrophysics Data System (ADS)
Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.
2017-06-01
This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO < -1) led to positive UVI anomalies. Considering only days with strongly positive UVI anomaly (∆UVI > 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.
Dalsøren, Stig B; Eide, Magnus S; Myhre, Gunnar; Endresen, Oyvind; Isaksen, Ivar S A; Fuglestvedt, Jan S
2010-04-01
The increase in civil world fleet ship emissions during the period 2000-2007 and the effects on key tropospheric oxidants are quantified using a global Chemical Transport Model (CTM). We estimate a substantial increase of 33% in global ship emissions over this period. The impact of ship emissions on tropospheric oxidants is mainly caused by the relatively large fraction of NOx in ship exhaust. Typical increases in yearly average surface ozone concentrations in the most impacted areas are 0.5-2.5 ppbv. The global annual mean radiative forcing due to ozone increases in the troposphere is 10 mWm(-2) over the period 2000-2007. We find global average tropospheric OH increase of 1.03% over the same period. As a result of this the global average tropospheric methane concentration is reduced by approximately 2.2% over a period corresponding to the turnover time. The resulting methane radiative forcing is -14 mWm(-2) with an additional contribution of -6 mWm(-2) from methane induced reduction in ozone. The net forcing of the ozone and methane changes due to ship emissions changes between 2000 and 2007 is -10 mWm(-2). This is significant compared to the net forcing of these components in 2000. Our findings support earlier observational studies indicating that ship traffic may be a major contributor to recent enhancement of background ozone at some coastal stations. Furthermore, by reducing global mean tropospheric methane by 40 ppbv over its turnover time it is likely to contribute to the recent observed leveling off in global mean methane concentration.
Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Jacob, Daniel J.; Chan, Lo Yin; Oltmans, Samuel J.; Bey, Isabelle; Yantosca, Robert M.; Harris, Joyce M.; Duncan, Bryan N.; Martin, Randall V.
2002-11-01
The sources contributing to tropospheric ozone over the Asian Pacific Rim in different seasons are quantified by analysis of Hong Kong and Japanese ozonesonde observations with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations. Particular focus is placed on the extensive observations available from Hong Kong in 1996. In the middle-upper troposphere (MT-UT), maximum Asian pollution influence along the Pacific Rim occurs in summer, reflecting rapid convective transport of surface pollution. In the lower troposphere (LT) the season of maximum Asian pollution influence shifts to summer at midlatitudes from fall at low latitudes due to monsoonal influence. The UT ozone minimum and high variability observed over Hong Kong in winter reflects frequent tropical intrusions alternating with stratospheric intrusions. Asian biomass burning makes a major contribution to ozone at <32°N in spring. Maximum European pollution influence (<5 ppbv) occurs in spring in the LT. North American pollution influence exceeds European influence in the UT-MT, reflecting the uplift from convection and the warm conveyor belts over the eastern seaboard of North America. African outflow makes a major contribution to ozone in the low-latitude MT-UT over the Pacific Rim during November-April. Lightning influence over the Pacific Rim is minimum in summer due to westward UT transport at low latitudes associated with the Tibetan anticyclone. The Asian outflow flux of ozone to the Pacific is maximum in spring and fall and includes a major contribution from Asian anthropogenic sources year-round.
Sources of Tropospheric Ozone along the Asian Pacific Rim: An Analysis of Ozonesonde Observations
NASA Technical Reports Server (NTRS)
Liu, Hong-Yu; Jacob, Daniel J.; Chan, Lo Yin; Oltmans, Samuel J.; Bey, Isabelle; Yantosca, Robert M.; Harris, Joyce M.; Duncan, Bryan N.; Martin, Randall V.
2002-01-01
The sources contributing to tropospheric ozone over the Asian Pacific Rim in different seasons are quantified by analysis of Hong Kong and Japanese ozonesonde observations with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations. Particular focus is placed on the extensive observations available from Hong Kong in 1996. In the middle-upper troposphere (MT- UT), maximum Asian pollution influence along the Pacific Rim occurs in summer, reflecting rapid convective transport of surface pollution. In the lower troposphere (LT) the season of maximum Asian pollution influence shifts to summer at midlatitudes from fall at low latitudes due to monsoonal influence. The UT ozone minimum and high variability observed over Hong Kong in winter reflects frequent tropical intrusions alternating with stratospheric intrusions. Asian biomass burning makes a major contribution to ozone at less than 32 deg.N in spring. Maximum European pollution influence (less than 5 ppbv) occurs in spring in the LT. North American pollution influence exceeds European influence in the UT-MT, reflecting the uplift from convection and the warm conveyor belts over the eastern seaboard of North America. African outflow makes a major contribution to ozone in the low-latitude MT-UT over the Pacific Rim during November- April. Lightning influence over the Pacific Rim is minimum in summer due to westward UT transport at low latitudes associated with the Tibetan anticyclone. The Asian outflow flux of ozone to the Pacific is maximum in spring and fall and includes a major contribution from Asian anthropogenic sources year-round.
NASA Astrophysics Data System (ADS)
Ahmadov, R.; McKeen, S. A.; Trainer, M.; Banta, R. M.; Brown, S. S.; Edwards, P. M.; Frost, G. J.; Gilman, J.; Helmig, D.; Johnson, B.; Karion, A.; Koss, A.; Lerner, B. M.; Oltmans, S. J.; Roberts, J. M.; Schnell, R. C.; Veres, P. R.; Warneke, C.; Williams, E. J.; Wild, R. J.; Yuan, B.; Zamora, R. J.; Petron, G.; De Gouw, J. A.; Peischl, J.
2014-12-01
The huge increase in production of oil and natural gas has been associated with high wintertime ozone events over some parts of the western US. The Uinta Basin, UT, where oil and natural gas production is abundant experienced high ozone concentrations in winters of recent years, when cold stagnant weather conditions were prevalent. It has been very challenging for conventional air quality models to accurately simulate such wintertime ozone pollution cases. Here, a regional air quality model study was successfully conducted for the Uinta Basin by using the WRF-Chem model. For this purpose a new emission dataset for the region's oil/gas sector was built based on atmospheric in-situ measurements made during 2012 and 2013 field campaigns in the Uinta Basin. The WRF-Chem model demonstrates that the major factors driving high ozone in the Uinta Basin in winter are shallow boundary layers with light winds, high emissions of volatile organic compounds (VOC) compared to nitrogen oxides emissions from the oil and natural gas industry, enhancement of photolysis rates and reduction of O3 dry deposition due to snow cover. We present multiple sensitivity simulations to quantify the contribution of various factors driving high ozone over the Uinta Basin. The emission perturbation simulations show that the photochemical conditions in the Basin during winter of 2013 were VOC sensitive, which suggests that targeting VOC emissions would be most beneficial for regulatory purposes. Shortcomings of the emissions within the most recent US EPA (NEI-2011, version 1) inventory are also discussed.
Role of Ascorbate in Detoxifying Ozone in the Apoplast of Spinach (Spinacia oleracea L.) Leaves.
Luwe, MWF.; Takahama, U.; Heber, U.
1993-01-01
Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h. PMID:12231749
Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile.
Préndez, Margarita; Carvajal, Virginia; Corada, Karina; Morales, Johanna; Alarcón, Francis; Peralta, Hugo
2013-12-01
Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neufeld, Howard S; Chappelka, Arthur H; Somers, Greg L; Burkey, Kent O; Davison, Alan W; Finkelstein, Peter L
2006-03-01
The ability of the SPAD-502 chlorophyll meter to quantify chlorophyll amounts in ozone-affected leaves of cutleaf coneflower (Rudbeckia laciniata var. digitata) was assessed in this study. When relatively uninjured leaves were measured (percent leaf area affected by stipple less than 6%), SPAD meter readings were linearly related to total chlorophyll with an adjusted R (2) of 0.84. However, when leaves with foliar injury (characterized as a purple to brownish stipple on the upper leaf surface affecting more than 6% of the leaf area) were added, likelihood ratio tests showed that it was no longer possible to use the same equation to obtain chlorophyll estimations for both classes of leaves. Either an equation with a common slope or a common intercept was necessary. We suspect several factors are involved in altering the calibration of the SPAD meter for measuring chlorophyll amounts in visibly ozone-injured leaves, with the most likely being changes in either light absorption or scattering resulting from tissue necrosis.
NASA Astrophysics Data System (ADS)
Wang, W.; Ganzeveld, L.; Helmig, D.; Hueber, J.; Rossabi, S.; Vogel, C. S.
2017-12-01
During the month-long PROPHET-AMOS campaign in July, 2016 we investigated NOx and ozone dynamics at the University of Michigan AmeriFlux Tower (US-UMB tower) and the PROPHET Tower research sites at the University of Michigan Biological Station (UMBS), using a multi-pronged experimental approach. The two sites are within 100 m of each other, located in a mixed forest on the northern lower peninsula of Michigan, USA. In a previous study, it was found that invoking a leaf-level compensation point for NOx uptake and emission provided better agreement between observed and model-simulated in- and above-canopy NOx concentrations in this forest. To further examine the role of foliar exchange relative to other in-canopy sources and sinks of NOx, we conducted detailed vertical gradient measurements of NOx and ozone at ten heights from the forest floor to above the canopy, along with micrometeorological conditions at the AmeriFlux Tower. In parallel, to investigate the leaf-level exchanges of NOx and ozone, we carried out branch enclosure experiments near the PROPHET tower on the dominant tree species of this forest. We combine these observations with micrometeorological data from the AmeriFlux Tower to constrain simulations with the Multi-Layer Canopy Chemical Exchange Model (MLC-CHEM) for investigation of sources, sinks, and dynamics that determine NOx concentrations, vertical gradients, and fluxes in this forest. We will compare our results with previous studies and other observations during the PHOPHET-AMOS campaign.
The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.
2008-01-01
Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated to last for up to five months past the largest events. However, the computed total column ozone and stratospheric temperature changes connected with the solar events were not found to be statistically significant. Thus, solar proton events do not likely contribute significantly to measured total column ozone fluctuations and stratospheric temperature changes.
Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe
NASA Astrophysics Data System (ADS)
Coman, A.; Foret, G.; Beekmann, M.; Eremenko, M.; Dufour, G.; Gaubert, B.; Ung, A.; Schmechtig, C.; Flaud, J.-M.; Bergametti, G.
2011-09-01
Partial lower tropospheric ozone columns provided by the IASI (Infrared Atmospheric Sounding Interferometer) instrument have been assimilated into a chemistry-transport model at continental scale (CHIMERE) using an Ensemble Kalman Filter (EnKF). Analyses are made for the month of July 2007 over the European domain. Launched in 2006, aboard the MetOp-A satellite, IASI shows high sensitivity for ozone in the free troposphere and low sensitivity at the ground; therefore it is important to evaluate if assimilation of these observations can improve free tropospheric ozone, and possibly surface ozone. The analyses are validated against independent ozone observations from sondes, MOZAIC1 aircraft and ground based stations (AIRBASE - the European Air quality dataBase) and compared with respect to the free run of CHIMERE. These comparisons show a decrease in error of 6 parts-per-billion (ppb) in the free troposphere over the Frankfurt area, and also a reduction of the root mean square error (respectively bias) at the surface of 19% (33%) for more than 90% of existing ground stations. This provides evidence of the potential of data assimilation of tropospheric IASI columns to better describe the tropospheric ozone distribution, including surface ozone, despite the lower sensitivity. The changes in concentration resulting from the observational constraints were quantified and several geophysical explanations for the findings of this study were drawn. The corrections were most pronounced over Italy and the Mediterranean region, on the average we noted an average reduction of 8-9 ppb in the free troposphere with respect to the free run, and still a reduction of 5.5 ppb at ground, likely due to a longer residence time of air masses in this part associated to the general circulation pattern (i.e. dominant western circulation) and to persistent anticyclonic conditions over the Mediterranean basin. This is an important geophysical result, since the ozone burden is large over this area, with impact on the radiative balance and air quality. 1 Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft ( http://mozaic.aero.obs-mip.fr/web/)
Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe
NASA Astrophysics Data System (ADS)
Coman, A.; Foret, G.; Beekmann, M.; Eremenko, M.; Dufour, G.; Gaubert, B.; Ung, A.; Schmechtig, C.; Flaud, J.-M.; Bergametti, G.
2012-03-01
Partial lower tropospheric ozone columns provided by the IASI (Infrared Atmospheric Sounding Interferometer) instrument have been assimilated into a chemistry-transport model at continental scale (CHIMERE) using an Ensemble Square Root Kalman Filter (EnSRF). Analyses are made for the month of July 2007 over the European domain. Launched in 2006, aboard the MetOp-A satellite, IASI shows high sensitivity for ozone in the free troposphere and low sensitivity at the ground; therefore it is important to evaluate if assimilation of these observations can improve free tropospheric ozone, and possibly surface ozone. The analyses are validated against independent ozone observations from sondes, MOZAIC1 aircraft and ground based stations (AIRBASE - the European Air quality dataBase) and compared with respect to the free run of CHIMERE. These comparisons show a decrease in error of 6 parts-per-billion (ppb) in the free troposphere over the Frankfurt area, and also a reduction of the root mean square error (respectively bias) at the surface of 19% (33%) for more than 90% of existing ground stations. This provides evidence of the potential of data assimilation of tropospheric IASI columns to better describe the tropospheric ozone distribution, including surface ozone, despite the lower sensitivity. The changes in concentration resulting from the observational constraints were quantified and several geophysical explanations for the findings of this study were drawn. The corrections were most pronounced over Italy and the Mediterranean region, we noted an average reduction of 8-9 ppb in the free troposphere with respect to the free run, and still a reduction of 5.5 ppb at ground, likely due to a longer residence time of air masses in this part associated to the general circulation pattern (i.e. dominant western circulation) and to persistent anticyclonic conditions over the Mediterranean basin. This is an important geophysical result, since the ozone burden is large over this area, with impact on the radiative balance and air quality. 1 Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft (http://mozaic.aero.obs-mip.fr/web/).
Wesolowski, Amy; O’Meara, Wendy Prudhomme; Tatem, Andrew J.; Ndege, Samson; Eagle, Nathan
2015-01-01
Background: Poor physical access to health facilities has been identified as an important contributor to reduced uptake of preventive health services and is likely to be most critical in low-income settings. However, the relation among physical access, travel behavior, and the uptake of healthcare is difficult to quantify. Methods: Using anonymized mobile phone data from 2008 to 2009, we analyze individual and spatially aggregated travel patterns of 14,816,521 subscribers across Kenya and compare these measures to (1) estimated travel times to health facilities and (2) data on the uptake of 2 preventive healthcare interventions in an area of western Kenya: childhood immunizations and antenatal care. Results: We document that long travel times to health facilities are strongly correlated with increased mobility in geographically isolated areas. Furthermore, we found that in areas with equal physical access to healthcare, mobile phone-derived measures of mobility predict which regions are lacking preventive care. Conclusions: Routinely collected mobile phone data provide a simple and low-cost approach to mapping the uptake of preventive healthcare in low-income settings. PMID:25643101
Wesolowski, Amy; O'Meara, Wendy Prudhomme; Tatem, Andrew J; Ndege, Samson; Eagle, Nathan; Buckee, Caroline O
2015-03-01
Poor physical access to health facilities has been identified as an important contributor to reduced uptake of preventive health services and is likely to be most critical in low-income settings. However, the relation among physical access, travel behavior, and the uptake of healthcare is difficult to quantify. Using anonymized mobile phone data from 2008 to 2009, we analyze individual and spatially aggregated travel patterns of 14,816,521 subscribers across Kenya and compare these measures to (1) estimated travel times to health facilities and (2) data on the uptake of 2 preventive healthcare interventions in an area of western Kenya: childhood immunizations and antenatal care. We document that long travel times to health facilities are strongly correlated with increased mobility in geographically isolated areas. Furthermore, we found that in areas with equal physical access to healthcare, mobile phone-derived measures of mobility predict which regions are lacking preventive care. Routinely collected mobile phone data provide a simple and low-cost approach to mapping the uptake of preventive healthcare in low-income settings.
Shim, Ha Eun; Lee, Jae Young; Lee, Chang Heon; Mushtaq, Sajid; Song, Ha Yeon; Song, Lee; Choi, Seong-Jin; Lee, Kyuhong; Jeon, Jongho
2018-05-25
To assess the risk posed by a toxic chemical to human health, it is essential to quantify its uptake in a living subject. This study aims to investigate the biological distribution of inhaled polyhexamethylene guanidine (PHMG) aerosol particle, which is known to cause severe pulmonary damage. By labeling with indium-111 ( 111 In), we quantified the uptake of PHMG for up to 7 days after inhalation exposure in rats. The data demonstrate that PHMG is only slowly cleared, with approximately 74% of inhaled particles persisting in the lungs after 168 h. Approximately 5.3% of inhaled particles were also translocated to the liver after 168 h, although the level of redistribution to other tissues, including the kidneys and spleen, was minimal. These observations suggest that large uptake and slow clearance may underlie the fatal inhalation toxicity of PHMG in humans. Copyright © 2018 Elsevier Ltd. All rights reserved.
High-Throughput Particle Uptake Analysis by Imaging Flow Cytometry
Smirnov, Asya; Solga, Michael D.; Lannigan, Joanne; Criss, Alison K.
2017-01-01
Quantifying the efficiency of particle uptake by host cells is important in fields including infectious diseases, autoimmunity, cancer, developmental biology, and drug delivery. Here we present a protocol for high-throughput analysis of particle uptake using imaging flow cytometry, using the bacterium Neisseria gonorrhoeae attached and internalized to neutrophils as an example. Cells are exposed to fluorescently labeled bacteria, fixed, and stained with a bacteria-specific antibody of a different fluorophore. Thus in the absence of a permeabilizing agent, extracellular bacteria are double-labeled with two fluorophores while intracellular bacteria remain single-labeled. A spot count algorithm is used to determine the number of single- and double-labeled bacteria in individual cells, to calculate the percent of cells associated with bacteria, percent of cells with internalized bacteria, and percent of cell-associated bacteria that are internalized. These analyses quantify bacterial association and internalization across thousands of cells and can be applied to diverse experimental systems. PMID:28369762
Ozone and haze pollution weakens net primary productivity in China
NASA Astrophysics Data System (ADS)
Yue, Xu; Unger, Nadine; Harper, Kandice; Xia, Xiangao; Liao, Hong; Zhu, Tong; Xiao, Jingfeng; Feng, Zhaozhong; Li, Jing
2017-05-01
Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone (O3) damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. China is currently the world's largest emitter of both carbon dioxide and short-lived air pollutants. The land ecosystems of China are estimated to provide a carbon sink, but it remains unclear whether air pollution acts to inhibit or promote carbon uptake. Here, we employ Earth system modeling and multiple measurement datasets to assess the separate and combined effects of anthropogenic O3 and aerosol pollution on net primary productivity (NPP) in China. In the present day, O3 reduces annual NPP by 0.6 Pg C (14 %) with a range from 0.4 Pg C (low O3 sensitivity) to 0.8 Pg C (high O3 sensitivity). In contrast, aerosol direct effects increase NPP by 0.2 Pg C (5 %) through the combination of diffuse radiation fertilization, reduced canopy temperatures, and reduced evaporation leading to higher soil moisture. Consequently, the net effects of O3 and aerosols decrease NPP by 0.4 Pg C (9 %) with a range from 0.2 Pg C (low O3 sensitivity) to 0.6 Pg C (high O3 sensitivity). However, precipitation inhibition from combined aerosol direct and indirect effects reduces annual NPP by 0.2 Pg C (4 %), leading to a net air pollution suppression of 0.8 Pg C (16 %) with a range from 0.6 Pg C (low O3 sensitivity) to 1.0 Pg C (high O3 sensitivity). Our results reveal strong dampening effects of air pollution on the land carbon uptake in China today. Following the current legislation emission scenario, this suppression will be further increased by the year 2030, mainly due to a continuing increase in surface O3. However, the maximum technically feasible reduction scenario could drastically relieve the current level of NPP damage by 70 % in 2030, offering protection of this critical ecosystem service and the mitigation of long-term global warming.
Structure, properties, and surfactant adsorption behavior of fly ash carbon
NASA Astrophysics Data System (ADS)
Kulaots, Indrek
The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount and contact time, surfactant uptake capacity decreases by a factor of two or more following reaction of only 0--1g O3/kg-ash, bringing many ashes into compliance with AEA uptake requirements.
Ozone impacts of gas-aerosol uptake in global chemistry transport models
NASA Astrophysics Data System (ADS)
Stadtler, Scarlet; Simpson, David; Schröder, Sabine; Taraborrelli, Domenico; Bott, Andreas; Schultz, Martin
2018-03-01
The impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are incorporated. Our results are loosely consistent with results from earlier studies, although the magnitude of changes induced by N2O5 reaction is at the low end of estimates, which seems to fit a trend, whereby the more recent the study the lower the impacts of these reactions.
Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany
2012-09-01
The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of climate change on ozone. The findings of this work suggest that in some geographic regions, climate change has the potential to negate decreases in surface ozone concentrations that would otherwise be achieved through ozone mitigation strategies. In regions of high biogenic VOC emissions relative to anthropogenic NO(x) emissions, the impact of climate change is somewhat reduced, while the opposite is true in regions of high anthropogenic NO(x) emissions relative to biogenic VOC emissions. Further, different future climate realizations are shown to impact ozone in different ways.
High School Students' Perceptions of How Major Global Environmental Effects Might Cause Skin Cancer.
ERIC Educational Resources Information Center
Boyes, Edward; Stanisstreet, Martin
1998-01-01
Quantifies beliefs of high school students about links between skin cancer and global environmental effects. Some students confused the action of heat rays with that of ultraviolet rays and also thought that raised temperatures are culpable. Only one in 10 held the scientifically correct model: that ozone depletion via higher penetration of…
Carrie J. Andrew; Linda T.A. van Diepen; R. Michael Miller; Erik A. Lilleskov
2014-01-01
The relationships of mycorrhizal fungal respiration and productivity to climate and atmospheric chemistry remain under characterized. We quantified mycorrhizal sporocarp and hyphal respiration, as well as growing season net hyphal production, under ambient and elevated carbon dioxide (CO2) and ozone (O3) in relation to...
NASA Astrophysics Data System (ADS)
Lee, Hana; Kim, Jhoon; Kim, Woogyung; Lee, Yun Gon; Cho, Hi Ku
2015-04-01
In recent years, there have been substantial attempts to model the radiative transfer for climatological and biological purposes. However, the incorporation of clouds, aerosols and ozone into the modeling process is one of the difficult tasks due to their variable transmission in both temporal and space domains. In this study we quantify the atmospheric transmissions by clouds, aerosol optical depth (AOD at 320 nm) and total ozone (Ozone) together with all skies in three solar radiation components of the global solar (GS 305-2800nm), total ultraviolet (TUV 290-363nm) and the erythemal weighted ultraviolet (EUV 290-325nm) irradiances with statistical methods using the data at Seoul. The purpose of this study also is to clarify the different characteristics between cloud, AOD and Ozone in the wavelength-dependent solar radiation components. The ozone, EUV and TUV used in this study (March 2003 - February 2014) have been measured with Dobson Spectrophotometer (Beck #124) and Brewer Spectrophotometer (SCI-TEC#148) at Yonsei University, respectively. GS, Cloud Cover (CC) are available from the Korean Meteorological Agency. The measured total (effect of cloud, aerosol, and ozone) transmissions on annual average showed 74%, 76% and 80% of GS, TUV and EUV irradiance, respectively. For the comparison of the measured values with modeled, we have also constructed a multiple linear regression model for the total transmission. The average ratio of measured to modeled total transmission were 0.94, 0.96 and 0.96 with higher measured than modeled value in the three components, respectively, The individual transmission by clouds under the constant AOD and Ozone atmosphere on average showed 68%, 71% and 76% and further the overcast clouds reduced the transmissions to the 45%, 54% and 59% of the clear sky irradiance in the GS, TUV and EUV, respectively. The annual transmissions by AOD showed on average 67%, 70% and 74% and further the high loadings 2.5-4.0 AOD reduced the transmission to 50%, 52% and 55% of clear sky irradiance under the contact cloud and ozone atmosphere in the GS, TUV and EUV, respectively. And annual average EUV transmission by Ozone was 75 % of the clear-sky value under the constant CC and AOD. In future study, we are compare OMI data with ground-based instruments in order to use measured data for scientific studies.
Liu, Chen; Li, Penghui; Tang, Xiangyu; Korshin, Gregory V
2016-10-01
The degradation of effluent organic matter (EfOM) in a municipal wastewater treated by ozonation was characterized using the methods of high-performance size-exclusion chromatography (HP-SEC) and excitation/emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC). The removal of 40 diverse trace-level contaminants of emerging concern (CEC) present in the wastewater was determined as well. Ozonation caused a rapid decrease of the absorbance and fluorescence of the wastewater, which was associated primarily with the oxidation of high and low apparent molecular weight (AMW) EfOM fractions. PARAFAC analysis also showed that components C1 and C2 decreased prominently in these conditions. The EfOM fraction of intermediate molecular weight ascribable to a terrestrial humic-like component (C3) tended to be less reactive toward ozone. Relative changes of EEM fluorescence were quantified using F max values of PARAFAC-identified components (∆F/F 0 max ). Unambiguous relationships between ∆F/F 0 max values and the extent of the degradation of the examined CECs (∆C/C 0 ) were established. This allowed correlating main parameters of the ∆C/C 0 vs. ∆F/F 0 max relationships with the rates of oxidation of these CECs. The results demonstrate the potential of online measurements of EEM fluorescence for quantitating effects of ozonation on EfOM and micropollutants in wastewater effluents.
Gas uptake and chemical aging of semisolid organic aerosol particles
Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich
2011-01-01
Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350
NASA Astrophysics Data System (ADS)
Waring, Michael S.
2016-11-01
Terpene ozonolysis reactions can be a strong source of secondary organic aerosol (SOA) indoors. SOA formation can be parameterized and predicted using the aerosol mass fraction (AMF), also known as the SOA yield, which quantifies the mass ratio of generated SOA to oxidized terpene. Limonene is a monoterpene that is at sufficient concentrations such that it reacts meaningfully with ozone indoors. It has two unsaturated bonds, and the magnitude of the limonene ozonolysis AMF varies by a factor of ∼4 depending on whether one or both of its unsaturated bonds are ozonated, which depends on whether ozone is in excess compared to limonene as well as the available time for reactions indoors. Hence, this study developed a framework to predict the limonene AMF as a function of the ozone [O3] and limonene [lim] concentrations and the air exchange rate (AER, h-1), which is the inverse of the residence time. Empirical AMF data were used to calculate a mixing coefficient, β, that would yield a 'resultant AMF' as the combination of the AMFs due to ozonolysis of one or both of limonene's unsaturated bonds, within the volatility basis set (VBS) organic aerosol framework. Then, β was regressed against predictors of log10([O3]/[lim]) and AER (R2 = 0.74). The β increased as the log10([O3]/[lim]) increased and as AER decreased, having the physical meaning of driving the resultant AMF to the upper AMF condition when both unsaturated bonds of limonene are ozonated. Modeling demonstrates that using the correct resultant AMF to simulate SOA formation owing to limonene ozonolysis is crucial for accurate indoor prediction.
Long-term uvb forecasting on the basis of spectral and broad-band measurements
NASA Astrophysics Data System (ADS)
Bérces, A.; Gáspár, S.; Kovács, G.; Rontó, G.
2003-04-01
The stratospheric ozone concentration has been investigated by several methods, e.g. determinations of the ozone layer using a network of ground based spectrophotometers, of the Dobson and the Brewer types. These data indicate significant decrease of the ozone layer superimposed by much larger seasonal changes at specific geographical locations. The stratospheric ozone plays an important role in the attenuation of the short-wavelength components of the solar spectrum, thus the consequence of the decreased ozone layer is an increased UVB level. Various pyranometers measuring the biological effect of environmental UV radiation have been constructed with spectral sensitivities close to the erythema action spectrum defined by the CIE. Using these erythemally weighted broad-band instruments to detect the tendency of UVB radiation controversial data have been found. To quantify the biological risk due to environmental UV radiation it is reasonable to weight the solar spectrum by the spectral sensitivity of the DNA damage taking into account the high DNA-sensitivity at the short wavelength range of the solar spectrum. Various biological dosimeters have been developed e.g. polycrystalline uracil thin layer. These are usually simple biological systems or components of them. Their UV sensitivity is a consequence of the DNA-damage. Biological dosimeters applied for long-term monitoring are promising tools for the assessment of the biological hazard. Simultaneous application of uracil dosimeters and Robertson-Berger meters can be useful to predict the increasing tendency of the biological UV exposure more precisely. The ratio of the biologically effective dose obtained by the uracil dosimeter (a predominately UVB effect) and by the Robertson-Berger meter (insensitive to changes below 300 nm) is a sensitive method for establishing changes in UVB irradiance due to changes in ozone layer.
Leitao, Louis; Maoret, Jean-José; Biolley, Jean-Philippe
2007-01-01
We quantified the ozone impact on levels of Zea mays L. cv. Chambord mRNAs encoding C4-phosphoenolpyruvate carboxylase (C4-PEPc), ribulose-l,5-bisphosphate carboxylase/oxygenase small and large subunits (Rubisco-SSU and Rubisco-LSU, respectively) and Rubisco activase (RCA) using real-time RT-PCR. Foliar pigment content, PEPc and Rubisco protein amounts were simultaneously determined. Two experiments were performed to study the ozone response of the 5th and the 10th leaf. For each experiment, three ozone concentrations were tested in open-top chambers: non-filtered air (NF, control) and non-filtered air containing 40 (+40) and 80 nL L-1 (+80) ozone. Regarding the 5th leaf, +40 atmosphere induced a loss in pigmentation, PEPc and Rubisco activase mRNAs. However, it was unable to notably depress carboxylase protein amounts and mRNAs encoding Rubisco. Except for Rubisco mRNAs, all other measured parameters from 5th leaf were depressed by +80 atmosphere. Regarding the 10th leaf, +40 atmosphere increased photosynthetic pigments and transcripts encoding Rubisco and Rubisco activase. Rubisco and PEPc protein amounts were not drastically changed, even if they tended to be increased. Level of C4-PEPc mRNA remained almost stable. In response to +80 atmosphere, pigments and transcripts encoding PEPc were notably decreased. Rubisco and PEPc protein amounts also declined to a lesser extent. Conversely, the level of transcripts encoding both Rubisco subunits and Rubisco activase that were not consistently disturbed tended to be slightly augmented. So, the present study suggests that maize leaves can respond differentially to a similar ozone stress.
NASA Astrophysics Data System (ADS)
Sandoval-Soto, L.; Stanimirov, M.; Valdez, J.; von Hobe, M.; Schmitt, V.; Wild, A.; Kesselmeier, J.
2003-12-01
Carbonyl sulfide (COS, OCS) is a highly stable reduced sulfur gas species in the atmosphere. Due to its inertness within the troposphere it can be transported into the stratosphere where it contributes to form SO2 and sulfate aerosol. Additionally it may be involved in heterogeneous reactions in stratospheric ozone chemistry. One of the major sinks for this trace gas is the vegetation. Based on investigations with trees under a light and dark regime and reacting to the hormone abscisic acid we demonstrated the stomatal uptake of COS to be the dominating pathway for COS deposition to plant surfaces. Taking into account deposition velocities of COS, which are higher than for CO2, we recalculated the global COS deposition to vegetation based on a new refined estimation model.
USDA-ARS?s Scientific Manuscript database
Limited research has been conducted on the interactive effects of salinity and boron stresses on plants despite their common occurrence in natural systems. The purpose of this research was to determine and quantify the interactive effects of salinity, salt composition and boron on broccoli (Brassica...
Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+
Jack W. McFarland; Roger W. Ruess; Knut Kielland; Kurt Pregitzer; Ronald Hendrick; Michael Allen
2010-01-01
Plant and microbial use of nitrogen (N) can be simultaneously mutualistic and competitive, particularly in ecosystems dominated by mycorrhizal fungi. Our goal was to quantify plant uptake of organic and inorganic N across a broad latitudinal gradient of forest ecosystems that varied with respect to overstory taxon, edaphic characteristics, and dominant mycorrhizal...
Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change
NASA Technical Reports Server (NTRS)
Li, Feng; Newman, Paul; Pawson, Steven
2013-01-01
Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion
Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone.
Ibáñez, M; Gracia-Lor, E; Bijlsma, L; Morales, E; Pastor, L; Hernández, F
2013-09-15
Advanced oxidation processes (AOP) based on ozone treatments, assisted by ultrasounds, have been investigated at a pilot-plant scale in order to evaluate the removal of emerging contaminants in sewage water. Around 60 emerging contaminants, mainly pharmaceuticals from different therapeutically classes and drugs of abuse, have been determined in urban wastewater samples (treated and untreated) by LC-MS/MS. In a first step, the removal efficiency of these contaminants in conventional sewage water treatment plants was evaluated. Our results indicate that most of the compounds were totally or partially removed during the treatment process of influent wastewater. Up to 30 contaminants were quantified in the influent and effluent samples analysed, being antibiotics, anti-inflammatories, cholesterol lowering statin drugs and angiotensin II receptor antagonists the most frequently detected. Regarding drugs of abuse, cocaine and its metabolite benzoylecgonine were the most frequent. In a second step, the effectiveness of AOP in the removal of emerging contaminants remaining in the effluent was evaluated. Ozone treatments have been proven to be highly efficient in the removal, notably decreasing the concentrations for most of the emerging contaminants present in the water samples. The use of ultrasounds, alone or assisting ozone treatments, has been shown less effective, being practically unnecessary. Copyright © 2013 Elsevier B.V. All rights reserved.
Prieto-Rodríguez, L; Oller, I; Klamerth, N; Agüera, A; Rodríguez, E M; Malato, S
2013-03-15
Conventional municipal wastewater treatment plants are not able to entirely degrade some organic pollutants that end up in the environment. Within this group of contaminants, Emerging Contaminants are mostly unregulated compounds that may be candidates for future regulation. In this work, different advanced technologies: solar heterogeneous photocatalysis with TiO(2), solar photo-Fenton and ozonation, are studied as tertiary treatments for the remediation of micropollutants present in real municipal wastewater treatment plants effluents at pilot plant scale. Contaminants elimination was followed by Liquid Chromatography/Quadrupole ion trap Mass Spectrometry analysis after a pre-concentration 100:1 by automatic solid phase extraction. 66 target micropollutants were identified and quantified. 16 of those contaminants at initial concentrations over 1000 ng L(-1), made up over 88% of the initial total effluent pollutant load. The order of micropollutants elimination efficiency under the experimental conditions evaluated was solar photo-Fenton > ozonation > solar heterogeneous photocatalysis with TiO(2). Toxicity analyses by Vibrio fischeri and respirometric tests showed no significant changes in the effluent toxicity after the three tertiary treatments application. Solar photo-Fenton and ozonation treatments were also compared from an economical point of view. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment
Pan, L. L.; Atlas, E. L.; Salawitch, R. J.; Honomichl, S. B.; Bresch, J. F.; Randel, W. J.; Apel, E. C.; Hornbrook, R. S.; Weinheimer, A. J.; Anderson, D. C.; Andrews, S. J.; Baidar, S.; Beaton, S. P.; Campos, T. L.; Carpenter, L. J.; Chen, D.; Dix, B.; Donets, V.; Hall, S. R.; Hanisco, T. F.; Homeyer, C. R.; Huey, L. G.; Jensen, J. B.; Kaser, L.; Kinnison, D. E.; Koenig, T. K.; Lamarque, J-F; Liu, C.; Luo, J.; Luo, Z. J.; Montzka, D. D.; Nicely, J. M.; Pierce, R. B.; Riemer, D. D.; Robinson, T.; Romashkin, P.; Saiz-Lopez, A.; Schauffler, S.; Shieh, O.; Stell, M. H.; Ullmann, K.; Vaughan, G.; Volkamer, R.; Wolfe, G.
2018-01-01
The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere. PMID:29636590
The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment.
Pan, L L; Atlas, E L; Salawitch, R J; Honomichl, S B; Bresch, J F; Randel, W J; Apel, E C; Hornbrook, R S; Weinheimer, A J; Anderson, D C; Andrews, S J; Baidar, S; Beaton, S P; Campos, T L; Carpenter, L J; Chen, D; Dix, B; Donets, V; Hall, S R; Hanisco, T F; Homeyer, C R; Huey, L G; Jensen, J B; Kaser, L; Kinnison, D E; Koenig, T K; Lamarque, J-F; Liu, C; Luo, J; Luo, Z J; Montzka, D D; Nicely, J M; Pierce, R B; Riemer, D D; Robinson, T; Romashkin, P; Saiz-Lopez, A; Schauffler, S; Shieh, O; Stell, M H; Ullmann, K; Vaughan, G; Volkamer, R; Wolfe, G
2017-01-01
The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.
Adam, Aileen; Webster, Lucy M I; Mullen, William; Keller, Lukas F; Johnson, Paul C D
2011-05-11
On red grouse estates in the UK the nematode parasite Trichostrongylus tenuis is often controlled by application of grit medicated with the anthelmintic fenbendazole (FBZ). To date, assessment of the efficacy has been inhibited by the inability to quantify uptake of FBZ by the birds. We have developed a simple and sensitive HPLC-MS-MS method for detecting and quantifying FBZ and its metabolites from a 300 mg sample of red grouse liver. This method could be used to improve the efficacy of medicated grit treatment by allowing the identification of conditions and application methods that optimize the uptake of FBZ. With the necessary modifications, our method will also be applicable to other wildlife species where self-medication is used for parasite control. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mertens, Mariano; Kerkweg, Astrid; Grewe, Volker; Jöckel, Patrick
2016-04-01
Road traffic is an important anthropogenic source of NOx, CO and non-methane hydrocarbons (NMHCs) which act as precursors for the formation of tropospheric ozone. The formation of ozone is highly non-linear. This means that the contribution of the road traffic sector cannot directly be derived from the amount of emitted species, because they are also determined by local emissions of other anthropogenic and natural sources. In addition, long range transport of precursors and ozone can play an important role in determining the local ozone budget. For a complete assessment of the impact of road traffic emissions it is therefore important to resolve both, local emissions and long range transport. This can be achieved by the use of the newly developed MECO(n) model system, which on-line couples the global chemistry-climate-model EMAC with the regional chemistry-climate-model COSMO-CLM/MESSy. Both models use the same chemical speciation. This allows a highly consistent model chain from the global to the local scale. To quantify the contribution of the road traffic emissions to tropospheric ozone we use an accounting system of the relevant reaction pathways of the different species from different sources (called tagging method). This tagging scheme is implemented consistently on all scales, allowing a direct comparison of the contributions. With this model configuration we investigate the impact of road traffic emissions to the tropospheric ozone budget in Europe. For the year 2008 we compare different emission scenarios and investigate the influence of both model and emission resolution. In addition, results of a mitigation scenario for the year 2030 are presented. They indicate that the contribution of the road traffic sector can be reduced by local reductions of emissions during summer. During winter the importance of long range transport increases. This can lead to increased contributions of the road traffic sector (e.g. by increased emissions in the US) even if local emissions are reduced.
Urban Climate Effects on Air Pollution and Atmospheric Chemistry
NASA Astrophysics Data System (ADS)
Rasoul, Tara; Bloss, William; Pope, Francis
2016-04-01
Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate (ClNO2) in the troposphere can enhance ozone (O3) formation as it undergoes photolysis, releasing chlorine reactive atoms (Cl) and nitrogen dioxide (NO2), both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric ClNO2 via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of ClNO2 on air quality in urban areas within the UK. The model updated to include ClNO2 production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and ClNO2 production calculated from bulk aerosol composition. The model simulation revealed the presence of ClNO2 enhances the formation of NO2, organic peroxy radical (CH3O2), O3, and hydroxyl radicals (OH) when compared with simulations excluding ClNO2. In addition, the study examined the effect of temperature variation upon ClNO2 formation. The response of ClNO2 to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.
Processes Understanding of Decadal Climate Variability
NASA Astrophysics Data System (ADS)
Prömmel, Kerstin; Cubasch, Ulrich
2016-04-01
The realistic representation of decadal climate variability in the models is essential for the quality of decadal climate predictions. Therefore, the understanding of those processes leading to decadal climate variability needs to be improved. Several of these processes are already included in climate models but their importance has not yet completely been clarified. The simulation of other processes requires sometimes a higher resolution of the model or an extension by additional subsystems. This is addressed within one module of the German research program "MiKlip II - Decadal Climate Predictions" (http://www.fona-miklip.de/en/) with a focus on the following processes. Stratospheric processes and their impact on the troposphere are analysed regarding the climate response to aerosol perturbations caused by volcanic eruptions and the stratospheric decadal variability due to solar forcing, climate change and ozone recovery. To account for the interaction between changing ozone concentrations and climate a computationally efficient ozone chemistry module is developed and implemented in the MiKlip prediction system. The ocean variability and air-sea interaction are analysed with a special focus on the reduction of the North Atlantic cold bias. In addition, the predictability of the oceanic carbon uptake with a special emphasis on the underlying mechanism is investigated. This addresses a combination of physical, biological and chemical processes.
Leaf Uptake of Nitrogen Dioxide (NO2) Under Different Environmental Conditions.
NASA Astrophysics Data System (ADS)
Chaparro-Suarez, I.; Thielmann, A.; Meixner, F. X.; Kesselmeier, J.
2005-12-01
The chemical budget of Ozone in the troposphere is largely determined by the concentration of NOx (NO, NO2) within a photostationary equilibrium. It is well known that atmospheric concentration is strongly influenced by the bi-directional exchange of NO2. However, there is some debate about the magnitude of the compensation point. Therefore, we investigated the uptake of atmospheric NO2 by trees in relation to atmospheric NO2 concentrations. Using the dynamic chamber technique and a sensitive and specific NO-analysator (CLD 780, Eco Physics) we measured the uptake of NO2 by four different tree species (Betula pendula, Fagus sylvatica, Quercus ilex und Pinus sylvestris) under field and laboratory conditions. Simultaneous measurements of CO2 exchange and transpiration were performed to track photosynthesis and stomatal conductance. Depending on tree species we found the exchange to be controlled by very low NO2 compensation points sometimes reaching zero values (no emission) under laboratory conditions. In the field a high compensation point for European beech (Fagus sylvatica) was observed, which is understood as a result of complex atmospheric conditions.
The Effects of Volcano-Induced Ozone Depletion on Short-lived Climate Forcing in the Arctic
NASA Astrophysics Data System (ADS)
Ward, P. L.
2012-12-01
Photodissociation of oxygen maintains the stratopause ~50°C warmer than the tropopause. Photodissociation of ozone warms the lower stratosphere, preventing most of this high-energy DNA-damaging solar radiation from reaching the troposphere. Ozone depletion allows more UV energy to reach the lower troposphere causing photodissociation of anthropogenic ozone and nitrogen dioxide. UV energy also penetrates the ocean >10 m where it is absorbed more efficiently than infrared radiation that barely penetrates the surface. Manmade chlorofluorocarbons caused ozone depletion from 1965 to 1994 with slow recovery predicted over the next 50+ years. But the lowest levels of ozone followed the eruptions of Pinatubo (1991 VEI=6), Eyjafjallajökull (2010 VEI=4), and Grímsvötn (2011 VEI=4). Each of the relatively small, basaltic eruptions in Iceland caused more ozone depletion than the long-term effects of chlorofluorocarbons, although total ozone appears to return to pre-eruption levels within a decade. Ozone depletion by 20% increases energy flux thru the lowermost troposphere by 0.7 W m-2 for overhead sun causing temperatures in the lower stratosphere to drop >2°C since 1958 in steps after the 3 largest volcanic eruptions: Agung 1963, El Chichón 1982, and Pinatubo. Temperatures at the surface increased primarily in the regions and at the times of the greatest observed ozone depletion. The greatest warming observed was along the Western Antarctic Peninsula (65.4°S) where minimum temperatures rose 6.7°C from 1951 to 2003 while maximum temperatures remained relatively constant. Minimum total column ozone in September-October was 40-56% lower than in 1972 almost every year since 1987, strongly anti-correlated with observed minimum temperatures. Sea ice decreased 10%, 7 ice shelves separated, 87% of the glaciers retreated and the Antarctic Circumpolar Current warmed. Elsewhere under the ozone hole, warming of continental Antarctica was limited by the high albedo (0.86) of Antarctic snow and decreasing solar zenith angles at higher latitudes. The second largest ozone depletion was in the Arctic at the times and places of greatest winter warming. Average ozone at four stations in Canada (43-59°N) compared to the 1961-1970 mean were 6% lower in December 2010 after the eruption of Eyjafjallajökull and 11% lower in December 2011 after the eruption of Grímsvötn. In 2012, ozone levels were still 10% lower in March and 7% lower in July. The regions and timing of this depletion are the regions and times of unusually warm temperatures and drought in North America during 2011-2012. The Dust Bowl droughts in 1934 and 1936 show a similar temporal relationship to a highly unusual sequence of five VEI=4-5 eruptions around the Pacific in 1931-1933. Major increases in global pollution were from 1950-1970 while ozone-destroying tropospheric chlorine rose from 1970 to 1994, along with ocean heat content and mean temperature. Pollution does not seem to cause an increase in warming until ozone depletion allows more UV into the lower troposphere. Pollutants decrease surface solar radiation but also reduce Arctic-snow albedo. Widespread observations imply that ozone depletion and associated photodissociation cause substantial warming. Several issues regarding the microphysics of absorption and radiation by greenhouse gases must be resolved before we can quantify their relative importance.
Pina, Juliana M; Moraes, Regina M
2010-05-01
Ozone (O(3)) reaches phytotoxical concentrations in the tropics, but the sensitivity of tropical plant species to O(3) remains unknown. Visible foliar injuries, carbon assimilation (A(sat)), stomatal conductance, superoxide dismutase enzyme (SOD) activity and ascorbic acid concentration (AA) were evaluated in different-aged leaves of Psidium guajava 'Paluma' saplings. We hypothesized that the old leaves are less capable of combating the stress induced by O(3) and hence exhibit more severe leaf injuries. Three O(3) exposure experiments were performed with 'Paluma' saplings in sites with high O(3) concentration and also under filtered air conditions. The exposure experiments corresponding to the seasons spring/2006, summer and autumn/2007. The decrease of A(sat) was greater in old leaves of saplings exposed to O(3), except in the second experiment, when the AA concentrations were more pronounced than in the other experiments. In second experiment, O(3) uptake was similar to that of the first experiment, but the injuries were less severe, probably due to the high AA concentrations. It was not possible to identify a pattern of superoxide dismutase enzyme (SOD) activity due to the high variability in the results from O(3) exposed and reference saplings. O(3) uptake/A(sat) was higher in leaves exhibiting greater injury, suggesting that decrease in A(sat) may have been the main feature associated with the visible foliar symptons. Copyright 2009 Elsevier Inc. All rights reserved.
Climate Change Impacts of US Reactive Nitrogen Emissions
NASA Astrophysics Data System (ADS)
Pinder, R. W.; Davidson, E. A.; Goodale, C. L.; Greaver, T.; Herrick, J.; Liu, L.
2011-12-01
By fossil fuel combustion and fertilizer application, the US has substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here, we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions. We use the global temperature potential (GTP) as a common metric, and we calculate the GTP at 20 and 100 years in units of CO2 equivalents. At both time-scales, nitrogen enhancement of CO2 uptake has the largest impact, because in the eastern US, areas of high nitrogen deposition are co-located with forests. In the short-term, the effect due to NOx altering ozone and methane concentrations is also substantial, but are not important on the 100 year time scale. Finally, the GTP of N2O emissions is substantial at both time scales. We have also attributed these impacts to combustion and agricultural sources, and quantified the uncertainty. Reactive nitrogen from combustion sources contribute more to cooling than warming. The impacts of agricultural sources tend to cancel each other out, and the net effect is uncertain. Recent trends show decreasing reactive nitrogen from US combustion sources, while agricultural sources are increasing. Fortunately, there are many mitigation strategies currently available to reduce the climate change impacts of US agricultural sources.
Nitrogen and Phosphorous Uptake in Plant Biomass of Experimental Bioretention Systems in Utah
NASA Astrophysics Data System (ADS)
Sapkota, P.
2016-12-01
There is keen interest in implementing bioretention systems for stormwater management in an arid climate as they have proven to reduce toxicity from stormwater. Nitrogen is prevalent in urban stormwater, and plants and soil in bioretention treat stormwater before they enter natural waterways. A limited number of studies have focused on quantifying nutrient accumulation in plants. We quantified Total Nitrogen (TN), Total carbon (TC), and Total Phosphorous (TP) uptake in plants biomass of bioretention systems of semi-arid climate. The designed bioretention units housed at the University of Utah have three different vegetation types: Utah native plants (upland), no plants (control) and wetland plants (wetland grasses and reeds). The bioretention units are designed to capture 95% of the runoff from an impervious area of 220 m2. The soil is composed of 63% sand, 23% silt, and 14% clay. We compared TN, TC, and TP accumulation in plant biomass of upland and wetland systems. Two set of samples were taken for this study. For the first set, plants were completely destroyed in several upland and wetland bioretention units and TN and TP was quantified in their overall biomass. For the second set, TN and TP uptake were quantified in non-destructed samples on a monthly basis. To determine biomass of non-destructed samples, and TN, TP uptake, allometric equations were developed using plant height, crown diameter, and stem diameter measured each month from May 2015 to Dec 2015. Isotope ratio mass spectrometry (IRMS) was used to quantify TN and lachat colorimetry was used to quantify TP in all plant samples. TN, TC, and TP results for the destructed showed similar trends in three upland and wetland systems .i.e. when one increased other also increased. TN, TC analysis on plant samples over a seven months period showed that TN and TC decreased in summer, but it was significantly higher during winter. TN and TC on non-destructed samples spiked towards late spring, and woody plants had lower but better-maintained biomasses, TN and TC than grasses. Overall, the results from this experiment showed which plants are more efficient in foraging nitrogen and phosphorus from soil, and which plants performed best in nitrogen and phosphorous removal from bioretention in a semi-arid climate.
K. F. Zeller; N. T. Nikolov
2000-01-01
Assessing the long-term exchange of trace gases and energy between terrestrial ecosystems and the atmosphere is an important priority of the current climate change research. In this regard, it is particularly significant to provide valid data on simultaneous fluxes of carbon, water vapor and pollutants over representative ecosystems. Eddy covariance measurements and...
A generally accepted value for the Radiation Amplification Factor (RAF), with respect to the erythemal action spectrum for sunburn of human skin, is −1.1, indicating that a 1.0% increase in stratospheric ozone leads to a 1.1% decrease in the biologically damaging UV radiation in ...
Jiang, G.M.
2013-01-01
The beneficial effects of elevated CO2 on plants are expected to be compromised by the negative effects posed by other global changes. However, little is known about ozone (O3)-induced modulation of elevated CO2 response in plants with differential sensitivity to O3. An old (Triticum aestivum cv. Beijing 6, O3 tolerant) and a modern (T. aestivum cv. Zhongmai 9, O3 sensitive) winter wheat cultivar were exposed to elevated CO2 (714 ppm) and/or O3 (72 ppb, for 7h d–1) in open-topped chambers for 21 d. Plant responses to treatments were assessed by visible leaf symptoms, simultaneous measurements of gas exchange and chlorophyll a fluorescence, in vivo biochemical properties, and growth. It was found that elevated CO2 resulted in higher growth stimulation in the modern cultivar attributed to a higher energy capture and electron transport rate compared with the old cultivar. Exposure to O3 caused a greater growth reduction in the modern cultivar due to higher O3 uptake and a greater loss of photosystem II efficiency (mature leaf) and mesophyll cell activity (young leaf) than in the old cultivar. Elevated CO2 completely protected both cultivars against the deleterious effects of O3 under elevated CO2 and O3. The modern cultivar showed a greater relative loss of elevated CO2-induced growth stimulation due to higher O3 uptake and greater O3-induced photoinhibition than the old cultivar at elevated CO2 and O3. Our findings suggest that the elevated CO2-induced growth stimulation in the modern cultivar attributed to higher energy capture and electron transport rate can be compromised by its higher O3 uptake and greater O3-induced photoinhibition under elevated CO2 and O3 exposure. PMID:23378379
Comparison of Five Modeling Approaches to Quantify and ...
A generally accepted value for the Radiation Amplification Factor (RAF), with respect to the erythemal action spectrum for sunburn of human skin, is −1.1, indicating that a 1.0% increase in stratospheric ozone leads to a 1.1% decrease in the biologically damaging UV radiation in the erythemal action spectrum reaching the Earth. The RAF is used to quantify the non-linear change in the biologically damaging UV radiation in the erythemal action spectrum as a function of total column ozone (O3). Spectrophotometer measurements recorded at ten US monitoring sites were used in this analysis, and over 71,000 total UVR measurement scans of the sky were collected at those 10 sites between 1998 and 2000 to assess the RAF value. This UVR dataset was examined to determine the specific impact of clouds on the RAF. Five de novo modeling approaches were used on the dataset, and the calculated RAF values ranged from a low of −0.80 to a high of −1.38. To determine the impact of clouds on RAF, which is an indicator of the amount of UV radiation reaching the earth which can affect sunburn of human skin.
Toward a transport-based analysis of nutrient spiraling and uptake in streams
Runkel, Robert L.
2007-01-01
Nutrient addition experiments are designed to study the cycling of nutrients in stream ecosystems where hydrologic and nonhydrologic processes determine nutrient fate. Because of the importance of hydrologic processes in stream ecosystems, a conceptual model known as nutrient spiraling is frequently employed. A central part of the nutrient spiraling approach is the determination of uptake length (SW), the average distance traveled by dissolved nutrients in the water column before uptake. Although the nutrient spiraling concept has been an invaluable tool in stream ecology, the current practice of estimating uptake length from steady-state nutrient data using linear regression (called here the "SW approach") presents a number of limitations. These limitations are identified by comparing the exponential SW equation with analytical solutions of a stream solute transport model. This comparison indicates that (1) SW, is an aggregate measure of uptake that does not distinguish between main channel and storage zone processes, (2) SW, is an integrated measure of numerous hydrologie and nonhydrologic processes-this process integration may lead to difficulties in interpretation when comparing estimates of SW, and (3) estimates of uptake velocity and areal uptake rate (Vf and U) based on S W, are not independent of system hydrology. Given these findings, a transport-based approach to nutrient spiraling is presented for steady-state and time-series data sets. The transport-based approach for time-series data sets is suggested for future research on nutrient uptake as it provides a number of benefits, including the ability to (1) separately quantify main channel and storage zone uptake, (2) quantify specific hydrologic and nonhydrologic processes using various model parameters (process separation), (3) estimate uptake velocities and areal uptake rates that are independent of hydrologic effects, and (4) use short-term, non-plateau nutrient additions such that the effects of regeneration and mineralization are minimized. In summary, the transport-based, time-series approach provides a means of estimating traditional measures of nutrient uptake (SW, V?? U) while providing additional information on the location and magnitude of uptake (main channel versus storage zone). Application of the transport-based approach to time-series data from Green Creek, Antarctica, indicates that the bulk of nitrate uptake (???74% to 100%) occurred within the main channel where benthic uptake by algal mats is a likely process. Substantial uptake (???26%) also occurred in the storage zone of one reach, where uptake is attributed to the microbial community.
Merrifield, R C; Stephan, C; Lead, J R
2018-02-20
Quantifying metal and nanoparticle (NP) biouptake and distribution on an individual cellular basis has previously been impossible, given available techniques which provide qualitative data that are laborious to acquire and prone to artifacts. Quantifying metal and metal NP uptake and loss processes in environmental organisms will lead to mechanistic understanding of biouptake and improved understanding of potential hazards and risks of metals and NPs. In this work, we present a new technique, single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), which allows quantification of metal concentrations on an individual cell basis down to the attogram (ag) per cell level. We present data validating the novel method, along with the mass of metal per cell. Finally, we use SC-ICP-MS, with ancillary cell counting methods, to quantify the biouptake and strong sorption and distribution of both dissolved Au and Au NPs in a freshwater alga (Cyptomonas ovate). The data suggests differences between dissolved and NP uptake and loss. In the case of NPs, there was a dose and time dependent uptake, but individual cellular variations; at the highest realistic exposure conditions used in this study up to 40-50% of cells contained NPs, while 50-60% of cells did not.
AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6
Collins, William J.; Lamarque, Jean -François; Schulz, Michael; ...
2017-02-09
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and theirmore » climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. As a result, specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.« less
NASA Astrophysics Data System (ADS)
Baidar, Sunil; Oetjen, Hilke; Senff, Christoph; Alvarez, Raul, II; Hardesty, Michael; Langford, Andrew; Kim, Si-Wan; Trainer, Michael; Volkamer, Rainer
2013-04-01
Ozone (O3) and nitrogen dioxide (NO2) are two important components of air pollution. We have measured vertical column amounts of NO2, and vertical profiles of O3 and wind speed by means of measurements of solar stray light by CU Airborne MAX-DOAS, and active remote sensing using the NOAA TOPAZ lidar, and the University of Leeds Doppler lidar aboard the NOAA Twin Otter research aircraft. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19 2010 during the CalNex and CARES field campaigns. These flights cover most of California. The boundary layer height was measured by TOPAZ lidar, and trace gas concentrations of NO2 and O3 were integrated over boundary layer height. These column integrated quantities are then combined with direct wind speed measurements to quantify directly the pollutant flux across the boundary, as defined by the flight track. By tracking the pollution fluxes during transects that are flown upwind and in various distances downwind of a NOx emission source, the NOx emission rate, and the ozone formation rate are quantified. These pollutant fluxes are calculated here for the first time exclusively based on measurements (i.e., without need to infer wind speed from a model). These fluxes provide constraints to quantify localized NOx emissions, and are being compared with WRF-Chem model simulations.
AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, William J.; Lamarque, Jean -François; Schulz, Michael
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and theirmore » climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. As a result, specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.« less
Hubert, D; Lambert, J-C; Verhoelst, T; Granville, J; Keppens, A; Baray, J-L; Cortesi, U; Degenstein, D A; Froidevaux, L; Godin-Beekmann, S; Hoppel, K W; Kyrölä, E; Leblanc, T; Lichtenberg, G; McElroy, C T; Murtagh, D; Nakane, H; Querel, R; Russell, J M; Salvador, J; Smit, H G J; Stebel, K; Steinbrecht, W; Strawbridge, K B; Stübi, R; Swart, D P J; Taha, G; Thompson, A M; Urban, J; van Gijsel, J A E; von der Gathen, P; Walker, K A; Wolfram, E; Zawodny, J M
2016-01-01
The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20-40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5-12% and the drifts are at most ±5% decade -1 (or even ±3 % decade -1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
Rapid Transport of Stratospheric Ozone into the Planetary Boundary Layer over the Rocky Mountains
NASA Astrophysics Data System (ADS)
Skerlak, B.; Sprenger, M.; Pfahl, S.; Wernli, H.
2013-12-01
Stratosphere-troposphere exchange (STE) has important impacts on atmospheric chemistry: it changes the oxidative capacity of the troposphere and affects the climate system through the exchange of water vapor and ozone. Although a large part of tropospheric ozone is produced photochemically, significant amounts of stratospheric ozone can be brought into the troposphere during STE events. The relative importance of these two sources depends on the location of interest and transport characteristics. Of particular interest are so-called deep exchange events where ozone-rich stratospheric air reaches the planetary boundary layer (PBL) within a few days (deep STT). This rapid vertical transport can contribute to ozone concentrations at ground level which can impair plant and human physiology. It is therefore not only important to quantify the ozone flux across the tropopause but also to investigate the transport pathways after the crossing to identify affected areas at ground. Using a Lagrangian methodology and 33 years of ERA-Interim reanalysis data, we have compiled a global climatology of STE from which the mountainous areas in western North America can be identified as a 'hot spot' of deep STT, especially in boreal spring. To address the question of how the stratospheric air masses are transported into the PBL in more detail, we investigate case studies in this region with the mesoscale numerical weather prediction model COSMO. On this account, we initialize a passive tracer in the stratosphere using an elaborated 3D-labeling algorithm which applies the dynamical 2 pvu/380 K tropopause definition. This tracer is then advected by both resolved and parameterized processes and allows us to follow the stratospheric air masses along their journey into the mountainous PBL. Although this tracer does not directly represent a specific chemical species, its concentrations at the lowest model level can indicate when and where ozone levels at ground are likely to be influenced by the stratosphere. Concentration of a passive tracer (initialized in the stratosphere) at the lowest model level (10 m above ground) on May 3rd 00 UTC 2006. Around this time, increased levels of surface ozone (peaks up to 89 ppbv) were measured at Yellowstone National Park (YEL) in Wyoming. Contours indicate the geopotential at 500 hPa and show that the tracer is brought down from the stratosphere in the vicinity of a cyclone located to the northeast of YEL at this time.
NASA Technical Reports Server (NTRS)
Hubert, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; Keppens, A.; Baray, J.-L.; Cortesi, U.; Degenstein, D. A.; Froidevaux, L.; Godin-Beekmann, S.;
2016-01-01
The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20-40 kilometers the satellite ozone measurement biases are smaller than plus or minus 5 percent, the short-term variabilities are less than 5-12 percent and the drifts are at most plus or minus 5 percent per decade (or even plus or minus 3 percent per decade for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10 percent and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
Hubert, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; Keppens, A.; Baray, J.-L.; Cortesi, U.; Degenstein, D. A.; Froidevaux, L.; Godin-Beekmann, S.; Hoppel, K. W.; Kyrölä, E.; Leblanc, T.; Lichtenberg, G.; McElroy, C. T.; Murtagh, D.; Nakane, H.; Querel, R.; Russell, J. M.; Salvador, J.; Smit, H. G. J.; Stebel, K.; Steinbrecht, W.; Strawbridge, K. B.; Stübi, R.; Swart, D. P. J.; Taha, G.; Thompson, A. M.; Urban, J.; van Gijsel, J. A. E.; von der Gathen, P.; Walker, K. A.; Wolfram, E.; Zawodny, J. M.
2018-01-01
The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20–40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5–12% and the drifts are at most ±5% decade−1 (or even ±3 % decade−1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses. PMID:29743958
Proximal Tubules Have the Capacity to Regulate Uptake of Albumin.
Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M; Wean, Sarah E; Wei, Yuan; Satlin, Lisa M; Wiggins, Roger C; Witzmann, Frank A; Molitoris, Bruce A
2016-02-01
Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. Copyright © 2016 by the American Society of Nephrology.
Proximal Tubules Have the Capacity to Regulate Uptake of Albumin
Wagner, Mark C.; Campos-Bilderback, Silvia B.; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M.; Wean, Sarah E.; Wei, Yuan; Satlin, Lisa M.; Wiggins, Roger C.; Witzmann, Frank A.
2016-01-01
Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. PMID:26054544
Optical monitoring of glucose demand and vascular delivery in a preclinical murine model
NASA Astrophysics Data System (ADS)
Frees, Amy; Rajaram, Narasimhan; McCachren, Sam; Vaz, Alex; Dewhirst, Mark; Ramanujam, Nimmi
2014-03-01
Targeted therapies such as PI3K inhibition can affect tumor vasculature, and hence delivery of imaging agents like FDG, while independently modifying intrinsic glucose demand. Therefore, it is important to identify whether perceived changes in glucose uptake are caused by vascular or true metabolic changes. This study sought to develop an optical strategy for quantifying tissue glucose uptake free of cross-talk from tracer delivery effects. Glucose uptake kinetics were measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-Dglucose (2-NBDG), and 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-L-glucose (2-NBDLG) was used as a control to report on non-specific uptake. Vascular oxygenation (SO2) was calculated from wavelength-dependent hemoglobin absorption. We have previously shown that the rate of 2-NBDG delivery in vivo profoundly affects perceived demand. In this study, we investigated the potential of the ratio of 2-NBDG uptake to the rate of delivery (2-NBDG60/RD) to report on 2-NBDG demand in vivo free from confounding delivery effects. In normal murine tissue, we show that 2-NBDG60/RD can distinguish specific uptake from non-specific cell membrane binding, whereas fluorescence intensity alone cannot. The ratio 2-NBDG60/RD also correlates with blood glucose more strongly than 2-NBDG60 does in normal murine tissue. Additionally, 2-NBDG60/RD can distinguish normal murine tissue from a murine metastatic tumor across a range of SO2 values. The results presented here indicate that the ratio of 2-NBDG uptake to the rate of 2-NBDG delivery (2- NBDG60/RD) is superior to 2-NBDG intensity alone for quantifying changes in glucose demand.
Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping
Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less
Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films
Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping; ...
2017-02-27
Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less
Characterisation of J(O1D) at Cape Grim 2000-2005
NASA Astrophysics Data System (ADS)
Wilson, S. R.
2014-07-01
Estimates of the rate of production of excited oxygen atoms due to the photolysis of ozone J(O1D) have been derived from radiation measurements carried out at Cape Grim, Tasmania (40.6° S, 144.7° E). These estimates agree well with measurements made during SOAPEX-II and with model estimates of clear sky photolysis rates. Observations spanning 2000-2005 have been used to quantify the impact of season, cloud and ozone column amount. The annual cycle of J(O1D) has been investigated via monthly means. These means show an inter-annual variation (monthly standard deviation) of 9%, but in midsummer and midwinter this reduces to 3-4%. Factors dependent upon solar zenith angle and satellite derived total ozone column explain 87% of the observed signal variation of the individual measurements. The impact of total column ozone, expressed as a Radiation Amplification Factor (RAF), is found to be ~1.45, in agreement with model estimates. This ozone dependence explains 20% of the variation observed at medium solar zenith angles (30-50°). The impact of clouds results in a median reduction of 14% in J(O1D) for the same solar zenith angle range. At all solar zenith angles less than 50° approximately 10% of measurements show enhanced J(O1D) due to cloud scattering and this fraction climbs to 25% at higher solar angles. Including estimates of cloudiness derived from Long Wave Radiation measurements resulted in a statistically significant fit to observations but the quality of the fit did not increase significantly as measured by the reduced R2.
Li, Ke; Zhang, Peng; Crittenden, John C; Guhathakurta, Subhrajit; Chen, Yongsheng; Fernando, Harindra; Sawhney, Anil; McCartney, Peter; Grimm, Nancy; Kahhat, Ramzy; Joshi, Himanshu; Konjevod, Goran; Choi, Yu-Jin; Fonseca, Ernesto; Allenby, Braden; Gerrity, Daniel; Torrens, Paul M
2007-07-15
To encourage sustainable development, engineers and scientists need to understand the interactions among social decision-making, development and redevelopment, land, energy and material use, and their environmental impacts. In this study, a framework that connects these interactions was proposed to guide more sustainable urban planning and construction practices. Focusing on the rapidly urbanizing setting of Phoenix, Arizona, complexity models and deterministic models were assembled as a metamodel, which is called Sustainable Futures 2100 and were used to predict land use and development, to quantify construction material demands, to analyze the life cycle environmental impacts, and to simulate future ground-level ozone formation.
NASA Astrophysics Data System (ADS)
Wang, Tao; Tham, Yee Jun; Xue, Likun; Wang, Zhe; Wang, Xinfeng; Wang, Weihao; Wang, Hao; Yun, Hui; Lu, Keding; Shao, Min; Louie, Peter K. K.; Blake, Donald R.; Brown, Steven S.; Zhang, Yuanhang
2016-04-01
Nitryl chloride (ClNO2) - a trace gas produced from heterogeneous reactions of dinitrogen pentoxide (N2O5) on aerosols containing chorine - can significantly affect radical budget and concentrations of ozone and other secondary pollutants. However, the abundance, formation kinetics, and impact of ClNO2are not fully understood under different environmental conditions. This presentation gives an overview of recent field campaigns of ClNO2 and related chemical constituents in China, including one at a mountain top (957 m a.s.l) in Hong Kong of South China in winter 2013 and three in North China (urban Ji'nan, semi-rural Wangdu, and Mt Tai (1534 m a.s.l)) in summer 2014. ClNO2 and N2O5 were measured with a chemical ionization mass spectrometry (CIMS) system with iodide as the primary ions. Ambient concentrations of several hundreds ppts and up to 4.7 ppbv of ClNO2were observed in these locations, suggesting existence of elevated ClNO2 in both coastal and inland atmospheres of China. Measurements in North China exhibited generally low concentrations of N2O5, indicative of its fast uptake of on aerosols under aerosol and humid conditions. Indications of anthropogenic sources of chloride were observed at all these sites. The impact of photolysis of ClNO2 on radical budget and ozone enhancement was assessed with a MCM model which was updated with detailed chlorine chemistry and constrained by measurement data for the southern and a northern site. The results show that the ClNO2 could increase ozone production by 2-16% in the following day. Overall, our study re-affirms the need to include ClNO2 related reactions in photochemical models for prediction of ground-level ozone in polluted environments.
The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment
NASA Technical Reports Server (NTRS)
Pan, L. L.; Atlas, E. L.; Salawitch, R.J.; Honomichl, S. B.; Bresch, J. F.; Randel, W. J.; Apel, E. C.; Hornbrook, R. S.; Weinheimer, A. J.; Anderson, D. C.;
2017-01-01
The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5degN, 144.8degE) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.
Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas
NASA Astrophysics Data System (ADS)
Reed, S.; Uriarte, M.; Wood, T. E.; Cavaleri, M. A.; Lugo, A. E.
2014-12-01
Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.
Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas
NASA Astrophysics Data System (ADS)
Ravishankara, A. R.
2015-12-01
Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.
One-dimensional numerical modeling of Blue Jet and its impact on stratospheric chemistry
NASA Astrophysics Data System (ADS)
Duruisseau, F.; Thiéblemont, R.; Huret, N.
2011-12-01
In the stratosphere the ozone layer is very sensitive to the NOx abundance. The ionisation of N2 and O2 molecules by TLE's (Transient Luminous Events) is a source of NOx which is currently not well quantified and could act as a loss of ozone. In this study a one dimensional explicit parameterization of a Blue-Jet propagation based on that proposed by Raizer et al. (2006 and 2007) has been developed. This parameterization considers Blue-Jet as a streamer initiated by a bidirectional leader discharge, emerging from the anvil and sustained by moderate cloud charge. The streamer growth varies with the electrical field induced by initial cloud charge and the initial altitude. This electrical parameterization and the chemical mechanisms associated with the discharge have been implemented into a detailed chemical model of stratospheric ozone including evolution of nitrogen, chlorine and bromine species. We will present several tests performed to validate the electrical code and evaluate the propagation velocity and the maximum altitude attains by the blue jet as a function of electrical parameters. The results obtained giving the spatiotemporal evolution of the electron density are then used to initiate the specific chemistry associated with the Blue Jet. Preliminary results on the impact of such discharge on the ozone content and the whole stratospheric system will be presented.
Takahashi, Akihisa; Kumatani, Toshihiro; Usui, Saori; Tsujimura, Ryoko; Seki, Takaharu; Morimoto, Kouichi; Ohnishi, Takeo
2005-01-01
Photoreactivation (PR) is an efficient survival mechanism that helps protect cells against the harmful effects of solar-ultraviolet (UV) radiation. The PR mechanism involves photolyase, just one enzyme, and can repair DNA damage, such as cyclobutane-pyrimidine dimers (CPD) induced by near-UV/blue light, a component of sunlight. Although the balance of near-UV/blue light and far-UV light reaching the Earth's surface could be altered by the atmospheric ozone layer's depletion, experiments simulating this environmental change and its possible effects on life have not yet been performed. To quantify the strength of UVB in sunlight reaching the Earth's surface, we measured the number of CPD generated in plasmid DNA after UVB irradiation or exposure to sunlight. To simulate the increase of solar-UV radiation resulting from the ozone layer depletion, Paramecium tetraurelia was exposed to UVB and/or sunlight in clear summer weather. PR recovery after exposure to sunlight was complete at a low dose rate of 0.2 J/m2 x s, but was less efficient when the dose rate was increased by a factor of 2.5 to 0.5 J/m2 x s. It is suggested that solar-UV radiation would not influence the cell growth of P. tetraurelia for the reason of high PR activity even when the ozone concentration was decreased 30% from the present levels.
Galvão, Elson Silva; Santos, Jane Meri; Reis Junior, Neyval Costa; Stuetz, Richard Michael
2016-09-01
Speciation and the influence on the ozone formation potential (OFP) from volatile organic compounds (VOCs) have been studied between February June 2013 in Vitória, ES, Brazil. Passive samplers were installed at three air-quality monitoring stations and a total of 96 samplings were collected. A total of 78 VOCs were characterized by gas chromatograph-mass spectrometer. The predominant group was organic acids, followed by alcohols and substituted aromatics and 14 precursor species were quantified. An analysis correlating concentrations with wind direction was conducted to identify possible sources. The OFP was calculated applying the scale of maximum incremental reactivity proposed by Carter.[ 23 ] Ozone precursors with the greatest OFP such as undecane, toluene, ethylbenzene and m, p-xylene compounds were the most abundant with means of 0.855, 0.365, 0.259 and 0.289 µg m(-3), respectively. The benzene, toluene, ethylbenzene and xylene (BTEX) group was found below the limits considered harmful to the health of the population living in Vitória. The OFP calculated for the precursors group was 22.55 µg m(-3) for the rainy season and 32.11 µg m(-3) for the dry season. The VOC/NOx ratio in Vitória is approximately 1.71, indicating that the region has a VOC-limiting condition for the production of ozone.
Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S
2009-10-01
The authors investigated the importance of the neuropeptide, calcitonin gene-related peptide (CGRP), in epithelial injury, repair, and neutrophil emigration after ozone exposure. Wistar rats were administered either a CGRP-receptor antagonist (CGRP(8-37)) or saline and exposed to 8 hours of 1-ppm ozone or filtered air with an 8-hour postexposure period. Immediately after exposure, ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, airway dissected lung lobes were stained for 5'-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Positive epithelial cells were quantified in specific airway generations. Rats treated with CGRP(8-37) had significantly reduced epithelial injury in terminal bronchioles and reduced epithelial proliferation in proximal airways and terminal bronchioles. Bronchoalveolar lavage and sections of terminal bronchioles showed no significant difference in the number of neutrophils emigrating into airways in CGRP(8-37)-treated rats. The airway epithelial cell line, HBE-1, showed no difference in the number of oxidant stress positive cells during exposure to hydrogen peroxide and a range of CGRP(8-37) doses, demonstrating no antioxidant effect of CGRP(8-37). We conclude that activation of CGRP receptors during ozone inhalation contributes to airway epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.
Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.
Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H
2015-05-01
The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it may enhance the nutrient uptake and waste product clearance. Copyright © 2015 Elsevier Inc. All rights reserved.
Do Chondral Lesions of the Knee Correlate with Bone Tracer Uptake by Using SPECT/CT?
Dordevic, Milos; Hirschmann, Michael T; Rechsteiner, Jan; Falkowski, Anna; Testa, Enrique; Hirschmann, Anna
2016-01-01
To evaluate the correlation of bone tracer uptake as determined with single photon emission computed tomography (SPECT)/computed tomography (CT) and the size and severity of chondral lesions detected with magnetic resonance (MR) imaging of the knee. MR imaging and SPECT/CT images of 63 knee joints in 63 patients (mean age ± standard deviation, 49.2 years ± 12.7) with chondral or osteochondral lesions were prospectively collected and retrospectively analyzed after approval by the ethics committee. Chondral lesions were graded on MR images by using a modified Noyes grading scale (grade 0, intact; grade 1, fibrillations; grade 2, <50% defect; grade 3, >50% defect; and grade 4, grade three plus subchondral changes) and measured in two dimensions. Technetium 99m hydroxymethane diphosphonate SPECT/CT bone tracer uptake was volumetrically quantified by using validated software. Maximum values of each subchondral area (patellofemoral or medial and lateral femorotibial) were quantified, and a ratio was calculated in relation to a reference region in the femoral shaft, which represented the bone tracer uptake background activity. Grades and sizes of chondral lesions and bone tracer uptake were correlated by using an independent t test and analysis of variance (P < .05). Bone tracer uptake was low (mean relative uptake, 1.64 ± 0.95) in knees without any present chondral lesion. In knees with grade 3 and 4 chondral lesions, the relative ratio was significantly higher (3.62 ± 2.18, P = .002) than in knees with grade 1 and 2 lesions (2.95 ± 2.07). The larger the diameter of the chondral lesion, the higher the bone tracer uptake. Higher grades of chondral lesions (grades 3 and 4) larger than 4 cm(2) (4.96 ± 2.43) showed a significantly higher bone tracer uptake than smaller lesions (<1 cm(2), 2.72 ± 1.43 [P = .011]; and 1-4 cm(2), 3.28 ± 2.15 [P = .004]). SPECT/CT findings significantly correlate with the degree and size of chondral lesions on MR images. Grade 3 and 4 chondral lesions of the knee, as well as larger lesions, correlate with a high bone tracer uptake. © RSNA, 2015.
Tropospheric ozone observations - How well can we assess tropospheric ozone changes?
NASA Astrophysics Data System (ADS)
Tarasick, D. W.; Galbally, I. E.; Ancellet, G.; Leblanc, T.; Wallington, T. J.; Ziemke, J. R.; Steinbacher, M.; Stähelin, J.; Vigouroux, C.; Hannigan, J. W.; García, O. E.; Foret, G.; Zanis, P.; Liu, X.; Weatherhead, E. C.; Petropavlovskikh, I. V.; Worden, H. M.; Osman, M.; Liu, J.; Lin, M.; Cooper, O. R.; Schultz, M. G.; Granados-Muñoz, M. J.; Thompson, A. M.; Cuesta, J.; Dufour, G.; Thouret, V.; Hassler, B.; Trickl, T.
2017-12-01
Since the early 20th century, measurements of ozone in the free troposphere have evolved and changed. Data records have different uncertainties and biases, and differ with respect to coverage, information content, and representativeness. Almost all validation studies employ ECC ozonesondes. These have been compared to UV-absorption measurements in a number of intercomparison studies, and show a modest ( 1-5%) high bias in the troposphere, with an uncertainty of 5%, but no evidence of a change over time. Umkehr, lidar, FTIR, and commercial aircraft all show modest low biases relative to the ECCs, and so -- if the ECC biases are transferable -- all agree within 1σ with the modern UV standard. Relative to the UV standard, Brewer-Mast sondes show a 20% increase in sensitivity from 1970-1995, while Japanese KC sondes show an increase of 5-10%. Combined with the shift of the global ozonesonde network to ECCs, this can induce a false positive trend, in analyses based on sonde data. Passive sounding methods -- Umkehr, FTIR and satellites -- have much lower vertical resolution than active methods, and this can limit the attribution of trends. Satellite biases are larger than those of other measurement systems, ranging between -10% and +20%, and standard deviations are large: about 10-30%, versus 5-10% for sondes, aircraft, lidar and ground-based FTIR. There is currently little information on measurement drift for satellite measurements of tropospheric ozone. This is an evident area of concern if satellite retrievals are used for trend studies. The importance of ECC sondes as a transfer standard for satellite validation means that efforts to homogenize existing records, by correcting for known changes and by adopting strict standard operating procedures, should continue, and additional research effort should be put into understanding and reducing sonde uncertainties. Representativeness is also a potential source of large errors, which are difficult to quantify. The global observation network is unevenly distributed, and so additional sites (or airports), would be of benefit. Objective methods of quantifying spatial representativeness can optimize future network design. International cooperation and data sharing will be of paramount importance, as the TOAR project has demonstrated.
Selenium Uptake and Volatilization by Marine Algae
NASA Astrophysics Data System (ADS)
Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.
2015-04-01
Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se, especially in low phosphate regimes such as oligotrophic waters and late stage phytoplankton blooms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niedzielski, Joshua S., E-mail: jsniedzielski@mdanderson.org; University of Texas Houston Graduate School of Biomedical Science, Houston, Texas; Yang, Jinzhong
Purpose: We sought to investigate the ability of mid-treatment {sup 18}F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. Methods and Materials: This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized {sup 18}F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We usedmore » nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Results: Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion. Symptom progression was predicted with an AUC of 0.75. Dose metrics performed poorly at classifying esophagitis (AUC of 0.52, grade 2 or higher mid treatment) or predicting symptom progression (AUC of 0.67). Conclusions: Normalized uptake can objectively, locally, and noninvasively quantify esophagitis during radiation therapy and predict eventual symptoms from asymptomatic patients. Normalized uptake may provide patient-specific dose-response information not discernible from dose.« less
Niedzielski, Joshua S; Yang, Jinzhong; Liao, Zhongxing; Gomez, Daniel R; Stingo, Francesco; Mohan, Radhe; Martel, Mary K; Briere, Tina M; Court, Laurence E
2016-11-01
We sought to investigate the ability of mid-treatment (18)F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized (18)F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We used nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion. Symptom progression was predicted with an AUC of 0.75. Dose metrics performed poorly at classifying esophagitis (AUC of 0.52, grade 2 or higher mid treatment) or predicting symptom progression (AUC of 0.67). Normalized uptake can objectively, locally, and noninvasively quantify esophagitis during radiation therapy and predict eventual symptoms from asymptomatic patients. Normalized uptake may provide patient-specific dose-response information not discernible from dose. Copyright © 2016 Elsevier Inc. All rights reserved.
Atmospheric Composition Change: Climate-Chemistry Interactions
NASA Technical Reports Server (NTRS)
Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.;
2011-01-01
Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 510 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modelling of composition changes, access to new observational data has improved modelling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.
NASA Astrophysics Data System (ADS)
Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie
2014-06-01
In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.
Bush, M L; Zhang, W; Ben-Jebria, A; Ultman, J S
2001-06-15
In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obtained for chlorine (Cl(2)) and for ozone (O(3)) to test the predictive capability of the single-path model and to adjust input parameters for applying the model to other exposure conditions. The data, consisting of uptake fraction as a function of bolus penetration volume, were recorded on 10 healthy nonsmokers breathing orally as well as nasally at alternative air flows of 150, 250, and 1000 ml/s. By employing published data for airway anatomy, gas-phase dispersion coefficients, and gas-phase mass transfer coefficients while neglecting diffusion limitations in the mucus phase, the single-path model was capable of predicting the uptake distribution for O(3) but not the steeper distribution that was observed for Cl(2). To simultaneously explain the data for these two gases, it was necessary to increase gas-phase mass transfer coefficients and to include a finite diffusion resistance of O(3) within the mucous layer. The O(3) reaction rate constants that accounted for this diffusion resistance, 2 x 10(6) s(-1) in the mouth and 8 x 10(6) s(-1) in the nose and lower airways, were much greater than previously reported reactivities of individual substrates found in mucus. Copyright 2001 Academic Press.
Mapping of Ozone on Mars at Infrared Wavelengths Using Crires at VLT
NASA Astrophysics Data System (ADS)
Radeva, Y. L.; Mumma, M. J.; Villanueva, G.; Novak, R.; Hartogh, P.; Encrenaz, T.; Kaufl, H.; Smette, A.
2010-12-01
We present spatially resolved maps of ozone and water on Mars, acquired on 21 August 2009 using the ultra-high resolution infrared spectrometer CRIRES at ESO’s VLT (Paranal, Chile). On Mars, the season was mid-summer in the South (Ls = 325) and the latitudinal resolution was 10 degrees FWHM at disk center. Ozone is produced by recombination of photochemically produced O and O2. It is destroyed by UV photolysis (with O2 (a1Dg) as a principal product) but also by reaction with odd hydrogen species (especially, H - a product of H2O vapor photolysis). Thus, simultaneous measurements of water and ozone can test this relationship. We quantified ozone using spectral lines (near 1.27 mm) of O2 (a1Dg). The emission from O2 (a1Dg) serves as a tracer for O3 above 20 km, since at lower altitudes collisions with CO2 quench the excited O2 (a1Dg) molecules. We confirmed the vertical location of the O2 (a1Dg) emission by extracting rotational temperatures from line-by-line ratios, and comparing them with standard vertical temperature profiles for this season and location(s). On the same night, we also obtained 2-D (lat-long) maps of Martian water from multiple H2O lines detected in the 3.3 mm region. We compare our retrieved distributions for ozone (latitude and altitude) with predictions of Lefevre et al. [I] based on their comprehensive 3-D circulation and photochemical model for the Martian atmosphere. Acknowledgements: This work was funded by NASA’s R&A Programs in Astrobiology (344-53-51), Planetary Astronomy (344-32-51-96), and Planetary Atmospheres (NNX09AB65G). We gratefully acknowledge the Director and staff of the European Southern Observatory, for supporting these observations. References: [I] Lefevre et al. (2004), J. of Geophys. Res. 109, E07004
NASA Astrophysics Data System (ADS)
Holmen, B. A.; Stevens, T.
2009-12-01
Vehicle exhaust contains many unregulated chemical compounds that are harmful to human health and the natural environment, including polycyclic aromatic hydrocarbons (PAH), a class of organic compounds derived from fuel combustion that can be carcinogenic and mutagenic. PAHs have been quantified in vehicle-derived ultrafine particles (Dp<100nm), which are more toxic than larger particles and are linked to adverse health problems, including respiratory and cardiac disease. Once emitted into the atmosphere, particle-bound PAHs can undergo “aging” reactions with oxidants, such as ozone, to form more polar species. These polar reaction products include species such as quinones that can be more toxic than the parent PAH compounds. Here, 0.4ppm ozone was reacted over a 24-hour period with the 16 EPA priority PAHs plus coronene adsorbed to (i) a quartz fiber filter and (ii) NIST diesel PM. The difference in the PAH/O3 heterogeneous reaction rate resulting from the two substrates will be discussed. The experiments were completed by spiking a known PAH mixture to the solid, reacting the samples with gas-phase ozone, and determining both PAH loss over time and products formed, using thermal-desorption gas chromatography / mass spectrometry (TD-GC/MS). The individual PAHs anthracene, phenanthrene, and fluorene, adsorbed to a QFF were also separately reacted with 0.4 ppm ozone. A volatilization control and the collection of volatilized PAHs using a Tenax-packed thermal desorption vial completed the mass balance and aided determination parent-product relationships. Heterogeneous reaction products analyzed directly without derivatization indicate the formation of 9,10-anthracenedione, 9H-fluoren-9-one, and (1,1’-biphenyl)-2,2’-dicarboxaldehyde from the reaction of ozone with the PAH mix on a QFF, but only 9,10-anthracenedione was detected for the diesel PM reaction. The implications of these results for aging of diesel particulate in urban environments will be discussed.
Chemistry-Transport Modeling of the Satellite Observed Distribution of Tropical Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Peters, Wouter; Krol, Maarten; Dentener, Frank; Thompson, Anne M.; Leloeveld, Jos; Bhartia, P. K. (Technical Monitor)
2002-01-01
We have compared the 14-year record of satellite derived tropical tropospheric ozone columns (TTOC) from the NIMBUS-7 Total Ozone Mapping Spectrometer (TOMS) to TTOC calculated by a chemistry-transport model (CTM). An objective measure of error, based on the zonal distribution of TTOC in the tropics, is applied to perform this comparison systematically. In addition, the sensitivity of the model to several key processes in the tropics is quantified to select directions for future improvements. The comparisons indicate a widespread, systematic (20%) discrepancy over the tropical Atlantic Ocean, which maximizes during austral Spring. Although independent evidence from ozonesondes shows that some of the disagreement is due to satellite over-estimate of TTOC, the Atlantic mismatch is largely due to a misrepresentation of seasonally recurring processes in the model. Only minor differences between the model and observations over the Pacific occur, mostly due to interannual variability not captured by the model. Although chemical processes determine the TTOC extent, dynamical processes dominate the TTOC distribution, as the use of actual meteorology pertaining to the year of observations always leads to a better agreement with TTOC observations than using a random year or a climatology. The modeled TTOC is remarkably insensitive to many model parameters due to efficient feedbacks in the ozone budget. Nevertheless, the simulations would profit from an improved biomass burning calendar, as well as from an increase in NOX abundances in free tropospheric biomass burning plumes. The model showed the largest response to lightning NOX emissions, but systematic improvements could not be found. The use of multi-year satellite derived tropospheric data to systematically test and improve a CTM is a promising new addition to existing methods of model validation, and is a first step to integrating tropospheric satellite observations into global ozone modeling studies. Conversely,the CTM may suggest improvements to evolving satellite retrievals for tropospheric ozone.
Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng
2015-01-01
Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fathinia, Mehrangiz; Khataee, Alireza; Naseri, Abdolhosein; Aber, Soheil
2015-02-01
The present study has focused on the degradation of a mixture of three pharmaceuticals, i.e. methyldopa (MDP), nalidixic acid (NAD) and famotidine (FAM) which were quantified simultaneously during photocatalytic-ozonation process. The experiments were conducted in a semi-batch reactor where TiO2 nanoparticles (crystallites mean size 8 nm) were immobilized on ceramic plates irradiated by UV-A light in the proximity of oxygen and/or ozone. The surface morphology and roughness of the bare and TiO2-coated ceramic plates were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). An analytical methodology was successfully developed based on both recording ultraviolet-visible (UV-Vis) spectra during the degradation process and a data analysis using multivariate curve resolution with alternating least squares (MCR-ALS). This methodology enabled the researchers to obtain the concentration and spectral profiles of the chemical compounds which were involved in the process. A central composite design was used to study the effect of several factors on multiple responses namely MDP removal (Y1), NAD removal (Y2) and FAM removal (Y3) in the simultaneous photocatalytic-ozonation of these pharmaceuticals. A multi-response optimization procedure based on global desirability of the factors was used to simultaneously maximize Y1, Y2 and Y3. The results of the global desirability revealed that 8 mg/L MAD, 8 mg/L NAD, 8 mg/L FAM, 6 L/h ozone flow rate and a 30 min-reaction time were the best conditions under which the optimized values of various responses were Y1 = 95.03%, Y2 = 84.93% and Y3 = 99.15%. Also, the intermediate products of pharmaceuticals generated in the photocatalytic-ozonation process were identified by gas chromatography coupled to mass spectrometry.
NASA Astrophysics Data System (ADS)
Markakis, Konstantinos; Valari, Myrto; Engardt, Magnuz; Lacressonniere, Gwendoline; Vautard, Robert; Andersson, Camilla
2016-02-01
Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modelled at 4 and 1 km horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine-resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional-scale emission projections by comparing modelled pollutant concentrations between the fine- and coarse-scale simulations over the study areas. We show that over urban areas with major regional contribution (e.g. the city of Stockholm) the bias related to coarse-scale projections may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modelling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily mean and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The climate benefit on PM2.5 and PM10 in Paris is between -5 and -10 %, while for Stockholm we estimate mixed trends of up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily mean and maximum ozone and 20 % for PM. Through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily mean ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting from a health impact perspective.
NASA Astrophysics Data System (ADS)
Markakis, K.; Valari, M.; Engardt, M.; Lacressonnière, G.; Vautard, R.; Andersson, C.
2015-10-01
Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modeled at 4 and 1 \\unit{km} horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional scale emission projections over the study areas by comparing modeled pollutant concentrations between the fine and coarse scale simulations. We show that over urban areas with major regional contribution (e.g., the city of Stockholm) the bias due to coarse emission inventory may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modeling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily average and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The joined climate benefit on PM2.5 and PM10 in Paris is between -10 and -5 % while for Stockholm we observe mixed trends up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily average and maximum ozone and 20 % for PM and through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily average ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting in a health impact perspective.
Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions
NASA Astrophysics Data System (ADS)
Covino, T. P.; McGlynn, B. L.; McNamara, R.
2009-12-01
Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.
Rogers, Stephen C.; Gibbons, Lindsey B.; Griffin, Sherraine; Doctor, Allan
2012-01-01
This chapter summarizes the principles of RSNO measurement in the gas phase, utilizing ozone-based chemiluminescence and the copper cysteine (2C) ± carbon monoxide (3C) reagent. Although an indirect method for quantifying RSNOs, this assay represents one of the most robust methodologies available. It exploits the NO• detection sensitivity of ozone based chemiluminscence, which is within the range required to detect physiological concentrations of RSNO metabolites. Additionally, the specificity of the copper cysteine (2C and 3C) reagent for RSNOs negates the need for sample pretreatment, thereby minimizing the likelihood of sample contamination (false positive results), NO species inter-conversion, or the loss of certain highly labile RSNO species. Herein, we outline the principles of this methodology, summarizing key issues, potential pitfalls and corresponding solutions. PMID:23116707
Short- and Medium-term Atmospheric Effects of Very Large Solar Proton Events
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Fleming, Eric L.; Labow, Gordon J.; Randall, Cora E.; Lopez-Puertas, Manuel; Funke, Bernd
2007-01-01
Long-term variations in ozone have been caused by both natural and humankind related processes. In particular, the humankind or anthropogenic influence on ozone from chlorofluorocarbons and halons (chlorine and bromine) has led to international regulations greatly limiting the release of these substances. These anthropogenic effects on ozone are most important in polar regions and have been significant since the 1970s. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the short- and medium-term (days to a few months) influences of solar proton events between 1963 and 2005 on stratospheric ozone. The four largest events in the past 45 years (August 1972; October 1989; July 2000; and October-November 2003) caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- containing compounds, which led to the polar ozone destruction. The hydrogen-containing compounds have very short lifetimes and lasted for only a few days (typically the duration of the solar proton event). On the other hand, the nitrogen-containing compounds lasted much longer, especially in the Winter. The nitrogen oxides were predicted to increase substantially due to these solar events and led to mid- to upper polar stratospheric ozone decreases of over 20%. These WACCM results generally agreed with satellite measurements. Both WACCM and measurements showed enhancements of nitric acid, dinitrogen pentoxide, and chlorine nitrate, which were indirectly caused by these solar events. Solar proton events were shown to cause a significant change in the polar stratosphere and need to be considered in understanding variations during years of strong solar activity.
NASA Astrophysics Data System (ADS)
Cuchiara, G. C.; Li, X.; Carvalho, J.; Rappenglück, B.
2014-10-01
With over 6 million inhabitants the Houston metropolitan area is the fourth-largest in the United States. Ozone concentration in this southeast Texas region frequently exceeds the National Ambient Air Quality Standard (NAAQS). For this reason our study employed the Weather Research and Forecasting model with Chemistry (WRF/Chem) to quantify meteorological prediction differences produced by four widely used PBL schemes and analyzed its impact on ozone predictions. The model results were compared to observational data in order to identify one superior PBL scheme better suited for the area. The four PBL schemes include two first-order closure schemes, the Yonsei University (YSU) and the Asymmetric Convective Model version 2 (ACM2); as well as two turbulent kinetic energy closure schemes, the Mellor-Yamada-Janjic (MYJ) and Quasi-Normal Scale Elimination (QNSE). Four 24 h forecasts were performed, one for each PBL scheme. Simulated vertical profiles for temperature, potential temperature, relative humidity, water vapor mixing ratio, and the u-v components of the wind were compared to measurements collected during the Second Texas Air Quality Study (TexAQS-II) Radical and Aerosol Measurements Project (TRAMP) experiment in summer 2006. Simulated ozone was compared against TRAMP data, and air quality stations from Continuous Monitoring Station (CAMS). Also, the evolutions of the PBL height and vertical mixing properties within the PBL for the four simulations were explored. Although the results yielded high correlation coefficients and small biases in almost all meteorological variables, the overall results did not indicate any preferred PBL scheme for the Houston case. However, for ozone prediction the YSU scheme showed greatest agreements with observed values.
NASA Astrophysics Data System (ADS)
Cuchiara, Gustavo C.; Li, Xiangshang; Carvalho, Jonas; Rappenglück, Bernhard
2015-04-01
With over 6 million inhabitants the Houston metropolitan area is the fourth-largest in the United States. Ozone concentration in this southeast Texas region frequently exceeds the National Ambient Air Quality Standard (NAAQS). For this reason our study employed the Weather Research and Forecasting model with Chemistry (WRF/Chem) to quantify meteorological prediction differences produced by four widely used PBL schemes and analyzed its impact on ozone predictions. The model results were compared to observational data in order to identify one superior PBL scheme better suited for the area. The four PBL schemes include two first-order closure schemes, the Yonsei University (YSU) and the Asymmetric Convective Model version 2 (ACM2); as well as two turbulent kinetic energy closure schemes, the Mellor-Yamada-Janjic (MYJ) and Quasi-Normal Scale Elimination (QNSE). Four 24 h forecasts were performed, one for each PBL scheme. Simulated vertical profiles for temperature, potential temperature, relative humidity, water vapor mixing ratio, and the u-v components of the wind were compared to measurements collected during the Second Texas Air Quality Study (TexAQS-II) Radical and Aerosol Measurements Project (TRAMP) experiment in summer 2006. Simulated ozone was compared against TRAMP data, and air quality stations from Continuous Monitoring Station (CAMS). Also, the evolutions of the PBL height and vertical mixing properties within the PBL for the four simulations were explored. Although the results yielded high correlation coefficients and small biases in almost all meteorological variables, the overall results did not indicate any preferred PBL scheme for the Houston case. However, for ozone prediction the YSU scheme showed greatest agreements with observed values.
NASA Astrophysics Data System (ADS)
Frith, S. M.; Stolarski, R. S.; McPeters, R. D.; Kramarova, N. A.
2017-12-01
The Ozone Monitoring and Profile Suite (OMPS) on the Suomi NPP satellite comprises three instruments measuring profile and total column ozone. The Nadir Profiler sensor measures broadly-resolved vertical ozone profiles retrieved from backscattered UV radiances, and continues a nearly unbroken record of measurements from the Solar Backscatter Ultraviolet (SBUV and SBUV/2) series of instruments dating back to late 1978. The SBUV Merged Ozone Dataset (MOD) combines data from the SBUV instrument series into a single coherent data record. The last instrument in the series, operating on the NOAA 19 satellite, is expected to encounter higher measurement uncertainties as the N19 orbit drifts closer to the terminator, necessitating a move to the next generation OMPS instruments. Here we incorporate OMPS NP v2.3 data from 2012-2017 into the MOD record and evaluate the effects of the new data on theoverall record, particularly the sensitivity of long-term trend estimates derived from MOD. We will evaluate the uncertainty associated with merging multiple records. We use a Monte Carlo modeling approach to estimate the potential for uncertainties in the calibration and drift of individual instruments to mimic long-term variations in the merged data set. Intra-instrument comparisons during overlap periods are used to quantify the uncertainty of each instrument in the Monte Carlo simulations. Current error estimates using this approach are likely conservative because we model a Gaussian distribution of potential offsets and drifts when the actual distributions are more complicated. In this work we will investigate the effects of the additional data set, but also pursue approaches to define the Monte Carlo model more precisely to better characterize the potential error.
Variability of Stratospheric Reactive Nitrogen and Ozone Related to the QBO
NASA Astrophysics Data System (ADS)
Park, M.; Randel, W. J.; Kinnison, D. E.; Bourassa, A. E.; Degenstein, D. A.; Roth, C. Z.; McLinden, C. A.; Sioris, C. E.; Livesey, N. J.; Santee, M. L.
2017-09-01
The stratospheric quasi-biennial oscillation (QBO) dominates interannual variability of dynamical variables and trace constituents in the tropical stratosphere and provides a natural experiment to test circulation-chemistry interactions. This work quantifies the relationships among ozone (O3), reactive nitrogen (NOy), and source gas N2O, and their links to the QBO, based on satellite constituent measurements and meteorological data spanning 2005-2014 (over four QBO cycles). Data include O3, HNO3, and N2O from the Aura Microwave Limb Sounder and an NOx proxy derived from Optical Spectrograph and Infrared Imager System NO2 measurements combined with a photochemical box model (= NOx*). Results are compared to simulations from the Whole Atmosphere Community Climate Model, version 4 incorporating a QBO circulation nudged to assimilated winds. Cross correlations and composites with respect to the QBO phase show coherent 180° out-of-phase relationships between NOy and N2O throughout the stratosphere, with the NOx/HNO3 ratio increasing with altitude. The anomalies in NOy species propagate coherently downward with the QBO. Ozone is anticorrelated with reactive nitrogen in the middle stratosphere above 28 km due to NOx control of ozone catalytic loss cycles. Quantitative comparisons of nitrogen partitioning and O3 sensitivity to NOx show good overall agreement between satellite observations and model results (suggesting closure of the NOy budget), although the model results show larger (up to 20%) N2O, NOx, and O3 variations near 35 km compared to observations. These analyses serve to assess the consistency of diverse satellite-based data sets and also to evaluate nitrogen partitioning and NOx-dependent ozone chemistry in the global model.
Pollution impacts on Arctic O3 and CO distributions during POLARCAT summer campaign.
NASA Astrophysics Data System (ADS)
Pommier, M.; Law, K. S.; Clerbaux, C.; Turquety, S.; Schlager, H.; Ancellet, G.; Paris, J.-D.; NASA Arctas Data Team
2009-04-01
The Arctic ozone budget is not well quantified and global models fail to reproduce seasonal cycles especially in summertime when anthropogenic and boreal forest fire emissions can contribute. One possible explanation is the underestimation of modelled ozone production in forest fires plumes. Long-range transport of anthropogenic pollution to the Arctic is also not well quantified. This study focuses on analysis of the POLARCAT summer campaign which took place in Kangerlussuaq, Greenland in July 2008. During the campaign different air masses were sampled including clean northerly air, polluted plumes originating from anthropogenic sources in North American and forest fire plumes from Siberia and Canada. Measurements of O3 and CO collected by the ATR-42 aircraft as part of POLARCAT-France and the German DLR-Falcon aircraft as part of POLARCAT-GRACE are compared to satellite observations from the IASI (Infrared Atmospheric Sounding Interferometer) interferometer. Specific IASI validation flights are also used to validate the measurements. Both in-situ and satellite data are compared to results from the LMDz-INCA global chemistry model. Data from other campaigns such as NASA-ARCTAS and YAK flights in Siberia are also available for these comparisons. Preliminary analyses of Lagrangian matches between aircraft measuring in the same air masses using the CiTTyCAT photochemical trajectory model are presented.
Hakeem Said, Inamullah; Gencer, Selin; Ullrich, Matthias S; Kuhnert, Nikolai
2018-06-01
Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modulate their biological activities. Many fundamental questions still need to be addressed to understand how the gut microbiota-diet interactions affect human health. Herein, a UHPLC-QTOF mass spectrometry-based method for the quantification of uptake and determination of intracellular bacterial concentrations of dietary phenolics from coffee and tea was developed. Quantitative uptake data for selected single purified phenolics were determined. The specific uptake from mixtures containing up to four dietary relevant compounds was investigated to assess changes of uptake parameters in a mixture model system. Indeed, perturbation of bacteria by several compounds alters uptake parameter in particular t max . Finally, model bacteria were dosed with complex dietary mixtures such as diluted tea or coffee extracts. The uptake kinetics of the twenty most abundant phenolics was quantified and the findings are discussed. For the first time, quantitative data on in-vitro uptake of dietary phenolics from food matrices were obtained indicating a time-dependent differential uptake of nutritional compounds. Copyright © 2018. Published by Elsevier Ltd.
Wei, Da; Xu-Ri; Tenzin-Tarchen; Wang, Yuesi; Wang, Yinghong
2015-02-01
The uptake of CH4 by aerate soil plays a secondary role in the removal of tropospheric CH4 , but it is still highly uncertain in terms of its magnitude, spatial, and temporal variation. In an attempt to quantify the sink of the vast alpine grasslands (1,400,000 km(2)) of the Tibetan Plateau, we conducted in situ measurements in an alpine steppe (4730 m) and alpine meadow (4900 m) using the static chamber and gas chromatograph method. For the alpine steppe, measurements (2008-2013) suggested that there is large interannual variability in CH4 uptake, ranging from -48.8 to -95.8 μg CH4 m(-2) h(-1) (averaged of -71.5 ± 2.5 μg CH4 m(-2) h(-1)), due to the variability in precipitation seasonality. The seasonal pattern of CH4 uptakes in the form of stronger uptake in the early growing season and weaker uptake in the rainy season closely matched the precipitation seasonality and subsequent soil moisture variation. The relationships between alpine steppe CH4 uptake and soil moisture/temperature are best depicted by a quadratic function and an exponential function (Q10 = 1.67) respectively. Our measurements also showed that the alpine meadow soil (average of -59.2 ± 3.7 μg CH4 m(-2) h(-1)) uptake less CH4 than the alpine steppe and produces a similar seasonal pattern, which is negatively regulated by soil moisture. Our measurements quantified--at values far higher than those estimated by process-based models--that both the alpine steppe and alpine meadow are considerable CH4 sinks, despite the cold weather of this high-altitude area. The consecutive measurements gathered in this study also highlight that precipitation seasonality tends to drive the interannual variation in CH4 uptake, indicating that future study should be done to better characterize how CH4 cycling might feedback to the more extreme climate. © 2014 John Wiley & Sons Ltd.
Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y
2015-01-01
UV radiation is an essential driver for the formation of photochemical smog, which includes ground-level ozone and particulate matter (PM). Recent analyses support earlier work showing that poor outdoor air quality is a major environmental hazard as well as quantifying health effects on regional and global scales more accurately. Greater exposure to these pollutants has been linked to increased risks of cardiovascular and respiratory diseases in humans and is associated globally with several million premature deaths per year. Ozone also has adverse effects on yields of crops, leading to loss of billions of US dollars each year. These detrimental effects also may alter biological diversity and affect the function of natural ecosystems. Future air quality will depend mostly on changes in emission of pollutants and their precursors, but changes in UV radiation and climate will contribute as well. Significant reductions in emissions, mainly from the energy and transportation sectors, have already led to improved air quality in many locations. Air quality will continue to improve in those cities/states that can afford controls, and worsen where the regulatory infrastructure is not available. Future changes in UV radiation and climate will alter the rates of formation of ground-level ozone and photochemically-generated particulate matter and must be considered in predictions of air quality. The decrease in UV radiation associated with recovery of stratospheric ozone will, according to recent global atmospheric model simulations, lead to increases in ground-level ozone at most locations. If correct, this will add significantly to future ground-level ozone trends. However, the spatial resolution of these global models is insufficient to inform policy at this time, especially for urban areas. UV radiation affects the atmospheric concentration of hydroxyl radicals, ˙OH, which are responsible for the self-cleaning of the atmosphere. Recent measurements confirm that, on a local scale, ˙OH radicals respond rapidly to changes in UV radiation. However, on large (global) scales, models differ in their predictions by nearly a factor of two, with consequent uncertainties for estimating the atmospheric lifetime and concentrations of key greenhouse gases and air pollutants. Projections of future climate need to consider these uncertainties. No new negative environmental effects of substitutes for ozone depleting substances or their breakdown-products have been identified. However, some substitutes for the ozone depleting substances will continue to contribute to global climate change if concentrations rise above current levels.
Issues and progress in determining background ozone and particle concentrations
NASA Astrophysics Data System (ADS)
Pinto, J. P.
2011-12-01
Exposure to ambient ozone is associated with a variety of health outcomes ranging from mild breathing discomfort to mortality. For the purpose of health risk and policy assessments EPA evaluates the anthropogenic increase in ozone above background concentrations and has defined the North American (NA) background concentration of O3 as that which would occur in the U.S. in the absence of anthropogenic emissions of precursors in the U.S., Canada, and Mexico. Monthly average NA background ozone has been used to evaluate health risks, but EPA and state air quality managers must also estimate day specific ozone background levels for high ozone episodes as part of urban scale photochemical modeling efforts to support ozone regulatory programs. The background concentration of O3 is of more concern than other air pollutants because it typically represents a much larger fraction of observed O3 than do the backgrounds of other criteria pollutants (particulate matter (PM), CO, NO2, SO2). NA background cannot be determined directly from ambient monitoring data because of the influence of NA precursor emissions on formation of ozone within NA. Instead, estimates of NA background O3 have been based on GEOS-Chem using simulations in which NA anthropogenic precursor emissions are zeroed out. Thus, modeled NA background O3 includes contributions from natural sources of precursors (including CH4, NMVOCs, NOx, and CO) everywhere in the world, anthropogenic sources of precursors outside of NA, and downward transport of O3 from the stratosphere. Although monitoring data cannot determine NA background directly, measurements by satellites, aircraft, ozonesondes and surface monitors have proved to be highly useful for identifying sources of background O3 and for evaluating the performance of the GEOS-Chem model. Model simulated NA background concentrations are strong functions of location and season with large inter-day variability and with values increasing with elevation and higher in spring than in summer, and tend to be highest in the Intermountain West during spring. Estimates of annual average NA and other background definitions that have been considered will be presented. Issues associated with modeling background concentrations for both health-risk assessments and for episodic regulatory air quality programs will be discussed, and proposals for new atmospheric measurements and model improvements needed to quantify more accurately background contributions to ozone will also be presented. The views expressed are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.
NASA Astrophysics Data System (ADS)
Hossaini, R.; Chipperfield, M.; Montzka, S. A.; Leeson, A.; Dhomse, S.; Pyle, J. A.
2016-12-01
Very short-lived species (VSLS) are an important source of stratospheric halogens and contribute to ozone loss, particularly in the lower stratosphere, where ozone perturbations are most climate-relevant (Hossaini et al., 2015a,b). Chlorine VSLS, such as dichloromethane (CH2Cl2), are primarily anthropogenic and their production is not controlled by the Montreal Protocol. Long-term surface measurements of CH2Cl2, the most abundant chlorine VSLS, show its atmospheric concentration has more than doubled in the last decade. Here, we used the TOMCAT/SLIMCAT chemical transport model to quantify (i) recent trends in the emission and stratospheric input of CH2Cl2, (ii) the impact of CH2Cl2 on present day ozone & (iii) the impact of continued CH2Cl2 growth on future ozone. Constrained by time-dependent surface CH2Cl2 measurements, our model shows the contribution of CH2Cl2 to stratospheric Cl doubled between 2005 (36 ppt Cl) and 2016 (72 ppt Cl). The model reproduces well high-altitude CH2Cl2 measurements from recent NASA ATTREX missions. Increases in the stratospheric input of CH2Cl2 are attributed to increasing industrial emissions. We estimate a 1 Tg CH2Cl2/yr source is required to sustain observed present day CH2Cl2 concentrations. By comparing a simulation with CH2Cl2 considered to one without, we show that CH2Cl2 presently accounts for up to 10% of lower stratospheric Cly. Inclusion of CH2Cl2 leads to a modest reduction of the model springtime Antarctic ozone column of up to 3%. Assuming CH2Cl2 concentrations continue to increase at their present rate, our forward simulations show CH2Cl2 could account for 20-30% of lower stratospheric Cly by 2050, as the contribution from long-lived chlorocarbons declines. We find that continued CH2Cl2 growth could significantly delay the return of Antarctic ozone to pre-1980 levels by more than a decade. In conclusion, sustained future CH2Cl2 growth could significantly offset some of the future benefits of the Montreal Protocol and add uncertainty to projections of ozone recovery. - Hossaini, R., et al. Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone, Nat. Geosci., 2015a. Hossaini, R., et al. Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol, Geophys. Res. Lett., 2015b.
Johnson-Turbes, Ashani; Berkowitz, Zahava; Zavahir, Yasmine
2015-01-01
Purpose To evaluate whether a culturally appropriate campaign using “Black radio” and print media increased awareness and utilization of local mammography screening services provided by the Centers for Disease Control and Prevention’s National Breast and Cervical Cancer Early Detection Program among African American women. Methods The evaluation used a quasi-experimental design involving data collection during and after campaign implementation in two intervention sites in GA (Savannah with radio and print media and Macon with radio only) and one comparison site (Columbus, GA). We used descriptive statistics to compare mammography uptake for African American women during the initial months of the campaign (8/08–1/09) with the latter months (2/09–8/09) and a post-campaign (9/09–12/09) period in each of the study sites. Comparisons of monthly mammogram uptake between cities were performed with multinomial logistic regression. We assumed a p value <0.05 to be significant. Results We observed an increase of 46 and 20 % in Savannah and Macon, respectively, from the initial period of the campaign to the later period. However, the increase did not persist in the post-campaign period. Analysis comparing monthly mammogram uptake in Savannah and Macon with Columbus showed a significant increase in uptake from the first to the second period in Savannah only (OR 1.269, 95 % CI (1.005–1.602), p = 0.0449). Conclusions Dissemination of health promotion messages via a culturally appropriate, multicomponent campaign using Black radio and print media was effective in increasing mammogram uptake in Savannah among low-income, African American women. Additional research is needed to quantify the relative contribution of campaign radio, print media, and community components to sustain increased mammography uptake. PMID:25732344
Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs.
Au, Sarah Y; Lee, Cindy M; Weinstein, John E; van den Hurk, Peter; Klaine, Stephen J
2017-05-01
To evaluate the process of trophic transfer of microplastics, it is important to consider various abiotic and biotic factors involved in their ingestion, egestion, bioaccumulation, and biomagnification. Toward this end, a review of the literature on microplastics has been conducted to identify factors influencing their uptake and absorption; their residence times in organisms and bioaccumulation; the physical effects of their aggregation in gastrointestinal tracts; and their potential to act as vectors for the transfer of other contaminants. Limited field evidence from higher trophic level organisms in a variety of habitats suggests that trophic transfer of microplastics may be a common phenomenon and occurs concurrently with direct ingestion. Critical research needs include standardizing methods of field characterization of microplastics, quantifying uptake and depuration rates in organisms at different trophic levels, quantifying the influence that microplastics have on the uptake and/or depuration of environmental contaminants among different trophic levels, and investigating the potential for biomagnification of microplastic-associated chemicals. More integrated approaches involving computational modeling are required to fully assess trophic transfer of microplastics. Integr Environ Assess Manag 2017;13:505-509. © 2017 SETAC. © 2017 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de
Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadeningmore » of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.« less
NASA Astrophysics Data System (ADS)
Moore, F.; Dutton, G.; Elkins, J.; Hall, B.; Hurst, D.; Nance, D.; Ray, E.; Romashkin, P.; Thompson, T.; Volk, C. M.
2005-12-01
Accurate models of atmospheric transport are crucial to our current understanding of ozone production/loss and its coupling with climate change. Over the last ``20 years'', improvements in the ability to predict ``The Antarctic Ozone Hole and Polar Ozone Loss'' have tracked improvements in transport models. Data taken from the NOAA/CMDL airborne in-situ GC's (ACATS, LACE, PANTHER, and UCATS) have and will continue to play key roles in quantifying many aspects of stratospheric transport. Our data have been used in many of the model assessments to date. We will display an overview of the transport issues studied over the years using our data. They include descent with mixing within and into the polar vortex, entrainment of mid-latitude air across the vortex edge, upwelling and entrainment in the tropical pipe, isentropic transport across the tropopause into the lowermost stratosphere, mean ages of air parcels in the stratosphere, and stratospheric path distributions. ACATS - Airborne Chromatograph for Atmospheric Trace Species LACE - Lightweight Airborne Chromatograph Experiment PANTHER - PAN and Other Trace Hydrohalocarbons ExpeRiment UCATS - Unmanned aerial systems Chromatograph for Atmospheric Trace Species
Sintes, Eva; Herndl, Gerhard J
2006-11-01
Catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography (MICRO-CARD-FISH) is increasingly being used to obtain qualitative information on substrate uptake by individual members of specific prokaryotic communities. Here we evaluated the potential for using this approach quantitatively by relating the measured silver grain area around cells taking up (3)H-labeled leucine to bulk leucine uptake measurements. The increase in the silver grain area over time around leucine-assimilating cells of coastal bacterial assemblages was linear during 4 to 6 h of incubation. By establishing standardized conditions for specific activity levels and concomitantly performing uptake measurements with the bulk community, MICRO-CARD-FISH can be used quantitatively to determine uptake rates on a single-cell level. Therefore, this approach allows comparisons of single-cell activities for bacterial communities obtained from different sites or growing under different ecological conditions.
Sintes, Eva; Herndl, Gerhard J.
2006-01-01
Catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography (MICRO-CARD-FISH) is increasingly being used to obtain qualitative information on substrate uptake by individual members of specific prokaryotic communities. Here we evaluated the potential for using this approach quantitatively by relating the measured silver grain area around cells taking up 3H-labeled leucine to bulk leucine uptake measurements. The increase in the silver grain area over time around leucine-assimilating cells of coastal bacterial assemblages was linear during 4 to 6 h of incubation. By establishing standardized conditions for specific activity levels and concomitantly performing uptake measurements with the bulk community, MICRO-CARD-FISH can be used quantitatively to determine uptake rates on a single-cell level. Therefore, this approach allows comparisons of single-cell activities for bacterial communities obtained from different sites or growing under different ecological conditions. PMID:16950912
NASA Astrophysics Data System (ADS)
Jurkat, Tina; Kaufmann, Stefan; Voigt, Christiane; Zahn, Andreas; Schlager, Hans; Engel, Andreas; Bönisch, Harald; Dörnbrack, Andreas
2013-04-01
Dynamic and chemical processes modify the ozone (O3) budget of the upper troposphere/lower stratosphere, leading to locally variable O3 trends. In this region, O3 acts as a strong greenhouse gas with a net positive radiative forcing. It has been suggested, that the correlation of the stratospheric tracer hydrochloric acid (HCl) with O3 can be used to quantify stratospheric O3 in the UT/LS region (Marcy et al., 2004). The question is, whether the stratospheric contribution to the nitric acid (HNO3) budget in the UT/LS can be determined by a similar approach in order to differentiate between tropospheric and stratospheric sources of HNO3. To this end, we performed in situ measurements of HCl and HNO3 with a newly developed Atmospheric chemical Ionization Mass Spectrometer (AIMS) during the TACTS (Transport and Composition in the UTLS) / ESMVal (Earth System Model Validation) mission in August/September 2012. The linear quadrupole mass spectrometer deployed aboard the new German research aircraft HALO was equipped with a new discharge source generating SF5- reagent ions and an in-flight calibration allowing for accurate, spatially highly resolved trace gas measurements. In addition, sulfur dioxide (SO2), nitrous acid (HONO) and chlorine nitrate (ClONO2) have been simultaneously detected with the AIMS instrument. Here, we show trace gas distributions of HCl and HNO3 measured during a North-South transect from Northern Europe to Antarctica (68° N to 65° S) at 8 to 15 km altitude and discuss their latitude dependence. In particular, we investigate the stratospheric ozone contribution to the ozone budget in the mid-latitude UT/LS using correlations of HCl with O3. Differences in these correlations in the subtropical and Polar regions are discussed. A similar approach is used to quantify the HNO3 budget of the UT/LS. We identify unpolluted atmospheric background distributions and various tropospheric HNO3 sources in specific regions. Our observations can be compared to data from remote sensing instruments. Further, they will help to validate global chemistry-climate models to gain a better understanding of the trace gas distribution in the UT/LS. Marcy, T. P., Fahey, D. W., Gao, R. S., Popp, P. J., Richard, E. C., Thompson, T. L., Rosenlof, K. H., Ray, E. A., Salawitch, R. J., Atherton, C. S., Bergmann, D. J., Ridley, B. A., Weinheimer, A. J., Loewenstein, M., Weinstock, E. M., and Mahoney, M. J.: Quantifying stratospheric ozone in the upper troposphere with in situ measurements of HCl, Science, 304, 261-265, 2004.
Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone.
Liu, Xiaoyu; Mason, Mark; Krebs, Kenneth; Sparks, Leslie
2004-05-15
Volatile organic compound (VOC) emissions from one electrical plug-in type of pine-scented air freshener and their reactions with O3 were investigated in the U.S. Environmental Protection Agency indoor air research large chamber facility. Ozone was generated from a device marketed as an ozone generator air cleaner. Ozone and oxides of nitrogen concentrations and chamber conditions such as temperature, relative humidity, pressure, and air exchange rate were controlled and/or monitored. VOC emissions and some of the reaction products were identified and quantified. Source emission models were developed to predict the time/concentration profiles of the major VOCs (limonene, alpha-pinene, beta-pinene, 3-carene, camphene, benzyl propionate, benzyl alcohol, bornyl acetate, isobornyl acetate, and benzaldehyde) emitted bythe air freshener. Gas-phase reactions of VOCs from the air freshener with O3 were simulated by a photochemical kinetics simulation system using VOC reaction mechanisms and rate constants adopted from the literature. The concentration-time predictions were in good agreement with the data for O3 and VOCs emitted from the air freshener and with some of the primary reaction products. Systematic differences between the predictions and the experimental results were found for some species. Poor understanding of secondary reactions and heterogeneous chemistry in the chamber is the likely cause of these differences. The method has the potential to provide data to predict the impact of O3/VOC interactions on indoor air quality.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Sultan, B.; Kim, N.; Bradford, D.
2004-12-01
We present a proof-of-concept analysis of the measurement of the health damage of ozone (O3) produced from nitrogen oxides (NOx = NO + NO2) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air Quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NOx emitted from individual sources can have on the downwind concentration of surface O3, depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting ozone-related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used "cap and trade" approach to NOx regulation, which presumes that shifts of emissions over time and space, holding the total fixed over the course of the summer O3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NOx emissions from one place or time to another could result in large changes in the health effects due to ozone formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NOx emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage.
Detection of iodine monoxide in the tropical free troposphere
Dix, Barbara; Baidar, Sunil; Bresch, James F.; Hall, Samuel R.; Schmidt, K. Sebastian; Wang, Siyuan; Volkamer, Rainer
2013-01-01
Atmospheric iodine monoxide (IO) is a radical that catalytically destroys heat trapping ozone and reacts further to form aerosols. Here, we report the detection of IO in the tropical free troposphere (FT). We present vertical profiles from airborne measurements over the Pacific Ocean that show significant IO up to 9.5 km altitude and locate, on average, two-thirds of the total column above the marine boundary layer. IO was observed in both recent deep convective outflow and aged free tropospheric air, suggesting a widespread abundance in the FT over tropical oceans. Our vertical profile measurements imply that most of the IO signal detected by satellites over tropical oceans could originate in the FT, which has implications for our understanding of iodine sources. Surprisingly, the IO concentration remains elevated in a transition layer that is decoupled from the ocean surface. This elevated concentration aloft is difficult to reconcile with our current understanding of iodine lifetimes and may indicate heterogeneous recycling of iodine from aerosols back to the gas phase. Chemical model simulations reveal that the iodine-induced ozone loss occurs mostly above the marine boundary layer (34%), in the transition layer (40%) and FT (26%) and accounts for up to 20% of the overall tropospheric ozone loss rate in the upper FT. Our results suggest that the halogen-driven ozone loss in the FT is currently underestimated. More research is needed to quantify the widespread impact that iodine species of marine origin have on free tropospheric composition, chemistry, and climate. PMID:23345444
Particulate matter air pollution may offset ozone damage to global crop production
NASA Astrophysics Data System (ADS)
Schiferl, Luke D.; Heald, Colette L.
2018-04-01
Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM) in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010) global net impact of air quality on crop production varies by crop (+5.6, -3.7, and +4.5 % for maize, wheat, and rice, respectively). Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.
NASA Astrophysics Data System (ADS)
Grantz, D. A.; Vu, H.; Heath, R. L.; Burkey, K.
2011-12-01
Ozone (O3) injury to vegetation can be conceptually divided into three stages: 1) O3 entrance into the leaf including fractionation of stomatal vs. non-stomatal deposition; 2) O3 overcoming initial metabolic defenses within individual leaves, and 3) oxidant attack by O3 or derivatives on bioreceptors to produce injury. Ozone deposition at canopy scale and uptake at leaf scale are routinely obtained by observational and modeling techniques (Massman and Grantz, 1995). Injury can be assessed experimentally. However, predictive association between ozone concentration or flux and injury is currently not well characterized. This is due to uncertainties in rates and capacities of ozone detoxification, the nature of plant defense mechanisms, and their temporal (diel and seasonal) variability (Heath et al., 2009; Massman et al., 2000). We have developed a plant sensitivity parameter (SO3) relating injury (I) to the sum of O3 flux and photon flux density (FO3 + PPFD) during exposure. By restricting leaf exposure to O3 to a brief (15 min) pulse, we assess passive defense mechanisms, assuming that the pulse duration provides insufficient time for induction of additional (active) defense capacity during exposure. Greenhouse grown Pima cotton was exposed in chambers to pulsed O3 at a range of concentrations, stomatal conductance was measured directly pre- and post-exposure, and injury was assessed 1 week later using several indicators. SO3, determined at 2 hour intervals, exhibited clear diel trends, with maximal sensitivity shortly after solar noon, and minimal sensitivity early and late in the photoperiod. This diel pattern of SO3 did not support suggestions that plant defense is correlated with instantaneous photosynthetic rate. There was only weak correlation between SO3 and whole leaf ascorbate, ascorbate redox poise, or total antioxidant capacity, though future measurements of apoplastic antioxidants may improve these relationships. The parameter, SO3, may be directly related to the weighting factor commonly used as a surrogate for plant defense in model relationships between injury and O3 flux (e.g. Massman et al. 2000). Diurnally varying SO3 incorporates the combined oxidative stresses of O3 and photochemistry, and can be combined with natural diel cycles of ozone concentration and models of stomatal conductance and photosynthesis, to yield integrated impacts of O3 on injury to vegetation.
Evidence for potential impacts of ozone on Pinus cembra L. at mountain sites in Europe: an overview.
Wieser, G; Manning, W J; Tausz, M; Bytnerowicz, A
2006-01-01
We summarize what is known about the impact of ozone (O(3)) on Pinus cembra in the timberline ecotone of the central European Alps and the Carpathian Mountains. In the central European Alps exposure to ambient and two-fold ambient O(3) throughout one growing season did neither cause any visible injury nor affect the photosynthetic machinery and biochemical parameters in current to 1-year-old needles. By contrast, in the southern French Alps and in the Carpathians 1-year-old needles of Pinus cembra trees showed visual symptoms similar to those observed in O(3) stressed pine stands in southern California. For the southern French Alps the observed symptoms could clearly be attributed O(3) and differences in O(3) uptake seems to be the likely key factor for explaining the observed decline. For the Carpathians however, other reasons such as drought may not be excluded in eliciting the observed symptoms. Thus, the action of O(3) has always to be evaluated in concert with other environmental impacts, determining the tree's sensitivity to stress.
Onandia, Gabriela; Olsson, Anna-Karin; Barth, Sabine; King, John S; Uddling, Johan
2011-10-01
With rising concentrations of both atmospheric carbon dioxide (CO(2)) and tropospheric ozone (O(3)), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO(2) and O(3), singly and in combination, on the primary short-term stomatal response to CO(2) concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO(2) and/or O(3) exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO(2) concentration from current ambient level. The impairement of the stomatal CO(2) response by O(3) most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO(2) may not hold for northern hardwood forests under concurrently rising tropospheric O(3). Copyright © 2011 Elsevier Ltd. All rights reserved.
Nuhkat, Maris; Wang, Cun; Wang, Yuh-Shuh; Hõrak, Hanna; Valk, Ervin; Pechter, Priit; Sindarovska, Yana; Tang, Jing; Xiao, Chuanlei; Xu, Yang; Gerst Talas, Ulvi; García-Sosa, Alfonso T.; Kangasjärvi, Saijaliisa; Maran, Uko; Remm, Maido; Roelfsema, M. Rob G.; Hu, Honghong; Kangasjärvi, Jaakko; Loog, Mart; Schroeder, Julian I.; Kollist, Hannes; Brosché, Mikael
2016-01-01
Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO2 signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management. PMID:27923039
2012-10-01
Measurements. Part 1: Theory. Aerosol Sci. Tech., 38, 1185-1205 Finlayson-Pitts, B. J. and Pitts, J. N. 1997. Tropospheric air pollution: Ozone ...2004). Wetting and Hydration of Insoluble Soot Particles in the Upper Troposphere . J. Environ. Monitoring, 6:939-945. Petzold, A., Gysel, M...nanoparticles: role of ambient ionization in tropospheric aerosol formation. Journal of Geophysical Research, 106(5): 4797–4814. Yu, F. (2005). Quasi
Role of the ocean's AMOC in setting the uptake efficiency of transient tracers
NASA Astrophysics Data System (ADS)
Romanou, A.; Marshall, J.; Kelley, M.; Scott, J. R.
2017-12-01
The central role played by the ocean's Atlantic Meridional Overturning Circulation (AMOC) in the uptake and sequestration of transient tracers is studied in a series of experiments with the Goddard Institute for Space Studies and Massachusetts Institute of Technology ocean circulation models. Forced by observed atmospheric time series of CFC-11, both models exhibit realistic distributions in the ocean, with similar surface biases but different response over time. To better understand what controls uptake, we ran idealized forcing experiments in which the AMOC strength varied over a wide range, bracketing the observations. We found that differences in the strength and vertical scale of the AMOC largely accounted for the different rates of CFC-11 uptake and vertical distribution thereof. A two-box model enables us to quantify and relate uptake efficiency of passive tracers to AMOC strength and how uptake efficiency decreases in time. We also discuss the relationship between passive tracer and heat uptake efficiency, of which the latter controls the transient climate response to anthropogenic forcing in the North Atlantic. We find that heat uptake efficiency is substantially less (by about a factor of 5) than that for a passive tracer.
In Vivo Detection of Hyperoxia-Induced Pulmonary Endothelial Cell Death Using 99mTc-Duramycin
Audi, Said H.; Jacobs, Elizabeth R.; Zhao, Ming; Roerig, David L.; Haworth, Steven T.; Clough, Anne V.
2014-01-01
Introduction: 99mTc-duramycin, DU, is a SPECT biomarker of tissue injury identifying cell death. The objective of this study is to investigate the potential of DU imaging to quantify capillary endothelial cell death in rat lung injury resulting from hyperoxia exposure as a model of acute lung injury. Methods: Rats were exposed to room air (normoxic) or >98% O2 for 48 or 60 hours. DU was injected i.v. in anesthetized rats, scintigraphy images were acquired at steady-state, and lung DU uptake was quantified from the images. Post-mortem, the lungs were removed for histological studies. Sequential lung sections were immunostained for caspase activation and endothelial and epithelial cells. Results: Lung DU uptake increased significantly (p < 0.001) by 39% and 146% in 48-hr and 60-hr exposed rats, respectively, compared to normoxic rats. There was strong correlation (r2 = 0.82, p = 0.005) between lung DU uptake and the number of cleaved caspase 3 (CC3) positive cells, and endothelial cells accounted for more than 50% of CC3 positive cells in the hyperoxic lungs. Histology revealed preserved lung morphology through 48 hours. By 60 hours there was evidence of edema, and modest neutrophilic infiltrate. Conclusions: Rat lung DU uptake in vivo increased after just 48 hours of >98% O2 exposure, prior to the onset of any substantial evidence of lung injury. These results suggest that apoptotic endothelial cells are the primary contributors to the enhanced DU lung uptake, and support the utility of DU imaging for detecting early endothelial cell death in vivo. PMID:25218023
Endogenous and exogenous control of ecosystem function: N cycling in headwater streams.
Valett, H M; Thomas, S A; Mulholland, P J; Webster, J R; Dahm, C N; Fellows, C S; Crenshaw, C L; Peterson, C G
2008-12-01
Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of 15N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in 15N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; microg N x m(-2) x s(-1)) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v(f); mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.
Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer
Navarro, Maria A.; Atlas, Elliot L.; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R. P.; Meneguz, Elena; Ashfold, Matthew J.; Manning, Alistair J.; Cuevas, Carlos A.; Schauffler, Sue M.; Donets, Valeria
2015-01-01
Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry−climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4−9) parts per thousand] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212
NASA Astrophysics Data System (ADS)
Elkins, J. W.; Nance, J. D.; Dutton, G. S.; Montzka, S. A.; Hall, B. D.; Miller, B.; Butler, J. H.; Mondeel, D. J.; Siso, C.; Moore, F. L.; Hintsa, E. J.; Wofsy, S. C.; Rigby, M. L.
2015-12-01
The Halocarbons and other Atmospheric Trace Species (HATS) of NOAA's Global Monitoring Division started measurements of the major chlorofluorocarbons and nitrous oxide in 1977 from flask samples collected at five remote sites around the world. Our program has expanded to over 40 compounds at twelve sites, which includes six in situ instruments and twelve flask sites. The Montreal Protocol for Substances that Deplete the Ozone Layer and its subsequent amendments has helped to decrease the concentrations of many of the ozone depleting compounds in the atmosphere. Our goal is to provide zonal emission estimates for these trace gases from multi-box models and their estimated atmospheric lifetimes in this presentation and make the emission values available on our web site. We plan to use our airborne measurements to calibrate the exchange times between the boxes for 5-box and 12-box models using sulfur hexafluoride where emissions are better understood.
2014-01-01
Background The pathological hallmark of multiple sclerosis (MS) is myelin phagocytosis. It remains unclear why microglia and macrophages demyelinate axons in MS, but previously found or yet-unknown changes in the myelin of MS patients could contribute to this process. We therefore studied whether myelin from normal-appearing white matter (NAWM) of MS donors is phagocytosed more efficiently than myelin from control donors. Methods Myelin was isolated from 11 MS and 12 control brain donors and labeled with the pH-sensitive fluorescent dye pHrodo to quantify uptake in lysosomes. Phagocytosis by differentiated THP-1 macrophages and by primary human microglia was quantified with flow cytometry. Whereas myelin uptake by THP-1 macrophages reached a plateau after approximately 24 hours, uptake by primary human microglia showed an almost linear increase over a 72–hour period. Data were statistically analyzed with the Mann–Whitney U test. Results MS-derived myelin was phagocytosed more efficiently by THP-1 macrophages after 6-hour incubation (P = 0.001 for the percentage of myelin-phagocytosing cells and P = 0.0005 for total myelin uptake) and after 24-hour incubation (P = 0.0006 and P = 0.0001, respectively), and by microglia after 24-hour incubation (P = 0.0106 for total myelin uptake). This enhanced uptake was not due to differences in the oxidation status of the myelin. Interestingly, myelin phagocytosis correlated negatively with the age of myelin donors, whereas the age of microglia donors showed a positive trend with myelin phagocytosis. Conclusions Myelin isolated from normal-appearing white matter of MS donors was phagocytosed more efficiently than was myelin isolated from control brain donors by both THP-1 macrophages and primary human microglia. These data indicate that changes in MS myelin might precede phagocyte activation and subsequent demyelination in MS. Identifying these myelin changes responsible for enhancing phagocytic ability could be an interesting therapeutic target to prevent or inhibit formation or expansion of MS lesions. Moreover, during aging, microglia enhance their phagocytic capacity for myelin phagocytosis, but myelin reduces its susceptibility for uptake. PMID:24684721
Incremental benefits of male HPV vaccination: accounting for inequality in population uptake.
Smith, Megan A; Canfell, Karen
2014-01-01
Vaccines against HPV16/18 are approved for use in females and males but most countries currently have female-only programs. Cultural and geographic factors associated with HPV vaccine uptake might also influence sexual partner choice; this might impact post-vaccination outcomes. Our aims were to examine the population-level impact of adding males to HPV vaccination programs if factors influencing vaccine uptake also influence partner choice, and additionally to quantify how this changes the post-vaccination distribution of disease between subgroups, using incident infections as the outcome measure. A dynamic model simulated vaccination of pre-adolescents in two scenarios: 1) vaccine uptake was correlated with factors which also affect sexual partner choice ("correlated"); 2) vaccine uptake was unrelated to these factors ("unrelated"). Coverage and degree of heterogeneity in uptake were informed by observed data from Australia and the USA. Population impact was examined via the effect on incident HPV16 infections. The rate ratio for post-vaccination incident HPV16 in the lowest compared to the highest coverage subgroup (RR(L)) was calculated to quantify between-group differences in outcomes. The population-level incremental impact of adding males was lower if vaccine uptake was "correlated", however the difference in population-level impact was extremely small (<1%) in the Australia and USA scenarios, even under the conservative and extreme assumption that subgroups according to coverage did not mix at all sexually. At the subgroup level, "correlated" female-only vaccination resulted in RR(L)= 1.9 (Australia) and 1.5 (USA) in females, and RR(L)= 1.5 and 1.3 in males. "Correlated" both-sex vaccination increased RR(L) to 4.2 and 2.1 in females and 3.9 and 2.0 in males in the Australia and USA scenarios respectively. The population-level incremental impact of male vaccination is unlikely to be substantially impacted by feasible levels of heterogeneity in uptake. However, these findings emphasize the continuing importance of prioritizing high coverage across all groups in HPV vaccination programs in terms of achieving equality of outcomes.
Hendrickx, Debbie A E; Schuurman, Karianne G; van Draanen, Michael; Hamann, Jörg; Huitinga, Inge
2014-03-31
The pathological hallmark of multiple sclerosis (MS) is myelin phagocytosis. It remains unclear why microglia and macrophages demyelinate axons in MS, but previously found or yet-unknown changes in the myelin of MS patients could contribute to this process. We therefore studied whether myelin from normal-appearing white matter (NAWM) of MS donors is phagocytosed more efficiently than myelin from control donors. Myelin was isolated from 11 MS and 12 control brain donors and labeled with the pH-sensitive fluorescent dye pHrodo to quantify uptake in lysosomes. Phagocytosis by differentiated THP-1 macrophages and by primary human microglia was quantified with flow cytometry. Whereas myelin uptake by THP-1 macrophages reached a plateau after approximately 24 hours, uptake by primary human microglia showed an almost linear increase over a 72-hour period. Data were statistically analyzed with the Mann-Whitney U test. MS-derived myelin was phagocytosed more efficiently by THP-1 macrophages after 6-hour incubation (P = 0.001 for the percentage of myelin-phagocytosing cells and P = 0.0005 for total myelin uptake) and after 24-hour incubation (P = 0.0006 and P = 0.0001, respectively), and by microglia after 24-hour incubation (P = 0.0106 for total myelin uptake). This enhanced uptake was not due to differences in the oxidation status of the myelin. Interestingly, myelin phagocytosis correlated negatively with the age of myelin donors, whereas the age of microglia donors showed a positive trend with myelin phagocytosis. Myelin isolated from normal-appearing white matter of MS donors was phagocytosed more efficiently than was myelin isolated from control brain donors by both THP-1 macrophages and primary human microglia. These data indicate that changes in MS myelin might precede phagocyte activation and subsequent demyelination in MS. Identifying these myelin changes responsible for enhancing phagocytic ability could be an interesting therapeutic target to prevent or inhibit formation or expansion of MS lesions. Moreover, during aging, microglia enhance their phagocytic capacity for myelin phagocytosis, but myelin reduces its susceptibility for uptake.
Histologic analysis of rabbit liver cancer treated by bulk ultrasound ablation
NASA Astrophysics Data System (ADS)
Karunakaran, Chandra Priya; Rudich, Steven M.; Alqadah, Amel; Burgess, Mark T.; Narmoneva, Daria A.; Mast, T. Douglas
2012-10-01
VX2 rabbit liver cancer, treated in vivo using bulk ultrasound ablation by miniaturized image-ablate arrays, was histologically analyzed using TTC vital stain and DAPI nucleic acid stain. VX2 cells were implanted into rabbit liver lobes and allowed to grow for 11-21 days. Liver lobes containing solid VX2 tumors were then treated with 4.8 MHz, 22.5-38.5 W/cm2 in situ intensity, unfocused ultrasound for exposure times of 20-120 s. After animal sacrifice, thermal lesions were bisected along the imaging/treatment plane, one face stained with TTC, and the other with DAPI. Levels of TTC uptake (no uptake, partial uptake, and complete uptake) in liver parenchyma corresponded to three discrete regions of tan, pink and red color. By processing images of DAPI-stained parenchymal tissue from these three regions, cellular damage was quantified. A viability index parameter incorporating the size and shape of DAPI-stained nuclei correlated significantly with levels of TTC uptake, and thus with local tissue viability. For ablation of normal liver, viability indices for parenchymal regions of no TTC uptake and partial TTC uptake were significantly different from those for viable tissue. For ablation of VX2 tumor, differences in viability index between regions of no TTC uptake and complete TTC uptake were smaller, but significant overall.
Grantz, D.A.
2013-01-01
Plant injury by ozone (O3) occurs in three stages, O3 entrance through stomata, overcoming defences, and attack on bioreceptors. Concentration, deposition, and uptake of O3 are accessible by observation and modelling, while injury can be assessed visually or through remote sensing. However, the relationship between O3 metrics and injury is confounded by variation in sensitivity to O3. Sensitivity weighting parameters have previously been assigned to different plant functional types and growth stages, or by differentially weighting O3 concentrations, but diel and seasonal variability have not been addressed. Here a plant sensitivity parameter (S) is introduced, relating injury to O3 dose (uptake) using three independent injury endpoints in the crop species, Pima cotton (Gossypium barbadense). The diel variability of S was determined by assessment at 2h intervals. Pulses of O3 (15min) were used to assess passive (constitutive) defence mechanisms and dose was used rather than concentration to avoid genetic or environmental effects on stomatal regulation. A clear diel trend in S was apparent, with maximal sensitivity in mid-afternoon, not closely related to gas exchange, whole leaf ascorbate, or total antioxidant capacity. This physiologically based sensitivity parameter provides a novel weighting factor to improve modelled relationships between either flux or exposure to O3, and O3 impacts. This represents a substantial improvement over concentration- or phenology-based weighting factors currently in use. Future research will be required to characterize the variability and metabolic drivers of diel changes in S, and the performance of this parameter in prediction of O3 injury. PMID:23404900
Resolving the global transpiration flux is critical to constraining global carbon cycle models because carbon uptake by photosynthesis in terrestrial plants (Gross Primary Productivity, GPP) is directly related to water lost through transpiration. Quantifying GPP globally is cha...
Changes in surface solar UV irradiances and total ozone during the solar eclipse of August 11, 1999
NASA Astrophysics Data System (ADS)
Zerefos, C. S.; Balis, D. S.; Meleti, C.; Bais, A. F.; Tourpali, K.; Kourtidis, K.; Vanicek, K.; Cappellani, F.; Kaminski, U.; Colombo, T.; Stübi, R.; Manea, L.; Formenti, P.; Andreae, M. O.
2000-11-01
During the solar eclipse of August 11, 1999, intensive measurements of UV solar irradiance and total ozone were performed at a number of observatories located near the path of the Moon's shadow. At the Laboratory of Atmospheric Physics (LAP) of the Aristotle University of Thessaloniki, Greece, global and direct spectra of UV solar irradiances (285-365 nm) were recorded with a double monochromator, and erythemal irradiances were measured with broadband pyranometers. In addition, higher-frequency measurements of global and direct irradiances at six UV wavelengths were performed with a single Brewer spectrophotometer. Total ozone measurements were also performed with Dobson and Brewer spectrophotometers at Hradec Kralove (Czech Republic), Ispra (Italy), Sestola (Italy), Hohenpeissenberg (Germany), Bucharest (Romania), Arosa (Switzerland), and Thessaloniki (Greece). From the spectral UV measurements the limb darkening effect of the solar disk was tentatively quantified from differences of measured solar spectral irradiances at the peak of the eclipse (near to limb conditions) and before the eclipse. Two blackbody curves were fit to the preeclipse and peak eclipse spectra, which have shown a difference in effective temperatures of about 165°K between the limb and the whole of the solar disk. The limb darkening effect is larger at the shorter UV wavelengths. The ratio of the diffuse to direct solar irradiances during the eclipse shows that the diffuse component is reduced much less compared to the decline of the direct solar irradiance at the shorter wavelengths. Moreover, a 20-min oscillation of erythemal UV-B solar irradiance was observed before and after the time of the eclipse maximum under clear skies, indicating a possible 20-min fluctuation in total ozone, presumably caused by the eclipse-induced gravity waves. This work also shows that routine total ozone measurements with a Brewer or a Dobson spectrophotometer should be used with caution during a solar eclipse. This is because the diffuse light increases by more than 30% with respect to the direct solar radiation, increasing more at the shorter wavelength side of the UV spectrum. This plausible mechanism introduces an artificial decrease in total ozone during solar eclipse of more than 30 Dobson units (DU), which is confirmed by all Brewer and Dobson measurements. Changes in total ozone cited earlier in the refereed literature have not been confirmed in the present study.
Quantifying the relationship between extreme air pollution events and extreme weather events
NASA Astrophysics Data System (ADS)
Zhang, Henian; Wang, Yuhang; Park, Tae-Won; Deng, Yi
2017-05-01
Extreme weather events can strongly affect surface air quality, which has become a major environmental factor to affect human health. Here, we examined the relationship between extreme ozone and PM2.5 (particular matter with an aerodynamic diameter less than 2.5 μm) events and the representative meteorological parameters such as daily maximum temperature (Tmax), minimum relative humidity (RHmin), and minimum wind speed (Vmin), using the location-specific 95th or 5th percentile threshold derived from historical reanalysis data (30 years for ozone and 10 years for PM2.5). We found that ozone and PM2.5 extremes were decreasing over the years, reflecting EPA's tightened standards and effort on reducing the corresponding precursor's emissions. Annual ozone and PM2.5 extreme days were highly correlated with Tmax and RHmin, especially in the eastern U.S. They were positively (negatively) correlated with Vmin in urban (rural and suburban) stations. The overlapping ratios of ozone extreme days with Tmax were fairly constant, about 32%, and tended to be high in fall and low in winter. Ozone extreme days were most sensitive to Tmax, then RHmin, and least sensitive to Vmin. The majority of ozone extremes occurred when Tmax was between 300 K and 320 K, RHmin was less than 40%, and Vmin was less than 3 m/s. The number of annual extreme PM2.5 days was highly positively correlated with the extreme RHmin/Tmax days, with correlation coefficient between PM2.5/RHmin highest in urban and suburban regions and the correlation coefficient between PM2.5/Tmax highest in rural area. Tmax has more impact on PM2.5 extreme over the eastern U.S. Extreme PM2.5 days were more likely to occur at low RH conditions in the central and southeastern U.S., especially during spring time, and at high RH conditions in the northern U.S. and the Great Plains. Most extreme PM2.5 events occurred when Tmax was between 300 K and 320 K and RHmin was between 10% and 50%. Extreme PM2.5 days usually occurred when Vmin was under 2 m/s. However, during spring season in the Southeast and fall season in Northwest, high winds were found to accompany extreme PM2.5 days, likely reflecting the impact of fire emissions.
NASA Astrophysics Data System (ADS)
Hurst, D. F.; Elkins, J. W.; Montzka, S. A.; Butler, J. H.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Moore, F. L.; Nance, J. D.; Romashkin, P. A.; Thompson, T. M.
2005-12-01
Back in 1978, NOAA/CMDL initiated the weekly filling of flasks at CMDL observatories in Alaska, Hawaii, American Samoa, and Antarctica for analyses of CFC-11, CFC-12 and N2O in the home laboratory. A decade later, each observatory was outfitted with an automated gas chromatograph to make routine, in situ measurements of these three source gases plus methyl chloroform and carbon tetrachloride. Both measurement programs are ongoing, having expanded over the years to include methyl halides and substitutes for regulated halocarbons, to presently account for 95% of the total burden of long-lived Cl and Br believed to enter the stratosphere. These long-term monitoring data have been assimilated into temporal records of the global tropospheric burdens of ozone-depleting chlorine and bromine which are critical input to models that predict future trends in stratospheric ozone. Other information pivotal to ozone projections, such as the atmospheric lifetimes of source gases, stratospheric entry values for total chlorine and total bromine, and identification of the stratospheric sink regions for long-lived source gases, has been gained from in situ measurements by NOAA/CMDL instruments aboard NASA high-altitude aircraft (ER-2 and WB-57) and balloons since 1991. Though CMDL's routine monitoring activities provide important historical records of halogenated source gases in the atmosphere, significant inaccuracies in ozone projections may propagate from the uncertain estimates of impending emissions of ozone-depleting gases. Scenarios of future halocarbon emissions require substantial assumptions about past and pending compliance with the Montreal Protocol, and the sizes and release rates of existing global reservoirs (banks) of halocarbons. Recent work by CMDL has focused on quantifying halocarbon bank emission rates in Russia, the USA, and Canada through geographically extensive measurements aboard trains and low-altitude aircraft. The USA and Canada results indicate that globally significant emissions continued to emanate from these two countries in 2003, more than 7 years after the Montreal Protocol-mandated production phase-out. Large-scale, measurement-based emission estimates such as these provide important checks of our understanding of contemporary halocarbon emissions and will undoubtedly help to improve the accuracy of projected future halocarbon abundances and ozone recovery rates.
Basilico, Nicoletta; Cortelezzi, Lucia; Serpellini, Chiara; Taramelli, Donatella; Omodeo-Salè, Fausta; Salè, Fausta
2009-02-15
We provide two simple low-cost and low-tech procedures to measure with good precision and accuracy the binding and internalization into human erythrocytes of chloroquine and other aminoquinolines. The methods are based on the high fluorescence of the quinoline ring and are complementary. Method A evaluates residual drugs in the supernatants of treated erythrocytes, whereas method B quantifies the total uptake by whole cells and the fraction bound to the membranes. Drug uptake is dose dependent and related to the number of erythrocytes. These assays could be useful when studying the cell interaction of quinoline-type compounds not available in the radioactive form.
Kim, David; Farthing, Matthew W.; Miller, Cass T.; Nylander-French, Leena A.
2008-01-01
The objective of this research was to develop a mathematical description of uptake of aromatic and aliphatic hydrocarbons into the stratum corneum of human skin in vivo. A simple description based on Fick’s Laws of diffusion was used to predict the spatiotemporal variation of naphthalene, 1- and 2-methylnaphthalene, undecane, and dodecane in the stratum corneum of human volunteers. The estimated values of the diffusion coefficients for each chemical were comparable to values predicted using in vitro skin systems and biomonitoring studies. These results demonstrate the value of measuring dermal exposure using the tape-strip technique and the importance of quantifying of dermal uptake. PMID:18423910
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, Stephen A.; Minard, Kevin R.; Trease, Lynn L.
ABSTRACT Age-related changes in gross and microscopic structure of the nasal cavity can alter local tissue susceptibility as well as the dose of inhaled toxicant delivered to susceptible sites. This article describes a novel method for the use of magnetic resonance imaging, 3-dimensional airway modeling, and morphometric techniques to characterize the distribution and magnitude of ozone-induced nasal injury in infant monkeys. Using this method, we are able to generate age-specific, 3-dimensional, epithelial maps of the nasal airways of infant Rhesus macaques. The principal nasal lesions observed in this primate model of ozone-induced nasal toxicology were neutrophilic rhinitis, along with necrosismore » and exfoliation of the epithelium lining the anterior maxilloturbinate. These lesions, induced by acute or cyclic (episodic) exposures, were examined by light microscopy, quantified by morphometric techniques, and mapped on 3-dimensional models of the nasal airways. Here, we describe the histopathologic, imaging, and computational biology methods developed to efficiently characterize, localize, quantify, and map these nasal lesions. By combining these techniques, the location and severity of the nasal epithelial injury were correlated with epithelial type, nasal airway geometry, and local biochemical and molecular changes on an individual animal basis. These correlations are critical for accurate predictive modeling of exposure-dose-response relationships in the nasal airways, and subsequent extrapolation of nasal findings in animals to humans for developing risk assessment.« less
Heat Waves, Urban Vegetation, and Air Pollution
NASA Astrophysics Data System (ADS)
Churkina, G.; Grote, R.; Butler, T. M.
2014-12-01
Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.
Amoueyan, Erfaneh; Ahmad, Sajjad; Eisenberg, Joseph N S; Pecson, Brian; Gerrity, Daniel
2017-08-01
This study evaluated the reliability and equivalency of three different potable reuse paradigms: (1) surface water augmentation via de facto reuse with conventional wastewater treatment; (2) surface water augmentation via planned indirect potable reuse (IPR) with ultrafiltration, pre-ozone, biological activated carbon (BAC), and post-ozone; and (3) direct potable reuse (DPR) with ultrafiltration, ozone, BAC, and UV disinfection. A quantitative microbial risk assessment (QMRA) was performed to (1) quantify the risk of infection from Cryptosporidium oocysts; (2) compare the risks associated with different potable reuse systems under optimal and sub-optimal conditions; and (3) identify critical model/operational parameters based on sensitivity analyses. The annual risks of infection associated with the de facto and planned IPR systems were generally consistent with those of conventional drinking water systems [mean of (9.4 ± 0.3) × 10 -5 to (4.5 ± 0.1) × 10 -4 ], while DPR was clearly superior [mean of (6.1 ± 67) × 10 -9 during sub-optimal operation]. Because the advanced treatment train in the planned IPR system was highly effective in reducing Cryptosporidium concentrations, the associated risks were generally dominated by the pathogen loading already present in the surface water. As a result, risks generally decreased with higher recycled water contributions (RWCs). Advanced treatment failures were generally inconsequential either due to the robustness of the advanced treatment train (i.e., DPR) or resiliency provided by the environmental buffer (i.e., planned IPR). Storage time in the environmental buffer was important for the de facto reuse system, and the model indicated a critical storage time of approximately 105 days. Storage times shorter than the critical value resulted in significant increases in risk. The conclusions from this study can be used to inform regulatory decision making and aid in the development of design or operational criteria for IPR and DPR systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Drought Stress and Ozone Exposure on Isoprene Emissions from Oak Seedlings in Texas
NASA Astrophysics Data System (ADS)
Madronich, M. B.; Harte, A.; Schade, G. W.
2014-12-01
Isoprene is the dominant hydrocarbon emitted by plants to the atmosphere with an approximate global emission of 550 Tg C yr-1. Isoprene emission studies have elucidated plants' isoprene production capacity, and the controlling factors of instantaneous emissions. However, it is not yet well understood how long-term climatic factors such as drought and increasing ozone concentrations affect isoprene emission rates. Drought reduces photosynthetic activity and is thus expected to reduce isoprene emission rate, since isoprene production relies on photosynthates. On the other hand, ozone is also known to negatively affect photosynthesis rates, but can instead increase isoprene emissions. These apparent inconsistencies and a lack of experimental data make it difficult to accurately parameterize isoprene emission responses to changing environmental conditions. The objective of this work is to reduce some of these uncertainties, using oak seedlings as a study system. Our project focuses on isoprene emission responses of oak trees to typical summer drought and high ozone conditions in Texas. We report on experiments conducted using a laboratory whole-plant chamber and leaf-level data obtained from greenhouse-grown seedlings. The chamber experiment studied the effects of ozone and drought on isoprene emissions from >3 year old oak seedlings under controlled conditions of photosynthetically active radiation (PAR), temperature, soil-moisture and the chamber's air composition. Stress in plants was induced by manipulating potted soil-moisture and ozone concentration in the chamber. The greenhouse study focused on understanding the effects of drought under Texas climatic conditions. For this study we used two year old seedlings of water oak (Quercus nigra) and post oak (Quercus stellata). Temperature, humidity and light in the greenhouse followed local conditions. Leaf-level conductance, photosynthesis measurements and isoprene sampling were carried out under controlled leaf temperature and PAR. The only variable manipulated was the water added to the plants. Seedling isoprene and other VOC emissions were identified and quantified using GC-FID techniques. The results of our work may allow for an improved parameterization of isoprene emissions in VOC inventories, particularly for Texas.
Hickman, Jonathan E; Huang, Yaoxian; Wu, Shiliang; Diru, Willy; Groffman, Peter M; Tully, Katherine L; Palm, Cheryl A
2017-08-01
Crop yields in sub-Saharan Africa remain stagnant at 1 ton ha -1 , and 260 million people lack access to adequate food resources. Order-of-magnitude increases in fertilizer use are seen as a critical step in attaining food security. This increase represents an unprecedented input of nitrogen (N) to African ecosystems and will likely be accompanied by increased soil emissions of nitric oxide (NO). NO is a precursor to tropospheric ozone, an air pollutant and greenhouse gas. Emissions of NO from soils occur primarily during denitrification and nitrification, and N input rates are a key determinant of emission rates. We established experimental maize plots in western Kenya to allow us to quantify the response function relating NO flux to N input rate during the main 2011 and 2012 growing seasons. NO emissions followed a sigmoid response to fertilizer inputs and have emission factors under 1% for the roughly two-month measurement period in each year, although linear and step relationships could not be excluded in 2011. At fertilization rates above 100 kg N ha -1 , NO emissions increased without a concomitant increase in yields. We used the geos-chem chemical transport model to evaluate local impacts of increased NO emissions on tropospheric ozone concentrations. Mean 4-hour afternoon tropospheric ozone concentrations in Western Kenya increased by up to roughly 2.63 ppbv under fertilization rates of 150 kg N ha -1 or higher. Using AOT40, a metric for assessing crop damage from ozone, we find that the increased ozone concentrations result in an increase in AOT40 exposure of approximately 110 ppbh for inputs of 150 kg N ha -1 during the March-April-May crop growing season, compared with unfertilized simulations, with negligible impacts on crop productivity. Our results suggest that it may be possible to manage Kenyan agricultural systems for high yields while avoiding substantial impacts on air quality. © 2017 John Wiley & Sons Ltd.
Silva, Raquel A; Adelman, Zachariah; Fry, Meridith M; West, J Jason
2016-11-01
Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration-response function for ozone and an integrated exposure-response model for PM2.5. We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally-675 (95% CI: 428, 899) thousand deaths/year-and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). The contributions of emissions sectors to ambient air pollution-related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA, Adelman Z, Fry MM, West JJ. 2016. The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ Health Perspect 124:1776-1784; http://dx.doi.org/10.1289/EHP177.
Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason
2016-01-01
Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA, Adelman Z, Fry MM, West JJ. 2016. The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ Health Perspect 124:1776–1784; http://dx.doi.org/10.1289/EHP177 PMID:27177206
Pratx, Guillem; Chen, Kai; Sun, Conroy; Martin, Lynn; Carpenter, Colin M.; Olcott, Peter D.; Xing, Lei
2012-01-01
Radiotracers play an important role in interrogating molecular processes both in vitro and in vivo. However, current methods are limited to measuring average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. Here we apply a new technique, termed radioluminescence microscopy, to visualize radiotracer uptake in single living cells, in a standard fluorescence microscopy environment. In this technique, live cells are cultured sparsely on a thin scintillator plate and incubated with a radiotracer. Light produced following beta decay is measured using a highly sensitive microscope. Radioluminescence microscopy revealed strong heterogeneity in the uptake of [18F]fluoro-deoxyglucose (FDG) in single cells, which was found consistent with fluorescence imaging of a glucose analog. We also verified that dynamic uptake of FDG in single cells followed the standard two-tissue compartmental model. Last, we transfected cells with a fusion PET/fluorescence reporter gene and found that uptake of FHBG (a PET radiotracer for transgene expression) coincided with expression of the fluorescent protein. Together, these results indicate that radioluminescence microscopy can visualize radiotracer uptake with single-cell resolution, which may find a use in the precise characterization of radiotracers. PMID:23056276
Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S
2008-09-01
We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2'-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress-positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.
NASA Astrophysics Data System (ADS)
Lafranchi, B. W.; Goldstein, A. H.; Cohen, R. C.
2011-02-01
Observations of NOx in the Sacramento, CA region show that mixing ratios decreased by 30% between 2001 and 2008. Here we use an observation-based method to quantify net ozone production rates in the outflow from the Sacramento metropolitan region and examine the O3 decrease resulting from reductions in NOx emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NOx dependence for Ox (Ox = O3 + NO2) production is strongly coupled with temperature, suggesting that temperature-dependent biogenic VOC emissions can drive Ox production between NOx-limited and NOx-suppressed regimes. As a result, NOx reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-hour O3 standard (90 ppb) in the region have been decreasing linearly with decreases in NOx (at a given temperature) and predict that reductions of NOx concentrations (and presumably emissions) by an additional 30% (relative to 2007 levels) will eliminate violations of the state 1 h standard in the region. If current trends continue, a 30% decrease in NOx is expected by 2012, and an end to violations of the 1 h standard in the Sacramento region appears to be imminent.
NASA Astrophysics Data System (ADS)
Pope, Ronald; Wu, Jianguo; Boone, Christopher
2016-11-01
Quantifying spatial distribution patterns of air pollutants is imperative to understand environmental justice issues. Here we present a landscape-based hierarchical approach in which air pollution variables are regressed against population demographics on multiple spatiotemporal scales. Using this approach, we investigated the potential problem of distributive environmental justice in the Phoenix metropolitan region, focusing on ambient ozone and particulate matter. Pollution surfaces (maps) are evaluated against the demographics of class, age, race (African American, Native American), and ethnicity (Hispanic). A hierarchical multiple regression method is used to detect distributive environmental justice relationships. Our results show that significant relationships exist between the dependent and independent variables, signifying possible environmental inequity. Although changing spatiotemporal scales only altered the overall direction of these relationships in a few instances, it did cause the relationship to become nonsignificant in many cases. Several consistent patterns emerged: people aged 17 and under were significant predictors for ambient ozone and particulate matter, but people 65 and older were only predictors for ambient particulate matter. African Americans were strong predictors for ambient particulate matter, while Native Americans were strong predictors for ambient ozone. Hispanics had a strong negative correlation with ambient ozone, but a less consistent positive relationship with ambient particulate matter. Given the legacy conditions endured by minority racial and ethnic groups, and the relative lack of mobility of all the groups, our findings suggest the existence of environmental inequities in the Phoenix metropolitan region. The methodology developed in this study is generalizable with other pollutants to provide a multi-scaled perspective of environmental justice issues.
NASA Astrophysics Data System (ADS)
Ring, A.; Canty, T. P.; He, H.; Vinciguerra, T.; Lamsal, L. N.; Dickerson, R. R.; Salawitch, R. J.; Cohen, M.; Montgomery, L. N.; Dreessen, J.
2015-12-01
Commercial marine vessels (CMVs) emit significant amounts of NOx, an ozone precursor, which may contribute to negative health consequences for people living in areas near shipping lanes. In coastal US states, many metropolitan areas such as Baltimore and New York City are located near ports with CMVs. Many studies estimate that ships account for ~15-30% of the global anthropogenic NOx emissions. EPA developed emissions inventories are widely used by states to construct model scenarios for testing air quality attainment strategies. Currently, CMV emissions are generated by simply applying growth factors to aggregated emissions data from much earlier years. Satellite retrievals from the Ozone Monitoring Instrument (OMI) have been successfully used to improve the veracity of marine emissions by incorporating observational data from the inventory year. In this study we use OMI NO2 observations and Community Multiscale Air Quality (CMAQ) model outputs to improve the EPA marine emission estimates for the Mid-Atlantic region. Back trajectories from the NOAA Air Resources Laboratory HYSPLIT model are used to identify days with minimal continental influence on OMI tropospheric column NO2 over shipping lanes. We perform sensitivity analyses to quantify the impact of marine emissions on air quality and suggest strategies to better meet the EPA mandated ozone standard.
Impacts of biofuel cultivation on mortality and crop yields
NASA Astrophysics Data System (ADS)
Ashworth, K.; Wild, O.; Hewitt, C. N.
2013-05-01
Ground-level ozone is a priority air pollutant, causing ~ 22,000 excess deaths per year in Europe, significant reductions in crop yields and loss of biodiversity. It is produced in the troposphere through photochemical reactions involving oxides of nitrogen (NOx) and volatile organic compounds (VOCs). The biosphere is the main source of VOCs, with an estimated 1,150TgCyr-1 (~ 90% of total VOC emissions) released from vegetation globally. Isoprene (2-methyl-1,3-butadiene) is the most significant biogenic VOC in terms of mass (around 500TgCyr-1) and chemical reactivity and plays an important role in the mediation of ground-level ozone concentrations. Concerns about climate change and energy security are driving an aggressive expansion of bioenergy crop production and many of these plant species emit more isoprene than the traditional crops they are replacing. Here we quantify the increases in isoprene emission rates caused by cultivation of 72Mha of biofuel crops in Europe. We then estimate the resultant changes in ground-level ozone concentrations and the impacts on human mortality and crop yields that these could cause. Our study highlights the need to consider more than simple carbon budgets when considering the cultivation of biofuel feedstock crops for greenhouse-gas mitigation.
The budget of biologically active ultraviolet radiation in the earth-atmosphere system
NASA Technical Reports Server (NTRS)
Frederick, John E.; Lubin, Dan
1988-01-01
This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.
Earth's UV Reflectivity Data from the Ozone Monitoring Instrument on EOS-Aura
NASA Astrophysics Data System (ADS)
Larko, D. E.; Mao, J.; Herman, J. R.; Huang, L.; Qin, W.; Labow, G. J.; Lloyd, S. A.; DeLand, M. T.
2011-12-01
The Lambert Equivalent Reflectivity (LER), derived from satellite ultraviolet (UV) radiance measurements, represents the equivalent scene reflectivity of the Earth's surface and atmosphere without Rayleigh scattering. It provides a better opportunity to quantify variations of the planetary reflectance and albedo associated with snow/ice, atmospheric aerosols and clouds, since UV reflectance is very low over most land surfaces and water. LER values at 340 nm from the Ozone Monitoring Instrument (OMI) on EOS-Aura have been generated as a new product from the OMI TO3 ozone retrieval algorithm and provided to users in HDF format. The wide field of view of OMI (~2200 km) provides complete global coverage every day with 13 km x 24 km resolution at nadir. These data are then mapped to 1 degree x 1 degree latitude-longitude grid as daily and monthly means for weather and climate studies. The OMI LER data set has been used to validate other UV LER data sets from NOAA and NASA polar orbiting satellites, and has been combined with these data sets to construct a continuous long-term data record of terrestrial UV reflectivity. This paper will present details about the data processing and format of the OMI LER product. Applications of this data set in global climate studies will be demonstrated and discussed in this presentation.
A New Formulation of Equivalent Effective Stratospheric Chlorine (EESC)
NASA Technical Reports Server (NTRS)
Newman, P. A.; Daniel, J. S.; Waugh, D. W.; Nash, E. R.
2007-01-01
Equivalent effective stratospheric chlorine (EESC) is a convenient parameter to quantify the effects of halogens (chlorine and bromine) on ozone depletion in the stratosphere. We show and discuss a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. Using this EESC formulation, we estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties in the estimated time of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air, and the assumption that the mean age-of-air and fractional release values are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be accelerated from 2041 to 2031.
Roelcke, Ulrich; Bruehlmeier, Matthias; Hefti, Martin; Hundsberger, Thomas; Nitzsche, Egbert U
2012-01-01
Positron emission tomography (PET) with radiolabeled amino acids provides information on biopsy target and chemotherapy response in patients with low-grade gliomas (LGG). In this article, we addressed whether PET with F-18 choline (CHO) detects increased metabolism in F-18 fluoroethyltyrosine (FET)-negative LGG patients. Six LGG patients with nongadolinium-enhancing (magnetic resonance) FET-negative LGG were imaged with CHO PET. Regions of interest were positioned over tumor and contralateral brain. Uptake of FET and CHO was quantified as count ratio of tumor to contralateral brain. The mean FET uptake ratio for FET-negative LGG was 0.95 ± 0.03 (mean ± standard deviation). Five tumors did not show increased uptake ratios for CHO (0.96 ± 0.12). Slightly increased CHO uptake was found in 1 patient (1.24), which, however, was not associated with tumor visualization. Amino acid and choline uptake appear to behave similar in nongadolinium-enhancing LGG. For clinical purposes, CHO PET is not superior to FET PET.
Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging
Tichauer, Kenneth M.; Samkoe, Kimberley S.; Gunn, Jason R.; Kanick, Stephen C.; Hoopes, P. Jack; Barth, Richard J.; Kaufman, Peter A.; Hasan, Tayyaba; Pogue, Brian W.
2014-01-01
Lymph node biopsy (LNB) is employed in many cancer surgeries to identify metastatic disease and stage the cancer, yet morbidity and diagnostic delays associated with LNB could be avoided if non-invasive imaging of nodal involvement was reliable. Molecular imaging has potential in this regard; however, variable delivery and nonspecific uptake of imaging tracers has made conventional approaches ineffective clinically. A method of correcting for non-specific uptake with injection of a second untargeted tracer is presented, allowing tumor burden in lymph nodes to be quantified. The approach was confirmed in an athymic mouse model of metastatic human breast cancer targeting epidermal growth factor receptor, a cell surface receptor overexpressed by many cancers. A significant correlation was observed between in vivo (dual-tracer) and ex vivo measures of tumor burden (r = 0.97, p < 0.01), with an ultimate sensitivity of approximately 200 cells (potentially more sensitive than conventional LNB). PMID:25344739
Exposure- and flux-based assessment of ozone risk to sugarcane plants
NASA Astrophysics Data System (ADS)
Moura, Bárbara Baêsso; Hoshika, Yasutomo; Ribeiro, Rafael Vasconcelos; Paoletti, Elena
2018-03-01
Ozone (O3) is a toxic oxidative air pollutant, with significant detrimental effects on crops. Sugarcane (Saccharum spp.) is an important crop with no O3 risk assessment performed so far. This study aimed to assess O3 risk to sugarcane plants by using exposure-based indices (AOT40 and W126) based on O3 concentrations in the air, and the flux-based index (PODy, where y is a threshold of uptake) that considers leaf O3 uptake and the influence of environmental conditions on stomatal conductance (gsto). Two sugarcane genotypes (IACSP94-2094 and IACSP95-5000) were subjected to a 90-day Free-Air Controlled Experiment (FACE) exposure at three levels of O3 concentrations: ambient (Amb); Amb x1.2; and Amb x1.4. Total above-ground biomass (AGB), stalk biomass (SB) and leaf biomass (LB) were evaluated and the potential biomass production in a clean air was estimated by assuming a theoretical clean atmosphere at 10 ppb as 24 h O3 average. The Jarvis-type multiplicative algorithm was used to parametrize gsto including environmental factors i.e. air temperature, light intensity, air vapor pressure deficit, and minimum night-time temperature. Ozone exposure caused a negative impact on AGB, SB and LB. The O3 sensitivity of sugarcane may be related to its high gsto (∼535 mmol H2O m-2 s-1). As sugarcane is adapted to hot climate conditions, gsto was restricted when the current minimum air temperature (Tmin) was below ∼14 °C and the minimum night-time air temperature of the previous day (Tnmin) was below ∼7.5 °C. The flux-based index (PODy) performed better than the exposure-based indices in estimating O3 effect on biomass losses. We recommend a y threshold of 2 nmol m-2 s-1 to incorporate O3 effects on both AGB and SB and 1 nmol m-2 s-1 on LB. In order not to exceed 4% reduction in the growth of these two sugarcane genotypes, we recommend the following critical levels: 1.09 and 1.04 mmol m-2 POD2 for AGB, 0.91 and 0.96 mmol m-2 POD2 for SB, and 3.00 and 2.36 mmol m-2 POD1 for LB of IACSP95-5000 and IACSP94-2094, respectively.
NASA Astrophysics Data System (ADS)
Kasumba, John; Holmén, Britt A.
2018-02-01
Numerous studies have examined the oxidation of PAHs found in diesel particulate matter (PM) by ozone, but no studies have investigated the ozone oxidation of biodiesel exhaust PM. Fatty acid methyl esters (FAMEs), found in high abundance in biodiesel PM, can potentially alter the kinetics of the reactions between atmospheric oxidants such as ozone and particle-phase PAHs. In this study, the heterogeneous reactivity of 16 EPA PAHs upon 24 h exposure to 0.4 ppm ozone in the presence (PAH + FAMES) and absence (PAH-only) of FAMEs was investigated at room temperature and 50% relative humidity. The ozone-reactivity of the PAHs detected in 20% biodiesel (B20) exhaust PM was also investigated. In the absence of FAMEs, the pseudo-first order ozone reaction rate constant, kO 3 , of PAHs varied from 0.086 ± 0.030 hr-1 (chrysene) to 0.184 ± 0.078 hr-1 (anthracene). In the presence of FAMEs, kO 3 of the PAHs varied between 0.013 ± 0.012 hr-1 (benzo[b]fluoranthene) and 0.168 ± 0.028 hr-1 (benzo[a]pyrene), and with the exception of benzo[a]pyrene, the kO 3 of PAHs were 1.2-8 times lower compared to those obtained during the PAH-only ozone exposure. Only one PAH, benzo[a]pyrene (BaP), did not show a significant change in kO3 with addition of FAMEs. Phenanthrene, fluoranthene, and pyrene, the only PAHs detected in the B20 PM, had kO 3 values about 4 times lower in B20 PM than those obtained when spiked PAHs-only were exposed to ozone. The kO 3 values of phenanthrene and fluoranthene in the B20 PM were 2 times higher than rates obtained when the PAH mix was exposed to ozone in the presence of the FAMEs. In contrast, pyrene's kO 3 in the B20 PM was about 2 times lower than that obtained for the PAH + FAMEs exposure. Observed differences in PAH behavior demonstrate individual PAH heterogeneous reactivity with gas-phase ozone is sensitive to PAH (vapor pressure, solubility/sorption to matrix components, chemical reactivity) as well as substrate properties (PAH and O3 diffusivity in the matrix that may evolve with reaction progress). Saturated FAMEs were not reactive with ozone (kO 3 range = 0.004 ± 0.003 to 0.012 ± 0.026 hr-1), but compared to PAHs, up to two times higher kO 3 was measured for the unsaturated FAMEs (range 0.087 ± 0.015 to 0.329 ± 0.023 hr-1) during PAH + FAMEs exposures. These changes in substrate composition during atmospheric aging would be expected to affect PAH diffusivity and therefore heterogeneous reactivity over time. The factor of 1.2-8 decreased heterogeneous reactivity of PAHs in the presence of the FAMEs mix and the B20 PM matrix suggests that the presence of FAMEs in the diesel fuel supply may lead to increased PAH atmospheric lifetimes and longer range PAH transport. Predictive methods to quantify changes in PAH reactivity with gas-phase oxidants as a function of substrate composition and characteristics (viscosity, polarity, degree of unsaturation) are needed as biodiesel is increasingly present in our diesel engine fuel supply from a variety of feedstocks at different blend ratios.
In vivo detection of hyperoxia-induced pulmonary endothelial cell death using (99m)Tc-duramycin.
Audi, Said H; Jacobs, Elizabeth R; Zhao, Ming; Roerig, David L; Haworth, Steven T; Clough, Anne V
2015-01-01
(99m)Tc-duramycin, DU, is a SPECT biomarker of tissue injury identifying cell death. The objective of this study is to investigate the potential of DU imaging to quantify capillary endothelial cell death in rat lung injury resulting from hyperoxia exposure as a model of acute lung injury. Rats were exposed to room air (normoxic) or >98% O2 for 48 or 60 hours. DU was injected i.v. in anesthetized rats, scintigraphy images were acquired at steady-state, and lung DU uptake was quantified from the images. Post-mortem, the lungs were removed for histological studies. Sequential lung sections were immunostained for caspase activation and endothelial and epithelial cells. Lung DU uptake increased significantly (p<0.001) by 39% and 146% in 48-hr and 60-hr exposed rats, respectively, compared to normoxic rats. There was strong correlation (r(2)=0.82, p=0.005) between lung DU uptake and the number of cleaved caspase 3 (CC3) positive cells, and endothelial cells accounted for more than 50% of CC3 positive cells in the hyperoxic lungs. Histology revealed preserved lung morphology through 48 hours. By 60 hours there was evidence of edema, and modest neutrophilic infiltrate. Rat lung DU uptake in vivo increased after just 48 hours of >98% O2 exposure, prior to the onset of any substantial evidence of lung injury. These results suggest that apoptotic endothelial cells are the primary contributors to the enhanced DU lung uptake, and support the utility of DU imaging for detecting early endothelial cell death in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.
Rice, Karen; Price, Jason R.
2014-01-01
To quantify chemical weathering and biological uptake, mass-balance calculations were performed on two small forested watersheds located in the Blue Ridge Physiographic Province in north-central Maryland, USA. Both watersheds, Bear Branch (BB) and Fishing Creek Tributary (FCT), are underlain by relatively unreactive quartzite bedrock. Such unreactive bedrock and associated low chemical-weathering rates offer the opportunity to quantify biological processes operating within the watershed. Hydrologic and stream-water chemistry data were collected from the two watersheds for the 9-year period from June 1, 1990 to May 31, 1999. Of the two watersheds, FCT exhibited both higher chemical-weathering rates and biomass nutrient uptake rates, suggesting that forest biomass aggradation was limited by the rate of chemical weathering of the bedrock. Although the chemical-weathering rate in the FCT watershed was low relative to the global average, it masked the influence of biomass base-cation uptake on stream-water chemistry. Any differences in bedrock mineralogy between the two watersheds did not exert a significant influence on the overall weathering stoichiometry. The difference in chemical-weathering rates between the two watersheds is best explained by a larger proportion of reactive phyllitic layers within the bedrock of the FCT watershed. Although the stream gradient of BB is about two-times greater than that of FCT, its influence on chemical weathering appears to be negligible. The findings of this study support the biomass nutrient uptake stoichiometry of K1.0Mg1.1Ca0.97 previously determined for the study site. Investigations of the chemical weathering of relatively unreactive quartzite bedrock may provide insight into critical zone processes.
Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo
2017-10-01
The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 - + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marmorato, P.; Simonelli, F.; Abbas, K.; Kozempel, J.; Holzwarth, U.; Franchini, F.; Ponti, J.; Gibson, N.; Rossi, F.
2011-12-01
Magnetite nanoparticles (Fe3O4 NPs) are manufactured nanomaterials increasingly used in healthcare for different medical applications ranging from diagnosis to therapy. This study deals with the irradiation of Fe3O4 NPs with a proton beam in order to produce 56Co as radiolabel and also with the possible use of nuclear techniques for the quantification of Fe3O4 NPs in biological systems. Particular attention has been focused on the size distribution (in the range of 100 nm) and the surface charge of the NPs characterizing them before and after the irradiation process in order to verify if these essential properties would be preserved during irradiation. Moreover, X-ray diffraction studies have been performed on radioactive and non-radioactive NPs, to assess if major changes in NPs structure might occur due to thermal and/or radiation effects. The radiation emitted from the radiolabels has been used to quantify the cellular uptake of the NPs in in vitro studies. As for the biological applications two cell lines have been selected: immortalized mouse fibroblast cell line (Balb/3T3) and human epithelial colorectal adenocarcinoma cell line (Caco-2). The cell uptake has been quantified by radioactivity measurements of the 56Co radioisotope performed with high resolution γ-ray spectrometry equipment. This study has showed that, under well-established irradiation conditions, Fe3O4 NPs do not undergo significant structural modifications and thus the obtained results are in line with the uptake studies carried out with the same non-radioactive nanomaterials (NMs). Therefore, the radiolabelling method can be fruitfully applied to uptake studies because of the low-level exposure where higher sensitivity is required.
van der Kroon, Inge; Joosten, Lieke; Nock, Berthold A; Maina, Theodosia; Boerman, Otto C; Brom, Maarten; Gotthardt, Martin
2016-10-03
Accurate assessment of the 111 In-exendin-3 uptake within the pancreas requires exact delineation of the pancreas, which is highly challenging by MRI and CT in rodents. In this study, the pancreatic tracer 99m Tc-demobesin-4 was evaluated for accurate delineation of the pancreas to be able to accurately quantify 111 In-exendin-3 uptake within the pancreas. Healthy and alloxan-induced diabetic Brown Norway rats were injected with the pancreatic tracer 99m Tc-demobesin-4 ([ 99m Tc-N 4 -Pro 1 ,Tyr 4 ,Nle 14 ]bombesin) and the beta cell tracer 111 In-exendin-3 ([ 111 In-DTPA-Lys 40 ]exendin-3). After dual isotope acquisition of SPECT images, 99m Tc-demobesin-4 was used to define a volume of interest for the pancreas in SPECT images subsequently the 111 In-exendin-3 uptake within this region was quantified. Furthermore, biodistribution and autoradiography were performed in order to gain insight in the distribution of both tracers in the animals. 99m Tc-demobesin-4 showed high accumulation in the pancreas. The uptake was highly homogeneous throughout the pancreas, independent of diabetic status, as demonstrated by autoradiography, whereas 111 In-exendin-3 only accumulates in the islets of Langerhans. Quantification of both ex vivo and in vivo SPECT images resulted in an excellent linear correlation between the pancreatic uptake, determined with ex vivo counting and 111 In-exendin-3 uptake, determined from the quantitative analysis of the SPECT images (Pearson r = 0.97, Pearson r = 0.92). 99m Tc-demobesin-4 shows high accumulation in the pancreas of rats. It is a suitable tracer for accurate delineation of the pancreas and can be conveniently used for simultaneous acquisition with 111 In labeled exendin-3. This method provides a straightforward, reliable, and objective method for preclinical beta cell mass (BCM) quantification with 111 In-exendin-3.
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, S.; Garcia-Menendez, F.; Monier, E.; Selin, N. E.
2016-12-01
Climate change, favoring more heat waves and episodes of stagnant air, may deteriorate air quality by increasing ozone and fine particulate matter (PM2.5) concentrations and high pollution episodes. This effect, termed as "climate penalty", has been quantified and explained by many earlier studies in the U.S. and Europe, but research efforts in Asian countries are limited. We evaluate the impact of climate change on air quality and human health in China and India using a modeling framework that links the Massachusetts Institute of Technology Integrated Global System Model to the Community Atmosphere Model (MIT IGSM-CAM). Future climate fields are projected under three climate scenarios including a no-policy reference scenario and two climate stabilization scenarios with 2100 total radiative forcing targets of 9.7, 4.5 and 3.7 W m-2, respectively. Each climate scenario is run for five representations of climate variability to account for the role of natural variability. Thirty-year chemical transport simulations are conducted in 1981-2010 and 2086-2115 under the three climate scenarios with fixed anthropogenic emissions at year 2000 levels. We find that 2000—2100 climate change under the no-policy reference scenario would increase ozone concentrations in eastern China and northern India by up to 5 ppb through enhancing biogenic emissions and ozone production efficiency. Ozone extreme episodes also become more frequent in these regions, while climate policies can offset most of the increase in ozone episodes. Climate change between 2000 and 2100 would slightly increase anthropogenic PM2.5 concentrations in northern China and Sichuan province, but significantly reduce anthropogenic PM2.5 concentrations in southern China and northern India, primarily due to different chemical responses of sulfate-nitrate-ammonium aerosols to climate change in these regions. Our study also suggests that the mitigation costs of climate policies can be partially offset by health benefits from reduced climate-induced air pollution in China.
Climate Penalty on Air Quality and Human Health in China and India
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, S.; Garcia-Menendez, F.; Monier, E.; Selin, N. E.
2017-12-01
Climate change, favoring more heat waves and episodes of stagnant air, may deteriorate air quality by increasing ozone and fine particulate matter (PM2.5) concentrations and high pollution episodes. This effect, termed as "climate penalty", has been quantified and explained by many earlier studies in the U.S. and Europe, but research efforts in Asian countries are limited. We evaluate the impact of climate change on air quality and human health in China and India using a modeling framework that links the Massachusetts Institute of Technology Integrated Global System Model to the Community Atmosphere Model (MIT IGSM-CAM). Future climate fields are projected under three climate scenarios including a no-policy reference scenario and two climate stabilization scenarios with 2100 total radiative forcing targets of 9.7, 4.5 and 3.7 W m-2, respectively. Each climate scenario is run for five representations of climate variability to account for the role of natural variability. Thirty-year chemical transport simulations are conducted in 1981-2010 and 2086-2115 under the three climate scenarios with fixed anthropogenic emissions at year 2000 levels. We find that 2000—2100 climate change under the no-policy reference scenario would increase ozone concentrations in eastern China and northern India by up to 5 ppb through enhancing biogenic emissions and ozone production efficiency. Ozone extreme episodes also become more frequent in these regions, while climate policies can offset most of the increase in ozone episodes. Climate change between 2000 and 2100 would slightly increase anthropogenic PM2.5 concentrations in northern China and Sichuan province, but significantly reduce anthropogenic PM2.5 concentrations in southern China and northern India, primarily due to different chemical responses of sulfate-nitrate-ammonium aerosols to climate change in these regions. Our study also suggests that the mitigation costs of climate policies can be partially offset by health benefits from reduced climate-induced air pollution in China.
Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M
2015-01-01
In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants across the Southern Hemisphere. Such research has broadened our understanding of the linkages that exist between the effects of ozone depletion, UV-B radiation and climate change on terrestrial ecosystems.
NASA Astrophysics Data System (ADS)
Zahardis, J.; Petrucci, G. A.
2006-11-01
The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS): the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the primary products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal) is described. Anomalies in the relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide polymers. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, a series of atmospheric implications of oxidative processing of particulate containing fatty acids is presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semisolids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation. Other effects, including the potential role of aldehydic products of ozonolysis in increasing the oxidative capacity of the troposphere, are also discussed.
NASA Astrophysics Data System (ADS)
Zahardis, J.; Petrucci, G. A.
2007-02-01
The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS): the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the commonly observed aldehyde and organic acid products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal) is described. The relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide oligomers and polymers, and their formation is in accord with solution and liquid-phase ozonolysis. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei (CCN). The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, the main atmospheric implications of oxidative processing of particulate containing fatty acids are presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semi-solids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas-phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation.
The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.
Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water massmore » uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.« less
Long term trend and interannual variability of land carbon uptake — the attribution and processes
NASA Astrophysics Data System (ADS)
Fu, Zheng
2017-04-01
Ecosystem carbon (C) uptake in terrestrial ecosystems has increased over the past five decades, but with large interannual variability (IAV). However, we are not clear on the attribution and the processes that control the long-term trend and IAV of land C uptake. Using atmospheric inversion net ecosystem exchange (NEE) data, we quantified the trend and IAV of NEE across the globe, the Northern Hemisphere (NH), and the Southern Hemisphere (SH), and decomposed NEE into carbon uptake amplitude and duration during each year from 1979-2013. We found the NH rather than the SH determined the IAV, while both hemispheres contributed equivalently to the global NEE trend. Different ecosystems in the NH and SH had differential relative contributions to their trend and IAV. The long-term trends of increased C uptake across the globe and the SH were attributed to both extended duration and increasing amplitude of C uptake. The shortened duration of uptake in the NH partly offsets the effects of increased NEE amplitude, making the net C uptake trend the same as that of the SH. The change in NEE IAV was also linked to changes in the amplitude and duration of uptake, but they worked in different ways in the NH, SH and globe. The fundamental attributions of amplitude and duration of C uptake revealed in this study are helpful to better understand the mechanisms underlying the trend and IAV of land C uptake. Our findings also suggest the critical roles of grassland and croplands in the NH in contributing to the trend and IAV of land C uptake.
The role of biological uptake in iron and manganese cycling in Lake Baikal
Granina, L.Z.; Callender, E.
2006-01-01
The role of biological uptake in the internal cycling of Fe and Mn in Lake Baikal was quantified. Biological uptake, sedimentation consisting of the biogenic and lithogenic fluxes, and remineralization have been evaluated. The results of calculations show that about 5-10% of Fe and Mn accumulated in the lake are annually taken up by biota. More than 80% of this amount is again recycled after remineralization of biological material. At this, the biogenic fluxes of Fe and Mn are 2-4 times less compared to lithogenic ones. Thus not only is oxidation of Fe and Mn within the water column highly enriched in the oxygen that results in settling of Fe and Mn oxides, but also intensive biological uptake of these elements contributes to their fast removal from internal cycling. However, essential remineralization makes this process of minor importance to Fe and Mn cycling in Lake Baikal. ?? Springer 2006.
Pasha, Ahmed K; Moghbel, Mateen; Saboury, Babak; Gharavi, Mohammed H; Blomberg, Björn A; Torigian, Drew A; Kwee, Thomas C; Basu, Sandip; Mohler Iii, Emile R; Alavi, Abass
2015-01-01
To quantify fluorine-18 fluorodeoxyglucose ((18)F-FDG) uptake in the aorta and peripheral arteries and assess the variation of (18)F-FDG uptake with age and cardiovascular risk factors. The subject population of this retrospective study comprises melanoma patients who underwent whole-body (18)F-FDG PET/CT scans. The patients' medical records were examined for cardiovascular risk factors and for a history of coronary artery disease or peripheral artery disease. Fluorine-18-FDG uptake in the peripheral arteries (iliac and femoral) and aorta was semi-quantified as a weighted-average mean standardized uptake value (wA-SUVmean), while background noise was accounted for by measuring mean venous blood pool SUV (V-SUVmean) in the superior vena cava. Atherosclerosis was semi-quantified by the tissue-to-background ratio (TBR) (wA-SUVmean divided by V-SUVmean). A regression model and t-test were used to evaluate the effect of age and location on the degree of atherosclerosis. To assess the effect of cardiovascular risk factors on atherosclerotic burden, the wA-SUVmean of patients with at least one of these risk factors was compared to that of patients without any risk factors. A total of 76 patients (46 men, 30 women; 22-91 years old) were included in this study. The average TBR of the aorta and peripheral arteries were 2.68 and 1.43, respectively, and increased with age in both locations. In regression analysis, the beta coefficients of age for TBR in the aorta and peripheral arteries were 0.55 (P<0.001) and 0.03 (P<0.001), respectively. In all age groups, the TBR of the aorta was significantly greater than that of the peripheral arteries. The Pearson correlation coefficients between the four age groups and the TBR of the aorta and peripheral arteries were 0.83 (P<0.001) and 0.75 (P<0.001), respectively. The wA-SUVmean of patients with cardiovascular risk factors was only significant (P<0.05) in the aorta. An increase in (18)F-FDG uptake was observed in the peripheral arteries and aorta with increasing age. Cardiovascular risk factors were significantly correlated with (18)F-FDG uptake in aorta. The early detection of atherosclerosis with (18)F-FDG PET may allow for the initiation of preventative interventions prior to the manifestation of significant structural abnormalities or symptoms of disease.
Examining the impact of nitryl chloride chemistry on summertime air quality
NASA Astrophysics Data System (ADS)
Sarwar, G.; Simon, H. A.; Bhave, P.; Hutzell, W. T.
2011-12-01
Results of recent field campaigns suggest that heterogeneous reactions can form nitryl chloride (ClNO2) at night. ClNO2 photodissociates into nitrogen dioxide and chlorine radicals during the day. Subsequent photolysis of nitrogen dioxide and reactions of chlorine radicals with volatile organic compounds increase ozone production. Thus, the presence of ClNO2 in the atmosphere can enhance ozone. In this study, the impact of the heterogeneous production of ClNO2 on summertime air quality in the United States is examined by using the Community Multiscale Air Quality (CMAQ) model. Laboratory chamber experimental studies have parameterized the yield of ClNO2 and the heterogeneous uptake of dinitrogen pentoxide on aerosols. We implement these parameterizations into the CMAQ model. In addition to the typical emissions, the model also includes emissions of sea-salt, anthropogenic particulate chloride, anthropogenic hydrochloric acid and molecular chlorine from the National Emissions Inventory. Model simulations are conducted without and with the heterogeneous ClNO2 formation reaction for September 1-10, 2006. The results of the study suggest that the heterogeneous reaction produces ClNO2 in many coastal areas as well as inland locations in the United States. The ClNO2 increase in coastal areas is caused by chloride emissions from sea-salt and in inland-areas by chloride emissions from fire and anthropogenic sources. Predicted ClNO2 levels reach nighttime peaks of up to 4.0 ppb in the Los Angeles area and up to 1.2 ppb near Houston, similar to the measured values reported in the literature. The ClNO2 chemistry decreases nitric acid as well as particulate nitrate by a large margin; consequently it changes composition of NOz. It increases hourly and daily maximum 8-hr ozone by up to 9 ppbv and 6 ppbv, respectively. It increases aerosol sulfate while decreasing aerosol nitrate and ammonium. The accompanying presentation identifies predicted spatial patterns of ClNO2 concentrations across the United States and describes the detailed impact of the ClNO2 chemistry on ozone, nitric acid, sulfate, particulate nitrate, ammonium, and particulate chloride. To evaluate the impact of the ClNO2 chemistry on an ozone control strategy, two additional model simulations were conducted with reduced NOx emissions. Relative response factors were determined without and with the ClNO2 chemistry; the accompanying presentation discusses the impact on ozone control strategy.
The effect of organic aerosol material on aerosol reactivity towards ozone
NASA Astrophysics Data System (ADS)
Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele
2015-04-01
After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and humidified and excess flow was ventilated. It proved necessary to separate the particles before the O3 monitor to prevent interference with the optical O3 detection method. Unfortunately, large O3 losses occurred on the used filter, which limited the accuracy of the γ-determinations. Nevertheless, it was found that already a small amount of added PEG considerably reduced the observed γ. Other aerosol separation methods are currently being investigated for the follow-up experiments in Kuopio.
Zhang, Jianwei; Schaub, Marcus; Ferdinand, Jonathan A; Skelly, John M; Steiner, Kim C; Savage, James E
2010-08-01
We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g(wv)), foliar injury, and leaf nitrogen concentration (N(L)) to tropospheric ozone (O(3)) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g(wv), foliar injury, and N(L) (P < 0.05) among O(3) treatments. Seedlings in AA showed the highest A and g(wv) due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g(wv), N(L), and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g(wv), and foliar injury to O(3). Both VPD and N(L) had a strong influence on leaf gas exchange. Foliar O(3)-induced injury appeared when cumulative O(3) uptake reached 8-12 mmol m(-2), depending on soil water availability. The mechanistic assessment of O(3)-induced injury is a valuable approach for a biologically relevant O(3) risk assessment for forest trees. Published by Elsevier Ltd.
Long term trend and interannual variability of land carbon uptake—the attribution and processes
NASA Astrophysics Data System (ADS)
Fu, Zheng; Dong, Jinwei; Zhou, Yuke; Stoy, Paul C.; Niu, Shuli
2017-01-01
Ecosystem carbon (C) uptake in terrestrial ecosystems has increased over the past five decades, but with large interannual variability (IAV). However, we are not clear on the attribution and the processes that control the long-term trend and IAV of land C uptake. Using atmospheric inversion net ecosystem exchange (NEE) data, we quantified the trend and IAV of NEE across the globe, the Northern Hemisphere (NH), and the Southern Hemisphere (SH), and decomposed NEE into carbon uptake amplitude and duration during each year from 1979-2013. We found the NH rather than the SH determined the IAV, while both hemispheres contributed equivalently to the global NEE trend. Different ecosystems in the NH and SH had differential relative contributions to their trend and IAV. The long-term trends of increased C uptake across the globe and the SH were attributed to both extended duration and increasing amplitude of C uptake. The shortened duration of uptake in the NH partly offsets the effects of increased NEE amplitude, making the net C uptake trend the same as that of the SH. The change in NEE IAV was also linked to changes in the amplitude and duration of uptake, but they worked in different ways in the NH, SH and globe. The fundamental attributions of amplitude and duration of C uptake revealed in this study are helpful to better understand the mechanisms underlying the trend and IAV of land C uptake. Our findings also suggest the critical roles of grassland and croplands in the NH in contributing to the trend and IAV of land C uptake.