Pinpointing Predation Events: A different molecular approach.
USDA-ARS?s Scientific Manuscript database
A glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, protien marking system has been developed as a diagnostic tool for quantifying predation rates via gut content analysis. A field study was conducted to quantify predation rates on each of the GWSS lifestages. Specifically, two GWSS nymp...
Seasonal and among-stream variation in predator encounter rates for fish prey
Bret C. Harvey; Rodney J. Nakamoto
2013-01-01
Recognition that predators have indirect effects on prey populations that may exceed their direct consumptive effects highlights the need for a better understanding of spatiotemporal variation in predatorâprey interactions. We used photographic monitoring of tethered Rainbow Trout Oncorhynchus mykiss and Cutthroat Trout O. clarkii to quantify predator encounter rates...
Metz, Matthew C; Smith, Douglas W; Vucetich, John A; Stahler, Daniel R; Peterson, Rolf O
2012-05-01
1. For large predators living in seasonal environments, patterns of predation are likely to vary among seasons because of related changes in prey vulnerability. Variation in prey vulnerability underlies the influence of predators on prey populations and the response of predators to seasonal variation in rates of biomass acquisition. Despite its importance, seasonal variation in predation is poorly understood. 2. We assessed seasonal variation in prey composition and kill rate for wolves Canis lupus living on the Northern Range (NR) of Yellowstone National Park. Our assessment was based on data collected over 14 winters (1995-2009) and five spring-summers between 2004 and 2009. 3. The species composition of wolf-killed prey and the age and sex composition of wolf-killed elk Cervus elaphus (the primary prey for NR wolves) varied among seasons. 4. One's understanding of predation depends critically on the metric used to quantify kill rate. For example, kill rate was greatest in summer when quantified as the number of ungulates acquired per wolf per day, and least during summer when kill rate was quantified as the biomass acquired per wolf per day. This finding contradicts previous research that suggests that rates of biomass acquisition for large terrestrial carnivores tend not to vary among seasons. 5. Kill rates were not well correlated among seasons. For example, knowing that early-winter kill rate is higher than average (compared with other early winters) provides little basis for anticipating whether kill rates a few months later during late winter will be higher or lower than average (compared with other late winters). This observation indicates how observing, for example, higher-than-average kill rates throughout any particular season is an unreliable basis for inferring that the year-round average kill rate would be higher than average. 6. Our work shows how a large carnivore living in a seasonal environment displays marked seasonal variation in predation because of changes in prey vulnerability. Patterns of wolf predation were influenced by the nutritional condition of adult elk and the availability of smaller prey (i.e. elk calves, deer). We discuss how these patterns affect our overall understanding of predator and prey population dynamics. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
The rate of predation by fishes on hatchlings of the green turtle ( Chelonia mydas)
NASA Astrophysics Data System (ADS)
Gyuris, E.
1994-07-01
This study addresses the need for empirical data on the survival of sea turtle hatchlings after entry into the sea by (1) developing a method for measuring marine predation; (2) estimating predation rates while crossing the reef; and (3) investigating the effect of environmental variables on predation rates. Predation rates were quantified by following individual hatchlings, tethered by a 10m monofilament nylon line, as they swam from the water's edge towards the reef crest. Predation rates under particular combinations of environmental variables (tide, time of day, and moon phase) were measured in separate trials. Predation rates varied among trials from 0 to 85% with a mean of 31% (SE=2.5%). The simplest logistic regression model that explained variation in predation contained tide and moon phase as predictor variables. The results suggest that noctural emergence from the nest is a behavioral adaptation to minimize exposure to the heat of the day rather than a predator-escape mechanism. For the green turtle populations breeding in eastern Australia, most first year mortality is caused by predation while crossing the reef within the first hour of entering the sea.
Wasserberg, Gideon; White, L; Bullard, A; King, J; Maxwell, R
2013-09-01
For organisms lacking parental care and where larval dispersal is limited, oviposition site selection decisions are critical fitness-enhancing choices. However, studies usually do not consider the interdependence of the two. In this study, we evaluated the effect of food level on the oviposition behavior of Aedes albopictus (Skuse) in the presence or the absence of a nonlethal predator (caged dragonfly nymph). We also attempted to quantify the perceived cost of predation to ovipositioning mosquitoes. Mosquitoes were presented with oviposition cups containing four levels of larval food (fermented leaf infusion) with or without a caged libellulid nymph. By titrating larval food, we estimated the amount of food needed to attract the female mosquito to oviposit in the riskier habitat. As expected, oviposition rate increased with food level and decreased in the presence of a predator. However, the effect of food level did not differ between predator treatments. By calculating the difference in the amount of food for points of equal oviposition rate in the predator-present and predator-absent regression lines, we estimated the cost of predation risk to be 1950 colony-forming-units per milliliter. Our study demonstrated the importance of considering the possible interdependence of predation risk and food abundance for oviposition-site-seeking insects. This study also quantified the perceived cost of predation and found it to be relatively low, a fact with positive implications for biological control.
Quantifying predator dependence in the functional response of generalist predators.
Novak, Mark; Wolf, Christopher; Coblentz, Kyle E; Shepard, Isaac D
2017-06-01
A long-standing debate concerns how functional responses are best described. Theory suggests that ratio dependence is consistent with many food web patterns left unexplained by the simplest prey-dependent models. However, for logistical reasons, ratio dependence and predator dependence more generally have seen infrequent empirical evaluation and then only so in specialist predators, which are rare in nature. Here we develop an approach to simultaneously estimate the prey-specific attack rates and predator-specific interference (facilitation) rates of predators interacting with arbitrary numbers of prey and predator species in the field. We apply the approach to surveys and experiments involving two intertidal whelks and their full suite of potential prey. Our study provides strong evidence for predator dependence that is poorly described by the ratio dependent model over manipulated and natural ranges of species abundances. It also indicates how, for generalist predators, even the qualitative nature of predator dependence can be prey-specific. © 2017 John Wiley & Sons Ltd/CNRS.
Plasticity as Phenotype: G x E Interaction in a Freshwater Snail
NASA Astrophysics Data System (ADS)
Brunkow, P. E.; Calloway, S. A.
2005-05-01
Plasticity in morphological development allows species to accommodate environmental variation experienced during growth; however, genetic variation for phenotypic plasticity per se has been relatively under-studied. We utilized the well-documented plastic response of shell development to predator cues in a freshwater snail to quantify genetic variation for plasticity in growth rate and shell shape. Field-caught pairs of snails reproduced in the laboratory to create families of full siblings, which were then divided and allowed to grow in control and predator cue treatments. Predator (crayfish) cues had significant effects on both size-corrected growth rate and shell shape; family identity also significantly affected both final shell shape and growth rate. The interaction between predator treatment and family identity significantly affected snail growth rate but not final shell shape, suggesting genetic variation in the plastic response to predator cues for a physiological variable (growth rate) but not for a variable known to mechanically reduce the risk of predation (shell shape), at least in this population of snails. The possibility that risk of multiple modes of predation (i.e., both fish and crayfish) in some populations might maintain genetic variation in morphological plasticity is discussed.
How much Dillenia indica seed predation occurs from Asian elephant dung?
NASA Astrophysics Data System (ADS)
Sekar, Nitin; Giam, Xingli; Sharma, Netra Prasad; Sukumar, Raman
2016-01-01
Elephants are thought to be effective seed dispersers, but research on whether elephant dung effectively protects seeds from seed predation is lacking. Quantifying rates of seed predation from elephant dung will facilitate comparisons between elephants and alternative dispersers, helping us understand the functional role of megaherbivores in ecosystems. We conducted an experiment to quantify the predation of Dillenia indica seeds from elephant dung in Buxa Reserve, India from December 2012 to April 2013. Using dung boluses from the same dung pile, we compared the number of seeds in boluses that are a) opened immediately upon detection (control boluses), b) made available only to small seed predators (<3 mm wide) for 1-4 months, and c) made available to all seed predators and secondary dispersers for 1-4 months. Using a model built on this experiment, we estimated that seed predation by small seed predators (most likely ants and termites) destroys between 82.9% and 96.4% of seeds in elephant dung between the time of defecation and the median germination date for D. indica. Exposure to larger seed predators and secondary dispersers did not lead to a significant additional reduction in the number of seeds per dung bolus. Our findings suggest that post-dispersal seed predation by small insects (<3 mm) substantially reduces but does not eliminate the success of elephants as dispersers of D. indica in a tropical moist forest habitat.
Building a mechanistic understanding of predation with GPS-based movement data.
Merrill, Evelyn; Sand, Håkan; Zimmermann, Barbara; McPhee, Heather; Webb, Nathan; Hebblewhite, Mark; Wabakken, Petter; Frair, Jacqueline L
2010-07-27
Quantifying kill rates and sources of variation in kill rates remains an important challenge in linking predators to their prey. We address current approaches to using global positioning system (GPS)-based movement data for quantifying key predation components of large carnivores. We review approaches to identify kill sites from GPS movement data as a means to estimate kill rates and address advantages of using GPS-based data over past approaches. Despite considerable progress, modelling the probability that a cluster of GPS points is a kill site is no substitute for field visits, but can guide our field efforts. Once kill sites are identified, time spent at a kill site (handling time) and time between kills (killing time) can be determined. We show how statistical models can be used to investigate the influence of factors such as animal characteristics (e.g. age, sex, group size) and landscape features on either handling time or killing efficiency. If we know the prey densities along paths to a kill, we can quantify the 'attack success' parameter in functional response models directly. Problems remain in incorporating the behavioural complexity derived from GPS movement paths into functional response models, particularly in multi-prey systems, but we believe that exploring the details of GPS movement data has put us on the right path.
Predation by coyotes on white-tailed deer neonates in South Carolina
John C. Kilgo; H. Scott Ray; Mark Vukovich; Matthew J. Goode; Charles Ruth
2012-01-01
Coyotes (Canis latrans) are novel predators throughout the southeastern United States and their depredation of white-tailed deer (Odocoileus virginianus) neonates may explain observed declines in some deer populations in the region, but direct evidence for such a relationship is lacking. Our objective was to quantify neonate survival rates and causes of mortality at...
Pardini, Eleanor A; Patten, Melissa V; Knight, Tiffany M
2017-03-01
Biotic interactions such as seed predation can play a role in explaining patterns of abundance among plant species. The effect of seed predation will depend on how the strength of predation differs across species and environments, and on the degree to which seed loss at one life-cycle phase increases fitness at another phase. Few studies have simultaneously quantified predispersal and postdispersal predation in co-occurring rare and common congeners, despite the value of estimating both for understanding causes of rarity. We quantified predispersal seed predation on the rare, herbaceous species Lupinus tidestromii (Fabaceae) and its common, shrubby congener L. chamissonis across multiple years in the same community. We experimentally measured postdispersal seed predation at two seed densities and locations near or far from an exotic grass housing high densities of deer mice ( Peromyscus maniculatus ), their primary, native seed predator. The common L. chamissonis had the lowest predispersal seed predation of the two lupine species, potentially because of its height: its high racemes received less predation than those low to the ground. By contrast, the same species experienced higher postdispersal seed predation, and at predators traveled long distances away from refuge habitat to consume their seeds. Across both plant species, mice preferentially predated high-density seed sources. Our results show differences in the magnitude and direction of seed predation between the species across different life-cycle phases. We demonstrated possible roles of proximity to refuge habitat, seed density, and seed size in these patterns. Congeneric comparisons would benefit from a comprehensive framework that considers seed predation across different life-cycle phases and the environmental context of predation. © 2017 Botanical Society of America.
Stoks, Robby; Swillen, Ine; De Block, Marjan
2012-09-01
1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Effect of Culverts on Predator-Prey Interactions in a Tropical Stream.
NASA Astrophysics Data System (ADS)
Hein, C. L.; Kikkert, D. A.; Crowl, T. A.
2005-05-01
As part of a biocomplexity project in Puerto Rico, we use river and road networks as a platform to understand the interactions between stream biota, the physical environment, and human activity. Specifically, we ask if humans affect aquatic organisms through road building and recreational activities. Culverts have been documented to impede or slow migration of aquatic biota. This is especially important in these streams because all of the freshwater, stream species have diadramous life cycles. If culverts do act as bottlenecks to shrimp migrations, we expect altered predator-prey interactions downstream through density-dependent predation dynamics. In order to determine how roads may affect predation rates on upstream migrating shrimp, we parameterized functional response curves for mountain mullet (Agonostomus monticola) consuming shrimp (Xiphocaris sp.) using artificial mesocosm experiments. We then used data obtained from underwater videography to determine how culverts decrease the rate and number of shrimp moving upstream. These data were combined in a predator-prey model to quantify the effects of culverts on localized shrimp densities and fish predation.
NASA Astrophysics Data System (ADS)
McCutcheon, M.; Hu, X.
2016-02-01
The eastern oyster (Crassostrea virginica) is a biologically and economically important calcifier that has been experiencing a global population decline due to multiple stressors. The process of biomineralization is essential in the growth and predator defense of oysters. Several studies investigating morphological and mechanical shell properties have noted a phenotypic plasticity in response to predator presence. We present the first study that attempts to detect an alteration in the calcification rate of juvenile C. virginica as well as measure respiration rates in the presence and absence of predator exudates. An alkalinity anomaly technique was used to quantify calcification and respiration rates of oysters exposed to blue crab or mud crab cues or a no cue control condition. No significant differences in calcification rate were detected between predator and control treatments. However, the linear relationship between calcification and respiration rates differed between treatments. This changing relationship is not fully understood and warrants further investigation. In addition, this study also revealed our experimental oysters maintained calcification rates comparable to literature values while respiration rates were an order of magnitude lower than previously reported levels. Future direction for this research involves inclusion of acidification treatments. Any environmental factors (including predator presence) that may on their own or in conjunction with estuarine acidification alter calcification (or respiration) rates will impact the local to regional carbon cycle as well as oyster fitness and consequent future population dynamics.
Predation by Red Foxes (Vulpes vulpes) at an Outdoor Piggery
Fleming, Patricia A.; Dundas, Shannon J.; Lau, Yvonne Y. W.; Pluske, John R.
2016-01-01
Simple Summary Predation of piglets by red foxes is a significant risk for outdoor/free-range pork producers, but is often difficult to quantify. Using remote sensing cameras, we recorded substantial evidence of red foxes taking piglets from around farrowing huts, and found that piglets were most likely to be recorded as “missing” over their first week. These data suggest that fox predation contributed to the marked production differences between this outdoor farm and a similar-sized intensive farm under the same management, and warrant greater control of this introduced, invasive predator. Abstract Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or) capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets). We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are “chewed”), it is likely that foxes were contributing substantially to the 20% of piglets that were reported “missing”. Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows), and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant (p = 0.001) effect of individual sow identification on the weaning rate, but no effect of sow age (parity), suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels of non-target bait interference. Other management options are recommended, including removing hay from the paddocks to reduce the risks of sows farrowing in open paddocks, and covering or predator-proof fencing the pig carcass pit. Results of this study will have increasing relevance for the expanding outdoor/free-range pork industry, contributing to best practice guidelines for predator control. PMID:27740601
Predators select against high growth rates and risk-taking behaviour in domestic trout populations.
Biro, Peter A; Abrahams, Mark V; Post, John R; Parkinson, Eric A
2004-11-07
Domesticated (farm) salmonid fishes display an increased willingness to accept risk while foraging, and achieve high growth rates not observed in nature. Theory predicts that elevated growth rates in domestic salmonids will result in greater risk-taking to access abundant food, but low survival in the presence of predators. In replicated whole-lake experiments, we observed that domestic trout (selected for high growth rates) took greater risks while foraging and grew faster than a wild strain. However, survival consequences for greater growth rates depended upon the predation environment. Domestic trout experienced greater survival when risk was low, but lower survival when risk was high. This suggests that animals with high intrinsic growth rates are selected against in populations with abundant predators, explaining the absence of such phenotypes in nature. This is, to our knowledge, the first large-scale field experiment to directly test this theory and simultaneously quantify the initial invasibility of domestic salmonid strains that escape into the wild from aquaculture operations, and the ecological conditions affecting their survival.
Bricker, Mary; Maron, John
2012-03-01
Loss of seeds to consumers is common in plant communities, but the degree to which these losses influence plant abundance or population growth is often unclear. This is particularly the case for postdispersal seed predation by rodents, as most studies of rodent seed predation have focused on the sources of spatiotemporal variation in seed loss but not quantified the population consequences of this loss. In previous work we showed that seed predation by deer mice (Peromyscus maniculatus) substantially reduced seedling recruitment and establishment of Lithospermum ruderale (Boraginaceae), a long-lived perennial forb. To shed light on how rodent seed predation and the near-term effects on plant recruitment might influence longer-term patterns of L. ruderale population growth, we combined experimental results with demographic data in stage-based population models. Model outputs revealed that rodent seed predation had a significant impact on L. ruderale population growth rate (lambda). With the removal of postdispersal seed predation, the projected population growth rates increased between 0.06 and 0.12, depending on site (mean deltalambda across sites = 0.08). Seed predation shifted the projected stable stage distribution of populations from one with a high proportion of young plants to one in which larger adult size classes dominate. Elasticities of vital rates also changed, with germination and growth of seedlings and young plants becoming more important with the removal of seed predation. Simulations varying the magnitude of seed predation pressure while holding other vital rates constant showed that seed predation could lower lambda even if only 40% of available seeds were consumed. These results demonstrate that rodent granivory can be a potent force limiting the abundance of a long-lived perennial forb.
Chan, K; Boutin, S; Hossie, T J; Krebs, C J; O'Donoghue, M; Murray, D L
2017-07-01
To improve understanding of the complex and variable patterns of predator foraging behavior in natural systems, it is critical to determine how density-dependent predation and predator hunting success are mediated by alternate prey or predator interference. Despite considerable theory and debate seeking to place predator-prey interactions in a more realistic context, few empirical studies have quantified the role of alternate prey or intraspecific interactions on predator-prey dynamics. We assessed functional responses of two similarly sized, sympatric carnivores, lynx (Lynx canadensis) and coyotes (Canis latrans), foraging on common primary (snowshoe hares; Lepus americanus) and alternate (red squirrels; Tamiasciurus hudsonicus) prey in a natural system. Lynx exhibited a hyperbolic prey-dependent response to changes in hare density, which is characteristic of predators relying primarily on a single prey species. In contrast, the lynx-squirrel response was found to be linear ratio dependent, or inversely dependent on hare density. The coyote-hare and coyote-squirrel interactions also were linear and influenced by predator density. We explain these novel results by apparent use of spatial and temporal refuges by prey, and the likelihood that predators commonly experience interference and lack of satiation when foraging. Our study provides empirical support from a natural predator-prey system that (1) predation rate may not be limited at high prey densities when prey are small or rarely captured; (2) interference competition may influence the predator functional response; and (3) predator interference has a variable role across different prey types. Ultimately, distinct functional responses of predators to different prey types illustrates the complexity associated with predator-prey interactions in natural systems and highlights the need to investigate predator behavior and predation rate in relation to the broader ecological community. © 2017 by the Ecological Society of America.
Crayfish (Orconectes virilis) predation on zebra mussels (Dreissena polymorpha)
Love, Joy; Savino, Jacqueline F.
1993-01-01
In laboratory studies, we quantified predation rates and handling time of crayfish (Orconectes virilis) on zebra mussels (Dreissena polymorpha) and rainbow trout (Oncorhhynchus mykiss) eggs. In single prey species tests, crayfish ate zebra mussels at similar rates as they ate rainbow trout eggs. When both prey were present, crayfish preferred rainbow trout eggs. Handling time of mussels was about twice that of rainbow trout eggs, and energetic content of mussels was lower. Therefore, net benefit for foraging on rainbow trout eggs was about three times that of foraging on zebra mussels.
Predation by Red Foxes (Vulpes vulpes) at an Outdoor Piggery.
Fleming, Patricia A; Dundas, Shannon J; Lau, Yvonne Y W; Pluske, John R
2016-10-08
Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or) capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets). We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are "chewed"), it is likely that foxes were contributing substantially to the 20% of piglets that were reported "missing". Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows), and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant ( p = 0.001) effect of individual sow identification on the weaning rate, but no effect of sow age (parity), suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels of non-target bait interference. Other management options are recommended, including removing hay from the paddocks to reduce the risks of sows farrowing in open paddocks, and covering or predator-proof fencing the pig carcass pit. Results of this study will have increasing relevance for the expanding outdoor/free-range pork industry, contributing to best practice guidelines for predator control.
NASA Astrophysics Data System (ADS)
Daan, Rogier
In laboratory tests food intake by the hydromedusa Sarsia tubulosa, which feeds on copepods, was quantified. Estimates of maximum predation are presented for 10 size classes of Sarsia. Growth rates, too, were determined in the laboratory, at 12°C under ad libitum food conditions. Mean gross food conversion for all size classes averaged 12%. From the results of a frequent sampling programme, carried out in the Texelstroom (a tidal inlet of the Dutch Wadden Sea) in 1983, growth rates of Sarsia in the field equalled maximum growth under experimental conditions, which suggests that Sarsia in situ can feed at an optimum level. Two estimates of predation pressure in the field matched very closely and lead to the conclusion that the impact of Sarsia predation on copepod standing stocks in the Dutch coastal area, including the Wadden Sea, is generally negligible.
Vigg, Steven; Poe, Thomas P.; Prendergast , Linda A.; Hansel, Hal C.
1991-01-01
Adult northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, smallmouth bass Micropterus dolomieu, and channel catfish Ictalurus punctatus were sampled from four regions of John Day Reservoir from April to August 1983–1986 to quantify their consumption of 13 species of prey fish, particularly seaward-migrating juvenile Pacific salmon and steelhead (Oncorhynchus spp.). Consumption rates were estimated from field data on stomach contents and digestion rate relations determined in previous investigations. For each predator, consumption rates varied by reservoir area, month, time of day, and predator size or age. The greatest daily consumption of salmonids by northern squawfish and channel catfish (0.7 and 0.5 prey/predator) occurred in the upper end of the reservoir below McNary Dam. Greatest daily predation by walleyes (0.2 prey/predator) and smallmouth bass (0.04) occurred in the middle and lower reservoir. Consumption rates of all predators were highest in July, concurrent with maximum temperature and abundance of juvenile salmonids. Feeding by the predators tended to peak after dawn (0600–1200 hours) and near midnight (2000–2400). Northern squawfish below McNary Dam exhibited this pattern, but fed mainly in the morning hours down-reservoir. The daily ration of total prey fish was highest for northern squawfish over 451 mm fork length (> 13.2 mg/g predator), for walleyes 201–250 mm (42.5 mg/g), for smallmouth bass 176–200 mm (30.4 mg/g), and for channel catfish 401–450 mm (17.1 mg/g). Averaged over all predator sizes and sampling months (April–August), the total daily ration (fish plus other prey) of smallmouth bass (28.7 mg/ g) was about twice that of channel catfish (12.6), northern squawfish (14.1), and walleyes (14.2). However, northern squawfish was clearly the major predator on juvenile salmonids.
Dubovskaya, Olga P.; Tang, Kam W.; Gladyshev, Michail I.; Kirillin, Georgiy; Buseva, Zhanna; Kasprzak, Peter; Tolomeev, Aleksandr P.; Grossart, Hans-Peter
2015-01-01
Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d-1, whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d-1, which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. PMID:26146995
Partitioning mechanisms of predator interference in different habitats.
Griffen, Blaine D; Byers, James E
2006-01-01
Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.
Preston, Daniel L; Henderson, Jeremy S; Falke, Landon P; Segui, Leah M; Layden, Tamara J; Novak, Mark
2018-05-08
Describing the mechanisms that drive variation in species interaction strengths is central to understanding, predicting, and managing community dynamics. Multiple factors have been linked to trophic interaction strength variation, including species densities, species traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple mechanisms that drive variation have been limited to simplified experiments that may diverge from the dynamics of natural food webs. Here, we used a field-based observational approach to quantify the roles of prey density, predator density, predator-prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-prey observations with prey identification time functions to estimate 289 prey-specific feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an approximately log-normal distribution, with few strong and many weak interactions. Model selection indicated that prey density, followed by prey identity, were the two most important predictors of prey-specific sculpin feeding rates. Feeding rates showed a positive relationship with prey taxon densities that was inconsistent with predator saturation predicted by current functional response models. Feeding rates also exhibited four orders-of-magnitude in variation across prey taxonomic orders, with the lowest feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios were the third most important predictor variable, showing a hump-shaped relationship with the highest feeding rates at intermediate ratios. Sculpin density was negatively correlated with feeding rates, consistent with the presence of intraspecific predator interference. Our results highlight how multiple co-occurring drivers shape trophic interactions in nature and underscore ways in which simplified experiments or reliance on scaling laws alone may lead to biased inferences about the structure and dynamics of species-rich food webs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Adams, Jesse B.; Bollens, Stephen M.; Bishop, John G.
2015-01-01
Invasive planktonic crustaceans have become a prominent feature of aquatic communities worldwide, yet their effects on food webs are not well known. The Asian calanoid copepod, Pseudodiaptomus forbesi, introduced to the Columbia River Estuary approximately 15 years ago, now dominates the late-summer zooplankton community, but its use by native aquatic predators is unknown. We investigated whether three species of planktivorous fishes (chinook salmon, three-spined stickleback, and northern pikeminnow) and one species of mysid exhibited higher feeding rates on native copepods and cladocerans relative to P. forbesi by conducting `single-prey’ feeding experiments and, additionally, examined selectivity for prey types with `two-prey’ feeding experiments. In single-prey experiments individual predator species showed no difference in feeding rates on native cyclopoid copepods (Cyclopidae spp.) relative to invasive P. forbesi, though wild-collected predators exhibited higher feeding rates on cyclopoids when considered in aggregate. In two-prey experiments, chinook salmon and northern pikeminnow both strongly selected native cladocerans (Daphnia retrocurva) over P. forbesi, and moreover, northern pikeminnow selected native Cyclopidae spp. over P. forbesi. On the other hand, in two-prey experiments, chinook salmon, three-spined stickleback and mysids were non- selective with respect to feeding on native cyclopoid copepods versus P. forbesi. Our results indicate that all four native predators in the Columbia River Estuary can consume the invasive copepod, P. forbesi, but that some predators select for native zooplankton over P. forbesi, most likely due to one (or both) of two possible underlying casual mechanisms: 1) differential taxon-specific prey motility and escape responses (calanoids > cyclopoids > daphnids) or 2) the invasive status of the zooplankton prey resulting in naivety, and thus lower feeding rates, of native predators feeding on invasive prey. PMID:26618851
Thomas, Rebecca L.; Fellowes, Mark D. E.; Baker, Philip J.
2012-01-01
Urban domestic cat (Felis catus) populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat−1 year−1 but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%), but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners. PMID:23173057
Riley, S.C.; Tatara, C.P.; Scheurer, J.A.
2005-01-01
We quantified the aggression and feeding of naturally reared steelhead (Oncorhynchus mykiss) fry stocked into a laboratory flume with naturally reared fry or hatchery-reared fry from conventional and enriched rearing environments at three densities in the presence and absence of predators, and compared the aggression and feeding observed in the flume to that observed in two streams. Steelhead fry attack rate increased with density and was reduced in the presence of predators, but was not affected by rearing treatment. Threat rate appeared to increase with density and was significantly affected by rearing treatment combination, but was not significantly affected by predator presence. Feeding rate was not affected by density or rearing treatment, but was reduced in the presence of predators. The rate of aggression by steelhead fry in two streams was lower than that observed in the laboratory and did not increase with density. Rates of aggression and feeding of hatchery-reared and wild steelhead fry were not significantly different in the streams. Overall, we found no evidence that hatchery rearing environments caused higher aggression in steelhead fry. Laboratory observations of salmonid aggression, particularly at high density, may not reflect aggression levels in the wild. ?? 2005 NRC.
Deciphering Scavenging Propensity Among Arthropod Predators.
USDA-ARS?s Scientific Manuscript database
Scavenging is a well documented feeding behavior among many arthrop predators. However, quantifying scavenging feeding activity is not well understood because many predators are small elusive. This makes directly observing predation events in nature almost impossible. If predators prefer dead prey ...
Ocean acidification impairs crab foraging behaviour.
Dodd, Luke F; Grabowski, Jonathan H; Piehler, Michael F; Westfield, Isaac; Ries, Justin B
2015-07-07
Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Ocean acidification impairs crab foraging behaviour
Dodd, Luke F.; Grabowski, Jonathan H.; Piehler, Michael F.; Westfield, Isaac; Ries, Justin B.
2015-01-01
Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour. PMID:26108629
Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey
Schartel, Tyler E.; Schauber, Eric M.
2016-01-01
Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659
Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.
Schartel, Tyler E; Schauber, Eric M
2016-01-01
Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.
Kneitel, Jamie M
2012-01-01
Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure.
Catano, Laura B; Barton, Mark B; Boswell, Kevin M; Burkepile, Deron E
2017-03-01
Non-consumptive effects (NCEs) of predators occur as prey alters their habitat use and foraging decisions to avoid predation. Although NCEs are recognized as being important across disparate ecosystems, the factors influencing their strength and importance remain poorly understood. Ecological context, such as time of day, predator identity, and prey condition, may modify how prey species perceive and respond to risk, thereby altering NCEs. To investigate how predator identity affects foraging of herbivorous coral reef fishes, we simulated predation risk using fiberglass models of two predator species (grouper Mycteroperca bonaci and barracuda Sphyraena barracuda) with different hunting modes. We quantified how predation risk alters herbivory rates across space (distance from predator) and time (dawn, mid-day, and dusk) to examine how prey reconciles the conflicting demands of avoiding predation vs. foraging. When we averaged the effect of both predators across space and time, they suppressed herbivory similarly. Yet, they altered feeding differently depending on time of day and distance from the model. Although feeding increased strongly with increasing distance from the predators particularly during dawn, we found that the barracuda model suppressed herbivory more strongly than the grouper model during mid-day. We suggest that prey hunger level and differences in predator hunting modes could influence these patterns. Understanding how context mediates NCEs provides insight into the emergent effects of predator-prey interactions on food webs. These insights have broad implications for understanding how anthropogenic alterations to predator abundances can affect the spatial and temporal dynamics of important ecosystem processes.
Bird productivity and nest predation in agricultural grasslands
Ribic, Christine; Guzy, Michael J.; Anderson, Travis J.; Sample, David W.; Nack, Jamie L.
2012-01-01
Effective conservation strategies for grassland birds in agricultural landscapes require understanding how nesting success varies among different grassland habitats. A key component to this is identifying nest predators and how these predators vary by habitat. We quantified nesting activity of obligate grassland birds in three habitats [remnant prairie, cool-season grass Conservation Reserve Program (CRP) fields, and pastures) in southwest Wisconsin, 2002-2004. We determined nest predators using video cameras and examined predator activity using track stations. Bobolink (Dolichonyx oryzivorus) and Henslow's Sparrow (Ammodramus henslowii) nested primarily in CRP fields, and Grasshopper Sparrow (A. savannarum) in remnant prairies. Eastern Meadowlark (Sturnella magna) nested evenly across all three habitats. Daily nest survival rate for Eastern Meadowlark varied by nesting stage alone. Daily nest survival rate for Grasshopper Sparrow varied by nest vegetation and distance to the nearest woody edge; nest survival was higher near woody edges. In CRP fields, most predators were grassland-associated, primarily thirteen-lined ground squirrels (Ictidomys tridecemlineatus). In pastures, one-third of the nest predators were grassland-associated (primarily thirteen-lined ground squirrels) and 56% were associated with woody habitats (primarily raccoons, Procyon lotor). Raccoon activity was greatest around pastures and lowest around prairies; regardless of habitat, raccoon activity along woody edges was twice that along non-woody edges. Thirteen-lined ground squirrel activity was greater along prairie edges than pastures and was greater along nonwoody edges compared to woody edges. In CRP fields, raccoon activity was greater along edges compared to the interiors; for ground squirrels these relationships were reversed. Using video camera technology to identify nest predators was indispensable in furthering our understanding of the grassland system. The challenge is to use that knowledge to develop management actions for both birds and predators.
Predation by coyotes on white-tailed deer neonates in South Carolina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilgo, John C.; Ray, H. Scott; Vukovich, Mark
2012-05-07
Abstract: Coyotes (Canis latrans) are novel predators throughout the southeastern United States and their depredation of white-tailed deer (Odocoileus virginianus) neonates may explain observed declines in some deer populations in the region, but direct evidence for such a relationship is lacking. Our objective was to quantify neonate survival rates and causes of mortality at the United States Department of Energy's Savannah River Site (SRS), South Carolina to directly evaluate degree of predation in this deer population. From 2006 to 2009, we radio-monitored 91 neonates captured with the aid of vaginal implant transmitters in pregnant adult females and opportunistic searches. Overallmore » Kaplan Meier survival rate to 16 weeks of age was 0.230 (95% CI = 0.155-0.328), and it varied little among years. Our best-fitting model estimated survival at 0.220 (95% CI = 0.144-0.320). This model included a quadratic time trend variable (lowest survival rate during the first week of life and increasing to near 1.000 around week 10), and Julian date of birth (survival probability declining as date of birth increased). Predation by coyotes was the most frequent cause of death among the 70 monitored neonates that died, definitively accounting for 37% of all mortalities and potentially accounting for as much as 80% when also including probable coyote predation. Predation by bobcats (Felis rufus) accounted for 7% (definitive) to 9% (including probable bobcat predation) of mortalities. The level of coyote-induced mortality we observed is consistent with the low recruitment rates exhibited in the SRS deer population since establishment of coyotes at the site. If representative of recruitment rates across South Carolina, current harvest levels appear unsustainable. This understanding is consistent with the recent declining trend in the statewide deer population. The effects of coyote predation on recruitment should be considered when setting harvest goals, regardless of whether local deer population size is currently above or below desired levels, because coyotes can substantially reduce fawn recruitment. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.« less
Survival rates, mortality causes, and habitats of Pennsylvania white-tailed deer fawns
Vreeland, J.K.; Diefenbach, D.R.; Wallingford, B.D.
2004-01-01
Estimates of survival and cause-specific mortality of white-tailed deer (Odocoileus virginianus) fawns are important to population management. We quantified cause-specific mortality, survival rates, and habitat characteristics related to fawn survival in a forested landscape and an agricultural landscape in central Pennsylvania. We captured and radiocollared neonatal (0.05). Predation accounted for 46.2% (95% Cl = 37.6-56.7%) of 106 mortalities through 34 weeks. We attributed 32.7% (95% Cl = 21.9-48.6%) and 36.7% (95% Cl = 25.5-52.9%) of 49 predation events to black bears (Ursus americanus) and coyotes (Canis latrans], respectively. Natural causes, excluding predation, accounted for 27.4% (95% Cl = 20.1-37.3) of mortalities. Fawn survival in Pennsylvania was comparable to reported survival in forested and agricultural regions in northern portions of the white-tailed deer range. We have no evidence to suggest that the fawn survival rates we observed were preventing population growth. Because white-tailed deer are habitat generalists, home-range-scale habitat characteristics may be unrelated to fawn survival; therefore, future studies should consider landscape-related characteristics on fawn survival.
Young, Donald D.; McCabe, Thomas R.; Ambrose, Robert E.; Garner, Gerald W.; Weiler, Greg J.; Reynolds, Harry V.; Udevitz, Mark S.; Reed, Dan J.; Griffith, Brad; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.
2002-01-01
Calving caribou (Rangifer tarandus) of the Central Arctic herd, Alaska, have avoided the infrastructure associated with the complex of petroleum development areas from Prudhoe Bay to Kuparuk (Cameron et al. 1992, Nellemann and Cameron 1998, and Section 4 of this document). Calving females of the Porcupine caribou herd may similarly avoid any oil field roads and pipelines developed in areas traditionally used during the calving and post-calving periods. This may displace the caribou females and calves to areas east and south of the 1002 Area of the Arctic National Wildlife Refuge.Increased calf mortality could occur if calving caribou are displaced into areas that have a higher density of predators, higher rates of predation, or where a higher proportion of the predators regularly use caribou as a food source (Whitten et al. 1992).Our study assessed predation risks to caribou calving in the 1002 Area versus calving in potential displacement areas. Due to funding constraints, our research focused on grizzly bears (Ursus arctos), with wolves (Camus lupus) and golden eagles (Aquila chrysaetos) receiving only cursory attention. Our research objectives were 1) to compare relative abundance of predators within the 1002 Area with that in adjacent peripheral areas, 2) to determine factors affecting predator abundance on the calving grounds, and 3) to quantify the use of caribou as a food source for predators and the importance of caribou to the productivity of predator populations using the coastal plain of the Arctic National Wildlife Refuge.
Dyer, Lee A.
2002-01-01
While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae), on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests. PMID:15455052
Dyer, Lee A
2002-01-01
While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae), on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests.
Kneitel, Jamie M.
2012-01-01
Trade-offs among species’ ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species’ ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species’ traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure. PMID:22844526
Foraging trade-offs along a predator-permanence gradient in subalpine wetlands
Wissinger, S.A.; Whiteman, H.H.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.
1999-01-01
We conducted a series of field and laboratory experiments to determine the direct and indirect effects of a top predator, the tiger salamander (Ambystoma tigrinum nebulosum), on larvae of two species of limnephilid caddisflies (Limnephilus externus and Asynarchus nigriculus) in subalpine wetlands in central Colorado. Asynarchus larvae predominate in temporary wetlands and are aggressive intraguild predators on Limnephilus larvae, which only predominate in permanent basins with salamanders. We first conducted a field experiment in mesocosms (cattle tanks) to quantify the predatory effects of different life stages of salamanders on the two caddisfly species. Two life stages of the salamanders (larvae and paedomorphs) preferentially preyed on Asynarchus relative to Limnephilus. Subsequent laboratory experiments revealed that high Asynarchus activity rates and relatively ineffective antipredatory behaviors led to higher salamander detection and attack rates compared to Limnephilus. In a second field experiment (full factorial for presence and absence of each of the three species), we found that salamander predation on Asynarchus had an indirect positive effect on Limnephilus: survival was higher in the presence of salamanders + Asynarchus than with just Asynarchus. In the laboratory we compared the predatory effects of salamanders with and without their mouths sewn shut and found the observed indirect positive effect on Limnephilus survival to be mainly the result of reduced numbers of Asynarchus rather than salamander-induced changes in Asynarchus behavior. We argue that indirect effects of predator-predator interactions on shared prey will be mainly density-mediated and not trait-mediated when one of the predators (in this case, Asynarchus) is under strong selection for rapid growth and therefore does not modify foraging behaviors in response to the other predator. The reciprocal dominance of Limnephilus and Asynarchus in habitats with and without salamanders probably reflects a tradeoff between competitive superiority and vulnerability to predation. The high activity levels and aggressiveness that enable Asynarchus to complete development in temporary habitats result in strong asymmetric competition (via intraguild predation) with Limnephilus. In permanent habitats these same behaviors increase Asynarchus vulnerability to salamander predation, which indirectly benefits Limnephilus. This and previous work implicate salamanders as keystone predators that exert a major influence on the composition of benthic and planktonic assemblages in subalpine wetlands.
Nuisance Ecology: Do Scavenging Condors Exact Foraging Costs on Pumas in Patagonia?
Elbroch, L. Mark; Wittmer, Heiko U.
2013-01-01
Predation risk describes the energetic cost an animal suffers when making a trade off between maximizing energy intake and minimizing threats to its survival. We tested whether Andean condors (Vultur gryphus) influenced the foraging behaviors of a top predator in Patagonia, the puma (Puma concolor), in ways comparable to direct risks of predation for prey to address three questions: 1) Do condors exact a foraging cost on pumas?; 2) If so, do pumas exhibit behaviors indicative of these risks?; and 3) Do pumas display predictable behaviors associated with prey species foraging in risky environments? Using GPS location data, we located 433 kill sites of 9 pumas and quantified their kill rates. Based upon time pumas spent at a carcass, we quantified handling time. Pumas abandoned >10% of edible meat at 133 of 266 large carcasses after a single night, and did so most often in open grasslands where their carcasses were easily detected by condors. Our data suggested that condors exacted foraging costs on pumas by significantly decreasing puma handling times at carcasses, and that pumas increased their kill rates by 50% relative to those reported for North America to compensate for these losses. Finally, we determined that the relative risks of detection and associated harassment by condors, rather than prey densities, explained puma “giving up times” (GUTs) across structurally variable risk classes in the study area, and that, like many prey species, pumas disproportionately hunted in high-risk, high-resource reward areas. PMID:23301093
Nuisance ecology: do scavenging condors exact foraging costs on pumas in Patagonia?
Elbroch, L Mark; Wittmer, Heiko U
2013-01-01
Predation risk describes the energetic cost an animal suffers when making a trade off between maximizing energy intake and minimizing threats to its survival. We tested whether Andean condors (Vultur gryphus) influenced the foraging behaviors of a top predator in Patagonia, the puma (Puma concolor), in ways comparable to direct risks of predation for prey to address three questions: 1) Do condors exact a foraging cost on pumas?; 2) If so, do pumas exhibit behaviors indicative of these risks?; and 3) Do pumas display predictable behaviors associated with prey species foraging in risky environments? Using GPS location data, we located 433 kill sites of 9 pumas and quantified their kill rates. Based upon time pumas spent at a carcass, we quantified handling time. Pumas abandoned >10% of edible meat at 133 of 266 large carcasses after a single night, and did so most often in open grasslands where their carcasses were easily detected by condors. Our data suggested that condors exacted foraging costs on pumas by significantly decreasing puma handling times at carcasses, and that pumas increased their kill rates by 50% relative to those reported for North America to compensate for these losses. Finally, we determined that the relative risks of detection and associated harassment by condors, rather than prey densities, explained puma "giving up times" (GUTs) across structurally variable risk classes in the study area, and that, like many prey species, pumas disproportionately hunted in high-risk, high-resource reward areas.
Effect of downed woody debris on small mammal anti-predator behavior
Travis M. Hinkelman; John L. Orrock; Susan C Loeb
2011-01-01
Anti-Predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs, but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used giving-up densities to quantify...
Creel, Scott; Dröge, Egil; M'soka, Jassiel; Smit, Daan; Becker, Matt; Christianson, Dave; Schuette, Paul
2017-08-01
Most species adjust their behavior to reduce the likelihood of predation. Many experiments have shown that antipredator responses carry energetic costs that can affect growth, survival, and reproduction, so that the total cost of predation depends on a trade-off between direct predation and risk effects. Despite these patterns, few field studies have examined the relationship between direct predation and the strength of antipredator responses, particularly for complete guilds of predators and prey. We used scan sampling in 344 observation periods over a four-year field study to examine behavioral responses to the immediate presence of predators for a complete antelope guild (dominated by wildebeest, zebra, and oribi) in Liuwa Plains National Park, Zambia, testing for differences in response to all large carnivores in the ecosystem (lions, spotted hyenas, cheetahs, and African wild dogs). We quantified the proportion that each prey species contributed to the kills made by each predator (516 total kills), used distance sampling on systematic line transects to determine the abundance of each prey species, and combined these data to quantify the per-capita risk of direct predation for each predator-prey pair. On average, antelopes increased their vigilance by a factor of 2.4 when predators were present. Vigilance varied strongly among prey species, but weakly in response to different predators. Increased vigilance was correlated with reduced foraging in a similar manner for all prey species. The strength of antipredator response was not detectably related to patterns of direct predation (n = 15 predator-prey combinations with sufficient data). This lack of correlation has implications for our understanding of the role of risk effects as part of the limiting effect of predators on prey. © 2017 by the Ecological Society of America.
Quantifying fear effects on prey demography in nature.
Peers, Michael J L; Majchrzak, Yasmine N; Neilson, Eric; Lamb, Clayton T; Hämäläinen, Anni; Haines, Jessica A; Garland, Laura; Doran-Myers, Darcy; Broadley, Kate; Boonstra, Rudy; Boutin, Stan
2018-06-13
In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities. © 2018 by the Ecological Society of America.
Consumptive effects of fish reduce wetland crayfish recruitment and drive species turnover.
Kellogg, Christopher M; Dorn, Nathan J
2012-04-01
Predators and dry-disturbances have pronounced effects on invertebrate communities and can deterministically affect compositional turnover between discrete aquatic habitats. We examined the effect of sunfish (Lepomis spp.) predators on two native crayfish, Procambarus alleni and P. fallax, that regionally coexist in an expansive connected wetland in order to test the hypotheses that sunfish predation limits crayfish recruitment (both species) and that it disproportionately affects P. alleni, the species inhabiting temporary wetlands. In replicate vegetated wetlands (18.6 m(2)), we quantified summertime crayfish recruitment and species composition across an experimental gradient of sunfish density. Separately, we quantified effects of sunfish on crayfish growth, conducted a complimentary predation assay in mesocosms, and compared behavior of the two crayfish. Sunfish reduced P. alleni summertime recruitment by >99% over the full sunfish gradient, and most of the effect was caused by low densities of sunfish (0.22-0.43 m(-2)). P. alleni dominated wetlands with few or no sunfish, but the composition shifted towards P. fallax dominance in wetlands with abundant sunfish. P. fallax survived better than P. alleni over 40 h in smaller mesocosms stocked with warmouth. Sunfish reduced P. fallax recruitment 62% in a second wetland experiment, but growth rates of caged crayfish (both species) were unaffected by sunfish presence, suggesting predatory effects were primarily consumptive. Consistent with life histories of relatively fish-sensitive invertebrates, P. alleni engaged in more risky behaviors in the laboratory. Our results indicate that sunfish predators limit recruitment of both species, but disproportionately remove the more active and competitively dominant P. alleni. Spatially and temporally variable dry-disturbances negatively co-varying with sunfish populations allow for regional coexistence of these two crayfish and may release populations of either species from control by predatory fishes.
French, William E.; Graeb, Brian D. S.; Chipps, Steven R.; Klumb, Robert A.
2014-01-01
Predation can play an important role in the recruitment dynamics of fishes with intensity regulated by behavioral (i.e., prey selectivity) and/or environmental conditions that may be especially important for rare or endangered fishes. We conducted laboratory experiments to quantify prey selection and capture efficiency by three predators employing distinct foraging strategies: pelagic piscivore (walleye Sander vitreus); benthic piscivore (flathead catfish Pylodictis olivaris) and generalist predator (smallmouth bass Micropterus dolomieu) foraging on two size classes of age-0 pallid sturgeon: large (75–100 mm fork length [FL]) and small (40–50 mm FL). Experiments at high (> 70 nephalometric turbidity units [NTU]) and low (< 5 NTU) turbidity for each predator were conducted with high and low densities of pallid sturgeon and contrasting densities of an alternative prey, fathead minnow Pimephales promelas. Predator behaviors (strikes, captures, and consumed prey) were also quantified for each prey type. Walleye and smallmouth bass negatively selected pallid sturgeon (Chesson’s α = 0.04–0.1) across all treatments, indicating low relative vulnerability to predation. Relative vulnerability to predation by flathead catfish was moderate for small pallid sturgeon (α = 0.44, neutral selection), but low for large pallid sturgeon (α = 0.11, negative selection). Turbidity (up to 100 NTU) did not affect pallid sturgeon vulnerability, even at low density of alternative prey. Age-0 pallid sturgeon were easily captured by all predators, but were rarely consumed, suggesting mechanisms other than predator capture efficiency govern sturgeon predation vulnerability.
Ineffective crypsis in a crab spider: a prey community perspective
Brechbühl, Rolf; Casas, Jérôme; Bacher, Sven
2010-01-01
Cryptic coloration is assumed to be beneficial to predators because of an increased encounter rate with unwary prey. This hypothesis is, however, very rarely, if ever, studied in the field. The aim of this study was to quantify the encounter rate and capture success of an ambush predator, in the field, as a function of its level of colour-matching with the background. We used the crab spider Misumena vatia, which varies its body colour and can thereby match the colour of the flower it hunts upon. We carried out a manipulative field experiment using a complete factorial design resulting in six different colour combinations of crab spiders and flowers differing in their degree of colour-matching. A rich and diverse set of naturally occurring insects visited the flowers while we continuously video-recorded the spider's foraging activity. This enabled us to test the crypsis, the spider avoidance and the flower visitor attraction hypotheses, all three supported by previous studies. Flower visitors of different groups either avoided crab spiders independent of colour-matching, such as solitary bees and syrphid flies, or ignored them, such as bumble-bees and honeybees. Moreover, colour-matched spiders did not have a higher encounter rate and capture success compared to the visually apparent ones. Thus, our results support the spider avoidance hypothesis, reject the two other hypotheses and uncovered a fourth behaviour: indifference to predators. Because flower visitors reacted differently, a community approach is mandatory in order to understand the function of background colour-matching in generalist predators. We discuss our results in relation to the size and sociality of the prey and in relation to the functional significance of colour change in this predator. PMID:19889699
Ineffective crypsis in a crab spider: a prey community perspective.
Brechbühl, Rolf; Casas, Jérôme; Bacher, Sven
2010-03-07
Cryptic coloration is assumed to be beneficial to predators because of an increased encounter rate with unwary prey. This hypothesis is, however, very rarely, if ever, studied in the field. The aim of this study was to quantify the encounter rate and capture success of an ambush predator, in the field, as a function of its level of colour-matching with the background. We used the crab spider Misumena vatia, which varies its body colour and can thereby match the colour of the flower it hunts upon. We carried out a manipulative field experiment using a complete factorial design resulting in six different colour combinations of crab spiders and flowers differing in their degree of colour-matching. A rich and diverse set of naturally occurring insects visited the flowers while we continuously video-recorded the spider's foraging activity. This enabled us to test the crypsis, the spider avoidance and the flower visitor attraction hypotheses, all three supported by previous studies. Flower visitors of different groups either avoided crab spiders independent of colour-matching, such as solitary bees and syrphid flies, or ignored them, such as bumble-bees and honeybees. Moreover, colour-matched spiders did not have a higher encounter rate and capture success compared to the visually apparent ones. Thus, our results support the spider avoidance hypothesis, reject the two other hypotheses and uncovered a fourth behaviour: indifference to predators. Because flower visitors reacted differently, a community approach is mandatory in order to understand the function of background colour-matching in generalist predators. We discuss our results in relation to the size and sociality of the prey and in relation to the functional significance of colour change in this predator.
Dean Pearson
1999-01-01
Field observations made in 1993 suggested that rodents were preying on spotted knapweed (Centaurea maculosa) seedheads, possibly targeting the gall fly larvae (Urophora spp.) which overwinter within them. I conducted a brief study to determine the cause of seedhead predation and quantify gall fly predation. Stomachs were examined...
Aukema, Brian H; Raffa, Kenneth F
2002-12-01
We used a laboratory assay to partition the effects of predation and intraspecific competition on the establishment, mating success, and brood development of an endophytic herbivore. We selected a system in which the same predator feeds both exophytically and endophytically on the same prey, to evaluate the role of herbivore feeding guild on predator numerical and functional responses. The bark beetle, Ips pini (Coleoptera: Scolytidae) reproduces within the stems of conifers. Males establish mating chambers under the bark, produce aggregation pheromones, and are subsequently joined by females that construct ovipositional galleries. Thanasimus dubius (Coleoptera: Cleridae) adults prey on adults alighting on the bark surface. T. dubius females then oviposit at the bark beetles' entrance sites, and their larvae prey on developing bark beetle larvae within the tree. We imposed a controlled 3×3 factorial design of prey and predator adult densities on red pine logs. Both predation and competition decreased I. pini reproduction. However, the per capita effect of predation was greater than competition, with one adult T. dubius reducing herbivore reproduction by an equivalent amount as four to five competing males and their harems. Increased densities of adult T. dubius on the plant surface reduced the number of prey captured per predator. Total predation on adults and larvae was similar. However, adult T. dubius on the plant surface ate approximately 18-35 times more I. pini per day than did their endophytic larvae. Within the plant, cannibalism among T. dubius, low herbivore densities, limited feeding times, and presumably the complex gallery architecture of I. pini reduced the number of predator progeny. The progeny of I. pini showed even sex ratios in the absence of predators, but were female biased when predators were present. We quantified a relatively narrow set of predator and prey densities that can generate replacement rates greater than one for this predator that specializes on endophytic herbivores. We attribute some of the benefits of an endophytic lifestyle not only to escape from generalist predators, but also to relatively low functional and numerical responses of adapted predators.
Predator-induced morphological plasticity across local populations of a freshwater snail.
Brönmark, Christer; Lakowitz, Thomas; Hollander, Johan
2011-01-01
The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without molluscivorous fish. Subsequently, in a common garden experiment we investigated reaction norms of snails from populations' with/without fish when exposed to chemical cues from tench (Tinca tinca), a molluscivorous fish. We found that snails from fish-free ponds had a narrow shell with a well developed spire, whereas snails that coexisted with fish had more rotund shells with a low spire, a shell morphology known to increase survival rate from shell-crushing predators. The common garden experiment mirrored the results from the field survey and showed that snails had similar reaction norms in response to chemical predator cues, i.e. the expression of shell shape was independent of population origin. Finally, we found significant differences for the trait means among populations, within each pond category (fish/fish free), suggesting a genetic component in the determination of shell morphology that has evolved independently across ponds.
di Virgilio, Agustina; Morales, Juan M; Lambertucci, Sergio A; Shepard, Emily L C; Wilson, Rory P
2018-01-01
Precision Livestock Farming (PLF) is a promising approach to minimize the conflicts between socio-economic activities and landscape conservation. However, its application on extensive systems of livestock production can be challenging. The main difficulties arise because animals graze on large natural pastures where they are exposed to competition with wild herbivores for heterogeneous and scarce resources, predation risk, adverse weather, and complex topography. Considering that the 91% of the world's surface devoted to livestock production is composed of extensive systems (i.e., rangelands), our general aim was to develop a PLF methodology that quantifies: (i) detailed behavioural patterns, (ii) feeding rate, and (iii) costs associated with different behaviours and landscape traits. For this, we used Merino sheep in Patagonian rangelands as a case study. We combined data from an animal-attached multi-sensor tag (tri-axial acceleration, tri-axial magnetometry, temperature sensor and Global Positioning System) with landscape layers from a Geographical Information System to acquire data. Then, we used high accuracy decision trees, dead reckoning methods and spatial data processing techniques to show how this combination of tools could be used to assess energy balance, predation risk and competition experienced by livestock through time and space. The combination of methods proposed here are a useful tool to assess livestock behaviour and the different factors that influence extensive livestock production, such as topography, environmental temperature, predation risk and competition for heterogeneous resources. We were able to quantify feeding rate continuously through time and space with high accuracy and show how it could be used to estimate animal production and the intensity of grazing on the landscape. We also assessed the effects of resource heterogeneity (inferred through search times), and the potential costs associated with predation risk, competition, thermoregulation and movement on complex topography. The quantification of feeding rate and behavioural costs provided by our approach could be used to estimate energy balance and to predict individual growth, survival and reproduction. Finally, we discussed how the information provided by this combination of methods can be used to develop wildlife-friendly strategies that also maximize animal welfare, quality and environmental sustainability.
Walsh, Matthew R.; Broyles, Whitnee; Beston, Shannon M.; Munch, Stephan B.
2016-01-01
Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278
Smith, Chelsea A.; Gardiner, Mary M.
2013-01-01
Exotic species are widely accepted as a leading cause of biodiversity decline. Lady beetles (Coccinellidae) provide an important model to study how competitor introductions impact native communities since several native coccinellids have experienced declines that coincide with the establishment and spread of exotic coccinellids. This study tested the central hypothesis that intraguild predation by exotic species has caused these declines. Using sentinel egg experiments, we quantified the extent of predation on previously-common (Hippodamia convergens) and common (Coleomegilla maculata) native coccinellid eggs versus exotic coccinellid (Harmonia axyridis) eggs in three habitats: semi-natural grassland, alfalfa, and soybean. Following the experiments quantifying egg predation, we used video surveillance to determine the composition of the predator community attacking the eggs. The extent of predation varied across habitats, and egg species. Native coccinellids often sustained greater egg predation than H. axyridis. We found no evidence that exotic coccinellids consumed coccinellid eggs in the field. Harvestmen and slugs were responsible for the greatest proportion of attacks. This research challenges the widely-accepted hypothesis that intraguild predation by exotic competitors explains the loss of native coccinellids. Although exotic coccinellids may not be a direct competitor, reduced egg predation could indirectly confer a competitive advantage to these species. A lower proportion of H. axyridis eggs removed by predators may have aided its expansion and population increase and could indirectly affect native species via exploitative or apparent competition. These results do not support the intraguild predation hypothesis for native coccinellid decline, but do bring to light the existence of complex interactions between coccinellids and the guild of generalist predators in coccinellid foraging habitats. PMID:24386383
Simkins, Richard M; Belk, Mark C
2017-08-01
Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish ( Gambusia affinis ) as the prey, different numbers of green sunfish ( Lepomis cyanellus ) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator-prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.
Shultz, Susanne; Noë, Ronald; McGraw, W Scott; Dunbar, R I M
2004-04-07
Although predation avoidance is the most commonly invoked explanation for vertebrate social evolution, there is little evidence that individuals in larger groups experience lower predation rates than those in small groups. We compare the morphological and behavioural traits of mammal prey species in the Taï forest, Ivory Coast, with the diet preferences of three of their non-human predators: leopards, chimpanzees and African crowned eagles. Individual predators show marked differences in their predation rates on prey species of different body sizes, but clear patterns with prey behaviour were apparent only when differences in prey habitat use were incorporated into the analyses. Leopard predation rates are highest for terrestrial species living in smaller groups, whereas eagle predation rates are negatively correlated with group size only among arboreal prey. When prey predation rates are summed over all three predators, terrestrial species incur higher predation rates than arboreal species and, within both categories, predation rates decline with increasing prey group size and decreasing density of groups in the habitat. These results reveal that it is necessary to consider anti-predator strategies in the context of a dynamic behavioural interaction between predators and prey.
Kula, Abigail A R; Dudash, Michele R; Fenster, Charles B
2013-06-01
Pollinating seed predators are models for the study of mutualisms. These insects have dual effects on host-plant fitness, through pollination as adults and flower and fruit predation as larvae. A rarely examined question is whether pollinating seed-predator oviposition choices are influenced by plant floral and size traits and the potential consequences of oviposition for host-plant reproduction. • We quantified oviposition by a pollinating seed predator, Hadena ectypa, on its host, Silene stellata, to determine if oviposition was associated with specific plant traits and whether oviposition was significantly correlated with fruit initiation or flower and fruit predation over three years. We also quantified whether stigmatic pollen loads of flowers visited by Hadena that both fed on nectar and oviposited were greater than when Hadena only fed on nectar. • Hadena had significant preference for plants having flowers with long corolla tubes in all three years. Moth oviposition was correlated with other traits only in some years. Oviposition did not increase stigmatic pollen loads. We observed significant positive relationships between both oviposition and fruit initiation and oviposition and flower/fruit predation. • Hadena ectypa oviposition choices were based consistently on floral tube length differences among individuals, and the consequences of oviposition include both fruit initiation (due to pollination while feeding on nectar prior to oviposition) and larval flower/fruit predation. The positive association between oviposition and fruit initiation may explain the long-term maintenance of facultative pollinating seed-predator interactions.
The Pattern and Range of Movement of a Checkered Beetle Predator Relative to its Bark Beetle Prey
James T. Cronin; John D. Reeve; Richard Wilkens; Peter Turchin
2000-01-01
Theoretical studies of predator-prey population dynamics have increasingly centered on the role of space and the movement of organisms. Yet empirical studies have been slow to follow suit. Herein, we quantified the long range movement of a checkered beetle Thanasimus dublus, which is an important predator of a pernicious forest pest the southern...
Invasive predator tips the balance of symmetrical competition between native coral-reef fishes.
Kindinger, Tye L
2018-04-01
The importance of competition and predation in structuring ecological communities is typically examined separately such that interactions between these processes are seldom understood. By causing large reductions in native prey, invasive predators may modify native species interactions. I conducted a manipulative field experiment in The Bahamas to investigate the possibility that the invasive Pacific red lionfish (Pterois volitans) alters competition between planktivorous fairy and blackcap basslets (Gramma loreto and Gramma melacara, respectively). Competition between these coral-reef fishes is known to have symmetrical effects on the juveniles of both species, whereby the feeding positions under reef ledges and growth rates of these individuals are hindered. Following baseline censuses of local populations of competing basslets, I simultaneously manipulated the abundance of lionfish on entire reefs, and the abundance of basslets in local populations under isolated ledges within each reef, resulting in three treatments: unmanipulated control populations of both basslets, reduced abundance of fairy basslet, and reduced abundance of blackcap basslet. For eight weeks, I measured the change in biomass and feeding position of 2-5 cm size classes of each basslet species and calculated the growth rates of ~2 cm individuals using a standard mark-and-recapture method. Experimental populations were filmed at dusk using automated video cameras to quantify the behavior of lionfish overlapping with basslets. Video playback revealed lionfish hunted across all ledge positions, regardless of which basslet species were present, yet lionfish differentially reduced the biomass of only juvenile (2 cm) fairy basslet. Predation reduced the effects of interspecific competition on juvenile blackcap basslet as evidenced by corresponding shifts in feeding position toward coveted front edges of ledges and increases in growth rates that were comparable to the response of these fish in populations where competition was experimentally reduced. Thus, an invasive marine predator altered the outcome of interspecific competition via differential predation, which tipped the balance of competition between native prey species from symmetrical to asymmetrical effects on juveniles. This study reveals a newly demonstrated context in which predation can indirectly facilitate prey, further broadening our understanding of the interactive effects of predation and competition in the context of invasive species. © 2018 by the Ecological Society of America.
Fieberg, J.; Jenkins, Kurt J.
2005-01-01
Often landmark conservation decisions are made despite an incomplete knowledge of system behavior and inexact predictions of how complex ecosystems will respond to management actions. For example, predicting the feasibility and likely effects of restoring top-level carnivores such as the gray wolf (Canis lupus) to North American wilderness areas is hampered by incomplete knowledge of the predator-prey system processes and properties. In such cases, global sensitivity measures, such as Sobola?? indices, allow one to quantify the effect of these uncertainties on model predictions. Sobola?? indices are calculated by decomposing the variance in model predictions (due to parameter uncertainty) into main effects of model parameters and their higher order interactions. Model parameters with large sensitivity indices can then be identified for further study in order to improve predictive capabilities. Here, we illustrate the use of Sobola?? sensitivity indices to examine the effect of parameter uncertainty on the predicted decline of elk (Cervus elaphus) population sizes following a hypothetical reintroduction of wolves to Olympic National Park, Washington, USA. The strength of density dependence acting on survival of adult elk and magnitude of predation were the most influential factors controlling elk population size following a simulated wolf reintroduction. In particular, the form of density dependence in natural survival rates and the per-capita predation rate together accounted for over 90% of variation in simulated elk population trends. Additional research on wolf predation rates on elk and natural compensations in prey populations is needed to reliably predict the outcome of predatora??prey system behavior following wolf reintroductions.
Drivers of Daily Routines in an Ectothermic Marine Predator: Hunt Warm, Rest Warmer?
Papastamatiou, Yannis P.; Watanabe, Yuuki Y.; Bradley, Darcy; Dee, Laura E.; Weng, Kevin; Lowe, Christopher G.; Caselle, Jennifer E.
2015-01-01
Animal daily routines represent a compromise between maximizing foraging success and optimizing physiological performance, while minimizing the risk of predation. For ectothermic predators, ambient temperature may also influence daily routines through its effects on physiological performance. Temperatures can fluctuate significantly over the diel cycle and ectotherms may synchronize behaviour to match thermal regimes in order to optimize fitness. We used bio-logging to quantify activity and body temperature of blacktip reef sharks (Carcharhinus melanopterus) at a tropical atoll. Behavioural observations were used to concurrently measure bite rates in herbivorous reef fishes, as an index of activity for potential diurnal prey. Sharks showed early evening peaks in activity, particularly during ebbing high tides, while body temperatures peaked several hours prior to the period of maximal activity. Herbivores also displayed peaks in activity several hours earlier than the peaks in shark activity. Sharks appeared to be least active while their body temperatures were highest and most active while temperatures were cooling, although we hypothesize that due to thermal inertia they were still warmer than their smaller prey during this period. Sharks may be most active during early evening periods as they have a sensory advantage under low light conditions and/or a thermal advantage over cooler prey. Sharks swam into shallow water during daytime low tide periods potentially to warm up and increase rates of digestion before the nocturnal activity period, which may be a strategy to maximize ingestion rates. “Hunt warm, rest warmer” may help explain the early evening activity seen in other ectothermic predators. PMID:26061229
Hostetter, Nathan J.; Evans, Allen F.; Cramer, Bradley M.; Collis, Ken; Lyons, Donald E.; Roby, Daniel D.
2015-01-01
Accurate assessment of specific mortality factors is vital to prioritize recovery actions for threatened and endangered species. For decades, tag recovery methods have been used to estimate fish mortality due to avian predation. Predation probabilities derived from fish tag recoveries on piscivorous waterbird colonies typically reflect minimum estimates of predation due to an unknown and unaccounted-for fraction of tags that are consumed but not deposited on-colony (i.e., deposition probability). We applied an integrated tag recovery modeling approach in a Bayesian context to estimate predation probabilities that accounted for predator-specific tag detection and deposition probabilities in a multiple-predator system. Studies of PIT tag deposition were conducted across three bird species nesting at seven different colonies in the Columbia River basin, USA. Tag deposition probabilities differed significantly among predator species (Caspian ternsHydroprogne caspia: deposition probability = 0.71, 95% credible interval [CRI] = 0.51–0.89; double-crested cormorants Phalacrocorax auritus: 0.51, 95% CRI = 0.34–0.70; California gulls Larus californicus: 0.15, 95% CRI = 0.11–0.21) but showed little variation across trials within a species or across years. Data from a 6-year study (2008–2013) of PIT-tagged juvenile Snake River steelhead Oncorhynchus mykiss (listed as threatened under the Endangered Species Act) indicated that colony-specific predation probabilities ranged from less than 0.01 to 0.17 and varied by predator species, colony location, and year. Integrating the predator-specific deposition probabilities increased the predation probabilities by a factor of approximately 1.4 for Caspian terns, 2.0 for double-crested cormorants, and 6.7 for California gulls compared with traditional minimum predation rate methods, which do not account for deposition probabilities. Results supported previous findings on the high predation impacts from strictly piscivorous waterbirds nesting in the Columbia River estuary (i.e., terns and cormorants), but our findings also revealed greater impacts of a generalist predator species (i.e., California gulls) than were previously documented. Approaches used in this study allow for direct comparisons among multiple fish mortality factors and considerably improve the reliability of tag recovery models for estimating predation probabilities in multiple-predator systems.
Annual variation in seedfall, postdispersal predation, and recruitment of a neotropical tree
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schupp, E.W.
1990-04-01
Knowledge of the dynamics of seed production and seedling recruitment of individual tree species is crucial for a complete understanding of tropical forest dynamics, yet multiyear studies on the seed and young seedling stages of tropical trees are virtually nonexistent. In a 4-yr study of the understory tree Faramea occidentalis on Barro Colorado Island, Panama, the author quantified natural levels of viable seedfall, seedling emergence, and seedling establishment, and experimentally estimated postdispersal seed predation. The levels of viable seedfall, seed predation, seedling emergence, early seedling survival, and seedling recruitment all differed significantly among years. The proportion of fallen seeds destroyedmore » by predators before germination was not related to the quantity of F. occidentalis seedfall. Within a year, however, F. occidentalis seed predation appeared to be influenced by community-wide seedfall, with high predation rates during times of low seed abundance and very low predation during the late dry season peak in seedfall by the community. Most of the annual variation in recruitment can be explained by the combination of seedfall and seed predation; in 3 of the 4 yr seedling emergence could be predicted from a knowledge of viable seedfall and the probability of a seed surviving until the peak of germination. The 4th yr, however, demonstrated that environmental conditions provide a sporadic, though important, limitation to recruitment. In comparison to many tree species, early seedling survival was relatively high, as was the ratio of seedlings recruited per seed falling. The highly successful recruitment of F. occidentalis is associated with a high population density of both saplings and adults in the study area.« less
Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles
Gunzburger, M.S.; Travis, J.
2005-01-01
Prey species that occur across a range of habitats may be exposed to variable communities of multiple predator species across habitats. Predicting the combined effects of multiple predators can be complex. Many experiments evaluating the effects of multiple predators on prey confound either variation in predator density with predator identity or variation in relative predator frequency with overall predation rates. We develop a new experimental design of factorial predator combinations that maintains a constant expected predation rate, under the null hypothesis of additive predator effects. We implement this design to evaluate the combined effects of three predator species (bass, aeshnid and libellulid odonate naiads) on mortality rate of a prey species, Hyla cinerea (Schneider, 1799) tadpoles, that occurs across a range of aquatic habitats. Two predator treatments (libellulid and aeshnid + libellulid) resulted in lower tadpole mortality than any of the other predator treatments. Variation in tadpole mortality across treatments was not related to coarse variation in microhabitat use, but was likely due to intraguild predation, which occurred in all predator treatments. Hyla cinerea tadpoles have constant, low survival values when exposed to many different combinations of predator species, and predation rate probably increases linearly with predator density.
A predator-prey model with generic birth and death rates for the predator.
Terry, Alan J
2014-02-01
We propose and study a predator-prey model in which the predator has a Holling type II functional response and generic per capita birth and death rates. Given that prey consumption provides the energy for predator activity, and that the predator functional response represents the prey consumption rate per predator, we assume that the per capita birth and death rates for the predator are, respectively, increasing and decreasing functions of the predator functional response. These functions are monotonic, but not necessarily strictly monotonic, for all values of the argument. In particular, we allow the possibility that the predator birth rate is zero for all sufficiently small values of the predator functional response, reflecting the idea that a certain level of energy intake is needed before a predator can reproduce. Our analysis reveals that the model exhibits the behaviours typically found in predator-prey models - extinction of the predator population, convergence to a periodic orbit, or convergence to a co-existence fixed point. For a specific example, in which the predator birth and death rates are constant for all sufficiently small or large values of the predator functional response, we corroborate our analysis with numerical simulations. In the unlikely case where these birth and death rates equal the same constant for all sufficiently large values of the predator functional response, the model is capable of structurally unstable behaviour, with a small change in the initial conditions leading to a more pronounced change in the long-term dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird
Latif, Quresh S; Heath, Sacha K; Rotenberry, John T
2012-01-01
Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat-predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post-initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown-headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism-predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U-shaped relationship) with nest-initiation timing, but experimental nests recorded no such patterns. After adjusting natural-nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling-period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of complete predation, suggesting direct predation by cowbirds. Explicit behavioral research on parents, predators (including cowbirds), and their interactions would further illuminate mechanisms underlying the density, seasonal, and nest age patterns we observed. PMID:23301174
Quinn, N F; Brainard, D C; Szendrei, Z
2016-12-01
Conservation tillage combined with cover crops or mulching may enhance natural enemy activity in agroecosystems by reducing soil disturbance and increasing habitat structural complexity. In particular, weed seed predation can increase with vegetation cover and reduced tillage, indicating that mulches may improve the quality of the habitat for weed seed foraging. The purpose of this study was to quantify the effects of tillage and mulching for conservation biological control in cucurbit fields. The effects of mulch and reduced tillage on arthropods and rates of weed seed loss from arenas were examined in field trials on sandy soils in 2014 and 2015. Experimental factors included tillage and cover crop, each with two levels: strip-tillage or full-tillage, and cover crop mulch (rye residue) or no cover crop mulch (unmulched). Arthropod abundance on the crop foliage was not affected by tillage or cover crops. Contrary to expectations, epigeal natural enemies of insects and rates of weed seed removal either did not respond to treatments or were greater in full-tilled plots and plots without mulch. Our study demonstrates the potential importance of weed seed predators in reducing weed seedbanks in vegetable agroecosystems, and suggests that early-season tillage may not be detrimental to epigeal predator assemblages. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Rosenblatt, Adam E.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael; Jeffery, Brian M.
2013-12-01
Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intra-population variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.
Rosenblatt, Adam E.; Heithaus, Michael R.; Mazzotti, Frank M; Cherkiss, Michael S.; Jeffery, Brian M.
2013-01-01
Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intrapopulation variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.
Tuan, Shu-Jen; Yeh, Chih-Chun; Atlihan, Remzi; Chi, Hsin
2016-02-01
To better understand the predator-prey relationship and to compare predation rates, we studied the life table and predation rate of the predator Eocanthecona furcellata Wolff (Hemiptera: Pentatomidae) when reared on two major crucifer pests, Spodoptera litura (F.) (Lepidoptera: Noctuidae) and Plutella xylostella L. (Lepidoptera: Plutellidae). The net reproductive rate, intrinsic rate of increase, finite rate, and net predation rates of E. furcellata reared on P. xylostella were 292.4 offspring, 0.1389 d(-1), 1.1490 d(-1), and 644.1 third instars of P. xylostella, respectively. These values are significantly higher than those reared on S. litura, i.e., 272.3 offspring, 0.1220 d(-1), 1.1298 d(-1), and 863.1 third instars of S. litura. To evaluate the predation potential of E. furcellata fed on P. xylostella and S. litura, we combined both the growth rate and predation rate to calculate the finite predation rate (ω); our results showed that E. furcellata is an effective predator of both S. litura (ω = 1.6029) and P. xylostella (ω = 1.4277). © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Maoz, Yonatan; Gal, Shira; Argov, Yael; Domeratzky, Sylvie; Coll, Moshe; Palevsky, Eric
2016-05-01
Antagonistic interactions among predators with shared prey are thought to hamper their ability to suppress herbivores. Our aim was to quantify intraguild interactions in omnivorous predatory mite assemblages in the presence of pollen, and assess their effect on pest populations. We focused on the following naturally occurring phytoseiid species in Israeli citrus orchards and their ability to suppress a key pest, the citrus rust mite (CRM) Phyllocoptruta oleivora (Eriophyidae): the generalists Amblyseius swirskii and Typhlodromus athiasae and the specialised pollen feeders Iphiseius degenerans, Euseius scutalis, E. stipulatus and E. victoriensis. Evaluations were performed on two spatial scales, tree seedlings and leaf discs. On seedlings, experiments were conducted to quantify the interactions between predators in the presence of pollen and its effects on CRM suppression. On leaf discs, intraguild interactions were studied between pairs of phytoseiid species in the presence of pollen without CRM. On seedlings, the specialised pollen predators were more effective at suppressing CRM populations than the generalist predators. In most cases, the more aggressive intraguild predator was the specialised pollen feeder. Similarly, leaf-disc experiments suggest that in these interactions the specialised pollen feeders tend to be the intraguild predators more often than the intraguild prey. © 2015 Society of Chemical Industry.
Predator-prey interactions mediated by prey personality and predator hunting mode.
Belgrad, Benjamin A; Griffen, Blaine D
2016-04-13
Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. © 2016 The Author(s).
Habitat selection responses of parents to offspring predation risk: An experimental test
Fontaine, J.J.; Martin, T.E.
2006-01-01
The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity. ?? 2006 by The University of Chicago. All rights reserved.
Pruitt, Jonathan N.; Howell, Kimberly A.; Gladney, Shaniqua J.; Yang, Yusan; Lichtenstein, James L. L.; Spicer, Michelle Elise; Echeverri, Sebastian A.; Pinter-Wollman, Noa
2017-01-01
Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals’ behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system. PMID:28221831
Pruitt, Jonathan N; Howell, Kimberly A; Gladney, Shaniqua J; Yang, Yusan; Lichtenstein, James L L; Spicer, Michelle Elise; Echeverri, Sebastian A; Pinter-Wollman, Noa
2017-03-01
Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.
Barham, Barbara J.; Barham, Peter J.; Campbell, Kate J.; Crawford, Robert J. M.; Grigg, Jennifer; Horswill, Cat; Morris, Taryn L.; Pichegru, Lorien; Steinfurth, Antje; Weller, Florian; Winker, Henning
2018-01-01
Global forage-fish landings are increasing, with potentially grave consequences for marine ecosystems. Predators of forage fish may be influenced by this harvest, but the nature of these effects is contentious. Experimental fishery manipulations offer the best solution to quantify population-level impacts, but are rare. We used Bayesian inference to examine changes in chick survival, body condition and population growth rate of endangered African penguins Spheniscus demersus in response to 8 years of alternating time–area closures around two pairs of colonies. Our results demonstrate that fishing closures improved chick survival and condition, after controlling for changing prey availability. However, this effect was inconsistent across sites and years, highlighting the difficultly of assessing management interventions in marine ecosystems. Nevertheless, modelled increases in population growth rates exceeded 1% at one colony; i.e. the threshold considered biologically meaningful by fisheries management in South Africa. Fishing closures evidently can improve the population trend of a forage-fish-dependent predator—we therefore recommend they continue in South Africa and support their application elsewhere. However, detecting demographic gains for mobile marine predators from small no-take zones requires experimental time frames and scales that will often exceed those desired by decision makers. PMID:29343602
Rudolf, Volker H W
2008-06-01
Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that this difference is species specific. This demonstrates that cannibalism can result in the coupling of predator and prey mortality rates that strongly determines the dynamics of predator-prey systems.
Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Wilson, Andrew C.; Lowery, Erin D.; Beauchamp, David A.
2016-01-01
The feasibility of reintroducing anadromous salmonids into reservoirs above high-head dams is affected by the suitability of the reservoir habitat for rearing and the interactions of the resident fish with introduced fish. We evaluated the predation risk to anadromous salmonids considered for reintroduction in Merwin Reservoir on the North Fork Lewis River in Washington State for two reservoir use-scenarios: year-round rearing and smolt migration. We characterized the role of the primary predators, Northern Pikeminnow Ptychocheilus oregonensis and tiger muskellunge (Northern Pike Esox lucius × Muskellunge E. masquinongy), by using stable isotopes and stomach content analysis, quantified seasonal, per capita predation using bioenergetics modeling, and evaluated the size and age structures of the populations. We then combined these inputs to estimate predation rates of size-structured population units. Northern Pikeminnow of FL ≥ 300 mm were highly cannibalistic and exhibited modest, seasonal, per capita predation on salmonids, but they were disproportionately much less abundant than smaller, less piscivorous, conspecifics. The annual predation on kokanee Oncorhynchus nerka (in biomass) by a size-structured unit of 1,000 Northern Pikeminnow having a FL ≥ 300 mm was analogous to 16,000–40,000 age-0 spring Chinook Salmon O. tshawytscha rearing year-round, or 400–1,000 age-1 smolts migrating April–June. The per capita consumption of salmonids by Northern Pikeminnow having a FL ≥ 200 mm was relatively low, due in large part to spatial segregation during the summer and the skewed size distribution of the predator population. Tiger muskellunge fed heavily on Northern Pikeminnow, other nonsalmonids, and minimally on salmonids. In addition to cannibalism within the Northern Pikeminnow population, predation by tiger muskellunge likely contributed to the low recruitment of larger (more piscivorous) Northern Pikeminnow, thereby decreasing the risk of predation to salmonids. This study highlights the importance of evaluating trophic interactions within reservoirs slated for reintroduction with anadromous salmonids, as they can be functional migration corridors and may offer profitable juvenile-rearing habitats despite hosting abundant predator populations.
Snake River Fall Chinook Salmon life history investigations
Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.
2017-01-01
Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the Columbia and Yakima rivers where abundance was higher (e.g., Tabor et al. 1993; Fritts and Pearsons 2004). We speculate that predation on subyearlings by Smallmouth Bass in the Snake River may have increased in recent years for several reasons. Since their ESA listing, recovery measures implemented for Snake River Fall Chinook salmon have resulted in a large increase in the juvenile population (Connor et al. 2013). Considering that subyearlings probably now make up a larger portion of the forage fish population, it is plausible they should make up a large portion of Smallmouth Bass diets. Second, migrating subyearlings delay downstream movement in the transition zones of the Clearwater River and Snake River for varying lengths of time (Tiffan et al. 2010), which increases their exposure and vulnerability to predators. Spatial overlap in locations of Smallmouth Bass and subyearlings that died during migration provides support for this (Tiffan et al. 2010). Finally, the later outmigration of subyearlings from the Clearwater River results in their presence in Lower Granite Reservoir during the warmest summer months when predation rates of Smallmouth Bass should be highest. In 2016, we focused our efforts on Smallmouth Bass predation in Lower Granite Reservoir downstream of the transition zones and the confluence area where we worked during 2012–2015. Similar to past years, our first objective was to quantify Smallmouth Bass consumption rates of subyearlings, determine relative bass abundance, and describe bass diets. In addition, Tiffan et al. (2016a) posited that predation risk to subyearlings may be higher in shoreline habitats that are more suitable for Smallmouth Bass and lower in shoreline habitats that are more suitable for subyearlings. To test this hypothesis, our second objective examines the relationship between Smallmouth Bass predation of subyearlings and habitat suitability.
W. Andrew Cox; Frank R. III Thompson; John Faaborg
2012-01-01
Knowledge of the relative contributions of predator species to overall rates of nest predation can improve our understanding of why predation risk varies, but the identity of predators is seldom known. We used video technology to identify nest predators of the tree-nesting Acadian Flycatcher (Empidonax virescens) and the shrub-nesting Indigo Bunting...
Olfactory predator recognition in predator-naïve gray mouse lemurs (Microcebus murinus).
Sündermann, Dina; Scheumann, Marina; Zimmermann, Elke
2008-05-01
Olfactory cues of predators, such as feces, are known to elicit antipredator responses in animals (e.g., avoidance, activity). To date, however, there is little information on olfactory predator recognition in primates. We tested whether the odor of feces of different predator categories (historical Malagasy predators and introduced predators) and of Malagasy nonpredators (control) induces antipredator behavior in captive born, predator-naïve gray mouse lemurs. In an olfactory predator experiment a mouse lemur was exposed to a particular odor, fixed at a preferred location, where the animal was trained to get a reward. The behavior of the mouse lemur toward the respective stimulus category was videotaped and quantified. Results showed that mouse lemurs avoided the place of odor presentation when the odor belonged to a predator. They reacted with a significantly enhanced activity when exposed to odors of carnivores compared to those of nonpredatory controls. These findings are in favor of a genetic predisposition of olfactory predator recognition that might be based on the perception of metabolites from meat digestion. PsycINFO Database Record (c) 2008 APA, all rights reserved.
Do Predation Rates on Artificial Nests Accurately Reflect Predation Rates on Natural Bird Nests?
David I. King; Richard M. DeGraaf; Curtice R. Griffin; Thomas J. Maier
1999-01-01
Artificial nests are widely used in avian field studies. However, it is unclear how well predation rates on artificial nests reflect predation rates on natural nests. Therefore, we compared survival rates of artificial nests (unused natural nests baited with House Sparrow eggs) with survival rates of active bird nests in the same habitat at the same sites. Survival...
An exploitation-competition system with negative effect of prey on its predator.
Wang, Yuanshi
2015-05-01
This paper considers an exploitation-competition system in which exploitation is the dominant interaction when the prey is at low density, while competition is dominant when the prey is at high density due to its negative effect on the predator. The two-species system is characterized by differential equations, which are the combination of Lotka-Volterra competitive and predator-prey models. Global dynamics of the model demonstrate some basic properties of exploitation-competition systems: (i) When the growth rate of prey is extremely small, the prey cannot promote the growth of predator. (ii) When the growth rate is small, an obligate predator can survive by preying on the prey, while a facultative predator can approach a high density by the predation. (iii) When the growth rate is intermediate, the predator can approach the maximal density by an intermediate predation. (iv) When the growth rate is large, the predator can persist only if it has a large density and its predation on the prey is big. (v) Intermediate predation is beneficial to the predator under certain parameter range, while over- or under-predation is not good. Extremely big/small predation would lead to extinction of species. Numerical simulations confirm and extend our results. Copyright © 2015 Elsevier Inc. All rights reserved.
Using consumption rate to assess potential predators for biological control of white perch
Gosch, N.J.C.; Pope, K.L.
2011-01-01
Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs. ?? 2011 ONEMA.
Nachman, Gösta
2006-01-01
The spatial distributions of two-spotted spider mites Tetranychus urticae and their natural enemy, the phytoseiid predator Phytoseiulus persimilis, were studied on six full-grown cucumber plants. Both mite species were very patchily distributed and P. persimilis tended to aggregate on leaves with abundant prey. The effects of non-homogenous distributions and degree of spatial overlap between prey and predators on the per capita predation rate were studied by means of a stage-specific predation model that averages the predation rates over all the local populations inhabiting the individual leaves. The empirical predation rates were compared with predictions assuming random predator search and/or an even distribution of prey. The analysis clearly shows that the ability of the predators to search non-randomly increases their predation rate. On the other hand, the prey may gain if it adopts a more even distribution when its density is low and a more patchy distribution when density increases. Mutual interference between searching predators reduces the predation rate, but the effect is negligible. The stage-specific functional response model was compared with two simpler models without explicit stage structure. Both unstructured models yielded predictions that were quite similar to those of the stage-structured model.
Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird
Quresh S. Latif; Sacha K. Heath; John T. Rotenberry
2012-01-01
Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous...
Vertical heterogeneity in predation pressure in a temperate forest canopy
Aikens, Kathleen R.; Buddle, Christopher M.
2013-01-01
The forest canopy offers a vertical gradient across which variation in predation pressure implies variation in refuge quality for arthropods. Direct and indirect experimental approaches were combined to assess whether canopy strata differ in ability to offer refuge to various arthropod groups. Vertical heterogeneity in impact of avian predators was quantified using exclosure cages in the understory, lower, mid, and upper canopy of a north-temperate deciduous forest near Montreal, Quebec. Bait trials were completed in the same strata to investigate the effects of invertebrate predators. Exclusion of birds yielded higher arthropod densities across all strata, although treatment effects were small for some taxa. Observed gradients in predation pressure were similar for both birds and invertebrate predators; the highest predation pressure was observed in the understory and decreased with height. Our findings support a view of the forest canopy that is heterogeneous with respect to arthropod refuge from natural enemies. PMID:24010017
Hudgens, Brian R; Garcelon, David K
2011-03-01
Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-naïve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.
Milisenda, Giacomo; Rosa, Sara; Fuentes, Veronica L; Boero, Ferdinando; Guglielmo, Letterio; Purcell, Jennifer E; Piraino, Stefano
2014-01-01
In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink. Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter, and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations. Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops.
Fuentes, Veronica L.; Boero, Ferdinando; Guglielmo, Letterio; Purcell, Jennifer E.; Piraino, Stefano
2014-01-01
In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink. Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter, and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations. Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops. PMID:24727977
Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O
2011-11-01
1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological communities. Second, kill rate is the primary statistic for many traditional models of predation. However, our work suggests that kill rate and PR are similarly important for understanding why predation is such a complex process. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Biodiversity effects of the predation gauntlet
NASA Astrophysics Data System (ADS)
Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.
2017-06-01
The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.
Howeth, Jennifer G; Leibold, Mathew A
2010-09-01
1. Recent studies indicate that large-scale spatial processes can alter local community structuring mechanisms to determine local and regional assemblages of predators and their prey. In metacommunities, this may occur when the functional diversity represented in the regional predator species pool interacts with the rate of prey dispersal among local communities to affect prey species diversity and trait composition at multiple scales. 2. Here, we test for effects of prey dispersal rate and spatially and temporally heterogeneous predation from functionally dissimilar predators on prey structure in pond mesocosm metacommunities. An experimental metacommunity consisted of three pond mesocosm communities supporting two differentially size-selective invertebrate predators and their zooplankton prey. In each metacommunity, two communities maintained constant predation and supported either Gyrinus sp. (Coleoptera) or Notonecta ungulata (Hemiptera) predators generating a spatial prey refuge while the third community supported alternating predation from Gyrinus sp. and N. ungulata generating a temporal prey refuge. Mesocosm metacommunities were connected at either low (0.7% day(-1)) or high (10% day(-1)) planktonic prey dispersal. The diversity, composition and body size of zooplankton prey were measured at local and regional (metacommunity) scales. 3. Metacommunities experiencing the low prey dispersal rate supported the greatest regional prey species diversity (H') and evenness (J'). Neither dispersal rate nor predation regime affected local prey diversity or evenness. The spatial prey refuge at low dispersal maintained the largest difference in species composition and body size diversity between communities under Gyrinus and Notonecta predation, suggesting that species sorting was operating at the low dispersal rate. There was no effect of dispersal rate on species diversity or body size distribution in the temporal prey refuge. 4. The frequency distribution, but not the range, of prey body sizes within communities depended upon prey dispersal rate and predator identity. Taken together, these results demonstrate that prey dispersal rate can moderate the strength of predation to influence prey species diversity and the local frequency distribution of prey traits in metacommunities supporting ecologically different predators.
Predator–prey interactions mediated by prey personality and predator hunting mode
Belgrad, Benjamin A.; Griffen, Blaine D.
2016-01-01
Predator–prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator–prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau. We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator–prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. PMID:27075257
[Predation of micro-protozoa on bacteria in Taihu Lake].
Chen, Mo; Gao, Guang; Zhu, Li-Ping; Feng, Sheng
2007-10-01
With dilution method, this paper studied the predation of different size micro-protozoa on bacteria in Taihu Lake, and approached the effects of the predation on bacterial growth and of the water temperature on the predation. The results showed that in the water body of Taihu Lake, the predation rate of micro-protozoa with its size less than 32 microm was 5.07 d(-1), and the nano-size (less than 16 microm) protozoa contributed about 90.7%. The predation of nano-protozoa reduced the abundance of bacteria significantly. With the increase of water temperature, the predation rate of nano-protozoa and the growth rate of bacteria increased obviously.
Plasticity of parental care under the risk of predation: how much should parents reduce care?
Martin, Thomas E.
2013-01-01
Predation can be an important agent of natural selection shaping parental care behaviours, and can also favour behavioural plasticity. Parent birds often decrease the rate that they visit the nest to provision offspring when perceived risk is high. Yet, the plasticity of such responses may differ among species as a function of either their relative risk of predation, or the mean rate of provisioning. Here, we report parental provisioning responses to experimental increases in the perceived risk of predation. We tested responses of 10 species of bird in north temperate Arizona and subtropical Argentina that differed in their ambient risk of predation. All species decreased provisioning rates in response to the nest predator but not to a control. However, provisioning rates decreased more in species that had greater ambient risk of predation on natural nests. These results support theoretical predictions that the extent of plasticity of a trait that is sensitive to nest predation risk should vary among species in accordance with predation risk.
Functional response and population dynamics for fighting predator, based on activity distribution.
Garay, József; Varga, Zoltán; Gámez, Manuel; Cabello, Tomás
2015-03-07
The classical Holling type II functional response, describing the per capita predation as a function of prey density, was modified by Beddington and de Angelis to include interference of predators that increases with predator density and decreases the number of killed prey. In the present paper we further generalize the Beddington-de Angelis functional response, considering that all predator activities (searching and handling prey, fight and recovery) have time duration, the probabilities of predator activities depend on the encounter probabilities, and hence on the prey and predator abundance, too. Under these conditions, the aim of the study is to introduce a functional response for fighting the predator and to analyse the corresponding dynamics, when predator-predator-prey encounters also occur. From this general approach, the Holling type functional responses can also be obtained as particular cases. In terms of the activity distribution, we give biologically interpretable sufficient conditions for stable coexistence. We consider two-individual (predator-prey) and three-individual (predator-predator-prey) encounters. In the three-individual encounter model there is a relatively higher fighting rate and a lower killing rate. Using numerical simulation, we surprisingly found that when the intrinsic prey growth rate and the conversion rate are small enough, the equilibrium predator abundance is higher in the three-individual encounter case. The above means that, when the equilibrium abundance of the predator is small, coexistence appears first in the three-individual encounter model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Prey life-history and bioenergetic responses across a predation gradient.
Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E
2010-10-01
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.
Martin, Thomas E.; Llyod, Penn; Bosque, Carlos; Barton, Daniel C.; Biancucci, Atilio L.; Cheng, Yi-Ru; Ton, Riccardo
2011-01-01
Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species.
Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby
2016-07-01
How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.
Mourthé, Ítalo; Barnett, Adrian A
2014-01-01
Predation is often considered to be a prime driver in primate evolution, but, as predation is rarely observed in nature, little is known of primate antipredator responses. Time-limited primates should be highly discerning when responding to predators, since time spent in vigilance and avoidance behaviour may supplant other activities. We present data from two independent studies describing and quantifying the frequency, nature and duration of predator-linked behaviours in 2 high-canopy primates, Ateles belzebuth and Cacajao ouakary. We introduce the concept of 'pseudopredators' (harmless species whose appearance is sufficiently similar to that of predators to elicit antipredator responses) and predict that changes in behaviour should increase with risk posed by a perceived predator. We studied primate group encounters with non-primate vertebrates across 14 (Ateles) and 19 (Cacajao) months in 2 undisturbed Amazonian forests. Although preliminary, data on both primates revealed that they distinguished the potential predation capacities of other species, as predicted. They appeared to differentiate predators from non-predators and distinguished when potential predators were not an immediate threat, although they reacted erroneously to pseudopredators, on average in about 20% of the responses given toward other vertebrates. Reacting to pseudopredators would be interesting since, in predation, one error can be fatal to the prey. © 2015 S. Karger AG, Basel.
Petersen, J.H.; Ward, D.L.
1999-01-01
A bioenergetics model was developed and corroborated for northern pikeminnow Ptychocheilus oregonensis, an important predator on juvenile salmonids in the Pacific Northwest. Predictions of modeled predation rate on salmonids were compared with field data from three areas of John Day Reservoir (Columbia River). To make bioenergetics model estimates of predation rate, three methods were used to approximate the change in mass of average predators during 30-d growth periods: observed change in mass between the first and the second month, predicted change in mass calculated with seasonal growth rates, and predicted change in mass based on an annual growth model. For all reservoir areas combined, bioenergetics model predictions of predation on salmon were 19% lower than field estimates based on observed masses, 45% lower than estimates based on seasonal growth rates, and 15% lower than estimates based on the annual growth model. For each growth approach, the largest differences in field-versus-model predation occurred at the midreservoir area (-84% to -67% difference). Model predictions of the rate of predation on salmonids were examined for sensitivity to parameter variation, swimming speed, sampling bias caused by gear selectivity, and asymmetric size distributions of predators. The specific daily growth rate of northern pikeminnow predicted by the model was highest in July and October and decreased during August. The bioenergetics model for northern pikeminnow performed well compared with models for other fish species that have been tested with field data. This model should be a useful tool for evaluating management actions such as predator removal, examining the influence of temperature on predation rates, and exploring interactions between predators in the Columbia River basin.
Pereira, C M; Moura, M O; Da-Silva, P R
2014-06-01
Seed predation by insects exerts negative effects on plant reproduction by limiting the supply of seeds and preventing germination. Seed predators of the family Fabaceae are usually generalists, which increases the rate of predation. One strategy to minimize seed predation, developed by plants from temperate regions, is "escape in time," i.e., flowering before or after the peak of predation. For tropical species, few studies have investigated the strategies used by plants to minimize seed predation. Here, using Erythrina falcata, a tropical species of Fabaceae, we test three main hypotheses: (i) escape in time is a mechanism used by E. falcata to minimize seed predation, (ii) the predators of E. falcata seeds are generalists, and (iii) the biometric variables of the pods can influence seed predation. In order to test these hypotheses, we determined the flowering time of E. falcata, rate of seed predation, the predators insects, and biometric variables of the pods. The analyzed trees were grouped into three classes: "early," "peak," and "late" flowering. The average seed predation rates on trees in the early and late classes were 65% and 50%, respectively, and in the peak class, 80%; thus, our first hypothesis can be accepted. Three species of Lepidoptera and two of Coleoptera were found preying on E. falcata seeds. These species were observed to be generalist predators; thus, our second hypothesis can be accepted. The biometric variables of the pods cannot influence seed predation rate. The ecological consequences of asynchronous flowering on plants and insects are discussed.
Dynamics in a ratio-dependent predator-prey model with predator harvesting
NASA Astrophysics Data System (ADS)
Xiao, Dongmei; Li, Wenxia; Han, Maoan
2006-12-01
The objective of this paper is to study systematically the dynamical properties of a ratio-dependent predator-prey model with nonzero constant rate predator harvesting. It is shown that the model has at most two equilibria in the first quadrant and can exhibit numerous kinds of bifurcation phenomena, including the bifurcation of cusp type of codimension 2 (i.e., Bogdanov-Takens bifurcation), the subcritical and supercritical Hopf bifurcations. These results reveal far richer dynamics compared to the model with no harvesting and different dynamics compared to the model with nonzero constant rate prey harvesting in [D. Xiao, L. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM Appl. Math. 65 (2005) 737-753]. Biologically, it is shown that nonzero constant rate predator harvesting can prevent mutual extinction as a possible outcome of the predator prey interaction, and remove the singularity of the origin, which was regarded as "pathological behavior" for a ratio-dependent predator prey model in [P. Yodzis, Predator-prey theory and management of multispecies fisheries, Ecological Applications 4 (2004) 51-58].
Ferrari, Maud C O; Munday, Philip L; Rummer, Jodie L; McCormick, Mark I; Corkill, Katherine; Watson, Sue-Ann; Allan, Bridie J M; Meekan, Mark G; Chivers, Douglas P
2015-05-01
Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics. © 2014 John Wiley & Sons Ltd.
Ecological and economic services provided by birds on Jamaican Blue Mountain coffee farms.
Kellermann, Jherime L; Johnson, Matthew D; Stercho, Amy M; Hackett, Steven C
2008-10-01
Coffee farms can support significant biodiversity, yet intensification of farming practices is degrading agricultural habitats and compromising ecosystem services such as biological pest control. The coffee berry borer (Hypothenemus hampei) is the world's primary coffee pest. Researchers have demonstrated that birds reduce insect abundance on coffee farms but have not documented avian control of the berry borer or quantified avian benefits to crop yield or farm income. We conducted a bird-exclosure experiment on coffee farms in the Blue Mountains, Jamaica, to measure avian pest control of berry borers, identify potential predator species, associate predator abundance and borer reductions with vegetation complexity, and quantify resulting increases in coffee yield. Coffee plants excluded from foraging birds had significantly higher borer infestation, more borer broods, and greater berry damage than control plants. We identified 17 potential predator species (73% were wintering Neotropical migrants), and 3 primary species composed 67% of migrant detections. Average relative bird abundance and diversity and relative resident predator abundance increased with greater shade-tree cover. Although migrant predators overall did not respond to vegetation complexity variables, the 3 primary species increased with proximity to noncoffee habitat patches. Lower infestation on control plants was correlated with higher total bird abundance, but not with predator abundance or vegetation complexity. Infestation of fruit was 1-14% lower on control plants, resulting in a greater quantity of saleable fruits that had a market value of US$44-$105/ha in 2005/2006. Landscape heterogeneity in this region may allow mobile predators to provide pest control broadly, despite localized farming intensities. These results provide the first evidence that birds control coffee berry borers and thus increase coffee yield and farm income, a potentially important conservation incentive for producers.
Bernstein, C
1984-01-01
Some of the processes that influence the emigration of prey and predatory mites from bean plants were investigated experimentally. The emigration of the prey depends on the damage they cause to the plants and on predator density. The predator's emigration rate is a decreasing function of prey density, and does not change (or it slightly decreases) when prey and predator numbers are increased maintaining the same prey/predator ratio. The probability of emigration of the predators is independent of their own density when prey are absent and density dependent when prey density is kep constant. Forty three per cent of the variability in the predator's instantaneous rate of emigration in the different experiments is accounted for by a two parameter negative exponential function of capture rate (number of prey eaten per predator and per unit of time).
Fatal Attraction? Intraguild Facilitation and Suppression among Predators.
Sivy, Kelly J; Pozzanghera, Casey B; Grace, James B; Prugh, Laura R
2017-11-01
Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
Fatal attraction? Intraguild facilitation and suppression among predators
Sivy, Kelly J.; Pozzanghera, Casey B.; Grace, James B.; Prugh, Laura R.
2017-01-01
Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
Modelling the fear effect in predator-prey interactions.
Wang, Xiaoying; Zanette, Liana; Zou, Xingfu
2016-11-01
A recent field manipulation on a terrestrial vertebrate showed that the fear of predators alone altered anti-predator defences to such an extent that it greatly reduced the reproduction of prey. Because fear can evidently affect the populations of terrestrial vertebrates, we proposed a predator-prey model incorporating the cost of fear into prey reproduction. Our mathematical analyses show that high levels of fear (or equivalently strong anti-predator responses) can stabilize the predator-prey system by excluding the existence of periodic solutions. However, relatively low levels of fear can induce multiple limit cycles via subcritical Hopf bifurcations, leading to a bi-stability phenomenon. Compared to classic predator-prey models which ignore the cost of fear where Hopf bifurcations are typically supercritical, Hopf bifurcations in our model can be both supercritical and subcritical by choosing different sets of parameters. We conducted numerical simulations to explore the relationships between fear effects and other biologically related parameters (e.g. birth/death rate of adult prey), which further demonstrate the impact that fear can have in predator-prey interactions. For example, we found that under the conditions of a Hopf bifurcation, an increase in the level of fear may alter the direction of Hopf bifurcation from supercritical to subcritical when the birth rate of prey increases accordingly. Our simulations also show that the prey is less sensitive in perceiving predation risk with increasing birth rate of prey or increasing death rate of predators, but demonstrate that animals will mount stronger anti-predator defences as the attack rate of predators increases.
Frank R. Thompson; Dirk E. Burhans
2004-01-01
In the past two decades, many researchers have used artificial nest to measure relative rates of nest predation. Recent comparisons show that real and artificial nests may not be depredated at the same rate, but no one has examined the mechanisms underlying these patterns. We determined differences in predator-specific predation rates of real and artificial nests. we...
Creel, Scott; Winnie, John A; Christianson, David
2013-01-01
Field studies that rely on fixes from GPS-collared predators to identify encounters with prey will often underestimate the frequency and strength of antipredator responses. These underestimation biases have several mechanistic causes. (1) Step bias: The distance between successive GPS fixes can be large, and encounters that occur during these intervals go undetected. This bias will generally be strongest for cursorial hunters that can rapidly cover large distances (e.g., wolves and African wild dogs) and when the interval between GPS fixes is long relative to the duration of a hunt. Step bias is amplified as the path travelled between successive GPS fixes deviates from a straight line. (2) Scatter bias: Only a small fraction of the predators in a population typically carry GPS collars, and prey encounters with uncollared predators go undetected unless a collared group-mate is present. This bias will generally be stronger for fission–fusion hunters (e.g., spotted hyenas, wolves, and lions) than for highly cohesive hunters (e.g., African wild dogs), particularly when their group sizes are large. Step bias and scatter bias both cause underestimation of the frequency of antipredator responses. (3) Strength bias: Observations of prey in the absence of GPS fix from a collared predator will generally include a mixture of cases in which predators were truly absent and cases in which predators were present but not detected, which causes underestimation of the strength of antipredator responses. We quantified these biases with data from wolves and African wild dogs and found that fixes from GPS collars at 3-h intervals underestimated the frequency and strength of antipredator responses by a factor >10. We reexamined the results of a recent study of the nonconsumptive effects of wolves on elk in light of these results and confirmed that predation risk has strong effects on elk dynamics by reducing the pregnancy rate. PMID:24455148
Carnivore-caused livestock mortality in Trans-Himalaya.
Namgail, Tsewang; Fox, Joseph L; Bhatnagar, Yash Veer
2007-04-01
The loss of livestock to wild predators is an important livelihood concern among Trans-Himalayan pastoralists. Because of the remoteness and inaccessibility of the region, few studies have been carried out to quantify livestock depredation by wild predators. In the present study, we assessed the intensity of livestock depredation by snow leopard Uncia uncia, Tibetan wolf Canis lupus chanku, and Eurasian lynx Lynx l. isabellina in three villages, namely Gya, Rumtse, and Sasoma, within the proposed Gya-Miru Wildlife Sanctuary in Ladakh, India. The three villages reported losses of 295 animals to these carnivores during a period of 2.5 years ending in early 2003, which represents an annual loss rate of 2.9% of their livestock holdings. The Tibetan wolf was the most important predator, accounting for 60% of the total livestock loss because of predation, followed by snow leopard (38%) and lynx (2%). Domestic goat was the major victim (32%), followed by sheep (30%), yak (15%), and horse (13%). Wolves killed horses significantly more and goats less than would be expected from their relative abundance. Snow leopards also killed horses significantly more than expected, whereas they killed other livestock types in proportion to their abundance. The three villages combined incurred an estimated annual monetary loss of approximately $USD 12,120 amounting to approximately $USD 190/household/y. This relatively high total annual loss occurred primarily because of depredation of the most valuable livestock types such as yak and horse. Conservation actions should initially attempt to target decrease of predation on these large and valuable livestock species.
Colonial waterbird predation on Lost River and Shortnose suckers in the Upper Klamath Basin
Evans, Allen F.; Hewitt, David A.; Payton, Quinn; Cramer, Bradley M.; Collis, Ken; Roby, Daniel D.
2016-01-01
We evaluated predation on Lost River Suckers Deltistes luxatus and Shortnose Suckers Chasmistes brevirostris by American white pelicans Pelecanus erythrorhynchos and double-crested cormorants Phalacrocorax auritus nesting at mixed-species colonies in the Upper Klamath Basin of Oregon and California during 2009–2014. Predation was evaluated by recovering (detecting) PIT tags from tagged fish on bird colonies and calculating minimum predation rates, as the percentage of available suckers consumed, adjusted for PIT tag detection probabilities but not deposition probabilities (i.e., probability an egested tag was deposited on- or off-colony). Results indicate that impacts of avian predation varied by sucker species, age-class (adult, juvenile), bird colony location, and year, demonstrating dynamic predator–prey interactions. Tagged suckers ranging in size from 72 to 730 mm were susceptible to cormorant or pelican predation; all but the largest Lost River Suckers were susceptible to bird predation. Minimum predation rate estimates ranged annually from <0.1% to 4.6% of the available PIT-tagged Lost River Suckers and from <0.1% to 4.2% of the available Shortnose Suckers, and predation rates were consistently higher on suckers in Clear Lake Reservoir, California, than on suckers in Upper Klamath Lake, Oregon. There was evidence that bird predation on juvenile suckers (species unknown) in Upper Klamath Lake was higher than on adult suckers in Upper Klamath Lake, where minimum predation rates ranged annually from 5.7% to 8.4% of available juveniles. Results suggest that avian predation is a factor limiting the recovery of populations of Lost River and Shortnose suckers, particularly juvenile suckers in Upper Klamath Lake and adult suckers in Clear Lake Reservoir. Additional research is needed to measure predator-specific PIT tag deposition probabilities (which, based on other published studies, could increase predation rates presented herein by a factor of roughly 2.0) and to better understand biotic and abiotic factors that regulate sucker susceptibility to bird predation.
Miller, David A.; Grand, J.B.; Fondell, T.F.; Anthony, M.
2006-01-01
1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited. ?? 2006 British Ecological Society.
Dodrill, Michael J.; Yard, Mike; Pine, William E.
2016-01-01
This study examined predation risk for juvenile native fish between two riverine shoreline habitats, backwater and debris fan, across three discrete turbidity levels (low, intermediate, high) to understand environmental risks associated with habitat use in a section of the Colorado River in Grand Canyon, AZ. Inferences are particularly important to juvenile native fish, including the federally endangered humpback chub Gila cypha. This species uses a variety of habitats including backwaters which are often considered important rearing areas. Densities of two likely predators, adult rainbow trout Oncorhynchus mykiss and adult humpback chub, were estimated between habitats using binomial mixture models to examine whether higher predator density was associated with patterns of predation risk. Tethering experiments were used to quantify relative predation risk between habitats and turbidity conditions. Under low and intermediate turbidity conditions, debris fan habitat showed higher relative predation risk compared to backwaters. In both habitats the highest predation risk was observed during intermediate turbidity conditions. Density of likely predators did not significantly differ between these habitats. This information can help managers in Grand Canyon weigh flow policy options designed to increase backwater availability or extant turbidity conditions.
Plant defences limit herbivore population growth by changing predator-prey interactions.
Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S
2017-09-13
Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).
DeJager, Nathan R.; Rohweder, Jason; Miranda, Brian R.; Sturtevant, Brian R.; Fox, Timothy J.; Romanski, Mark C.
2017-01-01
Loss of top predators may contribute to high ungulate population densities and chronic over-browsing of forest ecosystems. However, spatial and temporal variability in the strength of interactions between predators and ungulates occurs over scales that are much shorter than the scales over which forest communities change, making it difficult to characterize trophic cascades in forest ecosystems. We applied the LANDIS-II forest succession model and a recently developed ungulate browsing extension to model how the moose population could interact with the forest ecosystem of Isle Royale National Park, USA, under three different wolf predation scenarios. We contrasted a 100-yr future without wolves (no predation) with two predation scenarios (weak, long-term average predation rates and strong, higher than average rates). Increasing predation rates led to lower peak moose population densities, lower biomass removal rates, and higher estimates of forage availability and landscape carrying capacity, especially during the first 40 yr of simulations. Thereafter, moose population density was similar for all predation scenarios, but available forage biomass and the carrying capacity of the landscape continued to diverge among predation scenarios. Changes in total aboveground live biomass and species composition were most pronounced in the no predation and weak predation scenarios. Consistent with smaller-scale studies, high browsing rates led to reductions in the biomass of heavily browsed Populus tremuloides, Betula papyrifera, and Abies balsamea, and increases in the biomass of unbrowsed Picea glauca and Picea mariana, especially after the simulation year 2050, when existing boreal hardwood stands at Isle Royale are projected to senesce. As a consequence, lower predation rates corresponded with a landscape that progressively shifted toward dominance by Picea glauca and Picea mariana, and lacking available forage biomass. Consistencies with previously documented small-scale successional shifts, and population estimates and trends that approximate those from this and other boreal forests that support moose provide some confidence that these dynamics represent a trophic cascade and therefore provide an important baseline against which to evaluate long-term and large-scale effects of alternative predator management strategies on ungulate populations and forest succession.
Effects of behavioral and morphological plasticity on risk of predation in a Neotropical tadpole
McIntyre, P.B.; Baldwin, S.; Flecker, A.S.
2004-01-01
Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wildcaught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation. ?? Springer-Verlag 2004.
Mismatched anti-predator behavioral responses in predator-naïve larval anurans.
Albecker, Molly; Vance-Chalcraft, Heather D
2015-01-01
Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles.
Mismatched anti-predator behavioral responses in predator-naïve larval anurans
Vance-Chalcraft, Heather D.
2015-01-01
Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles. PMID:26664805
Survey of predators and sampling method comparison in sweet corn.
Musser, Fred R; Nyrop, Jan P; Shelton, Anthony M
2004-02-01
Natural predation is an important component of integrated pest management that is often overlooked because it is difficult to quantify and perceived to be unreliable. To begin incorporating natural predation into sweet corn, Zea mays L., pest management, a predator survey was conducted and then three sampling methods were compared for their ability to accurately monitor the most abundant predators. A predator survey on sweet corn foliage in New York between 1999 and 2001 identified 13 species. Orius insidiosus (Say), Coleomegilla maculata (De Geer), and Harmonia axyridis (Pallas) were the most numerous predators in all years. To determine the best method for sampling adult and immature stages of these predators, comparisons were made among nondestructive field counts, destructive counts, and yellow sticky cards. Field counts were correlated with destructive counts for all populations, but field counts of small insects were biased. Sticky cards underrepresented immature populations. Yellow sticky cards were more attractive to C. maculata adults than H. axyridis adults, especially before pollen shed, making coccinellid population estimates based on sticky cards unreliable. Field counts were the most precise method for monitoring adult and immature stages of the three major predators. Future research on predicting predation of pests in sweet corn should be based on field counts of predators because these counts are accurate, have no associated supply costs, and can be made quickly.
Esque, Todd C.; Nussear, Kenneth E.; Drake, K. Kristina; Walde, Andrew D.; Berry, Kristin H.; Averill-Murray, Roy C.; Woodman, A. Peter; Boarman, William I.; Medica, Phil A.; Mack, Jeremy S.; Heaton, Jill S.
2010-01-01
Understanding predator–prey relationships can be pivotal in the conservation of species. For 2 decades, desert tortoise Gopherus agassizii populations have declined, yet quantitative evidence regarding the causes of declines is scarce. In 2005, Ft. Irwin National Training Center, California, USA, implemented a translocation project including 2 yr of baseline monitoring of desert tortoises. Unusually high predation on tortoises was observed after translocation occurred. We conducted a retrospective analysis of predation and found that translocation did not affect the probability of predation: translocated, resident, and control tortoises all had similar levels of predation. However, predation rates were higher near human population concentrations, at lower elevation sites, and for smaller tortoises and females. Furthermore, high mortality rates were not limited to the National Training Center. In 2008, elevated mortality (as high as 43%) occurred throughout the listed range of the desert tortoise. Although no temporal prey base data are available for analysis from any of the study sites, we hypothesize that low population levels of typical coyote Canis latrans prey (i.e. jackrabbits Lepus californicus and other small animals) due to drought conditions influenced high predation rates in previous years. Predation may have been exacerbated in areas with high levels of subsidized predators. Many historical reports of increased predation, and our observation of a range-wide pattern, may indicate that high predation rates are more common than generally considered and may impact recovery of the desert tortoise throughout its range.
da Silva, F R; Begnini, R M; Lopes, B C; Castellani, T T
2012-02-01
Insect seed predation may vary depending on seed production. The present study considers the hypothesis that the rates of seed predation tend to be smaller in years of higher fruit production. Thus, we monitored the production of fruits and predation of seeds of the palm Syagrus romanzoffiana over 2 years in the Atlantic Forest (Parque Municipal da Lagoa do Peri, Florianópolis, SC, Brazil), between July 2006 and June 2008. Plots of 0.25 m(2) were fitted under 20 mother plants and fruits were monthly collected for assessment of abundance and seed predation. There was variation in fruit production between the 2 years and among reproductive plants. Predation rates were high and occurred in the predispersal phase by the Curculionidae Revena rubiginosa Boheman, Anchylorhynchus aegrotus Fahraeus, and Anchylorhynchus variabilis Gyllenhal. Seed predation by these species of Anchylorhynchus is first registered in the present study. In average, about 60% of the seeds monthly produced in the population tend to escape insect predation in year of high or low production, becoming available for recruitment. The predation rate was not related to the amount of fruits produced per reproductive plant. Also, different than expected, there was a positive relation between the rates of seed predation and the total of fruits produced monthly on the plots. Thus, no evidence for the satiation of insect seed predators was found in this study with S. romanzoffiana.
Johnson, Douglas H.; Sargeant, Alan B.; Greenwood, Raymond J.
1989-01-01
We followed 3094 upland nests of several species of ducks. Clutches in most nests were lost to predation. We related daily nest predation rates to indices of activity of eight egg-eating predators, precipitation during the nesting season, and measures of wetland conditions. Activity indices of red fox (Vulpes vulpes), striped skunk (Mephitis mephitis), and raccoon (Procyon lotor) activity were positively correlated, as were activity indices of coyote (Canis latrans), Franklin's ground squirrel (Spermophilus franklinii), and black-billed magpie (Pica pica). Indices of fox and coyote activity were strongly negatively correlated (r = -0.51), as were those of badger (Taxidea taxus) and skunk (r = -0.46). Nest predation rates in the early part of the breeding season were positively related to indices of fox, American crow (Corvus brachyrhynchos), and badger activity. Predation rates in the latter part of the season were positively related to indices of fox and skunk activity. Predation rates on early-season nests were lower in areas and years in which larger fractions of seasonal wetlands contained water. For late-season nests, a similar relationship held involving semipermanent wetlands. We suspect that the wetland measures, which reflect precipitation during some previous period, also indicate vegetation growth and the abundance of buffer prey, factors that may influence nest predation rates.
Predation Risk Shapes Social Networks in Fission-Fusion Populations
Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.
2011-01-01
Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627
Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G
2015-09-07
Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. © 2015 The Author(s).
Barbour, Matthew A; Clark, Rulon W
2012-09-22
Many species approach, inspect and signal towards their predators. These behaviours are often interpreted as predator-deterrent signals--honest signals that indicate to a predator that continued hunting is likely to be futile. However, many of these putative predator-deterrent signals are given when no predator is present, and it remains unclear if and why such signals deter predators. We examined the effects of one such signal, the tail-flag display of California ground squirrels, which is frequently given both during and outside direct encounters with northern Pacific rattlesnakes. We video-recorded and quantified the ambush foraging responses of rattlesnakes to tail-flagging displays from ground squirrels. We found that tail-flagging deterred snakes from striking squirrels, most likely by advertising squirrel vigilance (i.e. readiness to dodge a snake strike). We also found that tail-flagging by adult squirrels increased the likelihood that snakes would leave their ambush site, apparently by elevating the vigilance of nearby squirrels which reduces the profitability of the ambush site. Our results provide some of the first empirical evidence of the mechanisms by which a prey display, although frequently given in the absence of a predator, may still deter predators during encounters.
Predator personality structures prey communities and trophic cascades.
Start, Denon; Gilbert, Benjamin
2017-03-01
Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades. © 2017 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Zuria, Iriana; Gates, J. Edward; Castellanos, Ignacio
2007-03-01
Hedgerows as well as other narrow corridors could be valuable habitats for birds in regions of intensive agriculture, however, it is still not clear how successful breeding birds are in different types of hedgerows as compared to birds nesting in their natural habitats. We used artificial nests to examine whether hedgerows were sinks (ecological traps) for birds by comparing rates of predation in two types of hedgerows with different vegetation structure (simple and complex), and in a tract of scrub forest in an agricultural landscape of central Mexico. We determined also the types of predators responsible for egg predation. Ground and elevated nests were baited with one Japanese quail Coturnix japonica egg and one plasticine egg and placed alternately along transects. Significantly, greater predation rates were found in scrub forest and complex hedgerows than in simple hedgerows. Higher predation rates in complex habitats seemed to reflect the higher number of predator types found there. The most important predator types were carnivores followed by rodents, birds, and humans. Carnivores and rodents mainly predated ground nests, whereas birds and humans predated elevated nests. Simple hedgerows in this landscape appeared to offer relatively safe nest sites in terms of predation pressure when compared to more complex habitats (complex hedgerows and scrub forest).
Egea-Serrano, Andrés; Hangartner, Sandra; Laurila, Anssi; Räsänen, Katja
2014-01-01
Environmental change can simultaneously cause abiotic stress and alter biological communities, yet adaptation of natural populations to co-changing environmental factors is poorly understood. We studied adaptation to acid and predator stress in six moor frog (Rana arvalis) populations along an acidification gradient, where abundance of invertebrate predators increases with increasing acidity of R. arvalis breeding ponds. First, we quantified divergence among the populations in anti-predator traits (behaviour and morphology) at different rearing conditions in the laboratory (factorial combinations of acid or neutral pH and the presence or the absence of a caged predator). Second, we evaluated relative fitness (survival) of the populations by exposing tadpoles from the different rearing conditions to predation by free-ranging dragonfly larvae. We found that morphological defences (relative tail depth) as well as survival of tadpoles under predation increased with increasing pond acidity (under most experimental conditions). Tail depth and larval size mediated survival differences among populations, but the contribution of trait divergence to survival was strongly dependent on prior rearing conditions. Our results indicate that R. arvalis populations are adapted to the elevated predator pressure in acidified ponds and emphasize the importance of multifarious selection via both direct (here: pH) and indirect (here: predators) environmental changes. PMID:24552840
Egea-Serrano, Andrés; Hangartner, Sandra; Laurila, Anssi; Räsänen, Katja
2014-04-07
Environmental change can simultaneously cause abiotic stress and alter biological communities, yet adaptation of natural populations to co-changing environmental factors is poorly understood. We studied adaptation to acid and predator stress in six moor frog (Rana arvalis) populations along an acidification gradient, where abundance of invertebrate predators increases with increasing acidity of R. arvalis breeding ponds. First, we quantified divergence among the populations in anti-predator traits (behaviour and morphology) at different rearing conditions in the laboratory (factorial combinations of acid or neutral pH and the presence or the absence of a caged predator). Second, we evaluated relative fitness (survival) of the populations by exposing tadpoles from the different rearing conditions to predation by free-ranging dragonfly larvae. We found that morphological defences (relative tail depth) as well as survival of tadpoles under predation increased with increasing pond acidity (under most experimental conditions). Tail depth and larval size mediated survival differences among populations, but the contribution of trait divergence to survival was strongly dependent on prior rearing conditions. Our results indicate that R. arvalis populations are adapted to the elevated predator pressure in acidified ponds and emphasize the importance of multifarious selection via both direct (here: pH) and indirect (here: predators) environmental changes.
Separating spatial search and efficiency rates as components of predation risk
DeCesare, Nicholas J.
2012-01-01
Predation risk is an important driver of ecosystems, and local spatial variation in risk can have population-level consequences by affecting multiple components of the predation process. I use resource selection and proportional hazard time-to-event modelling to assess the spatial drivers of two key components of risk—the search rate (i.e. aggregative response) and predation efficiency rate (i.e. functional response)—imposed by wolves (Canis lupus) in a multi-prey system. In my study area, both components of risk increased according to topographic variation, but anthropogenic features affected only the search rate. Predicted models of the cumulative hazard, or risk of a kill, underlying wolf search paths validated well with broad-scale variation in kill rates, suggesting that spatial hazard models provide a means of scaling up from local heterogeneity in predation risk to population-level dynamics in predator–prey systems. Additionally, I estimated an integrated model of relative spatial predation risk as the product of the search and efficiency rates, combining the distinct contributions of spatial heterogeneity to each component of risk. PMID:22977145
Non-equilibrium relaxation in a stochastic lattice Lotka-Volterra model
NASA Astrophysics Data System (ADS)
Chen, Sheng; Täuber, Uwe C.
2016-04-01
We employ Monte Carlo simulations to study a stochastic Lotka-Volterra model on a two-dimensional square lattice with periodic boundary conditions. If the (local) prey carrying capacity is finite, there exists an extinction threshold for the predator population that separates a stable active two-species coexistence phase from an inactive state wherein only prey survive. Holding all other rates fixed, we investigate the non-equilibrium relaxation of the predator density in the vicinity of the critical predation rate. As expected, we observe critical slowing-down, i.e., a power law dependence of the relaxation time on the predation rate, and algebraic decay of the predator density at the extinction critical point. The numerically determined critical exponents are in accord with the established values of the directed percolation universality class. Following a sudden predation rate change to its critical value, one finds critical aging for the predator density autocorrelation function that is also governed by universal scaling exponents. This aging scaling signature of the active-to-absorbing state phase transition emerges at significantly earlier times than the stationary critical power laws, and could thus serve as an advanced indicator of the (predator) population’s proximity to its extinction threshold.
Relationship between snow depth and gray wolf predation on white-tailed deer
Nelson, M.E.; Mech, L.D.
1986-01-01
Survival of 203 yearling and adult white-tailed deer (Odocoileus virginianus) was monitored for 23,441 deer days from January through April 1975-85 in northeastern Minnesota. Gray wolf (Canis lupus) predation was the primary mortality cause, and from year to year during this period, the mean predation rate ranged from 0.00 to 0.29. The sum of weekly snow depths/month explained 51% of the variation in annual wolf predation rate, with the highest predation during the deepest snow.
Boldness by habituation and social interactions: a model.
Oosten, Johanneke E; Magnhagen, Carin; Hemelrijk, Charlotte K
2010-04-01
Most studies of animal personality attribute personality to genetic traits. But a recent study by Magnhagen and Staffan (Behav Ecol Sociobiol 57:295-303, 2005) on young perch in small groups showed that boldness, a central personality trait, is also shaped by social interactions and by previous experience. The authors measured boldness by recording the duration that an individual spent near a predator and the speed with which it fed there. They found that duration near the predator increased over time and was higher the higher the average boldness of other group members. In addition, the feeding rate of shy individuals was reduced if other members of the same group were bold. The authors supposed that these behavioral dynamics were caused by genetic differences, social interactions, and habituation to the predator. However, they did not quantify exactly how this could happen. In the present study, we therefore use an agent-based model to investigate whether these three factors may explain the empirical findings. We choose an agent-based model because this type of model is especially suited to study the relation between behavior at an individual level and behavioral dynamics at a group level. In our model, individuals were either hiding in vegetation or feeding near a predator, whereby their behavior was affected by habituation and by two social mechanisms: social facilitation to approach the predator and competition over food. We show that even if we start the model with identical individuals, these three mechanisms were sufficient to reproduce the behavioral dynamics of the empirical study, including the consistent differences among individuals. Moreover, if we start the model with individuals that already differ in boldness, the behavioral dynamics produced remained the same. Our results indicate the importance of previous experience and social interactions when studying animal personality empirically.
Combined effects of metal mixtures and predator stress on the freshwater isopod Asellus aquaticus.
Van Ginneken, M; Blust, R; Bervoets, L
2018-04-30
Biotic stressors have been demonstrated to change the toxicity of pollutants. While the combined effects of predator cues and pesticides are well documented, the interaction of predator stress with metals is a topic that has remained largely unexplored. In this laboratory experiment, the freshwater isopod Asellus aquaticus is exposed to predator cues and metal mixtures of Cd, Cu and Pb. We examined the effects on growth, respiration and, as behavioral parameters, feeding rate and activity. These were linked to the free ion activities (FIAs) in the water and the metal body concentrations. The findings reveal that Cu accumulation significantly influenced the growth rate, the feeding rate and the activity of isopods exposed to predator stress. Furthermore, we found a concentration-dependent interaction of the Cd + Pb mixtures on the feeding rate and a lower feeding rate for Cd and Pb predator exposed asellids. As several interactions were found between metals and predator stress, it demonstrates the importance of investigating how organisms and whole ecosystems respond to multiple stressors. A better understanding of these interactions will undoubtedly improve risk assessment and management. Copyright © 2018 Elsevier B.V. All rights reserved.
Diel predator activity drives a dynamic landscape of fear
Kohl, Michel T.; Stahler, Daniel R.; Metz, Matthew C.; Forester, James D.; Kauffman, Matthew J.; Varley, Nathan; White, P.J.; Smith, Douglas W.; MacNulty, Daniel R.
2017-01-01
A "landscape of fear" (LOF) is a map that describes continuous spatial variation in an animal's perception of predation risk. The relief on this map reflects, for example, places that an animal avoids to minimize risk. Although the LOF concept is a potential unifying theme in ecology that is often invoked to explain the ecological and conservation significance of fear, quantified examples of a LOF over large spatial scales are lacking as is knowledge about the daily dynamics of a LOF. Despite theory and data to the contrary, investigators often assume, implicitly or explicitly, that a LOF is a static consequence of a predator's mere presence. We tested the prediction that a LOF in a large-scale, free-living system is a highly-dynamic map with "peaks" and "valleys" that alternate across the diel (24-hour) cycle in response to daily lulls in predator activity. We did so with extensive data from the case study of Yellowstone elk (Cervus elaphus) and wolves (Canis lupus) that was the original basis for the LOF concept. We quantified the elk LOF, defined here as spatial allocation of time away from risky places and times, across nearly 1000-km2 of northern Yellowstone National Park and found that it fluctuated with the crepuscular activity pattern of wolves, enabling elk to use risky places during wolf downtimes. This may help explain evidence that wolf predation risk has no effect on elk stress levels, body condition, pregnancy, or herbivory. The ability of free-living animals to adaptively allocate habitat use across periods of high and low predator activity within the diel cycle is an underappreciated aspect of animal behavior that helps explain why strong antipredator responses may trigger weak ecological effects, and why a LOF may have less conceptual and practical importance than direct killing.
High Arctic lemmings remain reproductively active under predator-induced elevated stress.
Fauteux, Dominique; Gauthier, Gilles; Berteaux, Dominique; Palme, Rupert; Boonstra, Rudy
2018-04-12
Non-consumptive effects of predation have rarely been assessed in wildlife populations even though their impact could be as important as lethal effects. Reproduction of individuals is one of the most important demographic parameters that could be affected by predator-induced stress, which in turn can have important consequences on population dynamics. We studied non-consumptive effects of predation on the reproductive activity (i.e., mating and fertilization) of a cyclic population of brown lemmings exposed to intense summer predation in the Canadian High Arctic. Lemmings were live-trapped, their reproductive activity (i.e., testes visible in males, pregnancy/lactation in females) assessed, and predators were monitored during the summers of 2014 and 2015 within a 9 ha predator-reduction exclosure delimited by a fence and covered by a net, and on an 11 ha control area. Stress levels were quantified non-invasively with fecal corticosterone metabolites (FCM). We found that FCM levels of lemmings captured outside the predator exclosure (n = 50) were 1.6 times higher than inside (n = 51). The proportion of pregnant/lactating adult females did not differ between the two areas, nor did the proportion of adult scrotal males. We found that lemmings showed physiological stress reactions due to high predation risk, but had no sign of reduced mating activity or fertility. Thus, our results do not support the hypothesis of reproductive suppression by predator-induced stress.
Boinski, S.; Gross, T.S.; Davis, J.K.
1999-01-01
The vocal behavior of captive animals is increasingly exploited as an index of well-being. Here we show that the terrestrial predator alarm (TPA) vocalization, a robust and acoustically distinctive anti-predation vocal response present in many mammal and bird species, offers useful information on the relative well-being and stress levels of captive animals. In a 16-week experiment evaluating the effects of varying levels of physical environmental enrichment (control < toys < foraging box < foraging box and toys) in the cages of eight singly housed adult male brown capuchins, we quantified the 1) emission rate of TPAs, 2) proportions of normal and abnormal behavior sample intervals, and 3) fecal and plasma cortisol levels. Variation in TPA emission across the experimental conditions was significant. We found significant reductions in the mean TPA production rate by the group in the enriched (toys, foraging box, and foraging box and toys) compared to the control condition; pre-and post-experimental conditions, however, did not differ from the control condition. Mean TPA production by the group was also significantly positively correlated to mean group levels of fecal cortisol and proportion of abnormal behavior sample intervals, and significantly negatively correlated to the average proportion of normal behavior sample intervals in the group. Based on group means, plasma cortisol levels were positively, but not significantly, related to increasing TPA rate. At the level of the responses of an individual subject, however, the covariation between the vocal and non-vocal behavioral measures and the cortisol assays seldom attained significance. Nevertheless, the direction of the relationships among these parameters within individual subjects typically mirrored those correlations based on group means. At both the group mean and individual levels, our results are consistent with the.
Predator interference and stability of predator-prey dynamics.
Přibylová, Lenka; Berec, Luděk
2015-08-01
Predator interference, that is, a decline in the per predator consumption rate as predator density increases, is generally thought to promote predator-prey stability. Indeed, this has been demonstrated in many theoretical studies on predator-prey dynamics. In virtually all of these studies, the stabilization role is demonstrated as a weakening of the paradox of enrichment. With predator interference, stable limit cycles that appear as a result of environmental enrichment occur for higher values of the environmental carrying capacity of prey, and even a complete absence of the limit cycles can happen. Here we study predator-prey dynamics using the Rosenzweig-MacArthur-like model in which the Holling type II functional response has been replaced by a predator-dependent family which generalizes many of the commonly used descriptions of predator interference. By means of a bifurcation analysis we show that sufficiently strong predator interference may bring about another stabilizing mechanism. In particular, hysteresis combined with (dis)appearance of stable limit cycles imply abrupt increases in both the prey and predator densities and enhanced persistence and resilience of the predator-prey system. We encourage refitting the previously collected data on predator consumption rates as well as for conducting further predation experiments to see what functional response from the explored family is the most appropriate.
Moleón, Marcos; Sánchez-Zapata, José A; Gil-Sánchez, José M; Barea-Azcón, José M; Ballesteros-Duperón, Elena; Virgós, Emilio
2011-01-01
Predation may potentially lead to negative effects on both prey (directly via predators) and predators (indirectly via human persecution). Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable--in conservation terms--Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered) predator-two prey (small game) system. We estimated the predation impact ('kill rate' and 'predation rate', i.e., number of prey and proportion of the prey population eaten, respectively) of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each) in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3-2.5%) for both prey and seasons. The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the 'partridge-eating eagle' in Spanish) have a null theoretical basis in most of this area.
Messinger, Susanna M; Ostling, Annette
2013-11-01
Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Seasonal changes in egg predation and parasitism rates on sentinel and naturally occurring (wild) egg masses of the squash bug, Anasa tristis (DeGeer), were evaluated in squash fields in Maryland from June through September in 2013 and 2014. Rates of egg predation and parasitism were significantly ...
Spencer, Ricky-John; Van Dyke, James U; Thompson, Michael B
2016-10-01
Ecological traps are threats to organisms, and exist in a range of biological systems. A subset of ecological trap theory is the "ethological trap," whereby behaviors canalized by past natural selection become traps when environments change rapidly. Invasive predators are major threats to imperiled species and their ability to exploit canalized behaviors of naive prey is particularly important for the establishment of the predator and the decline of the native prey. Our study uses ecological theory to demonstrate that invasive predator controls require shifts in management priorities. Total predation rate (i.e., total response) is the product of both the functional response and numerical response of predators to prey. Functional responses are the changes in the rate of prey consumption by individual predators, relative to prey abundance. Numerical responses are the aggregative rates of prey consumption by all predators relative to prey density, which change with predator density via reproduction or migration, in response to changes in prey density. Traditional invasive predator management methods focus on reducing predator populations, and thus manage for numerical responses. These management efforts fail to manage for functional responses, and may not eliminate impacts of highly efficient individual predators. We explore this problem by modeling the impacts of functional and numerical responses of invasive foxes depredating imperiled Australian turtle nests. Foxes exhibit exceptionally efficient functional responses. A single fox can destroy >95% of turtle nests in a nesting area, which eliminates juvenile recruitment. In this case, the ethological trap is the "Arribada" nesting strategy, an emergent behavior whereby most turtles in a population nest simultaneously in the same nesting grounds. Our models show that Arribada nesting events do not oversaturate foxes, and small numbers of foxes depredate all of the nests in a given Arribada. Widely scattering nests may reduce fox predation rates, but the long generation times of turtles combined with their rapid recent decline suggests that evolutionary responses in nesting strategy may be unlikely. Our study demonstrates that reducing populations of highly efficient invasive predators is insufficient for preserving native prey species. Instead, management must reduce individual predator efficiency, independent of reducing predator population size. © 2016 by the Ecological Society of America.
Landscape features influence postrelease predation on endangered black-footed ferrets
Poessel, S.A.; Breck, S.W.; Biggins, D.E.; Livieri, T.M.; Crooks, K.R.; Angeloni, L.
2011-01-01
Predation can be a critical factor influencing recovery of endangered species. In most recovery efforts lethal and nonlethal influences of predators are not sufficiently understood to allow prediction of predation risk, despite its importance. We investigated whether landscape features could be used to model predation risk from coyotes (Canis latrans) and great horned owls (Bubo virginianus) on the endangered black-footed ferret (Mustela nigripes). We used location data of reintroduced ferrets from 3 sites in South Dakota to determine whether exposure to landscape features typically associated with predators affected survival of ferrets, and whether ferrets considered predation risk when choosing habitat near perches potentially used by owls or near linear features predicted to be used by coyotes. Exposure to areas near likely owl perches reduced ferret survival, but landscape features potentially associated with coyote movements had no appreciable effect on survival. Ferrets were located within 90 m of perches more than expected in 2 study sites that also had higher ferret mortality due to owl predation. Densities of potential coyote travel routes near ferret locations were no different than expected in all 3 sites. Repatriated ferrets might have selected resources based on factors other than predator avoidance. Considering an easily quantified landscape feature (i.e., owl perches) can enhance success of reintroduction efforts for ferrets. Nonetheless, development of predictive models of predation risk and management strategies to mitigate that risk is not necessarily straightforward for more generalist predators such as coyotes. ?? 2011 American Society of Mammalogists.
Predator-prey-subsidy population dynamics on stepping-stone domains.
Shen, Lulan; Van Gorder, Robert A
2017-05-07
Predator-prey-subsidy dynamics on stepping-stone domains are examined using a variety of network configurations. Our problem is motivated by the interactions between arctic foxes (predator) and lemmings (prey) in the presence of seal carrion (subsidy) provided by polar bears. We use the n-Patch Model, which considers space explicitly as a "Stepping Stone" system. We consider the role that the carrying capacity, predator migration rate, input subsidy rate, predator mortality rate, and proportion of predators surviving migration play in the predator-prey-subsidy population dynamics. We find that for certain types of networks, added mobility will help predator populations, allowing them to survive or coexist when they would otherwise go extinct if confined to one location, while in other situations (such as when sparsely distributed nodes in the network have few resources available) the added mobility will hurt the predator population. We also find that a combination of favourable conditions for the prey and subsidy can lead to the formation of limit cycles (boom and bust dynamic) from stable equilibrium states. These modifications to the dynamics vary depending on the specific network structure employed, highlighting the fact that network structure can strongly influence the predator-prey-subsidy dynamics in stepping-stone domains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantifying chaos for ecological stoichiometry.
Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
2010-09-01
The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.
Light-mediated predation by northern squawfish on juvenile Chinook salmon
Petersen, James H.; Gadomski, Dena M.
1994-01-01
Northern squawfish Ptychocheilus oregonensis cause significant mortality of juvenile salmon in the lower Columbia River Basin (U.S.A.). The effects of light intensity on this predator-prey interaction were examined with laboratory experiments and modelling studies. In laboratory experiments, the rate of capture of subyearling chinook salmon Oncorhynchus tshawytscha by northern squawfish was inversely related to light intensity. In a large raceway, about five times more salmon were captured during 4 h periods of relative darkness (0–03 Ix) than during periods with high light intensity (160 Ix). The rate of predation could be manipulated by increasing or decreasing light intensity.A simulation model was developed for visual predators that encounter, attack, and capture juvenile salmon, whose schooling behaviour was light-sensitive. The model was fitted to laboratory results using a Monte Carlo filtering procedure. Model-predicted predation rate was especially sensitive to the visual range of predators at low light intensity and to predator search speed at high light. Modelling results also suggested that predation by northern squawfish on juvenile salmon may be highest across a narrow window of fight intensity.
Janssens, Lizanne; Van Dievel, Marie; Stoks, Robby
2015-12-01
While nonconsumptive effects of predators may strongly affect prey populations, little is known how future warming will modulate these effects. Such information would be especially relevant with regard to prey physiology and resulting changes in prey stoichiometry. We investigated in Enallagma cyathigerum damselfly larvae the effects of a 4°C warming (20°C vs. 24°C) and predation risk on growth rate, physiology and body stoichiometry, for the first time including all key mechanisms suggested by the general stress paradigm (GSP) on how stressors shape changes in body stoichiometry. Growth rate and energy storage were higher at 24°C. Based on thermodynamic principles and the growth rate hypothesis, we could demonstrate predictable reductions in body C:P under warming and link these to the increase in P-rich RNA; the associated warming-induced decrease in C:N may be explained by the increased synthesis of N-rich proteins. Yet, under predation risk, growth rate instead decreased with warming and the warming-induced decreases in C:N and C:P disappeared. As predicted by the GSP, larvae increased body C:N and C:P at 24°C under predation risk. Notably, we did not detect the assumed GSP-mechanisms driving these changes: despite an increased metabolic rate there was neither an increase of C-rich biomolecules (instead fat and sugar contents decreased under predation risk), nor a decrease of N-rich proteins. We hypothesize that the higher C:N and N:P under predation risk are caused by a higher investment in morphological defense. This may also explain the stronger predator-induced increase in C:N under warming. The expected higher C:P under predation risk was only present under warming and matched the observed growth reduction and associated reduction in P-rich RNA. Our integrated mechanistic approach unraveled novel pathways of how warming and predation risk shape body stoichiometry. Key findings that (1) warming effects on elemental stoichiometry were predictable and only present in the absence of predation risk and that (2) warming reinforced the predator-induced effects on C:N:P, are pivotal in understanding how nonconsumptive predator effects under global warming will shape prey populations.
Cannibalism and intraguild predation of eggs within a diverse predator assemblage.
Takizawa, Tadashi; Snyder, William E
2011-02-01
Greater biodiversity among aphid predators sometimes leads to greater predator reproductive success. This could occur if cannibalism of predator eggs is consistently stronger than intraguild predation, such that diversity dilutes cannibalism risk when total predator densities remain constant across diversity levels. We compared the frequency of cannibalism versus intraguild predation by adult predators of four species [the lady beetles Coccinella septempunctata L. and Hippodamia convergens Guerin-Meneville, and the predatory bugs Geocoris bullatus (Say) and Nabis alternatus Parshley] on the eggs of three predator species (all of these predators but Nabis). For both coccinellid species, egg predation averaged across all intraguild predators was less frequent than cannibalism. In contrast, Geocoris eggs were generally more likely to be consumed by intraguild predators than by conspecifics. Closer inspection of the data revealed that Geocoris consistently consumed fewer eggs than the other species, regardless of egg species. Indeed, for lady beetle eggs it was relatively infrequent egg predation by Geocoris that brought down the average across all heterospecific predators, masking the fact that adults of the two lady beetles were no more likely to act as egg cannibals than as intraguild predators. Nabis ate eggs of the two beetles at approximately equal rates, but rarely ate Geocoris eggs. Female predators generally consumed more eggs than did males, but this did not alter any of the patterns described above. Altogether, our results suggest that species-specific differences in egg predation rates determined the relative intensity of egg intraguild-predation versus cannibalism, rather than any more general trend for egg cannibalism to always exceed intraguild predation. © 2011 Entomological Society of America
Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus.
Królikowska, Natalia; Szymkowiak, Jakub; Laidlaw, Rebecca Anne; Kuczyński, Lechosław
2016-01-01
Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing-observation, approach and usually harassment of a predator-being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing ( Vanellus vanellus ). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax , hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo , white stork Ciconia ciconia , black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory.
Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.
Penido, G; Ribeiro, V; Fortunato, D S
2015-05-01
This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.
Techniques for identifying predators of goose nests
Anthony, R. Michael; Grand, J.B.; Fondell, T.F.; Miller, David A.
2006-01-01
We used cameras and artificial eggs to identify nest predators of dusky Canada goose Branta canadensis occidentalis nests during 1997-2000. Cameras were set up at 195 occupied goose nests and 60 artificial nests. We placed wooden eggs and domestic goose eggs that were emptied and then filled with wax or foam in an additional 263 natural goose nests to identify predators from marks in the artificial eggs. All techniques had limitations, but each correctly identified predators and estimated their relative importance. Nests with cameras had higher rates of abandonment than natural nests, especially during laying. Abandonment rates were reduced by deploying artificial eggs late in laying and reducing time at nests. Predation rates for nests with cameras were slightly lower than for nests without cameras. Wax-filled artificial eggs caused mortality of embryos in natural nests, but were better for identifying predator marks at artificial nests. Use of foam-filled artificial eggs in natural nests was the most cost effective means of monitoring nest predation. ?? Wildlife Biology (2006).
Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G.; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G.
2015-01-01
Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169
Barbour, Matthew A.; Clark, Rulon W.
2012-01-01
Many species approach, inspect and signal towards their predators. These behaviours are often interpreted as predator-deterrent signals—honest signals that indicate to a predator that continued hunting is likely to be futile. However, many of these putative predator-deterrent signals are given when no predator is present, and it remains unclear if and why such signals deter predators. We examined the effects of one such signal, the tail-flag display of California ground squirrels, which is frequently given both during and outside direct encounters with northern Pacific rattlesnakes. We video-recorded and quantified the ambush foraging responses of rattlesnakes to tail-flagging displays from ground squirrels. We found that tail-flagging deterred snakes from striking squirrels, most likely by advertising squirrel vigilance (i.e. readiness to dodge a snake strike). We also found that tail-flagging by adult squirrels increased the likelihood that snakes would leave their ambush site, apparently by elevating the vigilance of nearby squirrels which reduces the profitability of the ambush site. Our results provide some of the first empirical evidence of the mechanisms by which a prey display, although frequently given in the absence of a predator, may still deter predators during encounters. PMID:22787023
Intraguild predation and native lady beetle decline.
Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A
2011-01-01
Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild predation by both native and exotic predators may contribute to native coccinellid decline, and that landscape structure interacts with local predator communities to shape the specific outcomes of predator-predator interactions.
Ruffell, Jay; Didham, Raphael K.; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P.
2014-01-01
Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0–212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these ‘reverse’ edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches. PMID:25412340
Ruffell, Jay; Didham, Raphael K; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P
2014-01-01
Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.
Daly, Benjamin; Long, W. Christopher
2014-01-01
Blue king crabs (Paralithodes platypus) are commercially and ecologically important in Alaska, USA, but population abundances have fluctuated over the past several decades likely resulting from a combination of environmental and biological factors, including recruitment variability. Cannibalism between cohorts may be a source of mortality limiting recruitment success in the wild, but the degree of inter-cohort cannibalism is unknown for early benthic phase blue king crabs. In laboratory experiments, we evaluated the effects of habitat type (sand and shell) on the predator functional response and foraging behavior of year-1 blue king crabs as predators of year-0 conspecifics and examined the effects of predator presence on crypsis of prey crabs. In sand, consumption rates increased with predator size and prey density until satiation, while predation rates in shell were low regardless of predator size or prey density. These differential predation rates yielded a type III functional response in sand but a type I functional response in shell habitat. Crypsis of prey crabs was generally high and did not change in the presence of predators. Predator foraging activity was reduced in shell and may be an adaptive behavior to balance foraging efficiency and susceptibility to larger predators. Our results demonstrate that early benthic phase blue king crabs are cannibalistic between cohorts in the laboratory and that shell material is extremely effective for reducing encounter rates with conspecific predators. The distribution and abundance of such habitat may be important for recruitment success in some populations. Future studies should compare benthic habitat and species assemblages in areas with variable abundances, such as the Pribilof Islands and Saint Matthew Island in the eastern Bering Sea, to better understand possible mechanisms for recruitment variability. PMID:24558414
Daly, Benjamin; Long, W Christopher
2014-01-01
Blue king crabs (Paralithodes platypus) are commercially and ecologically important in Alaska, USA, but population abundances have fluctuated over the past several decades likely resulting from a combination of environmental and biological factors, including recruitment variability. Cannibalism between cohorts may be a source of mortality limiting recruitment success in the wild, but the degree of inter-cohort cannibalism is unknown for early benthic phase blue king crabs. In laboratory experiments, we evaluated the effects of habitat type (sand and shell) on the predator functional response and foraging behavior of year-1 blue king crabs as predators of year-0 conspecifics and examined the effects of predator presence on crypsis of prey crabs. In sand, consumption rates increased with predator size and prey density until satiation, while predation rates in shell were low regardless of predator size or prey density. These differential predation rates yielded a type III functional response in sand but a type I functional response in shell habitat. Crypsis of prey crabs was generally high and did not change in the presence of predators. Predator foraging activity was reduced in shell and may be an adaptive behavior to balance foraging efficiency and susceptibility to larger predators. Our results demonstrate that early benthic phase blue king crabs are cannibalistic between cohorts in the laboratory and that shell material is extremely effective for reducing encounter rates with conspecific predators. The distribution and abundance of such habitat may be important for recruitment success in some populations. Future studies should compare benthic habitat and species assemblages in areas with variable abundances, such as the Pribilof Islands and Saint Matthew Island in the eastern Bering Sea, to better understand possible mechanisms for recruitment variability.
Dennerline, D.E.; Van Den Avyle, M.J.
2000-01-01
Striped bass Morone saxatilis and hybrid bass M. saxatilis x M. chrysops have been stocked to establish fisheries in many US reservoirs, but success has been limited by a poor understanding of relations between prey biomass and predator growth and survival. To define sizes of prey that are morphologically available, we developed predictive relationships between predator length, mouth dimensions, and expected maximum prey size; predictions were then validated using published data on sizes of clupeid prey (Dorosoma spp.) in five US reservoirs. Further, we compared the biomass of prey considered available to predators using two forms of a length-based consumption model - a previously published AP/P ratio and a revised model based on our results. Predictions of maximum prey size using predator GW were consistent with observed prey sizes in US reservoirs. Length of consumed Dorosoma was significantly, but weakly, correlated with predator length in four of the five reservoirs (r2 = 0.006-0.336, P 150 mm TL) were abundant. (C) 2000 Elsevier Science B.V.
Lin, J E; Hard, J J; Naish, K A; Peterson, D; Hilborn, R; Hauser, L
2016-01-01
Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations. PMID:26860201
Lin, J E; Hard, J J; Naish, K A; Peterson, D; Hilborn, R; Hauser, L
2016-05-01
Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations.
Predation of Songbird Nests Differs By Predator and Between Field and Forest Habitats
Frank R., III Thompson; Dirk E. Burhans
2003-01-01
Our understanding of factors affecting nest predation and ability to mitigate high nest predation rates is hampered by a lack of information on the importance of various nest predator species in different habitats and landscapes. We identified predators of songbird nests in old-field and forest habitats in central Missouri, USA, with miniature video cameras. We used an...
NASA Astrophysics Data System (ADS)
Sen, Moitri; Banerjee, Malay
In this work we have considered a prey-predator model with strong Allee effect in the prey growth function, Holling type-II functional response and density dependent death rate for predators. It presents a comprehensive study of the complete global dynamics for the considered system. Especially to see the effect of the density dependent death rate of predator on the system behavior, we have presented the two parametric bifurcation diagrams taking it as one of the bifurcation parameters. In course of that we have explored all possible local and global bifurcations that the system could undergo, namely the existence of transcritical bifurcation, saddle node bifurcation, cusp bifurcation, Hopf-bifurcation, Bogdanov-Takens bifurcation and Bautin bifurcation respectively.
The Seasonal Dynamics of Artificial Nest Predation Rates along Edges in a Mosaic Managed Reedbed.
Malzer, Iain; Helm, Barbara
2015-01-01
Boundaries between different habitats can be responsible for changes in species interactions, including modified rates of encounter between predators and prey. Such 'edge effects' have been reported in nesting birds, where nest predation rates can be increased at habitat edges. The literature concerning edge effects on nest predation rates reveals a wide variation in results, even within single habitats, suggesting edge effects are not fixed, but dynamic throughout space and time. This study demonstrates the importance of considering dynamic mechanisms underlying edge effects and their relevance when undertaking habitat management. In reedbed habitats, management in the form of mosaic winter reed cutting can create extensive edges which change rapidly with reed regrowth during spring. We investigate the seasonal dynamics of reedbed edges using an artificial nest experiment based on the breeding biology of a reedbed specialist. We first demonstrate that nest predation decreases with increasing distance from the edge of cut reed blocks, suggesting edge effects have a pivotal role in this system. Using repeats throughout the breeding season we then confirm that nest predation rates are temporally dynamic and decline with the regrowth of reed. However, effects of edges on nest predation were consistent throughout the season. These results are of practical importance when considering appropriate habitat management, suggesting that reed cutting may heighten nest predation, especially before new growth matures. They also contribute directly to an overall understanding of the dynamic processes underlying edge effects and their potential role as drivers of time-dependent habitat use.
Lemessa, Debissa; Hambäck, Peter A.; Hylander, Kristoffer
2015-01-01
Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7–9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests. PMID:25961306
Parent birds assess nest predation risk and adjust their reproductive strategies
Fontaine, J.J.; Martin, T.E.
2006-01-01
Avian life history theory has long assumed that nest predation plays a minor role in shaping reproductive strategies. Yet, this assumption remains conspicuously untested by broad experiments that alter environmental risk of nest predation, despite the fact that nest predation is a major source of reproductive failure. Here, we examined whether parents can assess experimentally reduced nest predation risk and alter their reproductive strategies. We experimentally reduced nest predation risk and show that in safer environments parents increased investment in young through increased egg size, clutch mass, and the rate they fed nestlings. Parents also increased investment in female condition by increasing the rates that males fed incubating females at the nest, and decreasing the time that females spent incubating. These results demonstrate that birds can assess nest predation risk at large and that nest predation plays a key role in the expression of avian reproductive strategies. ?? 2006 Blackwell Publishing Ltd/CNRS.
One-prey two-predator model with prey harvesting in a food chain interaction
NASA Astrophysics Data System (ADS)
Sayekti, I. M.; Malik, M.; Aldila, D.
2017-07-01
The interaction between prey, secondary predator, and primary predator as a mathematical model of the one-prey and two-predator system with constant harvesting in prey population will be introduced in this article. Their interaction might describe as a food pyramid, with the preys is in the lowest level of the pyramid, secondary predators in the middle, and primary predators in the top of the pyramid. Human intervention to controlling prey population is needed and will be analyzed how this will effect on the existence of secondary predator and primary predator population. Equilibrium points and their existence criteria will be analyzed to find a threshold that will guarantee the coexistence of this system. Some numerical simulation will be given to illustrate the analytical results. We find that as long as harvesting rate in prey population is smaller than prey intrinsic growth rate, coexistence might achieve.
Do mammalian nest predators follow human scent trails in the shortgrass prairie?
Skagen, S.K.; Stanley, T.R.; Dillon, M.B.
1999-01-01
Nest predation, the major cause of nest failure in passerines, has exerted a strong influence on the evolution of life history traits of birds. Because human disturbance during nest monitoring may alter predation rates, we investigated whether human scent affected the survival of artificial ground nests in shortgrass prairie. Our experiment consisted of two treatments, one in which there was no attempt to mask human scent along travel routes between artificial nests, and one in which we masked human scent with cow manure, a scent familiar to mammalian predators in the study area. We found no evidence that human scent influenced predation rates, nor that mammalian predators followed human trails between nests. We conclude that scent trails made by investigators do not result in lower nesting success of passerines of the shortgrass prairie where vegetation trampling is minimal, mammalian predators predominate, and avian predators are rare.
Chipps, S.R.; Dunbar, J.A.; Wahl, David H.
2004-01-01
Bluegill sunfish (Lepomis macrochirus) are known to diversify into two forms specialized for foraging on either limnetic or littoral prey. Because juvenile bluegills seek vegetative cover in the presence of largemouth bass (Micropterus salmoides) predators, natural selection should favor the littoral body design at size ranges most vulnerable to predation. Yet within bluegill populations, both limnetic and littoral forms occur where vegetation and predators are present. While adaptive for foraging in different environments, does habitat-linked phenotypic variation also influence predator evasiveness for juvenile bluegills? We evaluate this question by quantifying susceptibility to predation for two groups of morphologically distinct bluegills; a limnetic form characteristic of bluegills inhabiting open water areas (limnetic bluegill) and a littoral form characteristic of bluegills inhabiting dense vegetation (littoral bluegill). In a series of predation trials, we found that bluegill behaviors differed in open water habitat but not in simulated vegetation. In open water habitat, limnetic bluegills formed more dense shoaling aggregations, maintained a larger distance from the predator, and required longer amounts of time to capture than littoral bluegill. When provided with simulated vegetation, largemouth bass spent longer amounts of time pursuing littoral bluegill and captured significantly fewer littoral bluegills than limnetic fish. Hence, morphological and behavioral variation in bluegills was linked to differential susceptibility to predation in open water and vegetated environments. Combined with previous studies, these findings show that morphological and behavioral adaptations enhance both foraging performance and predator evasiveness in different lake habitats.
Predation risk of artificial ground nests in managed floodplain meadows
NASA Astrophysics Data System (ADS)
Arbeiter, Susanne; Franke, Elisabeth
2018-01-01
Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.
Biddinger, David J; Leslie, Timothy W; Joshi, Neelendra K
2014-06-01
We developed new integrated pest management programs for eastern U.S. peaches with minimal use of organophosphates. From 2002-2005, we assessed the ecological impacts of these reduced-risk programs versus grower standard conventional programs that still relied primarily on the use of organophosphorous and carbamate insecticides. Using a split-plot design replicated at four commercial Pennsylvania peach orchards, we quantified pesticide rates, environmental impact, and arthropod community response. We used Environmental Impact Quotient (EIQ) analysis based on the growers' pesticide records from each orchard to calculate seasonal cumulative EIQ field ratings for all years. Ecological effects of the reduced-risk and conventional program were also measured as the abundance and diversity of nontarget arthropod predators, parasitoids, and selected pest taxa. Pesticide inputs and EIQ values were substantially lower in reduced-risk programs compared with conventional spray programs. Arthropod arrays differed significantly between pest management programs: most beneficial predator and parasitoid taxa were positively associated with the reduced-risk program and negatively associated with the standard grower program. Regardless of the pest management program, we observed significant differences in species arrays in the peach tree canopy compared with the ground cover of the orchards, but the arthropod community did not differ among the field sites or based on distance from the edge of the orchard. We conclude that reduced-risk programs not only provide control comparable with that of conventional programs, but they also reduce negative environmental effects while conserving key arthropod biological control agents within eastern U.S. peach orchards.
Chipps, S.R.; Bennett, D.H.
2000-01-01
We investigated zooplanktivory and nutrient regeneration by the opossum shrimp Mysis relicta and kokanee Oncorhynchus nerka to assess the relative roles of these planktivores in oligotrophic food webs. Using bioenergetic models and clearance rate estimates, we quantified phosphorus (P) excretion rates and consumption of cladoceran prey by Mysis and kokanees in Lake Pend Oreille, Idaho, from 1995 to 1996. Consumption of cladoceran prey by Mysis was 186 kg ?? ha-1 ?? year-1, whereas consumption by kokanees was less than one quarter as much, at 45 kg ?? ha-1 ?? year-1. Similarly, Mysis excreted approximately 0.250 kg P ?? ha-1 ?? year-1 during nighttime migrations into the upper water column, whereas P excretion by kokanees was less than one third as much, at approximately 0.070 kg P ?? ha-1 ?? year-1. On a volumetric basis, nocturnal excretion by Mysis ranged from 0.002 to 0.007 ??g P ?? L-1 ?? d-1 and accounted for less than 1% of the soluble reactive P typically measured in the upper water column of the lake. Hence, nutrient recycling by Mysis may be limited in the upper water column because of the nocturnal feeding habitats that constrain Mysis to deeper strata for much of the day. In spring and autumn months, low abundance of cladoceran prey coincided with high seasonal energy requirements of the Mysis population that were linked to timing of annual Mysis brood release and abundance of age-0 Mysis. Predation by Mysis accounted for 5-70% of daily cladoceran standing stock, supporting the notion that seasonal availability of cladocerans may be regulated by Mysis predation. In lakes where Mysis experience little predation mortality, they likely play a dominant role in food web interactions (e.g., trophic cascades) relative to planktivorous fishes. Biotic mechanisms, such as successful predator-avoidance behavior, omnivorous feeding habits, and seasonal variation in Mysisbiomass, enhance the ability of Mysis to influence food web interactions from an intermediate trophic level.
Estimating cougar predation rates from GPS location clusters
Anderson, C.R.; Lindzey, F.G.
2003-01-01
We examined cougar (Puma concolor) predation from Global Positioning System (GPS) location clusters (???2 locations within 200 m on the same or consecutive nights) of 11 cougars during September-May, 1999-2001. Location success of GPS averaged 2.4-5.0 of 6 location attempts/night/cougar. We surveyed potential predation sites during summer-fall 2000 and summer 2001 to identify prey composition (n = 74; 3-388 days post predation) and record predation-site variables (n = 97; 3-270 days post predation). We developed a model to estimate probability that a cougar killed a large mammal from data collected at GPS location clusters where the probability of predation increased with number of nights (defined as locations at 2200, 0200, or 0500 hr) of cougar presence within a 200-m radius (P < 0.001). Mean estimated cougar predation rates for large mammals were 7.3 days/kill for subadult females (1-2.5 yr; n = 3, 90% CI: 6.3 to 9.9), 7.0 days/kill for adult females (n = 2, 90% CI: 5.8 to 10.8), 5.4 days/kill for family groups (females with young; n = 3, 90% CI: 4.5 to 8.4), 9.5 days/kill for a subadult male (1-2.5 yr; n = 1, 90% CI: 6.9 to 16.4), and 7.8 days/kill for adult males (n = 2, 90% CI: 6.8 to 10.7). We may have slightly overestimated cougar predation rates due to our inability to separate scavenging from predation. We detected 45 deer (Odocoileus spp.), 15 elk (Cervus elaphus), 6 pronghorn (Antilocapra americana), 2 livestock, 1 moose (Alces alces), and 6 small mammals at cougar predation sites. Comparisons between cougar sexes suggested that females selected mule deer and males selected elk (P < 0.001). Cougars averaged 3.0 nights on pronghorn carcasses, 3.4 nights on deer carcasses, and 6.0 nights on elk carcasses. Most cougar predation (81.7%) occurred between 1901-0500 hr and peaked from 2201-0200 hr (31.7%). Applying GPS technology to identify predation rates and prey selection will allow managers to efficiently estimate the ability of an area's prey base to sustain or be affected by cougar predation.
Feierabend, Dashiell; Kielland, Knut
2015-01-01
Survival and predation of snowshoe hares (Lepus americanus) has been widely studied, yet there has been little quantification of the changes in vulnerability of hares to specific predators that may result from seasonal changes in vegetation and cover. We investigated survival and causes of mortalities of snowshoe hares during the late increase, peak, and decline of a population in interior Alaska. From June 2008 to May 2012, we radio-tagged 288 adult and older juvenile hares in early successional and black spruce (Picea mariana) forests and, using known-fate methods in program MARK, evaluated 85 survival models that included variables for sex, age, and body condition of hares, as well as trapping site, month, season, year, snowfall, snow depth, and air temperature. We compared the models using Akaike's information criterion with correction for small sample size. Model results indicated that month, capture site, and body condition were the most important variables in explaining survival rates. Survival was highest in July, and more generally during summer, when alternative prey was available to predators of hares. Low survival rates coincided with molting periods, breeding activity in the spring, and the introduction of juveniles to the sample population in the fall. We identified predation as the cause of mortality in 86% of hare deaths. When the source of predation could be determined, hares were killed more often by goshawks (Accipiter gentilis) than other predators in early successional forest (30%), and more often by lynx (Lynx canadensis) than other predators in black spruce forest (31%). Great horned owls (Bubo virginianus) and coyotes (Canis latrans) represented smaller proportions of hare predation, and non-predatory causes were a minor source (3%) of mortality. Because hares rely on vegetative cover for concealment from predators, we measured cover in predation sites and habitats that the hares occupied and concluded that habitat type had a greater influence on the sources of predation than the amount of cover in any given location within a habitat. Our observations illustrate the vulnerability of hares to predators in even the densest coniferous habitat available in the boreal forest, and indicate strong seasonal changes in the rates and sources of predation.
Manzur, Tatiana; Vidal, Francisco; Pantoja, José F; Fernández, Miriam; Navarrete, Sergio A
2014-07-01
Besides the well-documented behavioural changes induced by predators on prey, predator-induced stress can also include a suite of biochemical, neurological and metabolic changes that may represent important energetic costs and have long-lasting effects on individuals and on the demography of prey populations. The rapid transmission of prey behavioural changes to lower trophic levels, usually associated with alteration of feeding rates, can substantially change and even reverse direction over the long term as prey cope with the energetic costs associated with predation-induced stress. It is therefore critical to evaluate different aspects and assess the costs of non-consumptive predator effects on prey. We investigated the behavioural and physiological responses of an herbivorous limpet, Fissurella limbata, to the presence of chemical cues and direct non-lethal contact by the common seastar predator, Heliaster helianthus. We also evaluated whether the limpets feeding behaviour was modified by the predator and whether this translated into positive or negative effects on biomass of the green alga, Ulva sp. Our experimental results show the presence of Heliaster led to increased movement activity, increased distances travelled, changes in time budget over different environmental conditions and increased feeding rate in the keyhole limpets. Moreover, additional experiments showed that, beyond the increased metabolic rate associated with limpet increased activity, predator chemical cues heighten metabolic rate as part of the induced stress response. Changes in individual movement and displacement distances observed through the 9-day experiment can be interpreted as part of the escape response exhibited by limpets to reduce the risk of being captured by the predator. Increased limpet feeding rate on algae can be visualized as a way individuals compensate for the elevated energetic costs of movement and heightened metabolic rates produced by the predator-induced stress, which can lead to negative effects on abundance of the lower trophic level. We suggest that in order to understand the total non-consumptive effect of predators in natural communities, it is necessary to evaluate not only short-term behavioural responses, but also the costs associated with the multiple interdependent pathways triggered by predator-induced stress, and determine how individuals cope with these costs in the long term. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Mohamad, N; Zuharah, W F
2014-03-01
Toxorhynchites splendens larvae are a natural predator of dengue vector mosquito larvae, Aedes albopictus. This study was carried out to evaluate the predation rate of Tx. splendens third instar larvae on Ae. albopictus larvae in 24 h. Each predator was offered prey at a density between 10 to 50 individuals. Predation rate of Tx. splendens were also tested with two manipulated factors; various types of container and different water volumes. The experiment was evaluated in man-made containers (tin cans, plastic drinking glasses and rubber tires) and natural container (bamboo stumps) which were filled with different water volumes (full, half full, 1/4 full, and 1/8 full). The prey density and the characteristics of the container were found as significant factors which influence the predation rate of Tx. splendens. The predator consumed significantly more prey at higher prey densities (40 and 50 preys) compared to the lowest density (10 preys) (F=3.935, df=4, p=0.008). The results showed significantly higher consumption in horizontal shaped container of rubber tire than in vertical shape of bamboo stumps (F=3.100, df=3, p=0.029). However, the water volume had no significant effect on predation rate of Tx. splendens (F=1.736, df=3, p=0.162). We generally suggest that Tx. splendens is best to be released in discarded tires or any other containers with horizontal shape design with wide opening since Tx. splendens can become more effective in searching prey in this type of container design. This predator is also a suitable biocontrol candidates to be introduced either in wet and dry seasons in Malaysia.
LaManna, Joseph A.; Martin, Thomas E.
2017-01-01
Increased perceived predation risk can cause behavioral and physiological responses to reduce direct predation mortality, but these responses can also cause demographic costs through reduced reproductive output. Such indirect costs of predation risk have received increased attention in recent years, but the relative importance of direct vs. indirect predation costs to population growth (λ) across species remains unclear. We measured direct nest predation rates as well as indirect benefits (i.e., reduced predation rates) and costs (i.e., decreased reproductive output) arising from parental responses to perceived offspring predation risk for 10 songbird species breeding along natural gradients in nest predation risk. We show that reductions in seasonal fecundity from behavioral responses to perceived predation risk represent significant demographic costs for six of the 10 species. However, demographic costs from these indirect predation effects on seasonal fecundity comprised only 12% of cumulative predation costs averaged across species. In contrast, costs from direct predation mortality comprised 88% of cumulative predation costs averaged across species. Demographic costs from direct offspring predation were relatively more important for species with higher within-season residual-reproductive value (i.e., multiple-brooded species) than for species with lower residual-reproductive value (i.e., single-brooded species). Costs from indirect predation effects were significant across single- but not multiple-brooded species. Ultimately, demographic costs from behavioral responses to offspring predation risk differed among species as a function of their life-history strategies. Yet direct predation mortality generally wielded a stronger influence than indirect effects on seasonal fecundity and projected λ across species.
Predation on stocked Atlantic salmon (Salmo salar) fry
Henderson, J.N.; Letcher, B.H.
2003-01-01
We studied predator-prey interactions between juvenile Atlantic salmon (Salmo salar) and trout in three Massachusetts, U.S.A., streams and in artificial streams. We sampled stomach contents of age-1+ and older salmon and trout (Salvelinus fontinalis, Salmo trutta) following salmon fry stocking in the spring of 1997 and 1998. Between 4.3 and 48.6% of the stocked fry were consumed within the first 2 days after stocking, and total fry mortality from predation varied from 4.3 to 60.7%. No significant differences were found between stomach weights of predators (without fry weight) that consumed fry and those that did not. Artificial stream experiments testing effects of habitat complexity and predator species on predator consumption rates revealed that consumption rates were not different between brook (S. fontinalis) and brown (S. trutta) trout (p = 0.59). Predation rate tended to decrease as the percentage of riffle habitat increased but the decrease was not significant (p = 0.22). Our results indicate that predation on stocked Atlantic salmon fry can be substantial (up to 60%), appears to be short lived (2 days), and is not related in a simple way to abiotic and biotic factors.
Exploring potential effects of cormorant predation on the fish community in Saginaw Bay, Lake Huron
DeBruyne, Robin L.; Fielder, David G.; Roseman, Edward; Butchko, Peter H.
2017-01-01
Stakeholders and fishery managers expressed concern that double-crested cormorant Phalacrocorax auritus predation may be a factor in the recent poor survival of yellow perch Perca flavescens in Saginaw Bay. We quantified cormorant diets from two nesting colonies in Saginaw Bay during April–September in 2013 and 2014, with special emphasis on impacts to yellow perch. Cormorants (n = 691) were collected when returning to colonies after foraging. Stomachs were removed and preserved in the field. Diet items were identified, enumerated, and measured (n = 23.373). Cormorant diets from Saginaw Bay indicate a heavy reliance on round goby and Notropis species as prey during the breeding season, consistent with other areas of the Great Lakes where round goby and cormorants coincide. Respectively, the three most common prey species observed by number (%) and biomass (%) pooled across years and sites were round goby Neogobius melanostomus (56.6%, 42.1%), emerald shiner Notropis antherinoides (25.2%, 12.5%), and yellow perch (8.0%, 14.1%). Diet composition was more variable at Spoils Island than at Little Charity Island. Overall cormorant consumption (estimated using cormorant consumption demand rates) of yellow perch was compared to walleye consumption. Cormorant consumption of age-1 yellow perch was 13–17% as much as mean walleye consumption of yellow perch in 2013 and 8–11% in 2014. The cumulative effects of walleye and spring cormorant predation likely represent a recruitment bottleneck for yellow perch in Saginaw Bay. Future studies determining age-specific abundance of yellow perch would facilitate better determination of cormorant predation significance.
A mathematical model of the effect of a predator on species diversity
NASA Technical Reports Server (NTRS)
Weston, C. R.; Yang, J. N.
1970-01-01
Mathematical model determines reaction between new predator and microbe competitor when the competitor is the predator's sole nutrient resource. The model utilizes differential equations to describe the interactions with the specific growth rates, and analyzes these growth rates as they are affected by population density and nutrient concentration.
Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland
NASA Astrophysics Data System (ADS)
Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.
2014-07-01
Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.
Human Activity Helps Prey Win the Predator-Prey Space Race
Muhly, Tyler B.; Semeniuk, Christina; Massolo, Alessandro; Hickman, Laura; Musiani, Marco
2011-01-01
Predator-prey interactions, including between large mammalian wildlife species, can be represented as a “space race”, where prey try to minimize and predators maximize spatial overlap. Human activity can also influence the distribution of wildlife species. In particular, high-human disturbance can displace large carnivore predators, a trait-mediated direct effect. Predator displacement by humans could then indirectly benefit prey species by reducing predation risk, a trait-mediated indirect effect of humans that spatially decouples predators from prey. The purpose of this research was to test the hypothesis that high-human activity was displacing predators and thus indirectly creating spatial refuge for prey species, helping prey win the “space race”. We measured the occurrence of eleven large mammal species (including humans and cattle) at 43 camera traps deployed on roads and trails in southwest Alberta, Canada. We tested species co-occurrence at camera sites using hierarchical cluster and nonmetric multidimensional scaling (NMS) analyses; and tested whether human activity, food and/or habitat influenced predator and prey species counts at camera sites using regression tree analysis. Cluster and NMS analysis indicated that at camera sites humans co-occurred with prey species more than predator species and predator species had relatively low co-occurrence with prey species. Regression tree analysis indicated that prey species were three times more abundant on roads and trails with >32 humans/day. However, predators were less abundant on roads and trails that exceeded 18 humans/day. Our results support the hypothesis that high-human activity displaced predators but not prey species, creating spatial refuge from predation. High-human activity on roads and trails (i.e., >18 humans/day) has the potential to interfere with predator-prey interactions via trait-mediated direct and indirect effects. We urge scientist and managers to carefully consider and quantify the trait-mediated indirect effects of humans, in addition to direct effects, when assessing human impacts on wildlife and ecosystems. PMID:21399682
Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.
Howeth, Jennifer G; Leibold, Mathew A
2010-09-01
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.
A meta-analysis of predation risk effects on pollinator behaviour.
Romero, Gustavo Q; Antiqueira, Pablo A P; Koricheva, Julia
2011-01-01
Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.
Landscape forest cover and edge effects on songbird nest predation vary by nest predator
W. Andrew Cox; Frank R. III Thompson; John Faaborg
2012-01-01
Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...
The Seasonal Dynamics of Artificial Nest Predation Rates along Edges in a Mosaic Managed Reedbed
Malzer, Iain; Helm, Barbara
2015-01-01
Boundaries between different habitats can be responsible for changes in species interactions, including modified rates of encounter between predators and prey. Such ‘edge effects’ have been reported in nesting birds, where nest predation rates can be increased at habitat edges. The literature concerning edge effects on nest predation rates reveals a wide variation in results, even within single habitats, suggesting edge effects are not fixed, but dynamic throughout space and time. This study demonstrates the importance of considering dynamic mechanisms underlying edge effects and their relevance when undertaking habitat management. In reedbed habitats, management in the form of mosaic winter reed cutting can create extensive edges which change rapidly with reed regrowth during spring. We investigate the seasonal dynamics of reedbed edges using an artificial nest experiment based on the breeding biology of a reedbed specialist. We first demonstrate that nest predation decreases with increasing distance from the edge of cut reed blocks, suggesting edge effects have a pivotal role in this system. Using repeats throughout the breeding season we then confirm that nest predation rates are temporally dynamic and decline with the regrowth of reed. However, effects of edges on nest predation were consistent throughout the season. These results are of practical importance when considering appropriate habitat management, suggesting that reed cutting may heighten nest predation, especially before new growth matures. They also contribute directly to an overall understanding of the dynamic processes underlying edge effects and their potential role as drivers of time-dependent habitat use. PMID:26448338
Orr, Michael V; Hittel, Karla; Lukowiak, Ken
2009-07-01
Gaining insight into how natural trait variation is manifest in populations shaped by differential environmental factors is crucial to understanding the evolution, ecology and sensory biology of natural populations. We have demonstrated that lab-reared Lymnaea detect and respond to the scent of a crayfish predator with specific, appropriate anti-predator behavioral responses, including enhanced long-term memory (LTM) formation, and that such predator detection significantly alters the electrophysiological activity of RPeD1, a neuron that is a necessary site for LTM formation. Here we ask: (1) do distinct populations of wild Lymnaea stagnalis respond only to sympatric predators and if so, can these traits be quantified at both the behavioral and neurophysiological levels, and (2) does the presence of a non-sympatric predator elicit anti-predator behaviors including augmentation of LTM? We tested three different populations of wild (i.e. not lab-reared) snails freshly collected from their natural habitat: (1) polders near Utrecht in The Netherlands, (2) six seasonally isolated ponds in the Belly River drainage in southern Alberta, Canada and (3) a 20-year-old human-made dugout pond in southern Alberta. We found strain-specific variations in the ability to form LTM and that only a sympatric predator evoked anti-predatory behaviors, including enhanced LTM formation and changes in RPeD1 activity.
Effects of degeneracy and response function in a diffusion predator-prey model
NASA Astrophysics Data System (ADS)
Li, Shanbing; Wu, Jianhua; Dong, Yaying
2018-04-01
In this paper, we consider positive solutions of a diffusion predator-prey model with a degeneracy under the Dirichlet boundary conditions. We first obtain sufficient conditions of the existence of positive solutions by the Leray-Schauder degree theory, and then analyze the limiting behavior of positive solutions as the growth rate of the predator goes to infinity and the conversion rates of the predator goes to zero, respectively. It is shown that these results for Holling II response function (i.e. m > 0) reveal interesting contrast with that for the classical Lotka-Volterra predator-prey model (i.e. m = 0).
Predatory beetles facilitate plant growth by driving earthworms to lower soil layers.
Zhao, Chuan; Griffin, John N; Wu, Xinwei; Sun, Shucun
2013-07-01
Theory suggests that predators of soil-improving, plant-facilitating detritivores (e.g. earthworms) should suppress plant growth via a negative tri-trophic cascade, but the empirical evidence is still largely lacking. We tested this prediction in an alpine meadow on the Tibetan Plateau by manipulating predatory beetles (presence/absence) and quantifying (i) direct effects on the density and behaviour of earthworms; and (ii) indirect effects on soil properties and above-ground plant biomass. In the absence of predators, earthworms improved soil properties, but did not significantly affect plant biomass. Surprisingly, the presence of predators strengthened the positive effect of earthworms on soil properties leading to the emergence of a positive indirect effect of predators on plant biomass. We attribute this counterintuitive result to: (i) the inability of predators to suppress overall earthworm density; and (ii) the predator-induced earthworm habitat shift from the upper to lower soil layer that enhanced their soil-modifying, plant-facilitating, effects. Our results reveal that plant-level consequences of predators as transmitted through detritivores can hinge on behaviour-mediated indirect interactions that have the potential to overturn predictions based solely on trophic interactions. This work calls for a closer examination of the effects of predators in detritus food webs and the development of spatially explicit theory capable of predicting the occurrence and consequences of predator-induced detritivore behavioural shifts. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao
2016-01-01
Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298
Aspects of nestling growth in Abert's Towhee
Deborah M. Finch
1984-01-01
Among factors selecting for rapid growth rates in avian young are those that cause mortality of whole broods (e.g., predation, weather) (Ricklefs, Ecology 50:1031-1039, 1969). Abert's Towhee (Pipilo aberti) endures a high rate of nesting mortality caused by predation and brood parasitism (Finch, Condor 83:389, 1981; Condor 85:355-359, 1983). Predation is the...
Spatial heterogeneity in post-dispersal predation on Prunus and Uvularia seeds.
Webb, Sara L; Willson, Mary F
1985-08-01
We investigated effects of seed density, distance from parent, and habitat (woods, open field) on post-dispersal predation risk (chiefly by rodents) for seeds of Prunus virginiana (Rosaceae). Additional study of the habitat effect (woods, open field, treefall gap) was made with seeds of Prunus avium (Rosaceae) and Uvularia grandiflora (Liliaceae). Density of Prunus seeds (range 2-40 seeds/group) did not affect predation risk for individual seeds. Distance from parent plants did influence predation risk, which was greatest directly beneath parents. This distance effect primarily comprised a sharp drop in risk within 2 m of parents, a distance too small to generate a "spacing rule" for conspecifics.We found that habitat strongly influenced predation intensity. Rates of removal of Prunus seeds were higher in woods than in open fields, except when overall predation intensity was very low and no pattern could be discerned. Prunus seed removal rates were higher in closed woods than in treefall gaps. Consequently, a Prunus seed will more likely escape predation if dispersed to an open site. In contrast, Uvularia seed removal rates were higher in open fields than in woods but did not differ between closed woods and tree-fall gaps.Predation intensity was spatially patchy between and within experimental arrays, but was consistent over time at some specific points in space, possibly reflecting home ranges of seed predators.
Predator-prey interactions between shell-boring beetle larvae and rock-dwelling land snails.
Baalbergen, Els; Helwerda, Renate; Schelfhorst, Rense; Castillo Cajas, Ruth F; van Moorsel, Coline H M; Kundrata, Robin; Welter-Schultes, Francisco W; Giokas, Sinos; Schilthuizen, Menno
2014-01-01
Drilus beetle larvae (Coleoptera: Elateridae) are specialized predators of land snails. Here, we describe various aspects of the predator-prey interactions between multiple Drilus species attacking multiple Albinaria (Gastropoda: Clausiliidae) species in Greece. We observe that Drilus species may be facultative or obligate Albinaria-specialists. We map geographically varying predation rates in Crete, where on average 24% of empty shells carry fatal Drilus bore holes. We also provide first-hand observations and video-footage of prey entry and exit strategies of the Drilus larvae, and evaluate the potential mutual evolutionary impacts. We find limited evidence for an effect of shell features and snail behavioral traits on inter- and intra-specifically differing predation rates. We also find that Drilus predators adjust their predation behavior based on specific shell traits of the prey. In conclusion, we suggest that, with these baseline data, this interesting predator-prey system will be available for further, detailed more evolutionary ecology studies.
Xiao, Zhishu; Mi, Xiangcheng; Holyoak, Marcel; Xie, Wenhua; Cao, Ke; Yang, Xifu; Huang, Xiaoqun; Krebs, Charles J
2017-01-01
The Janzen-Connell model predicts that common species suffer high seed predation from specialized natural enemies as a function of distance from parent trees, and consequently as a function of conspecific density, whereas the predator satiation hypothesis predicts that seed attack is reduced due to predator satiation at high seed densities. Pre-dispersal predation by insects was studied while seeds are still on parent trees, which represents a frequently overlooked stage in which seed predation occurs. Reproductive tree density and seed production were investigated from ten Quercus serrata populations located in south-west China, quantifying density-dependent pre-dispersal seed predation over two years by three insect groups. Acorn infestation was nearly twice as high in the low-seed year as that in the high-seed year, with considerable spatio-temporal variation in the direction and magnitude of density-dependent pre-dispersal seed predation evident. Across whole populations of trees, a high density of reproductive trees caused predator satiation and reduced insect attack in the high-seed year. Within individual trees, and consistent with the Janzen-Connell model, overall insect seed predation was positively correlated with seed production in the low-seed year. In addition, there was variation among insect taxa, with positive density-dependent seed predation by Curculio weevils in the high-seed year and moths in the low-seed year, but apparent density independence by Cyllorhynchites weevils in both years. The overall trend of negative density-dependent, pre-dispersal seed predation suggests that predator satiation limited the occurrence of Janzen-Connell effects across Q. serrata populations. Such effects may have large impacts on plant population dynamics and tree diversity, depending on the extent to which they are reduced by counteracting positive density-dependent predation for seeds on individual trees and other factors affecting successful recruitment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries.
Briceño, Felipe; Linnane, Adrian Joseph; Quiroz, Juan Carlos; Gardner, Caleb; Pecl, Gretta Tatyana
2015-01-01
Depredation of southern rock lobster (Jasus edwardsii) within fishing gear by the Maori octopus (Pinnoctopus cordiformis) has economic and ecological impacts on valuable fisheries in South Australia. In addition, depredation rates can be highly variable resulting in uncertainties for the fishery. We examined how in-pot lobster predation was influenced by factors such as lobster size and sex, season, fishing zone, and catch rate. Using mixed modelling techniques, we found that in-pot predation risk increased with lobster size and was higher for male lobsters. In addition, the effect of catch rate of lobsters on predation risk by octopus differed among fishing zones. There was both a seasonal and a spatial component to octopus predation, with an increased risk within discrete fishing grounds in South Australia at certain times of the year. Information about predation within lobster gear can assist fishery management decision-making, potentially leading to significant reduction in economic losses to the fishery.
Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries
Briceño, Felipe; Linnane, Adrian Joseph; Quiroz, Juan Carlos; Gardner, Caleb; Pecl, Gretta Tatyana
2015-01-01
Depredation of southern rock lobster (Jasus edwardsii) within fishing gear by the Maori octopus (Pinnoctopus cordiformis) has economic and ecological impacts on valuable fisheries in South Australia. In addition, depredation rates can be highly variable resulting in uncertainties for the fishery. We examined how in-pot lobster predation was influenced by factors such as lobster size and sex, season, fishing zone, and catch rate. Using mixed modelling techniques, we found that in-pot predation risk increased with lobster size and was higher for male lobsters. In addition, the effect of catch rate of lobsters on predation risk by octopus differed among fishing zones. There was both a seasonal and a spatial component to octopus predation, with an increased risk within discrete fishing grounds in South Australia at certain times of the year. Information about predation within lobster gear can assist fishery management decision-making, potentially leading to significant reduction in economic losses to the fishery. PMID:26489035
Comparing functional responses in predator-infected eco-epidemics models.
Haque, Mainul; Rahman, Md Sabiar; Venturino, Ezio
2013-11-01
The current paper deals with the mathematical models of predator-prey system where a transmissible disease spreads among the predator species only. Four mathematical models are proposed and analysed with several popular predator functional responses in order to show the influence of functional response on eco-epidemic models. The existence, boundedness, uniqueness of solutions of all the models are established. Mathematical analysis including stability and bifurcation are observed. Comparison among the results of these models allows the general conclusion that relevant behaviour of the eco-epidemic predator-prey system, including switching of stability, extinction, persistence and oscillations for any species depends on four important parameters viz. the rate of infection, predator interspecies competition and the attack rate on susceptible predator. The paper ends with a discussion of the biological implications of the analytical and numerical results. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Benke, Arthur C
2018-03-31
The majority of food web studies are based on connectivity, top-down impacts, bottom-up flows, or trophic position (TP), and ecologists have argued for decades which is best. Rarely have any two been considered simultaneously. The present study uses a procedure that integrates the last three approaches based on taxon-specific secondary production and gut analyses. Ingestion flows are quantified to create a flow web and the same data are used to quantify TP for all taxa. An individual predator's impacts also are estimated using the ratio of its ingestion (I) of each prey to prey production (P) to create an I/P web. This procedure was applied to 41 invertebrate taxa inhabiting submerged woody habitat in a southeastern U.S. river. A complex flow web starting with five basal food resources had 462 flows >1 mg·m -2 ·yr -1 , providing far more information than a connectivity web. Total flows from basal resources to primary consumers/omnivores were dominated by allochthonous amorphous detritus and ranged from 1 to >50,000 mg·m -2 ·yr -1 . Most predator-prey flows were much lower (<50 mg·m -2 ·yr -1 ), but some were >1,000 mg·m -2 ·yr -1 . The I/P web showed that 83% of individual predator impacts were weak (<10%), whereas total predator impacts were often strong (e.g., 35% of prey sustained an impact >90%). Quantitative estimates of TP ranged from 2 to 3.7, contrasting sharply with seven integer-based trophic levels based on longest feeding chain. Traditional omnivores (TP = 2.4-2.9) played an important role by consuming more prey and exerting higher impacts on primary consumers than strict predators (TP ≥ 3). This study illustrates how simultaneous quantification of flow pathways, predator impacts, and TP together provide an integrated characterization of natural food webs. © 2018 by the Ecological Society of America.
2011-04-01
research and ecology . Hyperspectral Imaging Adds a Unique Dimension to Quantifying Ani- mal Camouflage in the Eyes of Predators. To understand the adap- tive...signals, i.e., the reflectance spectra of the color patches on the animal or the plant (5, 8, 37, 38). By mapping the spectral data onto the color...Research Grant N000140610202 (to R.H.). 1. Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals
Ahrenstorff, Tyler D.; Diana, James S.; Fetzer, William W.; Jones, Thomas S.; Lawson, Zach J.; McInerny, Michael C.; Santucci, Victor J.; Vander Zanden, M. Jake
2018-01-01
Body size governs predator-prey interactions, which in turn structure populations, communities, and food webs. Understanding predator-prey size relationships is valuable from a theoretical perspective, in basic research, and for management applications. However, predator-prey size data are limited and costly to acquire. We quantified predator-prey total length and mass relationships for several freshwater piscivorous taxa: crappie (Pomoxis spp.), largemouth bass (Micropterus salmoides), muskellunge (Esox masquinongy), northern pike (Esox lucius), rock bass (Ambloplites rupestris), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). The range of prey total lengths increased with predator total length. The median and maximum ingested prey total length varied with predator taxon and length, but generally ranged from 10–20% and 32–46% of predator total length, respectively. Predators tended to consume larger fusiform prey than laterally compressed prey. With the exception of large muskellunge, predators most commonly consumed prey between 16 and 73 mm. A sensitivity analysis indicated estimates can be very accurate at sample sizes greater than 1,000 diet items and fairly accurate at sample sizes greater than 100. However, sample sizes less than 50 should be evaluated with caution. Furthermore, median log10 predator-prey body mass ratios ranged from 1.9–2.5, nearly 50% lower than values previously reported for freshwater fishes. Managers, researchers, and modelers could use our findings as a tool for numerous predator-prey evaluations from stocking size optimization to individual-based bioenergetics analyses identifying prey size structure. To this end, we have developed a web-based user interface to maximize the utility of our models that can be found at www.LakeEcologyLab.org/pred_prey. PMID:29543856
Gaeta, Jereme W; Ahrenstorff, Tyler D; Diana, James S; Fetzer, William W; Jones, Thomas S; Lawson, Zach J; McInerny, Michael C; Santucci, Victor J; Vander Zanden, M Jake
2018-01-01
Body size governs predator-prey interactions, which in turn structure populations, communities, and food webs. Understanding predator-prey size relationships is valuable from a theoretical perspective, in basic research, and for management applications. However, predator-prey size data are limited and costly to acquire. We quantified predator-prey total length and mass relationships for several freshwater piscivorous taxa: crappie (Pomoxis spp.), largemouth bass (Micropterus salmoides), muskellunge (Esox masquinongy), northern pike (Esox lucius), rock bass (Ambloplites rupestris), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). The range of prey total lengths increased with predator total length. The median and maximum ingested prey total length varied with predator taxon and length, but generally ranged from 10-20% and 32-46% of predator total length, respectively. Predators tended to consume larger fusiform prey than laterally compressed prey. With the exception of large muskellunge, predators most commonly consumed prey between 16 and 73 mm. A sensitivity analysis indicated estimates can be very accurate at sample sizes greater than 1,000 diet items and fairly accurate at sample sizes greater than 100. However, sample sizes less than 50 should be evaluated with caution. Furthermore, median log10 predator-prey body mass ratios ranged from 1.9-2.5, nearly 50% lower than values previously reported for freshwater fishes. Managers, researchers, and modelers could use our findings as a tool for numerous predator-prey evaluations from stocking size optimization to individual-based bioenergetics analyses identifying prey size structure. To this end, we have developed a web-based user interface to maximize the utility of our models that can be found at www.LakeEcologyLab.org/pred_prey.
Predator-induced phenotypic plasticity within- and across-generations: a challenge for theory?
Walsh, Matthew R.; Cooley, Frank; Biles, Kelsey; Munch, Stephan B.
2015-01-01
Much work has shown that the environment can induce non-genetic changes in phenotype that span multiple generations. Theory predicts that predictable environmental variation selects for both increased within- and across-generation responses. Yet, to the best of our knowledge, there are no empirical tests of this prediction. We explored the relationship between within- versus across-generation plasticity by evaluating the influence of predator cues on the life-history traits of Daphnia ambigua. We measured the duration of predator-induced transgenerational effects, determined when transgenerational responses are induced, and quantified the cues that activate transgenerational plasticity. We show that predator exposure during embryonic development causes earlier maturation and increased reproductive output. Such effects are detectable two generations removed from predator exposure and are similar in magnitude in response to exposure to cues emitted by injured conspecifics. Moreover, all experimental contexts and traits yielded a negative correlation between within- versus across-generation responses. That is, responses to predator cues within- and across-generations were opposite in sign and magnitude. Although many models address transgenerational plasticity, none of them explain this apparent negative relationship between within- and across-generation plasticities. Our results highlight the need to refine the theory of transgenerational plasticity. PMID:25392477
Effect of downed woody debris on small mammal anti-predator behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkleman, Travis, M.; Orrock, John, L.; Loeb, Susan, C.
2011-10-01
Anti-predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs,but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used givingup densities to quantify the degree to which downed woody debris alters perceived predation risk by small mammals in southeastern pineforests. We placed 14 foraging trays next to large downed woody debris,shrubs, and in open areas for 12 consecutive nights. Moon illumination, a common indicator of predation risk, led to amore » similar reduction in small mammal foraging in all three microhabitats (open, downed woody debris,and shrub). Small mammals perceived open microhabitats as riskier than shrub microhabitats, with downed woody debris habitats perceived as being of intermediate risk between shrub and open microhabitats. Despite the presumed benefits of the protective cover of downed woody debris, small mammals may perceive downed woody debris as a relatively risky foraging site in southeastern pine forests where the high diversity and abundance of rodent-eating snakes may provide a primary predatory threat.« less
Intraguild predation reduces redundancy of predator species in multiple predator assemblage.
Griffen, Blaine D; Byers, James E
2006-07-01
1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.
Role of predation in short-term population fluctuations of some birds and mammals in Fennoscandia.
Angelstam, P; Lindström, E; Widén, P
1984-05-01
We tested the hypothesis that synchronous fluctuations in small game species in boreal Fennoscandia are caused by varying predation pressure. The main prey of predators are the cyclically superabundant voles. Small game species (alternative prey) are rare compared to voles. The following 4 predictions were checked: (1) Predators should shift their diet from main prey to alternative prey as main prey decline. - This was confirmed using data on red fox (Vulpes vulpes L.) diet.; (2) The mortality rate of alternative prey should be inversely correlated to the abundance of main prey. - This was true for mountain hare (Lepus timidus L.) mortality rates and the rate of nest predation on black grouse (Tetrao tetrix L.).; (3) The total consumption of prey by all the predators should at least equal the critical losses in alternative prey during a decline year. - A tentative estimate of predator consumption amounted to 10 times the losses in grouse and hare.; and (4) The absence of synchrony between the species in the boreonemoral region should be associated with a more diverse diet of predators. - This was the case for red fox diets throughout Sweden. Although all 4 predictions were confirmed, we could not necessarily exclude other hypotheses involving changes in quality or quantity of plant food.
Parasites, info-disruption, and the ecology of fear.
Rohr, Jason R; Swan, Autumn; Raffel, Thomas R; Hudson, Peter J
2009-03-01
There is growing interest in the ecological consequences of fear, as evidenced by the numerous studies on the nonconsumptive, trait-mediated effects of predators. Parasitism, however, has yet to be fully integrated into research on the ecology of fear, despite it having direct negative and often lethal effects on hosts and being the most common life history strategy on the planet. This might at least be partly due to the traditional, but untested, assumption that anti-parasite responses are weak relative to anti-predator responses. To test this hypothesis, we quantified the activity and location responses of Bufo americanus tadpoles to one of six chemical cues: water; cercariae of Echinostoma trivolvis, a trematode which infects and can kill amphibians; a snail releasing E. trivolvis cercariae; an uninfected snail; food; or conspecific alarm chemicals signaling predation. There is also literature encouraging research on the context dependency and pollution-induced disruption of fear responses. Consequently, before quantifying responses to the chemical cues, half of the B. americanus were exposed to the herbicide atrazine (201 microg/l for 4 days), a reported inhibitor of fear responses in fish. Tadpoles were attracted to food, were indifferent to an uninfected snail, avoided alarm chemicals, and exhibited avoidance and elevated activity in response to a snail shedding cercariae and cercariae alone. Atrazine had no detectable effects on B. americanus' responses to the tested cues despite the use of a higher concentration and longer exposure duration than has been repeatedly shown to inhibit chemical cue detection in fish. The magnitude of anti-parasite and anti-predator responses were qualitatively similar, suggesting that the fear of disease and its ecological consequences could be comparable to that of predation. Consequently, we call for a greater integration of parasites into research on the ecology of fear and trait-mediated indirect effects.
Feierabend, Dashiell; Kielland, Knut
2015-01-01
Survival and predation of snowshoe hares (Lepus americanus) has been widely studied, yet there has been little quantification of the changes in vulnerability of hares to specific predators that may result from seasonal changes in vegetation and cover. We investigated survival and causes of mortalities of snowshoe hares during the late increase, peak, and decline of a population in interior Alaska. From June 2008 to May 2012, we radio-tagged 288 adult and older juvenile hares in early successional and black spruce (Picea mariana) forests and, using known-fate methods in program MARK, evaluated 85 survival models that included variables for sex, age, and body condition of hares, as well as trapping site, month, season, year, snowfall, snow depth, and air temperature. We compared the models using Akaike’s information criterion with correction for small sample size. Model results indicated that month, capture site, and body condition were the most important variables in explaining survival rates. Survival was highest in July, and more generally during summer, when alternative prey was available to predators of hares. Low survival rates coincided with molting periods, breeding activity in the spring, and the introduction of juveniles to the sample population in the fall. We identified predation as the cause of mortality in 86% of hare deaths. When the source of predation could be determined, hares were killed more often by goshawks (Accipiter gentilis) than other predators in early successional forest (30%), and more often by lynx (Lynx canadensis) than other predators in black spruce forest (31%). Great horned owls (Bubo virginianus) and coyotes (Canis latrans) represented smaller proportions of hare predation, and non-predatory causes were a minor source (3%) of mortality. Because hares rely on vegetative cover for concealment from predators, we measured cover in predation sites and habitats that the hares occupied and concluded that habitat type had a greater influence on the sources of predation than the amount of cover in any given location within a habitat. Our observations illustrate the vulnerability of hares to predators in even the densest coniferous habitat available in the boreal forest, and indicate strong seasonal changes in the rates and sources of predation. PMID:26717577
Ruiz-Cooley, Rocio I.; Koch, Paul L.; Fiedler, Paul C.; McCarthy, Matthew D.
2014-01-01
Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure. PMID:25329915
Ruiz-Cooley, Rocio I; Koch, Paul L; Fiedler, Paul C; McCarthy, Matthew D
2014-01-01
Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecseli, H. L.; Trulsen, J.
2009-10-08
Experimental as well as theoretical studies have demonstrated that turbulence can play an important role for the biosphere in marine environments, in particular also by affecting prey-predator encounter rates. Reference models for the encounter rates rely on simplifying assumptions of predators and prey being described as point particles moving passively with the local flow velocity. Based on simple arguments that can be tested experimentally we propose corrections for the standard expression for the encounter rates, where now finite sizes and Stokes drag effects are included.
ten Brink, Hanna; Mazumdar, Abul Kalam Azad; Huddart, Joseph; Persson, Lennart; Cameron, Tom C
2015-03-01
Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
What regulates crab predation on mangrove propagules?
NASA Astrophysics Data System (ADS)
Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid
2015-02-01
Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.
Does habitat fragmentation influence nest predation in the shortgrass prairie?
Howard, M.N.; Skagen, S.K.; Kennedy, P.L.
2001-01-01
We examined the effects of habitat fragmentation and vegetation structure of shortgrass prairie and Conservation Reserve Program (CRP) lands on predation rates of artificial and natural nests in northeastern Colorado. The CRP provides federal payments to landowners to take highly erodible cropland out of agricultural production. In our study area, CRP lands have been reseeded primarily with non-native grasses, and this vegetation is taller than native shortgrass prairie. We measured three indices of habitat fragmentation (patch size, degree of matrix fragmentation, and distance from edge), none of which influenced mortality rates of artificial or natural nests. Vegetation structure did influence predation rates of artificial nests; daily mortality decreased significantly with increasing vegetation height. Vegetation structure did not influence predation rates of natural nests. CRP lands and shortgrass sites did not differ with respect to mortality rates of artificial nests. Our study area is only moderately fragmented; 62% of the study area is occupied by native grassland. We conclude that the extent of habitat fragmentation in our study area does not result in increased predation in remaining patches of shortgrass prairie habitat.
DiBattista, Joseph D.; Moore, Jonathan W.; Ward, Eric J.; Fisk, Aaron T.; Kessel, Steven; Guttridge, Tristan L.; Feldheim, Kevin A.; Franks, Bryan R.; Gruber, Samuel H.; Weideli, Ornella C.; Chapman, Demian D.
2017-01-01
Mechanisms driving selection of body size and growth rate in wild marine vertebrates are poorly understood, thus limiting knowledge of their fitness costs at ecological, physiological and genetic scales. Here, we indirectly tested whether selection for size-related traits of juvenile sharks that inhabit a nursery hosting two dichotomous habitats, protected mangroves (low predation risk) and exposed seagrass beds (high predation risk), is influenced by their foraging behaviour. Juvenile sharks displayed a continuum of foraging strategies between mangrove and seagrass areas, with some individuals preferentially feeding in one habitat over another. Foraging habitat was correlated with growth rate, whereby slower growing, smaller individuals fed predominantly in sheltered mangroves, whereas larger, faster growing animals fed over exposed seagrass. Concomitantly, tracked juveniles undertook variable movement behaviours across both the low and high predation risk habitat. These data provide supporting evidence for the hypothesis that directional selection favouring smaller size and slower growth rate, both heritable traits in this shark population, may be driven by variability in foraging behaviour and predation risk. Such evolutionary pathways may be critical to adaptation within predator-driven marine ecosystems. PMID:28381626
Competition between apex predators? Brown bears decrease wolf kill rate on two continents
Ordiz, Andrés; Metz, Matthew C.; Milleret, Cyril; Wikenros, Camilla; Smith, Douglas W.; Stahler, Daniel R.; Kindberg, Jonas; MacNulty, Daniel R.; Wabakken, Petter; Swenson, Jon E.; Sand, Håkan
2017-01-01
Trophic interactions are a fundamental topic in ecology, but we know little about how competition between apex predators affects predation, the mechanism driving top-down forcing in ecosystems. We used long-term datasets from Scandinavia (Europe) and Yellowstone National Park (North America) to evaluate how grey wolf (Canis lupus) kill rate was affected by a sympatric apex predator, the brown bear (Ursus arctos). We used kill interval (i.e. the number of days between consecutive ungulate kills) as a proxy of kill rate. Although brown bears can monopolize wolf kills, we found no support in either study system for the common assumption that they cause wolves to kill more often. On the contrary, our results showed the opposite effect. In Scandinavia, wolf packs sympatric with brown bears killed less often than allopatric packs during both spring (after bear den emergence) and summer. Similarly, the presence of bears at wolf-killed ungulates was associated with wolves killing less often during summer in Yellowstone. The consistency in results between the two systems suggests that brown bear presence actually reduces wolf kill rate. Our results suggest that the influence of predation on lower trophic levels may depend on the composition of predator communities. PMID:28179516
Hussey, Nigel E; DiBattista, Joseph D; Moore, Jonathan W; Ward, Eric J; Fisk, Aaron T; Kessel, Steven; Guttridge, Tristan L; Feldheim, Kevin A; Franks, Bryan R; Gruber, Samuel H; Weideli, Ornella C; Chapman, Demian D
2017-04-12
Mechanisms driving selection of body size and growth rate in wild marine vertebrates are poorly understood, thus limiting knowledge of their fitness costs at ecological, physiological and genetic scales. Here, we indirectly tested whether selection for size-related traits of juvenile sharks that inhabit a nursery hosting two dichotomous habitats, protected mangroves (low predation risk) and exposed seagrass beds (high predation risk), is influenced by their foraging behaviour. Juvenile sharks displayed a continuum of foraging strategies between mangrove and seagrass areas, with some individuals preferentially feeding in one habitat over another. Foraging habitat was correlated with growth rate, whereby slower growing, smaller individuals fed predominantly in sheltered mangroves, whereas larger, faster growing animals fed over exposed seagrass. Concomitantly, tracked juveniles undertook variable movement behaviours across both the low and high predation risk habitat. These data provide supporting evidence for the hypothesis that directional selection favouring smaller size and slower growth rate, both heritable traits in this shark population, may be driven by variability in foraging behaviour and predation risk. Such evolutionary pathways may be critical to adaptation within predator-driven marine ecosystems. © 2017 The Author(s).
Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby
2016-06-01
Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.
Identifying predators and fates of grassland passerine nests using miniature video cameras
Pietz, Pamela J.; Granfors, Diane A.
2000-01-01
Nest fates, causes of nest failure, and identities of nest predators are difficult to determine for grassland passerines. We developed a miniature video-camera system for use in grasslands and deployed it at 69 nests of 10 passerine species in North Dakota during 1996-97. Abandonment rates were higher at nests 1 day or night (22-116 hr) at 6 nests, 5 of which were depredated by ground squirrels or mice. For nests without cameras, estimated predation rates were lower for ground nests than aboveground nests (P = 0.055), but did not differ between open and covered nests (P = 0.74). Open and covered nests differed, however, when predation risk (estimated by initial-predation rate) was examined separately for day and night using camera-monitored nests; the frequency of initial predations that occurred during the day was higher for open nests than covered nests (P = 0.015). Thus, vulnerability of some nest types may depend on the relative importance of nocturnal and diurnal predators. Predation risk increased with nestling age from 0 to 8 days (P = 0.07). Up to 15% of fates assigned to camera-monitored nests were wrong when based solely on evidence that would have been available from periodic nest visits. There was no evidence of disturbance at nearly half the depredated nests, including all 5 depredated by large mammals. Overlap in types of sign left by different predator species, and variability of sign within species, suggests that evidence at nests is unreliable for identifying predators of grassland passerines.
Marginal predation: do encounter or confusion effects explain the targeting of prey group edges?
Duffield, Callum; Ioannou, Christos C
2017-01-01
Marginal predation, also known as the edge effect, occurs when aggregations of prey are preferentially targeted on their periphery by predators and has long been established in many taxa. Two main processes have been used to explain this phenomenon, the confusion effect and the encounter rate between predators and prey group edges. However, it is unknown at what size a prey group needs to be before marginal predation is detectable and to what extent each mechanism drives the effect. We conducted 2 experiments using groups of virtual prey being preyed upon by 3-spined sticklebacks ( Gasterosteus aculeatus ) to address these questions. In Experiment 1, we show that group sizes do not need to be large for marginal predation to occur, with this being detectable in groups of 16 or more. In Experiment 2, we find that encounter rate is a more likely explanation for marginal predation than the confusion effect in this system. We find that while confusion does affect predatory behaviors (whether or not predators make an attack), it does not affect marginal predation. Our results suggest that marginal predation is a more common phenomenon than originally thought as it also applies to relatively small groups. Similarly, as marginal predation does not need the confusion effect to occur, it may occur in a wider range of predator-prey species pairings, for example those where the predators search for prey using nonvisual sensory modalities.
Patterns of Detection and Capture Are Associated with Cohabiting Predators and Prey
Lazenby, Billie T.; Dickman, Christopher R.
2013-01-01
Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus) and native predator (Tasmanian devil Sarcophilus harrisii) and predator and small mammal (swamp rat Rattus lutreolus velutinus) combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator – mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers and survival. PMID:23565172
Niño, Angie A; Cave, Ronald D
2015-08-01
Microtheca ochroloma Stål, the yellowmargined leaf beetle, is one of the most destructive pests of crucifer vegetables on organic farms. Larvae of the green lacewing Chrysoperla rufilabris Burmeister have been observed preying on M. ochroloma, but no studies have evaluated the suitability of M. ochroloma as prey for C. rufilabris or the efficacy of this predator as a biological control agent of the pest. This study quantified the killing rate, developmental time, and survivorship of C. rufilabris when offered eggs and larvae of M. ochroloma at 10, 15, 20, or 25°C. Mean number of prey killed daily increased from 8.4 eggs and 4.0 larvae at 15°C to 18.6 eggs and 10.2 larvae at 25°C. However, predator larvae killed 78% fewer total eggs at 25°C than at 15°C; total number of first-instar prey killed did not vary significantly with temperature. Mean developmental time of predator larvae decreased from 75.5 d at 15°C to 26.6 d at 25°C when they were fed eggs, whereas it decreased from 54.0 d at 15°C to 21.4 d at 25°C when they were fed larvae. Predator survivorship was reduced by 80% at 15°C and no larvae survived at 10°C. We conclude that C. rufilabris can complete development on a diet of eggs of M. ochroloma, but its effectiveness to control M. ochroloma populations will be lessened during cool months, from November to April, when crucifers are produced in Florida and the beetle is actively developing, reproducing, and causing crop damage. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T
2003-11-21
We present a spatially-explicit individual-based computational model of rodent dynamics, customized for the prairie vole species, M. Ochrogaster. The model is based on trophic relationships and represents important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in themore » literature. The model is used to study the relation between persistence, landscape area and predation. We introduce the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for 'small' and decreasing for 'large' predation levels.« less
Abad-Moyano, Raquel; Urbaneja, Alberto; Schausberger, Peter
2010-01-01
Spanish clementine orchards are frequently infested by the two-spotted spider mte Tetranychus urticae. Natural control of T. urticae is insufficient despite the presence of Neoseiulus californicus and Phytoseiulus persimilis. The phytoseiid community is dominated by the generalist Euseius stipulatus which is poorly adapted to exploit T. urticae. Having the intention to promote biological control of T. urticae by augmentative releases we were interested whether P. persimilis and N. californicus are negatively affected by intraguild (IG) interactions with E. stipulatus. Two experiments were conducted. Firstly, we assessed female aggressiveness (quantified as combination of attack probability and latency) in IG predation on larvae. Secondly, we measured mortality, escaping rate and developmental time of immature IG prey in presence and absence of an adult IG predator female. Euseius stipulatus appeared the strongest IG opponent but microhabitat structure modulated the IG interactions and the advantage of E. stipulatus was partially offset when spider mite webbing was present. Implications of these IG interactions for natural and biological control of T. urticae in clementine orchards are discussed.
Millon, Alexandre; Petty, Steve J; Little, Brian; Gimenez, Olivier; Cornulier, Thomas; Lambin, Xavier
2014-06-01
Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Ballman, Elissa S; Collins, Judith A; Drummond, Francis A
2017-12-05
Drosophila suzukii (Matsumura; Diptera: Drosophilidae) is an invasive vinegar fly and pest of soft fruits in North America, including wild blueberries (Vaccinium angustifolium Aiton) in Maine. Despite its presence in the continental United States for 9 yr, little is known about its natural enemy complex. Here we report the results of a 3-yr study designed to identify naturally-occurring predators in Maine's wild blueberry fields. Experiments were conducted to determine pupation site and pupation depth to understand D. suzukii's predation vulnerability. Predation rates in the field of fully-exposed, caged, and buried pupae were measured. Pitfall traps were deployed to identify the potential predator assemblage, and laboratory experiments were conducted to determine how many pupae were consumed by commonly occurring ground beetle species (Carabidae) and field crickets (Gryllus pennsylvanicus Burmeister). The most commonly collected predators were ants, ground beetles, harvestmen, and field crickets. Significantly more pupae were found to occur in the soil compared to blueberry fruit, with most pupae in the top 0.5 cm layer of soil. Pupal predation rates in the field were high, with higher rates of predation on exposed pupae compared to buried pupae. Laboratory studies revealed that ground beetles and field crickets are likely predators of D. suzukii pupae. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Turbidity interferes with foraging success of visual but not chemosensory predators.
Lunt, Jessica; Smee, Delbert L
2015-01-01
Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.
Aposematism and crypsis are not enough to explain dorsal polymorphism in the Iberian adder
NASA Astrophysics Data System (ADS)
Martínez-Freiría, Fernando; Pérez i de Lanuza, Guillem; Pimenta, António A.; Pinto, Tiago; Santos, Xavier
2017-11-01
Aposematic organisms can show phenotypic variability across their distributional ranges. The ecological advantages of this variability have been scarcely studied in vipers. We explored this issue in Vipera seoanei, a species that exhibits five geographically structured dorsal colour phenotypes across Northern Iberia: two zigzag patterned (Classic and Cantabrica), one dorsal-strip patterned (Bilineata), one even grey (Uniform), and one melanistic (Melanistic). We compared predation rates (raptors and mammals) on plasticine models resembling each colour phenotype in three localities. Visual modelling techniques were used to infer detectability (i.e. conspicuousness) of each model type for visually guided predators (i.e. diurnal raptors). We hypothesize that predation rates will be lower for the two zigzag models (aposematism hypothesis) and that models with higher detectability would show higher predation rates (detectability hypothesis). Classic and Bilineata models were the most conspicuous, while Cantabrica and Uniform were the less. Melanistic presented an intermediate conspicuousness. Predation rate was low (3.24% of models) although there was variation in attack frequency among models. Zigzag models were scarcely predated supporting the aposematic role of the zigzag pattern in European vipers to reduce predation (aposematism hypothesis). From the non-zigzag models, high predation occurred on Bilineata and Melanistic models, and low on Uniform models, partially supporting our detectability hypothesis. These results suggest particular evolutionary advantages for non-zigzag phenotypes such as better performance of Melanistic phenotypes in cold environments or better crypsis of Uniform phenotypes. Polymorphism in V. seoanei may respond to a complex number of forces acting differentially across an environmental gradient.
Prey risk allocation in a grazing ecosystem.
Gude, Justin A; Garrott, Robert A; Borkowski, John J; King, Fred
2006-02-01
Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.
Temporal scaling of episodic point estimates of weed seed predation to long-term predation rates
USDA-ARS?s Scientific Manuscript database
Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. For convenience, measurements of seed predation are often made at very short time scales (< 3 d). However, one of the primary uses of such data, the parameterization of models of cr...
NASA Astrophysics Data System (ADS)
Roy, Sankar Kumar; Roy, Banani
In this article, a prey-predator system with Holling type II functional response for the predator population including prey refuge region has been analyzed. Also a harvesting effort has been considered for the predator population. The density-dependent mortality rate for the prey, predator and super predator has been considered. The equilibria of the proposed system have been determined. Local and global stabilities for the system have been discussed. We have used the analytic approach to derive the global asymptotic stabilities of the system. The maximal predator per capita consumption rate has been considered as a bifurcation parameter to evaluate Hopf bifurcation in the neighborhood of interior equilibrium point. Also, we have used fishing effort to harvest predator population of the system as a control to develop a dynamic framework to investigate the optimal utilization of the resource, sustainability properties of the stock and the resource rent is earned from the resource. Finally, we have presented some numerical simulations to verify the analytic results and the system has been analyzed through graphical illustrations.
Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M
2015-03-01
Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Male-biased predation of western green lizards by Eurasian kestrels
NASA Astrophysics Data System (ADS)
Costantini, David; Bruner, Emiliano; Fanfani, Alberto; Dell'Omo, Giacomo
2007-12-01
Selective predation can be an important force driving the evolution of organisms. In particular, sex-biased predation is expected to have implications for sexual selection, sex allocation and population dynamics. In this study, we analysed sex differences in the predation of the western green lizard ( Lacerta bilineata) by the Eurasian kestrel ( Falco tinnunculus) during the reproductive season. In addition, we investigated whether the rate of predation differed during the 8-year study period and among the three habitats studied. We collected lizard remains from nest boxes of kestrels. Freshly killed lizards were sexed by visual inspection, whilst the sex of head remains was assigned by analysing the cephalic scale morphology using geometric morphometrics. Our results show that the risk of being predated by a kestrel in our population was overall about 3.55 times higher for males than for females. To our knowledge this is the first study showing a male-biased predation in a lizard species. The selective predation of males was consistent between years over the 8-year study period (1999-2006) and also consistent between the three types of kestrel hunting habitat. Overall predation rates on lizards differed between habitats, depending on the year. We propose that the observed sex-biased predation is mainly due to sex differences in lizard behaviour.
Foraging theory predicts predator-prey energy fluxes.
Brose, U; Ehnes, R B; Rall, B C; Vucic-Pestic, O; Berlow, E L; Scheu, S
2008-09-01
1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.
Factors influencing predation associated with visits to artificial goose nests
Vacca, M. Michele; Handel, Colleen M.
1988-01-01
Artificial goose nests were used to determine what factors might increase predation after visits to nests of Cackling Canada Geese (Branta canadensis minima). We tested whether leaving the nest uncovered, marking the nest location with a flag, or placing the nest on an island or peninsula would increase the rate of predation. Predators destroyed significantly more of the nests with eggs exposed to view (61%) than of the nests with eggs covered with goose down (35%) (P < 0.05). However, the rate of predation was only slightly higher among nests located on peninsulas than on islands and equal proportions of flagged and unflagged nests were destroyed. We also determined that investigators attracted predators to the study area and caused an increase in predation at uncovered nests immediately after the visit. Covering the eggs with down essentially negated the effect of attracting predators when visiting the nest. Among the 46 nests destroyed, 78% were destroyed by birds and 22% by mammals. Results of our study suggested that visibility of exposed eggs rather than nest markers provided important cues to avian predators and that islands probably provided some refuge from mammalian predators. Investigators can take steps to minimize their impact on nesting success and should incorporate a measure of that impact in their studies.
NASA Astrophysics Data System (ADS)
Palmeira, Francesca Belem Lopes; Trinca, Cristiano Trapé; Haddad, Claudio Maluf
2015-10-01
We evaluated local opinion about reducing livestock losses to puma ( Puma concolor) and the potential for conflict among livestock breeders inside a protected area in the highlands of a southeastern Brazilian Atlantic forest. We also quantified the number and type of livestock losses, and determined if predation by puma was correlated with property profile and landscape characteristics. We conducted semistructured interviews with 42 livestock breeders sampled in 36 rural properties. When asked how to reduce predation, 33 % of livestock breeders refused to answer, 26 % suggested improving livestock husbandry practices, 19 % stated that there was no appropriate action, 17 % favored removing the "problem" individual, and 5 % suggested killing the puma. Opinion on how to solve predation was independent of herd size and history of losses, and was correlated with respondent age class. Older respondents tended to suggest removing or killing pumas. Attitudes toward predation represented high potential for conflict among livestock breeders who demonstrated high discordance among responses. Horses were the most common prey (51 %), followed by cattle (28 %), sheep (17 %), and goats (4 %); totaling 47 animals attacked between 2004 and 2007. Annual predation was approximately 12 ± 5 animals, equivalent to 0.4 % of the total livestock. Property elevation and distance from the urban center were the main predictors of predation probability. This survey used a novel approach that has not been addressed directly in other studies on livestock predation and demonstrated that the high potential for conflict among livestock breeders should be considered before implementing management actions.
Casey, Jordan M; Baird, Andrew H; Brandl, Simon J; Hoogenboom, Mia O; Rizzari, Justin R; Frisch, Ashley J; Mirbach, Christopher E; Connolly, Sean R
2017-01-01
Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia's outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR.
Palmeira, Francesca Belem Lopes; Trinca, Cristiano Trapé; Haddad, Claudio Maluf
2015-10-01
We evaluated local opinion about reducing livestock losses to puma (Puma concolor) and the potential for conflict among livestock breeders inside a protected area in the highlands of a southeastern Brazilian Atlantic forest. We also quantified the number and type of livestock losses, and determined if predation by puma was correlated with property profile and landscape characteristics. We conducted semistructured interviews with 42 livestock breeders sampled in 36 rural properties. When asked how to reduce predation, 33% of livestock breeders refused to answer, 26% suggested improving livestock husbandry practices, 19% stated that there was no appropriate action, 17% favored removing the "problem" individual, and 5 % suggested killing the puma. Opinion on how to solve predation was independent of herd size and history of losses, and was correlated with respondent age class. Older respondents tended to suggest removing or killing pumas. Attitudes toward predation represented high potential for conflict among livestock breeders who demonstrated high discordance among responses. Horses were the most common prey (51%), followed by cattle (28%), sheep (17%), and goats (4%); totaling 47 animals attacked between 2004 and 2007. Annual predation was approximately 12 ± 5 animals, equivalent to 0.4% of the total livestock. Property elevation and distance from the urban center were the main predictors of predation probability. This survey used a novel approach that has not been addressed directly in other studies on livestock predation and demonstrated that the high potential for conflict among livestock breeders should be considered before implementing management actions.
Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning.
Hines, Jes; Gessner, Mark O
2012-11-01
1. Primary production and decomposition, two fundamental processes determining the functioning of ecosystems, may be sensitive to changes in biodiversity and food web interactions. 2. The impacts of food web interactions on ecosystem functioning are generally quantified by experimentally decoupling these linked processes and examining either primary production-based (green) or decomposition-based (brown) food webs in isolation. This decoupling may strongly limit our ability to assess the importance of food web interactions on ecosystem processes. 3. To evaluate how consumer trophic diversity mediates predator effects on ecosystem functioning, we conducted a mesocosm experiment and a field study using an assemblage of invertebrates that naturally co-occur on North Atlantic coastal saltmarshes. We measured the indirect impact of predation on primary production and leaf decomposition as a result of prey communities composed of herbivores alone, detritivores alone or both prey in combination. 4. We find that primary consumers can influence ecosystem process rates not only within, but also across green and brown sub-webs. Moreover, by feeding on a functionally diverse consumer assemblage comprised of both herbivores and detritivores, generalist predators can diffuse consumer effects on decomposition, primary production and feedbacks between the two processes. 5. These results indicate that maintaining functional diversity among primary consumers can alter the consequences of traditional trophic cascades, and they emphasize the role of the detritus-based sub-web when seeking key biotic drivers of plant production. Clearly, traditional compartmentalization of empirical food webs can limit our ability to predict the influence of food web interactions on ecosystem functioning. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Biocontrol in an impulsive predator-prey model.
Terry, Alan J
2014-10-01
We study a model for biological pest control (or "biocontrol") in which a pest population is controlled by a program of periodic releases of a fixed yield of predators that prey on the pest. Releases are represented as impulsive increases in the predator population. Between releases, predator-pest dynamics evolve according to a predator-prey model with some fairly general properties: the pest population grows logistically in the absence of predation; the predator functional response is either of Beddington-DeAngelis type or Holling type II; the predator per capita birth rate is bounded above by a constant multiple of the predator functional response; and the predator per capita death rate is allowed to be decreasing in the predator functional response and increasing in the predator population, though the special case in which it is constant is permitted too. We prove that, when the predator functional response is of Beddington-DeAngelis type and the predators are not sufficiently voracious, then the biocontrol program will fail to reduce the pest population below a particular economic threshold, regardless of the frequency or yield of the releases. We prove also that our model possesses a pest-eradication solution, which is both locally and globally stable provided that predators are sufficiently voracious and that releases occur sufficiently often. We establish, curiously, that the pest-eradication solution can be locally stable whilst not being globally stable, the upshot of which is that, if we delay a biocontrol response to a new pest invasion, then this can change the outcome of the response from pest eradication to pest persistence. Finally, we state a number of specific examples for our model, and, for one of these examples, we corroborate parts of our analysis by numerical simulations. Copyright © 2014 Elsevier Inc. All rights reserved.
Gregarious pupation act as a defensive mechanism against cannibalism and intraguild predation.
Roberge, Claudia; Fréchette, Bruno; Labrie, Geneviève; Dumont, François; Lucas, Eric
2016-08-01
Coccinellid pupae use an array of defensive strategies against their natural enemies. This study aims to assess the efficiency of gregarious pupation as a defensive mechanism against intraguild predators and cannibals in coccinellid. The study was designed specifically (i) to determine the natural occurrence of gregarious pupation in the field for different coccinellid species, and (ii) to evaluate the adaptive value of gregarious pupation as a defensive mechanism against 2 types of predators (i.e., cannibals and intraguild predators). In the field, gregarious pupation consisted of a group of 2-5 pupae. The proportion of gregarious pupation observed varied according to species, the highest rate being observed with Harmonia axyridis Pallas (Coccinellidae; 14.17%). Gregarious pupation had no impact on the probability that intraguild predators and cannibals locate pupae. Intraguild predation occurred more often in site with gregarious pupation, while cannibalism occurred as often in site with gregarious pupation as in site with isolated pupa. However, for a specific pupa, the mortality rate was higher for isolated pupae than for pupae located in a gregarious pupation site both in the presence of intraguild predators and in the presence of cannibals. The spatial location of pupae within the group had no impact on mortality rate. Since it reduces the risk of predation, it is proposed that gregarious pupation act as a defensive mechanism for H. axyridis pupae. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Guppies as predators of common mosquito larvae in Malaysia.
Saleeza, S N R; Norma-Rashid, Y; Sofian-Azirun, M
2014-03-01
Observation on predation activities of guppies (Poecilia reticulata) on the larvae of three species of mosquito, namely Aedes albopictus, Aedes aegypti, and Culex quinquefasciatus was carried out under laboratory conditions. Male and female guppies were used as predators for predation experiments on the 4th instars of mosquito larvae. The daily feeding rates comparing male and female guppies on mosquito larvae were different; the female guppies consumed more mosquito larvae than male guppies did. The daily feeding rates of female guppies were 121.3 for Ae. aegypti, 105.6 for Ae. albopictus, and 72.3 for Cx. quinquefasciatus. The daily feeding rates of male guppies were 98.6 for Ae. aegypti, 73.6 for Ae. albopictus, and 47.6 for Cx. quinquefasciatus. In terms of prey preference, there was greater preference towards mosquito larvae of Ae. aegypti, followed by Ae. albopictus, and the least preferred was Cx. quinquefasciatus. Male and female guppies consumed more mosquito larvae during lights on (day time) compared with lights off (night time). The water volume, prey species, number of fish predators available, prey densities, and prey's sex also influenced the predation activities.
Refuge-mediated predator-prey dynamics and biomass pyramids.
Wang, Hao; Thanarajah, Silogini; Gaudreau, Philippe
2018-04-01
Refuge can greatly influence predator-prey dynamics by movements between the interior and the exterior of a refuge. The presence of refuge for prey decreases predation risk and can have important impacts on the sustainability of a predator-prey system. The principal purpose of this paper is to formulate and analyze a refuge-mediated predator-prey model when the refuge is available to protect a portion of prey from predation. We study the effect of the refuge size on the biomass ratio and extend our refuge model to incorporate fishing and predator migration separately. Our study suggests that decreasing the refuge size, increasing the predator fishing, and increasing the predator emigration stabilizes the system. Here, we investigate the dependence of Hopf bifurcation on refuge size in the presence of fishing or predator migration. Moreover, we discuss their effects on the biomass pyramid and establish a condition for the emergence of an inverted biomass pyramid. We perform numerical test and sensitivity analysis to check the robustness of our results and the relative importance of all parameters. We find that high fishing pressure may destroy the inverted biomass pyramid and thus decrease the resilience of reef ecosystems. In addition, increasing the emigration rate or decreasing the immigration rate decreases the predator-prey biomass ratio. An inverted biomass pyramid can occur in the presence of a stable limit cycle. Copyright © 2017 Elsevier Inc. All rights reserved.
Sharks modulate their escape behavior in response to predator size, speed and approach orientation.
Seamone, Scott; Blaine, Tristan; Higham, Timothy E
2014-12-01
Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.
Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala.
Wilson, Alan M; Hubel, Tatjana Y; Wilshin, Simon D; Lowe, John C; Lorenc, Maja; Dewhirst, Oliver P; Bartlam-Brooks, Hattie L A; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A; Woledge, Roger C; McNutt, J Weldon; Curtin, Nancy A; West, Timothy G
2018-02-08
The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.
Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala
NASA Astrophysics Data System (ADS)
Wilson, Alan M.; Hubel, Tatjana Y.; Wilshin, Simon D.; Lowe, John C.; Lorenc, Maja; Dewhirst, Oliver P.; Bartlam-Brooks, Hattie L. A.; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A.; Woledge, Roger C.; McNutt, J. Weldon; Curtin, Nancy A.; West, Timothy G.
2018-02-01
The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.
Response of predators to Western Sandpiper nest exclosures
Niehaus, Amanda C.; Ruthrauff, Daniel R.; McCaffery, Brian J.
2004-01-01
In 2001, predator exclosures were used to protect nests of the Western Sandpiper (Calidris mauri) in western Alaska. During the exclosure experiment, nest contents in exclosures had significantly higher daily survival rates than control nests, however, late in the study predators began to cue in on exclosures and predate the nest contents. An Arctic Fox (Alopex lagopus) dug under one exclosure and took the newly hatched chicks, and Long-tailed Jaegers (Stercorarius longicaudus) learned to associate exclosures with active nests and repeatedly visited them. The jaegers attempted to gain access to exclosed nests and pursued adult sandpipers as they emerged from the exclosures. The exclosures were removed to reduce potential mortality to adult and young sandpipers, but subsequently, post-exclosure nests had lower daily survival rates than controls during the same time period. Predation of post-exclosure eggs and chicks highlighted the lasting influence of the exclosure treatment on offspring survival because predators probably remembered nest locations. Researchers are urged to use caution when considering use of predator exclosures in areas where jaegers occur.
Estimating resource acquisition and at-sea body condition of a marine predator
Schick, Robert S; New, Leslie F; Thomas, Len; Costa, Daniel P; Hindell, Mark A; McMahon, Clive R; Robinson, Patrick W; Simmons, Samantha E; Thums, Michele; Harwood, John; Clark, James S
2013-01-01
Body condition plays a fundamental role in many ecological and evolutionary processes at a variety of scales and across a broad range of animal taxa. An understanding of how body condition changes at fine spatial and temporal scales as a result of interaction with the environment provides necessary information about how animals acquire resources. However, comparatively little is known about intra- and interindividual variation of condition in marine systems. Where condition has been studied, changes typically are recorded at relatively coarse time-scales. By quantifying how fine-scale interaction with the environment influences condition, we can broaden our understanding of how animals acquire resources and allocate them to body stores. Here we used a hierarchical Bayesian state-space model to estimate the body condition as measured by the size of an animal's lipid store in two closely related species of marine predator that occupy different hemispheres: northern elephant seals (Mirounga angustirostris) and southern elephant seals (Mirounga leonina). The observation model linked drift dives to lipid stores. The process model quantified daily changes in lipid stores as a function of the physiological condition of the seal (lipid:lean tissue ratio, departure lipid and departure mass), its foraging location, two measures of behaviour and environmental covariates. We found that physiological condition significantly impacted lipid gain at two time-scales – daily and at departure from the colony – that foraging location was significantly associated with lipid gain in both species of elephant seals and that long-term behavioural phase was associated with positive lipid gain in northern and southern elephant seals. In northern elephant seals, the occurrence of short-term behavioural states assumed to represent foraging were correlated with lipid gain. Lipid gain was a function of covariates in both species. Southern elephant seals performed fewer drift dives than northern elephant seals and gained lipids at a lower rate. We have demonstrated a new way to obtain time series of body condition estimates for a marine predator at fine spatial and temporal scales. This modelling approach accounts for uncertainty at many levels and has the potential to integrate physiological and movement ecology of top predators. The observation model we used was specific to elephant seals, but the process model can readily be applied to other species, providing an opportunity to understand how animals respond to their environment at a fine spatial scale. PMID:23869551
A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm
Klinger, R.; Rejmanek, M.
2010-01-01
Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromysdesmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus. ?? The Author(s) 2010.
Large Impact of Eurasian Lynx Predation on Roe Deer Population Dynamics
Andrén, Henrik; Liberg, Olof
2015-01-01
The effects of predation on ungulate populations depend on several factors. One of the most important factors is the proportion of predation that is additive or compensatory respectively to other mortality in the prey, i.e., the relative effect of top-down and bottom-up processes. We estimated Eurasian lynx (Lynx lynx) kill rate on roe deer (Capreolus capreolus) using radio-collared lynx. Kill rate was strongly affected by lynx social status. For males it was 4.85 ± 1.30 S.E. roe deer per 30 days, for females with kittens 6.23 ± 0.83 S.E. and for solitary females 2.71 ± 0.47 S.E. We found very weak support for effects of prey density (both for Type I (linear) and Type II (non-linear) functional responses) and of season (winter, summer) on lynx kill rate. Additionally, we analysed the growth rate in a roe deer population from 1985 to 2005 in an area, which lynx naturally re-colonized in 1996. The annual roe deer growth rate was lower after lynx re-colonized the study area, but it was also negatively influenced by roe deer density. Before lynx colonized the area roe deer growth rate was λ = 1.079 (± 0.061 S.E.), while after lynx re-colonization it was λ = 0.94 (± 0.051 S.E.). Thus, the growth rate in the roe deer population decreased by Δλ = 0.14 (± 0.080 S.E.) after lynx re-colonized the study area, which corresponded to the estimated lynx predation rate on roe deer (0.11 ± 0.042 S.E.), suggesting that lynx predation was mainly additive to other mortality in roe deer. To conclude, this study suggests that lynx predation together with density dependent factors both influence the roe deer population dynamics. Thus, both top-down and bottom-up processes operated at the same time in this predator-prey system. PMID:25806949
Fish farms, parasites, and predators: implications for salmon population dynamics.
Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A
2011-04-01
For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an important component of salmon-louse dynamics and has implications for estimating mortality, reducing infection, and developing conservation policy.
Pruetz, J D; Fulton, S J; Marchant, L F; McGrew, W C; Schiel, M; Waller, M
2008-04-01
Chimpanzees (Pan troglodytes) make nests for resting and sleeping, which is unusual for anthropoid primates but common to all great apes. Arboreal nesting has been linked to predation pressure, but few studies have tested the adaptive nature of this behavior. We collected data at two chimpanzee study sites in southeastern Senegal that differed in predator presence to test the hypothesis that elevated sleeping platforms are adaptations for predator defense. At Assirik in the Parc National du Niokolo-Koba, chimpanzees face four species of large carnivore, whereas at Fongoli, outside national park boundaries, humans have exterminated almost all natural predators. We quantified the availability of vegetation at the two sites to test the alternative hypothesis that differences in nesting reflect differences in habitat structure. We also examined possible sex differences in nesting behavior, community demographic differences, seasonality and nest age differences as variables also potentially affecting nest characteristics and nesting behavior between the two sites. Chimpanzees at Fongoli nested at lower heights and farther apart than did chimpanzees at Assirik and sometimes made nests on the ground. The absence of predators outside of the national park may account for the differences in nest characteristics at the two sites, given the similarities in habitat structure between Fongoli and Assirik. However, Fongoli chimpanzees regularly build arboreal nests for sleeping, even under minimal predation pressure, and this requires explanation.
The Effects of Dispersal and Predator Density on Prey Survival in an Insect-Red Clover Metacommunity
Radl, James N; Crist, Thomas O
2018-01-01
Abstract Trophic interactions are often studied within habitat patches, but among-patch dispersal of individuals may influence local patch dynamics. Metacommunity concepts incorporate the effects of dispersal on local and community dynamics. There are few experimental tests of metacommunity theory using insects compared to those conducted in microbial microcosms. Using connected experimental mesocosms, we varied the density of the leafhopper Agallia constricta Van Duzee (Homoptera: Cicadellidae) and a generalist insect predator, the damsel bug (Nabis spp., Heteroptera: Nabidae), to determine the effects of conspecific and predator density and varying the time available to dispersal among mesocosms on predation rates, dispersal rates, and leafhopper survival. Conspecific and damsel bug density did not affect dispersal rates in leafhoppers, but this may be due to leafhoppers’ aversion to leaving the host plants or the connecting tubes between mesocosms hindering leafhopper movement. Leafhopper dispersal was higher in high-dispersal treatments. Survival rates of A. constricta were also lowest in treatments where dispersal was not limited. This is one of the first experimental studies to vary predator density and the time available to dispersal. Our results indicate that dispersal is the key to understanding short-term processes such as prey survival in predator-prey metacommunities. Further work is needed to determine how dispersal rates influence persistence of communities in multigenerational studies. PMID:29301047
NASA Astrophysics Data System (ADS)
Hethcoat, Matthew G.
Natural gas development has rapidly increased within sagebrush ( Artemisia spp.) dominated landscapes of the Intermountain West. Prior research in the Upper Green River Basin, Wyoming demonstrated increased nest predation of sagebrush-obligate songbirds with higher densities of natural gas wells. To better understand the mechanisms underlying this pattern, I assessed this commonly used index of oil and gas development intensity (well density) for estimating habitat transformation and predicting nest survival for songbirds breeding in energy fields during 2008- 2009 and 2011-2012. We calculated landscape metrics (habitat loss, amount of edge, patch shape complexity, and mean patch size) to identify the aspect of landscape transformation most captured by well density. Well density was most positively associated with the amount of habitat loss within 1 square kilometer. Daily nest survival was relatively invariant with respect to well density for all three species. In contrast, nest survival rates of all three species consistently decreased with increased surrounding habitat loss due to energy development. Thus, although well density and habitat loss were strongly correlated, at times they provided contrasting estimates of nest survival probability. Additionally, we tested the hypothesis that surrounding habitat loss influenced local nest predation rates via increased predator activity. During 2011- 2012, we surveyed predators and monitored songbird nests at twelve sites in western Wyoming. Nine species, representing four mammalian and three avian families, were video-recorded depredating eggs and nestlings. Approximately 75% of depredation events were caused by rodents. While chipmunk (Tamias minimus) detections were negatively associated with increased habitat loss, mice (Peromyscus maniculatus and Reithrodontomys megalotis) and ground squirrels (Ictidomys tridecemlineatus and Urocitellus armatus) increased with greater surrounding habitat loss. Consistent with our predictions, nest survival significantly declined at study locations with greater predator activity for Brewer's Sparrows (Spizella breweri) and Sagebrush Sparrows (Artemisiospiza nevadensis ). Our work is among the few studies which have identified mechanisms underlying increased nest predation rates, linking predation patterns, nest predators, and human-induced habitat alteration. Our results demonstrate the importance of simultaneous study of habitat change, predators, and prey in understanding the mechanisms by which evolved predator-prey relationships can be affected by human-induced rapid environmental change.
Turbidity interferes with foraging success of visual but not chemosensory predators
Smee, Delbert L.
2015-01-01
Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator–prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs. PMID:26401444
Ackerman, Joshua T.; Ringelman, Kevin M.; Eadie, J.M.
2012-01-01
When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for “dispersion-dependent” predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.
Allen, Benjamin L; Leung, Luke K-P
2012-01-01
The prevalence of threatened species in predator scats has often been used to gauge the risks that predators pose to threatened species, with the infrequent occurrence of a given species often considered indicative of negligible predation risks. In this study, data from 4087 dingo (Canis lupus dingo and hybrids) scats were assessed alongside additional information on predator and prey distribution, dingo control effort and predation rates to evaluate whether or not the observed frequency of threatened species in dingo scats warrants more detailed investigation of dingo predation risks to them. Three small rodents (dusky hopping-mice Notomys fuscus; fawn hopping-mice Notomys cervinus; plains mice Pseudomys australis) were the only threatened species detected in <8% of dingo scats from any given site, suggesting that dingoes might not threaten them. However, consideration of dingo control effort revealed that plains mice distribution has largely retracted to the area where dingoes have been most heavily subjected to lethal control. Assessing the hypothetical predation rates of dingoes on dusky hopping-mice revealed that dingo predation alone has the potential to depopulate local hopping-mice populations within a few months. It was concluded that the occurrence of a given prey species in predator scats may be indicative of what the predator ate under the prevailing conditions, but in isolation, such data can have a poor ability to inform predation risk assessments. Some populations of threatened fauna assumed to derive a benefit from the presence of dingoes may instead be susceptible to dingo-induced declines under certain conditions.
Morris, Gail; Hostetler, Jeffrey A; Conner, L Mike; Oli, Madan K
2011-12-01
Predation and food resources can strongly affect small mammal population dynamics directly by altering vital rates or indirectly by influencing behaviors. Fire may also strongly influence population dynamics of species inhabiting fire-adapted habitats because fire can alter food and cover availability. We used capture-mark-recapture and radio-telemetry studies to experimentally examine how supplemental feeding, mammalian predator exclusion, and prescribed fire affected survival, abundance, and reproduction of hispid cotton rats (Sigmodon hispidus) in southwestern Georgia, USA. Prescribed fire reduced survival, abundance, and rates of transitions to reproductive states. Food supplementation increased survival, transitions to reproductive states, and abundance, but was not sufficient to prevent post-fire declines in any of these parameters. Mammalian predator exclusion did not strongly affect any of the considered parameters. Our results show that fire strongly influenced cotton rat populations in our study site, primarily by reducing cover and increasing predation risk from non-mammalian predators.
A predator equalizes rate of capture of a schooling prey in a patchy environment.
Vijayan, Sundararaj; Kotler, Burt P; Abramsky, Zvika
2017-05-01
Prey individuals are often distributed heterogeneously in the environment, and their abundances and relative availabilities vary among patches. A foraging predator should maximize energetic gains by selectively choosing patches with higher prey density. However, catching behaviorally responsive and group-forming prey in patchy environments can be a challenge for predators. First, they have to identify the profitable patches, and second, they must manage the prey's sophisticated anti-predator behavior. Thus, the forager and its prey have to continuously adjust their behavior to that of their opponent. Given these conditions, the foraging predator's behavior should be dynamic with time in terms of foraging effort and prey capture rates across different patches. Theoretically, the allocation of its time among patches of behaviorally responsive prey should be such that it equalizes its prey capture rates across patches through time. We tested this prediction in a model system containing a predator (little egret) and group-forming prey (common gold fish) in two sets of experiments in which (1) patches (pools) contained equal numbers of prey, or in which (2) patches contained unequal densities of prey. The egret equalized the prey capture rate through time in both equal and different density experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Competition between apex predators? Brown bears decrease wolf kill rate on two continents.
Tallian, Aimee; Ordiz, Andrés; Metz, Matthew C; Milleret, Cyril; Wikenros, Camilla; Smith, Douglas W; Stahler, Daniel R; Kindberg, Jonas; MacNulty, Daniel R; Wabakken, Petter; Swenson, Jon E; Sand, Håkan
2017-02-08
Trophic interactions are a fundamental topic in ecology, but we know little about how competition between apex predators affects predation, the mechanism driving top-down forcing in ecosystems. We used long-term datasets from Scandinavia (Europe) and Yellowstone National Park (North America) to evaluate how grey wolf ( Canis lupus ) kill rate was affected by a sympatric apex predator, the brown bear ( Ursus arctos ). We used kill interval (i.e. the number of days between consecutive ungulate kills) as a proxy of kill rate. Although brown bears can monopolize wolf kills, we found no support in either study system for the common assumption that they cause wolves to kill more often. On the contrary, our results showed the opposite effect. In Scandinavia, wolf packs sympatric with brown bears killed less often than allopatric packs during both spring (after bear den emergence) and summer. Similarly, the presence of bears at wolf-killed ungulates was associated with wolves killing less often during summer in Yellowstone. The consistency in results between the two systems suggests that brown bear presence actually reduces wolf kill rate. Our results suggest that the influence of predation on lower trophic levels may depend on the composition of predator communities. © 2017 The Authors.
Rehage, Jennifer S.; Dunlop, Katherine L.; Loftus, William F.
2009-01-01
The strong impact of non-native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non-native predators found in the Everglades, the African jewelfish,Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer-established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free-ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish-savvy and jewelfish-naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non-native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.
Stephenson, J F; van Oosterhout, C; Cable, J
2015-11-01
A common evolutionary response to predation pressure is increased investment in reproduction, ultimately resulting in a fast life history. Theory and comparative studies suggest that short-lived organisms invest less in defence against parasites than those that are longer lived (the pace of life hypothesis). Combining these tenets of evolutionary theory leads to the specific, untested prediction that within species, populations experiencing higher predation pressure invest less in defence against parasites. The Trinidadian guppy, Poecilia reticulata, presents an excellent opportunity to test this prediction: guppy populations in lower courses of rivers experience higher predation pressure, and as a consequence have evolved faster life histories, than those in upper courses. Data from a large-scale field survey showed that fish infected with Gyrodactylus parasites were of a lower body condition (quantified using the scaled mass index) than uninfected fish, but only in lower course populations. Although the evidence we present is correlational, it suggests that upper course guppies sustain lower fitness costs of infection, i.e. are more tolerant, than lower course guppies. The data are therefore consistent with the pace of life hypothesis of parasite defence allocation, and suggest that life-history traits mediate the indirect effect of predators on the parasites of their prey. © 2015 The Author(s).
Predator-prey interactions, resource depression and patch revisitation
Erwin, R.M.
1989-01-01
Generalist predators may be confronted by different types of prey in different patches: sedentary and conspicuous, cryptic (with or without refugia), conspicuous and nonsocial, or conspicuous and social. I argue that, where encounter rates with prey are of most importance, patch revisitation should be a profitable tactic where prey have short 'recovery' times (conspicuous, nonsocial prey), or where anti-predator response (e.g. shoaling) may increase conspicuousness. Predictions are made for how temporal changes in prey encounter rates should affect revisit schedules and feeding rates for the 4 different prey types.
Consumer-mediated recycling and cascading trophic interactions.
Leroux, Shawn J; Loreau, Michel
2010-07-01
Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.
How does predation affect the bioaccumulation of hydrophobic organic compounds in aquatic organisms?
Xia, Xinghui; Li, Husheng; Yang, Zhifeng; Zhang, Xiaotian; Wang, Haotian
2015-04-21
It is well-known that the body burden of hydrophobic organic compounds (HOCs) increases with the trophic level of aquatic organisms. However, the mechanism of HOC biomagnification is not fully understood. To fill this gap, this study investigated the effect of predation on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), one type of HOC, in low-to-high aquatic trophic levels under constant freely dissolved PAH concentrations (1, 5, or 10 μg L(-1)) maintained by passive dosing systems. The tested PAHs included phenanthrene, anthracene, fluoranthene, and pyrene. The test organisms included zebrafish, which prey on Daphnia magna, and cichlids, which prey on zebrafish. The results revealed that for both zebrafish and cichlids, predation elevated the uptake and elimination rates of PAHs. The increase of uptake rate constant ranged from 20.8% to 39.4% in zebrafish with the amount of predation of 5 daphnids per fish per day, and the PAH uptake rate constant increased with the amount of predation. However, predation did not change the final bioaccumulation equilibrium; the equilibrium concentrations of PAHs in fish only depended on the freely dissolved concentration in water. Furthermore, the lipid-normalized water-based bioaccumulation factor of each PAH was constant for fish at different trophic levels. These findings infer that the final bioaccumulation equilibrium of PAHs is related to a partition between water and lipids in aquatic organisms, and predation between trophic levels does not change bioaccumulation equilibrium but bioaccumulation kinetics at stable freely dissolved PAH concentrations. This study suggests that if HOCs have not reached bioaccumulation equilibrium, biomagnification occurs due to enhanced uptake rates caused by predation in addition to higher lipid contents in higher trophic organisms. Otherwise, it is only due to the higher lipid contents in higher trophic organisms.
Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator
Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit
2017-01-01
Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791
Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.
Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit
2017-02-24
Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.
Pakes, D; Boulding, E G
2010-08-01
Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell-thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator-mediated selection on local snail populations.
Predation rates, timing, and predator composition for Scoters (Melanitta spp.) in marine habitats
Anderson, Eric J.; Esler, Daniel N.; Sean, Boyd W.; Evenson, Joseph; Nysewander, David R.; Ward, David H.; Dickson, Rian D.; Uher-Koch, Brian D.; Vanstratt, C.S.; Hupp, Jerry W.
2012-01-01
Studies of declining populations of sea ducks have focused mainly on bottom-up processes with little emphasis on the role of predation. We identified 11 potential predators of White-winged Scoters (Melanitta fusca (L., 1758)) and Surf Scoters (Melanitta perspicillata (L., 1758)) in North American marine habitats. However, of 596 Scoters marked with VHF transmitters along the Pacific coast, mortalities were recovered in association with just two identifiable categories of predators: in southeast Alaska recoveries occurred mainly near mustelid feeding areas, while those in southern British Columbia and Washington occurred mainly near feeding areas of Bald Eagles (Haliaeetus leucocephalus (L., 1766)). Determining whether marked Scoters had been depredated versus scavenged was often not possible, but mortalities occurred more frequently during winter than during wing molt (13.1% versus 0.7% of both species combined, excluding Scoters that died within a postrelease adjustment period). In two sites heavily used by Scoters, diurnal observations revealed no predation attempts and low rates of predator disturbances that altered Scoter behavior (≤ 0.22/h). These and other results suggest that predation by Bald Eagles occurs mainly at sites and times where densities of Scoters are low, while most predation by mustelids probably occurs when Scoters are energetically compromised.
Predators modify biogeographic constraints on species distributions in an insect metacommunity.
Grainger, Tess Nahanni; Germain, Rachel M; Jones, Natalie T; Gilbert, Benjamin
2017-03-01
Theory describing the positive effects of patch size and connectivity on diversity in fragmented systems has stimulated a large body of empirical work, yet predicting when and how local species interactions mediate these responses remains challenging. We used insects that specialize on milkweed plants as a model metacommunity to investigate how local predation alters the effects of biogeographic constraints on species distributions. Species-specific dispersal ability and susceptibility to predation were used to predict when patch size and connectivity should shape species distributions, and when these should be modified by local predator densities. We surveyed specialist herbivores and their predators in milkweed patches in two matrix types, a forest and an old field. Predator-resistant species showed the predicted direct positive effects of patch size and connectivity on occupancy rates. For predator-susceptible species, predators consistently altered the impact of biogeographic constraints, rather than acting independently. Finally, differences between matrix types in species' responses and overall occupancy rates indicate a potential role of the inter-patch environment in mediating the joint effects of predators and spatial drivers. Together, these results highlight the importance of local top-down pressure in mediating classic biogeographic relationships, and demonstrate how species-specific responses to local and regional constraints can be used to predict these effects. © 2017 by the Ecological Society of America.
Survival behavior in the cyclic Lotka-Volterra model with a randomly switching reaction rate
NASA Astrophysics Data System (ADS)
West, Robert; Mobilia, Mauro; Rucklidge, Alastair M.
2018-02-01
We study the influence of a randomly switching reproduction-predation rate on the survival behavior of the nonspatial cyclic Lotka-Volterra model, also known as the zero-sum rock-paper-scissors game, used to metaphorically describe the cyclic competition between three species. In large and finite populations, demographic fluctuations (internal noise) drive two species to extinction in a finite time, while the species with the smallest reproduction-predation rate is the most likely to be the surviving one (law of the weakest). Here we model environmental (external) noise by assuming that the reproduction-predation rate of the strongest species (the fastest to reproduce and predate) in a given static environment randomly switches between two values corresponding to more and less favorable external conditions. We study the joint effect of environmental and demographic noise on the species survival probabilities and on the mean extinction time. In particular, we investigate whether the survival probabilities follow the law of the weakest and analyze their dependence on the external noise intensity and switching rate. Remarkably, when, on average, there is a finite number of switches prior to extinction, the survival probability of the predator of the species whose reaction rate switches typically varies nonmonotonically with the external noise intensity (with optimal survival about a critical noise strength). We also outline the relationship with the case where all reaction rates switch on markedly different time scales.
Horning, Markus; Mellish, Jo-Ann E.
2012-01-01
The endangered western stock of the Steller sea lion (Eumetopias jubatus) – the largest of the eared seals – has declined by 80% from population levels encountered four decades ago. Current overall trends from the Gulf of Alaska to the Aleutian Islands appear neutral with strong regional heterogeneities. A published inferential model has been used to hypothesize a continuous decline in natality and depressed juvenile survival during the height of the decline in the mid-late 1980's, followed by the recent recovery of juvenile survival to pre-decline rates. However, these hypotheses have not been tested by direct means, and causes underlying past and present population trajectories remain unresolved and controversial. We determined post-weaning juvenile survival and causes of mortality using data received post-mortem via satellite from telemetry transmitters implanted into 36 juvenile Steller sea lions from 2005 through 2011. Data show high post-weaning mortality by predation in the eastern Gulf of Alaska region. To evaluate the impact of such high levels of predation, we developed a conceptual framework to integrate density dependent with density independent effects on vital rates and population trajectories. Our data and model do not support the hypothesized recent recovery of juvenile survival rates and reduced natality. Instead, our data demonstrate continued low juvenile survival in the Prince William Sound and Kenai Fjords region of the Gulf of Alaska. Our results on contemporary predation rates combined with the density dependent conceptual framework suggest predation on juvenile sea lions as the largest impediment to recovery of the species in the eastern Gulf of Alaska region. The framework also highlights the necessity for demographic models based on age-structured census data to incorporate the differential impact of predation on multiple vital rates. PMID:22272296
Seasonal shift in the effects of predators on juvenile Atlantic salmon (Salmo salar) energetics
Darren M. Ward; Keith H. Nislow; Carol L. Folt; James Grant
2011-01-01
Predator effects on prey populations are determined by the number of prey consumed and effects on the traits of surviving prey. Yet the effects of predators on prey traits are rarely evaluated in field studies. We measured the effects of predators on energetic traits (consumption and growth rates) of juvenile Atlantic salmon (Salmo salar) in a...
The possible function of stone ramparts at the nest entrance of the blackstart.
Leader; Yom-tov
1998-07-01
Blackstarts, Cercomela melanura, Turdidae, construct a rampart of stones at the entrance to their nests. These ramparts may reach remarkable proportions, containing hundreds of flat rocks. We investigated several hypotheses regarding the function of stone ramparts, by monitoring individually marked blackstarts at the En-Gedi Nature Reserve, Israel. Stones were collected solely by females, who carried them in their beaks, while flying to the nest, at a rate of up to one stone per min, after pair formation had occurred. The number and total weight of stones as well as rampart height showed a highly positive correlation with the size of the nest cavity opening. The rampart decreased the size of the cavity entrance to some nests by as much as 67%, which suggests an antipredator barrier function. Survival rates of eggs and chicks were extremely low and the major cause of reproductive failure was predation. Successful nests tended to be located higher off the ground than predated nests, and often contained fewer stones. Furthermore, larger females in terms of wing and tail length nested in cavities higher off the ground and built smaller ramparts containing lighter stones. An artificial nest predation experiment did not reveal a difference in predation rates between nests with and without stone ramparts. Spiny mice, Acomys sp., were the main egg predators. However, in 37% of nests with ramparts that were predated, the perpetrator flattened the rampart, suggesting that they may serve as a barricade, forcing the predator to invest time in clearing the stones in order to gain access to the nest, and perhaps allowing the nesting female sufficient time to escape. We propose, therefore, that owing to such high nest predation rates, females nesting close to the ground build stone ramparts as an 'early warning' mechanism to prevent themselves from being trapped inside nest cavities and predated. Copyright 1998 The Association for the Study of Animal Behaviour.
Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response.
He, Xiao; Zheng, Sining
2017-07-01
In any reaction-diffusion system of predator-prey models, the population densities of species are determined by the interactions between them, together with the influences from the spatial environments surrounding them. Generally, the prey species would die out when their birth rate is too low, the habitat size is too small, the predator grows too fast, or the predation pressure is too high. To save the endangered prey species, some human interference is useful, such as creating a protection zone where the prey could cross the boundary freely but the predator is prohibited from entering. This paper studies the existence of positive steady states to a predator-prey model with reaction-diffusion terms, Beddington-DeAngelis type functional response and non-flux boundary conditions. It is shown that there is a threshold value [Formula: see text] which characterizes the refuge ability of prey such that the positivity of prey population can be ensured if either the prey's birth rate satisfies [Formula: see text] (no matter how large the predator's growth rate is) or the predator's growth rate satisfies [Formula: see text], while a protection zone [Formula: see text] is necessary for such positive solutions if [Formula: see text] with [Formula: see text] properly large. The more interesting finding is that there is another threshold value [Formula: see text], such that the positive solutions do exist for all [Formula: see text]. Letting [Formula: see text], we get the third threshold value [Formula: see text] such that if [Formula: see text], prey species could survive no matter how large the predator's growth rate is. In addition, we get the fourth threshold value [Formula: see text] for negative [Formula: see text] such that the system admits positive steady states if and only if [Formula: see text]. All these results match well with the mechanistic derivation for the B-D type functional response recently given by Geritz and Gyllenberg (J Theoret Biol 314:106-108, 2012). Finally, we obtain the uniqueness of positive steady states for [Formula: see text] properly large, as well as the asymptotic behavior of the unique positive steady state as [Formula: see text].
Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies
Benoit-Bird, Kelly J.; Battaile, Brian C.; Heppell, Scott A.; Hoover, Brian; Irons, David; Jones, Nathan; Kuletz, Kathy J.; Nordstrom, Chad A.; Paredes, Rosana; Suryan, Robert M.; Waluk, Chad M.; Trites, Andrew W.
2013-01-01
Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally. PMID:23301063
NASA Astrophysics Data System (ADS)
Zuckerberg, B.; McCabe, J.; Yin, H.; Pidgeon, A. M.; Bonter, D. N.; Radeloff, V.
2017-12-01
Urbanization causes the simplification of animal communities dominated by exotic and invasive species with few top predators. In recent years, however, many animal predators (e.g., coyotes, cougars, and hawks) have become increasingly common in urban environments. As predator recovery is central to the mission of conservation biology, this colonization of urban environments represents a unique experiment in predator colonization and its associated ecological consequences. One such predator that is recovering from decades of widespread population declines are accipiter hawks. These woodland hawks are widely distributed throughout North America and are increasingly common in urban and suburban landscapes. Using data from Project FeederWatch, a national citizen science program, we quantified 25 years (1990-2015) of changes in the spatiotemporal dynamics of accipiter hawks in Washington D.C. and Chicago. We estimated change in hawk occupancy over time and identified the environmental characteristics associated with occupancy for two accipiter hawk species, Cooper's Hawk (Accipiter cooperii) and Sharp-shinned Hawk (Accipiter striatus), using Bayesian hierarchical models and remotely-sensed temperature (MODIS) and land cover data (NLCD). We found the proportion of sites recording the presence of accipiter hawks increased from 10% in the early 1990's to over 80% in 2015. This increase in occupancy followed a discrete pattern of establishment, growth, and saturation. Colonizing hawks were more strongly associated with remnant forest patches in urban environments. Over time, we found hawks became more tolerant of urban landscapes with higher amounts of impervious surface, suggesting that these predators became adapted to urbanization. The implications of returning predators and altered ecological dynamics in urban environments is of critical importance to conservation biology, and integrating remote sensing observations and citizen science allowed for an unprecedented investigation of the urban characteristics facilitating predator colonization.
Pre-dispersal predation effect on seed packaging strategies and seed viability.
DeSoto, Lucía; Tutor, David; Torices, Rubén; Rodríguez-Echeverría, Susana; Nabais, Cristina
2016-01-01
An increased understanding of intraspecific seed packaging (i.e. seed size/number strategy) variation across different environments may improve current knowledge of the ecological forces that drive seed evolution in plants. In particular, pre-dispersal seed predation may influence seed packaging strategies, triggering a reduction of the resources allocated to undamaged seeds within the preyed fruits. Assessing plant reactions to pre-dispersal seed predation is crucial to a better understanding of predation effects, but the response of plants to arthropod attacks remains unexplored. We have assessed the effect of cone predation on the size and viability of undamaged seeds in populations of Juniperus thurifera with contrasting seed packaging strategies, namely, North African populations with single-large-seeded cones and South European populations with multi-small-seeded cones. Our results show that the incidence of predation was lower on the single-large-seeded African cones than on the multi-small-seeded European ones. Seeds from non-preyed cones were also larger and had a higher germination success than uneaten seeds from preyed cones, but only in populations with multi-seeded cones and in cones attacked by Trisetacus sp., suggesting a differential plastic response to predation. It is possible that pre-dispersal seed predation has been a strong selective pressure in European populations with high cone predation rates, being a process which maintains multi-small-seeded cones and empty seeds as a strategy to save some seeds from predation. Conversely, pre-dispersal predation might not have a strong effect in the African populations with single-large-seeded cones characterized by seed germination and filling rates higher than those in the European populations. Our results indicate that differences in pre-dispersal seed predators and predation levels may affect both selection on and intraspecific variation in seed packaging.
Stasek, David J; Radl, James N; Crist, Thomas O
2018-01-01
Trophic interactions are often studied within habitat patches, but among-patch dispersal of individuals may influence local patch dynamics. Metacommunity concepts incorporate the effects of dispersal on local and community dynamics. There are few experimental tests of metacommunity theory using insects compared to those conducted in microbial microcosms. Using connected experimental mesocosms, we varied the density of the leafhopper Agallia constricta Van Duzee (Homoptera: Cicadellidae) and a generalist insect predator, the damsel bug (Nabis spp., Heteroptera: Nabidae), to determine the effects of conspecific and predator density and varying the time available to dispersal among mesocosms on predation rates, dispersal rates, and leafhopper survival. Conspecific and damsel bug density did not affect dispersal rates in leafhoppers, but this may be due to leafhoppers' aversion to leaving the host plants or the connecting tubes between mesocosms hindering leafhopper movement. Leafhopper dispersal was higher in high-dispersal treatments. Survival rates of A. constricta were also lowest in treatments where dispersal was not limited. This is one of the first experimental studies to vary predator density and the time available to dispersal. Our results indicate that dispersal is the key to understanding short-term processes such as prey survival in predator-prey metacommunities. Further work is needed to determine how dispersal rates influence persistence of communities in multigenerational studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Tseng, Hui-Yun; Lin, Chung-Ping; Hsu, Jung-Ya; Pike, David A.; Huang, Wen-San
2014-01-01
Conspicuous colouration can evolve as a primary defence mechanism that advertises unprofitability and discourages predatory attacks. Geographic overlap is a primary determinant of whether individual predators encounter, and thus learn to avoid, such aposematic prey. We experimentally tested whether the conspicuous colouration displayed by Old World pachyrhynchid weevils (Pachyrhynchus tobafolius and Kashotonus multipunctatus) deters predation by visual predators (Swinhoe’s tree lizard; Agamidae, Japalura swinhonis). During staged encounters, sympatric lizards attacked weevils without conspicuous patterns at higher rates than weevils with intact conspicuous patterns, whereas allopatric lizards attacked weevils with intact patterns at higher rates than sympatric lizards. Sympatric lizards also attacked masked weevils at lower rates, suggesting that other attributes of the weevils (size/shape/smell) also facilitate recognition. Allopatric lizards rapidly learned to avoid weevils after only a single encounter, and maintained aversive behaviours for more than three weeks. The imperfect ability of visual predators to recognize potential prey as unpalatable, both in the presence and absence of the aposematic signal, may help explain how diverse forms of mimicry exploit the predator’s visual system to deter predation. PMID:24614681
Metabolic temperature compensation and coevolution of locomotory performance in pteropod molluscs.
Seibel, Brad A; Dymowska, Agnieszka; Rosenthal, Joshua
2007-12-01
Gymnosomatous pteropods are highly specialized planktonic predators that feed exclusively on their thecosomatous relatives. Feeding behavior and the morphology of gymnosome feeding structures are diverse and have evolved in concert with the size, shape, and consistency of the thecosome shell. Here, we show that the metabolic capacity and locomotory behaviors of gymnosomes are similarly diverse and vary with those of their prey. Both gymnosomes and thecosomes range from gelatinous sit-and-wait forms to active predators with high-performance locomotory muscles. We find more than 10-fold variation in size-adjusted and temperature-adjusted metabolic rates within both the Gymnosomata and Thecosomata and a strong correlation between the metabolic rates of predators and of prey. Furthermore, these characteristics are strongly influenced by environmental parameters and predator and prey converge upon similar physiological capacities under similar selection. For example, compensation of locomotory capacity in cold waters leads to elevated metabolic rates in polar species. This highly coevolved system is discussed in terms of a predator-prey "arms race" and the impending loss of both predator and prey as elevated atmospheric carbon dioxide levels threaten to dissolve prey shells via oceanic acidification.
Skirvin, D J; Stavrinides, M C; Skirvin, D J
2003-08-01
The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.
By their genes ye shall know them: genomic signatures of predatory bacteria
Pasternak, Zohar; Pietrokovski, Shmuel; Rotem, Or; Gophna, Uri; Lurie-Weinberger, Mor N; Jurkevitch, Edouard
2013-01-01
Predatory bacteria are taxonomically disparate, exhibit diverse predatory strategies and are widely distributed in varied environments. To date, their predatory phenotypes cannot be discerned in genome sequence data thereby limiting our understanding of bacterial predation, and of its impact in nature. Here, we define the ‘predatome,' that is, sets of protein families that reflect the phenotypes of predatory bacteria. The proteomes of all sequenced 11 predatory bacteria, including two de novo sequenced genomes, and 19 non-predatory bacteria from across the phylogenetic and ecological landscapes were compared. Protein families discriminating between the two groups were identified and quantified, demonstrating that differences in the proteomes of predatory and non-predatory bacteria are large and significant. This analysis allows predictions to be made, as we show by confirming from genome data an over-looked bacterial predator. The predatome exhibits deficiencies in riboflavin and amino acids biosynthesis, suggesting that predators obtain them from their prey. In contrast, these genomes are highly enriched in adhesins, proteases and particular metabolic proteins, used for binding to, processing and consuming prey, respectively. Strikingly, predators and non-predators differ in isoprenoid biosynthesis: predators use the mevalonate pathway, whereas non-predators, like almost all bacteria, use the DOXP pathway. By defining predatory signatures in bacterial genomes, the predatory potential they encode can be uncovered, filling an essential gap for measuring bacterial predation in nature. Moreover, we suggest that full-genome proteomic comparisons are applicable to other ecological interactions between microbes, and provide a convenient and rational tool for the functional classification of bacteria. PMID:23190728
Humphries, Austin T.; La Peyre, Megan K.; Decossas, Gary A.
2011-01-01
Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.
Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette
2015-01-01
Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.
Morris, Jonathan R.; Vandermeer, John; Perfecto, Ivette
2015-01-01
Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems. PMID:26562676
Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L . Orrock; B. J. Danielson; M. J. Burns
2003-02-03
J.L. Orrock, B.J. Danielson, M.J. Burns, and D.J. Levey. 2003. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation. Ecology, 84(10):2589-2599. Abstract: Corridors that connect patches of disjunct habitat may be promising tools for mediating the negative impacts of habitat fragmentation, but little is known about how corridors affect ecological interactions. In eight 12-ha experimental landscapes, we examined how corridors affect the impact of invertebrate, rodent, and avian seed predators on pokeweed, Phytolacca americana. Over 13 months in 2000 and 2001, we quantified the effects of patch shape, connectivity, and predator type on the number of seedsmore » germinating in the field (germinants), seed removal, and the viability of remaining seeds. Corridors did not affect the number of P. americana germinants in experimental exclosures or the viability of seeds remaining in exclosures. However, corridors affected the removal of seeds in a predator-specific manner: invertebrates removed more seeds in unconnected patches, whereas rodents removed more seeds in connected patches. Seed removal by birds was similar in connected and unconnected patches. Total seed removal by all seed predators was not affected by corridors, because invertebrates removed more seeds where rodents removed fewer seeds, and vice versa. Overall, seed predation signi®cantly reduced the number and viability of remaining seeds, and reduced the number of germinants in 2000 but not in 2001. The abundance of naturally occurring P. americana plants in our experimental patches in 2000 decreased with increasing seed removal from exclosures but was not related to viability or germinants in 2000, suggesting that seed removal may shape the distribution and abundance of this species. Complementary patterns of seed removal by rodents and invertebrates suggest that corridors alter the effects of these predator taxa by changing the relative amounts of edge and core (nonedge) habitats in a patch. Because invertebrates and rodents do not completely overlap in the seeds they consume, corridors may change predation pressure on seeds that are primarily consumed by one predator type, with potential consequences for the composition of plant and seed predator communities.« less
Graph Theory Approach for Studying Food Webs
NASA Astrophysics Data System (ADS)
Longjas, A.; Tejedor, A.; Foufoula-Georgiou, E.
2017-12-01
Food webs are complex networks of feeding interactions among species in ecological communities. Metrics describing food web structure have been proposed to compare and classify food webs ranging from food chain length, connectance, degree distribution, centrality measures, to the presence of motifs (distinct compartments), among others. However, formal methodologies for studying both food web topology and the dynamic processes operating on them are still lacking. Here, we utilize a quantitative framework using graph theory within which a food web is represented by a directed graph, i.e., a collection of vertices (species or trophic species defined as sets of species sharing the same predators and prey) and directed edges (predation links). This framework allows us to identify apex (environmental "source" node) to outlet (top predators) subnetworks and compute the steady-state flux (e.g., carbon, nutrients, energy etc.) in the food web. We use this framework to (1) construct vulnerability maps that quantify the relative change of flux delivery to the top predators in response to perturbations in prey species (2) identify keystone species, whose loss would precipitate further species extinction, and (3) introduce a suite of graph-theoretic metrics to quantify the topologic (imposed by food web connectivity) and dynamic (dictated by the flux partitioning and distribution) components of a food web's complexity. By projecting food webs into a 2D Topodynamic Complexity Space whose coordinates are given by Number of alternative paths (topologic) and Leakage Index (dynamic), we show that this space provides a basis for food web comparison and provide physical insights into their dynamic behavior.
Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John
2014-01-01
Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.
Goldberg, Joshua F.; Hebblewhite, Mark; Bardsley, John
2014-01-01
Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027–0.186 and 0.001–0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9–2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013–0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146–0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031–0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge. PMID:24670632
Habitat complexity and sex-dependent predation of mosquito larvae in containers
Griswold, Marcus W.; Lounibos, L. Philip
2012-01-01
Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes. PMID:16041612
Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions.
Zu, Jian; Wang, Jinliang; Huang, Gang
We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey's trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator's trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a possible outcome under asymmetric predator-prey interactions.
Junges, Celina M; Lajmanovich, Rafael C; Peltzer, Paola M; Attademo, Andres M; Bassó, Agustín
2010-11-01
Environmental contaminants can disrupt interactions between aquatic species by altering community structure. We explored predator-prey interactions between marbled swamp juvenile eels (Synbranchus marmoratus; predator) and anuran tadpoles (Hypsiboas pulchellus; prey) in relation to two aspects: the importance of lateral line in the predator and whether the absence of light modifies predation rates; and the effect of a sub-lethal concentration of fenitrothion on both predator and prey. Eels were tested under two sensory conditions (lateral line intact and lateral line blocked by cobalt chloride) in dark conditions. Predation rates were evaluated using different treatments that combined predator and prey exposed or not to insecticide. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were also measured in muscle samples of eels and tadpoles to explore whether fenitrothion affects predator and prey differentially. Marbled swamp eels were more efficient in feeding on tadpoles during the night than during the day, showing that lateral line makes an important contribution to prey detection and capture. Regarding pesticide effects, short-term (6 h) exposure to an ecologically relevant fenitrothion dose of 2.5 mg L(-1) altered the predator-prey relationship by changing prey behaviour, reducing prey detection and therefore increasing tadpole survival. At this concentration, the outcome of the predator-prey relationship appears biased in favor of the exposed tadpoles, which were released from predation risk, despite their altered behaviour and the higher inhibition percentages of tail BChE (70%) and AChE (51%) than in control individuals. Our study involving these model species and agrochemicals demonstrates that fenitrothion affected the outcome of a predator-prey relationship. Further studies are needed, in these species and other native amphibians, to investigate the nature of the mechanisms responsible for the adverse effects of pesticides on antipredator behaviour and predation efficiency. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tests of landscape influence: Nest predation and brood parasitism in fragmented ecosystems
Tewksbury, J.J.; Garner, L.; Garner, S.; Lloyd, J.D.; Saab, V.; Martin, T.E.
2006-01-01
The effects of landscape fragmentation on nest predation and brood parasitism, the two primary causes of avian reproductive failure, have been difficult to generalize across landscapes, yet few studies have clearly considered the context and spatial scale of fragmentation. Working in two river systems fragmented by agricultural and rural-housing development, we tracked nesting success and brood parasitism in >2500 bird nests in 38 patches of deciduous riparian woodland. Patches on both river systems were embedded in one of two local contexts (buffered from agriculture by coniferous forest, or adjacent to agriculture), but the abundance of agriculture and human habitation within 1 km of each patch was highly variable. We examined evidence for three models of landscape effects on nest predation based on (1) the relative importance of generalist agricultural nest predators, (2) predators associated with the natural habitats typically removed by agricultural development, or (3) an additive combination of these two predator communities. We found strong support for an additive predation model in which landscape features affect nest predation differently at different spatial scales. Riparian habitat with forest buffers had higher nest predation rates than sites adjacent to agriculture, but nest predation also increased with increasing agriculture in the larger landscape surrounding each site. These results suggest that predators living in remnant woodland buffers, as well as generalist nest predators associated with agriculture, affect nest predation rates, but they appear to respond at different spatial scales. Brood parasitism, in contrast, was unrelated to agricultural abundance on the landscape, but showed a strong nonlinear relationship with farm and house density, indicating a critical point at which increased human habitat causes increased brood parasitism. Accurate predictions regarding landscape effects on nest predation and brood parasitism will require an increased appreciation of the multiple scales at which landscape components influence predator and parasite behavior. ?? 2006 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuessly, G.S.; Sterling, W.L.
1986-12-01
Factors responsible for low recovery rates of radioactive Solenopsis invicta Buren following placement of /sup 32/P-labeled Heliothis zea (Boddie) eggs on cotton in field predation tests were investigated using laboratory colonies of the ants. S. invicta workers became radioactive while handling labeled eggs by rupturing the egg chorion or by picking up labeled substances present on the surface of eggs. Foragers that removed the eggs from the plants picked up significantly more of the label than did workers that were sampled from the colonies between 12 and 72 h after egg introduction. Percentage of workers that became labeled over timemore » was much lower with the solid live food than in other studies that used powdered food sources. Problems in finding labeled ants in the field may have been associated with low mean levels of /sup 32/P per ant, together with difficulty in locating and isolating labeled ants from the population. Results indicate that egg predation rates estimated from counts per minute per predator have high variability, and suggest fairly large errors in estimates of eggs consumed per ant. Use of recovery rates of labeled predators to improve estimation of predation rates is discussed.« less
Of lemmings and snowshoe hares: the ecology of northern Canada
Krebs, Charles J.
2011-01-01
Two population oscillations dominate terrestrial community dynamics in northern Canada. In the boreal forest, the snowshoe hare (Lepus americanus) fluctuates in cycles with an 8–10 year periodicity and in tundra regions lemmings typically fluctuate in cycles with a 3–4 year periodicity. I review 60 years of research that has uncovered many of the causes of these population cycles, outline areas of controversy that remain and suggest key questions to address. Lemmings are keystone herbivores in tundra ecosystems because they are a key food resource for many avian and mammalian predators and are a major consumer of plant production. There remains much controversy over the role of predation, food shortage and social interactions in causing lemming cycles. Predation is well documented as a significant mortality factor limiting numbers. Food shortage is less likely to be a major limiting factor on population growth in lemmings. Social interactions might play a critical role in reducing the rate of population growth as lemming density rises. Snowshoe hares across the boreal forest are a key food for many predators and their cycles have been the subject of large-scale field experiments that have pinpointed predation as the key limiting factor causing these fluctuations. Predators kill hares directly and indirectly stress them by unsuccessful pursuits. Stress reduces the reproductive rate of female hares and is transmitted to their offspring who also suffer reduced reproductive rates. The maternal effects produced by predation risk induce a time lag in the response of hare reproductive rate to density, aiding the cyclic dynamics. PMID:20980307
Depredation of the California Ridgway’s rail: Causes and distribution
Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Takekawa, John Y.; Merritt, Angela M.; Hull, J.M.
2016-01-01
were correlated with predation events, with a greater proportion of known mortalities found during periods of high tides (over 60% marsh inundation) and during daylight hours. Predation is the primary source of mortality for California Ridgway’s rail. Management actions that try to reduce avian predation may be the most effective at improving rail survival rates, given the proportion of avian predation detected.
How avian nest site selection responds to predation risk: Testing an 'adaptive peak hypothesis'
Quresh S. Latif; Sacha K. Heath; John T. Rotenberry
2012-01-01
1. Nest predation limits avian fitness, so birds should favour nest sites that minimize predation risk. Nevertheless, preferred nest microhabitat features are often uncorrelated with apparent variation in predation rates. 2. This lack of congruence between theory-based expectation and empirical data may arise when birds already occupy âadaptive peaksâ. If birds nest...
In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster.
Culler, Lauren E; Ayres, Matthew P; Virginia, Ross A
2015-09-22
Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator-prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2-1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human-natural systems. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Holsman, Kirstin K.; Ianelli, James; Aydin, Kerim; Punt, André E.; Moffitt, Elizabeth A.
2016-12-01
Multi-species statistical catch at age models (MSCAA) can quantify interacting effects of climate and fisheries harvest on species populations, and evaluate management trade-offs for fisheries that target several species in a food web. We modified an existing MSCAA model to include temperature-specific growth and predation rates and applied the modified model to three fish species, walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias), from the eastern Bering Sea (USA). We fit the model to data from 1979 through 2012, with and without trophic interactions and temperature effects, and use projections to derive single- and multi-species biological reference points (BRP and MBRP, respectively) for fisheries management. The multi-species model achieved a higher over-all goodness of fit to the data (i.e. lower negative log-likelihood) for pollock and Pacific cod. Variability from water temperature typically resulted in 5-15% changes in spawning, survey, and total biomasses, but did not strongly impact recruitment estimates or mortality. Despite this, inclusion of temperature in projections did have a strong effect on BRPs, including recommended yield, which were higher in single-species models for Pacific cod and arrowtooth flounder that included temperature compared to the same models without temperature effects. While the temperature-driven multi-species model resulted in higher yield MBPRs for arrowtooth flounder than the same model without temperature, we did not observe the same patterns in multi-species models for pollock and Pacific cod, where variability between harvest scenarios and predation greatly exceeded temperature-driven variability in yield MBRPs. Annual predation on juvenile pollock (primarily cannibalism) in the multi-species model was 2-5 times the annual harvest of adult fish in the system, thus predation represents a strong control on population dynamics that exceeds temperature-driven changes to growth and is attenuated through harvest-driven reductions in predator populations. Additionally, although we observed differences in spawning biomasses at the accepted biological catch (ABC) proxy between harvest scenarios and single- and multi-species models, discrepancies in spawning stock biomass estimates did not translate to large differences in yield. We found that multi-species models produced higher estimates of combined yield for aggregate maximum sustainable yield (MSY) targets than single species models, but were more conservative than single-species models when individual MSY targets were used, with the exception of scenarios where minimum biomass thresholds were imposed. Collectively our results suggest that climate and trophic drivers can interact to affect MBRPs, but for prey species with high predation rates, trophic- and management-driven changes may exceed direct effects of temperature on growth and predation. Additionally, MBRPs are not inherently more conservative than single-species BRPs. This framework provides a basis for the application of MSCAA models for tactical ecosystem-based fisheries management decisions under changing climate conditions.
New approaches to understanding weed seed predation in agroecosystems
USDA-ARS?s Scientific Manuscript database
Postdispersal predation of weed seeds in arable systems can be a valuable ecosystem service, with the potential to support ecological approaches to weed management by reducing inputs to the soil seed bank. Scientific understanding of factors regulating weed seed predation rates is still insufficient...
Species invasion shifts the importance of predator dependence.
Griffen, Blaine D; Delaney, David G
2007-12-01
The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.
Dynamics of an eco-epidemiological model with saturated incidence rate
NASA Astrophysics Data System (ADS)
Suryanto, Agus
2017-03-01
In this paper we study the effect of prey infection on the modified Leslie-Gower predator-prey model with saturated incidence rate. The model will be analyzed dynamically to find the equilibria and their existence conditions as well as their local stability conditions. It is found that there are six type of equilibria, namely the extinction of both prey and predator point, the extinction of infective prey and predator point, the extinction of predator point, the extinction of prey point, the extinction of infective prey point and the interior point. The first four equilibrium points are always unstable, while the last two equilibria are conditionally stable. We also find that the system undergoes Hopf bifurcation around the interior point which is controlled by the rate of infection. To illustrate our analytical results, we show some numerical results.
Muiruri, Evalyne W; Rainio, Kalle; Koricheva, Julia
2016-03-01
The enemies hypothesis states that reduced insect herbivory in mixed-species stands can be attributed to more effective top-down control by predators with increasing plant diversity. Although evidence for this mechanism exists for invertebrate predators, studies on avian predation are comparatively rare and have not explicitly tested the effects of diversity at different spatial scales, even though heterogeneity at macro- and micro-scales can influence bird foraging selection. We studied bird predation in an established forest diversity experiment in SW Finland, using artificial larvae installed on birch, alder and pine trees. Effects of tree species diversity and densities on bird predation were tested at two different scales: between plots and within the neighbourhood around focal trees. At the neighbourhood scale, birds preferentially foraged on focal trees surrounded by a higher diversity of neighbours. However, predation rates did not increase with tree species richness at the plot level and were instead negatively affected by tree height variation within the plot. The highest probability of predation was observed on pine, and rates of predation increased with the density of pine regardless of scale. Strong tree species preferences observed may be due to a combination of innate bird species preferences and opportunistic foraging on profitable-looking artificial prey. This study therefore finds partial support for the enemies hypothesis and highlights the importance of spatial scale and focal tree species in modifying trophic interactions between avian predators and insect herbivores in forest ecosystems.
Predation and nutrients drive population declines in breeding waders.
Møller, Anders Pape; Thorup, Ole; Laursen, Karsten
2018-04-20
Allee effects are defined as a decline in per capita fitness at low population density. We hypothesized that predation reduces population size of breeding waders and thereby the efficiency of predator deterrence, while total nitrogen through its effects on primary and secondary productivity increases population size. Therefore, nest predation could have negative consequences for population size because nest failure generally results in breeding dispersal and hence reduced local population density. To test these predictions, we recorded nest predation in five species of waders for 4,745 nests during 1987-2015 at the nature reserve Tipperne, Denmark. Predation rates were generally negatively related to conspecific and heterospecific population density, but positively related to overall population density of the entire wader community. Nest predation and population density were related to ground water level, management (grazing and mowing), and nutrients. High nest predation with a time lag of one year resulted in low overall breeding population density, while high nutrient levels resulted in higher population density. These two factors accounted for 86% of the variance in population size, presumably due to effects of nest predation on emigration, while nutrient levels increased the level of vegetation cover and the abundance of food in the surrounding brackish water. These findings are consistent with the hypothesis that predation may reduce population density through negative density dependence, while total nitrogen at adjacent shallow water may increase population size. Nest predation rates were reduced by high ground water level in March, grazing by cattle and mowing that affected access to and susceptibility of nests to predators. These effects can be managed to benefit breeding waders. © 2018 by the Ecological Society of America.
Moleón, Marcos; Sánchez-Zapata, José A.; Gil-Sánchez, José M.; Barea-Azcón, José M.; Ballesteros-Duperón, Elena; Virgós, Emilio
2011-01-01
Background Predation may potentially lead to negative effects on both prey (directly via predators) and predators (indirectly via human persecution). Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable –in conservation terms– Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered) predator-two prey (small game) system. Methodology/Principal Findings We estimated the predation impact (‘kill rate’ and ‘predation rate’, i.e., number of prey and proportion of the prey population eaten, respectively) of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each) in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3–2.5%) for both prey and seasons. Conclusions/Significance The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the ‘partridge-eating eagle’ in Spanish) have a null theoretical basis in most of this area. PMID:21818399
Effects of Humans on Behaviour of Wildlife Exceed Those of Natural Predators in a Landscape of Fear
Ciuti, Simone; Northrup, Joseph M.; Muhly, Tyler B.; Simi, Silvia; Musiani, Marco; Pitt, Justin A.; Boyce, Mark S.
2012-01-01
Background Human disturbance can influence wildlife behaviour, which can have implications for wildlife populations. For example, wildlife may be more vigilant near human disturbance, resulting in decreased forage intake and reduced reproductive success. We measured the effects of human activities compared to predator and other environmental factors on the behaviour of elk (Cervus elaphus Linnaeus 1758) in a human-dominated landscape in Alberta, Canada. Methodology/Principal Findings We collected year-round behavioural data of elk across a range of human disturbances. We estimated linear mixed models of elk behaviour and found that human factors (land-use type, traffic and distance from roads) and elk herd size accounted for more than 80% of variability in elk vigilance. Elk decreased their feeding time when closer to roads, and road traffic volumes of at least 1 vehicle every 2 hours induced elk to switch into a more vigilant behavioural mode with a subsequent loss in feeding time. Other environmental factors, thought crucial in shaping vigilance behaviour in elk (natural predators, reproductive status of females), were not important. The highest levels of vigilance were recorded on public lands where hunting and motorized recreational activities were cumulative compared to the national park during summer, which had the lowest levels of vigilance. Conclusions/Significance In a human-dominated landscape, effects of human disturbance on elk behaviour exceed those of habitat and natural predators. Humans trigger increased vigilance and decreased foraging in elk. However, it is not just the number of people but also the type of human activity that influences elk behaviour (e.g. hiking vs. hunting). Quantifying the actual fitness costs of human disturbance remains a challenge in field studies but should be a primary focus for future researches. Some species are much more likely to be disturbed by humans than by non-human predators: for these species, quantifying human disturbance may be the highest priority for conservation. PMID:23226330
Swartz, Scott J; De Leo, Giulio A; Wood, Chelsea L; Sokolow, Susanne H
2015-12-01
Schistosomiasis - a parasitic disease that affects over 200 million people across the globe - is primarily transmitted between human definitive hosts and snail intermediate hosts. To reduce schistosomiasis transmission, some have advocated disrupting the schistosome life cycle through biological control of snails, achieved by boosting the abundance of snails' natural predators. But little is known about the effect of parasitic infection on predator-prey interactions, especially in the case of schistosomiasis. Here, we present the results of laboratory experiments performed on Bulinus truncatus and Biomphalaria glabrata snails to investigate: (i) rates of predation on schistosome-infected versus uninfected snails by a sympatric native river prawn, Macrobrachium vollenhovenii, and (ii) differences in snail behavior (including movement, refuge-seeking and anti-predator behavior) between infected and uninfected snails. In predation trials, prawns showed a preference for consuming snails infected with schistosome larvae. In behavioral trials, infected snails moved less quickly and less often than uninfected snails, and were less likely to avoid predation by exiting the water or hiding under substrate. Although the mechanism by which the parasite alters snail behavior remains unknown, these results provide insight into the effects of parasitic infection on predator-prey dynamics and suggest that boosting natural rates of predation on snails may be a useful strategy for reducing transmission in schistosomiasis hotspots. © 2015. Published by The Company of Biologists Ltd.
Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions
Zu, Jian; Wang, Jinliang; Huang, Gang
2016-01-01
We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey’s trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator’s trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a possible outcome under asymmetric predator-prey interactions. PMID:27685540
Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis
NASA Astrophysics Data System (ADS)
Wang, Jianping; Wang, Mingxin
2018-06-01
This paper concerns the reaction-diffusion systems modeling the population dynamics of two predators and one prey with nonlinear prey-taxis. We first investigate the global existence and boundedness of the unique classical solution for the general model. Then, we study the global stabilities of nonnegative spatially homogeneous equilibria for an explicit system with type I functional responses and density-dependent death rates for the predators and logistic growth for the prey. Moreover, the convergence rates are also established.
Cuckoos vs. top predators as prime bioindicators of biodiversity in disturbed environments.
Morelli, Federico; Mousseau, Timothy A; Møller, Anders Pape
2017-10-01
We studied the abundance of the common cuckoo Cuculus canorus L. little cuckoo Cuculus poliocephalus L. and Asian cuckoo Cuculus saturatus L. and avian top predators as indicators of bird species richness (surrogate of biodiversity) in disturbed environments caused by radioactive contamination in Chernobyl, Ukraine and Fukushima, Japan, comparing their efficiency as indicators of local biodiversity hotspots. Bird species richness and birds abundance were quantified in each sample site during the breeding seasons between 2006 and 2015 and the level of background radiation was measured at every site. The correlation between number of cuckoos, top predators, land use composition and level of background radiation with bird species richness as response variable were examined using Generalized Linear Mixed Models. The strength of correlation between species richness and abundance and the covariates obtained from the model outputs were used as measure of the efficiency of each predictor, as well as the AIC of each model. Background radiation was negatively correlated with bird species richness and bird abundance in both countries, while number of top predators and cuckoos were both positively correlated with bird species richness and abundance. However, model with number of cuckoos was more performant than model with number of avian top predators. These differences in performance supports the hypothesis that cuckoos are a largely superior bioindicator than top predators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ocean acidification alters predator behaviour and reduces predation rate.
Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L
2017-02-01
Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).
Main predators of insect pests: screening and evaluation through comprehensive indices.
Yang, Tingbang; Liu, Jie; Yuan, Longyu; Zhang, Yang; Peng, Yu; Li, Daiqin; Chen, Jian
2017-11-01
Predatory natural enemies play key functional roles in integrated pest management. However, the screening and evaluation of the main predators of insect pests has seldom been reported in the field. Here, we employed comprehensive indices for evaluating the predation of a common pest (Ectropis obliqua) by nine common spider species in Chinese tea plantations. We established the relative dominance of the spider species and their phenological overlap with the pest species, and analyzed DNA from the nine spider species using targeted real-time quantitative polymerase chain reaction to identify the residual DNA of E. obliqua. The predation rates and predation numbers per predator were estimated by the positive rates of target fragments and the residual minimum number of E. obliqua in predators' guts, respectively. The results showed that only four spider species preyed on E. obliqua, and the order of potential of the spiders to control E. obliqua from greatest to smallest was Neoscona mellotteei, Xysticus ephippiatus, Evarcha albaria and Coleosoma octomaculatum by the Z-score method. The orb-weaving spider N. mellotteei has the maximum potential as a biological control agent of E. obliqua in an integrated pest management strategy. An approach of screening and evaluating main predators of insect pests through comprehensive indices was preliminarily established. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect
NASA Astrophysics Data System (ADS)
Cheng, Lifang; Cao, Hongjun
2016-09-01
A discrete-time predator-prey model with Allee effect is investigated in this paper. We consider the strong and the weak Allee effect (the population growth rate is negative and positive at low population density, respectively). From the stability analysis and the bifurcation diagrams, we get that the model with Allee effect (strong or weak) growth function and the model with logistic growth function have somewhat similar bifurcation structures. If the predator growth rate is smaller than its death rate, two species cannot coexist due to having no interior fixed points. When the predator growth rate is greater than its death rate and other parameters are fixed, the model can have two interior fixed points. One is always unstable, and the stability of the other is determined by the integral step size, which decides the species coexistence or not in some extent. If we increase the value of the integral step size, then the bifurcated period doubled orbits or invariant circle orbits may arise. So the numbers of the prey and the predator deviate from one stable state and then circulate along the period orbits or quasi-period orbits. When the integral step size is increased to a critical value, chaotic orbits may appear with many uncertain period-windows, which means that the numbers of prey and predator will be chaotic. In terms of bifurcation diagrams and phase portraits, we know that the complexity degree of the model with strong Allee effect decreases, which is related to the fact that the persistence of species can be determined by the initial species densities.
Peterson, Bonnie L.; Kus, Barbara E.; Deutschman, Douglas H.
2004-01-01
We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.
Herring, G.; Ackerman, Joshua T.; Takekawa, John Y.; Eagles-Smith, Collin A.; Eadie, J.M.
2011-01-01
We evaluated predation on nests and methods to detect predators using a combination of infrared cameras and plasticine eggs at nests of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in Don Edwards San Francisco Bay National Wildlife Refuge, San Mateo and Santa Clara counties, California. Each technique indicated that predation was prevalent; 59% of monitored nests were depredated. Most identifiable predation (n = 49) was caused by mammals (71%) and rates of predation were similar on avocets and stilts. Raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) each accounted for 16% of predations, whereas gray foxes (Urocyon cinereoargenteus) and avian predators each accounted for 14%. Mammalian predation was mainly nocturnal (mean time, 0051 h ?? 5 h 36 min), whereas most avian predation was in late afternoon (mean time, 1800 h ?? 1 h 26 min). Nests with cameras and plasticine eggs were 1.6 times more likely to be predated than nests where only cameras were used in monitoring. Cameras were associated with lower abandonment of nests and provided definitive identification of predators.
Herring, Garth; Ackerman, Joshua T.; Takekawa, John Y.; Eagles-Smith, Collin A.; Eadie, John M.
2011-01-01
We evaluated predation on nests and methods to detect predators using a combination of infrared cameras and plasticine eggs at nests of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in Don Edwards San Francisco Bay National Wildlife Refuge, San Mateo and Santa Clara counties, California. Each technique indicated that predation was prevalent; 59% of monitored nests were depredated. Most identifiable predation (n = 49) was caused by mammals (71%) and rates of predation were similar on avocets and stilts. Raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) each accounted for 16% of predations, whereas gray foxes (Urocyon cinereoargenteus) and avian predators each accounted for 14%. Mammalian predation was mainly nocturnal (mean time, 0051 h +/- 5 h 36 min), whereas most avian predation was in late afternoon (mean time, 1800 h +/- 1 h 26 min). Nests with cameras and plasticine eggs were 1.6 times more likely to be predated than nests where only cameras were used in monitoring. Cameras were associated with lower abandonment of nests and provided definitive identification of predators.
Annual post-dispersal weed seed predation in contrasting field environments
USDA-ARS?s Scientific Manuscript database
Interest in weed seed predation as an ecological weed management tactic has led to a growing number of investigations of agronomic and environmental effects on predation rates. Whereas the measurements in most of these studies have taken place at very short time scales, from days to weeks, measureme...
A Simple Relationship Between Short- and Long-term Seed Predation Rates
USDA-ARS?s Scientific Manuscript database
Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. For convenience, measurements of seed predation are often made at very short time scales (< 3 d). However, one of the primary uses of such data, the parameterization of models of cr...
Functional response models to estimate feeding rates of wading birds
Collazo, J.A.; Gilliam, J.F.; Miranda-Castro, L.
2010-01-01
Forager (predator) abundance may mediate feeding rates in wading birds. Yet, when modeled, feeding rates are typically derived from the purely prey-dependent Holling Type II (HoII) functional response model. Estimates of feeding rates are necessary to evaluate wading bird foraging strategies and their role in food webs; thus, models that incorporate predator dependence warrant consideration. Here, data collected in a mangrove swamp in Puerto Rico in 1994 were reanalyzed, reporting feeding rates for mixed-species flocks after comparing fits of the HoII model, as used in the original work, to the Beddington-DeAngelis (BD) and Crowley-Martin (CM) predator-dependent models. Model CM received most support (AIC c wi = 0.44), but models BD and HoII were plausible alternatives (AIC c ??? 2). Results suggested that feeding rates were constrained by predator abundance. Reductions in rates were attributed to interference, which was consistent with the independently observed increase in aggression as flock size increased (P < 0.05). Substantial discrepancies between the CM and HoII models were possible depending on flock sizes used to model feeding rates. However, inferences derived from the HoII model, as used in the original work, were sound. While Holling's Type II and other purely prey-dependent models have fostered advances in wading bird foraging ecology, evaluating models that incorporate predator dependence could lead to a more adequate description of data and processes of interest. The mechanistic bases used to derive models used here lead to biologically interpretable results and advance understanding of wading bird foraging ecology.
Winter wolf predation in a multiple ungulate prey system, Gates of the Arctic National Park, Alaska
Dale, Bruce W.; Adams, Layne G.; Bowyer, R. Terry; Carbyn, Ludwig N.; Fritts, Steven H.; Seip, Dale R.
1995-01-01
We investigated patterns of winter wolf predation, including prey selection, prey switching, kill rates, carcass utilization, and consumption rates for four wolf packs during three different study periods (March 1989, March 1990, and November 1990) in Gates of the Arctic National Park and Preserve, Alaska. Wolves killed predominantly caribou (165 caribou, seven moose, and five Dall sheep) even when moose and sheep were more abundant. Prey selection varied between study periods. More moose were killed in march 1989, a particularly deep snow year, and more sheep were killed in November 1990 than during other periods. Overall kill rates ranged from 0-8 days/ungulate killed (x̅ = 2.0, SD = 1.6) and did not vary between study periods. Pack size and species killed explained significant variation in the length of time intervals between kills. Although caribou density varied nearly 40-fold between pack territories, it had little influence on predation characteristics except at low densities, when kill rates may have declined. Caribou distribution had marked effects on wolf predation rate.
NASA Astrophysics Data System (ADS)
Suryanto, Agus; Darti, Isnani
2017-12-01
In this paper we discuss a fractional order predator-prey model with ratio-dependent functional response. The dynamical properties of this model is analyzed. Here we determine all equilibrium points of this model including their existence conditions and their stability properties. It is found that the model has two type of equilibria, namely the predator-free point and the co-existence point. If there is no co-existence equilibrium, i.e. when the coefficient of conversion from the functional response into the growth rate of predator is less than the death rate of predator, then the predator-free point is asymptotically stable. On the other hand, if the co-existence point exists then this equilibrium is conditionally stable. We also construct a nonstandard Grnwald-Letnikov (NSGL) numerical scheme for the propose model. This scheme is a combination of the Grnwald-Letnikov approximation and the nonstandard finite difference scheme. This scheme is implemented in MATLAB and used to perform some simulations. It is shown that our numerical solutions are consistent with the dynamical properties of our fractional predator-prey model.
Modelling the dynamics of traits involved in fighting-predators-prey system.
Kooi, B W
2015-12-01
We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population's strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population's strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.
Nichols, S. Jerrine; Kennedy, Gregory; Crawford, Eric; Allen, Jeffrey; French, John; Black, Glen; Blouin, Marc; Hickey, James P.; Chernyak, Sergei; Haas, Robert; Thomas, Michael
2003-01-01
One of the most threatened remaining populations of lake sturgeon in the Great Lakes is found in the connecting channels between Lake Huron and Lake Erie. Only two spawning grounds are presently known to be active in this region, and both are in the St. Clair River. The spawning reef in the St. Clair River delta has been recently colonized by round gobies (Neogobius melanostomus) in densities up to 25/m2, raising concerns regarding predation on the benthic-oriented eggs and larvae of the sturgeon. Investigations in 1998–1999 showed that while round goby predation does occur, a number of other factors may be equally affecting sturgeon spawning success, including few spawning adults (< 60), suspected poaching pressure, low retention rate of eggs on the reef, low hatch rate (~0.5%), the presence of organic contaminants, and predation from native and exotic invertebrates and fish. Overall, we estimate that less than 1% of the eggs deposited during a spawning run survive to hatch. We were able to increase the egg hatch rate to 16% by placing eggs in predator-exclusion chambers on the reef. The fate of the larvae is uncertain. Two weeks after hatching, no larvae were found on the reef. We were unable to find them anywhere else in the river, nor was predation on larvae noted in either year. There were factors other than predation affecting larval survival in 1999. There was a higher silt load on the reef than in 1998 and large numbers of dead larvae were found. Recruitment success from this site could be improved by utilizing techniques to increase the number of eggs on the reef, such as reducing the illegal take of adult fish and by placing eggs in predator-exclusion chambers to increase hatch rate.
Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators.
Dias, Cleide Rosa; Bernardo, Ana Maria Guimarães; Mencalha, Jussara; Freitas, Caelum Woods Carvalho; Sarmento, Renato Almeida; Pallini, Angelo; Janssen, Arne
2016-07-01
Prey are known to invest in costly antipredator behaviour when perceiving cues of dangerous, but not of relatively harmless predators. Whereas most studies investigate one type of antipredator behaviour, we studied several types (changes in oviposition, in escape and avoidance behaviour) in the spider mite Tetranychus evansi in response to cues from two predatory mites. The predator Phytoseiulus longipes is considered a dangerous predator for T. evansi, whereas Phytoseiulus macropilis has a low predation rate on this prey, thus is a much less dangerous predator. Spider mite females oviposited less on leaf disc halves with predator cues than on clean disc halves, independent of the predator species. On entire leaf discs, they laid fewer eggs in the presence of cues of the dangerous predator than on clean discs, but not in the presence of cues of the harmless predator. Furthermore, the spider mites escaped more often from discs with cues of the dangerous predator than from discs without predator cues, but they did not escape more from discs with cues of the harmless predator. The spider mites did not avoid plants with conspecifics and predators. We conclude that the spider mites displayed several different antipredator responses to the same predator species, and that some of these antipredator responses were stronger with cues of dangerous predators than with cues of harmless predators.
Kwon, Ji Eun; Jeong, Hae Jin; Kim, So Jin; Jang, Se Hyeon; Lee, Kyung Ha; Seong, Kyeong Ah
2017-09-01
Heterotrophic nanoflagellates are ubiquitous and known to be major predators of bacteria. The feeding of free-living heterotrophic nanoflagellates on phytoplankton is poorly understood, although these two components usually co-exist. To investigate the feeding and ecological roles of major heterotrophic nanoflagellates Katablepharis spp., the feeding ability of Katablepharis japonica on bacteria and phytoplankton species and the type of the prey that K. japonica can feed on were explored. Furthermore, the growth and ingestion rates of K. japonica on the dinoflagellate Akashiwo sanguinea-a suitable algal prey item-heterotrophic bacteria, and the cyanobacteria Synechococcus sp., as a function of prey concentration were determined. Among the prey tested, K. japonica ingested heterotrophic bacteria, Synechococcus sp., the prasinophyte Pyramimonas sp., the cryptophytes Rhodomonas salina and Teleaulax sp., the raphidophytes Heterosigma akashiwo and Chattonella ovata, the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum donghaiense, Alexandrium minutum, Cochlodinium polykrikoides, Gymnodinium catenatum, A. sanguinea, Coolia malayensis, and the ciliate Mesodinium rubrum, however, it did not feed on the dinoflagellates Alexandrium catenella, Gambierdiscus caribaeus, Heterocapsa triquetra, Lingulodinium polyedra, Prorocentrum cordatum, P. micans, and Scrippsiella acuminata and the diatom Skeletonema costatum. Many K. japonica cells attacked and ingested a prey cell together after pecking and rupturing the surface of the prey cell and then uptaking the materials that emerged from the ruptured cell surface. Cells of A. sanguinea supported positive growth of K. japonica, but neither heterotrophic bacteria nor Synechococcus sp. supported growth. The maximum specific growth rate of K. japonica on A. sanguinea was 1.01 d -1 . In addition, the maximum ingestion rate of K. japonica for A. sanguinea was 0.13ngC predator -1 d -1 (0.06 cells predator -1 d -1 ). The maximum ingestion rate of K. japonica for heterotrophic bacteria was 0.019ngC predator -1 d -1 (266 bacteria predator -1 d -1 ), and the highest ingestion rate of K. japonica for Synechococcus sp. at the given prey concentrations of up to ca. 10 7 cells ml -1 was 0.01ngC predator -1 d -1 (48 Synechococcus predator -1 d -1 ). The maximum daily carbon acquisition from A. sanguinea, heterotrophic bacteria, and Synechococcus sp. were 307, 43, and 22%, respectively, of the body carbon of the predator. Thus, low ingestion rates of K. japonica on heterotrophic bacteria and Synechococcus sp. may be responsible for the lack of growth. The results of the present study clearly show that K. japonica is a predator of diverse phytoplankton, including toxic or harmful algae, and may also affect the dynamics of red tides caused by these prey species. Copyright © 2017 Elsevier B.V. All rights reserved.
Habitat edges affect patterns of artificial nest predation along a wetland-meadow boundary
NASA Astrophysics Data System (ADS)
Suvorov, Petr; Svobodová, Jana; Albrecht, Tomáš
2014-08-01
Wetland habitats are among the most endangered ecosystems in the world. However, little is known about factors affecting the nesting success of birds in pristine grass-dominated wetlands. During three breeding periods we conducted an experiment with artificial ground nests to test two basic mechanisms (the matrix and ecotonal effects) that may result in edge effects on nest predation in grass-dominated wetland habitats. Whereas the matrix effect model supposes that predator penetrate from habitat of higher predator density to habitat of lower predator density, thus causing an edge effect in the latter, according to the ecotonal effect model predators preferentially use edge habitats over habitat interiors. In addition, we tested the edge effect in a wetland habitat using artificial shrub nests that simulated the real nests of small open-cup nesting passerines. In our study area, the lowest predation rates on ground nests were found in wetland interiors and were substantially higher along the edges of both wetland and meadow habitat. However, predation was not significantly different between meadow and wetland interiors, indicating that both mechanisms can be responsible for the edge effect in wetland edges. An increased predation rate along wetland edges was also observed for shrub nests, and resembled the predation pattern of real shrub nests in the same study area. Though we are not able to distinguish between the two mechanisms of the edge effect found, our results demonstrate that species nesting in wetland edges bordering arable land may be exposed to higher predation. Therefore, an increase in the size of wetland patches that would lead to a reduced proportion of edge areas might be a suitable management practice to protect wetland bird species in cultural European landscapes.
Winters, Lisa K.; Budy, Phaedra; Thiede, Gary P.
2017-01-01
Maintaining a balance between predator and prey populations can be an ongoing challenge for fisheries managers, especially in managing artificial ecosystems such as reservoirs. In a high-elevation Utah reservoir, the unintentional introduction of the Utah Chub Gila atraria and its subsequent population expansion prompted managers to experimentally shift from exclusively stocking Rainbow Trout Oncorhynchus mykiss to also stocking tiger trout (female Brown Trout Salmo trutta × male Brook Trout Salvelinus fontinalis) and Bonneville Cutthroat Trout O. clarkii utah (hereafter, Cutthroat Trout) as potential biological control agents. We measured a combination of diet, growth, temperature, and abundance and used bioenergetic simulations to quantify predator demand versus prey supply. Utah Chub were the predominant prey type for tiger trout, contributing up to 80% of the diet depending on the season. Utah Chub represented up to 70% of the total diet consumed by Cutthroat Trout. Although Utah Chub dominated the fish biomass in the reservoir, we still estimated abundances of 238,000 tiger trout, 214,000 Cutthroat Trout, and 55,000 Rainbow Trout. Consequently, when expanded to the population level of each predator, tiger trout and Cutthroat Trout consumed large quantities of Utah Chub on an annual basis: tiger trout consumed 508,000 kg (2,660 g/predator) of the standing prey population, and Cutthroat Trout consumed an estimated 322,000 kg (1,820 g/predator). The estimated combined consumption by Cutthroat Trout and tiger trout exceeded the estimate of Utah Chub annual production. As such, our results suggest that the high rates of piscivory exhibited by Cutthroat Trout and tiger trout in artificial lentic ecosystems are likely sufficient to effectively reduce the overall abundance of forage fishes and to prevent forage fishes from dominating fish assemblages. Collectively, this research provides the first documented findings on tiger trout ecology and performance, which will aid managers in designing and implementing the best stocking strategy to optimize sport fish performance, control undesirable forage fish, and enhance and maintain angler satisfaction.
Strauss, Sharon Y; Stanton, Maureen L; Emery, Nancy C; Bradley, Carrie A; Carleton, Alexandra; Dittrich-Reed, Dylan R; Ervin, Olivia A; Gray, Levi N; Hamilton, Andrew M; Rogge, Jennifer Harrington; Harper, Skye D; Law, Kimberley Cook; Pham, Vinh Q; Putnam, Matthew E; Roth, Tara M; Theil, Jacob H; Wells, Lara M; Yoshizuka, Eric M
2009-02-01
Although much of the theory on the success of invasive species has been geared at escape from specialist enemies, the impact of introduced generalist invertebrate herbivores on both native and introduced plant species has been underappreciated. The role of nocturnal invertebrate herbivores in structuring plant communities has been examined extensively in Europe, but less so in North America. Many nocturnal generalists (slugs, snails, and earwigs) have been introduced to North America, and 96% of herbivores found during a night census at our California Central Valley site were introduced generalists. We explored the role of these herbivores in the distribution, survivorship, and growth of 12 native and introduced plant species from six families. We predicted that introduced species sharing an evolutionary history with these generalists might be less vulnerable than native plant species. We quantified plant and herbivore abundances within our heterogeneous site and also established herbivore removal experiments in 160 plots spanning the gamut of microhabitats. As 18 collaborators, we checked 2000 seedling sites every day for three weeks to assess nocturnal seedling predation. Laboratory feeding trials allowed us to quantify the palatability of plant species to the two dominant nocturnal herbivores at the site (slugs and earwigs) and allowed us to account for herbivore microhabitat preferences when analyzing attack rates on seedlings. The relationship between local slug abundance and percent cover of five common plant taxa at the field site was significantly negatively associated with the mean palatability of these taxa to slugs in laboratory trials. Moreover, seedling mortality of 12 species in open-field plots was positively correlated with mean palatability of these taxa to both slugs and earwigs in laboratory trials. Counter to expectations, seedlings of native species were neither more vulnerable nor more palatable to nocturnal generalists than those of introduced species. Growth comparison of plants within and outside herbivore exclosures also revealed no differences between native and introduced plant species, despite large impacts of herbivores on growth. Cryptic nocturnal predation on seedlings was common and had large effects on plant establishment at our site. Without intensive monitoring, such predation could easily be misconstrued as poor seedling emergence.
Predator confusion is sufficient to evolve swarming behaviour.
Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph
2013-08-06
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.
Top predators negate the effect of mesopredators on prey physiology.
Palacios, Maria M; Killen, Shaun S; Nadler, Lauren E; White, James R; McCormick, Mark I
2016-07-01
Predation theory and empirical evidence suggest that top predators benefit the survival of resource prey through the suppression of mesopredators. However, whether such behavioural suppression can also affect the physiology of resource prey has yet to be examined. Using a three-tier reef fish food web and intermittent-flow respirometry, our study examined changes in the metabolic rate of resource prey exposed to combinations of mesopredator and top predator cues. Under experimental conditions, the mesopredator (dottyback, Pseudochromis fuscus) continuously foraged and attacked resource prey (juveniles of the damselfish Pomacentrus amboinensis) triggering an increase in prey O2 uptake by 38 ± 12·9% (mean ± SE). The visual stimulus of a top predator (coral trout, Plectropomus leopardus) restricted the foraging activity of the mesopredator, indirectly allowing resource prey to minimize stress and maintain routine O2 uptake. Although not as strong as the effect of the top predator, the sight of a large non-predator species (thicklip wrasse, Hemigymnus melapterus) also reduced the impact of the mesopredator on prey metabolic rate. We conclude that lower trophic-level species can benefit physiologically from the presence of top predators through the behavioural suppression that top predators impose on mesopredators. By minimizing the energy spent on mesopredator avoidance and the associated stress response to mesopredator attacks, prey may be able to invest more energy in foraging and growth, highlighting the importance of the indirect, non-consumptive effects of top predators in marine food webs. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Moreira, X; Abdala-Roberts, L; Zas, R; Merlo, E; Lombardero, M J; Sampedro, L; Mooney, K A
2016-11-01
Context-dependency in species interactions is widespread and can produce concomitant patterns of context-dependent selection. Masting (synchronous production of large seed crops at irregular intervals by a plant population) has been shown to reduce seed predation through satiation (reduction in rates of seed predation with increasing seed cone output) and thus represents an important source of context-dependency in plant-animal interactions. However, the evolutionary consequences of such dynamics are not well understood. Here we describe masting behaviour in a Mediterranean model pine species (Pinus pinaster) and present a test of the effects of masting on selection by seed predators on reproductive output. We predicted that masting, by enhancing seed predator satiation, could in turn strengthen positive selection by seed predators for larger cone output. For this we collected six-year data (spanning one mast year and five non-mast years) on seed cone production and seed cone predation rates in a forest genetic trial composed by 116 P. pinaster genotypes. Following our prediction, we found stronger seed predator satiation during the masting year, which in turn led to stronger seed predator selection for increased cone production relative to non-masting years. These findings provide evidence that masting can alter the evolutionary outcome of plant-seed predator interactions. More broadly, our findings highlight that changes in consumer responses to resource abundance represent a widespread mechanism for predicting and understanding context dependency in plant-consumer evolutionary dynamics. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Low levels of copper reduce the reproductive success of a mobile invertebrate predator.
Lee, Ka-Man; Johnston, Emma L
2007-09-01
Marine organisms that occur in urbanised bays can be exposed to low-level chronic pollution that results in sublethal changes to behavior or reproduction. The effects of low levels of copper on the reproductive success of a mobile invertebrate were assessed. Free living flatworms are common predators of bivalves and barnacles. Flatworms (Stylochus pygmaeus) were exposed to low levels of copper ranging from 0 to 25 microg L(-1) in the presence and absence of their barnacle prey (Balanus variegatus). Flatworms laid fewer egg batches when exposed to copper and the hatching success of the eggs was also reduced. Exposure to 25 microg L(-1) copper for 10 d reduced the reproductive success of flatworms by up to 80%. Results were consistent regardless of the presence or absence of prey (barnacles). Barnacles were only moderately affected by copper but exhibited major avoidance behavior (feeding inhibition) in the presence of flatworm predators. This is the first ecotoxicological study on marine flatworms. Experiments are required to quantify the effects of flatworm predator populations on sessile invertebrate community structure in the field.
Mönkkönen, M; Husby, M; Tornberg, R; Helle, P; Thomson, R L
2007-05-01
1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure alternative predation risks, and respond adaptively. From the prey perspective, the landscape is a mosaic of habitat patches the quality of which varies according to structural and floristic features, but also to the spatial distribution of predators.
Predation of artificial ground nests on white-tailed prairie dog colonies
Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.
1999-01-01
Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.
Farias, Ariel A; Jaksic, Fabian M
2007-03-01
1. Within mainstream ecological literature, functional structure has been viewed as resulting from the interplay of species interactions, resource levels and environmental variability. Classical models state that interspecific competition generates species segregation and guild formation in stable saturated environments, whereas opportunism causes species aggregation on abundant resources in variable unsaturated situations. 2. Nevertheless, intrinsic functional constraints may result in species-specific differences in resource-use capabilities. This could force some degree of functional structure without assuming other putative causes. However, the influence of such constraints has rarely been tested, and their relative contribution to observed patterns has not been quantified. 3. We used a multiple null-model approach to quantify the magnitude and direction (non-random aggregation or divergence) of the functional structure of a vertebrate predator assemblage exposed to variable prey abundance over an 18-year period. Observed trends were contrasted with predictions from null-models designed in an orthogonal fashion to account independently for the effects of functional constraints and opportunism. Subsequently, the unexplained variation was regressed against environmental variables to search for evidence of interspecific competition. 4. Overall, null-models accounting for functional constraints showed the best fit to the observed data, and suggested an effect of this factor in modulating predator opportunistic responses. However, regression models on residual variation indicated that such an effect was dependent on both total and relative abundance of principal (small mammals) and alternative (arthropods, birds, reptiles) prey categories. 5. In addition, no clear evidence for interspecific competition was found, but differential delays in predator functional responses could explain some of the unaccounted variation. Thus, we call for caution when interpreting empirical data in the context of classical models assuming synchronous responses of consumers to resource levels.
Interannual variability: a crucial component of space use at the territory level.
Uboni, Alessia; Vucetich, John A; Stahler, Daniel R; Smith, Douglas W
2015-01-01
Interannual variability in space use and how that variation is influenced by density-dependent and density-independent factors are important processes in population ecology. Nevertheless, interannual variability has been neglected by the majority of space use studies. We assessed that variation for wolves living in 15 different packs within Yellowstone National Park during a 13-year period (1996-2008). We estimated utilization distributions to quantify the intensity of space use within each pack's territory each year in summer and winter. Then, we used the volume of intersection index (VI) to quantify the extent to which space use varied from year to year. This index accounts for both the area of overlap and differences in the intensity of use throughout a territory and ranges between 0 and 1. The mean VI index was 0.49, and varied considerably, with approximately 20% of observations (n = 230) being <0.3 or >0.7. In summer, 42% of the variation was attributable to differences between packs. These differences can be attributable to learned behaviors and had never been thought to have such an influence on space use. In winter, 34% of the variation in overlap between years was attributable to interannual differences in precipitation and pack size. This result reveals the strong influence of climate on predator space use and underlies the importance of understanding how climatic factors are going to affect predator populations in the occurrence of climate change. We did not find any significant association between overlap and variables representing density-dependent processes (elk and wolf densities) or intraspecific competition (ratio of wolves to elk). This last result poses a challenge to the classic view of predator-prey systems. On a small spatial scale, predator space use may be driven by factors other than prey distribution.
Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival
Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.
2017-01-01
Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.
NASA Astrophysics Data System (ADS)
Tableau, A.; Brind'Amour, A.; Woillez, M.; Le Bris, H.
2016-05-01
Soft sediments in coastal shallow waters constitute nursery habitats for juveniles of several flatfishes. The quality of a nursery is defined by its capacity to optimize the growth and the survival of juvenile fish. The influence of biotic factors, such as food availability, is poorly studied at the scale of a nursery ground. Whether food availability limits juvenile survival is still uncertain. A spatial approach is used to understand the influence of food availability on the distribution of juvenile fish of various benthic and demersal species in the Bay of Vilaine (France), a productive nursery ground. We quantified the spatial overlap between benthic macro-invertebrates and their predators (juvenile fish) to assess if the latter were spatially covering the most productive areas of the Bay. Three scenarios describing the shapes of the predator-prey spatial relationship were tested to quantify the strength of the relationship and consequently the importance of food availability in determining fish distribution. Our results underline that both food availability and fish densities vary greatly over the nursery ground. When considering small organisational levels (e.g., a single fish species), the predator-prey spatial relationship was not clear, likely because of additional environmental effects not identified here; but at larger organisational level (the whole juvenile fish community), a strong overlap between the fish predators and their prey was identified. The evidence that fish concentrate in sectors with high food availability suggests that either food is the limiting factor in that nursery or/and fish display behavioural responses by optimising their energetic expenditures associated with foraging. Further investigations are needed to test the two hypotheses and to assess the impact of benthic and demersal juvenile fish in the food web of coastal nurseries.
Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival
NASA Astrophysics Data System (ADS)
Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.
2017-10-01
Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.
Direct identification of predator-prey dynamics in gyrokinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D; Diamond, Patrick H.
2015-09-15
The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varyingmore » level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.« less
USDA-ARS?s Scientific Manuscript database
Agroecosystems are speciose, making selection of natural enemies for conservation biological control non-trivial. Molecular gut analysis enables ranking of predators by the incidence of pest remains in the gut. However, predators differ in digestive rates, and ranking by incidence favors those with ...
Ims, Rolf A.; Henden, John-André; Thingnes, Anders V.; Killengreen, Siw T.
2013-01-01
Production cycles in birds are proposed as prime cases of indirect interactions in food webs. They are thought to be driven by predators switching from rodents to bird nests in the crash phase of rodent population cycles. Although rodent cycles are geographically widespread and found in different rodent taxa, bird production cycles appear to be most profound in the high Arctic where lemmings dominate. We hypothesized that this may be due to arctic lemmings inducing stronger predator responses than boreal voles. We tested this hypothesis by estimating predation rates in dummy bird nests during a rodent cycle in low-Arctic tundra. Here, the rodent community consists of a spatially variable mix of one lemming (Lemmus lemmus) and two vole species (Myodes rufocanus and Microtus oeconomus) with similar abundances. In consistence with our hypothesis, lemming peak abundances predicted well crash-phase nest predation rates, whereas the vole abundances had no predictive ability. Corvids were found to be the most important nest predators. Lemmings appear to be accessible to the whole predator community which makes them particularly powerful drivers of food web dynamics. PMID:24173526
Risky behavior and its effect on survival: snowshoe hare behavior under varying moonlight conditions
Gigliotti, Laura C.; Diefenbach, Duane R.
2018-01-01
Predation and predation risk can exert strong influences on the behavior of prey species. However, risk avoidance behaviors may vary among populations of the same species. We studied a population of snowshoe hares (Lepus americanus) near the southern edge of their range, in Pennsylvania. This population occupies different habitat types, experiences different environmental conditions, and are exposed to different predator species and densities than northern hare populations; therefore, they might exhibit differences in risk avoidance behaviors. We analyzed hare survival, movement rates, and habitat use under different levels of predation risk, as indexed by moonlight. Similar to previous work, we found snowshoe hare survival decreased with increased moon illumination during the winter, but we found differences in behavioral responses to increased predation risk. We found that snowshoe hares did not reduce movement rates during high‐risk nights, but instead found that hares selected areas with denser canopy cover, compared to low‐risk nights. We suggest that behavioral plasticity in response to predation risk allows populations of the same species to respond to localized conditions.
Aquatic insects provide a critical nutrient subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated relationships between aquatic (resource utilization) and contaminant exposure for a riparian invert...
Relationships between direct predation and risk effects.
Creel, Scott; Christianson, David
2008-04-01
Risk effects arise when prey alter their behavior in response to predators, and these responses carry costs. Empirical studies have found that risk effects can be large. Nonetheless, studies of predation in vertebrate conservation and management usually consider only direct predation. Given the ubiquity and strength of behavioral responses to predators by vertebrate prey, it is not safe to assume that risk effects on dynamics can be ignored. Risk effects can be larger than direct effects. Risk effects can exist even when the direct rate of predation is zero. Risk effects and direct effects do not necessarily change in parallel. When risk effects reduce reproduction rather than survival, they are easily mistaken for limitation by food supply.
Clarke, Gretel L; Brody, Alison K
2015-05-01
Most flowering plants are hermaphrodites. However, in gynodioecious species, some members of the population are male-sterile and reproduce only by setting seed, while others gain fitness through both male and female function. How females compensate for the loss of male function remains unresolved for most gynodioecious species. Here, as with many plants, fitness differences may be influenced by interactions with multiple species. However, whether multiple species interactions result in gender-specific fitness differences remains unknown. Using observational data from 2009-2010, we quantified seed set of the two sex morphs of Polemonium foliosissimu and asked how it is affected by pollination, and seed predation from a dipteran predispersal seed predator (Anthomyiidae: Hylemya sp.). We assessed seed production and losses to predation in 27 populations for one year and in six populations for a second year. Females set significantly more seed than did hermaphrodites in both years. Of the fitness components we assessed, including the number of flowers per plant, fruit set, seeds/fruit, and proportion of fruits destroyed by Hylemya, only fruit destruction differed significantly between the sexes. In one year, seeds/fruit and predation had a stronger effect on seed set for hermaphrodites than for females. Because predispersal seed predators do not pollinate flowers, their effects may depend on successful pollination of flowers on which they oviposit. To examine if genders differed in pollen limitation and seed predation and/or their interactive effects, in 2011 we hand-pollinated flowers and removed seed predator eggs in a fully factorial design. Both sexes were pollen limited, but their degree of pollen limitation did not differ. However, predation reduced.seed set more for hermaphrodites than for females. We found no significant interaction between hand pollen and seed predation, and no interaction between hand pollination and gender. Our results suggest that while interactions with both pollinators and seed predators affect reproductive success, floral enemies can cause inequality in seed set between genders. The next step is to understand how the seed set advantage affects long-term fitness and persistence of females in gynodioecious populations.
Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.
2012-01-01
Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650
Martin, Thomas E.; Boyce, Andy J.; Fierro-Calderon, Karolina; Mitchell, Adam E.; Armstad, Connor E.; Mouton, James C.; Bin Soudi, Evertius E.
2017-01-01
Nest structure is thought to provide benefits that have fitness consequences for several taxa. Traditionally, reduced nest predation has been considered the primary benefit underlying evolution of nest structure, whereas thermal benefits have been considered a secondary or even non-existent factor. Yet, the relative roles of these factors on nest structures remain largely unexplored.Enclosed nests have a constructed or natural roof connected to sides that allow a restricted opening or tube entrance that provides cover in all directions except the entrance, whereas open nests are cups or platforms that are open above. We show that construction of enclosed nests is more common among songbirds (Passeriformes) in tropical and southern hemisphere regions than in north temperate regions. This geographic pattern may reflect selection from predation risk, under long-standing assumptions that nest predation rates are higher in southern regions and that enclosed nests reduce predation risk compared with open cup nests. We therefore compared nest predation rates between enclosed vs. open nests in 114 songbird species that do not nest in tree holes among five communities of coexisting birds, and for 205 non-hole-nesting species from the literature, across northern temperate, tropical, and southern hemisphere regions.Among coexisting species, enclosed nests had lower nest predation rates than open nests in two south temperate sites, but not in either of two tropical sites or a north temperate site. Nest predation did not differ between nest types at any latitude based on literature data. Among 319 species from both our field studies and the literature, enclosed nests did not show consistent benefits of reduced predation and, in fact, predation was not consistently higher in the tropics, contrary to long-standing perspectives.Thermal benefits of enclosed nests were indicated based on three indirect results. First, species that built enclosed nests were smaller than species using open nests both among coexisting species and among species from the literature. Smaller species lose heat fastest and thereby may gain important thermal benefits from reduced convective cooling. Second, eggs were warmed by parents for less time in species with enclosed nests, as can be expected if egg cooling rates are slower. Finally, species using enclosed nests exhibited enhanced growth of mass and wings compared with species using open nests, suggesting reduced thermoregulatory costs allowed increased energy for growth.Enclosed nests may therefore provide more consistent thermal than nest predation benefits, counter to long-standing perspectives.
Predator effects on reef fish settlement depend on predator origin and recruit density.
Benkwitt, Cassandra E
2017-04-01
During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.
Cheng, Yi-Ru; Martin, Thomas E.
2012-01-01
Different body components are thought to trade off in their growth and development rates, but the causes for relative prioritization of any trait remains a critical question. Offspring of species at higher risk of predation might prioritize development of locomotor traits that facilitate escaping risky environments over growth of mass. We tested this possibility in 12 altricial passerine species that differed in their risk of nest predation. We found that rates of growth and development of mass, wings, and endothermy increased with nest predation risk across species. In particular, species with higher nest predation risk exhibited relatively faster growth of wings than of mass, fledged with relatively larger wing sizes and smaller mass, and developed endothermy earlier at relatively smaller mass. This differential development can facilitate both escape from predators and survival outside of the nest environment. Tarsus growth was not differentially prioritized with respect to nest predation risk, and instead all species achieved adult tarsus size by age of fledging. We also tested whether different foraging modes (aerial, arboreal, and ground foragers) might explain the variation of differential growth of locomotor modules, but we found that little residual variation was explained. Our results suggest that differences in nest predation risk among species are associated with relative prioritization of body components to facilitate escape from the risky nest environment.
A modified predator-prey model for the interaction of police and gangs.
Sooknanan, J; Bhatt, B; Comissiong, D M G
2016-09-01
A modified predator-prey model with transmissible disease in both the predator and prey species is proposed and analysed, with infected prey being more vulnerable to predation and infected predators hunting at a reduced rate. Here, the predators are the police and the prey the gang members. In this system, we examine whether police control of gangs is possible. The system is analysed with the help of stability analyses and numerical simulations. The system has five steady states-four of which involve no core gang members and one in which all the populations coexist. Thresholds are identified which determine when the predator and prey populations survive and when the disease remains endemic. For parameter values where the spread of disease among the police officers is greater than the death of the police officers, the diseased predator population survives, when it would otherwise become extinct.
Intraspecific variation in body size does not alter the effects of mesopredators on prey.
Gallagher, Austin J; Brandl, Simon J; Stier, Adrian C
2016-12-01
As humans continue to alter the species composition and size structure of marine food webs, it is critical to understand size-dependent effects of predators on prey. Yet, how shifts in predator body size mediate the effect of predators is understudied in tropical marine ecosystems, where anthropogenic harvest has indirectly increased the density and size of small-bodied predators. Here, we combine field surveys and a laboratory feeding experiment in coral reef fish communities to show that small and large predators of the same species can have similar effects. Specifically, surveys show that the presence of a small predator ( Paracirrhites arcatus ) was correlated with lower chances of prey fish presence, but these correlations were independent of predator size. Experimental trials corroborated the size-independent effect of the predator; attack rates were indistinguishable between small and large predators, suggesting relatively even effects of hawkfish in various size classes on the same type of prey. Our results indicate that the effects of small predators on coral reefs can be size-independent, suggesting that variation in predator size-structure alone may not always affect the functional role of these predators.
Can managers compensate for coyote predation of white-tailed deer?
Robinson, Kelly F.; Diefenbach, Duane R.; Fuller, Angela K.; Hurst, Jeremy E.; Rosenberry, Christopher S.
2014-01-01
Many studies have documented that coyotes (Canis latrans) are the greatest source of natural mortality for white-tailed deer (Odocoileus virginianus) neonates (<3 months old). With the range expansion of coyotes eastward in North America, many stakeholders are concerned that coyote predation may be affecting deer populations adversely. We hypothesized that declines in neonate survival, perhaps caused by increasing coyote predation, could be offset by adjusting or eliminating antlerless harvest allocations. We used a stochastic, age-based population simulation model to evaluate combinations of low neonate survival rates, severe winters, and low adult deer survival rates to determine the effectiveness of reduced antlerless harvest at stabilizing deer populations. We found that even in regions with high winter mortality, reduced antlerless harvest rates could stabilize deer populations with recruitment and survival rates reported in the literature. When neonate survival rates were low (25%) and yearling and adult female survival rates were reduced by 10%, elimination of antlerless harvests failed to stabilize populations. Our results suggest increased deer mortality from coyotes can be addressed through reduced hunting harvest of adult female deer in most circumstances throughout eastern North America. However, specific knowledge of adult female survival rates is important for making management decisions in areas where both neonate and adult survival may be affected by predation and other mortality factors.
Ryder, Thomas B; Reitsma, Robert; Evans, Brian; Marra, Peter P
2010-03-01
Despite the increasing pace of urbanization little is known about the factors that limit bird populations (i.e., population-level processes) within the urban/suburban land-use matrix. Here, we report rates of nest survival within the matrix of an urban land-use gradient in the greater Washington, D.C., USA, area for five common songbirds using data collected by scientists and citizens as part of a project called Neighborhood Nestwatch. Using program MARK, we modeled the effects of species, urbanization at multiple spatial scales (canopy cover and impervious surface), and observer (citizen vs. scientist) on nest survival of four open-cup and one cavity-nesting species. In addition, artificial nests were used to determine the relative impacts of specific predators along the land-use gradient. Our results suggest that predation on nests within the land-use matrix declines with urbanization but that there are species-specific differences. Moreover, variation in nest survival among species was best explained by urbanization metrics measured at larger "neighborhood" spatial scales (e.g., 1000 m). Trends were supported by data from artificial nests and suggest that variable predator communities (avian vs. mammalian) are one possible mechanism to explain differential nest survival. In addition, we assessed the quality of citizen science data and show that citizens had no negative effect on nest survival and provided estimates of nest survival comparable to Smithsonian biologists. Although birds nesting within the urban matrix experienced higher nest survival, individuals also faced a multitude of other challenges such as contaminants and invasive species, all of which could reduce adult survival.
Mueller, Gordon A.; Carpenter, Jeanette; Krapfel, Robert; Figiel, Chester
2007-01-01
Razorback suckers exercised (treatment) in water current (<0.3 m/s) for 10 weeks exhibited greater swimming stamina than unexercised, control fish. When exercised and unexercised razorback suckers were placed together with large predators in 2006, treatment fish had significantly fewer (n = 9, z = 1.69, p = 0.046) mortalities than control fish, suggesting increased stamina improved predator escape skills. Predator/prey tests comparing razorback suckers that had been previously exposed to a predation event with control fish, found treatment fish also had significantly fewer losses than predatornaïve fish (p = 0.017). Similar tests exposing predator-savvy and predator-naïve bonytail with largemouth bass showed a similar trend; predator-savvy bonytail suffered 38 percent fewer losses than control fish. However, there was not a statistically significant difference between the test groups (p = 0.143) due to small sample size. All exercise and predator exposure trials increased the survival rate of razorback sucker and bonytail compared to untreated counterparts.
Sidhu, Swati; Datta, Aparajita
2015-01-01
Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0.06) with seed size. Removal rates were significantly lower for soft seeds (p = 0.002), whereas predation rates were significantly higher on soft seeds (p = 0.01). Our results show that murid rodents play a very important role in affecting the seed fates of tropical trees in the Eastern Himalayas. We also found that the different rodent groups differed in their seed handling behavior and responses to changes in seed characteristics. PMID:26247616
The Signaller's Dilemma: A Cost–Benefit Analysis of Public and Private Communication
Römer, Heiner; Lang, Alexander; Hartbauer, Manfred
2010-01-01
Background Understanding the diversity of animal signals requires knowledge of factors which may influence the different stages of communication, from the production of a signal by the sender up to the detection, identification and final decision-making in the receiver. Yet, many studies on signalling systems focus exclusively on the sender, and often ignore the receiver side and the ecological conditions under which signals evolve. Methodology/Principal Findings We study a neotropical katydid which uses airborne sound for long distance communication, but also an alternative form of private signalling through substrate vibration. We quantified the strength of predation by bats which eavesdrop on the airborne sound signal, by analysing insect remains at roosts of a bat family. Males do not arbitrarily use one or the other channel for communication, but spend more time with private signalling under full moon conditions, when the nocturnal rainforest favours predation by visually hunting predators. Measurements of metabolic CO2-production rate indicate that the energy necessary for signalling increases 3-fold in full moon nights when private signalling is favoured. The background noise level for the airborne sound channel can amount to 70 dB SPL, whereas it is low in the vibration channel in the low frequency range of the vibration signal. The active space of the airborne sound signal varies between 22 and 35 meters, contrasting with about 4 meters with the vibration signal transmitted on the insect's favourite roost plant. Signal perception was studied using neurophysiological methods under outdoor conditions, which is more reliable for the private mode of communication. Conclusions/Significance Our results demonstrate the complex effects of ecological conditions, such as predation, nocturnal ambient light levels, and masking noise levels on the performance of receivers in detecting mating signals, and that the net advantage or disadvantage of a mode of communication strongly depends on these conditions. PMID:20967210
The role of internal waves in larval fish interactions with potential predators and prey
NASA Astrophysics Data System (ADS)
Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy
2014-09-01
Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.
Zanuncio, José Cola; Mourão, Sheila Abreu; Martínez, Luis Carlos; Wilcken, Carlos Frederico; Ramalho, Francisco S; Plata-Rueda, Angelica; Soares, Marcus Alvarenga; Serrão, José Eduardo
2016-09-06
This research investigated the effects of neem oil on mortality, survival and malformations of the non-target stink bug predator, Podisus nigrispinus. Neurotoxic and growth inhibitor insecticides were used to compare the lethal and sublethal effects from neem oil on this predator. Six concentrations of neem oil were topically applied onto nymphs and adults of this predator. The mortality rates of third, fourth, and fifth instar nymphs increased with increasing neem oil concentrations, suggesting low toxicity to P. nigrispinus nymphs. Mortality of adults was low, but with sublethal effects of neem products on this predator. The developmental rate of P. nigrispinus decreased with increasing neem oil concentrations. Longevity of fourth instar nymphs varied from 3.74 to 3.05 d, fifth instar from 5.94 to 4.07 d and adult from 16.5 and 15.7 d with 0.5 and 50% neem doses. Podisus nigrispinus presented malformations and increase with neem oil concentrations. The main malformations occur in wings, scutellum and legs of this predator. The neem oil at high and sub lethal doses cause mortality, inhibits growth and survival and results in anomalies on wings and legs of the non-traget predator P. nigrispinus indicating that its use associated with biological control should be carefully evaluated.
Griffen, Blaine D; Guy, Travis; Buck, Julia C
2008-01-01
1. With continued globalization, species are being transported and introduced into novel habitats at an accelerating rate. Interactions between invasive species may provide important mechanisms that moderate their impacts on native species. 2. The European green crab Carcinus maenas is an aggressive predator that was introduced to the east coast of North America in the mid-1800 s and is capable of rapid consumption of bivalve prey. A newer invasive predator, the Asian shore crab Hemigrapsus sanguineus, was first discovered on the Atlantic coast in the 1980s, and now inhabits many of the same regions as C. maenas within the Gulf of Maine. Using a series of field and laboratory investigations, we examined the consequences of interactions between these predators. 3. Density patterns of these two species at different spatial scales are consistent with negative interactions. As a result of these interactions, C. maenas alters its diet to consume fewer mussels, its preferred prey, in the presence of H. sanguineus. Decreased mussel consumption in turn leads to lower growth rates for C. maenas, with potential detrimental effects on C. maenas populations. 4. Rather than an invasional meltdown, this study demonstrates that, within the Gulf of Maine, this new invasive predator can moderate the impacts of the older invasive predator.
Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem
Dale, B.W.; Adams, Layne G.; Bowyer, R.T.
1994-01-01
1. We investigated the functional response of wolves (Canis lupus) to varying abundance of ungulate prey to test the hypothesis that switching from alternate prey to preferred prey results in regulation of a caribou (Rangifer tarandus) population at low densities. 2. We determined prey selection, kill rates, and prey abundance for four wolf packs during three 30-day periods in March 1989, March 1990, November 1990, and created a simple discrete model to evaluate the potential for the expected numerical and observed functional responses of wolves to regulate caribou populations. 3. We observed a quickly decelerating type II functional response that, in the absence of numerical response, implicates an anti-regulatory effect of wolf predation on barren-ground caribou dynamics. 4. There was little potential for regulation caused by the multiplicative effect of increasing functional and numerical responses because of presence of alternative prey. This resulted in high wolf:caribou ratios at low prey densities which precluded the effects of an increasing functional response. 5. Inversely density-dependent predation by other predators, such as bears, reduces the potential for predators to regulate caribou populations at low densities, and small reductions in predation by one predator may have disproportionately large effects on the total predation rate.
Predator response to releases of American shad larvae in the Susquehanna River basin
Johnson, James H.; Ringler, N.H.
1998-01-01
Predation on American shad (Alosa sapidissima) larvae within the first two hours of release was examined from 1989 to 1992 on 31 occasions at stocking sites in the Susquehanna River basin. Twenty-two fish species consumed shad larvae; the dominant predators were spotfin shiner (Cyprinella spiloptera), mimic shiner (Notropis volucellus) and juvenile smallmouth bass (Micropterus dolomieu). The number of shad larvae found in predator stomachs ranged from 0 to 900. Mortality of shad larvae at the stocking site was usually less than 2%. The greatest mortality (9.6%) occurred at the highest stocking level (1.5 million larvae). Highly variable predation rates and release levels of shad insufficient to achieve predator satiation hindered the ability to determine a specific type of functional response of predators. Predator numbers increased with stocking density, indicating short-term aggregation at the release site. Because of practical problems associated with releasing the large numbers of larvae that would be required to satiate predators, routine stocking at these levels is probably unreasonable. Releases of 400,000 to 700,000 larvae may reduce predation by offsetting depensatory mechanisms that operate on small releases and the effects of increased predation due to predator aggregation on large releases. Night stocking may reduce predation on larval shad at the release site.
Fish corallivory on a pocilloporid reef and experimental coral responses to predation
NASA Astrophysics Data System (ADS)
Palacios, M. M.; Muñoz, C. G.; Zapata, F. A.
2014-09-01
This study examined the effects of the Guineafowl pufferfish ( Arothron meleagris), a major corallivore in the Eastern Pacific, on pocilloporid corals on a reef at Gorgona Island, Colombia. Pufferfish occurred at a density of 171.2 individuals ha-1 and fed at a rate of 1.8 bites min-1, which produced a standing bite density of 366.2 bites m-2. We estimate that approximately 15.6 % of the annual pocilloporid carbonate production is removed by the pufferfish population. Examination of the predation effect on individual pocilloporid colonies revealed that although nubbins exposed to corallivory had lower linear growth, they gained similar weight and became thicker than those protected from it. Additionally, colonies with simulated predation injuries (on up to 75 % of branch tips) healed successfully and maintained growth rates similar to those of uninjured colonies. Despite the high corallivore pressure exerted by pufferfish on this reef, we conclude that they have a low destructive impact on Pocillopora colonies as corals can maintain their carbonate production rate while effectively recovering from partial predation. Due to its influence on colony morphology, pufferfish predation may increase environmentally induced morphological variability in Pocillopora.
Hughes, A. Randall; Rooker, Kelly; Murdock, Meagan; Kimbro, David L.
2012-01-01
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions. PMID:22970316
Caetano, João V O; Maia, Maya R; Manica, Lilian T; Macedo, Regina H
2014-11-01
Predation is a major force shaping natural history traits of birds because of their vulnerability during nesting and higher visibility during diurnal activities. For most birds in the Neotropics, predation is the major cause of nest failure due to the region's high diversity and abundance of predators. The blue-black grassquit (Volatinia jacarina), similarly to other small passerines in the savanna region of central Brazil, suffers extremely high rates of nest predation. Additionally, males may be particularly vulnerable to predators since they are very conspicuous when executing courtship displays. We assessed some of the non-lethal costs of predation risk on this species by comparing physiological and morphological parameters of birds exposed to predator vocalizations with that of control subjects exposed to non-predator vocalizations. Birds exposed to the predator vocalizations exhibited an immune-related reaction (changes in their H/L ratio), but no changes were observed in other biological parameters measured. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Gerard A.; United States. Bonneville Power Administration
1984-03-01
This study was initiated to determine the extent of predation by resident populations of native and introduced fish on juvenile salmonids in main stem Columbia River Reservoirs. The John Day Reservoir and tailrace was selected as the study area. First year objectives were: (1) determine whether native and introduced predators preyed on juvenile salmonids; (2) determine which species were major predators; and (3) locate areas where predation was most intense. Results indicated that juvenile salmonids were consumed by all four predatory fish species studied: northern squawfish (Ptychocheilus oregonensis), walleye (Stizostedion vitreum vitreum), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurusmore » punctatus). However, degree of predation varied among predators as a function of spatial distribution, apparent abundance, size, and temporal feeding behavior. 15 figs., 16 tabs.« less
Havens, Kayri; Jolls, Claudia L.; Marik, Julie E.; Vitt, Pati; McEachern, A. Kathryn; Kind, Darcy
2012-01-01
Larinus planus Frabicius (Curculionidae), is a seed-eating weevil that was inadvertently introduced into the US and was subsequently distributed in the US and Canada for the control of noxious thistle species of rangelands. It has been detected recently in the federally threatened Pitcher's thistle (Cirsium pitcheri). We assayed weevil damage in a natural population of Pitcher's thistle at Whitefish Dunes State Park, Door County, WI and quantified the impact on fecundity. We then estimated the impact of this introduced weevil and other emerging threats on two natural, uninvaded populations of Pitcher's thistle for which we have long-term demographic data for 16 yr (Wilderness State Park, Emmet County, MI) and 23 yr (Miller High Dunes, Indiana Dunes National Lakeshore, Porter County, IN). We used transition matrices to determine growth rates and project the potential effects of weevil damage, inbreeding, goldfinch predation, and vegetative succession on Pitcher's thistle population viability. Based on our models, weevil seed predation reduced population growth rate by 10–12%, but this reduction was enough to reduce time to extinction from 24 yr to 13 yr and 8 yr to 5 yr in the MI and IN population, respectively. This impact is particularly severe, given most populations of Pitcher's thistle throughout its range hover near or below replacement. This is the first report of unanticipated ecological impacts from a biocontrol agent on natural populations of Cirsium pitcheri.
Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J
Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.
Predator confusion is sufficient to evolve swarming behaviour
Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph
2013-01-01
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485
Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T.
2011-01-01
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156
Animal behaviour and algal camouflage jointly structure predation and selection.
Start, Denon
2018-05-01
Trait variation can structure interactions between individuals, thus shaping selection. Although antipredator strategies are an important component of many aquatic systems, how multiple antipredator traits interact to influence consumption and selection remains contentious. Here, I use a common larval dragonfly (Epitheca canis) and its predator (Anax junius) to test for the joint effects of activity rate and algal camouflage on predation and survival selection. I found that active and poorly camouflaged Epitheca were more likely to be consumed, and thus, survival selection favoured inactive and well-camouflaged individuals. Notably, camouflage dampened selection on activity rate, likely by reducing attack rates when Epitheca encountered a predator. Correlational selection is therefore conferred by the ecological interaction of traits, rather than by opposing selection acting on linked traits. I suggest that antipredator traits with different adaptive functions can jointly structure patterns of consumption and selection. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Impact of marine reserve on maximum sustainable yield in a traditional prey-predator system
NASA Astrophysics Data System (ADS)
Paul, Prosenjit; Kar, T. K.; Ghorai, Abhijit
2018-01-01
Multispecies fisheries management requires managers to consider the impact of fishing activities on several species as fishing impacts both targeted and non-targeted species directly or indirectly in several ways. The intended goal of traditional fisheries management is to achieve maximum sustainable yield (MSY) from the targeted species, which on many occasions affect the targeted species as well as the entire ecosystem. Marine reserves are often acclaimed as the marine ecosystem management tool. Few attempts have been made to generalize the ecological effects of marine reserve on MSY policy. We examine here how MSY and population level in a prey-predator system are affected by the low, medium and high reserve size under different possible scenarios. Our simulation works shows that low reserve area, the value of MSY for prey exploitation is maximum when both prey and predator species have fast movement rate. For medium reserve size, our analysis revealed that the maximum value of MSY for prey exploitation is obtained when prey population has fast movement rate and predator population has slow movement rate. For high reserve area, the maximum value of MSY for prey's exploitation is very low compared to the maximum value of MSY for prey's exploitation in case of low and medium reserve. On the other hand, for low and medium reserve area, MSY for predator exploitation is maximum when both the species have fast movement rate.
MIXING MODELS IN ANALYSES OF DIET USING MULTIPLE STABLE ISOTOPES: A CRITIQUE
Stable isotopes have become widely used in ecology to quantify the importance of different sources based on their isotopic signature. One example of this has been the determination of food webs, where the isotopic signatures of a predator and various prey items can be used to de...
2013-09-30
developed for the Victorian Marine Habitat Mapping Program (Ierodiaconou et al. 2007). These analyses will enable statistical comparisons of prey...determine whether patterns of specialisation observed in the videos reflected long-term trophic niche. The distribution of prey types encountered
Jennings, David E.; Gould, Juli R.; Vandenberg, John D.; Duan, Jian J.; Shrewsbury, Paula M.
2013-01-01
The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers. PMID:24349520
Jennings, David E; Gould, Juli R; Vandenberg, John D; Duan, Jian J; Shrewsbury, Paula M
2013-01-01
The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.
NASA Astrophysics Data System (ADS)
Greer, A. T.; Woodson, C. B.
2016-02-01
Because of the complexity and extremely large size of marine ecosystems, research attention has a strong focus on modelling the system through space and time to elucidate processes driving ecosystem state. One of the major weaknesses of current modelling approaches is the reliance on a particular grid cell size (usually 10's of km in the horizontal & water column mean) to capture the relevant processes, even though empirical research has shown that marine systems are highly structured on fine scales, and this structure can persist over relatively long time scales (days to weeks). Fine-scale features can have a strong influence on the predator-prey interactions driving trophic transfer. Here we apply a statistic, the AB ratio, used to quantify increased predator production due to predator-prey overlap on fine scales in a manner that is computationally feasible for larger scale models. We calculated the AB ratio for predator-prey distributions throughout the scientific literature, as well as for data obtained with a towed plankton imaging system, demonstrating that averaging across a typical model grid cell neglects the fine-scale predator-prey overlap that is an essential component of ecosystem productivity. Organisms from a range of trophic levels and oceanographic regions tended to overlap with their prey both in the horizontal and vertical dimensions. When predator swimming over a diel cycle was incorporated, the amount of production indicated by the AB ratio increased substantially. For the plankton image data, the AB ratio was higher with increasing sampling resolution, especially when prey were highly aggregated. We recommend that ecosystem models incorporate more fine-scale information both to more accurately capture trophic transfer processes and to capitalize on the increasing sampling resolution and data volume from empirical studies.
At-Sea Distribution and Prey Selection of Antarctic Petrels and Commercial Krill Fisheries.
Descamps, Sébastien; Tarroux, Arnaud; Cherel, Yves; Delord, Karine; Godø, Olaf Rune; Kato, Akiko; Krafft, Bjørn A; Lorentsen, Svein-Håkon; Ropert-Coudert, Yan; Skaret, Georg; Varpe, Øystein
2016-01-01
Commercial fisheries may impact marine ecosystems and affect populations of predators like seabirds. In the Southern Ocean, there is an extensive fishery for Antarctic krill Euphausia superba that is projected to increase further. Comparing distribution and prey selection of fishing operations versus predators is needed to predict fishery-related impacts on krill-dependent predators. In this context, it is important to consider not only predators breeding near the fishing grounds but also the ones breeding far away and that disperse during the non-breeding season where they may interact with fisheries. In this study, we first quantified the overlap between the distribution of the Antarctic krill fisheries and the distribution of a krill dependent seabird, the Antarctic petrel Thalassoica antarctica, during both the breeding and non-breeding season. We tracked birds from the world biggest Antarctic petrel colony (Svarthamaren, Dronning Maud Land), located >1000 km from the main fishing areas, during three consecutive seasons. The overall spatial overlap between krill fisheries and Antarctic petrels was limited but varied greatly among and within years, and was high in some periods during the non-breeding season. In a second step, we described the length frequency distribution of Antarctic krill consumed by Antarctic petrels, and compared this with results from fisheries, as well as from diet studies in other krill predators. Krill taken by Antarctic petrels did not differ in size from that taken by trawls or from krill taken by most Antarctic krill predators. Selectivity for specific Antarctic krill stages seems generally low in Antarctic predators. Overall, our results show that competition between Antarctic petrels and krill fisheries is currently likely negligible. However, if krill fisheries are to increase in the future, competition with the Antarctic petrel may occur, even with birds breeding thousands of kilometers away.
At-Sea Distribution and Prey Selection of Antarctic Petrels and Commercial Krill Fisheries
Descamps, Sébastien; Tarroux, Arnaud; Cherel, Yves; Delord, Karine; Godø, Olaf Rune; Kato, Akiko; Krafft, Bjørn A.; Lorentsen, Svein-Håkon; Ropert-Coudert, Yan; Skaret, Georg; Varpe, Øystein
2016-01-01
Commercial fisheries may impact marine ecosystems and affect populations of predators like seabirds. In the Southern Ocean, there is an extensive fishery for Antarctic krill Euphausia superba that is projected to increase further. Comparing distribution and prey selection of fishing operations versus predators is needed to predict fishery-related impacts on krill-dependent predators. In this context, it is important to consider not only predators breeding near the fishing grounds but also the ones breeding far away and that disperse during the non-breeding season where they may interact with fisheries. In this study, we first quantified the overlap between the distribution of the Antarctic krill fisheries and the distribution of a krill dependent seabird, the Antarctic petrel Thalassoica antarctica, during both the breeding and non-breeding season. We tracked birds from the world biggest Antarctic petrel colony (Svarthamaren, Dronning Maud Land), located >1000 km from the main fishing areas, during three consecutive seasons. The overall spatial overlap between krill fisheries and Antarctic petrels was limited but varied greatly among and within years, and was high in some periods during the non-breeding season. In a second step, we described the length frequency distribution of Antarctic krill consumed by Antarctic petrels, and compared this with results from fisheries, as well as from diet studies in other krill predators. Krill taken by Antarctic petrels did not differ in size from that taken by trawls or from krill taken by most Antarctic krill predators. Selectivity for specific Antarctic krill stages seems generally low in Antarctic predators. Overall, our results show that competition between Antarctic petrels and krill fisheries is currently likely negligible. However, if krill fisheries are to increase in the future, competition with the Antarctic petrel may occur, even with birds breeding thousands of kilometers away. PMID:27533327
Temporal Links in Daily Activity Patterns between Coral Reef Predators and Their Prey
Bosiger, Yoland J.; McCormick, Mark I.
2014-01-01
Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced. PMID:25354096
NASA Astrophysics Data System (ADS)
Buehler, Roman; Bosco, Laura; Arlettaz, Raphaël; Jacot, Alain
2017-01-01
The Woodlark is an insectivorous bird, which is listed as a priority species in Switzerland. In Valais, a stronghold of this species in the country, the birds breed in intensively managed vineyards and show a preference for parcels with ground vegetation during territory establishment. As a ground-breeder, the species is highly vulnerable to nest predation by avian and mammal predators. The aims of our study were firstly to investigate nest site preferences of the woodlark within vineyards and secondly to compare the predation risk of artificial nests dependent of ground vegetation structure. Our results point out that the Woodlark prefers patches of tall and dense ground cover within vegetated vineyard parcels and avoids parcels that have been treated with herbicides. In a follow-up experiment we conducted a study comparing the predation rate of artificial nests between bare parcels (<20% vegetated area) and vegetated parcels (>40% vegetated area). Artificial nests equipped with one quail egg were distributed pairwise between two adjacent parcels that fulfilled the upper criteria and were monitored by trail cameras during 10-12 days. Predation rate was generally low (4 predation events) and only occurred in bare parcels. These data indicate that conspicuousness of avian nests may be decreased in vegetated parcels and that the amount of vegetation can lower the predation risk on ground breeding birds - another indication for the importance of ground vegetation for a successful conservation of the endangered Woodlark in Swiss vineyards.
Informed renesting decisions: the effect of nest predation risk.
Pakanen, Veli-Matti; Rönkä, Nelli; Thomson, Robert L; Koivula, Kari
2014-04-01
Animals should cue on information that predicts reproductive success. After failure of an initial reproductive attempt, decisions on whether or not to initiate a second reproductive attempt may be affected by individual experience and social information. If the prospects of breeding success are poor, long-lived animals in particular should not invest in current reproductive success (CRS) in case it generates costs to future reproductive success (FRS). In birds, predation risk experienced during breeding may provide a cue for renesting success. Species having a high FRS potential should be flexible and take predation risk into account in their renesting decisions. We tested this prediction using breeding data of a long-lived wader, the southern dunlin Calidris alpina schinzii. As predicted, dunlin cued on predation risk information acquired from direct experience of nest failure due to predation and ambient nest predation risk. While the overall renesting rate was low (34.5%), the early season renesting rate was high but declined with season, indicating probable temporal changes in the costs and benefits of renesting. We develop a conceptual cost-benefit model to describe the effects of the phase and the length of breeding season on predation risk responses in renesting. We suggest that species investing in FRS should not continue breeding in short breeding seasons in response to predation risk but without time constraints, their response should be similar to species investing in CRS, e.g. within-season dispersal and increased nest concealment.
Axes of fear for stream fish: water depth and distance to cover
Bret C. Harvey; Jason L. White
2017-01-01
To better understand habitat-specific predation risk for stream fish, we used an approach that assumes animals trade off food for safety and accurately assess risk such that predation risk can be measured as a foraging cost: animals demand greater harvest rates to occupy riskier locations.We measured the foraging cost of predation risk for juvenile salmonids within...
ERIC Educational Resources Information Center
Curtis, Rachel; Klemens, Jeffrey A.; Agosta, Salvatore J.; Bartlow, Andrew W.; Wood, Steve; Carlson, Jason A.; Stratford, Jeffrey A.; Steele, Michael A.
2013-01-01
Predator-prey dynamics are an important concept in ecology, often serving as an introduction to the field of community ecology. However, these dynamics are difficult for students to observe directly. We describe a methodology that employs model caterpillars made of clay to estimate rates of predator attack on a prey species. This approach can be…
NASA Astrophysics Data System (ADS)
Oedekoven, Mark A.; Joern, Anthony
1998-12-01
Mortality rates in insects, including grasshoppers (Acrididae), are often stage- or size-specific. We estimated stage-specific mortality rates for three common grasshopper species from a Nebraska (USA) sandhills grassland ( Ageneotettix deorum, Melanoplus sanguinipes and Phoetaliotes nebrascensis), and partitioned the impact due to wandering spider predation from remaining sources. Survivorship was estimated for multiple developmental stages (3rd instar through adult) under experimental conditions that either prevented or permitted predation from free-living, wandering spiders (primarily Schizocosa species). Total stage-specific mortality, including spider predation, examined over the period of single stages was greatest for the youngest stages (91% for 3rd instar, 73% for 4th instar, 63.5% for 5th instar and 30.4% for adults). For the developmental stages considered and averaged for all species, the contribution to total mortality from spider predation over the 10-d period (approximately the length of a developmental stage) ranged from 17% for 3rd instar nymphs to 23% for 4th and 5th instars, and an undetectable level for adults. While spiders may depress grasshopper numbers, contributions from spider predation to grasshopper population dynamics are uncertain.
John C. Kilgo; Mark Vukovich; Michael J. Conroy; H. Scott Ray; Charles Ruth
2016-01-01
Recent evidence from the southeastern United States of high predation rates by coyotes (Canis latrans) on white-tailed deer (Odocoileus virginianus) fawns combined with reports of predation on adult female deer have prompted concern among wildlifemanagers and hunters regarding the effects ondeer populations.We examined survival rates and causes of...
Plastic Responses of a Sessile Prey to Multiple Predators: A Field and Experimental Study
Hirsch, Philipp Emanuel; Cayon, David; Svanbäck, Richard
2014-01-01
Background Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs. Principal Findings We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish) and a gape-size-limited (roach) predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength) against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density. Conclusions Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild. PMID:25517986
Invasive predators and global biodiversity loss
Glen, Alistair S.; Nimmo, Dale G.; Ritchie, Euan G.; Dickman, Chris R.
2016-01-01
Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions—58% of these groups’ contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as “possibly extinct.” Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss. PMID:27638204
Revisiting the Stability of Spatially Heterogeneous Predator-Prey Systems Under Eutrophication.
Farkas, J Z; Morozov, A Yu; Arashkevich, E G; Nikishina, A
2015-10-01
We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (1) the spatial gradient of the growth rate is due to abiotic factors only, and (2) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism. These results highlight the generality of the stabilization mechanisms we find in spatially structured predator-prey ecological systems in a heterogeneous environment.
Bird species turnover is related to changing predation risk along a vegetation gradient
LaManna, Joseph A.; Hemenway, Amy B.; Boccadori, Vanna; Martin, Thomas E.
2015-01-01
Turnover in animal species along vegetation gradients is often assumed to reflect adaptive habitat preferences that are narrower than the full gradient. Specifically, animals may decline in abundance where their reproductive success is low, and these poor-quality locations differ among species. Yet habitat use does not always appear adaptive. The crucial tests of how abundances and demographic costs of animals vary along experimentally manipulated vegetation gradients are lacking. We examined habitat use and nest predation rates for 16 bird species that exhibited turnover with shifts in deciduous and coniferous vegetation. For most bird species, decreasing abundance was associated with increasing predation rates along both natural and experimentally modified vegetation gradients. This landscape-scale approach strongly supports the idea that vegetation-mediated effects of predation are associated with animal distributions and species turnover.
Simulation and analysis of a model dinoflagellate predator-prey system
NASA Astrophysics Data System (ADS)
Mazzoleni, M. J.; Antonelli, T.; Coyne, K. J.; Rossi, L. F.
2015-12-01
This paper analyzes the dynamics of a model dinoflagellate predator-prey system and uses simulations to validate theoretical and experimental studies. A simple model for predator-prey interactions is derived by drawing upon analogies from chemical kinetics. This model is then modified to account for inefficiencies in predation. Simulation results are shown to closely match the model predictions. Additional simulations are then run which are based on experimental observations of predatory dinoflagellate behavior, and this study specifically investigates how the predatory dinoflagellate Karlodinium veneficum uses toxins to immobilize its prey and increase its feeding rate. These simulations account for complex dynamics that were not included in the basic models, and the results from these computational simulations closely match the experimentally observed predatory behavior of K. veneficum and reinforce the notion that predatory dinoflagellates utilize toxins to increase their feeding rate.
Ohata, R; Masuda, R; Yamashita, Y
2011-12-01
Laboratory experiments revealed distinct effects of turbidity on the survival of Japanese anchovy Engraulis japonicus larvae when exposed to either visual (jack mackerel Trachurus japonicus) or tactile (moon jellyfish Aurelia aurita) predators. The experiments were conducted in 30 l tanks with three levels of turbidity obtained by dissolving 0, 50 or 300 mg l(-1) of kaolin. Predators were introduced to experimental tanks followed by larvae of E. japonicus ranging from 5 to 25 mm standard lengths (L(s) ). When exposed to T. japonicus, the mean survival rate of larvae was significantly higher in 300 mg l(-1) treatments compared to the other turbidity levels. When exposed to A. aurita, however, there was no difference in the survival rates among different turbidity treatments. The survival rates when exposed to either predator improved with larval growth. The logistic survivorship models for E. japonicus larvae when exposed to A. aurita had an inflection point at c. 12 mm L(s) , suggesting that their size refuge from A. aurita is close to this value. Comparison to a previous study suggests a high vulnerability of shirasu (long and transparent) fish larvae to jellyfish predation under turbidity. This study indicates that anthropogenic increases of turbidity in coastal waters may increase the relative effect of jellyfish predation on fish larvae. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Santos, Kenia Fernanda Aguiar; Zanuzo Zanardi, Odimar; de Morais, Matheus Rovere; Jacob, Cynthia Renata Oliveira; de Oliveira, Monique Bárbara; Yamamoto, Pedro Takao
2017-11-01
Hippodamia convergens is an important predator found in different agroecosystems. We evaluated the impacts of six insecticides on eggs, larvae and adults of this predator. For eggs, all insecticides reduced larval hatching rates, but did not affect egg duration. Chlorpyrifos and phosmet reduced larval survival; and chlorpyrifos, etofenprox and phosmet prolonged the larva development time. The survival and duration of pupae were not affected by all insecticides tested. Chlorpyrifos reduced fecundity, fertility and longevity when eggs were sprayed. For first-instar larvae, chlorpyrifos, etofenprox, phosmet and imidacloprid caused 100% mortality, while azadirachtin and thiamethoxam caused 35.0 and 52.7% mortality, respectively. However, azadirachtin and thiamethoxam did not affect the other biological parameters of the predator. In adults, chlorpyrifos, etofenprox and phosmet reduced adult survival. Chlorpyrifos, etofenprox, and phosmet reduced fecundity and longevity, but did not affect fertility. Azadirachtin, imidacloprid and thiamethoxam did not affect fecundity, fertility or longevity. Based on demographic parameters, all insecticides reduced the net reproductive rate (R o ), intrinsic rate of increase (r) and finite rate of increase (λ) of the predator when eggs were treated directly. Azadirachtin, chlorpyrifos, etofenprox and phosmet increased the mean generation time (T), while the effects of imidacloprid and thiamethoxam were similar to the control. When first-instar larvae were treated, azadirachtin and thiamethoxam reduced the R o , r and λ. Thiamethoxam increased the T value, while the effects of the other insecticides were similar to the control. These insecticides should be used with caution, in order to reduce their harmful effects on the predator in agroecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lowenstein, David M; Gharehaghaji, Maryam; Wise, David H
2017-02-01
As Midwestern (United States) cities experience population decline, there is growing interest in converting underutilized vacant spaces to agricultural production. Urban agriculture varies in area and scope, yet most growers use similar cultivation practices such as avoiding chemical control of crop pests. For community gardens and farms that sell produce commercially, effective pest suppression by natural enemies is important for both societal, economic, and marketing reasons. To gauge the amount of prey suppression at 28 urban food-production sites, we measured removal of sentinel eggs and larvae of the cabbage looper Trichoplusia ni (Hubner), a caterpillar pest that defoliates Brassica. We investigated how landscape and local factors, such as scale of production, influence cabbage looper mortality caused by predators. Predators removed 50% of eggs and 25% of larvae over a 3-d period. Landscape factors did not predict mortality rates, and the amount of loss and damage to sentinel prey were similar across sites that differed in scale (residential gardens, community gardens, and farms). To confirm that removal of sentinel items was likely caused by natural enemies, we set up a laboratory assay that measured predation of cabbage looper eggs and larvae by several predators occurring in urban gardens. Lady beetles caused the highest mortality rates, suggesting their potential value for biocontrol; spiders and pirate bugs also consumed both eggs and larvae at high rates. Our results suggest that urban growers benefit from high consumption rates of cabbage looper eggs and larvae by arthropod predators. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Temperature-altered predator-prey dynamics in freshwater ponds in Arctic Greenland
NASA Astrophysics Data System (ADS)
Culler, L. E.; Ayres, M.
2011-12-01
Temperature sets the pace of many biological processes including species interactions. Describing the response of terrestrial and aquatic habitats to climate warming therefore requires studies of cross-trophic level dynamics. I use freshwater pond ecosystems in Arctic Greenland to study how the thermal environment shapes interactions between predators and their prey. This system is of interest because warming trends are notable, freshwaters are responding rapidly and dynamically to changes in temperature, and the biology of freshwaters is intimately linked to the terrestrial environment. My focal species are the Arctic mosquito (Diptera: Culicidae, Aedes nigripes) and its invertebrate predator, a predaceous diving beetle (Coleoptera: Dytiscidae, Colymbetes dolabratus). Both species develop as larvae in snow-melt ponds in May and June. I used experimental and observational studies to test effects of temperature on larval mosquito growth rates and predation rates by C. dolabratus. Results indicate strong effects of temperature on growth rate and development time but weak effects of temperature on consumption of mosquitoes by their predators. Incorporation of measured temperature response functions into a mosquito demographic model will elucidate how mosquito population dynamics in Arctic Greenland may change with temperature. For example, warming increases growth rate and decreases development time of mosquito larvae, which shortens the time larvae are exposed to predation. Additionally, decreased development time leads to an earlier mosquito emergence, with potential consequences for the health of wildlife. Evaluation of this model will reveal the importance of considering cross-trophic level dynamics when predicting mosquito population response to warming. Future studies will address interesting properties emerging from modeling, such as how shorter development time affects adult size and fitness, and connecting results to terrestrial systems in Arctic Greenland.
Tatara, Christopher P.; Riley, Stephen C.; Berejikian, Barry A.
2011-01-01
Hatchery supplementation of steelhead Oncorhynchus mykiss raises concerns about the impacts on natural populations, including reduced growth and survival, displacement, and increased predation. The potential risks may be density dependent.We examined how hatchery stocking density and the opportunity to emigrate affect the responses of natural steelhead parr in an experimental stream channel and after 15 d found no density-dependent effects on growth, emigration, or survival at densities ranging from 1-6 hatchery parr/m2. The opportunity for steelhead parr to emigrate reduced predation by coastal cutthroat trout O. clarkii clarkii on both hatchery and natural steelhead parr. The cutthroat trout exhibited a type-I functional response (constant predation rate with increased prey density) for the hatchery and composite populations. In contrast, the predation rate on natural parr decreased as hatchery stocking density increased. Supplementation with hatchery parr at any experimental stocking density reduced the final natural parr density. This decline was explained by increased emigration fromthe supplemented groups. Natural parr had higher mean instantaneous growth rates than hatchery parr. The proportion of parr emigrating decreased as parr size increased over successive experimental trials. Smaller parr had lower survival and suffered higher predation. The final density of the composite population, a measure of supplementation effectiveness, increased with the hatchery steelhead stocking rate. Our results indicate that stocking larger hatchery parr (over 50 d postemergence) at densities within the carrying capacity would have low short-term impact on the growth, survival, and emigration of natural parr while increasing the density of the composite population; in addition, a stocking density greater than 3 fish/m2 might be a good starting point for the evaluation of parr stocking in natural streams.
Ungulate predation and ecological roles of wolves and coyotes in eastern North America.
Benson, John F; Loveless, Karen M; Rutledge, Linda Y; Patterson, Brent R
2017-04-01
Understanding the ecological roles of species that influence ecosystem processes is a central goal of ecology and conservation biology. Eastern coyotes (Canis latrans) have ascended to the role of apex predator across much of eastern North America since the extirpation of wolves (Canis spp.) and there has been considerable confusion regarding their ability to prey on ungulates and their ecological niche relative to wolves. Eastern wolves (C. lycaon) are thought to have been the historical top predator in eastern deciduous forests and have previously been characterized as deer specialists that are inefficient predators of moose because of their smaller size relative to gray wolves (C. lupus). We investigated intrinsic and extrinsic influences on per capita kill rates of white-tailed deer (Odocoileus virginianus) and moose (Alces alces) during winter by sympatric packs of eastern coyotes, eastern wolves, and admixed canids in Ontario, Canada to clarify the predatory ability and ecological roles of the different canid top predators of eastern North America. Eastern coyote ancestry within packs negatively influenced per capita total ungulate (deer and moose combined) and moose kill rates. Furthermore, canids in packs dominated by eastern coyote ancestry consumed significantly less ungulate biomass and more anthropogenic food than packs dominated by wolf ancestry. Similar to gray wolves in previous studies, eastern wolves preyed on deer where they were available. However, in areas were deer were scarce, eastern wolves killed moose at rates similar to those previously documented for gray wolves at comparable moose densities across North America. Eastern coyotes are effective deer predators, but their dietary flexibility and low kill rates on moose suggest they have not replaced the ecological role of wolves in eastern North America. © 2017 by the Ecological Society of America.
Ocean acidification alters the response of intertidal snails to a key sea star predator.
Jellison, Brittany M; Ninokawa, Aaron T; Hill, Tessa M; Sanford, Eric; Gaylord, Brian
2016-06-29
Organism-level effects of ocean acidification (OA) are well recognized. Less understood are OA's consequences for ecological species interactions. Here, we examine a behaviourally mediated predator-prey interaction within the rocky intertidal zone of the temperate eastern Pacific Ocean, using it as a model system to explore OA's capacity to impair invertebrate anti-predator behaviours more broadly. Our system involves the iconic sea star predator, Pisaster ochraceus, that elicits flee responses in numerous gastropod prey. We examine, in particular, the capacity for OA-associated reductions in pH to alter flight behaviours of the black turban snail, Tegula funebralis, an often-abundant and well-studied grazer in the system. We assess interactions between these species at 16 discrete levels of pH, quantifying the full functional response of Tegula under present and near-future OA conditions. Results demonstrate the disruption of snail anti-predator behaviours at low pH, with decreases in the time individuals spend in refuge locations. We also show that fluctuations in pH, including those typical of rock pools inhabited by snails, do not materially change outcomes, implying little capacity for episodically benign pH conditions to aid behavioural recovery. Together, these findings suggest a strong potential for OA to induce cascading community-level shifts within this long-studied ecosystem. © 2016 The Author(s).
Loss of live coral compromises predator-avoidance behaviour in coral reef damselfish.
Boström-Einarsson, Lisa; Bonin, Mary C; Munday, Philip L; Jones, Geoffrey P
2018-05-17
Tropical reefs have experienced an unprecedented loss of live coral in the past few decades and the biodiversity of coral-dependent species is under threat. Many reef fish species decline in abundance as coral cover is lost, yet the mechanisms responsible for these losses are largely unknown. A commonly hypothesised cause of fish decline is the loss of shelter space between branches as dead corals become overgrown by algae. Here we tested this hypothesis by quantifying changes in predator-avoidance behaviour of a common damselfish, Pomacentrus moluccensis, before and after the death of their coral colony. Groups of P. moluccensis were placed on either healthy or degraded coral colonies, startled using a visual stimulus and their sheltering responses compared over a 7-week period. P. moluccensis stopped sheltering amongst the coral branches immediately following the death of the coral, despite the presence of ample shelter space. Instead, most individuals swam away from the dead coral, potentially increasing their exposure to predators. It appears that the presence of live coral rather than shelter per se is the necessary cue that elicits the appropriate behavioural response to potential predators. The disruption of this link poses an immediate threat to coral-associated fishes on degrading reefs.
Gehman, Alyssa-Lois M; Grabowski, Jonathan H; Hughes, A Randall; Kimbro, David L; Piehler, Michael F; Byers, James E
2017-01-01
Not all hosts, communities or environments are equally hospitable for parasites. Direct and indirect interactions between parasites and their predators, competitors and the environment can influence variability in host exposure, susceptibility and subsequent infection, and these influences may vary across spatial scales. To determine the relative influences of abiotic, biotic and host characteristics on probability of infection across both local and estuary scales, we surveyed the oyster reef-dwelling mud crab Eurypanopeus depressus and its parasite Loxothylacus panopaei, an invasive castrating rhizocephalan, in a hierarchical design across >900 km of the southeastern USA. We quantified the density of hosts, predators of the parasite and host, the host's oyster reef habitat, and environmental variables that might affect the parasite either directly or indirectly on oyster reefs within 10 estuaries throughout this biogeographic range. Our analyses revealed that both between and within estuary-scale variation and host characteristics influenced L. panopaei prevalence. Several additional biotic and abiotic factors were positive predictors of infection, including predator abundance and the depth of water inundation over reefs at high tide. We demonstrate that in addition to host characteristics, biotic and abiotic community-level variables both serve as large-scale indicators of parasite dynamics.
Warmer temperatures reduce the influence of an important keystone predator.
Bonaviri, Chiara; Graham, Michael; Gianguzza, Paola; Shears, Nick T
2017-05-01
Predator-prey interactions may be strongly influenced by temperature variations in marine ecosystems. Consequently, climate change may alter the importance of predators with repercussions for ecosystem functioning and structure. In North-eastern Pacific kelp forests, the starfish Pycnopodia helianthoides is known to be an important predator of the purple sea urchin Strongylocentrotus purpuratus. Here we investigated the influence of water temperature on this predator-prey interaction by: (i) assessing the spatial distribution and temporal dynamics of both species across a temperature gradient in the northern Channel Islands, California, and (ii) investigating how the feeding rate of P. helianthoides on S. purpuratus is affected by temperature in laboratory tests. On average, at sites where mean annual temperatures were <14 °C, P. helianthoides were common, S. purpuratus was rare and kelp was persistent, whereas where mean annual temperatures exceeded 14 °C, P. helianthoides and kelp were rare and S. purpuratus abundant. Temperature was found to be the primary environmental factor influencing P. helianthoides abundance, and in turn P. helianthoides was the primary determinant of S. purpuratus abundance. In the laboratory, temperatures >16 °C (equivalent to summer temperatures at sites where P. helianthoides were rare) reduced predation rates regardless of predator and prey sizes, although larger sea urchins were consumed only by large starfishes. These results clearly demonstrate that the effect of P. helianthoides on S. purpuratus is strongly mediated by temperature, and that the local abundance and predation rate of P. helianthoides on sea urchins will likely decrease with future warming. A reduction in top-down control on sea urchins, combined with other expected impacts of climate change on kelp, poses significant risks for the persistence of kelp forests in the future. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Tveraa, Torkild; Stien, Audun; Brøseth, Henrik; Yoccoz, Nigel G
2014-01-01
A major challenge in biodiversity conservation is to facilitate viable populations of large apex predators in ecosystems where they were recently driven to ecological extinction due to resource conflict with humans. Monetary compensation for losses of livestock due to predation is currently a key instrument to encourage human–carnivore coexistence. However, a lack of quantitative estimates of livestock losses due to predation leads to disagreement over the practice of compensation payments. This disagreement sustains the human–carnivore conflict. The level of depredation on year-round, free-ranging, semi-domestic reindeer by large carnivores in Fennoscandia has been widely debated over several decades. In Norway, the reindeer herders claim that lynx and wolverine cause losses of tens of thousands of animals annually and cause negative population growth in herds. Conversely, previous research has suggested that monetary predator compensation can result in positive population growth in the husbandry, with cascading negative effects of high grazer densities on the biodiversity in tundra ecosystems. We utilized a long-term, large-scale data set to estimate the relative importance of lynx and wolverine predation and density-dependent and climatic food limitation on claims for losses, recruitment and population growth rates in Norwegian reindeer husbandry. Claims of losses increased with increasing predator densities, but with no detectable effect on population growth rates. Density-dependent and climatic effects on claims of losses, recruitment and population growth rates were much stronger than the effects of variation in lynx and wolverine densities. Synthesis and applications. Our analysis provides a quantitative basis for predator compensation and estimation of the costs of reintroducing lynx and wolverine in areas with free-ranging semi-domestic reindeer. We outline a potential path for conflict management which involves adaptive monitoring programmes, open access to data, herder involvement and development of management strategy evaluation (MSE) models to disentangle complex responses including multiple stakeholders and individual harvester decisions. PMID:25558085
Parlato, Elizabeth H; Armstrong, Doug P
2018-02-17
Predicting reintroduction outcomes before populations are released is inherently challenging. It becomes even more difficult when the species being considered for reintroduction no longer co-exists with the key threats limiting its distribution. However, data from other species facing the same threats can be used to make predictions under these circumstances. We present an integrated Bayesian modelling approach for predicting growth of a reintroduced population at a range of predator densities when no data are available for the species in the presence of that predator. North Island saddlebacks (Philesturnus rufusater) were extirpated from mainland New Zealand by exotic mammalian predators, particularly ship rats (black rats, Rattus rattus), but are now being considered for reintroduction to sites with intensive predator control, creating an opportunity to develop this approach. We initially modeled data from previous saddleback reintroductions to predator-free sites to predict population growth at a new predator-free site while accounting for random variation in vital rates among sites. We then predict population growth at different rat tracking rates (an index of rat density) by incorporating a previously modelled relationship between rat tracking and vital rates of another predator-sensitive species, the North Island robin (Petroica longipes), and account for the greater vulnerability of saddlebacks to rat predation using information on historical declines of both species. The results allow population growth to be predicted as a function of management effort while accounting for uncertainty, allowing formal decision analysis to be used to decide whether to proceed with a reintroduction. Similar approaches could potentially be applied to other situations where data on the species of interest are limited, providing an alternative to decision making based solely on expert judgment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zanuncio, José Cola; Mourão, Sheila Abreu; Martínez, Luis Carlos; Wilcken, Carlos Frederico; Ramalho, Francisco S.; Plata-Rueda, Angelica; Soares, Marcus Alvarenga; Serrão, José Eduardo
2016-01-01
This research investigated the effects of neem oil on mortality, survival and malformations of the non-target stink bug predator, Podisus nigrispinus. Neurotoxic and growth inhibitor insecticides were used to compare the lethal and sublethal effects from neem oil on this predator. Six concentrations of neem oil were topically applied onto nymphs and adults of this predator. The mortality rates of third, fourth, and fifth instar nymphs increased with increasing neem oil concentrations, suggesting low toxicity to P. nigrispinus nymphs. Mortality of adults was low, but with sublethal effects of neem products on this predator. The developmental rate of P. nigrispinus decreased with increasing neem oil concentrations. Longevity of fourth instar nymphs varied from 3.74 to 3.05 d, fifth instar from 5.94 to 4.07 d and adult from 16.5 and 15.7 d with 0.5 and 50% neem doses. Podisus nigrispinus presented malformations and increase with neem oil concentrations. The main malformations occur in wings, scutellum and legs of this predator. The neem oil at high and sub lethal doses cause mortality, inhibits growth and survival and results in anomalies on wings and legs of the non-traget predator P. nigrispinus indicating that its use associated with biological control should be carefully evaluated. PMID:27596436
Peters, K.A.; Otis, D.L.
2005-01-01
The risk-disturbance hypothesis asserts that animals perceive human disturbance similar to nonlethal predation stimuli, and exhibit comparable responses in the form of optimization tradeoffs. However, few studies have examined how natural predation risk factors interact with human-disturbance stimuli to elicit such responses. We observed American Oystercatcher (Haematopus palliatus) vigilance behavior from September-December 2002 on the Cape Romain National Wildlife Refuge, South Carolina. A set of models was constructed based on 340 focal-animal samples and models revealed relationships between vigilance behavior, predator density, and boat activity. Oystercatchers increased vigilance in response to aerial predators, particularly late in the season when predator species composition was dominated by Northern Harriers (Circus cyaneus). At a broader temporal scale, oystercatchers exhibited the highest vigilance rates during simultaneous peaks in boating disturbance and Osprey (Pandion haliaetus) activity. Due to this temporal overlap of stimuli, it is difficult to interpret what may have been driving the observed increased in vigilance. Foraging rates appeared to be primarily driven by habitat and tidal stage indicating that time lost to vigilance did not effectively reduce intake. Taken together, these findings provide some support for the risk-disturbance hypothesis, underscore the sensitivity of disturbance studies to temporal scale, and draw attention to the potential confounding effects of natural predation risk. ?? The Cooper Ornithological Society 2005.
Jones, Michael L.; Eck, Gary W.; Evans, David O.; Fabrizio, Mary C.; Hoff, Michael H.; Hudson, Patrick L.; Janssen, John; Jude, David; O'Gorman, Robert; Savino, Jacqueline F.
1995-01-01
We examine evidence that biotic factors, particularly predation, may be limiting early survival of wild lake trout (Salvelinus namaycush) juveniles in many areas of the Great Lakes. The Great Lakes contain numerous potential predators of lake trout eggs and fry, some of which are recent invaders, and most of which were probably absent when lake trout most recently re-invaded the Great Lakes after the last ice age. Simple quantitative models of predation suggest that plausible assumptions about prey densities, predator feeding rates, and duration of exposure of predator to prey can lead to very high estimates of predation mortality, in some instances approaching 100%. Indirect evidence from inter-Great Lake comparisons and inland lake examples also suggest that biotic factors may impede successful lake trout colonization. Our synthesis of the evidence leads to recommendations for research to better define field feeding rates of lake trout egg and fry predators and comparative studies of densities of potential egg and fry predators on lake trout spawning reefs. Management options should be designed to provide useful information as well as achieve short-term goals. From a management standpoint we recommend that: newly constructed lake trout reefs should be placed well away from concentrations of potential predators; offshore spawning reefs should be stocked; salmonine stocking, nutrient abatement, and commercial harvest of alewives should all be considered as options to enhance survival of young lake trout; hatchery lake trout should not be stocked at sites where wild lake trout are showing signs of recovery; and exotic species expansions or introductions must be curtailed to maintain or improve on our recent successes in lake trout rehabilitation.
Schneider, N A; Griesser, M
2015-01-01
In nest-building species predation of nest contents is a main cause of reproductive failure and parents have to trade off reproductive investment against antipredatory behaviours. While this trade-off is modified by lifespan (short-lived species prioritize current reproduction; long-lived species prioritize future reproduction), it may vary within a breeding season, but this idea has only been tested in short-lived species. Yet, life history theory does not make any prediction how long-lived species should trade off current against future reproductive investment within a season. Here, we investigated this trade-off through predator-exposure experiments in a long-lived bird species, the brown thornbill. We exposed breeding pairs that had no prior within-season reproductive success to the models of a nest predator and a predator of adults during their first or second breeding attempt. Overall, parents reduced their feeding rate in the presence of a predator, but parents feeding second broods were more risk sensitive and almost ceased feeding when exposed to both types of predators. However, during second breeding attempts, parents had larger clutches and a higher feeding rate in the absence of predators than during first breeding attempts and approached both types of predators closer when mobbing. Our results suggest that the trade-off between reproductive investment and risk-taking can change in a long-lived species within a breeding season depending on both prior nest predation and renesting opportunities. These patterns correspond to those in short-lived species, raising the question of whether a within-season shift in reproductive investment trade-offs is independent of lifespan. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Sparrevik, Erik; Leonardsson, Kjell
1995-02-01
We performed laboratory experiments to investigate the effects of predator avoidance and numerical effects of predation on spatial distribution of small Saduria entomon (Isopoda) and Monoporeia affinis (Amphipoda), with large S. entomon as predators. The horizontal distribution and mortality of the prey species, separately and together, were studied in aquaria with a spatial horizontal refuge. We also estimated effects of refuge on mortality of small S. entomon and M. affinis by experiments without the refuge net. In addition, we investigated whether predation risk from large S. entomon influenced the swimming activity of M. affinis, to clarify the mechanisms behind the spatial distribution. Both small S. entomon and M. affinis avoided large S. entomon. The avoidance behaviour of M. fffinis contributed about 10 times more to the high proportion in the refuge than numerical effects of predation. Due to the low mortality of small S. entomon the avoidance behaviour of this species was even more important for the spatial distribution. The combined effect of avoidance behaviour and predation in both species was aggregation, producting a positive correlation between the species in density. M. affinis showed two types of avoidance behaviour. In the activity experiments they reduced activity by 36% and buried themselves in the sediment. In the refuge experiments we also observed avoidance behaviour with the emigration rate from the predator compartment being twice the immigration rate. The refuge did not lower predation mortality in M. affinis, probably due to the small scale of the experimental units in relation to the mobility of the species. Predation mortality in small S. entomon was higher in absence of a refuge and especially high in absence of M. affinis.
Linking snake habitat use to nest predation risk in grassland birds: the dangers of shrub cover.
Klug, Page E; Jackrel, Sara L; With, Kimberly A
2010-03-01
Extremes in rangeland management, varying from too-frequent fire and intensive grazing to the suppression of both, threaten rangeland ecosystems worldwide. Intensive fire and grazing denude and homogenize vegetation whereas their suppression increases woody cover. Although habitat loss is implicated in grassland bird declines, degradation through intensive management or neglect also decreases breeding habitat and may reduce nesting success through increased rates of nest predation. Snakes are important nest predators, but little is known about how habitat use in snakes relates to predation risk for grassland birds nesting within tallgrass prairie subjected to different grazing and fire frequencies. We evaluated nest survival in the context of habitat used by nesting songbirds and two bird-eating snakes, the eastern yellowbelly racer Coluber constrictor flaviventris and Great Plains ratsnake Pantherophis emoryi. Daily nest survival rates decreased with increasing shrub cover and decreasing vegetation height, which characterize grasslands that have been neglected or intensively managed, respectively. Discriminant function analysis revealed that snake habitats were characterized by higher shrub cover, whereas successful nests were more likely to occur in areas with tall grass and forbs but reduced shrub cover. Because snakes often use shrub habitat, birds nesting in areas with increased shrub cover may be at higher risk of nest predation by snakes in addition to other predators known to use shrub habitat (e.g., mid-sized carnivores and avian predators). Depredated nests also occurred outside the discriminant space of the snakes, indicating that other predators (e.g., ground squirrels Spermophilus spp. and bullsnakes Pituophis catenifer) may be important in areas with denuded cover. Targeted removal of shrubs may increase nest success by minimizing the activity of nest predators attracted to shrub cover.
Amundrud, Sarah L; Srivastava, Diane S; O'Connor, Mary I
2015-07-01
Herbivore communities can be sensitive to changes in predator pressure (top-down effects) and resource availability (bottom-up effects) in a wide range of systems. However, it remains unclear whether such top-down and bottom-up effects reflect direct impacts of predators and/or resources on herbivores, or are indirect, reflecting altered interactions among herbivore species. We quantified direct and indirect effects of bottom-up and top-down processes on an eelgrass (Zostera marina) herbivore assemblage. In a field experiment, we factorially manipulated water column nutrients (with Osmocote(™) slow-release fertilizer) and predation pressure (with predator exclusion cages) and measured the effects on herbivore abundance, richness and beta diversity. We examined likely mechanisms of community responses by statistically exploring the response of individual herbivore species to trophic manipulations. Predators increased herbivore richness and total abundance, in both cases through indirect shifts in community composition. Increases in richness occurred through predator suppression of common gammarid amphipod species (Monocorophium acherusicum and Photis brevipes), permitting the inclusion of rarer gammarid species (Aoroides columbiae and Pontogeneia rostrata). Increased total herbivore abundance reflected increased abundance of a caprellid amphipod species (Caprella sp.), concurrent with declines in the abundance of other common species. Furthermore, predators decreased beta diversity by decreasing variability in Caprella sp. abundance among habitat patches. Osmocote(™) fertilization increased nutrient concentrations locally, but nutrients dissipated to background levels within 3 m of the fertilizer. Nutrient addition weakly affected the herbivore assemblage, not affecting richness and increasing total abundance by increasing one herbivore species (Caprella sp.). Nutrient addition did not affect beta diversity. We demonstrated that assemblage-level effects of trophic manipulations on community structure are the result of distinct and often indirect responses of herbivore species. These results underscore the importance of understanding herbivore-herbivore interactions in a system commonly subjected to both eutrophication and overfishing. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
NASA Astrophysics Data System (ADS)
Turra, Alexander; Fernandez, Wellington S.; Bessa, Eduardo; Santos, Flavia B.; Denadai, Márcia R.
2015-12-01
Top-down control is an important force modulating the abundance of prey and structuring marine communities. The harvested trigonal clam Tivela mactroides is hypothesized to be part of the diet of a variety of marine organisms, with its stock influencing predator abundance and being influenced by them. Here we analyzed the diet of potential predators of T. mactroides in Caraguatatuba Bay, northern coast of São Paulo State, Brazil, to identify the main consumers of this marine resource, and also to address the importance of this clam in the diet of each predator. Samples were taken year-round by trawls; all specimens collected were identified and measured and the food items identified and quantified. Twenty-one species consumed T. mactroides, whose importance in the diet varied greatly in both the volume ingested and the frequency of occurrence (pompano Trachinotus carolinus > blue crab Callinectes danae > starfish Astropecten marginatus). Top-down influence on T. mactroides was also dependent on the abundance of consumers (yellow catfish Cathorops spixii > rake stardrum Stellifer rastrifer > barred grunt Conodon nobilis > A. marginatus). Considering the mean volume ingested, the frequency of occurrence of T. mactroides in the diet, and the relative abundance of consumers, the predators that most influenced T. mactroides were T. carolinus, A. marginatus, and C. danae, in decreasing order. Large numbers of small-sized individuals of T. mactroides (<10 mm) were generally preyed upon by A. marginatus, which may have a stronger effect on clam abundance in comparison to C. danae and T. carolinus, which preyed upon larger clams. In conclusion, the results of this study indicate that predators' consumption of T. mactroides in Caraguatatuba Bay can influence its stocks, mainly due to the type and/or abundance of predator species, the volume and number of individuals of T. mactroides preyed upon, and the temporal variations in the abundance of predators.
Invasive and introduced reptiles and amphibians: Chapter 28
Reed, Robert N.; Krysko, Kenneth L.; Mader, Douglas R.; Divers, Stephen J.
2014-01-01
Why is there a section on introduced amphibians and reptiles in this volume, and why should veterinarians care about this issue? Globally, invasive species are a major threat to the stability of native ecosystems,1,2 and amphibians and reptiles are attracting increased attention as potential invaders. Some introduced amphibians and reptiles have had a major impact (e.g., Brown Tree Snakes [Boiga irregularis] wiping out the native birds of Guam3 or Cane Toads [Rhinella marina] poisoning native Australian predators).4 For the vast majority of species, however, the ecological, economic, and sociopolitical effects of introduced amphibians and reptiles are generally poorly quantified, largely because of a lack of focused research effort rather than because such effects are nonexistent. This trend is alarming given that rates of introduction have increased exponentially in recent decades.
Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia
2017-01-01
On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger) eggs are jaguars (Panthera onca), tegu lizards (Tupinambis teguixim), capuchin monkeys (Sapajus macrocephalus) and humans (Homo sapiens). In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests. PMID:28854258
Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia.
Torralvo, Kelly; Botero-Arias, Robinson; Magnusson, William E
2017-01-01
On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger) eggs are jaguars (Panthera onca), tegu lizards (Tupinambis teguixim), capuchin monkeys (Sapajus macrocephalus) and humans (Homo sapiens). In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests.
Petersen, James H.; DeAngelis, Donald L.
1992-01-01
The behavior of individual northern squawfish (Ptychocheilus oregonensis) preying on juvenile salmonids was modeled to address questions about capture rate and the timing of prey captures (random versus contagious). Prey density, predator weight, prey weight, temperature, and diel feeding pattern were first incorporated into predation equations analogous to Holling Type 2 and Type 3 functional response models. Type 2 and Type 3 equations fit field data from the Columbia River equally well, and both models predicted predation rates on five of seven independent dates. Selecting a functional response type may be complicated by variable predation rates, analytical methods, and assumptions of the model equations. Using the Type 2 functional response, random versus contagious timing of prey capture was tested using two related models. ln the simpler model, salmon captures were assumed to be controlled by a Poisson renewal process; in the second model, several salmon captures were assumed to occur during brief "feeding bouts", modeled with a compound Poisson process. Salmon captures by individual northern squawfish were clustered through time, rather than random, based on comparison of model simulations and field data. The contagious-feeding result suggests that salmonids may be encountered as patches or schools in the river.
Jeong, Hae Jin; Lim, An Suk; Yoo, Yeong Du; Lee, Moo Joon; Lee, Kyung Ha; Jang, Tae Young; Lee, Kitack
2014-01-01
To investigate heterotrophic protists grazing on Symbiodinium sp., we tested whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oblea rotundata, Oxyrrhis marina, and Polykrikos kofoidii and the ciliates Balanion sp. and Parastrombidinopsis sp. preyed on the free-living dinoflagellate Symbiodinium sp. (clade E). We measured the growth and ingestion rates of O. marina and G. dominans on Symbiodinium sp. as a function of prey concentration. Furthermore, we compared the results to those obtained for other algal prey species. In addition, we measured the growth and ingestion rates of other predators at single prey concentrations at which these rates of O. marina and G. dominans were saturated. All predators tested in the present study, except Balanion sp., preyed on Symbiodinium sp. The specific growth rates of O. marina and G. dominans on Symbiodinium sp. increased rapidly with increasing mean prey concentration < ca. 740-815 ng C/ml (7,400-8,150 cells/ml), but became saturated at higher concentrations. The maximum growth rates of O. marina and G. dominans on Symbiodinium sp. (0.87 and 0.61/d) were much higher than those of G. moestrupii and P. kofoidii (0.11 and 0.04/d). Symbiodinium sp. did not support positive growth of G. spirale, O. rotundata, and Parastrombidinopsis sp. However, the maximum ingestion rates of P. kofoidii and Parastrombidinopsis sp. (6.7-10.0 ng C/predator/d) were much higher than those of O. marina and G. dominans on Symbiodinium sp. (1.9-2.1 ng C/predator/d). The results of the present study suggest that Symbiodinium sp. may increase or maintain the populations of some predators. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
Rayl, Nathaniel D; Bastille-Rousseau, Guillaume; Organ, John F; Mumma, Matthew A; Mahoney, Shane P; Soulliere, Colleen E; Lewis, Keith P; Otto, Robert D; Murray, Dennis L; Waits, Lisette P; Fuller, Todd K
2018-05-01
Prey abundance and prey vulnerability vary across space and time, but we know little about how they mediate predator-prey interactions and predator foraging tactics. To evaluate the interplay between prey abundance, prey vulnerability and predator space use, we examined patterns of black bear (Ursus americanus) predation of caribou (Rangifer tarandus) neonates in Newfoundland, Canada using data from 317 collared individuals (9 bears, 34 adult female caribou, 274 caribou calves). During the caribou calving season, we predicted that landscape features would influence calf vulnerability to bear predation, and that bears would actively hunt calves by selecting areas associated with increased calf vulnerability. Further, we hypothesized that bears would dynamically adjust their foraging tactics in response to spatiotemporal changes in calf abundance and vulnerability (collectively, calf availability). Accordingly, we expected bears to actively hunt calves when they were most abundant and vulnerable, but switch to foraging on other resources as calf availability declined. As predicted, landscape heterogeneity influenced risk of mortality, and bears displayed the strongest selection for areas where they were most likely to kill calves, which suggested they were actively hunting caribou. Initially, the per-capita rate at which bears killed calves followed a type-I functional response, but as the calving season progressed and calf vulnerability declined, kill rates dissociated from calf abundance. In support of our hypothesis, bears adjusted their foraging tactics when they were less efficient at catching calves, highlighting the influence that predation phenology may have on predator space use. Contrary to our expectations, however, bears appeared to continue to hunt caribou as calf availability declined, but switched from a tactic of selecting areas of increased calf vulnerability to a tactic that maximized encounter rates with calves. Our results reveal that generalist predators can dynamically adjust their foraging tactics over short time-scales in response to changing prey abundance and vulnerability. Further, they demonstrate the utility of integrating temporal dynamics of prey availability into investigations of predator-prey interactions, and move towards a mechanistic understanding of the dynamic foraging tactics of a large omnivore. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
PFAS profiles in three North Sea top predators: metabolic differences among species?
Galatius, Anders; Bossi, Rossana; Sonne, Christian; Rigét, Frank Farsø; Kinze, Carl Christian; Lockyer, Christina; Teilmann, Jonas; Dietz, Rune
2013-11-01
Profiles of seven compounds of perfluoro-alkyl substances (PFASs) were compared among three species of top predators from the Danish North Sea: the white-beaked dolphin (Lagenorhynchus albirostris), the harbor porpoise (Phocoena phocoena), and the harbor seal (Phoca vitulina). The seals had higher total burdens (757.8 ng g(-1) ww) than the dolphins (439.9 ng g(-1) ww) and the porpoises (355.8 ng g(-1) ww), probably a reflection of feeding closer to the shore and thus contamination sources. The most striking difference among the species was the relative contribution of perfluorooctanesulfonamide (PFOSA) to the profiles; the seals (0.1%) had much lower levels than porpoises (8.3%) and dolphins (26.0%). In combination with the values obtained from the literature, this result indicates that Carnivora species including Pinnipedia have a much higher capacity of transforming PFOSA to perfluorooctane sulfonic acid (PFOS) than cetacean species. Another notable difference among the species was that the two smaller species (seals and porpoises) with supposedly higher metabolic rates had lower concentrations of the perfluorinated carboxylic acids, which are generally more easily excreted than perfluorinated sulfonamides. Species-specific characteristics should be recognized when PFAS contamination in marine mammals is investigated, for example, several previous studies of PFASs in cetaceans have not quantified PFOSA.
Forcada, J.; Malone, D.; Royle, J. Andrew; Staniland, I.J.
2009-01-01
Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90-125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12-16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the "escapement" due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management. ?? 2009 Elsevier B.V.
Forcada, J.; Royle, J. Andrew; Staniland, I.J.
2009-01-01
Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90?125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12?16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the ?escapement? due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management.
Quantifying site-specific physical heterogeneity within an estuarine seascape
Kennedy, Cristina G.; Mather, Martha E.; Smith, Joseph M.
2017-01-01
Quantifying physical heterogeneity is essential for meaningful ecological research and effective resource management. Spatial patterns of multiple, co-occurring physical features are rarely quantified across a seascape because of methodological challenges. Here, we identified approaches that measured total site-specific heterogeneity, an often overlooked aspect of estuarine ecosystems. Specifically, we examined 23 metrics that quantified four types of common physical features: (1) river and creek confluences, (2) bathymetric variation including underwater drop-offs, (3) land features such as islands/sandbars, and (4) major underwater channel networks. Our research at 40 sites throughout Plum Island Estuary (PIE) provided solutions to two problems. The first problem was that individual metrics that measured heterogeneity of a single physical feature showed different regional patterns. We solved this first problem by combining multiple metrics for a single feature using a within-physical feature cluster analysis. With this approach, we identified sites with four different types of confluences and three different types of underwater drop-offs. The second problem was that when multiple physical features co-occurred, new patterns of total site-specific heterogeneity were created across the seascape. This pattern of total heterogeneity has potential ecological relevance to structure-oriented predators. To address this second problem, we identified sites with similar types of total physical heterogeneity using an across-physical feature cluster analysis. Then, we calculated an additive heterogeneity index, which integrated all physical features at a site. Finally, we tested if site-specific additive heterogeneity index values differed for across-physical feature clusters. In PIE, the sites with the highest additive heterogeneity index values were clustered together and corresponded to sites where a fish predator, adult striped bass (Morone saxatilis), aggregated in a related acoustic tracking study. In summary, we have shown general approaches to quantifying site-specific heterogeneity.
NASA Astrophysics Data System (ADS)
Kaldonski, Nicolas; Lagrue, Clément; Motreuil, Sébastien; Rigaud, Thierry; Bollache, Loïc
2008-09-01
Predation is often considered as one of the most important biotic factor determining the success of exotic species. The freshwater amphipod Gammarus roeseli has widely colonized Western Europe, where it is frequently found in sympatry with the native species ( Gammarus pulex). Previous laboratory experiments revealed that G. roeseli may have an advantage over G. pulex through differential predation by native fish (brown trout). Morphological anti-predator defences (spines) were found responsible for lower rates of predation on the invasive G. roeseli. Here, using both field surveys and laboratory experiments, we tested if a differential of predation exists with other fish predators naturally encountered by gammarids. The main predators present in our field site were nocturnal benthic feeders (mainly bullheads, Cottus gobio). Fish diet analysis showed that, compared to its global availability in the river, G. roeseli was less consumed than G. pulex. In the field, however, G. roeseli was found mainly in the aquatic vegetation whereas G. pulex was found in all habitat types. Laboratory experiments in microcosms revealed that G. roeseli was less prone to predation by C. gobio only when vegetation was present. Depending on the type of predator, the differential of predation could therefore be mediated by antipredator behaviour, and a better usage of refuges, rather than by morphological defences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Ricardo W.; Ashton, Neil K.; Brown, Richard S.
Abstract Telemetry studies are used worldwide to investigate the behavior and migration of fishes. The miniaturization of acoustic transmitters enables researchers to tag smaller fish, such as the juvenile life stages of salmon, thus representing a greater proportion of the population of interest. The development of an injectable acoustic transmitter has led to research determining the least invasive and quickest method of tag implantation. Swimming performance and predator avoidance were examined. To quantify critical swimming speed (Ucrit; an index of prolonged swimming performance) and predator avoidance for juvenile Chinook salmon (Oncorhynchus tshawytscha), fish were split into three groups: (1) fishmore » implanted with a dummy injectable acoustic transmitter (IAT treatment), (2) fish implanted with a dummy injectable acoustic transmitter and passive integrated transponder (PIT) tag (IAT+PIT treatment), and (3) an untagged control group. The Ucrits and predator avoidance capability of tagged fish were compared with untagged fish to determine if carrying an IAT adversely affected swimming performance or predator avoidance. Fish implanted with only an IAT had lower Ucrit values than untagged fish and a size threshold at 79 mm fork length was found. Conversely, Ucrit values for fish implanted with an IAT+PIT were not significantly different from untagged controls and no size threshold was found. Predator avoidance testing showed no significant difference for fish implanted with an IAT compared to untagged individuals, nor was there a significant difference for IAT+PIT fish compared to untagged fish.« less
USDA-ARS?s Scientific Manuscript database
Seasonal changes in egg predation and parasitism rates on sentinel and naturally occurring (wild) egg masses of the squash bug, Anasa tristis (DeGeer), were evaluated in squash fields in Maryland from June through September in 2013 and 2014. Rates of egg predation and parasitism were significantly...
NASA Technical Reports Server (NTRS)
Carter, Geoffry M.; Breininger, David R.; Larson, Vicky L.; Oddy, Donna M.; Smith, Rebecca B.; Stolen, Eric D.
2005-01-01
From 1988 to 2002 we studied the breeding ecology of Florida Scrub-Jays (Aphelocoma coerulescens) on John F. Kennedy Space Center/Merritt Island National Wildlife Refuge. We examined phenology, clutch size, hatching failure rates, fledgling production, nest success, predation rates, sources egg and nestling mortality, and the effects of helpers on these measures. Nesting phenology was similar among sites. Mean clutch size at Titan was significantly larger than at HC or T4. Pairs with helpers did not produce larger clutches than pairs without helpers. Fledgling production at T4 was significantly greater than at HC and similar to Titan. Pairs with helpers at HC produced significantly more fledglings than pairs without helpers; helpers did not influence fledgling production at the other sites. Nest success at HC and Titan was low, 19% and 32% respectively. Nest success at T4 was 48% and was significantly greater than at HC. Average predation rates at all sites increased with season progression. Predation rates at all sight rose sharply by early June. The main cause of nest failure at all sites was predation, 93%.
Predator-dependent functional response in wolves: from food limitation to surplus killing.
Zimmermann, Barbara; Sand, Håkan; Wabakken, Petter; Liberg, Olof; Andreassen, Harry Peter
2015-01-01
The functional response of a predator describes the change in per capita kill rate to changes in prey density. This response can be influenced by predator densities, giving a predator-dependent functional response. In social carnivores which defend a territory, kill rates also depend on the individual energetic requirements of group members and their contribution to the kill rate. This study aims to provide empirical data for the functional response of wolves Canis lupus to the highly managed moose Alces alces population in Scandinavia. We explored prey and predator dependence, and how the functional response relates to the energetic requirements of wolf packs. Winter kill rates of GPS-collared wolves and densities of cervids were estimated for a total of 22 study periods in 15 wolf territories. The adult wolves were identified as the individuals responsible for providing kills to the wolf pack, while pups could be described as inept hunters. The predator-dependent, asymptotic functional response models (i.e. Hassell-Varley type II and Crowley-Martin) performed best among a set of 23 competing linear, asymptotic and sigmoid models. Small wolf packs acquired >3 times as much moose biomass as required to sustain their field metabolic rate (FMR), even at relatively low moose abundances. Large packs (6-9 wolves) acquired less biomass than required in territories with low moose abundance. We suggest the surplus killing by small packs is a result of an optimal foraging strategy to consume only the most nutritious parts of easy accessible prey while avoiding the risk of being detected by humans. Food limitation may have a stabilizing effect on pack size in wolves, as supported by the observed negative relationship between body weight of pups and pack size. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Lounibos, L. Philip; Nishimura, Naoya; Greene, Krystle
2010-01-01
Native predators are postulated to have an important role in biotic resistance of communities to invasion and community resilience. Effects of predators can be complex, and mechanisms by which predators affect invasion success and impact are understood for only a few well-studied communities. We tested experimentally whether a native predator limits an invasive species' success and impact on a native competitor for a community of aquatic insect larvae in water-filled containers. The native mosquito Aedes triseriatus alone had no significant effect on abundance of the invasive mosquito Aedes albopictus. The native predatory midge Corethrella appendiculata, at low or high density, significantly reduced A. albopictus abundance. This effect was not caused by trait-mediated oviposition avoidance of containers with predators, but instead was a density-mediated effect caused by predator-induced mortality. The presence of this predator significantly reduced survivorship of the native species, but high predator density also significantly increased development rate of the native species when the invader was present, consistent with predator-mediated release from interspecific competition with the invader. Thus, a native predator can indirectly benefit its native prey when a superior competitor invades. This shows the importance of native predators as a component of biodiversity for both biotic resistance to invasion and resilience of a community perturbed by successful invasion. PMID:19841945
Cakmak, Ibrahim; Janssen, Arne; Sabelis, Maurice W
2006-01-01
Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.
Adaptive nest clustering and density-dependent nest survival in dabbling ducks
Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.
2014-01-01
Density-dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily-managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density-dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density-dependent nest predation might be more detectable at a spatially- and temporally-refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (˜50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.
Vardi, Reut; Abramsky, Zvika; Kotler, Burt P; Altstein, Ofir; Rosenzweig, Michael L
2017-07-01
Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator-prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools-having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish 'peeping' out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.
Hesterberg, Stephen G; Duckett, C Cole; Salewski, Elizabeth A; Bell, Susan S
2017-04-01
Identifying and quantifying the relevant properties of habitat structure that mediate predator-prey interactions remains a persistent challenge. Most previous studies investigate effects of structural density on trophic interactions and typically quantify refuge quality using one or two-dimensional metrics. Few consider spatial arrangement of components (i.e., orientation and shape) and often neglect to measure the total three-dimensional (3D) space available as refuge. This study tests whether the three-dimensionality of interstitial space, an attribute produced by the spatial arrangement of oyster (Crassostrea virginica) shells, impacts the foraging success of nektonic predators (primary blue crab, Callinectes sapidus) on mud crab prey (Eurypanopeus depressus) in field and mesocosm experiments. Interstices of 3D-printed shell mimics were manipulated by changing either their orientation (angle) or internal shape (crevice or channel). In both field and mesocosm experiments, under conditions of constant structural density, predator foraging success was influenced by 3D aspects of interstitial space. Proportional survivorship of tethered mud crabs differed significantly as 3D interstitial space varied by orientation, displaying decreasing prey survivorship as angle of orientation increased (0° = 0.76, 22.5° = 0.13, 45° = 0.0). Tethered prey survivorship was high when 3D interstitial space of mimics was modified by internal shape (crevice survivorship = 0.89, channel survivorship = 0.96) and these values did not differ significantly. In mesocosms, foraging success of blue crabs varied with 3D interstitial space as mean proportional survivorship (± SE) of mud crabs was significantly lower in 45° (0.27 ± 0.06) vs. 0° (0.86 ± 0.04) orientations and for crevice (0.52 ± 0.11) vs. channel shapes (0.95 ± 0.02). These results suggest that 3D aspects of interstitial space, which have direct relevance to refuge quality, can strongly influence foraging success in our oyster reef habitat. Our findings highlight the importance of spatial arrangement in mediating consumptive pathways in hard-structured habitats and demonstrate how quantifying the three-dimensionality of living space captures aspects of habitat structure that have been missing from previous empirical studies of trophic interactions and structural complexity. © 2017 by the Ecological Society of America.
Female in-nest chatter song increases predation.
Kleindorfer, Sonia; Evans, Christine; Mahr, Katharina
2016-01-01
Female song is an ancestral trait in songbirds, yet extant females generally sing less than males. Here, we examine sex differences in the predation cost of singing behaviour. The superb fairy-wren (Malurus cyaneus) is a Southern Hemisphere songbird; males and females provision the brood and produce solo song year-round. Both sexes had higher song rate during the fertile period and lower song rate during incubation and chick feeding. Females were more likely than males to sing close to or inside the nest. For this reason, female but not male song rate predicted egg and nestling predation. This study identifies a high fitness cost of song when a parent bird attends offspring inside a nest and explains gender differences in singing when there are gender differences in parental care. © 2016 The Author(s).
Elevational gradient in the cyclicity of a forest-defoliating insect
Kyle J. Haynes; Andrew M. Liebhold; Derek M. Johnson
2012-01-01
Observed changes in the cyclicity of herbivore populations along latitudinal gradients and the hypothesis that shifts in the importance of generalist versus specialist predators explain such gradients has long been a matter of intense interest. In contrast, elevational gradients in population cyclicity are largely unexplored. We quantified the cyclicity of gypsy moth...
Oak mast production and animal impacts on acorn survival in the central hardwoods
Kenneth F. Kellner; Jeffery K. Riegel; Nathanael I. Lichti; Robert K. Swihart
2013-01-01
As part of the Hardwood Ecosystem Experiment we measured mast production in white (Quercus alba) and black (Q. velutina) oak, and quantified the impacts of seed predators on acorn survival over a 3-year period. Specifically, we measured the proportion of acorns of each species infested with weevils (Curculio spp...
USDA-ARS?s Scientific Manuscript database
The brown marmorated stink bug or Halyomorpha halys is an invasive pest from Asia that causes severe agricultural damage and nuisance problems for homeowners. While the natural enemy community of H. halys has been evaluated in several agroecosystems, it has not been quantified where H. halys overwi...
Red fox predation on breeding ducks in midcontinent North America
Sargeant, Alan B.; Allen, Stephen H.; Eberhardt, Robert T.
1984-01-01
Red fox (Vulpes vulpes) predation on nesting ducks was assessed by examining 1,857 adult duck remains found at 1,432 fox rearing dens from 1968 to 1973. Dabbling ducks were much more vulnerable to foxes than diving ducks. Dabbling ducks (1,798) found at dens consisted of 27% blue-winged teals (Anas discors), 23% mallards (A. platyrhynchos), 20% northern pintails (A. acuta), 9% northern shovelers (Spatula clypeata), 8% gadwalls (A. strepera), 3% green-winged teals (A. crecca), 2% American wigeons (A. americana), and 10% unidentified. Relative abundance of individual species and nesting chronology were the most important factors affecting composition of ducks taken by foxes. Seventy-six percent of 1,376 adult dabbling ducks and 40% of 30 adult diving ducks for which sex was determined were hens. In western North Dakota and western South Dakota, 65% of mallard and northern pintail remains found at dens were hens compared with 76% in eastern North Dakota and eastern South Dakota (P < 0.05). Percentage hens varied among the 5 most common dabbling ducks found at dens. In eastern North Dakota and eastern South Dakota, where predation on ducks was greatest, an average of 64% of gadwall, 73% of northern pintail, 81% of blue-winged teal, 81% of mallard, and 90% of northern shoveler remains found at dens were hens. Percentage hens among duck remains found at dens increased as the duck nesting season progressed. Numbers of adult ducks found at individual dens ranged from 0 to 67. The average number of ducks found in and around den entrances was used as an index of fox predation rates on ducks. Predation rate indices ranged from 0.01 duck/den in Iowa to 1.80 ducks/den in eastern North Dakota. Average annual predation rate indices for dabbling ducks in a 3-county intensive study area in eastern North Dakota were closely correlated with May pond numbers (r = 0.874, P < 0.10) and duck population size (r = 0.930, P < 0.05), but all species were not affected in the same manner or to the same degree. Drought had least effect on populations and predation rate indices of mallards and gadwalls and had greatest effect on those of northern pintails and northern shovelers. Hens of early nesting species were more vulnerable to foxes than hens of late nesting species. Predation rate indices were expanded to estimate total numbers of ducks taken by fox families during the denning season. Estimated numbers of dabbling ducks taken annually by individual fox families in 2 physiographic regions comprising the intensive study area ranged from 16.1 to 65.9. Predation was highest during wet years and lowest during dry years and averaged lower, but was more variable, in the region where tillage was greatest and wetland water levels were least stable. Predation in the intensive study area averaged 2.97 adult dabbling ducks/ km2/year and represented an estimated average annual loss of 13.5% of hen and 4.5% of drake populations in that area. Of 5,402 individual food items found at dens in the intensive study area, 24% were adult ducks. Ducks made up an estimated maximum average of 16% of the prey biomass required by fox families during the denning season. The average annual take of adult ducks by foxes in the midcontinent area was estimated to be about 900,000. This estimate included both scavenged and fox-killed ducks, as well as ducks taken after the denning season. Fox impact on midcontinent ducks was greatest in eastern North Dakota where both fox and duck densities were relatively high. Predation in that area was likely increased by environmental factors, especially intensive agriculture that concentrated nesting and reduced prey abundance. Predation by red foxes and other predators severely reduces duck production in the midcontinent area. Effective management to increase waterfowl production will necessitate coping with or reducing high levels of predation.
Mink predation on brown trout in a Black Hills stream
Davis, Jacob L.; Wilhite, Jerry W.; Chipps, Steven R.
2016-01-01
In the early 2000’s, declines in the brown trout (Salmo trutta) fishery in Rapid Creek, South Dakota, caused concern for anglers and fisheries managers. We conducted a radio telemetry study in 2010 and 2011 to identify predation mortality associated with mink, using hatchery-reared (2010) or wild (2011) brown trout. Estimated predation rates by mink (Mustela vison) on radio-tagged brown trout were 30% for hatchery fish and 32% for wild fish. Size frequency analysis revealed that the size distribution of brown trout lost to predation was similar to that of other, radio-tagged brown trout. In both years, a higher proportion of predation mortality (83–92%) occurred during spring, consistent with seasonal fish consumption by mink. Predation by mink appeared to be a significant source of brown trout mortality in our study.
Interactions between striped bass and other gamefish in reservoirs
Miranda, Leandro E.; Raborn, Scott W.
2013-01-01
Competitive interactions among reservoir fishes may be pronounced because fish assemblages in these artificial environments have had little time to develop niche-partitioning strategies that alleviate negative interspecific interactions. Such interactions may at times have been intensified by introductions of predators such as striped bass Morone saxatilis, introduced to create additional fisheries and control pelagic clupeids. Possible interactions between existing fish assemblages and striped bass include predation and competition. While there is a perception among angler groups that predation by striped bass on co-existing game fish is significant, most studies have reported little or no predation on game fish my striped bass and have considered predation rare and inconsequential. Moreover, predation that occurs will likely be compensatory and fail to reduce overall game fish survival. Any indirect effect of striped bass predation by restricting prey-sized game fish to limited refuge sites remains unknown. Exploitative competition may be more common. Although infrequently, introduced striped bass have depleted prey resources shared with other piscivores, particularly when stocking rates have been high, when there is a high rate of natural reproduction, or when prey supply has plunged in response to environmental fluxes. Fluctuation in prey supply, associated with ordinary environmental variability, and associated time lages in prey supply and predator demand, preclude adjusting predator densities to exactly balance demand with supply. The frequency of low supply-demand rations varies across systems and exhibits seasonal trends. Nevertheless, chronic supply-demand imbalances are manageable where the predator assemblage is at least partially controlled through stocking, harvest regulations, or both. Because of the poor state of knowledge concerning the parameters defining balance and because uncontrollable annual fluctuations preclude exact management of alternating prey levels, we suggest adjusting stocking to manage demand to that it equals the median historical prey supply. Simulating the removal of striped bass and predicting the aftermath may be the most cost-efficient way to provide decision support for stakeholders involved in determining if a striped bass stocking program is beneficial to most users.
NASA Astrophysics Data System (ADS)
McClure, Melanie; Despland, Emma
2011-05-01
Gregariousness in animals is widely accepted as a behavioral adaptation for protection from predation. However, predation risk and the effectiveness of a prey's defense can be a function of several other factors, including predator species and prey size or age. The objective of this study was to determine if the gregarious habit of Malacosoma disstria caterpillars is advantageous against invertebrate natural enemies, and whether it is through dilution or cooperative defenses. We also examined the effects of larval growth and group size on the rate and success of attacks. Caterpillars of M. disstria responded with predator-specific behaviors, which led to increased survival. Evasive behaviors were used against stinkbugs, while thrashing by fourth instar caterpillars and holding on to the silk mat by second instar caterpillars was most efficient against spider attacks. Collective head flicking and biting by groups of both second and fourth instar caterpillars were observed when attacked by parasitoids. Increased larval size decreased the average number of attacks by spiders but increased the number of attacks by both stinkbugs and parasitoids. However, increased body size decreased the success rate of attacks by all three natural enemies and increased handling time for both predators. Larger group sizes did not influence the number of attacks from predators but increased the number of attacks and the number of successful attacks from parasitoids. In all cases, individual risk was lower in larger groups. Caterpillars showed collective defenses against parasitoids but not against the walking predators. These results show that caterpillars use different tactics against different natural enemies. Overall, these tactics are both more diverse and more effective in fourth instar than in second instar caterpillars, confirming that growth reduces predation risk. We also show that grouping benefits caterpillars through dilution of risk, and, in the case of parasitoids, through group defenses. The decreased tendency to aggregate in the last larval instar may therefore be linked to decreasing predation risk.
Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S
2018-03-01
Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators may decelerate, rather than accelerate, the speed of N cycling by suppressing N turnover by prey. © 2018 by the Ecological Society of America.
Decision Making and Behavioral Choice during Predator Avoidance
Herberholz, Jens; Marquart, Gregory D.
2012-01-01
One of the most important decisions animals have to make is how to respond to an attack from a potential predator. The response must be prompt and appropriate to ensure survival. Invertebrates have been important models in studying the underlying neurobiology of the escape response due to their accessible nervous systems and easily quantifiable behavioral output. Moreover, invertebrates provide opportunities for investigating these processes at a level of analysis not available in most other organisms. Recently, there has been a renewed focus in understanding how value-based calculations are made on the level of the nervous system, i.e., when decisions are made under conflicting circumstances, and the most desirable choice must be selected by weighing the costs and benefits for each behavioral choice. This article reviews samples from the current literature on anti-predator decision making in invertebrates, from single neurons to complex behaviors. Recent progress in understanding the mechanisms underlying value-based behavioral decisions is also discussed. PMID:22973187
Whitlock, Rebecca E.; Hazen, Elliott L.; Walli, Andreas; Farwell, Charles; Bograd, Steven J.; Foley, David G.; Castleton, Michael; Block, Barbara A.
2015-01-01
Pacific bluefin tuna (Thunnus orientalis) are highly migratory apex marine predators that inhabit a broad thermal niche. The energy needed for migration must be garnered by foraging, but measuring energy intake in the marine environment is challenging. We quantified the energy intake of Pacific bluefin tuna in the California Current using a laboratory-validated model, the first such measurement in a wild marine predator. Mean daily energy intake was highest off the coast of Baja California, Mexico in summer (mean ± SD, 1034 ± 669 kcal), followed by autumn when Pacific bluefin achieve their northernmost range in waters off northern California (944 ± 579 kcal). Movements were not always consistent with maximizing energy intake: the Pacific bluefin move out of energy rich waters both in late summer and winter, coincident with rising and falling water temperatures, respectively. We hypothesize that temperature-related physiological constraints drive migration and that Pacific bluefin tuna optimize energy intake within a range of optimal aerobic performance. PMID:26601248
Whitlock, Rebecca E; Hazen, Elliott L; Walli, Andreas; Farwell, Charles; Bograd, Steven J; Foley, David G; Castleton, Michael; Block, Barbara A
2015-09-01
Pacific bluefin tuna (Thunnus orientalis) are highly migratory apex marine predators that inhabit a broad thermal niche. The energy needed for migration must be garnered by foraging, but measuring energy intake in the marine environment is challenging. We quantified the energy intake of Pacific bluefin tuna in the California Current using a laboratory-validated model, the first such measurement in a wild marine predator. Mean daily energy intake was highest off the coast of Baja California, Mexico in summer (mean ± SD, 1034 ± 669 kcal), followed by autumn when Pacific bluefin achieve their northernmost range in waters off northern California (944 ± 579 kcal). Movements were not always consistent with maximizing energy intake: the Pacific bluefin move out of energy rich waters both in late summer and winter, coincident with rising and falling water temperatures, respectively. We hypothesize that temperature-related physiological constraints drive migration and that Pacific bluefin tuna optimize energy intake within a range of optimal aerobic performance.
How Corridors Reduce Indigo Bunting Nest Success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weldon, Aimee, J.
2006-08-01
Abstract: Corridors are a popular strategy to conserve biodiversity and promote gene flow in fragmented landscapes. Corridor effectiveness has been bolstered by the fact that no empirical field studies have shown negative effects on populations or communities. I tested the hypothesis that corridors increase nest predation in connected habitat fragments relative to unconnected fragments. I evaluated this hypothesis in a large-scale experimental system of open-habitat fragments that varied in shape and connectivity. Corridors increased nest predation rates in connected fragments relative to unconnected fragments with lower edge:area ratios. Nest predation rates were similar between connected and unconnected fragments with highermore » edge:area ratios. These results suggest that the increase in predator activity is largely attributable to edge effects incurred through the addition of a corridor. This is the first field study to demonstrate that corridors can negatively impact animal populations occupying connected fragments.« less
Petersen, James H.; Barfoot, Craig A.; Sheer, Mindi B.
2001-01-01
Predation by resident fish is known to be a substantial cause of juvenile salmonid mortality, especially in dam tailraces and outfall locations. Conditions in The Dalles Dam tailrace are unique compared to other projects on the Columbia or Snake rivers, having a complex basin with a series of downriver islands where predators are known to reside. In May-June of 1999, northern pikeminnow and smallmouth bass were sampled in the tailrace of The Dalles Dam during periods immediately following the release of PIT-tagged juvenile salmonids for survival studies. Over twice as many smallmouth bass (N = 101) were collected as northern pikeminnow (N = 40), but none of the predators had PIT tags within their gut. A laboratory study was conducted to estimate the time required for PIT tags in juvenile salmonids to be evacuated from the gut of northern pikeminnow after consuming a tagged preyfish. Evacuation rate was sensitive to temperature, with median evacuation time being 21 h at 18 oC and 30 h at 14 oC. These results suggest that field studies to estimate predator population sizes, feeding rates, or predation on specific release groups would require considerably more effort than we allocated during 1999.
Impacts of trout predation on fitness of sympatric sticklebacks and their hybrids.
Vamosi, Steven M; Schluter, Dolph
2002-01-01
Predation may be a significant factor in the divergence of sympatric species although its role has been largely overlooked. This study examines the consequences of predation on the fitness of a pair of lacustrine stickleback species (Gasterosteus aculeatus complex) and their F(1) hybrids. Benthic sticklebacks are found in the littoral zone of lakes associated with vegetation and bare sediments, whereas limnetic sticklebacks spend most of their lives in the pelagic zone. The cutthroat trout (Oncorhynchus clarki) is a major predator of sticklebacks and the only other fish species native to lakes containing both benthic and limnetic species. In pond experiments we found that the addition of these predators primarily impacted the survival of limnetics. By contrast, benthic survival was unaffected by trout addition. The result was that relative survival of benthics and limnetics was reversed in the presence of trout. The presence of trout had no effect on the rank order of parent species growth rates, with benthics always growing faster than limnetics. F(1) hybrids survived poorly relative to benthics and limnetics and their growth rates were intermediate regardless of treatment. The results implicate predation by trout in the divergence of the species but not through increased vulnerability of F(1) hybrids. PMID:12028775
Salticid predation as one potential driving force of ant mimicry in jumping spiders
Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min
2011-01-01
Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898
Adaptive Control Based Harvesting Strategy for a Predator-Prey Dynamical System.
Sen, Moitri; Simha, Ashutosh; Raha, Soumyendu
2018-04-23
This paper deals with designing a harvesting control strategy for a predator-prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.
Pessoa, P C; Luchmann, K H; Ribeiro, A B; Veras, M M; Correa, J R M B; Nogueira, A J; Bainy, A C D; Carvalho, P S M
2011-10-01
Nile tilapia Oreochromis niloticus at 9 days post-hatch were exposed in semi-static experiments to the carbamate insecticide carbofuran, which is applied in agricultural systems in Brazil. Although the molecular mechanism of carbofuran toxicity is well known, a detailed understanding of the ecological mechanisms through which carbofuran effects can propagate towards higher levels of biological organization in fish is incomplete. Mortality rates were quantified for larvae exposed for 96 h to 8.3, 40.6, 69.9, 140, 297 and 397 μg/L carbofuran, and the LC(50) 96 h was 214.7 μg/L. In addition, the biochemical biomarker cholinesterase inhibition and behavioral biomarkers related to vision, swimming, prey capture and predator avoidance were quantified in individual larvae, as well as their growth in weight. The behavioral parameters were quantified by analysis of digitally recorded videos of individual larvae within appropriate experimental setups. The activity of the enzyme cholinesterase decreased after exposure to carbofuran with a lowest observed effects concentration (LOEC) of 69.9 μg/L. Visual acuity deficits were detected after carbofuran exposure with a LOEC of 40.6 μg/L. Swimming speed decreased with carbofuran exposure, with a LOEC of 397.6 μg/L. The number of attacks to prey (Daphnia magna nauplii) decreased in larvae exposed to carbofuran, with a LOEC of 397.6 μg/L. Growth in weight was significantly reduced in a dose dependent manner, and all carbofuran groups exhibited a statistically significant decrease in growth when compared to controls (p<0.05). The number of predator attacks necessary to capture larvae decreased after exposure to carbofuran, and the LOEC was 69.9 μg/L. These results show that exposure of sensitive early life stages of tilapia O. niloticus to sublethal concentrations of carbofuran can affect fundamental aspects of fish larval ecology that are relevant to recruitment of fish populations, and that can be better understood by the application of behavioral biomarkers. Copyright © 2011 Elsevier B.V. All rights reserved.
Fear of the human 'super predator' reduces feeding time in large carnivores.
Smith, Justine A; Suraci, Justin P; Clinchy, Michael; Crawford, Ayana; Roberts, Devin; Zanette, Liana Y; Wilmers, Christopher C
2017-06-28
Large carnivores' fear of the human 'super predator' has the potential to alter their feeding behaviour and result in human-induced trophic cascades. However, it has yet to be experimentally tested if large carnivores perceive humans as predators and react strongly enough to have cascading effects on their prey. We conducted a predator playback experiment exposing pumas to predator (human) and non-predator control (frog) sounds at puma feeding sites to measure immediate fear responses to humans and the subsequent impacts on feeding. We found that pumas fled more frequently, took longer to return, and reduced their overall feeding time by more than half in response to hearing the human 'super predator'. Combined with our previous work showing higher kill rates of deer in more urbanized landscapes, this study reveals that fear is the mechanism driving an ecological cascade from humans to increased puma predation on deer. By demonstrating that the fear of humans can cause a strong reduction in feeding by pumas, our results support that non-consumptive forms of human disturbance may alter the ecological role of large carnivores. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Abernethy, Gavin M.; McCartney, Mark; Glass, David H.
2018-03-01
A computational study of a system of ten prey phenotypes and either one or ten predator phenotypes with a range of foraging behaviours, arranged on two separate one-dimensional lattices, is presented. Mutation between nearest neighbours along the prey lattice occurs at a constant rate, and mutation may or may not be enabled for the predators. The significance of competition amongst the prey is investigated by testing a variety of distributions of the relative intraspecific and interspecific competition. We also study the influence this has on the survival and population size of predator phenotypes with a variety of foraging strategies. Our results indicate that the distribution of competition amongst prey is of little significance, provided that intraspecific is stronger than the interspecific, and that it is typically preferable for a predator to adopt a foraging strategy that scales linearly with prey population sizes if it is alone. In an environment of multiple predator phenotypes, the least or most-focused predators are most likely to persist, dependent on the feeding parameter.
Cross-continental differences in patterns of predation: will naive moose in Scandinavia ever learn?
Sand, Håkan; Wikenros, Camilla; Wabakken, Petter; Liberg, Olof
2006-01-01
Predation has been recognized as a major selective force in the evolution of behavioural characteristics of mammals. As a consequence of local predator extinction, prey may lose knowledge about natural predators but usually express behavioural adjustments after return of predators. Human harvest may replace natural predation but prey selection may differ from that of natural predators leading to a change in the behavioural response of prey. We show that hunting success (HS) of re-colonizing wolves (Canis lupus) on moose (Alces alces) in Scandinavia was higher than reported in North America, where moose have been continuously exposed to wolves and grizzly bears. We found no evidence that moose expressed behavioural adjustments that lowered the HS of wolves in territories that had been occupied by wolves for up to 21 years. Moose behaviour towards wolves and humans typically differs in Scandinavia compared to North America. We explain the differences found to be caused by variation in predation pressure by large carnivores and the rate, and mode, of human harvest during the twentieth century. PMID:16777732
Nutrient-Specific Foraging in Invertebrate Predators
NASA Astrophysics Data System (ADS)
Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J.
2005-01-01
Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.
Effects of predation and competitor interference on nesting success of house wrens and tree swallows
Deborah M. Finch
1990-01-01
I examined the relationships among brood survival in House Wrens (Troglodytes aedon) and Tree Swallows (Tachycineta bicolor) and rates of nest-box use, species interference, and nest predation. Tree Swallows nested in boxes in one of three woodlands occupied by House Wrens. Over a 4-year period, clutch mortality rates in swallows were significantly higher than those in...
Turner, Andrew M; Fetterolf, Shelley A; Bernot, Randall J
1999-02-01
Predators can alter the outcome of ecological interactions among other members of the food web through their effects on prey behavior. While it is well known that animals often alter their behavior with the imposition of predation risk, we know less about how other features of predators may affect prey behavior. For example, relatively few studies have addressed the effects of predator identity on prey behavior, but such knowledge is crucial to understanding food web interactions. This study contrasts the behavioral responses of the freshwater snail Physellagyrina to fish and crayfish predators. Snails were placed in experimental mesocosms containing caged fish and crayfish, so the only communication between experimental snails and their predators was via non-visual cues. The caged fish and crayfish were fed an equal number of snails, thereby simulating equal prey mortality rates. In the presence of fish, the experimental snails moved under cover, which confers safety from fish predators. However, in the presence of crayfish, snails avoided benthic cover and moved to the water surface. Thus, two species of predators, exerting the same level of mortality on prey, induced very different behavioral responses. We predict that these contrasting behavioral responses to predation risk have important consequences for the interactions between snails and their periphyton resources.
Friedlaender, A S; Goldbogen, J A; Nowacek, D P; Read, A J; Johnston, D; Gales, N
2014-08-15
Body size and feeding mode are two fundamental characteristics that determine foraging performance and ecological niche. As the smallest obligate lunge filter feeders, minke whales represent an ideal system for studying the physical and energetic limits of filter feeding in endotherms. We used multi-sensor suction cup tags to quantify the feeding performance of Antarctic minke whales. Foraging dives around and beneath sea ice contained up to 24 lunges per dive, the highest feeding rates for any lunge-feeding whale. Their small size allows minke whales access to krill in sea-ice environments not easily accessible to larger baleen whales. Furthermore, their ability to filter feed provides an advantage over other smaller sympatric krill predators such as penguins and seals that feed on individual prey. The unique combination of body size, feeding mechanism and sea-ice habitat of Antarctic minke whales defines a previously undocumented energetic niche that is unique among aquatic vertebrates. © 2014. Published by The Company of Biologists Ltd.
Atuo, Fidelis Akunke; O'Connell, Timothy John
2017-07-01
The likelihood of encountering a predator influences prey behavior and spatial distribution such that non-consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red-tailed Hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyaneus ), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite ( Colinus virginianus ). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation-specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine-scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.
Distribution and abundance of predators that affect duck production--prairie pothole region
Sargeant, A.B.; Greenwood, R.J.; Sovada, M.A.; Shaffer, T.L.
1993-01-01
During 1983-88, the relative abundance of 18 species and species-groups of mammalian and avian predators affecting duck production in the prairie pothole region was determined in 33 widely scattered study areas ranging in size from 23-26 km2. Accounts of each studied species and species-group include habitat and history, population structure and reported densities, and information on distribution and abundance from the present study. Index values of undetected, scarce, uncommon, common, or numerous were used to rate abundance of nearly all species in each study area. Principal survey methods were livetrapping of striped skunks (Mephitis mephitis) and Franklin's ground squirrels (Spermophilus franklinii), systematic searches for carnivore tracks in quarter sections (0.65 km2), daily records of sightings of individual predator species, and systematic searches for occupied nests of tree-nesting avian predators. Abundances of predators in individual areas were studied 1-3 years.The distribution and abundance of predator species throughout the prairie pothole region have undergone continual change since settlement of the region by Europeans in the late 1800's. Predator populations in areas we studied differed markedly from those of pristine times. The changes occurred from habitat alterations, human-inflicted mortality of predators, and interspecific relations among predator species. Indices from surveys of tracks revealed a decline in the abundance of red foxes (Vulpes vulpes) and an albeit less consistent decline in the abundance of raccoons (Procyon lotor) with an increase in the abundance of coyotes (Canis latrans). Records of locations of occupied nests revealed great horned owls (Bubo virginianus) and red-tailed hawks (Buteo jamaicensis) tended to nest 0.5 km apart, and American crows (Corvus brachyrhynchos) tended to avoid nesting 0.5 km of nests of red-tailed hawks. Excluding large gulls, for which no measurements of abundance were obtained, the number of predator species averaged 12.2 (SD = 1.60) per study area; common or numerous predator species averaged 6.0 (SD = 1.54) per study area (minimal because the abundance of weasels [Mustela erminea; M. frenata] in all areas and of minks [Mustela vison] and raptors in some areas was not rated). Major changes in relative abundance of individual predator species studied >1 year were few. Predator species most restricted to the aspen parkland were the Franklin's ground squirrel, black-billed magpie (Pica pica), American crow (Corvus brachyrlus), and red-tailed hawk; species most restricted to the prairie were the badger (Taxidea taxus), Swainson's hawk (Buteo swainsoni), and ferruginous hawk (B. regalis). The coyote, black-billed magpie, and American crow were most numerous in Canada, whereas the red fox, raccoon, mink, ferruginous hawk, and great horned owl were most numerous in the United States. The number of common or numerous egg-eating predator species (excludes large gulls and weasels, which were not rated) averaged 4.6 (SD = 0.90) per study area. The average numbers of common or numerous egg-eating species per study area did not differ among provinces and states, but birds gradually replaced mammals from southeast to northwest across the region. Investigators are urged to assess composition of predator populations and relative abundance of predator species for evaluations of waterfowl recruitment.
Beermann, Jan; Boos, Karin; Gutow, Lars; Boersma, Maarten; Peralta, Ana Carolina
2018-03-01
Predation has direct impact on prey populations by reducing prey abundance. In addition, predator presence alone can also have non-consumptive effects on prey species, potentially influencing their interspecific interactions and thus the structure of entire assemblages. The performance of potential prey species may, therefore, depend on both the presence of predators and competitors. We studied habitat use and food consumption of a marine mesograzer, the amphipod Echinogammarus marinus, in the presence/absence of a fish mesopredator and/or an amphipod competitor. The presence of the predator affected both habitat choice and food consumption of the grazer, indicating a trade-off between the use of predator-free space and food acquisition. Without the predator, E. marinus were distributed equally over different microhabitats, whereas in the presence of the predator, most individuals chose a sheltered microhabitat and reduced their food consumption. Furthermore, habitat choice of the amphipods changed in the presence of interspecific competitors, also resulting in reduced feeding rates. The performance of E. marinus is apparently driven by trait-mediated direct and indirect effects caused by the interplay of predator avoidance and competition. This highlights the importance of potential non-consumptive impacts of predators on their prey organisms. The flexible responses of small invertebrate consumers to the combined effects of predation and competition potentially lead to changes in the structure of coastal ecosystems and the multiple species interactions therein.
Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.
Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R
2010-01-06
Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.
Kokanee Stocking and Monitoring, Flathead Lake, 1993-1994 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deleray, Mark; Fredenberg, Wade; Hansen, Barry
1995-07-01
One mitigation goal of the Hungry Horse Dam fisheries mitigation program, funded by the Bonneville Power Administration, is to replace lost production of 100,000 adult kokanee in Flathead Lake. The mitigation program calls for a five-year test to determine if kokanee can be reestablished in Flathead Lake. The test consists. of annual stocking of one million hatchery-raised yearling kokanee. There are three benchmarks for judging the success of the kokanee reintroduction effort: (1) Post-stocking survival of 30 percent of planted kokanee one year after stocking; (2) Yearling to adult survival of 10 percent (100,000 adult salmon); (3) Annual kokanee harvestmore » of 50,000 or more fish per year by 1998, with an average length of 11 inches or longer for harvested fish, and fishing pressure of 100,000 angler hours or more. Kokanee were the primary sport fish species in the Flathead Lake fishery in the early 1900s, and up until the late 1980s when the population rapidly declined in numbers and then disappeared. Factors identified which influenced the decline of kokanee are the introduction of opossum shrimp (Mysis relicta), hydroelectric operations, overharvest through angling, and competition and/or predation by lake trout (Salvelinus namaycush) and lake whitefish (Coregonur clupeaformis). The purpose of this report was to summarize the stocking program and present monitoring results from the 1993 and 1994 field seasons. In June 1993, roughly 210,000 yearling kokanee were stocked into two bays on the east shore of Flathead Lake. Following stocking, we observed a high incidence of stocked kokanee in stomach samples from lake trout captured in areas adjacent to the stocking sites and a high percentage of captured lake trout containing kokanee. Subsequent monitoring concluded that excessive lake trout predation precluded significant survival of kokanee stocked in 1993. In June 1994, over 802,000 kokanee were stocked into Big Arm Bay. The combination of near optimum water temperatures, an upsurge in the abundance of Duphniu rhorum, and saturation planting in an area believed to have lower lake trout densities was expected to maximize short-term survival of stocked kokanee. A net-pen experiment demonstrated that yearling hatchery kokanee, in the absence of predation, adjusted to conditions in Flathead Lake and utilized available zooplankton during June and July without substantial poststocking mortality. Kokanee captured after several months in the lake exhibited good growth and condition. We concluded that the food supply in Big Arm Bay was not limiting survival of stocked kokanee. The 1994 monitoring objective was to quantify lake trout predation of kokanee in Big Arm Bay in the first eight weeks following stocking. There were three components needed to quantify predation; estimated number of lake trout in Big Arm Bay, average number of kokanee consumed by lake trout, and estimated time required for lake trout to digest kokanee. As in the previous year, the monitoring results from the 1994 kokanee plant demonstrated that lake trout predation is the primary factor reducing survival of stocked kokanee. We estimated that lake trout consumed a minimum of 232,000 kokanee in Big Arm Bay during the first eight weeks following stocking. This represents 29 percent of kokanee planted. The consumption estimate was based on a hydroacoustic estimate for lake trout abundance (7,850 fish over 300 mm in total length), an incidence of kokanee per lake trout stomach sample which ranged from 2.99 to 0.22 fish, and a gastric evacuation rate of 47 hours for lake trout to digest consumed kokanee. Due to hydroacoustic limitations in identifying bottom-oriented lake trout, we underestimated the true abundance of lake trout, which led to an underestimate of kokanee mortality. By fall of 1994, we estimated that an additional 12.7 percent of surviving kokanee matured, based on observations of similar-sized fish in the hatchery. Thus, up to 72,000 additional fish were removed from the population due to early maturation. Adding the loss due to predation in the first eight weeks (232,000) to the loss due to early maturation (72,000), we accounted for mortality of at least 304,000 (38 percent) of the original 802,000 fish planted. These estimates did not account for additional losses, including predation outside Big Arm Bay, predation in the months following July, and predation from species other than lake trout, such as bull trout and northern squawfish. We documented lake trout predation of kokanee from June through October, and predation by fish species other than lake trout. One of the program goals is to achieve post-stocking survival of 30 percent one year after planting. Based on observations of the 1994 program, it is unlikely we will achieve this level of survival from the 1994 plant.« less
A modified predator–prey model for the interaction of police and gangs
Sooknanan, J.; Bhatt, B.
2016-01-01
A modified predator–prey model with transmissible disease in both the predator and prey species is proposed and analysed, with infected prey being more vulnerable to predation and infected predators hunting at a reduced rate. Here, the predators are the police and the prey the gang members. In this system, we examine whether police control of gangs is possible. The system is analysed with the help of stability analyses and numerical simulations. The system has five steady states—four of which involve no core gang members and one in which all the populations coexist. Thresholds are identified which determine when the predator and prey populations survive and when the disease remains endemic. For parameter values where the spread of disease among the police officers is greater than the death of the police officers, the diseased predator population survives, when it would otherwise become extinct. PMID:27703682
Stephenson, Jessica F; van Oosterhout, Cock; Mohammed, Ryan S; Cable, Joanne
2015-02-01
Predation pressure can alter the morphology, physiology, life history, and behavior of prey; each of these in turn can change how surviving prey interact with parasites. These trait-mediated indirect effects may change in direction or intensity during growth or, in sexually dimorphic species, between the sexes. The Trinidadian guppy, Poecilia reticulata presents a unique opportunity to examine these interactions; its behavioral ecology has been intensively studied in wild populations with well-characterized predator faunas. Predation pressure is known to have driven the evolution of many guppy traits; for example, in high-predation sites, females (but not males) tend to shoal, and this anti-predator behavior facilitates parasite transmission. To test for evidence of predator-driven differences in infection in natural populations, we collected 4715 guppies from 62 sites across Trinidad between 2003 and 2009 and screened them for ectosymbionts, including Gyrodactylus. A novel model-averaging analysis revealed that females were more likely to be infected with Gyrodactylus parasites than males, but only in populations with both high predation pressure and high infection prevalence. We propose that the difference in shoaling tendency between the sexes could explain the observed difference in infection prevalence between males and females in high-predation sites. The infection rate of juveniles did not vary with predation regime, probably because juveniles face constant predation pressure from conspecific adults and therefore tend to shoal in both high- and low-predation sites. This represents the first evidence for age- and sex-specific trait-mediated indirect effects of predators on the probability of infection in their prey.
Local and landscape drivers of predation services in urban gardens.
Philpott, Stacy M; Bichier, Peter
2017-04-01
In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management. © 2017 by the Ecological Society of America.
Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart
2013-01-01
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems.
Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart
2013-01-01
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems. PMID:23894650
Habitat quality mediates personality through differences in social context.
Belgrad, Benjamin A; Griffen, Blaine D
2017-06-01
Assessing the stability of animal personalities has become a major goal of behavioral ecologists. Most personality studies have utilized solitary individuals, but little is known on the extent that individuals retain their personality across ecologically relevant group settings. We conducted a field survey which determined that mud crabs, Panopeus herbstii, remain scattered as isolated individuals on degraded oyster reefs while high quality reefs can sustain high crab densities (>10 m -2 ). We examined the impact of these differences in social context on personality by quantifying the boldness of the same individual crabs when in isolation and in natural cohorts. Crabs were also exposed to either a treatment of predator cues or a control of no cue throughout the experiment to assess the strength of this behavioral reaction norm. Crabs were significantly bolder when in groups than as solitary individuals with predator cue treatments exhibiting severally reduced crab activity levels in comparison to corresponding treatments with no predator cues. Behavioral plasticity depended on the individual and was strongest in the presence of predator cues. While bold crabs largely maintained their personality in isolation and group settings, shy crabs would become substantially bolder when among conspecifics. These results imply that the shifts in crab boldness were a response to changes in perceived predation risk, and provide a mechanism for explaining variation in behavioral plasticity. Such findings suggest that habitat degradation may produce subpopulations with different behavioral patterns because of differing social interactions between individual animals.
Chiao, Chuan-Chin; Wickiser, J Kenneth; Allen, Justine J; Genter, Brock; Hanlon, Roger T
2011-05-31
Camouflage is a widespread phenomenon throughout nature and an important antipredator tactic in natural selection. Many visual predators have keen color perception, and thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of hyperspectral imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and trichromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies of biological coloration and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.
Quantifying the balance between bycatch and predator or competitor release for nontarget species.
Aalto, Emilius A; Baskett, Marissa L
2013-07-01
If a species is bycatch in a fishery targeted at its competitor or predator, it experiences both direct anthropogenic mortality and indirect positive effects through species interactions. If the species involved interact strongly, the release from competition or predation can counteract or exceed the negative effects of bycatch. We used a set of two- and three-species community modules to analyze the relative importance of species interactions when modeling the overall effect of harvest with bycatch on a nontarget species. To measure the trade-off between direct mortality and indirect positive effects, we developed a "bycatch transition point" metric to determine, for different scenarios, what levels of bycatch shift overall harvest impact from positive to negative. Under strong direct competition with a targeted competitor, release from competition due to harvest leads to a net increase in abundance even under moderate levels of bycatch. For a three-species model with a shared obligate predator, the release from apparent competition exceeds direct competitive release and outweighs the decrease from bycatch mortality under a wide range of parameters. Therefore, in communities where a shared predator forms a strong link between the target and nontarget species, the effects of indirect interactions on populations can be larger than those of direct interactions. The bycatch transition point metric can be used for tightly linked species to evaluate the relative strengths of positive indirect effects and negative anthropogenic impacts such as bycatch, habitat degradation, and introduction of invasive species.
Predation and landscape characteristics independently affect reef fish community organization.
Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J
2014-05-01
Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.
Remes, V
2007-01-01
Previous studies have shown that avian growth and development covary with juvenile mortality. Juveniles of birds under strong nest predation pressure grow rapidly, have short incubation and nestling periods, and leave the nest at low body mass. Life-history theory predicts that parental investment increases with adult mortality rate. Thus, developmental traits that depend on the parental effort exerted (pre- and postnatal growth rate) should scale positively with adult mortality, in contrast to those that do not have a direct relationship with parental investment (timing of developmental events, e.g. nest leaving). I tested this prediction on a sample of 84 North American songbirds. Nestling growth rate scaled positively and incubation period duration negatively with annual adult mortality rates even when controlled for nest predation and other covariates, including phylogeny. On the contrary, neither the duration of the nestling period nor body mass at fledging showed any relationship. Proximate mechanisms generating the relationship of pre- and postnatal growth rates to adult mortality may include increased feeding, nest attentiveness during incubation and/or allocation of hormones, and deserve further attention.
Chalfoun, A.D.; Martin, T.E.
2010-01-01
Theory predicts that parents should invest less in dependent offspring with lower reproductive value, such as those with a high risk of predation. Moreover, high predation risk can favor reduced parental activity when such activity attracts nest predators. Yet, the ability of parents to assess ambient nest-predation risk and respond adaptively remains unclear, especially where nest-predator assemblages are diverse and potentially difficult to assess. We tested whether variation in parental investment by a multi-brooded songbird (Brewer's Sparrow, Spizella breweri) in an environment (sagebrush steppe) with diverse predators was predicted by ambient nest-predation risk or direct experience with nest predation. Variation among eight sites in ambient nest-predation risk, assayed by daily probabilities of nest predation, was largely uncorrelated across four years. In this system risk may therefore be unpredictable, and aspects of parental investment (clutch size, egg mass, incubation rhythms, nestling-feeding rates) were not related to ambient risk. Moreover, investment at first nests that were successful did not differ from that at nests that were depredated, suggesting parents could not assess and respond to territorylevel nest-predation risk. However, parents whose nests were depredated reduced clutch sizes and activity at nests attempted later in the season by increasing the length of incubation shifts (on-bouts) and recesses (off-bouts) and decreasing trips to feed nestlings. In this unpredictable environment parent birds may therefore lack sufficient cues of ambient risk on which to base their investment decisions and instead rely on direct experience with nest predation to inform at least some of their decisions. ?? 2010 The Cooper Ornithological Society.
Stuhler, John D; Orrock, John L
2016-06-01
Historical agriculture and present-day fire regimes can have significant effects on contemporary ecosystems. Although past agricultural land use can lead to long-term changes in plant communities, it remains unclear whether these persistent land-use legacies alter plant-consumer interactions, such as seed predation, and whether contemporary disturbance (e.g., fire) alters the effects of historical agriculture on these interactions. We conducted a study at 27 sites distributed across 80,300 ha in post-agricultural and non-agricultural longleaf pine woodlands with different degrees of fire frequency to test the hypothesis that past and present-day disturbances that alter plant communities can subsequently alter seed predation. We quantified seed removal by arthropods and rodents for Tephrosia virginiana and Vernonia angustifolia, species of conservation interest. We found that the effects of land-use history and fire frequency on seed removal were contingent on granivore guild and microhabitat characteristics. Tephrosia virginiana removal was greater in low fire frequency sites, due to greater seed removal by rodents. Although overall removal of V. angustifolia did not differ among habitats, rodents removed more seeds than arthropods at post-agricultural sites and non-agricultural sites with low fire frequencies, but not at non-agricultural sites with high fire frequencies. Land-use history and fire frequency also affected the relationship between microhabitat characteristics and removal of V. angustifolia. Our results suggest that historical agriculture and present-day fire regimes may alter seed predation by shifting the impact of rodent and arthropod seed predators among habitats, with potential consequences for the establishment of rare plant species consumed by one or both predators.
2012-09-30
purpose, machine- learning method with a simple and precise mathematical formulation, and it has a number of aspects that make it well-suited for...encounters (%) Gurnard 42 Octopus 33 Jack Mackeral 6 Rays/ skates 5 Squid 3 Miscellaneous/Unidentified 11 Table 2: Proportion of dive time spent
USDA-ARS?s Scientific Manuscript database
The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees since it was accidentally introduced to North America in the 1990s. Woodpeckers are an important source of mortality for EAB in their native range, and understanding their effect on the pop...
The genome sequence of a widespread apex Predator, the golden eagle (Aquila chrysaetos)
Jacqueline M. Doyle; Todd E. Katzner; Peter H. Bloom; Yanzhu Ji; Bhagya K. Wijayawardena; J. Andrew DeWoody; Ludovic Orlando
2014-01-01
Biologists routinely use molecular markers to identify conservation units, to quantify genetic connectivity, to estimate population sizes, and to identify targets of selection. Many imperiled eagle populations require such efforts and would benefit from enhanced genomic resources. We sequenced, assembled, and annotated the first eagle genome using DNA from a male...
Do biological and bedsite characteristics influence survival of neonatal white-tailed deer?
M. Colter Chitwood; Marcus A. Lashley; John C. Kilgo; Kenneth H. Pollock; Christopher E. Moorman; Christopher S. DePerno
2015-01-01
Coyotes recently expanded into the eastern U.S. and potentially have caused localized white-tailed deer population declines. Research has focused on quantifying coyote predation on neonates, but little research has addressed the potential influence of bedsite characteristics on survival. In 2011 and 2012, we radiocollared 65 neonates, monitored them intensively for 16...
Hardwick, Kayla M.; Harmon, Luke J.; Hardwick, Scott D.; Rosenblum, Erica Bree
2015-01-01
Determining the adaptive significance of phenotypic traits is key for understanding evolution and diversification in natural populations. However, evolutionary biologists have an incomplete understanding of how specific traits affect fitness in most populations. The White Sands system provides an opportunity to study the adaptive significance of traits in an experimental context. Blanched color evolved recently in three species of lizards inhabiting the gypsum dunes of White Sands and is likely an adaptation to avoid predation. To determine whether there is a relationship between color and susceptibility to predation in White Sands lizards, we conducted enclosure experiments, quantifying survivorship of Holbrookia maculate exhibiting substrate-matched and substrate-mismatched phenotypes. Lizards in our study experienced strong predation. Color did not have a significant effect on survival, but we found several unexpected relationships including variation in predation over small spatial and temporal scales. In addition, we detected a marginally significant interaction between sex and color, suggesting selection for substrate matching may be stronger for males than females. We use our results as a case study to examine six major challenges frequently encountered in field-based studies of natural selection, and suggest that insight into the complexities of selection often results when experiments turn out differently than expected. PMID:25714838
Rowland, Hannah M.; Edmonds, Nicola; Saccheri, Ilik J.
2017-01-01
Camouflage, and in particular background-matching, is one of the most common anti-predator strategies observed in nature. Animals can improve their match to the colour/pattern of their surroundings through background selection, and/or by plastic colour change. Colour change can occur rapidly (a few seconds), or it may be slow, taking hours to days. Many studies have explored the cues and mechanisms behind rapid colour change, but there is a considerable lack of information about slow colour change in the context of predation: the cues that initiate it, and the range of phenotypes that are produced. Here we show that peppered moth (Biston betularia) larvae respond to colour and luminance of the twigs they rest on, and exhibit a continuous reaction norm of phenotypes. When presented with a heterogeneous environment of mixed twig colours, individual larvae specialise crypsis towards one colour rather than developing an intermediate colour. Flexible colour change in this species has likely evolved in association with wind dispersal and polyphagy, which result in caterpillars settling and feeding in a diverse range of visual environments. This is the first example of visually induced slow colour change in Lepidoptera that has been objectively quantified and measured from the visual perspective of natural predators. PMID:29158965
Ocean acidification alters the response of intertidal snails to a key sea star predator
Jellison, Brittany M.; Ninokawa, Aaron T.; Hill, Tessa M.; Sanford, Eric; Gaylord, Brian
2016-01-01
Organism-level effects of ocean acidification (OA) are well recognized. Less understood are OA's consequences for ecological species interactions. Here, we examine a behaviourally mediated predator–prey interaction within the rocky intertidal zone of the temperate eastern Pacific Ocean, using it as a model system to explore OA's capacity to impair invertebrate anti-predator behaviours more broadly. Our system involves the iconic sea star predator, Pisaster ochraceus, that elicits flee responses in numerous gastropod prey. We examine, in particular, the capacity for OA-associated reductions in pH to alter flight behaviours of the black turban snail, Tegula funebralis, an often-abundant and well-studied grazer in the system. We assess interactions between these species at 16 discrete levels of pH, quantifying the full functional response of Tegula under present and near-future OA conditions. Results demonstrate the disruption of snail anti-predator behaviours at low pH, with decreases in the time individuals spend in refuge locations. We also show that fluctuations in pH, including those typical of rock pools inhabited by snails, do not materially change outcomes, implying little capacity for episodically benign pH conditions to aid behavioural recovery. Together, these findings suggest a strong potential for OA to induce cascading community-level shifts within this long-studied ecosystem. PMID:27358371
Herbivory Drives the Spread of Salt Marsh Die-Off
Bertness, Mark D.; Brisson, Caitlin P.; Bevil, Matthew C.; Crotty, Sinead M.
2014-01-01
Salt marsh die-off is a Western Atlantic conservation problem that has recently spread into Narragansett Bay, Rhode Island, USA. It has been hypothesized to be driven by: 1) eutrophication decreasing plant investment into belowground biomass causing plant collapse, 2) boat wakes eroding creek banks, 3) pollution or disease affecting plant health, 4) substrate hardness controlling herbivorous crab distributions and 5) trophic dysfunction releasing herbivorous crabs from predator control. To distinguish between these hypotheses we quantified these variables at 14 Narragansett Bay salt marshes where die-off intensity ranged from <5% to nearly 98%. Nitrogen availability, wave intensity and plant growth did not explain any variation in die-off. Herbivory explained 73% of inter-site variation in die-off and predator control of herbivores and substrate hardness also varied significantly with die-off. This suggests that salt marsh die-off is being largely driven by intense herbivory via the release of herbivorous crabs from predator control. Our results and those from other marsh systems suggest that consumer control may not simply be a factor to consider in marsh conservation, but with widespread predator depletion impacting near shore habitats globally, trophic dysfunction and runaway consumption may be the largest and most urgent management challenge for salt marsh conservation. PMID:24651837
Eacock, Amy; Rowland, Hannah M; Edmonds, Nicola; Saccheri, Ilik J
2017-01-01
Camouflage, and in particular background-matching, is one of the most common anti-predator strategies observed in nature. Animals can improve their match to the colour/pattern of their surroundings through background selection, and/or by plastic colour change. Colour change can occur rapidly (a few seconds), or it may be slow, taking hours to days. Many studies have explored the cues and mechanisms behind rapid colour change, but there is a considerable lack of information about slow colour change in the context of predation: the cues that initiate it, and the range of phenotypes that are produced. Here we show that peppered moth ( Biston betularia ) larvae respond to colour and luminance of the twigs they rest on, and exhibit a continuous reaction norm of phenotypes. When presented with a heterogeneous environment of mixed twig colours, individual larvae specialise crypsis towards one colour rather than developing an intermediate colour. Flexible colour change in this species has likely evolved in association with wind dispersal and polyphagy, which result in caterpillars settling and feeding in a diverse range of visual environments. This is the first example of visually induced slow colour change in Lepidoptera that has been objectively quantified and measured from the visual perspective of natural predators.
Moore, Talia Y; Cooper, Kimberly L; Biewener, Andrew A; Vasudevan, Ramanarayan
2017-09-05
Mechanistically linking movement behaviors and ecology is key to understanding the adaptive evolution of locomotion. Predator evasion, a behavior that enhances fitness, may depend upon short bursts or complex patterns of locomotion. However, such movements are poorly characterized by existing biomechanical metrics. We present methods based on the entropy measure of randomness from Information Theory to quantitatively characterize the unpredictability of non-steady-state locomotion. We then apply the method by examining sympatric rodent species whose escape trajectories differ in dimensionality. Unlike the speed-regulated gait use of cursorial animals to enhance locomotor economy, bipedal jerboa (family Dipodidae) gait transitions likely enhance maneuverability. In field-based observations, jerboa trajectories are significantly less predictable than those of quadrupedal rodents, likely increasing predator evasion ability. Consistent with this hypothesis, jerboas exhibit lower anxiety in open fields than quadrupedal rodents, a behavior that varies inversely with predator evasion ability. Our unpredictability metric expands the scope of quantitative biomechanical studies to include non-steady-state locomotion in a variety of evolutionary and ecologically significant contexts.Biomechanical understanding of animal gait and maneuverability has primarily been limited to species with more predictable, steady-state movement patterns. Here, the authors develop a method to quantify movement predictability, and apply the method to study escape-related movement in several species of desert rodents.
NASA Astrophysics Data System (ADS)
Gemmell, Brad; Sheng, Jian; Buskey, Ed
2008-11-01
Copepods are an important planktonic food source for most of the world's fish species. This high predation pressure has led copepods to evolve an extremely effective escape response, with reaction times to hydrodynamic disturbances of less than 4 ms and escape speeds of over 500 body lengths per second. Using 3D high speed digital holographic cinematography (up to 2000 frames per second) we elucidate the role of entrainment flow fields generated by a natural visual predator, the dwarf seahorse (Hippocampus zosterae) during attacks on its prey, Acartia tonsa. Using phytoplankton as a tracer, we recorded and reconstructed 3D flow fields around the head of the seahorse and its prey during both successful and unsuccessful attacks to better understand how some attacks lead to capture with little or no detection from the copepod while others result in failed attacks. Attacks start with a slow approach to minimize the hydro-mechanical disturbance which is used by copepods to detect the approach of a potential predator. Successful attacks result in the seahorse using its pipette-like mouth to create suction faster than the copepod's response latency. As these characteristic scales of entrainment increase, a successful escape becomes more likely.
Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N
2016-07-01
Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We demonstrate how empirical and theoretical techniques can be combined to understand better the processes and consequences of alien species invasions for native biodiversity. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Sparrevik, Erik; Leonardsson, Kjell
1999-07-01
We performed a 6-month laboratory experiment to investigate the direct and indirect effects of predation by the benthic invertebrate predator Saduria entomon on the growth and survival of Monopreia affinis prey individuals in different age-cohorts at low and high prey densities. The experimental results were compared with changes of growth and abundance in corresponding age-cohorts of M. affinis at sites with different S. entomon and M. affinis densities in the deep sublittoral zone of the Bothnian Sea during the same year. In the experiment, the presence of S. entomon reduced growth rate of M. affinis in the 1-year and 2-year age-cohorts at low amphipod density. Increased refuge use by M. affinis, expressed as a decrease in swimming activity in the presence of S. entomon, is suggested to have reduced feeding rate and therefore growth of the amphipods. The recruitment of M. affinis offspring was reduced in presence of S. entomon. In the field, the growth rate of amphipods in the 1-year cohort increased with increasing S. entomon density at low amphipod density. We found no corresponding increase of M. affinis growth in the 2-year cohort. The positive effect on 1-year amphipod growth indicated that predation reduced intra-cohort competition of M. affinis and increased growth of surviving prey at high predator density. In both the experiment and the field data we found indications of size-selective predation on smaller M. affinis specimens. This was because of the changed ratio between number of individuals in the juvenile age-cohorts and lower recruitment of amphipod offspring connected to S. entomon density. The experimental results and field data suggest that predation by S. entomon may have both direct and indirect effects on the size-structure of M. affinis populations.
Mesa, Matthew G.
1994-01-01
Northern squaw fish Ptychocheilus oregonensis are the predominant predators of juvenile Pacific salmonids Oncorhynchus spp. in the Columbia River, and their predation rates are greatest just below dams. Because juvenile salmonids are commonly subjected to multiple stressors at dams in the course of their seaward migration, high predation rates below dams may be due in part to an increase in the vulnerability of stressed fish. I conducted laboratory experiments to examine the predator avoidance ability and physiological stress responses of juvenile chinook salmon O. tshawytscha subjected to treatments (stressors) designed to simulate routine hatchery practices (multiple handlings) or dam passage (multiple agitations). Both stressors resulted in lethargic behavior in the fish, and agitation also caused disorieniation and occasional injury. When equal numbers of stressed and unstressed fish were exposed to northern squawfish for up to 1 h, significantly more stressed fish were eaten, but this effect was not evident during longer exposures. The lack of differential predation in trials lasting up to 24 h can be explained by the rapid development of schooling behavior in the prey, but other possibilities exist, such as changing ratios of stressed and unstressed prey over time. Concentrations of plasma cortisol, glucose, and lactate in fish subjected to multiple stressors were similar and sometimes cumulative, returned to prestress levels within 6-24 h, and correlated poorly with predator avoidance ability. My results suggest that juvenile salmonids are capable of avoiding predators within 1 h after being subjected to multiple acute stressors even though physiological homeostasis may be altered for up to 24 h. Therefore, because juvenile salmonids typically reside in lailrace areas for only a short time after dam passage, measures aimed at reducing physical stress or protecting them as they migrate through dam tailraces may help alleviate the relatively intense predation in these areas.
Lönnstedt, Oona M; Munday, Philip L; McCormick, Mark I; Ferrari, Maud C O; Chivers, Douglas P
2013-09-01
Carbon dioxide (CO2) levels in the atmosphere and surface ocean are rising at an unprecedented rate due to sustained and accelerating anthropogenic CO2 emissions. Previous studies have documented that exposure to elevated CO2 causes impaired antipredator behavior by coral reef fish in response to chemical cues associated with predation. However, whether ocean acidification will impair visual recognition of common predators is currently unknown. This study examined whether sensory compensation in the presence of multiple sensory cues could reduce the impacts of ocean acidification on antipredator responses. When exposed to seawater enriched with levels of CO2 predicted for the end of this century (880 μatm CO2), prey fish completely lost their response to conspecific alarm cues. While the visual response to a predator was also affected by high CO2, it was not entirely lost. Fish exposed to elevated CO2, spent less time in shelter than current-day controls and did not exhibit antipredator signaling behavior (bobbing) when multiple predator cues were present. They did, however, reduce feeding rate and activity levels to the same level as controls. The results suggest that the response of fish to visual cues may partially compensate for the lack of response to chemical cues. Fish subjected to elevated CO2 levels, and exposed to chemical and visual predation cues simultaneously, responded with the same intensity as controls exposed to visual cues alone. However, these responses were still less than control fish simultaneously exposed to chemical and visual predation cues. Consequently, visual cues improve antipredator behavior of CO2 exposed fish, but do not fully compensate for the loss of response to chemical cues. The reduced ability to correctly respond to a predator will have ramifications for survival in encounters with predators in the field, which could have repercussions for population replenishment in acidified oceans.
Higher predation risk for insect prey at low latitudes and elevations.
Roslin, Tomas; Hardwick, Bess; Novotny, Vojtech; Petry, William K; Andrew, Nigel R; Asmus, Ashley; Barrio, Isabel C; Basset, Yves; Boesing, Andrea Larissa; Bonebrake, Timothy C; Cameron, Erin K; Dáttilo, Wesley; Donoso, David A; Drozd, Pavel; Gray, Claudia L; Hik, David S; Hill, Sarah J; Hopkins, Tapani; Huang, Shuyin; Koane, Bonny; Laird-Hopkins, Benita; Laukkanen, Liisa; Lewis, Owen T; Milne, Sol; Mwesige, Isaiah; Nakamura, Akihiro; Nell, Colleen S; Nichols, Elizabeth; Prokurat, Alena; Sam, Katerina; Schmidt, Niels M; Slade, Alison; Slade, Victor; Suchanková, Alžběta; Teder, Tiit; van Nouhuys, Saskya; Vandvik, Vigdis; Weissflog, Anita; Zhukovich, Vital; Slade, Eleanor M
2017-05-19
Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest consistent drivers of biotic interaction strength, a finding that needs to be integrated into general theories of herbivory, community organization, and life-history evolution. Copyright © 2017, American Association for the Advancement of Science.
Living with lions: the economics of coexistence in the Gir forests, India.
Banerjee, Kausik; Jhala, Yadvendradev V; Chauhan, Kartikeya S; Dave, Chittranjan V
2013-01-01
Rarely human communities coexist in harmony with large predators. Most often communities suffer due to predation on their stock while large carnivores suffer losses and at times extirpation due to retaliation. We examine the mechanisms permitting the coexistence of Asiatic lions (Panthera leo persica) and pastoral communities (Maldharis) in the Gir forests, India. We monitored six Maldhari settlements between 2005 and 2007 to quantify seasonal livestock holding, density and losses due to predation and other causes. Lion density, estimated by mark recapture, was 15±0.1 SE/100 km(2). Livestock density, estimated by total counts, ranged between 25/km(2)-31/km(2) with buffaloes being most abundant. Average livestock holding of Maldhari families was 33±3 SE. Lions predated mostly on unproductive cattle (30%). Scat analysis (n = 165), predation events (n = 180) and seven continuous monitoring sessions of 1,798 hours on four radio-collared lions estimated livestock to contribute between 25 to 42% of lions' biomass consumptions, of which only 16% was predated; rest scavenged. With free grazing rights within Gir forests, Maldharis offset 58±0.2 SE% of annual livestock rearing cost in comparison to non-forest dwelling pastoralists. With government compensation scheme for livestock predation, this profit margin augmented to 76±0.05 SE%. Lion density was higher in areas with Maldhari livestock in comparison to areas without livestock. Thus, the current lifestyles and livestock holdings of Maldharis seem to be beneficial to both lions and local pastoralists. We conclude that a combination of strict protection regime for lions, Maldharis' traditional reverence towards lions and the livelihood economics permit the delicate balance of lion-Maldhari coexistence. Indefinite increase in human and livestock population within Gir might upset this equilibrium undermining the conservation objectives. We see no end to compensation programs worldwide as they constitute a crucial element needed for human-carnivore coexistence.
Living with Lions: The Economics of Coexistence in the Gir Forests, India
Banerjee, Kausik; Jhala, Yadvendradev V.; Chauhan, Kartikeya S.; Dave, Chittranjan V.
2013-01-01
Rarely human communities coexist in harmony with large predators. Most often communities suffer due to predation on their stock while large carnivores suffer losses and at times extirpation due to retaliation. We examine the mechanisms permitting the coexistence of Asiatic lions (Panthera leo persica) and pastoral communities (Maldharis) in the Gir forests, India. We monitored six Maldhari settlements between 2005 and 2007 to quantify seasonal livestock holding, density and losses due to predation and other causes. Lion density, estimated by mark recapture, was 15±0.1 SE/100 km2. Livestock density, estimated by total counts, ranged between 25/km2–31/km2 with buffaloes being most abundant. Average livestock holding of Maldhari families was 33±3 SE. Lions predated mostly on unproductive cattle (30%). Scat analysis (n = 165), predation events (n = 180) and seven continuous monitoring sessions of 1,798 hours on four radio-collared lions estimated livestock to contribute between 25 to 42% of lions’ biomass consumptions, of which only 16% was predated; rest scavenged. With free grazing rights within Gir forests, Maldharis offset 58±0.2 SE% of annual livestock rearing cost in comparison to non-forest dwelling pastoralists. With government compensation scheme for livestock predation, this profit margin augmented to 76±0.05 SE%. Lion density was higher in areas with Maldhari livestock in comparison to areas without livestock. Thus, the current lifestyles and livestock holdings of Maldharis seem to be beneficial to both lions and local pastoralists. We conclude that a combination of strict protection regime for lions, Maldharis’ traditional reverence towards lions and the livelihood economics permit the delicate balance of lion-Maldhari coexistence. Indefinite increase in human and livestock population within Gir might upset this equilibrium undermining the conservation objectives. We see no end to compensation programs worldwide as they constitute a crucial element needed for human-carnivore coexistence. PMID:23341871
Resembling a viper: implications of mimicry for conservation of the endangered smooth snake.
Valkonen, Janne K; Mappes, Johanna
2014-12-01
The phenomenon of Batesian mimicry, where a palatable animal gains protection against predation by resembling an unpalatable model, has been a core interest of evolutionary biologists for 150 years. An extensive range of studies has focused on revealing mechanistic aspects of mimicry (shared education and generalization of predators) and the evolutionary dynamics of mimicry systems (co-operation vs. conflict) and revealed that protective mimicry is widespread and is important for individual fitness. However, according to our knowledge, there are no case studies where mimicry theories have been applied to conservation of mimetic species. Theoretically, mimicry affects, for example, frequency dependency of predator avoidance learning and human induced mortality. We examined the case of the protected, endangered, nonvenomous smooth snake (Coronella austriaca) that mimics the nonprotected venomous adder (Vipera berus), both of which occur in the Åland archipelago, Finland. To quantify the added predation risk on smooth snakes caused by the rarity of vipers, we calculated risk estimates from experimental data. Resemblance of vipers enhances survival of smooth snakes against bird predation because many predators avoid touching venomous vipers. Mimetic resemblance is however disadvantageous against human predators, who kill venomous vipers and accidentally kill endangered, protected smooth snakes. We found that the effective population size of the adders in Åland is very low relative to its smooth snake mimic (28.93 and 41.35, respectively).Because Batesian mimicry is advantageous for the mimic only if model species exist in sufficiently high numbers, it is likely that the conservation program for smooth snakes will fail if adders continue to be destroyed. Understanding the population consequences of mimetic species may be crucial to the success of endangered species conservation. We suggest that when a Batesian mimic requires protection, conservation planners should not ignore the model species (or co-mimic in Mullerian mimicry rings) even if it is not itself endangered. © 2014 Society for Conservation Biology.
Miller, Jennifer R B; Ament, Judith M; Schmitz, Oswald J
2014-01-01
Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong effects on domain size. This study demonstrates the validity of utilizing hunting mode and habitat domain for predicting predator-prey interactions. Results also highlight the importance of accounting for flexibility in prey movement ranges as an anti-predator response rather than treating the domain as a static attribute. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.