Small-Scale Dynamical Structures Using OH Airglow From Astronomical Observations
NASA Astrophysics Data System (ADS)
Franzen, C.; Espy, P. J.; Hibbins, R. E.; Djupvik, A. A.
2017-12-01
Remote sensing of perturbations in the hydroxyl (OH) Meinel airglow has often been used to observe gravity, tidal and planetary waves travelling through the 80-90 km region. While large scale (>1 km) gravity waves and the winds caused by their breaking are widely documented, information on the highest frequency waves and instabilities occurring during the breaking process is often limited by the temporal and spatial resolution of the available observations. In an effort to better quantify the full range of wave scales present near the mesopause, we present a series of observations of the OH Meinel (9,7) transition that were executed with the Nordic Optical Telescope on La Palma (18°W, 29°N). These measurements have a 24 s repetition rate and horizontal spatial resolutions at 87 km as small as 10 cm, allowing us to quantify the transition in the mesospheric wave domains as the gravity waves break. Temporal scales from hours to minutes, as well as sub-100 m coherent structures in the OH airglow have been observed and will be presented.
Avulsion research using flume experiments and highly accurate and temporal-rich SfM datasets
NASA Astrophysics Data System (ADS)
Javernick, L.; Bertoldi, W.; Vitti, A.
2017-12-01
SfM's ability to produce high-quality, large-scale digital elevation models (DEMs) of complicated and rapidly evolving systems has made it a valuable technique for low-budget researchers and practitioners. While SfM has provided valuable datasets that capture single-flood event DEMs, there is an increasing scientific need to capture higher temporal resolution datasets that can quantify the evolutionary processes instead of pre- and post-flood snapshots. However, flood events' dangerous field conditions and image matching challenges (e.g. wind, rain) prevent quality SfM-image acquisition. Conversely, flume experiments offer opportunities to document flood events, but achieving consistent and accurate DEMs to detect subtle changes in dry and inundated areas remains a challenge for SfM (e.g. parabolic error signatures).This research aimed at investigating the impact of naturally occurring and manipulated avulsions on braided river morphology and on the encroachment of floodplain vegetation, using laboratory experiments. This required DEMs with millimeter accuracy and precision and at a temporal resolution to capture the processes. SfM was chosen as it offered the most practical method. Through redundant local network design and a meticulous ground control point (GCP) survey with a Leica Total Station in red laser configuration (reported 2 mm accuracy), the SfM residual errors compared to separate ground truthing data produced mean errors of 1.5 mm (accuracy) and standard deviations of 1.4 mm (precision) without parabolic error signatures. Lighting conditions in the flume were limited to uniform, oblique, and filtered LED strips, which removed glint and thus improved bed elevation mean errors to 4 mm, but errors were further reduced by means of an open source software for refraction correction. The obtained datasets have provided the ability to quantify how small flood events with avulsion can have similar morphologic and vegetation impacts as large flood events without avulsion. Further, this research highlights the potential application of SfM in the laboratory and ability to document physical and biological processes at greater spatial and temporal resolution. Marie Sklodowska-Curie Individual Fellowship: River-HMV, 656917
De Winter, François-Laurent; Timmers, Dorien; de Gelder, Beatrice; Van Orshoven, Marc; Vieren, Marleen; Bouckaert, Miriam; Cypers, Gert; Caekebeke, Jo; Van de Vliet, Laura; Goffin, Karolien; Van Laere, Koen; Sunaert, Stefan; Vandenberghe, Rik; Vandenbulcke, Mathieu; Van den Stock, Jan
2016-01-01
Deficits in face processing have been described in the behavioral variant of fronto-temporal dementia (bvFTD), primarily regarding the recognition of facial expressions. Less is known about face shape and face identity processing. Here we used a hierarchical strategy targeting face shape and face identity recognition in bvFTD and matched healthy controls. Participants performed 3 psychophysical experiments targeting face shape detection (Experiment 1), unfamiliar face identity matching (Experiment 2), familiarity categorization and famous face-name matching (Experiment 3). The results revealed group differences only in Experiment 3, with a deficit in the bvFTD group for both familiarity categorization and famous face-name matching. Voxel-based morphometry regression analyses in the bvFTD group revealed an association between grey matter volume of the left ventral anterior temporal lobe and familiarity recognition, while face-name matching correlated with grey matter volume of the bilateral ventral anterior temporal lobes. Subsequently, we quantified familiarity-specific and name-specific recognition deficits as the sum of the celebrities of which respectively only the name or only the familiarity was accurately recognized. Both indices were associated with grey matter volume of the bilateral anterior temporal cortices. These findings extent previous results by documenting the involvement of the left anterior temporal lobe (ATL) in familiarity detection and the right ATL in name recognition deficits in fronto-temporal lobar degeneration.
Climate drives phenological reassembly of a mountain wildflower meadow community.
Theobald, Elli J; Breckheimer, Ian; HilleRisLambers, Janneke
2017-11-01
Spatial community reassembly driven by changes in species abundances or habitat occupancy is a well-documented response to anthropogenic global change, but communities can also reassemble temporally if the environment drives differential shifts in the timing of life events across community members. Much like spatial community reassembly, temporal reassembly could be particularly important when critical species interactions are temporally concentrated (e.g., plant-pollinator dynamics during flowering). Previous studies have documented species-specific shifts in phenology driven by climate change, implying that temporal reassembly, a process we term "phenological reassembly," is likely. However, few studies have documented changes in the temporal co-occurrence of community members driven by environmental change, likely because few datasets of entire communities exist. We addressed this gap by quantifying the relationship between flowering phenology and climate for 48 co-occurring subalpine wildflower species at Mount Rainier (Washington, USA) in a large network of plots distributed across Mt. Rainier's steep environmental gradients; large spatio-temporal variability in climate over the 6 yr of our study (including the earliest and latest snowmelt year on record) provided robust estimates of climate-phenology relationships for individual species. We used these relationships to examine changes to community co-flowering composition driven by 'climate change analog' conditions experienced at our sites in 2015. We found that both the timing and duration of flowering of focal species was strongly sensitive to multiple climatic factors (snowmelt, temperature, and soil moisture). Some consistent responses emerged, including earlier snowmelt and warmer growing seasons driving flowering phenology earlier for all focal species. However, variation among species in their phenological sensitivities to these climate drivers was large enough that phenological reassembly occurred in the climate change analog conditions of 2015. An unexpected driver of phenological reassembly was fine-scale variation in the direction and magnitude of climatic change, causing phenological reassembly to be most apparent early and late in the season and in topographic locations where snow duration was shortest (i.e., at low elevations and on ridges in the landscape). Because phenological reassembly may have implications for many types of ecological interactions, failing to monitor community-level repercussions of species-specific phenological shifts could underestimate climate change impacts. © 2017 by the Ecological Society of America.
Natural language processing of spoken diet records (SDRs).
Lacson, Ronilda; Long, William
2006-01-01
Dietary assessment is a fundamental aspect of nutritional evaluation that is essential for management of obesity as well as for assessing dietary impact on chronic diseases. Various methods have been used for dietary assessment including written records, 24-hour recalls, and food frequency questionnaires. The use of mobile phones to provide real-time dietary records provides potential advantages for accessibility, ease of use and automated documentation. However, understanding even a perfect transcript of spoken dietary records (SDRs) is challenging for people. This work presents a first step towards automatic analysis of SDRs. Our approach consists of four steps - identification of food items, identification of food quantifiers, classification of food quantifiers and temporal annotation. Our method enables automatic extraction of dietary information from SDRs, which in turn allows automated mapping to a Diet History Questionnaire dietary database. Our model has an accuracy of 90%. This work demonstrates the feasibility of automatically processing SDRs.
Temporal Coherence: A Model for Non-Stationarity in Natural and Simulated Wind Records
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinker, Jennifer M.; Gavin, Henri P.; Clifton, Andrew
We present a novel methodology for characterizing and simulating non-stationary stochastic wind records. In this new method, non-stationarity is characterized and modelled via temporal coherence, which is quantified in the discrete frequency domain by probability distributions of the differences in phase between adjacent Fourier components. Temporal coherence can also be used to quantify non-stationary characteristics in wind data. Three case studies are presented that analyze the non-stationarity of turbulent wind data obtained at the National Wind Technology Center near Boulder, Colorado, USA. The first study compares the temporal and spectral characteristics of a stationary wind record and a non-stationary windmore » record in order to highlight their differences in temporal coherence. The second study examines the distribution of one of the proposed temporal coherence parameters and uses it to quantify the prevalence of nonstationarity in the dataset. The third study examines how temporal coherence varies with a range of atmospheric parameters to determine what conditions produce more non-stationarity.« less
Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer
2012-01-01
Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...
Quantifying temporal change in biodiversity: challenges and opportunities
Dornelas, Maria; Magurran, Anne E.; Buckland, Stephen T.; Chao, Anne; Chazdon, Robin L.; Colwell, Robert K.; Curtis, Tom; Gaston, Kevin J.; Gotelli, Nicholas J.; Kosnik, Matthew A.; McGill, Brian; McCune, Jenny L.; Morlon, Hélène; Mumby, Peter J.; Øvreås, Lise; Studeny, Angelika; Vellend, Mark
2013-01-01
Growing concern about biodiversity loss underscores the need to quantify and understand temporal change. Here, we review the opportunities presented by biodiversity time series, and address three related issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first issue, we draw attention to defining characteristics of biodiversity time series—lack of physical boundaries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic methods. Second, we explore methods of quantifying change in biodiversity at different timescales, noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of temporal change. Finally, we address the transition from inferring to forecasting biodiversity change, highlighting potential pitfalls associated with phase-shifts and novel conditions. PMID:23097514
NASA Astrophysics Data System (ADS)
Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.
2011-12-01
The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater volcanic eruption linked to the heat, chemical, and biological fluxes. In the late stages of the event, the dissipation of the "event plume" into the surrounding water column and the plume's migration patterns in the ambient regional flow will be tracked using specifically designed mobile sensor-platforms. The presence of these assets opens the potential for more immediate, coordinated, and thorough event responses than the community has previously been able to mount. Given the relative abundance of information on many variables in a verifiable and archived spatial and temporal context, and the rapidly evolving ability to conduct real-time genomic analyses, our community may be able to secure entirely novel organisms that are released into the overlying ocean only under well-characterized eruptive conditions.
Soranno, Patricia A; Bissell, Edward G; Cheruvelil, Kendra S; Christel, Samuel T; Collins, Sarah M; Fergus, C Emi; Filstrup, Christopher T; Lapierre, Jean-Francois; Lottig, Noah R; Oliver, Samantha K; Scott, Caren E; Smith, Nicole J; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A; Gries, Corinna; Henry, Emily N; Skaff, Nick K; Stanley, Emily H; Stow, Craig A; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E
2015-01-01
Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km(2)). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated database reproducible and extensible, allowing users to ask new research questions with the existing database or through the addition of new data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data integration need manual input from experts in diverse fields, requiring close collaboration.
Soranno, Patricia A.; Bissell, E.G.; Cheruvelil, Kendra S.; Christel, Samuel T.; Collins, Sarah M.; Fergus, C. Emi; Filstrup, Christopher T.; Lapierre, Jean-Francois; Lotting, Noah R.; Oliver, Samantha K.; Scott, Caren E.; Smith, Nicole J.; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A.; Gries, Corinna; Henry, Emily N.; Skaff, Nick K.; Stanley, Emily H.; Stow, Craig A.; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E.
2015-01-01
Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km2). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated database reproducible and extensible, allowing users to ask new research questions with the existing database or through the addition of new data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data integration need manual input from experts in diverse fields, requiring close collaboration.
Spatio-temporal Organization During Ventricular Fibrillation in the Human Heart.
Robson, Jinny; Aram, Parham; Nash, Martyn P; Bradley, Chris P; Hayward, Martin; Paterson, David J; Taggart, Peter; Clayton, Richard H; Kadirkamanathan, Visakan
2018-06-01
In this paper, we present a novel approach to quantify the spatio-temporal organization of electrical activation during human ventricular fibrillation (VF). We propose three different methods based on correlation analysis, graph theoretical measures and hierarchical clustering. Using the proposed approach, we quantified the level of spatio-temporal organization during three episodes of VF in ten patients, recorded using multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global myocardial ischaemia and 30 s reflow. Our findings show a steady decline in spatio-temporal organization from the onset of VF with coronary perfusion. We observed transient increases in spatio-temporal organization during global myocardial ischaemia. However, the decline in spatio-temporal organization continued during reflow. Our results were consistent across all patients, and were consistent with the numbers of phase singularities. Our findings show that the complex spatio-temporal patterns can be studied using complex network analysis.
Temporal Delineation and Quantification of Short Term Clustered Mining Seismicity
NASA Astrophysics Data System (ADS)
Woodward, Kyle; Wesseloo, Johan; Potvin, Yves
2017-07-01
The assessment of the temporal characteristics of seismicity is fundamental to understanding and quantifying the seismic hazard associated with mining, the effectiveness of strategies and tactics used to manage seismic hazard, and the relationship between seismicity and changes to the mining environment. This article aims to improve the accuracy and precision in which the temporal dimension of seismic responses can be quantified and delineated. We present a review and discussion on the occurrence of time-dependent mining seismicity with a specific focus on temporal modelling and the modified Omori law (MOL). This forms the basis for the development of a simple weighted metric that allows for the consistent temporal delineation and quantification of a seismic response. The optimisation of this metric allows for the selection of the most appropriate modelling interval given the temporal attributes of time-dependent mining seismicity. We evaluate the performance weighted metric for the modelling of a synthetic seismic dataset. This assessment shows that seismic responses can be quantified and delineated by the MOL, with reasonable accuracy and precision, when the modelling is optimised by evaluating the weighted MLE metric. Furthermore, this assessment highlights that decreased weighted MLE metric performance can be expected if there is a lack of contrast between the temporal characteristics of events associated with different processes.
NASA Astrophysics Data System (ADS)
Booth, Adam M.; LaHusen, Sean R.; Duvall, Alison R.; Montgomery, David R.
2017-02-01
Documenting spatial and temporal patterns of past landsliding is a challenging step in quantifying the effect of landslides on landscape evolution. While landslide inventories can map spatial distributions, lack of dateable material, landslide reactivations, or time, access, and cost constraints generally limit dating large numbers of landslides to analyze temporal patterns. Here we quantify the record of the Holocene history of deep-seated landsliding along a 25 km stretch of the North Fork Stillaguamish River valley, Washington State, USA, including the 2014 Oso landslide, which killed 43 people. We estimate the ages of more than 200 deep-seated landslides in glacial sediment by defining an empirical relationship between landslide deposit age from radiocarbon dating and landslide deposit surface roughness. We show that roughness systematically decreases with age as a function of topographic wavelength, consistent with models of disturbance-driven soil transport. The age-roughness model predicts a peak in landslide frequency at 1000 calibrated (cal) years B.P., with very few landslide deposits older than 7000 cal years B.P. or younger than 100 cal years B.P., likely reflecting a combination of preservation bias and a complex history of changing climate, base level, and seismic shaking in the study area. Most recent landslides have occurred where channels actively interact with the toes of hillslopes composed of glacial sediments, suggesting that lateral channel migration is a primary control on the location of large deep-seated landslides in the valley.
ERIC Educational Resources Information Center
Hannan, Michael T.; Tuma, Nancy Brandon
This document is part of a series of chapters described in SO 011 759. Working from the premise that temporal analysis is indispensable for the study of change, the document examines major alternatives in research design of this nature. Five sections focus on the features, advantages, and limitations of temporal analysis. Four designs which…
Temporal Decompostion of a Distribution System Quasi-Static Time-Series Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry A; Hunsberger, Randolph J
This paper documents the first phase of an investigation into reducing runtimes of complex OpenDSS models through parallelization. As the method seems promising, future work will quantify - and further mitigate - errors arising from this process. In this initial report, we demonstrate how, through the use of temporal decomposition, the run times of a complex distribution-system-level quasi-static time series simulation can be reduced roughly proportional to the level of parallelization. Using this method, the monolithic model runtime of 51 hours was reduced to a minimum of about 90 minutes. As expected, this comes at the expense of control- andmore » voltage-errors at the time-slice boundaries. All evaluations were performed using a real distribution circuit model with the addition of 50 PV systems - representing a mock complex PV impact study. We are able to reduce induced transition errors through the addition of controls initialization, though small errors persist. The time savings with parallelization are so significant that we feel additional investigation to reduce control errors is warranted.« less
NASA Astrophysics Data System (ADS)
Cullin, J. A.; Ward, A. S.; Cwiertny, D. M.; Barber, L. B.; Kolpin, D. W.; Bradley, P. M.; Keefe, S. H.; Hubbard, L. E.
2013-12-01
Contaminants of emerging concern (CECs) are an unregulated suite of constituents possessing the potential to cause a host of reproductive and developmental problems in humans and wildlife. CECs are frequently detected in environmental waters. Degradation pathways of several CECs are well-characterized in idealized laboratory settings, but CEC fate and transport in complex field settings is poorly understood. In the present study we used a multi-tracer solute injection study to quantify physical transport, photodegradation, and sorption in a wastewater effluent-impacted stream. Conservative tracers were used to quantify physical transport processes in the stream. Use of reactive fluorescent tracers allows for isolation of the relative contribution of photodegradation and sorption within the system. Field data was used to calibrate a one-dimensional transport model allowing us to use forward modeling to predict the transport of sulfamethoxazole, an antibiotic documented to be present in the wastewater effluent and in Fourmile Creek which is susceptible to both sorption and photolysis. Forward modeling will predict both temporal persistence and spatial extent of sulfamethoxazole in Fourmile Creek
Quantifying interictal metabolic activity in human temporal lobe epilepsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, T.R.; Mazziotta, J.C.; Engel, J. Jr.
1990-09-01
The majority of patients with complex partial seizures of unilateral temporal lobe origin have interictal temporal hypometabolism on (18F)fluorodeoxyglucose positron emission tomography (FDG PET) studies. Often, this hypometabolism extends to ipsilateral extratemporal sites. The use of accurately quantified metabolic data has been limited by the absence of an equally reliable method of anatomical analysis of PET images. We developed a standardized method for visual placement of anatomically configured regions of interest on FDG PET studies, which is particularly adapted to the widespread, asymmetric, and often severe interictal metabolic alterations of temporal lobe epilepsy. This method was applied by a singlemore » investigator, who was blind to the identity of subjects, to 10 normal control and 25 interictal temporal lobe epilepsy studies. All subjects had normal brain anatomical volumes on structural neuroimaging studies. The results demonstrate ipsilateral thalamic and temporal lobe involvement in the interictal hypometabolism of unilateral temporal lobe epilepsy. Ipsilateral frontal, parietal, and basal ganglial metabolism is also reduced, although not as markedly as is temporal and thalamic metabolism.« less
Quantifying the Temporal Inequality of Nutrient Loads with a Novel Metric
NASA Astrophysics Data System (ADS)
Gall, H. E.; Schultz, D.; Rao, P. S.; Jawitz, J. W.; Royer, M.
2015-12-01
Inequality is an emergent property of many complex systems. For a given series of stochastic events, some events generate a disproportionately large contribution to system responses compared to other events. In catchments, such responses cause streamflow and solute loads to exhibit strong temporal inequality, with the vast majority of discharge and solute loads exported during short periods of time during which high-flow events occur. These periods of time are commonly referred to as "hot moments". Although this temporal inequality is widely recognized, there is currently no uniform metric for assessing it. We used a novel application of Lorenz Inequality, a method commonly used in economics to quantify income inequality, to quantify the spatial and temporal inequality of streamflow and nutrient (nitrogen and phosphorus) loads exported to the Chesapeake Bay. Lorenz Inequality and the corresponding Gini Coefficient provide an analytical tool for quantifying inequality that can be applied at any temporal or spatial scale. The Gini coefficient (G) is a formal measure of inequality that varies from 0 to 1, with a value of 0 indicating perfect equality (i.e., fluxes and loads are constant in time) and 1 indicating perfect inequality (i.e., all of the discharge and solute loads are exported during one instant in time). Therefore, G is a simple yet powerful tool for providing insight into the temporal inequality of nutrient transport. We will present the results of our detailed analysis of streamflow and nutrient time series data collected since the early 1980's at 30 USGS gauging stations in the Chesapeake Bay watershed. The analysis is conducted at an annual time scale, enabling trends and patterns to be assessed both temporally (over time at each station) and spatially (for the same period of time across stations). The results of this analysis have the potential to create a transformative new framework for identifying "hot moments", improving our ability to temporally and spatially target implementation of best management practices to ultimately improve water quality in the Chesapeake Bay. This method also provides insight into the temporal scales at which hydrologic and biogeochemical variability dominate nutrient export dynamics.
Co-expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A.
Mukund, Kavitha; Ward, Samuel R; Lieber, Richard L; Subramaniam, Shankar
2017-10-16
Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into 5 groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes- Dclk1 and Ostalpha within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous workBotulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into 5 groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes- Dclk1 and Ostalpha within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous work.
A use case study on late stent thrombosis for ontology-based temporal reasoning and analysis.
Clark, Kim; Sharma, Deepak; Qin, Rui; Chute, Christopher G; Tao, Cui
2014-01-01
In this paper, we show how we have applied the Clinical Narrative Temporal Relation Ontology (CNTRO) and its associated temporal reasoning system (the CNTRO Timeline Library) to trend temporal information within medical device adverse event report narratives. 238 narratives documenting occurrences of late stent thrombosis adverse events from the Food and Drug Administration's (FDA) Manufacturing and User Facility Device Experience (MAUDE) database were annotated and evaluated using the CNTRO Timeline Library to identify, order, and calculate the duration of temporal events. The CNTRO Timeline Library had a 95% accuracy in correctly ordering events within the 238 narratives. 41 narratives included an event in which the duration was documented, and the CNTRO Timeline Library had an 80% accuracy in correctly determining these durations. 77 narratives included documentation of a duration between events, and the CNTRO Timeline Library had a 76% accuracy in determining these durations. This paper also includes an example of how this temporal output from the CNTRO ontology can be used to verify recommendations for length of drug administration, and proposes that these same tools could be applied to other medical device adverse event narratives in order to identify currently unknown temporal trends.
Munson, Jessica; Amati, Viviana; Collard, Mark; Macri, Martha J
2014-01-01
Religious rituals that are painful or highly stressful are hypothesized to be costly signs of commitment essential for the evolution of complex society. Yet few studies have investigated how such extreme ritual practices were culturally transmitted in past societies. Here, we report the first study to analyze temporal and spatial variation in bloodletting rituals recorded in Classic Maya (ca. 250-900 CE) hieroglyphic texts. We also identify the sociopolitical contexts most closely associated with these ancient recorded rituals. Sampling an extensive record of 2,480 hieroglyphic texts, this study identifies every recorded instance of the logographic sign for the word ch'ahb' that is associated with ritual bloodletting. We show that documented rituals exhibit low frequency whose occurrence cannot be predicted by spatial location. Conversely, network ties better capture the distribution of bloodletting rituals across the southern Maya region. Our results indicate that bloodletting rituals by Maya nobles were not uniformly recorded, but were typically documented in association with antagonistic statements and may have signaled royal commitments among connected polities.
Munson, Jessica; Amati, Viviana; Collard, Mark; Macri, Martha J.
2014-01-01
Religious rituals that are painful or highly stressful are hypothesized to be costly signs of commitment essential for the evolution of complex society. Yet few studies have investigated how such extreme ritual practices were culturally transmitted in past societies. Here, we report the first study to analyze temporal and spatial variation in bloodletting rituals recorded in Classic Maya (ca. 250–900 CE) hieroglyphic texts. We also identify the sociopolitical contexts most closely associated with these ancient recorded rituals. Sampling an extensive record of 2,480 hieroglyphic texts, this study identifies every recorded instance of the logographic sign for the word ch’ahb’ that is associated with ritual bloodletting. We show that documented rituals exhibit low frequency whose occurrence cannot be predicted by spatial location. Conversely, network ties better capture the distribution of bloodletting rituals across the southern Maya region. Our results indicate that bloodletting rituals by Maya nobles were not uniformly recorded, but were typically documented in association with antagonistic statements and may have signaled royal commitments among connected polities. PMID:25254359
Methodological considerations for documenting the energy demand of dance activity: a review
Beck, Sarah; Redding, Emma; Wyon, Matthew A.
2015-01-01
Previous research has explored the intensity of dance class, rehearsal, and performance and attempted to document the body's physiological adaptation to these activities. Dance activity is frequently described as: complex, diverse, non-steady state, intermittent, of moderate to high intensity, and with notable differences between training and performance intensities and durations. Many limitations are noted in the methodologies of previous studies creating barriers to consensual conclusion. The present study therefore aims to examine the previous body of literature and in doing so, seeks to highlight important methodological considerations for future research in this area to strengthen our knowledge base. Four recommendations are made for future research. Firstly, research should continue to be dance genre specific, with detailed accounts of technical and stylistic elements of the movement vocabulary examined given wherever possible. Secondly, a greater breadth of performance repertoire, within and between genres, needs to be closely examined. Thirdly, a greater focus on threshold measurements is recommended due to the documented complex interplay between aerobic and anaerobic energy systems. Lastly, it is important for research to begin to combine temporal data relating to work and rest periods with real-time measurement of metabolic data in work and rest, in order to be able to quantify demand more accurately. PMID:25999885
Use of Co-occurrences for Temporal Expressions Annotation
NASA Astrophysics Data System (ADS)
Craveiro, Olga; Macedo, Joaquim; Madeira, Henrique
The annotation or extraction of temporal information from text documents is becoming increasingly important in many natural language processing applications such as text summarization, information retrieval, question answering, etc.. This paper presents an original method for easy recognition of temporal expressions in text documents. The method creates semantically classified temporal patterns, using word co-occurrences obtained from training corpora and a pre-defined seed keywords set, derived from the used language temporal references. A participation on a Portuguese named entity evaluation contest showed promising effectiveness and efficiency results. This approach can be adapted to recognize other type of expressions or languages, within other contexts, by defining the suitable word sets and training corpora.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.
2015-12-01
Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal parameters, thaw layer thickness and vegetation distribution. Overall, results of these efforts demonstrate the value of coupling various datasets at high spatial and temporal resolution to improve predictive understanding of subsurface and surface dynamics.
Dripps, W.R.; Bradbury, K.R.
2010-01-01
Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ciaramello, Frank M.; Hemami, Sheila S.
2009-02-01
Communication of American Sign Language (ASL) over mobile phones would be very beneficial to the Deaf community. ASL video encoded to achieve the rates provided by current cellular networks must be heavily compressed and appropriate assessment techniques are required to analyze the intelligibility of the compressed video. As an extension to a purely spatial measure of intelligibility, this paper quantifies the effect of temporal compression artifacts on sign language intelligibility. These artifacts can be the result of motion-compensation errors that distract the observer or frame rate reductions. They reduce the the perception of smooth motion and disrupt the temporal coherence of the video. Motion-compensation errors that affect temporal coherence are identified by measuring the block-level correlation between co-located macroblocks in adjacent frames. The impact of frame rate reductions was quantified through experimental testing. A subjective study was performed in which fluent ASL participants rated the intelligibility of sequences encoded at a range of 5 different frame rates and with 3 different levels of distortion. The subjective data is used to parameterize an objective intelligibility measure which is highly correlated with subjective ratings at multiple frame rates.
Rapid recovery from aphasia after infarction of Wernicke's area.
Yagata, Stephanie A; Yen, Melodie; McCarron, Angelica; Bautista, Alexa; Lamair-Orosco, Genevieve; Wilson, Stephen M
2017-01-01
Aphasia following infarction of Wernicke's area typically resolves to some extent over time. The nature of this recovery process and its time course have not been characterized in detail, especially in the acute/subacute period. The goal of this study was to document recovery after infarction of Wernicke's area in detail in the first 3 months after stroke. Specifically, we aimed to address two questions about language recovery. First, which impaired language domains improve over time, and which do not? Second, what is the time course of recovery? We used quantitative analysis of connected speech and a brief aphasia battery to document language recovery in two individuals with aphasia following infarction of the posterior superior temporal gyrus. Speech samples were acquired daily between 2 and 16 days post stroke, and also at 1 month and 3 months. Speech samples were transcribed and coded using the CHAT system, in order to quantify multiple language domains. A brief aphasia battery was also administered at a subset of five time points during the 3 months. Both patients showed substantial recovery of language function over this time period. Most, but not all, language domains showed improvements, including fluency, lexical access, phonological retrieval and encoding, and syntactic complexity. The time course of recovery was logarithmic, with the greatest gains taking place early in the course of recovery. There is considerable potential for amelioration of language deficits when damage is relatively circumscribed to the posterior superior temporal gyrus. Quantitative analysis of connected speech samples proved to be an effective, albeit time-consuming, approach to tracking day-by-day recovery in the acute/subacute post-stroke period.
Documentation of the Douglas-fir tussock moth outbreak-population model.
J.J. Colbert; W. Scott Overton; Curtis. White
1979-01-01
Documentation of three model versions: the Douglas-fir tussock moth population-branch model on (1) daily temporal resolution, (2) instart temporal resolution, and (3) the Douglas-fir tussock moth stand-outbreak model; the hierarchical framework and the conceptual paradigm used are described. The coupling of the model with a normal-stand model is discussed. The modeling...
Circadian rhythms accelerate wound healing in female Siberian hamsters
Cable, Erin J.; Onishi, Kenneth G.; Prendergast, Brian J.
2017-01-01
Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are absent in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3 h after light onset (ZT03) or 2 h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing. PMID:27998755
Boehrer, Bertram; Yusta, Iñaki; Magin, Katrin; Sanchez-España, Javier
2016-09-01
High gas charges in deep waters of lakes can represent a hazard to the lives of human beings and animals in the surrounding. As this danger was feared, we quantified the amount of dissolved gas in Guadiana pit lake (Las Herrerías, Huelva; southwest Spain) and documented the temporal evolution over a period of two years. Gas pressure due to dissolved gases, such as carbon dioxide, methane and nitrogen was measured. Based on these data, we assessed the risk and the associated danger of limnic eruptions from the lake and concluded that the present situation cannot be considered safe. By deploying a vertical pipe, the updraft of degassing water was tested and demonstrated: the pilot plant provided enough energy to drive a self-sustained flow. Such a system could be implemented to remove the extreme gas pressure from the deep water. Measurements of discharges could be extrapolated to indicate the size for an efficient plant for the gas removal. The construction of such a system would be technically and economically viable. A reintroduction of degassed water into the monimolimnion would be advisable. Copyright © 2016 Elsevier B.V. All rights reserved.
Microfluidic strategy to investigate dynamics of small blood vessel function
NASA Astrophysics Data System (ADS)
Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel
2010-11-01
Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.
Solans Pérez de Larraya, Ana M; Ortega Molina, José M; Fernández, José Uberos; Escudero Gómez, Júlia; Salgado Miranda, Andrés D; Chaves Samaniego, Maria J; García Serrano, José L
2018-03-01
To analyse the speed of temporal retinal vascularisation in preterm infants included in the screening programme for retinopathy of prematurity. A total of 185 premature infants were studied retrospectively between 2000 and 2017 in San Cecilio University Hospital of Granada, Spain. The method of binocular indirect ophthalmoscopy with indentation was used for the examination. The horizontal disc diameter was used as a unit of length. Speed of temporal retinal vascularisation (disc diameter/week) was calculated as the ratio between the extent of temporal retinal vascularisation (disc diameter) and the time in weeks. The weekly temporal retinal vascularisation (0-1.25 disc diameter/week, confidence interval) was significantly higher in no retinopathy of prematurity (0.73 ± 0.22 disc diameter/week) than in stage 1 retinopathy of prematurity (0.58 ± 0.22 disc diameter/week). It was also higher in stage 1 than in stages 2 (0.46 ± 0.14 disc diameter/week) and 3 of retinopathy of prematurity (0.36 ± 0.18 disc diameter/week). The rate of temporal retinal vascularisation (disc diameter/week) decreases when retinopathy of prematurity stage increases. The area under the receiver operating characteristic curve was 0.85 (95% confidence interval: 0.79-0.91) for retinopathy of prematurity requiring treatment versus not requiring treatment. The best discriminative cut-off point was a speed of retinal vascularisation <0.5 disc diameter/week, with a sensitivity and a specificity of 84.8% and 77%, respectively. The rate of temporal retinal vascularisation is a quantifiable observation that can help to alert a clinician that treatment of retinopathy of prematurity may be required. However, before becoming a new standard of care for treatment, it requires careful documentation, with agreement between several ophthalmologists.
Trends in the temporal distribution of park use
Robert E. Manning; Paula L. Cormier
1980-01-01
The purpose of this paper is to examine trends in the temporal distribution of park use. Plots of daily attendance data trace changes in temporal use distributions over time. A use concentration index quantifies and reduces to a single numerical indicator the degree of unevenness of recreation attendance data. The percent of total annual use accounted for by selected...
Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network
Margaret A. Zimmer; Scott W. Bailey; Kevin J. McGuire; Thomas D. Bullen
2013-01-01
Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha...
Quantifying aquatic invasion patterns through space and time
The objective of my study was to quantify the apparent spatio-temporal relationship between anthropogenic introduction pathway intensity and non-native aquatic species presence throughout the Laurentian Great Lakes. Non-native aquatic species early detection programs are based pr...
Human movement data for malaria control and elimination strategic planning.
Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J
2012-06-18
Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.
Human movement data for malaria control and elimination strategic planning
2012-01-01
Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements. PMID:22703541
Schall, Megan K.; Blazer, Vicki S.; Lorantas, Robert M.; Smith, Geoffrey; Mullican, John E.; Keplinger, Brandon J.; Wagner, Tyler
2018-01-01
Detecting temporal changes in fish abundance is an essential component of fisheries management. Because of the need to understand short‐term and nonlinear changes in fish abundance, traditional linear models may not provide adequate information for management decisions. This study highlights the utility of Bayesian dynamic linear models (DLMs) as a tool for quantifying temporal dynamics in fish abundance. To achieve this goal, we quantified temporal trends of Smallmouth Bass Micropterus dolomieu catch per effort (CPE) from rivers in the mid‐Atlantic states, and we calculated annual probabilities of decline from the posterior distributions of annual rates of change in CPE. We were interested in annual declines because of recent concerns about fish health in portions of the study area. In general, periods of decline were greatest within the Susquehanna River basin, Pennsylvania. The declines in CPE began in the late 1990s—prior to observations of fish health problems—and began to stabilize toward the end of the time series (2011). In contrast, many of the other rivers investigated did not have the same magnitude or duration of decline in CPE. Bayesian DLMs provide information about annual changes in abundance that can inform management and are easily communicated with managers and stakeholders.
Charles B. Halpern; Joseph A. Antos; Janine M. Rice; Ryan D. Haugo; Nicole L. Lang
2010-01-01
We combined spatial point pattern analysis, population age structures, and a time-series of stem maps to quantify spatial and temporal patterns of conifer invasion over a 200-yr period in three plots totaling 4 ha. In combination, spatial and temporal patterns of establishment suggest an invasion process shaped by biotic interactions, with facilitation promoting...
Modeling habitat and environmental factors affecting mosquito abundance in Chesapeake, Virginia
NASA Astrophysics Data System (ADS)
Bellows, Alan Scott
The models I present in this dissertation were designed to enable mosquito control agencies in the mid-Atlantic region that oversee large jurisdictions to rapidly track the spatial and temporal distributions of mosquito species, especially those species known to be vectors of eastern equine encephalitis and West Nile virus. I was able to keep these models streamlined, user-friendly, and not cost-prohibitive using empirically based digital data to analyze mosquito-abundance patterns in real landscapes. This research is presented in three major chapters: (II) a series of semi-static habitat suitability indices (HSI) grounded on well-documented associations between mosquito abundance and environmental variables, (III) a dynamic model for predicting both spatial and temporal mosquito abundance based on a topographic soil moisture index and recent weather patterns, and (IV) a set of protocols laid out to aid mosquito control agencies for the use of these models. The HSIs (Chapter II) were based on relationships of mosquitoes to digital surrogates of soil moisture and vegetation characteristics. These models grouped mosquitoes species derived from similarities in habitat requirements, life-cycle type, and vector competence. Quantification of relationships was determined using multiple linear regression models. As in Chapter II, relationships between mosquito abundance and environmental factors in Chapter III were quantified using regression models. However, because this model was, in part, a function of changes in weather patterns, it enables the prediction of both 'where' and 'when' mosquito outbreaks are likely to occur. This model is distinctive among similar studies in the literature because of my use of NOAA's NEXRAD Doppler radar (3-hr precipitation accumulation data) to quantify the spatial and temporal distributions in precipitation accumulation. \\ Chapter IV is unique among the chapters in this dissertation because in lieu of presenting new research, it summarizes the preprocessing steps and analyses used in the HSIs and the dynamic, weather-based, model generated in Chapters II and III. The purpose of this chapter is to provide the reader and potential users with the necessary protocols for modeling the spatial and temporal abundances and distributions of mosquitoes, with emphasis on Culiseta melanura, in a real-world landscape of the mid-Atlantic region. This chapter also provides enhancements that could easily be incorporated into an environmentally sensitive integrated pest management program.
The statistical power to detect cross-scale interactions at macroscales
Wagner, Tyler; Fergus, C. Emi; Stow, Craig A.; Cheruvelil, Kendra S.; Soranno, Patricia A.
2016-01-01
Macroscale studies of ecological phenomena are increasingly common because stressors such as climate and land-use change operate at large spatial and temporal scales. Cross-scale interactions (CSIs), where ecological processes operating at one spatial or temporal scale interact with processes operating at another scale, have been documented in a variety of ecosystems and contribute to complex system dynamics. However, studies investigating CSIs are often dependent on compiling multiple data sets from different sources to create multithematic, multiscaled data sets, which results in structurally complex, and sometimes incomplete data sets. The statistical power to detect CSIs needs to be evaluated because of their importance and the challenge of quantifying CSIs using data sets with complex structures and missing observations. We studied this problem using a spatially hierarchical model that measures CSIs between regional agriculture and its effects on the relationship between lake nutrients and lake productivity. We used an existing large multithematic, multiscaled database, LAke multiscaled GeOSpatial, and temporal database (LAGOS), to parameterize the power analysis simulations. We found that the power to detect CSIs was more strongly related to the number of regions in the study rather than the number of lakes nested within each region. CSI power analyses will not only help ecologists design large-scale studies aimed at detecting CSIs, but will also focus attention on CSI effect sizes and the degree to which they are ecologically relevant and detectable with large data sets.
Quantifying auditory temporal stability in a large database of recorded music.
Ellis, Robert J; Duan, Zhiyan; Wang, Ye
2014-01-01
"Moving to the beat" is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical "energy") in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file's temporal structure (e.g., "average tempo", "time signature"), none has sought to quantify the temporal stability of a series of detected beats. Such a method--a "Balanced Evaluation of Auditory Temporal Stability" (BEATS)--is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications.
Unraveling dynamics of human physical activity patterns in chronic pain conditions
NASA Astrophysics Data System (ADS)
Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar
2013-06-01
Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.
Dam operations may improve aquatic habitat and offset negative effects of climate change.
Benjankar, Rohan; Tonina, Daniele; McKean, James A; Sohrabi, Mohammad M; Chen, Quiwen; Vidergar, Dmitri
2018-05-01
Dam operation impacts on stream hydraulics and ecological processes are well documented, but their effect depends on geographical regions and varies spatially and temporally. Many studies have quantified their effects on aquatic ecosystem based mostly on flow hydraulics overlooking stream water temperature and climatic conditions. Here, we used an integrated modeling framework, an ecohydraulics virtual watershed, that links catchment hydrology, hydraulics, stream water temperature and aquatic habitat models to test the hypothesis that reservoir management may help to mitigate some impacts caused by climate change on downstream flows and temperature. To address this hypothesis we applied the model to analyze the impact of reservoir operation (regulated flows) on Bull Trout, a cold water obligate salmonid, habitat, against unregulated flows for dry, average, and wet climatic conditions in the South Fork Boise River (SFBR), Idaho, USA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantifying the Influence of Climate on Human Conflict
NASA Astrophysics Data System (ADS)
Hsiang, S. M.; Burke, M.; Miguel, E.
2014-12-01
A rapidly growing body of research examines whether human conflict can be affected by climatic changes. Drawing from archaeology, criminology, economics, geography, history, political science, and psychology, we assemble and analyze the most rigorous quantitative studies and document, for the first time, a striking convergence of results. We find strong causal evidence linking climatic events to human conflict across a range of spatial and temporal scales and across all major regions of the world. The magnitude of climate's influence is substantial: for each one standard deviation (1sd) change in climate toward warmer temperatures or more extreme rainfall, median estimates indicate that the frequency of interpersonal violence rises 4% and the frequency of intergroup conflict rises 14%. Because locations throughout the inhabited world are expected to warm 2sd to 4sd by 2050, amplified rates of human conflict could represent a large and critical impact of anthropogenic climate change.
NASA Technical Reports Server (NTRS)
Hassler, B.; Petropavlovskikh, I.; Staehelin, J.; August, T.; Bhartia, P. K.; Clerbaux, C.; Degenstein, D.; Maziere, M. De; Dinelli, B. M.; Dudhia, A.;
2014-01-01
Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.
Morphology and structure of Homo erectus humeri from Zhoukoudian, Locality 1
Wei, Pianpian; He, Jianing; Liu, Wu
2018-01-01
Background Regional diversity in the morphology of the H. erectus postcranium is not broadly documented, in part, because of the paucity of Asian sites preserving postcranial fossils. Yet, such an understanding of the initial hominin taxon to spread throughout multiple regions of the world is fundamental to documenting the adaptive responses to selective forces operating during this period of human evolution. Methods The current study reports the first humeral rigidity and strength properties of East Asian H. erectus and places its diaphyseal robusticity into broader regional and temporal contexts. We estimate true cross-sectional properties of Zhoukoudian Humerus II and quantify new diaphyseal properties of Humerus III using high resolution computed tomography. Comparative data for African H. erectus and Eurasian Late Pleistocene H. sapiens were assembled, and new data were generated from two modern Chinese populations. Results Differences between East Asian and African H. erectus were inconsistently expressed in humeral cortical thickness. In contrast, East Asian H. erectus appears to exhibit greater humeral robusticity compared to African H. erectus when standardizing diaphyseal properties by the product of estimated body mass and humeral length. East Asian H. erectus humeri typically differed less in standardized properties from those of side-matched Late Pleistocene hominins (e.g., Neanderthals and more recent Upper Paleolithic modern humans) than did African H. erectus, and often fell in the lower range of Late Pleistocene humeral rigidity or strength properties. Discussion Quantitative comparisons indicate that regional variability in humeral midshaft robusticity may characterize H. erectus to a greater extent than presently recognized. This may suggest a temporal difference within H. erectus, or possibly different ecogeographical trends and/or upper limb loading patterns across the taxon. Both discovery and analysis of more adult H. erectus humeri are critical to further evaluating and potentially distinguishing between these possibilities. PMID:29372121
Rapid recovery from aphasia after infarction of Wernicke's area
Yagata, Stephanie A.; Yen, Melodie; McCarron, Angelica; Bautista, Alexa; Lamair-Orosco, Genevieve
2017-01-01
Background Aphasia following infarction of Wernicke's area typically resolves to some extent over time. The nature of this recovery process and its time course have not been characterized in detail, especially in the acute/subacute period. Aims The goal of this study was to document recovery after infarction of Wernicke's area in detail in the first 3 months after stroke. Specifically, we aimed to address two questions about language recovery. First, which impaired language domains improve over time, and which do not? Second, what is the time course of recovery? Methods & Procedures We used quantitative analysis of connected speech and a brief aphasia battery to document language recovery in two individuals with aphasia following infarction of the posterior superior temporal gyrus. Speech samples were acquired daily between 2 and 16 days post stroke, and also at 1 month and 3 months. Speech samples were transcribed and coded using the CHAT system, in order to quantify multiple language domains. A brief aphasia battery was also administered at a subset of five time points during the 3 months. Outcomes & Results Both patients showed substantial recovery of language function over this time period. Most, but not all, language domains showed improvements, including fluency, lexical access, phonological retrieval and encoding, and syntactic complexity. The time course of recovery was logarithmic, with the greatest gains taking place early in the course of recovery. Conclusions There is considerable potential for amelioration of language deficits when damage is relatively circumscribed to the posterior superior temporal gyrus. Quantitative analysis of connected speech samples proved to be an effective, albeit time-consuming, approach to tracking day-by-day recovery in the acute/subacute post-stroke period. PMID:29051682
Landscape fragmentation affects responses of avian communities to climate change.
Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O
2015-08-01
Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats. © 2015 John Wiley & Sons Ltd.
Adaptation to changes in higher-order stimulus statistics in the salamander retina.
Tkačik, Gašper; Ghosh, Anandamohan; Schneidman, Elad; Segev, Ronen
2014-01-01
Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.
Bonebrake, Timothy C; Boggs, Carol L; Stamberger, Jeannie A; Deutsch, Curtis A; Ehrlich, Paul R
2014-10-22
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Bonebrake, Timothy C.; Boggs, Carol L.; Stamberger, Jeannie A.; Deutsch, Curtis A.; Ehrlich, Paul R.
2014-01-01
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. PMID:25165769
Lockwood, Charles A; Lynch, John M; Kimbel, William H
2002-12-01
The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade.
Quantification of brain macrostates using dynamical nonstationarity of physiological time series.
Latchoumane, Charles-Francois Vincent; Jeong, Jaeseung
2011-04-01
The brain shows complex, nonstationarity temporal dynamics, with abrupt micro- and macrostate transitions during its information processing. Detecting and characterizing these transitions in dynamical states of the brain is a critical issue in the field of neuroscience and psychiatry. In the current study, a novel method is proposed to quantify brain macrostates (e.g., sleep stages or cognitive states) from shifts of dynamical microstates or dynamical nonstationarity. A ``dynamical microstate'' is a temporal unit of the information processing in the brain with fixed dynamical parameters and specific spatial distribution. In this proposed approach, a phase-space-based dynamical dissimilarity map (DDM) is used to detect transitions between dynamically stationary microstates in the time series, and Tsallis time-dependent entropy is applied to quantify dynamical patterns of transitions in the DDM. We demonstrate that the DDM successfully detects transitions between microstates of different temporal dynamics in the simulated physiological time series against high levels of noise. Based on the assumption of nonlinear, deterministic brain dynamics, we also demonstrate that dynamical nonstationarity analysis is useful to quantify brain macrostates (sleep stages I, II, III, IV, and rapid eye movement (REM) sleep) from sleep EEGs with an overall accuracy of 77%. We suggest that dynamical nonstationarity is a useful tool to quantify macroscopic mental states (statistical integration) of the brain using dynamical transitions at the microscopic scale in physiological data.
Quantifying Auditory Temporal Stability in a Large Database of Recorded Music
Ellis, Robert J.; Duan, Zhiyan; Wang, Ye
2014-01-01
“Moving to the beat” is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical “energy”) in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file’s temporal structure (e.g., “average tempo”, “time signature”), none has sought to quantify the temporal stability of a series of detected beats. Such a method-a “Balanced Evaluation of Auditory Temporal Stability” (BEATS)–is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications. PMID:25469636
Quantifying drivers of wild pig movement across multiple spatial and temporal scales.
Kay, Shannon L; Fischer, Justin W; Monaghan, Andrew J; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S; Hartley, Steve B; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; VerCauteren, Kurt C; Pepin, Kim M
2017-01-01
The movement behavior of an animal is determined by extrinsic and intrinsic factors that operate at multiple spatio-temporal scales, yet much of our knowledge of animal movement comes from studies that examine only one or two scales concurrently. Understanding the drivers of animal movement across multiple scales is crucial for understanding the fundamentals of movement ecology, predicting changes in distribution, describing disease dynamics, and identifying efficient methods of wildlife conservation and management. We obtained over 400,000 GPS locations of wild pigs from 13 different studies spanning six states in southern U.S.A., and quantified movement rates and home range size within a single analytical framework. We used a generalized additive mixed model framework to quantify the effects of five broad predictor categories on movement: individual-level attributes, geographic factors, landscape attributes, meteorological conditions, and temporal variables. We examined effects of predictors across three temporal scales: daily, monthly, and using all data during the study period. We considered both local environmental factors such as daily weather data and distance to various resources on the landscape, as well as factors acting at a broader spatial scale such as ecoregion and season. We found meteorological variables (temperature and pressure), landscape features (distance to water sources), a broad-scale geographic factor (ecoregion), and individual-level characteristics (sex-age class), drove wild pig movement across all scales, but both the magnitude and shape of covariate relationships to movement differed across temporal scales. The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc ) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.
Koorehdavoudi, Hana; Bogdan, Paul
2016-01-01
Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity. PMID:27297496
NASA Astrophysics Data System (ADS)
Koorehdavoudi, Hana; Bogdan, Paul
2016-06-01
Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.
NASA Astrophysics Data System (ADS)
Choy, S.; Ahmed, H.; Wheatley, A.; McCormack, D. G.; Parraga, G.
2010-03-01
We developed image analysis tools to evaluate spatial and temporal 3He magnetic resonance imaging (MRI) ventilation in asthma and cystic fibrosis. We also developed temporal ventilation probability maps to provide a way to describe and quantify ventilation heterogeneity over time, as a way to test respiratory exacerbations or treatment predictions and to provide a discrete probability measurement of 3He ventilation defect persistence.
“Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrare, Richard; Turner, David
2015-01-13
Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thinmore » continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.« less
Campbell, Kieran R.
2016-01-01
Single cell gene expression profiling can be used to quantify transcriptional dynamics in temporal processes, such as cell differentiation, using computational methods to label each cell with a ‘pseudotime’ where true time series experimentation is too difficult to perform. However, owing to the high variability in gene expression between individual cells, there is an inherent uncertainty in the precise temporal ordering of the cells. Pre-existing methods for pseudotime estimation have predominantly given point estimates precluding a rigorous analysis of the implications of uncertainty. We use probabilistic modelling techniques to quantify pseudotime uncertainty and propagate this into downstream differential expression analysis. We demonstrate that reliance on a point estimate of pseudotime can lead to inflated false discovery rates and that probabilistic approaches provide greater robustness and measures of the temporal resolution that can be obtained from pseudotime inference. PMID:27870852
Analysis to Quantify Significant Contribution
This Technical Support Document provides information that supports EPA’s analysis to quantify upwind state emissions that significantly contribute to nonattainment or interfere with maintenance of National Ambient Air Quality Standards in downwind states.
Automated regional analysis of B-mode ultrasound images of skeletal muscle movement
Darby, John; Costen, Nicholas; Loram, Ian D.
2012-01-01
To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends. A Kanade-Lucas-Tomasi feature tracker was used to identify and track any distinctive and persistent features within the image sequences. A velocity field representation of local movement was then found and subdivided between fascicle and aponeurosis regions using segmentations from a multiresolution active shape model (ASM). Movement in each region was quantified by interpolating the effect of the fields on a set of probes. ASM segmentation results were compared with hand-labeled data, while aponeurosis and fascicle movement were compared with results from a previously documented cross-correlation approach. ASM provided good image segmentations (<1 mm average error), with fully automatic initialization possible in sequences from seven participants. Feature tracking provided similar length change results to the cross-correlation approach for small movements, while outperforming it in larger movements. The proposed method provides the potential to distinguish between active and passive changes in muscle shape and model strain distributions during different movements/conditions and quantify nonhomogeneous strain along aponeuroses. PMID:22033532
Brook trout movement within a high-elevation watershed: Consequences for watershed restoration
Jeff L. Hansbarger; J. Todd Petty; Patricia M. Mazik
2010-01-01
We used radio-telemetry to quantify brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) movements in the Shavers Fork of the Cheat River, West Virginia, and an adjacent second-order tributary (Rocky Run). Our objectives were to quantify the overall rate of trout movement, assess spatial and temporal variation in...
Afzal, Zubair; Pons, Ewoud; Kang, Ning; Sturkenboom, Miriam C J M; Schuemie, Martijn J; Kors, Jan A
2014-11-29
In order to extract meaningful information from electronic medical records, such as signs and symptoms, diagnoses, and treatments, it is important to take into account the contextual properties of the identified information: negation, temporality, and experiencer. Most work on automatic identification of these contextual properties has been done on English clinical text. This study presents ContextD, an adaptation of the English ConText algorithm to the Dutch language, and a Dutch clinical corpus. We created a Dutch clinical corpus containing four types of anonymized clinical documents: entries from general practitioners, specialists' letters, radiology reports, and discharge letters. Using a Dutch list of medical terms extracted from the Unified Medical Language System, we identified medical terms in the corpus with exact matching. The identified terms were annotated for negation, temporality, and experiencer properties. To adapt the ConText algorithm, we translated English trigger terms to Dutch and added several general and document specific enhancements, such as negation rules for general practitioners' entries and a regular expression based temporality module. The ContextD algorithm utilized 41 unique triggers to identify the contextual properties in the clinical corpus. For the negation property, the algorithm obtained an F-score from 87% to 93% for the different document types. For the experiencer property, the F-score was 99% to 100%. For the historical and hypothetical values of the temporality property, F-scores ranged from 26% to 54% and from 13% to 44%, respectively. The ContextD showed good performance in identifying negation and experiencer property values across all Dutch clinical document types. Accurate identification of the temporality property proved to be difficult and requires further work. The anonymized and annotated Dutch clinical corpus can serve as a useful resource for further algorithm development.
Defres, Sylviane; Keller, Simon S; Das, Kumar; Vidyasagar, Rishma; Parkes, Laura M; Burnside, Girvan; Griffiths, Michael; Kopelman, Michael; Roberts, Neil; Solomon, Tom
2017-01-01
To assess whether it is feasible to quantify acute change in temporal lobe volume and total oedema volumes in herpes simplex virus (HSV) encephalitis as a preliminary to a trial of corticosteroid therapy. The study analysed serially acquired magnetic resonance images (MRI), of patients with acute HSV encephalitis who had neuroimaging repeated within four weeks of the first scan. We performed volumetric measurements of the left and right temporal lobes and of cerebral oedema visible on T2 weighted Fluid Attenuated Inversion Recovery (FLAIR) images using stereology in conjunction with point counting. Temporal lobe volumes increased on average by 1.6% (standard deviation (SD 11%) in five patients who had not received corticosteroid therapy and decreased in two patients who had received corticosteroids by 8.5%. FLAIR hyperintensity volumes increased by 9% in patients not receiving treatment with corticosteroids and decreased by 29% in the two patients that had received corticosteroids. This study has shown it is feasible to quantify acute change in temporal lobe and total oedema volumes in HSV encephalitis and suggests a potential resolution of swelling in response to corticosteroid therapy. These techniques could be used as part of a randomized control trial to investigate the efficacy of corticosteroids for treating HSV encephalitis in conjunction with assessing clinical outcomes and could be of potential value in helping to predict the clinical outcomes of patients with HSV encephalitis.
Lockwood, Charles A; Lynch, John M; Kimbel, William H
2002-01-01
The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. PMID:12489757
Keller, Simon S.; Das, Kumar; Vidyasagar, Rishma; Parkes, Laura M.; Burnside, Girvan; Griffiths, Michael; Kopelman, Michael; Roberts, Neil; Solomon, Tom
2017-01-01
Objectives To assess whether it is feasible to quantify acute change in temporal lobe volume and total oedema volumes in herpes simplex virus (HSV) encephalitis as a preliminary to a trial of corticosteroid therapy. Methods The study analysed serially acquired magnetic resonance images (MRI), of patients with acute HSV encephalitis who had neuroimaging repeated within four weeks of the first scan. We performed volumetric measurements of the left and right temporal lobes and of cerebral oedema visible on T2 weighted Fluid Attenuated Inversion Recovery (FLAIR) images using stereology in conjunction with point counting. Results Temporal lobe volumes increased on average by 1.6% (standard deviation (SD 11%) in five patients who had not received corticosteroid therapy and decreased in two patients who had received corticosteroids by 8.5%. FLAIR hyperintensity volumes increased by 9% in patients not receiving treatment with corticosteroids and decreased by 29% in the two patients that had received corticosteroids. Conclusions This study has shown it is feasible to quantify acute change in temporal lobe and total oedema volumes in HSV encephalitis and suggests a potential resolution of swelling in response to corticosteroid therapy. These techniques could be used as part of a randomized control trial to investigate the efficacy of corticosteroids for treating HSV encephalitis in conjunction with assessing clinical outcomes and could be of potential value in helping to predict the clinical outcomes of patients with HSV encephalitis. PMID:28125598
EAGLE can do Efficient LTL Monitoring
NASA Technical Reports Server (NTRS)
Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik
2003-01-01
We briefly present a rule-based framework, called EAGLE, that has been shown to be capable of defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. In this paper we show how EAGLE can do linear temporal logic (LTL) monitoring in an efficient way. We give an upper bound on the space and time complexity of this monitoring.
Quantifying in-stream nitrate reaction rates using continuously-collected water quality data
Matthew Miller; Anthony Tesoriero; Paul Capel
2016-01-01
High frequency in situ nitrate data from three streams of varying hydrologic condition, land use, and watershed size were used to quantify the mass loading of nitrate to streams from two sources â groundwater discharge and event flow â at a daily time step for one year. These estimated loadings were used to quantify temporally-variable in-stream nitrate processing ...
THE 1985 NAPAP EMISSIONS INVENTORY: DEVELOPMENT OF TEMPORAL ALLOCATION FACTORS
The report documents the development and processing of temporal allocation factors for the 1985 National Acid Precipitation Assessment Program (NAPAP) emissions inventory (Version 2). The NAPAP emissions inventory represents the most comprehensive emissions data base available fo...
Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M
2013-01-01
Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.
Temporal resolution for the perception of features and conjunctions.
Bodelón, Clara; Fallah, Mazyar; Reynolds, John H
2007-01-24
The visual system decomposes stimuli into their constituent features, represented by neurons with different feature selectivities. How the signals carried by these feature-selective neurons are integrated into coherent object representations is unknown. To constrain the set of possible integrative mechanisms, we quantified the temporal resolution of perception for color, orientation, and conjunctions of these two features. We find that temporal resolution is measurably higher for each feature than for their conjunction, indicating that time is required to integrate features into a perceptual whole. This finding places temporal limits on the mechanisms that could mediate this form of perceptual integration.
Energy Efficiency/Renewable Energy Programs in State Implementation Plans - Guidance Documents
final document that provides guidance to States and local areas on quantifying and including emission reductions from energy efficiency and renewable energy measures in State Implementation Plans (SIPS).
Temporal modeling of highway crash severity by involved person age.
DOT National Transportation Integrated Search
2012-07-01
This project consisted of three studies, each described in the following sections. Three published documents were generated; these are listed in the last section. : Study 1: Temporal Modeling of Highway Crash Counts for Senior and Non-Senior Drivers;...
Pearl, Christopher A.; Adams, Michael J.; Wente, Wendy
2007-01-01
Several western ranid frogs possess a unique strategy of breeding communally over a short temporal window and reusing oviposition sites between years. However, little is published on the characteristics of oviposition sites selected by these explosive breeders. The Columbia spotted frog (Rana luteiventris) is native to northwestern North America and is of conservation concern in the southern portions of its range. As part of a study examining relationships between livestock grazing and R. luteiventris habitat, we assessed characteristics of the species' oviposition sites in 25 fishless ponds in northeastern Oregon. Oviposition sites were generally in shallow water (<25 cm) close to shore and tended to be in the northeastern portion of ponds. Oviposition sites were found more frequently over heavily vegetated substrates and in areas of less substrate slope and shade than random points in littoral zones. We did not quantify temperature differences within ponds, but the patterns we documented are consistent with preferential use of warmer microhabitats for oviposition.
Quantitative indexes of aminonucleoside-induced nephrotic syndrome.
Nevins, T. E.; Gaston, T.; Basgen, J. M.
1984-01-01
Aminonucleoside of puromycin (PAN) is known to cause altered glomerular permeability, resulting in a nephrotic syndrome in rats. The early sequence of this lesion was studied quantitatively, with the application of a new morphometric technique for determining epithelial foot process widths and a sensitive assay for quantifying urinary albumin excretion. Twenty-four hours following a single intraperitoneal injection of PAN, significant widening of foot processes was documented. Within 36 hours significant increases in urinary albumin excretion were observed. When control rats were examined, there was no clear correlation between epithelial foot process width and quantitative albumin excretion. However, in the PAN-treated animals, abnormal albuminuria only appeared in association with appreciable foot process expansion. These studies indicate that quantitative alterations occur in the rat glomerular capillary wall as early as 24 hours after PAN. Further studies of altered glomerular permeability may use these sensitive measures to more precisely define the temporal sequence and elucidate possible subgroups of experimental glomerular injury. Images Figure 1 Figure 2 PMID:6486243
O'Brien, Katherine R; Waycott, Michelle; Maxwell, Paul; Kendrick, Gary A; Udy, James W; Ferguson, Angus J P; Kilminster, Kieryn; Scanes, Peter; McKenzie, Len J; McMahon, Kathryn; Adams, Matthew P; Samper-Villarreal, Jimena; Collier, Catherine; Lyons, Mitchell; Mumby, Peter J; Radke, Lynda; Christianen, Marjolijn J A; Dennison, William C
2017-09-18
Seagrass ecosystems are inherently dynamic, responding to environmental change across a range of scales. Habitat requirements of seagrass are well defined, but less is known about their ability to resist disturbance. Specific means of recovery after loss are particularly difficult to quantify. Here we assess the resistance and recovery capacity of 12 seagrass genera. We document four classic trajectories of degradation and recovery for seagrass ecosystems, illustrated with examples from around the world. Recovery can be rapid once conditions improve, but seagrass absence at landscape scales may persist for many decades, perpetuated by feedbacks and/or lack of seed or plant propagules to initiate recovery. It can be difficult to distinguish between slow recovery, recalcitrant degradation, and the need for a window of opportunity to trigger recovery. We propose a framework synthesizing how the spatial and temporal scales of both disturbance and seagrass response affect ecosystem trajectory and hence resilience. Copyright © 2017 Elsevier Ltd. All rights reserved.
de Lucia, Giuseppe Andrea; Caliani, Ilaria; Marra, Stefano; Camedda, Andrea; Coppa, Stefania; Alcaro, Luigi; Campani, Tommaso; Giannetti, Matteo; Coppola, Daniele; Cicero, Anna Maria; Panti, Cristina; Baini, Matteo; Guerranti, Cristiana; Marsili, Letizia; Massaro, Giorgio; Fossi, Maria Cristina; Matiddi, Marco
2014-09-01
A plethora of different sampling methodologies has been used to document the presence of micro-plastic fragments in sea water. European Marine Strategy suggests to improve standard techniques to make future data comparable. We use Manta Trawl sampling technique to quantify abundance and distribution of micro-plastic fragments in Sardinian Sea (Western Mediterranean), and their relation with phthalates and organoclorine in the neustonic habitat. Our results highlight a quite high average plastic abundance value (0.15 items/m(3)), comparable to the levels detected in other areas of the Mediterranean. "Site" is the only factor that significantly explains the differences observed in micro-plastic densities. Contaminant levels show high spatial and temporal variation. In every station, HCB is the contaminant with the lowest concentration while PCBs shows the highest levels. This work, in line with Marine Strategy directives, represents a preliminary study for the analysis of plastic impact on marine environment of Sardinia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Corella, J. P.; Valero-Garcés, B. L.; Vicente- Serrano, S. M.; Brauer, A.; Benito, G.
2016-01-01
Documenting subdecadal-scale heavy rainfall (HR) variability over several millennia can rarely be accomplished due to the paucity of high resolution, homogeneous and continuous proxy records. Here, using a unique, seasonally resolved lake record from southern Europe, we quantify temporal changes in extreme HR events for the last 2,800 years in this region and their correlation with negative phases of the Mediterranean Oscillation (MO). Notably, scarce HR dominated by a persistent positive MO mode characterizes the so-called Migration period (CE 370–670). Large hydroclimatic variability, particularly between CE 1012 and 1164, singles out the Medieval Climatic Anomaly, whereas more stationary HR conditions occurred between CE 1537 and 1805 coinciding with the Little Ice Age. This exceptional paleohydrological record highlights that the present-day trend towards strengthened hydrological deficit and less HR in the western Mediterranean is neither acute nor unusual in the context of Late Holocene hydrometeorological variability at centennial to decadal time scales. PMID:27910953
NASA Astrophysics Data System (ADS)
Corella, J. P.; Valero-Garcés, B. L.; Vicente-Serrano, S. M.; Brauer, A.; Benito, G.
2016-12-01
Documenting subdecadal-scale heavy rainfall (HR) variability over several millennia can rarely be accomplished due to the paucity of high resolution, homogeneous and continuous proxy records. Here, using a unique, seasonally resolved lake record from southern Europe, we quantify temporal changes in extreme HR events for the last 2,800 years in this region and their correlation with negative phases of the Mediterranean Oscillation (MO). Notably, scarce HR dominated by a persistent positive MO mode characterizes the so-called Migration period (CE 370-670). Large hydroclimatic variability, particularly between CE 1012 and 1164, singles out the Medieval Climatic Anomaly, whereas more stationary HR conditions occurred between CE 1537 and 1805 coinciding with the Little Ice Age. This exceptional paleohydrological record highlights that the present-day trend towards strengthened hydrological deficit and less HR in the western Mediterranean is neither acute nor unusual in the context of Late Holocene hydrometeorological variability at centennial to decadal time scales.
Natural trophic variability in a large, oligotrophic, near-pristine lake
Young, Talia; Jensen, Olaf P.; Weidel, Brian C.; Chandra, Sudeep
2015-01-01
Conclusions drawn from stable isotope data can be limited by an incomplete understanding of natural isotopic variability over time and space. We quantified spatial and temporal variability in fish carbon and nitrogen stable isotopes in Lake Hövsgöl, Mongolia, a large, remote, oligotrophic lake with an unusually species-poor fish community. The fish community demonstrated a high degree of trophic level overlap. Variability in δ13C was inversely related to littoral-benthic dependence, with pelagic species demonstrating more δ13C variability than littoral-benthic species. A mixed effects model suggested that space (sampling location) had a greater impact than time (collection year) on both δ13C and δ15N variability. The observed variability in Lake Hövsgöl was generally greater than isotopic variability documented in other large, oligotrophic lakes, similar to isotopic shifts attributed to introduced species, and less than isotopic shifts attributed to anthropogenic chemical changes such as eutrophication. This work complements studies on isotopic variability and changes in other lakes around the world.
Giroux, Marie-Andrée; Valiquette, Éliane; Tremblay, Jean-Pierre; Côté, Steeve D
2015-01-01
Documenting habitat-related patterns in foraging behaviour at the individual level and over large temporal scales remains challenging for large herbivores. Stable isotope analysis could represent a valuable tool to quantify habitat-related foraging behaviour at the scale of individuals and over large temporal scales in forest dwelling large herbivores living in coastal environments, because the carbon (δ13C) or nitrogen (δ15N) isotopic signatures of forage can differ between open and closed habitats or between terrestrial and littoral forage, respectively. Here, we examined if we could detect isotopic differences between the different assemblages of forage taxa consumed by white-tailed deer that can be found in open, closed, supralittoral, and littoral habitats. We showed that δ13C of assemblages of forage taxa were 3.0 ‰ lower in closed than in open habitats, while δ15N were 2.0 ‰ and 7.4 ‰ higher in supralittoral and littoral habitats, respectively, than in terrestrial habitats. Stable isotope analysis may represent an additional technique for ecologists interested in quantifiying the consumption of terrestrial vs. marine autotrophs. Yet, given the relative isotopic proximity and the overlap between forage from open, closed, and supralittoral habitats, the next step would be to determine the potential to estimate their contribution to herbivore diet.
Quantifying the transmission potential of pandemic influenza
NASA Astrophysics Data System (ADS)
Chowell, Gerardo; Nishiura, Hiroshi
2008-03-01
This article reviews quantitative methods to estimate the basic reproduction number of pandemic influenza, a key threshold quantity to help determine the intensity of interventions required to control the disease. Although it is difficult to assess the transmission potential of a probable future pandemic, historical epidemiologic data is readily available from previous pandemics, and as a reference quantity for future pandemic planning, mathematical and statistical analyses of historical data are crucial. In particular, because many historical records tend to document only the temporal distribution of cases or deaths (i.e. epidemic curve), our review focuses on methods to maximize the utility of time-evolution data and to clarify the detailed mechanisms of the spread of influenza. First, we highlight structured epidemic models and their parameter estimation method which can quantify the detailed disease dynamics including those we cannot observe directly. Duration-structured epidemic systems are subsequently presented, offering firm understanding of the definition of the basic and effective reproduction numbers. When the initial growth phase of an epidemic is investigated, the distribution of the generation time is key statistical information to appropriately estimate the transmission potential using the intrinsic growth rate. Applications of stochastic processes are also highlighted to estimate the transmission potential using similar data. Critically important characteristics of influenza data are subsequently summarized, followed by our conclusions to suggest potential future methodological improvements.
Quantifying Safety Performance of Driveways on State Highways
DOT National Transportation Integrated Search
2012-08-01
This report documents a research effort to quantify the safety performance of driveways in the State of Oregon. In : particular, this research effort focuses on driveways located adjacent to principal arterial state highways with urban or : rural des...
NASA Astrophysics Data System (ADS)
Dang, Thanh Duc; Cochrane, Thomas A.; Arias, Mauricio E.
2018-06-01
Temporal and spatial concentrations of suspended sediment in floodplains are difficult to quantify because in situ measurements can be logistically complex, time consuming and costly. In this research, satellite imagery with long temporal and large spatial coverage (Landsat TM/ETM+) was used to complement in situ suspended sediment measurements to reflect sediment dynamics in a large (70,000 km2) floodplain. Instead of using a single spectral band from Landsat, a Principal Component Analysis was applied to obtain uncorrelated reflectance values for five bands of Landsat TM/ETM+. Significant correlations between the scores of the 1st principal component and the values of continuously gauged suspended sediment concentration, shown via high coefficients of determination of sediment rating curves (R2 ranging from 0.66 to 0.92), permit the application of satellite images to quantify spatial and temporal sediment variation in the Mekong floodplains. Estimated suspended sediment maps show that hydraulic regimes at Chaktomuk (Cambodia), where the Mekong, Bassac, and Tonle Sap rivers diverge, determine the amount of seasonal sediment supplies to the Mekong Delta. The development of flood prevention systems to allow for three rice crops a year in the Vietnam Mekong Delta significantly reduces localized flooding, but also prevents sediment (source of nutrients) from entering fields. A direct consequence of this is the need to apply more artificial fertilizers to boost agricultural productivity, which may trigger environmental problems. Overall, remote sensing is shown to be an effective tool to understand temporal and spatial sediment dynamics in large floodplains.
Linking multi-temporal satellite imagery to coastal wetland dynamics and bird distribution
Pickens, Bradley A.; King, Sammy L.
2014-01-01
Ecosystems are characterized by dynamic ecological processes, such as flooding and fires, but spatial models are often limited to a single measurement in time. The characterization of direct, fine-scale processes affecting animals is potentially valuable for management applications, but these are difficult to quantify over broad extents. Direct predictors are also expected to improve transferability of models beyond the area of study. Here, we investigated the ability of non-static and multi-temporal habitat characteristics to predict marsh bird distributions, while testing model generality and transferability between two coastal habitats. Distribution models were developed for king rail (Rallus elegans), common gallinule (Gallinula galeata), least bittern (Ixobrychus exilis), and purple gallinule (Porphyrio martinica) in fresh and intermediate marsh types in the northern Gulf Coast of Louisiana and Texas, USA. For model development, repeated point count surveys of marsh birds were conducted from 2009 to 2011. Landsat satellite imagery was used to quantify both annual conditions and cumulative, multi-temporal habitat characteristics. We used multivariate adaptive regression splines to quantify bird-habitat relationships for fresh, intermediate, and combined marsh habitats. Multi-temporal habitat characteristics ranked as more important than single-date characteristics, as temporary water was most influential in six of eight models. Predictive power was greater for marsh type-specific models compared to general models and model transferability was poor. Birds in fresh marsh selected for annual habitat characterizations, while birds in intermediate marsh selected for cumulative wetness and heterogeneity. Our findings emphasize that dynamic ecological processes can affect species distribution and species-habitat relationships may differ with dominant landscape characteristics.
ERIC Educational Resources Information Center
McKay, Michael T.; Percy, Andrew; Goudie, Andrew J.; Sumnall, Harry R.; Cole, Jon C.
2012-01-01
The Temporal Focus Scale (TFS) is a 12-item self-report measure of cognitive engagement with the temporal domains of past, present and future. Developed in college student samples, a three-factor structure with adequate reliability and validity was documented in a series of independent studies. We tested the factor structure of the scale in a…
Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman
2013-01-01
Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...
Prospects and pitfalls of occupational hazard mapping: 'between these lines there be dragons'.
Koehler, Kirsten A; Volckens, John
2011-10-01
Hazard data mapping is a promising new technique that can enhance the process of occupational exposure assessment and risk communication. Hazard maps have the potential to improve worker health by providing key input for the design of hazard intervention and control strategies. Hazard maps are developed with aid from direct-reading instruments, which can collect highly spatially and temporally resolved data in a relatively short period of time. However, quantifying spatial-temporal variability in the occupational environment is not a straightforward process, and our lack of understanding of how to ascertain and model spatial and temporal variability is a limiting factor in the use and interpretation of workplace hazard maps. We provide an example of how sources of and exposures to workplace hazards may be mischaracterized in a hazard map due to a lack of completeness and representativeness of collected measurement data. Based on this example, we believe that a major priority for research in this emerging area should focus on the development of a statistical framework to quantify uncertainty in spatially and temporally varying data. In conjunction with this need is one for the development of guidelines and procedures for the proper sampling, generation, and evaluation of workplace hazard maps.
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Owe, M.; Ormsby, J. P.; Chang, A. T. C.; Wang, J. R.; Goward, S. N.; Golus, R. E.
1987-01-01
Spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains are quantified in terms of vegetation and soil wetness. The brightness temperatures (TB) are the daytime observations from April to October for five years (1979 to 1983) obtained by the Nimbus-7 Scanning Multichannel Microwave Radiometer at 6.6 GHz frequency, horizontal polarization. The spatial and temporal variabilities of vegetation are assessed using visible and near-infrared observations by the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR), while an Antecedent Precipitation Index (API) model is used for soil wetness. The API model was able to account for more than 50 percent of the observed variability in TB, although linear correlations between TB and API were generally significant at the 1 percent level. The slope of the linear regression between TB and API is found to correlate linearly with an index for vegetation density derived from AVHRR data.
Regional distribution and dynamics of coarse woody debris in Midwestern old-growth forests
Martin A. Spetich; Stephen R. Shifley; George R. Parker
1999-01-01
Old-growth forests have been noted for containing significant quantities of deadwood. However, there has been no coordinated effort to quantify the deadwood component of old-growth remnants across large regions of temperate deciduous forest. We present results of a regional inventory that quantifies and examines regional and temporal trends for deadwood in upland old-...
Dissociation of quantifiers and object nouns in speech in focal neurodegenerative disease.
Ash, Sharon; Ternes, Kylie; Bisbing, Teagan; Min, Nam Eun; Moran, Eileen; York, Collin; McMillan, Corey T; Irwin, David J; Grossman, Murray
2016-08-01
Quantifiers such as many and some are thought to depend in part on the conceptual representation of number knowledge, while object nouns such as cookie and boy appear to depend in part on visual feature knowledge associated with object concepts. Further, number knowledge is associated with a frontal-parietal network while object knowledge is related in part to anterior and ventral portions of the temporal lobe. We examined the cognitive and anatomic basis for the spontaneous speech production of quantifiers and object nouns in non-aphasic patients with focal neurodegenerative disease associated with corticobasal syndrome (CBS, n=33), behavioral variant frontotemporal degeneration (bvFTD, n=54), and semantic variant primary progressive aphasia (svPPA, n=19). We recorded a semi-structured speech sample elicited from patients and healthy seniors (n=27) during description of the Cookie Theft scene. We observed a dissociation: CBS and bvFTD were significantly impaired in the production of quantifiers but not object nouns, while svPPA were significantly impaired in the production of object nouns but not quantifiers. MRI analysis revealed that quantifier production deficits in CBS and bvFTD were associated with disease in a frontal-parietal network important for number knowledge, while impaired production of object nouns in all patient groups was related to disease in inferior temporal regions important for representations of visual feature knowledge of objects. These findings imply that partially dissociable representations in semantic memory may underlie different segments of the lexicon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thompson, Michael P; Luo, Zhehui; Gardiner, Joseph; Burke, James F; Nickles, Adrienne; Reeves, Mathew J
2016-05-01
As a measure of stroke severity, the National Institutes of Health Stroke Scale (NIHSS) is an important predictor of patient- and hospital-level outcomes, yet is often undocumented. The purpose of this study is to quantify and correct for potential selection bias in observed NIHSS data. Data were obtained from the Michigan Stroke Registry and included 10 262 patients with ischemic stroke aged ≥65 years discharged from 23 hospitals from 2009 to 2012, of which 74.6% of patients had documented NIHSS. We estimated models predicting NIHSS documentation and NIHSS score and used the Heckman selection model to estimate a correlation coefficient (ρ) between the 2 model error terms, which quantifies the degree of selection bias in the documentation of NIHSS. The Heckman model found modest, but significant, selection bias (ρ=0.19; 95% confidence interval: 0.09, 0.29; P<0.001), indicating that because NIHSS score increased (ie, strokes were more severe), the probability of documentation also increased. We also estimated a selection bias-corrected population mean NIHSS score of 4.8, which was substantially lower than the observed mean NIHSS score of 7.4. Evidence of selection bias was also identified using hospital-level analysis, where increased NIHSS documentation was correlated with lower mean NIHSS scores (r=-0.39; P<0.001). We demonstrate modest, but important, selection bias in documented NIHSS data, which are missing more often in patients with less severe stroke. The population mean NIHSS score was overestimated by >2 points, which could significantly alter the risk profile of hospitals treating patients with ischemic stroke and subsequent hospital risk-adjusted outcomes. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.
2016-12-01
Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.
Rule-Based Runtime Verification
NASA Technical Reports Server (NTRS)
Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik
2003-01-01
We present a rule-based framework for defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. Our logic, EAGLE, is implemented as a Java library and involves novel techniques for rule definition, manipulation and execution. Monitoring is done on a state-by-state basis, without storing the execution trace.
Spatial and Temporal Monitoring Resolutions for CO2 Leakage Detection at Carbon Storage Sites
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Dilmore, R. M.; Daley, T. M.; Carroll, S.; Mansoor, K.; Gasperikova, E.; Harbert, W.; Wang, Z.; Bromhal, G. S.; Small, M.
2016-12-01
Different leakage monitoring techniques offer different strengths in detection sensitivity, coverage, feedback time, cost, and technology availability, such that they may complement each other when applied together. This research focuses on quantifying the spatial coverage and temporal resolution of detection response for several geophysical remote monitoring and direct groundwater monitoring techniques for an optimal monitoring plan for CO2 leakage detection. Various monitoring techniques with different monitoring depths are selected: 3D time-lapse seismic survey, wellbore pressure, groundwater chemistry and soil gas. The spatial resolution in terms of leakage detectability is quantified through the effective detection distance between two adjacent monitors, given the magnitude of leakage and specified detection probability. The effective detection distances are obtained either from leakage simulations with various monitoring densities or from information garnered from field test data. These spatial leakage detection resolutions are affected by physically feasible monitoring design and detection limits. Similarly, the temporal resolution, in terms of leakage detectability, is quantified through the effective time to positive detection of a given size of leak and a specified detection probability, again obtained either from representative leakage simulations with various monitoring densities or from field test data. The effective time to positive detection is also affected by operational feedback time (associated with sampling, sample analysis and data interpretation), with values obtained mainly through expert interviews and literature review. In additional to the spatial and temporal resolutions of these monitoring techniques, the impact of CO2 plume migration speed and leakage detection sensitivity of each monitoring technique are also discussed with consideration of how much monitoring is necessary for effective leakage detection and how these monitoring techniques can be better combined in a time-space framework. The results of the spatial and temporal leakage detection resolutions for several geophysical monitoring techniques and groundwater monitoring are summarized to inform future monitoring designs at carbon storage sites.
Miles, Will T S; Bolton, Mark; Davis, Peter; Dennis, Roy; Broad, Roger; Robertson, Iain; Riddiford, Nick J; Harvey, Paul V; Riddington, Roger; Shaw, Deryk N; Parnaby, David; Reid, Jane M
2017-04-01
Phenological changes in key seasonally expressed life-history traits occurring across periods of climatic and environmental change can cause temporal mismatches between interacting species, and thereby impact population and community dynamics. However, studies quantifying long-term phenological changes have commonly only measured variation occurring in spring, measured as the first or mean dates on which focal traits or events were observed. Few studies have considered seasonally paired events spanning spring and autumn or tested the key assumption that single convenient metrics accurately capture entire event distributions. We used 60 years (1955-2014) of daily bird migration census data from Fair Isle, Scotland, to comprehensively quantify the degree to which the full distributions of spring and autumn migration timing of 13 species of long-distance migratory bird changed across a period of substantial climatic and environmental change. In most species, mean spring and autumn migration dates changed little. However, the early migration phase (≤10th percentile date) commonly got earlier, while the late migration phase (≥90th percentile date) commonly got later. Consequently, species' total migration durations typically lengthened across years. Spring and autumn migration phenologies were not consistently correlated within or between years within species and hence were not tightly coupled. Furthermore, different metrics quantifying different aspects of migration phenology within seasons were not strongly cross-correlated, meaning that no single metric adequately described the full pattern of phenological change. These analyses therefore reveal complex patterns of simultaneous advancement, temporal stability and delay in spring and autumn migration phenologies, altering species' life-history structures. Additionally, they demonstrate that this complexity is only revealed if multiple metrics encompassing entire seasonal event distributions, rather than single metrics, are used to quantify phenological change. Existing evidence of long-term phenological changes detected using only one or two metrics should consequently be interpreted cautiously because divergent changes occurring simultaneously could potentially have remained undetected. © 2016 John Wiley & Sons Ltd.
MEG Coherence and DTI Connectivity in mTLE
Nazem-Zadeh, Mohammad-Reza; Bowyer, Susan M.; Moran, John E.; Davoodi-Bojd, Esmaeil; Zillgitt, Andrew; Weiland, Barbara J.; Bagher-Ebadian, Hassan; Mahmoudi, Fariborz; Elisevich, Kost; Soltanian-Zadeh, Hamid
2017-01-01
Purpose Magnetoencephalography (MEG) is a noninvasive imaging method for localization of focal epileptiform activity in patients with epilepsy. Diffusion tensor imaging (DTI) is a noninvasive imaging method for measuring the diffusion properties of the underlying white matter tracts through which epileptiform activity is propagated. This study investigates the relationship between the cerebral functional abnormalities quantified by MEG coherence and structural abnormalities quantified by DTI in mesial temporal lobe epilepsy (mTLE). Methods Resting state MEG data was analyzed using MEG coherence source imaging (MEG-CSI) method to determine the coherence in 54 anatomical sites in 17 adult mTLE patients with surgical resection and Engel class I outcome, and 17 age- and gender- matched controls. DTI tractography identified the fiber tracts passing through these same anatomical sites of the same subjects. Then, DTI nodal degree and laterality index were calculated and compared with the corresponding MEG coherence and laterality index. Results MEG coherence laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in insular cortex and both lateral orbitofrontal and superior temporal gyri (p<0.017). Likewise, DTI nodal degree laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in gyrus rectus, insular cortex, precuneus and superior temporal gyrus (p<0.017). In insular cortex, MEG coherence laterality correlated with DTI nodal degree laterality (R2 = 0.46; p = 0.003) in the cases of mTLE. None of these anatomical sites showed statistically significant differences in coherence laterality between right and left sides of the controls. Coherence laterality was in agreement with the declared side of epileptogenicity in insular cortex (in 82% of patients) and both lateral orbitofrontal (88%) and superior temporal gyri (88%). Nodal degree laterality was also in agreement with the declared side of epileptogenicity in gyrus rectus (in 88% of patients), insular cortex (71%), precuneus (82%) and superior temporal gyrus (94%). Combining all significant laterality indices improved the lateralization accuracy to 94% and 100% for the coherence and nodal degree laterality indices, respectively. Conclusion The associated variations in diffusion properties of fiber tracts quantified by DTI and coherence measures quantified by MEG with respect to epileptogenicity possibly reflect the chronic microstructural cerebral changes associated with functional interictal activity. The proposed methodology for using MEG and DTI to investigate diffusion abnormalities related to focal epileptogenicity and propagation may provide a further means of noninvasive lateralization. PMID:27060092
77 FR 75819 - Death of Senator Daniel K. Inouye, President Pro Tempore of the Senate
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
... Vol. 77 Friday, No. 246 December 21, 2012 Part VI The President Proclamation 8919--Death of Senator Daniel K. Inouye, President Pro Tempore of the Senate #0; #0; #0; Presidential Documents #0; #0...; #0; #0;Title 3-- #0;The President [[Page 75821
Multidecadal Land Cover Change in the Los Angeles Basin and its Water Consumption Implications
NASA Astrophysics Data System (ADS)
Colombi, N. K.; Lettenmaier, D. P.; Marlier, M. E.
2017-12-01
Urban irrigation is an important component of the hydrologic cycle in areas with arid and semi-arid climates. In Los Angeles, outdoor irrigation has the largest potential for water conservation. However, there are significant uncertainties in predicting and quantifying irrigated water use due to unavailability of crucial landcover data. Irrigated vegetation must first be identified and mapped before irrigated water use can be modeled, and steps can be taken towards conservation. We utilized Landsat data at 30m spatial resolution from 1985 to present to quantify temporal dynamics of vegetation cover on a seasonal basis in the Los Angeles Basin based on the Normalized Difference Vegetation Index (NDVI). Previous vegetation surveys have estimated tree cover and other vegetation types as isolated "snapshots", but are of limited use in monitoring fine-scale temporal variations, and their implications for municipal water consumption in particular. When the temporal resolution of images is low, it becomes more difficult to distinguish between natural, as contrasted with irrigated, vegetation. Our work therefore should provide a better basis for identifying irrigated vegetation. In addition, we quantified NDVI changes within specific land cover classifications including, but not limited to, grassland, shrub, and developed land classes. These results will be useful in comparing natural and irrigated vegetation within urban and partially urban areas. They will also help us to understand relationships between NDVI and irrigated water use at fine temporal resolutions. Finally, we have created land cover change maps that allow us to examine the impact of historical urban ecosystem changes on the water balance of the Los Angeles Basin (LAB) over the last 30 years. Understanding historical changes is a first step in determining the most practical ways of improving water use sustainability in the Los Angeles urban area.
Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.
2015-01-01
Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.
Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts
NASA Astrophysics Data System (ADS)
Wang, M.; Kamarianakis, Y.; Georgescu, M.
2017-12-01
A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.
Quantifying Temporal Genomic Erosion in Endangered Species.
Díez-Del-Molino, David; Sánchez-Barreiro, Fatima; Barnes, Ian; Gilbert, M Thomas P; Dalén, Love
2018-03-01
Many species have undergone dramatic population size declines over the past centuries. Although stochastic genetic processes during and after such declines are thought to elevate the risk of extinction, comparative analyses of genomic data from several endangered species suggest little concordance between genome-wide diversity and current population sizes. This is likely because species-specific life-history traits and ancient bottlenecks overshadow the genetic effect of recent demographic declines. Therefore, we advocate that temporal sampling of genomic data provides a more accurate approach to quantify genetic threats in endangered species. Specifically, genomic data from predecline museum specimens will provide valuable baseline data that enable accurate estimation of recent decreases in genome-wide diversity, increases in inbreeding levels, and accumulation of deleterious genetic variation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William
2014-08-01
Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.
Systems Security Engineering Capability Maturity Model SSE-CMM Model Description Document
1999-04-01
management is the process of accessing and quantifying risk , and establishing an acceptable level of risk for the organization. Managing risk is an...Process of assessing and quantifying risk and establishing acceptable level of risk for the organization. [IEEE 13335-1:1996] Security Engineering
The Emergence of the Quantified Child
ERIC Educational Resources Information Center
Smith, Rebecca
2017-01-01
Using document analysis, this paper examines the historical emergence of the quantified child, revealing how the collection and use of data has become normalized through legitimizing discourses. First, following in the traditions of Foucault's genealogy and studies examining the sociology of numbers, this paper traces the evolution of data…
R. Justin DeRose; James N. Long
2012-01-01
Host conditions are known to influence spruce beetle population levels, but whether they influence the spatial and temporal patterns of beetle-caused mortality during an outbreak is unknown. Using dendrochronological techniques, we quantified the spatiotemporal dynamics of a modern (late 1980s through the early 2000s) spruce beetle outbreak in Engelmann spruce on the...
Umile, Eric M; Sandel, M Elizabeth; Alavi, Abass; Terry, Charles M; Plotkin, Rosette C
2002-11-01
To determine whether patients with mild traumatic brain injury (TBI) and persistent postconcussive symptoms have evidence of temporal lobe injury on dynamic imaging. Case series. An academic medical center. Twenty patients with a clinical diagnosis of mild TBI and persistent postconcussive symptoms were referred for neuropsychologic evaluation and dynamic imaging. Fifteen (75%) had normal magnetic resonance imaging (MRI) and/or computed tomography (CT) scans at the time of injury. Neuropsychologic testing, positron-emission tomography (PET), and single-photon emission-computed tomography (SPECT). Temporal lobe findings on static imaging (MRI, CT) and dynamic imaging (PET, SPECT); neuropsychologic test findings on measures of verbal and visual memory. Testing documented neurobehavioral deficits in 19 patients (95%). Dynamic imaging documented abnormal findings in 18 patients (90%). Fifteen patients (75%) had temporal lobe abnormalities on PET and SPECT (primarily in medial temporal regions); abnormal findings were bilateral in 10 patients (50%) and unilateral in 5 (25%). Six patients (30%) had frontal abnormalities, and 8 (40%) had nonfrontotemporal abnormalities. Correlations between neuropsychologic testing and dynamic imaging could be established but not consistently across the whole group. Patients with mild TBI and persistent postconcussive symptoms have a high incidence of temporal lobe injury (presumably involving the hippocampus and related structures), which may explain the frequent finding of memory disorders in this population. The abnormal temporal lobe findings on PET and SPECT in humans may be analogous to the neuropathologic evidence of medial temporal injury provided by animal studies after mild TBI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
Leaders and followers: quantifying consistency in spatio-temporal propagation patterns
NASA Astrophysics Data System (ADS)
Kreuz, Thomas; Satuvuori, Eero; Pofahl, Martin; Mulansky, Mario
2017-04-01
Repetitive spatio-temporal propagation patterns are encountered in fields as wide-ranging as climatology, social communication and network science. In neuroscience, perfectly consistent repetitions of the same global propagation pattern are called a synfire pattern. For any recording of sequences of discrete events (in neuroscience terminology: sets of spike trains) the questions arise how closely it resembles such a synfire pattern and which are the spike trains that lead/follow. Here we address these questions and introduce an algorithm built on two new indicators, termed SPIKE-order and spike train order, that define the synfire indicator value, which allows to sort multiple spike trains from leader to follower and to quantify the consistency of the temporal leader-follower relationships for both the original and the optimized sorting. We demonstrate our new approach using artificially generated datasets before we apply it to analyze the consistency of propagation patterns in two real datasets from neuroscience (giant depolarized potentials in mice slices) and climatology (El Niño sea surface temperature recordings). The new algorithm is distinguished by conceptual and practical simplicity, low computational cost, as well as flexibility and universality.
Graded Alternating-Time Temporal Logic
NASA Astrophysics Data System (ADS)
Faella, Marco; Napoli, Margherita; Parente, Mimmo
Graded modalities enrich the universal and existential quantifiers with the capability to express the concept of at least k or all but k, for a non-negative integer k. Recently, temporal logics such as μ-calculus and Computational Tree Logic, Ctl, augmented with graded modalities have received attention from the scientific community, both from a theoretical side and from an applicative perspective. Both μ-calculus and Ctl naturally apply as specification languages for closed systems: in this paper, we add graded modalities to the Alternating-time Temporal Logic (Atl) introduced by Alur et al., to study how these modalities may affect specification languages for open systems.
76 FR 23538 - Notice of Intent To Reinstate a Previously Approved Information Collection.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... management, and conservation practices in order to quantify and assess current impacts of farming practices... (USDA) in 2003 as a multi-agency effort to quantify the environmental effects of conservation practices...) conducted on-site interviews with farmers during 2003-2006 to document tillage and irrigation practices...
Roth, James D
2002-09-01
Consumption of marine foods by terrestrial predators can lead to increased predator densities, potentially impacting their terrestrial resources. For arctic foxes (Alopex lagopus), access to such marine foods in winter depends on sea ice, which is threatened by global climate change. To quantify the importance of marine foods (seal carrion and seal pups) and document temporal variation in arctic fox diet I measured the ratios of the stable isotopes of carbon ((13)C/(12)C) in hair of arctic foxes near Cape Churchill, Manitoba, from 1994 to 1997. These hair samples were compared to the stable carbon isotope ratios of several prey species. Isotopic differences between seasonally dimorphic pelage types indicated a diet with a greater marine content in winter when sea ice provided access to seal carrion. Annual variation in arctic fox diet in both summer and winter was correlated with lemming abundance. Marine food sources became much more important in winters with low lemming populations, accounting for nearly half of the winter protein intake following a lemming decline. Potential alternative summer foods with isotopic signatures differing from lemmings included goose eggs and caribou, but these were unavailable in winter. Reliance on marine food sources in winter during periods of low lemming density demonstrates the importance of the sea ice as a potential habitat for this arctic fox population and suggests that a continued decline in sea ice extent will disrupt an important link between the marine and terrestrial ecosystems.
Coverage centralities for temporal networks*
NASA Astrophysics Data System (ADS)
Takaguchi, Taro; Yano, Yosuke; Yoshida, Yuichi
2016-02-01
Structure of real networked systems, such as social relationship, can be modeled as temporal networks in which each edge appears only at the prescribed time. Understanding the structure of temporal networks requires quantifying the importance of a temporal vertex, which is a pair of vertex index and time. In this paper, we define two centrality measures of a temporal vertex based on the fastest temporal paths which use the temporal vertex. The definition is free from parameters and robust against the change in time scale on which we focus. In addition, we can efficiently compute these centrality values for all temporal vertices. Using the two centrality measures, we reveal that distributions of these centrality values of real-world temporal networks are heterogeneous. For various datasets, we also demonstrate that a majority of the highly central temporal vertices are located within a narrow time window around a particular time. In other words, there is a bottleneck time at which most information sent in the temporal network passes through a small number of temporal vertices, which suggests an important role of these temporal vertices in spreading phenomena. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-60498-7
Temporal Instabilities in Amblyopic Perception: A Quantitative Approach.
Thiel, Aylin; Iftime, Adrian
2016-04-01
The purpose of this study is to quantify the temporal characteristics of spatial misperceptions in human amblyopia. Twenty-two adult participants with strabismus, strabismic, anisometropic, or mixed amblyopia were asked to describe their subjective percept of static geometrical patterns with different spatial frequencies and shapes, as seen with their non-dominant eye. We generated digital reconstructions of their perception (static images or movies) that were subsequently validated by the subjects using consecutive matching sessions. We calculated the Shannon entropy variation in time for each recorded movie, as a measure of temporal instability. Nineteen of the 22 subjects perceived temporal instabilities that can be broadly classified in two categories. We found that the average frequency of the perceived temporal instabilities is ∼1 Hz. The stimuli with higher spatial frequencies yielded more often temporally unstable perceptions with higher frequencies. We suggest that type and amount of temporal instabilities in amblyopic vision are correlated with the etiology and spatial frequency of the stimulus.
Graph distance for complex networks
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki
2016-10-01
Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.
Quantifying drivers of wild pig movement across multiple spatial and temporal scales
Kay, Shannon L.; Fischer, Justin W.; Monaghan, Andrew J.; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S.; Hartley, Stephen B.; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; Vercauteren, Kurt C.; Pipen, Kim M
2017-01-01
The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.
NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.
Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T
2015-04-01
The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.
Mosci, Paolo; Gabrielli, Elena; Luciano, Eugenio; Perito, Stefano; Cassone, Antonio; Pericolini, Eva; Vecchiarelli, Anna
2014-08-01
In this study we show that corticosteroid-treated Il17a(-/-) mice develop invasive candidiasis from oropharyngeal infection whereas WT mice do not. By using an established murine model of oral candidiasis we document the spatial and temporal progression of fungal infection. The histological analysis of tissues in Il17a(-/-) mice showed massive infiltration of the fungus in the stomach and alterations of the gastrointestinal tract segments. Both increased permeability and mucosal ulcerations of the intestinal barrier are seen to favor Candida albicans dissemination which was quantified both in kidney and liver where typical candidal abscesses were detected. Neutrophils from Il17a(-/-) were as capable of phagocytosing the fungus comparable to that of WT mice, however, they showed decreased candidacidal ability. Our data implies that IL-17A is crucial for preventing the passage from mucosal to disseminated candidiasis. As such, our model may be suitable to study the mechanisms favoring C. albicans translocation to internal organs. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Best practices for continuous monitoring of temperature and flow in wadeable streams
Stamp, Jen; Hamilton, Anna; Craddock, Michelle; Parker, Laila; Roy, Allison; Isaak, Daniel J.; Holden, Zachary; Passmore, Margaret; Bierwagen, Britta
2014-01-01
The United States Environmental Protection Agency (U.S. EPA) is working with its regional offices, states, tribes, river basin commissions and other entities to establish Regional Monitoring Networks (RMNs) for freshwater wadeable streams. To the extent possible, uninterrupted, biological, temperature and hydrologic data will be collected on an ongoing basis at RMN sites, which are primarily located on smaller, minimally disturbed forested streams. The primary purpose of this document is to provide guidance on how to collect accurate, year-round temperature and hydrologic data at ungaged wadeable stream sites. It addresses questions related to equipment needs, sensor configuration, sensor placement, installation techniques, data retrieval, and data processing. This guidance is intended to increase comparability of continuous temperature and hydrologic data collection at RMN sites and to ensure that the data are of sufficient quality to be used in future analyses. It also addresses challenges posed by year-round deployments. These data will be used for detecting temporal trends; providing information that will allow for a better understanding of relationships between biological, thermal, and hydrologic data; predicting and analyzing climate change impacts and quantifying natural variability.
Near-surface remote sensing of spatial and temporal variation in canopy phenology
Andrew D. Richardson; Bobby H. Braswell; David Y. Hollinger; Julian P. Jenkins; Scott V. Ollinger
2009-01-01
There is a need to document how plant phenology is responding to global change factors, particularly warming trends. "Near-surface" remote sensing, using radiometric instruments or imaging sensors, has great potential to improve phenological monitoring because automated observations can be made at high temporal frequency. Here we build on previous work and...
The temporal distribution and carbon storage of large oak wood in streams and floodplain deposits
Richard P. Guyette; Daniel C. Dey; Michael C. Stambaugh
2008-01-01
We used tree-ring dating and 14C dating to document the temporal distribution and carbon storage of oak (Quercus spp.) wood in trees recruited and buried by streams and floodplains in northern Missouri, USA. Frequency distributions indicated that oak wood has been accumulating in Midwest streams continually since at least the...
Quantifying trail erosion and stream sedimentation with sediment tracers
Mark S. Riedel
2006-01-01
Abstract--The impacts of forest disturbance and roads on stream sedimentation have been rigorously investigated and documented. While historical research on turbidity and suspended sediments has been thorough, studies of stream bed sedimentation have typically relied on semi-quantitative measures such as embeddedness or marginal pool depth. To directly quantify the...
Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.; ...
2016-10-20
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less
Sippel, Sebastian; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.
2016-01-01
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics. PMID:27764187
The U.S. Environmental Protection Agency (EPA) has established an ongoing effort to quantify possible changes in levels of perfluorinated chemicals (PFCs) in articles of commerce (AOCs). Temporal trends in the concentrations of selected PFCs, including perfluorooctanoic acid (PFO...
Controlling Laser Plasma Instabilities Using Temporal Bandwidth
NASA Astrophysics Data System (ADS)
Tsung, Frank; Weaver, J.; Lehmberg, R.
2016-10-01
We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.
NASA Astrophysics Data System (ADS)
Lundquist, K. A.; Jensen, D. D.; Lucas, D. D.
2017-12-01
Atmospheric source reconstruction allows for the probabilistic estimate of source characteristics of an atmospheric release using observations of the release. Performance of the inversion depends partially on the temporal frequency and spatial scale of the observations. The objective of this study is to quantify the sensitivity of the source reconstruction method to sparse spatial and temporal observations. To this end, simulations of atmospheric transport of noble gasses are created for the 2006 nuclear test at the Punggye-ri nuclear test site. Synthetic observations are collected from the simulation, and are taken as "ground truth". Data denial techniques are used to progressively coarsen the temporal and spatial resolution of the synthetic observations, while the source reconstruction model seeks to recover the true input parameters from the synthetic observations. Reconstructed parameters considered here are source location, source timing and source quantity. Reconstruction is achieved by running an ensemble of thousands of dispersion model runs that sample from a uniform distribution of the input parameters. Machine learning is used to train a computationally-efficient surrogate model from the ensemble simulations. Monte Carlo sampling and Bayesian inversion are then used in conjunction with the surrogate model to quantify the posterior probability density functions of source input parameters. This research seeks to inform decision makers of the tradeoffs between more expensive, high frequency observations and less expensive, low frequency observations.
Nelson, Michael P; Boutin, Michel; Tse, Tonia E; Lu, Hailin; Haley, Emily D; Ouyang, Xiaosen; Zhang, Jianhua; Auray-Blais, Christiane; Shacka, John J
2018-02-01
The aberrant accumulation of alpha-synuclein (α-syn) is believed to contribute to the onset and pathogenesis of Parkinson's disease (PD). The autophagy-lysosome pathway (ALP) is responsible for the high capacity clearance of α-syn. ALP dysfunction is documented in PD and pre-clinical evidence suggests that inhibiting the ALP promotes the pathological accumulation of α-syn. We previously identified the pathological accumulation of α-syn in the brains of mice deficient for the soluble lysosomal enzyme alpha-Galactosidase A (α-Gal A), a member of the glycosphingolipid metabolism pathway. In the present study, we quantified α-Gal A activity and levels of its glycosphingolipid metabolites in postmortem temporal cortex specimens from control individuals and in PD individuals staged with respect to α-syn containing Lewy body pathology. In late-state PD temporal cortex we observed significant decreases in α-Gal A activity and the 46kDa "active" species of α-Gal A as determined respectively by fluorometric activity assay and western blot analysis. These decreases in α-Gal A activity/levels correlated significantly with increased α-syn phosphorylated at serine 129 (p129S-α-syn) that was maximal in late-stage PD temporal cortex. Mass spectrometric analysis of 29 different isoforms of globotriaosylceramide (Gb 3 ), a substrate of α-Gal A indicated no significant differences with respect to different stages of PD temporal cortex. However, significant correlations were observed between increased levels of several Gb 3 isoforms and with decreased α-Gal A activity and/or increased p129S-α-syn. Deacylated Gb 3 (globotriaosylsphingosine or lyso-Gb 3 ) was also analyzed in PD brain tissue but was below the limit of detection of 20pmol/g. Analysis of other lysosomal enzymes revealed a significant decrease in activity for the lysosomal aspartic acid protease cathepsin D but not for glucocerebrosidase (GCase) or cathepsin B in late-stage PD temporal cortex. However, a significant correlation was observed between decreasing GCase activity and increasing p129S-α-syn. Together our findings indicate α-Gal A deficiency in late-stage PD brain that correlates significantly with the pathological accumulation of α-syn, and further suggest the potential for α-Gal A and its glycosphingolipid substrates as putative biomarkers for PD. Copyright © 2017 Elsevier Inc. All rights reserved.
Simulation of crop yield variability by improved root-soil-interaction modelling
NASA Astrophysics Data System (ADS)
Duan, X.; Gayler, S.; Priesack, E.
2009-04-01
Understanding the processes and factors that govern the within-field variability in crop yield has attached great importance due to applications in precision agriculture. Crop response to environment at field scale is a complex dynamic process involving the interactions of soil characteristics, weather conditions and crop management. The numerous static factors combined with temporal variations make it very difficult to identify and manage the variability pattern. Therefore, crop simulation models are considered to be useful tools in analyzing separately the effects of change in soil or weather conditions on the spatial variability, in order to identify the cause of yield variability and to quantify the spatial and temporal variation. However, tests showed that usual crop models such as CERES-Wheat and CERES-Maize were not able to quantify the observed within-field yield variability, while their performance on crop growth simulation under more homogeneous and mainly non-limiting conditions was sufficent to simulate average yields at the field-scale. On a study site in South Germany, within-field variability in crop growth has been documented since years. After detailed analysis and classification of the soil patterns, two site specific factors, the plant-available-water and the O2 deficiency, were considered as the main causes of the crop growth variability in this field. Based on our measurement of root distribution in the soil profile, we hypothesize that in our case the insufficiency of the applied crop models to simulate the yield variability can be due to the oversimplification of the involved root models which fail to be sensitive to different soil conditions. In this study, the root growth model described by Jones et al. (1991) was adapted by using data of root distributions in the field and linking the adapted root model to the CERES crop model. The ability of the new root model to increase the sensitivity of the CERES crop models to different enviromental conditions was then evaluated by means of comparison of the simualtion results with measured data and by scenario calculations.
The need to consider temporal variability when modelling exchange at the sediment-water interface
Rosenberry, Donald O.
2011-01-01
Most conceptual or numerical models of flows and processes at the sediment-water interface assume steady-state conditions and do not consider temporal variability. The steady-state assumption is required because temporal variability, if quantified at all, is usually determined on a seasonal or inter-annual scale. In order to design models that can incorporate finer-scale temporal resolution we first need to measure variability at a finer scale. Automated seepage meters that can measure flow across the sediment-water interface with temporal resolution of seconds to minutes were used in a variety of settings to characterize seepage response to rainfall, wind, and evapotranspiration. Results indicate that instantaneous seepage fluxes can be much larger than values commonly reported in the literature, although seepage does not always respond to hydrological processes. Additional study is needed to understand the reasons for the wide range and types of responses to these hydrologic and atmospheric events.
The effects of fire on avian communities: Spatio-temporal attributes of the literature 19122003
Leidolf, A.; Bissonette, J.A.
2009-01-01
We reviewed the temporal, geographic, and biogeographic distribution, as well as relevant research and publication attributes, of 512 documents addressing the effects of fire on avian communities, to provide an assessment of the scope of this literature and recommendations for future research. We summarized relevant attributes of all documents to identify patterns that were then tested against appropriate null models. Most documents reported on original research, with the literature evenly divided between studies investigating controlled fire and those reporting on uncontrolled wildfires. Conceptual reviews made up the second largest category; methodological reviews, bibliographies, and meta-analyses were rare. Although the literature examined spans nearly a century, most documents were published within the last 15 years, with new literature being added at an increasing rate. However, increases seem to be skewed towards original research at the expense of synthesis. An overwhelming majority of documents were published in peer-reviewed scientific journals and in English. Other important publication outlets included MS and PhD theses and conference proceedings. The spatial distribution of documents by continent and biogeographic domain and division differed significantly from expectations based on land area. Future research on avian community response to fire should focus on (1) continued synthesis, emphasizing methodological reviews, bibliographies, and North America; (2) increasing research efforts in areas currently underrepresented in the literature, including Africa, Asia, and South and Central America; and (3) meta-analyses. ?? 2009 IAWF.
Effects of burstiness on the air transportation system
NASA Astrophysics Data System (ADS)
Ito, Hidetaka; Nishinari, Katsuhiro
2017-01-01
The effects of burstiness in complex networks have received considerable attention. In particular, the effects on temporal distance and delays in the air transportation system are significant owing to their huge impact on our society. Therefore, in this paper, the temporal distance of empirical U.S. flight schedule data is compared with that of regularized data without burstiness to analyze the effects of burstiness. The temporal distance is calculated by a graph analysis method considering flight delays, missed connections, flight cancellations, and congestion. In addition, we propose two temporal distance indexes based on passengers' behavior to quantify the effects. As a result, we find that burstiness reduces both the scheduled and the actual temporal distances for business travelers, while delays caused by missed connections and congestion are increased. We also find that the decrease of the scheduled temporal distance by burstiness is offset by an increase of the delays for leisure passengers. Moreover, we discover that the positive effect of burstiness is lost when flight schedules are overcrowded.
Effects of burstiness on the air transportation system.
Ito, Hidetaka; Nishinari, Katsuhiro
2017-01-01
The effects of burstiness in complex networks have received considerable attention. In particular, the effects on temporal distance and delays in the air transportation system are significant owing to their huge impact on our society. Therefore, in this paper, the temporal distance of empirical U.S. flight schedule data is compared with that of regularized data without burstiness to analyze the effects of burstiness. The temporal distance is calculated by a graph analysis method considering flight delays, missed connections, flight cancellations, and congestion. In addition, we propose two temporal distance indexes based on passengers' behavior to quantify the effects. As a result, we find that burstiness reduces both the scheduled and the actual temporal distances for business travelers, while delays caused by missed connections and congestion are increased. We also find that the decrease of the scheduled temporal distance by burstiness is offset by an increase of the delays for leisure passengers. Moreover, we discover that the positive effect of burstiness is lost when flight schedules are overcrowded.
ERIC Educational Resources Information Center
Bardone-Cone, Anna M.; Boyd, Clarissa A.
2007-01-01
Most of the major instruments in the eating disorder field have documented psychometric support only in predominantly White samples. The current study examined the internal consistency, temporal stability, and convergent and discriminant validity of a variety of eating disorder measures in Black (n = 97) and White (n = 179) female undergraduates.…
Scott L. Jensen; Stephen B. Monsen; Pat Fosse
2008-01-01
This case study documents temporal and spatial squarrose knapweed (Centaurea virgata Lam. spp. squarrosa (Willd.) Gugler) seed dispersal from study sites in central Utah. Felt seed traps were placed along transects extending from sites occupied by squarrose knapweed into adjacent plant communities. Seed dispersal from knapweed...
2010-04-01
Methodological Results / Details ................................................ 24 4.1.3.1 Clock Synchronization , Network & Temporal Resolution...xii DRDC Atlantic CR 2010-058 Acknowledgements Special thanks to Carl Helmick, Patti Devlin, Mike Taber, and the Dalhousie lab...Methodological Results / Details 4.1.3.1 Clock Synchronization , Network & Temporal Resolution Due to drift in computer clock times, especially laptop
Gernot Hoch; Vincent D' Amico; Leellen F. Solter; Milan Zubrik; Michael L. McManus
2008-01-01
Nosema lymantriae is a microsporidian pathogen of the gypsy moth, Lymantria dispar that has been documented to be at least partially responsible for the collapse of L. dispar outbreak populations in Europe. To quantify horizontal transmission of this pathogen under field conditions we performed caged-tree...
Lin, Tina W; de Aburto, Michelle A Kung; Dahlbom, Magnus; Huang, Lynn L; Marvi, Michael M; Tang, Michael; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S
2007-05-01
Conventional visual analysis of brain (18)F-FDG PET scans is useful for predicting postsurgical improvement for temporal lobe epilepsy (TLE) patients, but prognostic value for identifying patients who will achieve seizure-free status is considerably lower. We aimed to develop an approach with which to quantitatively assess prognostically pertinent aspects of metabolic asymmetry in presurgical PET scans for forecasting postsurgical seizure-free clinical outcomes. Presurgical brain PET scans of 75 TLE patients were examined using a display/analysis tool that quantified maximal metabolic asymmetry in a specified proportion (x%) of the temporal lobe pixels in the most asymmetric plane, generating a temporal lobe asymmetry index (T-AI(x)). Results of this analysis were compared with patients' actual postsurgical outcomes after an average of approximately 4 y of clinical follow-up. The investigation was divided into 2 main steps: The PET scans examined in the first step, selected by chronological order of scan acquisition dates, comprised just less than two thirds of the patient group studied (n=47) and were used to look for parameters predicting seizure-free postsurgical outcome; in the second step, the predictive value of the parameters suggested by the analysis in the first step was independently examined using the set of remaining PET scans (n=28) to check for wider applicability of the approach. Of the 75 patients studied, 42 became seizure free after surgery, whereas 33 continued to seize beyond the immediate postoperative period, during a mean 3.8-y follow-up interval. The specified proportion of temporal pixels with which to assess maximal asymmetry that provided the highest prognostic value with respect to achieving seizure-free status was 20%. Across the study population, those patients with scans having lower T-AI(20) values (corresponding to <40% difference in pixel intensities between left and right temporal lobes, among the 20% most asymmetric left-right pixel pairs measured in the most asymmetric plane) were only half as likely to continue to have seizures postsurgically as those with scans having higher T-AI(20) values (positive likelihood ratio for achieving seizure-free outcome, 1.98; 95% confidence interval, 1.07-3.67). Overall, those patients with greater maximal asymmetry, as indexed by higher T-AI(20) values, had a significantly decreased chance of achieving seizure-free status after surgery than those with lower degrees of asymmetry (P=0.017), and this same tendency was observed for both the first and second series of PET scans examined. A quantifying approach to assessing maximal temporal asymmetry over a specified proportion of the temporal lobe may help to predict whether patients will likely be free of seizures during the years after neurosurgical resection of epileptogenic tissue.
How spatio-temporal habitat connectivity affects amphibian genetic structure.
Watts, Alexander G; Schlichting, Peter E; Billerman, Shawn M; Jesmer, Brett R; Micheletti, Steven; Fortin, Marie-Josée; Funk, W Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A
2015-01-01
Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.
Decorrelation scales for Arctic Ocean hydrography - Part I: Amerasian Basin
NASA Astrophysics Data System (ADS)
Sumata, Hiroshi; Kauker, Frank; Karcher, Michael; Rabe, Benjamin; Timmermans, Mary-Louise; Behrendt, Axel; Gerdes, Rüdiger; Schauer, Ursula; Shimada, Koji; Cho, Kyoung-Ho; Kikuchi, Takashi
2018-03-01
Any use of observational data for data assimilation requires adequate information of their representativeness in space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in situ observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose, we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation scale in the basin interior (abyssal plain area), we calculate autocorrelations as a function of spatial distance and temporal lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well described by a Gaussian function in space and time. We derive decorrelation scales of 150-200 km in space and 100-300 days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale should be applied for cost function calculation in a data assimilation system.
Monitoring air quality in mountains: Designing an effective network
Peterson, D.L.
2000-01-01
A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.
Quantification of EEG reactivity in comatose patients
Hermans, Mathilde C.; Westover, M. Brandon; van Putten, Michel J.A.M.; Hirsch, Lawrence J.; Gaspard, Nicolas
2016-01-01
Objective EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. Methods In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. Results The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts’ agreement regarding reactivity for each individual case. Conclusion Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Significance Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. PMID:26183757
Roumet, Marie; Cayre, Adeline; Latreille, Muriel; Muller, Marie-Hélène
2015-01-01
Flowering time divergence can be a crucial component of reproductive isolation between sympatric populations, but few studies have quantified its actual contribution to the reduction of gene flow. In this study, we aimed at estimating pollen-mediated gene flow between cultivated sunflower and a weedy conspecific sunflower population growing in the same field and at quantifying, how it is affected by the weeds' flowering time. For that purpose, we extended an existing mating model by including a temporal distance (i.e. flowering time difference between potential parents) effect on mating probabilities. Using phenological and genotypic data gathered on the crop and on a sample of the weedy population and its offspring, we estimated an average hybridization rate of approximately 10%. This rate varied strongly from 30% on average for weeds flowering at the crop flowering peak to 0% when the crop finished flowering and was affected by the local density of weeds. Our result also suggested the occurrence of other factors limiting crop-to-weed gene flow. This level of gene flow and its dependence on flowering time might influence the evolutionary fate of weedy sunflower populations sympatric to their crop relative. PMID:25667603
TH-CD-207B-03: How to Quantify Temporal Resolution in X-Ray MDCT Imaging?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budde, A; GE Healthcare Technologies, Madison, WI; Li, Y
Purpose: In modern CT scanners, a quantitative metric to assess temporal response, namely, to quantify the temporal resolution (TR), remains elusive. Rough surrogate metrics, such as half of the gantry rotation time for single source CT, a quarter of the gantry rotation time for dual source CT, or measurements of motion artifact’s size, shape, or intensity have previously been used. In this work, a rigorous framework which quantifies TR and a practical measurement method are developed. Methods: A motion phantom was simulated which consisted of a single rod that is in motion except during a static period at the temporalmore » center of the scan, termed the TR window. If the image of the motion scan has negligible motion artifacts compared to an image from a totally static scan, then the system has a TR no worse than the TR window used. By repeating this comparison with varying TR windows, the TR of the system can be accurately determined. Motion artifacts were also visually assessed and the TR was measured across varying rod motion speeds, directions, and locations. Noiseless fan beam acquisitions were simulated and images were reconstructed with a short-scan image reconstruction algorithm. Results: The size, shape, and intensity of motion artifacts varied when the rod speed, direction, or location changed. TR measured using the proposed method, however, was consistent across rod speeds, directions, and locations. Conclusion: Since motion artifacts vary depending upon the motion speed, direction, and location, they are not suitable for measuring TR. In this work, a CT system with a specified TR is defined as having the ability to produce a static image with negligible motion artifacts, no matter what motion occurs outside of a static window of width TR. This framework allows for practical measurement of temporal resolution in clinical CT imaging systems. Funding support: GE Healthcare; Conflict of Interest: Employee, GE Healthcare.« less
Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru
LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.
2014-01-01
Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots. PMID:25102062
Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru.
LaCon, Genevieve; Morrison, Amy C; Astete, Helvio; Stoddard, Steven T; Paz-Soldan, Valerie A; Elder, John P; Halsey, Eric S; Scott, Thomas W; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M
2014-08-01
Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots.
Separating temporal and topological effects in walk-based network centrality.
Colman, Ewan R; Charlton, Nathaniel
2016-07-01
The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive formulas to accurately predict the expectation of the broadcast and receive scores when one or more columns in a temporal edge-list are shuffled. These methods are then applied to two publicly available data sets and we quantify how much the centrality of each individual depends on structural or temporal influences. From our analysis, we highlight two practical contributions: a way to control for temporal variation when computing dynamic communicability and the conclusion that the broadcast and receive scores can, under a range of circumstances, be replaced by the row and column sums of the matrix exponential of a weighted adjacency matrix given by the data.
Katz, A; Awad, I A; Kong, A K; Chelune, G J; Naugle, R I; Wyllie, E; Beauchamp, G; Lüders, H
1989-01-01
We present correlations of extent of temporal lobectomy for intractable epilepsy with postoperative memory changes (20 cases) and abnormalities of visual field and neurologic examination (45 cases). Postoperative magnetic resonance imaging (MRI) in the coronal plane was used to quantify anteroposterior extent of resection of various quadrants of the temporal lobe, using a 20-compartment model of that structure. The Wechsler Memory Scale-Revised (WMS-R) was administered preoperatively and postoperatively. Postoperative decrease in percentage of retention of verbal material correlated with extent of medial resection of left temporal lobe, whereas decrease in percentage of retention of visual material correlated with extent of medial resection of right temporal lobe. These correlations approached but did not reach statistical significance. Extent of resection correlated significantly with the presence of visual field defect on perimetry testing but not with severity, denseness, or congruity of the defect. There was no correlation between postoperative dysphasia and extent of resection in any quadrant. Assessment of extent of resection after temporal lobectomy allows a rational interpretation of postoperative neurologic deficits in light of functional anatomy of the temporal lobe.
Separating temporal and topological effects in walk-based network centrality
NASA Astrophysics Data System (ADS)
Colman, Ewan R.; Charlton, Nathaniel
2016-07-01
The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive formulas to accurately predict the expectation of the broadcast and receive scores when one or more columns in a temporal edge-list are shuffled. These methods are then applied to two publicly available data sets and we quantify how much the centrality of each individual depends on structural or temporal influences. From our analysis, we highlight two practical contributions: a way to control for temporal variation when computing dynamic communicability and the conclusion that the broadcast and receive scores can, under a range of circumstances, be replaced by the row and column sums of the matrix exponential of a weighted adjacency matrix given by the data.
NASA Astrophysics Data System (ADS)
Atwood, Shane; Kankelborg, Charles C.
2017-08-01
The coronal volume is filled with magnetic field, yet only part of that volume has sufficient volume to exhibit hot X-ray loops. Using XRT and AIA images, we identify footpoints of hot coronal loops. We then use IRIS rasters to compare the spatial, temporal, and spectral structure of these relatively "heated" and "unheated" regions. We seek a signature of upward-propagating energy that could be associated with hot active region loops.
NASA Astrophysics Data System (ADS)
Lhermitte, S.; Tips, M.; Verbesselt, J.; Jonckheere, I.; Van Aardt, J.; Coppin, Pol
2005-10-01
Large-scale wild fires have direct impacts on natural ecosystems and play a major role in the vegetation ecology and carbon budget. Accurate methods for describing post-fire development of vegetation are therefore essential for the understanding and monitoring of terrestrial ecosystems. Time series analysis of satellite imagery offers the potential to quantify these parameters with spatial and temporal accuracy. Current research focuses on the potential of time series analysis of SPOT Vegetation S10 data (1999-2001) to quantify the vegetation recovery of large-scale burns detected in the framework of GBA2000. The objective of this study was to provide quantitative estimates of the spatio-temporal variation of vegetation recovery based on remote sensing indicators. Southern Africa was used as a pilot study area, given the availability of ground and satellite data. An automated technique was developed to extract consistent indicators of vegetation recovery from the SPOT-VGT time series. Reference areas were used to quantify the vegetation regrowth by means of Regeneration Indices (RI). Two kinds of recovery indicators (time and value- based) were tested for RI's of NDVI, SR, SAVI, NDWI, and pure band information. The effects of vegetation structure and temporal fire regime features on the recovery indicators were subsequently analyzed. Statistical analyses were conducted to assess whether the recovery indicators were different for different vegetation types and dependent on timing of the burning season. Results highlighted the importance of appropriate reference areas and the importance of correct normalization of the SPOT-VGT data.
Ferrari, Renata; Marzinelli, Ezequiel M; Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F; Byrne, Maria; Malcolm, Hamish A; Williams, Stefan B; Steinberg, Peter D
2018-01-01
Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate 'no-take' and 'general-use' (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5-10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and sampling design that once temporal sampling is incorporated will be useful to detect changes of marine benthic communities across multiple spatial and temporal scales.
Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F.; Byrne, Maria; Malcolm, Hamish A.; Williams, Stefan B.; Steinberg, Peter D.
2018-01-01
Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate ‘no-take’ and ‘general-use’ (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5–10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and sampling design that once temporal sampling is incorporated will be useful to detect changes of marine benthic communities across multiple spatial and temporal scales. PMID:29547656
Bright, Peter; Buckman, Joseph; Fradera, Alex; Yoshimasu, Haruo; Colchester, Alan C F; Kopelman, Michael D
2006-01-01
There is considerable controversy concerning the theoretical basis of retrograde amnesia (R.A.). In the present paper, we compare medial temporal, medial plus lateral temporal, and frontal lesion patients on a new autobiographical memory task and measures of the more semantic aspects of memory (famous faces and news events). Only those patients with damage extending beyond the medial temporal cortex into the lateral temporal regions showed severe impairment on free recall remote memory tasks, and this held for both the autobiographical and the more semantic memory tests. However, on t-test analysis, the medial temporal group was impaired in retrieving recent autobiographical memories. Within the medial temporal group, those patients who had combined hippocampal and parahippocampal atrophy (H+) on quantified MRI performed somewhat worse on the semantic tasks than those with atrophy confined to the hippocampi (H-), but scores were very similar on autobiographical episodic recall. Correlational analyses with regional MRI volumes showed that lateral temporal volume was correlated significantly with performance on all three retrograde amnesia tests. The findings are discussed in terms of consolidation, reconsolidation, and multiple trace theory: We suggest that a widely distributed network of regions underlies the retrieval of past memories, and that the extent of lateral temporal damage appears to be critical to the emergence of a severe remote memory impairment.
Quantifying Uncontrolled Air Emissions from Two Florida Landfills
Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...
Quantifying Temperature Effects on Snow, Plant and Streamflow Dynamics in Headwater Catchments
NASA Astrophysics Data System (ADS)
Wainwright, H. M.; Sarah, T.; Siirila-Woodburn, E. R.; Newcomer, M. E.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Carroll, R. W. H.
2017-12-01
Quantifying Temperature Effects on Snow, Plant and Streamflow Dynamics in Headwater Catchments Snow-dominated headwater catchments are critical for water resource throughout the world; particularly in Western US. Under climate change, temperature increases are expected to be amplified in mountainous regions. We use a data-driven approach to better understand the coupling among inter-annual variability in temperature, snow and plant community dynamics and stream discharge. We apply data mining methods (e.g., principal component analysis, random forest) to historical spatiotemporal datasets, including the SNOTEL data, Landsat-based normalized difference vegetation index (NDVI) and airborne LiDAR-based snow distribution. Although both snow distribution and NDVI are extremely heterogeneous spatially, the inter-annual variability and temporal responses are spatially consistent, providing an opportunity to quantify the effect of temperature in the catchment-scale. We demonstrate our approach in the East River Watershed of the Upper Colorado River Basin, including Rocky Mountain Biological Laboratory, where the changes in plant communities and their dynamics have been extensively documented. Results indicate that temperature - particularly spring temperature - has a significant control not only on the timing of snowmelt, plant NDVI and peak flow but also on the magnitude of peak NDVI, peak flow and annual discharge. Monthly temperature in spring explains the variability of snowmelt by the equivalent standard deviation of 3.4-4.4 days, and total discharge by 10-11%. In addition, the high correlation among June temperature, peak NDVI and annual discharge suggests a primary role of spring evapotranspiration on plant community phenology, productivity, and streamflow volume. On the other hand, summer monsoon precipitation does not contribute significantly to annual discharge, further emphasizing the importance of snowmelt. This approach is mostly based on a set of datasets typically available throughout the US, providing a powerful approach to link remote sensing techniques with long-term monitoring of temperature, snowfall, plant, and streamflow dynamics.
NASA Astrophysics Data System (ADS)
Kutta, E. J.; Hubbart, J. A.; Svoma, B. M.; Eichler, T. P.; Lupo, A. R.
2016-12-01
El Nino-Southern Oscillation (ENSO) is well documented as a leading source of seasonal to inter-annual variations in global weather and climate. Strong ENSO events have been shown to alter the location and magnitude of Hadley and Walker circulations that maintain equilibrium at tropical latitudes and regulate moisture transport into mid-latitude storm tracks. Broad impacts associated with ENSO events include anomalous regional precipitation (ARP) and temperature patterns and subsequent impacts to socioeconomic and human health systems. Potential socioeconomic and human health impacts range from regional changes in water resources and agricultural productivity to local storm water management, particularly in rapidly urbanizing watersheds. Evidence is mounting to suggest that anthropogenic climate change will increase the frequency of heavy precipitation events, which compounds impacts of ARP patterns associated with strong El Nino events. Therefore, the need exists to identify common regional patterns of spatiotemporal variance of horizontal moisture flux (HMF) during months (Oct-Feb) associated with the peak intensity (Oceanic Nino Index [ONI]) of the three strongest El Nino (ONI > µ + 2σ) and La Nina (ONI < µ - σ) events occurring between January 1979 and June 2016. ERA-Interim reanalysis output on model levels was used to quantify spatial and temporal covariance of HMF at 6-hourly resolution before taking the density weighted vertical average. Long term means (LTM; 1979-2015) were quantified and the influence of strong ENSO events was assessed by quantifying deviations from the LTM for each respective covariance property during months associated with the selected ENSO events. Results reveal regions of statistically significant (CI = 0.05) differences from the LTM for the vertically integrated HMF and each covariance quantity. Broader implications of this work include potential for improved seasonal precipitation forecasts at regional scales and subsequent improvements to local water resource management. There is potential for future work objectively comparing these results with output from Earth System Models to improve representation of ENSO's influence on spatiotemporal variance of horizontal moisture transport.
NASA Astrophysics Data System (ADS)
Maina, Fadji Zaouna; Guadagnini, Alberto
2018-01-01
We study the contribution of typically uncertain subsurface flow parameters to gravity changes that can be recorded during pumping tests in unconfined aquifers. We do so in the framework of a Global Sensitivity Analysis and quantify the effects of uncertainty of such parameters on the first four statistical moments of the probability distribution of gravimetric variations induced by the operation of the well. System parameters are grouped into two main categories, respectively, governing groundwater flow in the unsaturated and saturated portions of the domain. We ground our work on the three-dimensional analytical model proposed by Mishra and Neuman (2011), which fully takes into account the richness of the physical process taking place across the unsaturated and saturated zones and storage effects in a finite radius pumping well. The relative influence of model parameter uncertainties on drawdown, moisture content, and gravity changes are quantified through (a) the Sobol' indices, derived from a classical decomposition of variance and (b) recently developed indices quantifying the relative contribution of each uncertain model parameter to the (ensemble) mean, skewness, and kurtosis of the model output. Our results document (i) the importance of the effects of the parameters governing the unsaturated flow dynamics on the mean and variance of local drawdown and gravity changes; (ii) the marked sensitivity (as expressed in terms of the statistical moments analyzed) of gravity changes to the employed water retention curve model parameter, specific yield, and storage, and (iii) the influential role of hydraulic conductivity of the unsaturated and saturated zones to the skewness and kurtosis of gravimetric variation distributions. The observed temporal dynamics of the strength of the relative contribution of system parameters to gravimetric variations suggest that gravity data have a clear potential to provide useful information for estimating the key hydraulic parameters of the system.
Quantifying Differential Privacy under Temporal Correlations.
Cao, Yang; Yoshikawa, Masatoshi; Xiao, Yonghui; Xiong, Li
2017-04-01
Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuous generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy loss of a DP mechanism may accumulate and increase over time . We call it temporal privacy leakage . Second, to measure such privacy loss, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective.
Tezer, Fadime Irsel; Agan, Kadriye; Borggraefe, Ingo; Noachtar, Soheyl
2013-09-01
This patient report demonstrates the importance of seizure evolution in the localising value of seizure semiology. Spread of epileptic activity from frontal to temporal lobe, as demonstrated by invasive recordings, was reflected by change from hyperkinetic movements to arrest of activity with mild oral and manual automatisms. [Published with video sequences].
An assessment methodology for determining historical changes in mountain streams
Mark G. Smelser; John C. Schmidt
1998-01-01
Successful management of water in mountain streams by the USDA Forest Service requires that the link between resource development and channel change be documented and quantified. The characteristics of that linkage are unclear in mountain streams, and the adjustability of these streams to land-use and hydrologic change has been argued in court. One way to quantify the...
Nagm, Alhusain; Horiuchi, Tetsuyoshi; Hasegawa, Takatoshi; Hongo, Kazuhiro
2016-04-01
In reverse bypass that used a naturally formed "bonnet" superficial temporal artery, intraoperative volume flow measurement quantifies flow augmentation after revascularization, confirms flow preservation, and identifies inadvertent vessel compromise. A 75-year-old man presented with transient ischemic attacks attributed to right internal carotid artery stenosis. He underwent successful reverse bypass via a naturally formed "bonnet" superficial temporal artery middle cerebral artery bypass. As the result of proper intraoperative volume flow evaluation, a successful reverse bypass was achieved. Modification of the intraoperative stroke risk and prediction of the long-term patency after reverse bypass can be achieved by meticulous intraoperative blood flow evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Indexing Temporal XML Using FIX
NASA Astrophysics Data System (ADS)
Zheng, Tiankun; Wang, Xinjun; Zhou, Yingchun
XML has become an important criterion for description and exchange of information. It is of practical significance to introduce the temporal information on this basis, because time has penetrated into all walks of life as an important property information .Such kind of database can track document history and recover information to state of any time before, and is called Temporal XML database. We advise a new feature vector on the basis of FIX which is a feature-based XML index, and build an index on temporal XML database using B+ tree, donated TFIX. We also put forward a new query algorithm upon it for temporal query. Our experiments proved that this index has better performance over other kinds of XML indexes. The index can satisfy all TXPath queries with depth up to K(>0).
Options for Online Undergraduate Courses in Biology at American Colleges and Universities
ERIC Educational Resources Information Center
Varty, Alison K.
2016-01-01
I aimed to document the online undergraduate course supply in biology to evaluate how well biology educators are serving the diverse and growing population of online students. I documented online biology course offerings in the 2015-2016 academic year at 96 American colleges and universities. I quantified differences in variety, extent, and…
Simulation Detection in Handwritten Documents by Forensic Document Examiners.
Kam, Moshe; Abichandani, Pramod; Hewett, Tom
2015-07-01
This study documents the results of a controlled experiment designed to quantify the abilities of forensic document examiners (FDEs) and laypersons to detect simulations in handwritten documents. Nineteen professional FDEs and 26 laypersons (typical of a jury pool) were asked to inspect test packages that contained six (6) known handwritten documents written by the same person and two (2) questioned handwritten documents. Each questioned document was either written by the person who wrote the known documents, or written by a different person who tried to simulate the writing of the person who wrote the known document. The error rates of the FDEs were smaller than those of the laypersons when detecting simulations in the questioned documents. Among other findings, the FDEs never labeled a questioned document that was written by the same person who wrote the known documents as "simulation." There was a significant statistical difference between the responses of the FDEs and layperson for documents without simulations. © 2015 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott; Westerman, Drew A.; Clark, Brian R.
2017-09-01
Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.
Spatiotemporal analysis of gene flow in Chesapeake Bay Diamondback Terrapins (Malaclemys terrapin)
Converse, Paul E.; Kuchta, Shawn R; Roosenburg, Willem R; Henry, Paula F.; Haramis, G. Michael; King, Timothy L.
2015-01-01
There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial over-harvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities, and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbor high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.
Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott C.; Westerman, Drew A.; Clark, Brian R.
2017-01-01
Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.
Land-cover change in the conterminous United States from 1973 to 2000
Sleeter, Benjamin M.; Sohl, Terry L.; Loveland, Thomas R.; Auch, Roger F.; Acevedo, William; Drummond, Mark A.; Sayler, Kristi L.; Stehman, Stephen V.
2013-01-01
Land-cover change in the conterminous United States was quantified by interpreting change from satellite imagery for a sample stratified by 84 ecoregions. Gross and net changes between 11 land-cover classes were estimated for 5 dates of Landsat imagery (1973, 1980, 1986, 1992, and 2000). An estimated 673,000 km2(8.6%) of the United States’ land area experienced a change in land cover at least one time during the study period. Forest cover experienced the largest net decline of any class with 97,000 km2 lost between 1973 and 2000. The large decline in forest cover was prominent in the two regions with the highest percent of overall change, the Marine West Coast Forests (24.5% of the region experienced a change in at least one time period) and the Eastern Temperate Forests (11.4% of the region with at least one change). Agriculture declined by approximately 90,000 km2 with the largest annual net loss of 12,000 km2 yr−1 occurring between 1986 and 1992. Developed area increased by 33% and with the rate of conversion to developed accelerating rate over time. The time interval with the highest annual rate of change of 47,000 km2 yr−1 (0.6% per year) was 1986–1992. This national synthesis documents a spatially and temporally dynamic era of land change between 1973 and 2000. These results quantify land change based on a nationally consistent monitoring protocol and contribute fundamental estimates critical to developing understanding of the causes and consequences of land change in the conterminous United States.
Surgical Safety Training of World Health Organization Initiatives.
Davis, Christopher R; Bates, Anthony S; Toll, Edward C; Cole, Matthew; Smith, Frank C T; Stark, Michael
2014-01-01
Undergraduate training in surgical safety is essential to maximize patient safety. This national review quantified undergraduate surgical safety training. Training of 2 international safety initiatives was quantified: (1) World Health Organization (WHO) "Guidelines for Safe Surgery" and (2) Department of Health (DoH) "Principles of the Productive Operating Theatre." Also, 13 additional safety skills were quantified. Data were analyzed using Mann-Whitney U tests. In all, 23 universities entered the study (71.9% response). Safety skills from WHO and DoH documents were formally taught in 4 UK medical schools (17.4%). Individual components of the documents were taught more frequently (47.6%). Half (50.9%) of the additional safety skills identified were taught. Surgical societies supplemented safety training, although the total amount of training provided was less than that in university curricula (P < .0001). Surgical safety training is inadequate in UK medical schools. To protect patients and maximize safety, a national undergraduate safety curriculum is recommended. © 2013 by the American College of Medical Quality.
NASA Astrophysics Data System (ADS)
Yan, D.; Scott, R. L.; Moore, D. J.; Biederman, J. A.; Smith, W. K.
2017-12-01
Land surface phenology (LSP) - defined as remotely sensed seasonal variations in vegetation greenness - is intrinsically linked to seasonal carbon uptake, and is thus commonly used as a proxy for vegetation productivity (gross primary productivity; GPP). Yet, the relationship between LSP and GPP remains uncertain, particularly for understudied dryland ecosystems characterized by relatively large spatial and temporal variability. Here, we explored the relationship between LSP and the phenology of GPP for three dominant dryland ecosystem types, and we evaluated how these relationships change as a function of spatial and temporal scale. We focused on three long-term dryland eddy covariance flux tower sites: Walnut Gulch Lucky Hills Shrubland (WHS), Walnut Gulch Kendall Grassland (WKG), and Santa Rita Mesquite (SRM). We analyzed daily canopy-level, 16-day 30m, and 8-day 500m time series of greenness indices from PhenoCam, Landsat 7 ETM+/Landsat 8 OLI, and MODIS, respectively. We first quantified the impact of spatial scale by temporally resampling canopy-level PhenoCam, 30m Landsat, and 500m MODIS to 16-day intervals and then comparing against flux tower GPP estimates. We next quantified the impact of temporal scale by spatially resampling daily PhenoCam, 16-day Landsat, and 8-day MODIS to 500m time series and then comparing against flux tower GPP estimates. We find evidence of critical periods of decoupling between LSP and the phenology of GPP that vary according to the spatial and temporal scale, and as a function of ecosystem type. Our results provide key insight into dryland LSP and GPP dynamics that can be used in future efforts to improve ecosystem process models and satellite-based vegetation productivity algorithms.
NASA Astrophysics Data System (ADS)
Sullivan, R. C.; Pryor, S. C.
2014-06-01
Spatiotemporal variability of fine particle concentrations in Indianapolis, Indiana is quantified using a combination of high temporal resolution measurements at four fixed sites and mobile measurements with instruments attached to bicycles during transects of the city. Average urban PM2.5 concentrations are an average of ˜3.9-5.1 μg m-3 above the regional background. The influence of atmospheric conditions on ambient PM2.5 concentrations is evident with the greatest temporal variability occurring at periods of one day and 5-10 days corresponding to diurnal and synoptic meteorological processes, and lower mean wind speeds are associated with episodes of high PM2.5 concentrations. An anthropogenic signal is also evident. Higher PM2.5 concentrations coincide with morning rush hour, the frequencies of PM2.5 variability co-occur with those for carbon monoxide, and higher extreme concentrations were observed mid-week compared to weekends. On shorter time scales (
Differential patterns of contextual organization of memory in first-episode psychosis.
Murty, Vishnu P; McKinney, Rachel A; DuBrow, Sarah; Jalbrzikowski, Maria; Haas, Gretchen L; Luna, Beatriz
2018-02-15
Contextual information is used to support and organize episodic memory. Prior research has reliably shown memory deficits in psychosis; however, little research has characterized how this population uses contextual information during memory recall. We employed an approach founded in a computational framework of free recall to quantify how individuals with first episode of psychosis (FEP, N = 97) and controls (CON, N = 55) use temporal and semantic context to organize memory recall. Free recall was characterized using the Hopkins Verbal Learning Test-Revised (HVLT-R). We compared FEP and CON on three measures of free recall: proportion recalled, temporal clustering, and semantic clustering. Measures of temporal/semantic clustering quantified how individuals use contextual information to organize memory recall. We also assessed to what extent these measures relate to antipsychotic use and differentiated between different types of psychosis. We also explored the relationship between these measures and intelligence. In comparison to CON, FEP had reduced recall and less temporal clustering during free recall (p < 0.05, Bonferroni-corrected), and showed a trend towards greater semantic clustering (p = 0.10, Bonferroni-corrected). Within FEP, antipsychotic use and diagnoses did not differentiate between free recall accuracy or contextual organization of memory. IQ was related to free recall accuracy, but not the use of contextual information during recall in either group (p < 0.05, Bonferroni-corrected). These results show that in addition to deficits in memory recall, FEP differed in how they organize memories compared to CON.
Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography
NASA Astrophysics Data System (ADS)
Boverman, Gregory; Fang, Qianqian; Carp, Stefan A.; Miller, Eric L.; Brooks, Dana H.; Selb, Juliette; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.
2007-07-01
We develop algorithms for imaging the time-varying optical absorption within the breast given diffuse optical tomographic data collected over a time span that is long compared to the dynamics of the medium. Multispectral measurements allow for the determination of the time-varying total hemoglobin concentration and of oxygen saturation. To facilitate the image reconstruction, we decompose the hemodynamics in time into a linear combination of spatio-temporal basis functions, the coefficients of which are estimated using all of the data simultaneously, making use of a Newton-based nonlinear optimization algorithm. The solution of the extremely large least-squares problem which arises in computing the Newton update is obtained iteratively using the LSQR algorithm. A Laplacian spatial regularization operator is applied, and, in addition, we make use of temporal regularization which tends to encourage similarity between the images of the spatio-temporal coefficients. Results are shown for an extensive simulation, in which we are able to image and quantify localized changes in both total hemoglobin concentration and oxygen saturation. Finally, a breast compression study has been performed for a normal breast cancer screening subject, using an instrument which allows for highly accurate co-registration of multispectral diffuse optical measurements with an x-ray tomosynthesis image of the breast. We are able to quantify the global return of blood to the breast following compression, and, in addition, localized changes are observed which correspond to the glandular region of the breast.
Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.
Allison, J D; Smith, K R; Bonds, A B
2001-01-01
A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.
Development of a Dual-PIV system for high-speed flow applications
NASA Astrophysics Data System (ADS)
Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre
2015-10-01
A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.
Symstad, Amy J.; Jonas, Jayne L.; Edited by Guntenspergen, Glenn R.
2014-01-01
Natural range of variation (NRV) may be used to establish decision thresholds or action assessment points when ecological thresholds are either unknown or do not exist for attributes of interest in a managed ecosystem. The process for estimating NRV involves identifying spatial and temporal scales that adequately capture the heterogeneity of the ecosystem; compiling data for the attributes of interest via study of historic records, analysis and interpretation of proxy records, modeling, space-for-time substitutions, or analysis of long-term monitoring data; and quantifying the NRV from those data. At least 19 National Park Service (NPS) units in North America’s Great Plains are monitoring plant species richness and evenness as indicators of vegetation integrity in native grasslands, but little information on natural, temporal variability of these indicators is available. In this case study, we use six long-term vegetation monitoring datasets to quantify the temporal variability of these attributes in reference conditions for a variety of Great Plains grassland types, and then illustrate the implications of using different NRVs based on these quantities for setting management decision thresholds. Temporal variability of richness (as measured by the coefficient of variation, CV) is fairly consistent across the wide variety of conditions occurring in Colorado shortgrass prairie to Minnesota tallgrass sand savanna (CV 0.20–0.45) and generally less than that of production at the same sites. Temporal variability of evenness spans a greater range of CV than richness, and it is greater than that of production in some sites but less in other sites. This natural temporal variability may mask undesirable changes in Great Plains grasslands vegetation. Consequently, we suggest that managers consider using a relatively narrow NRV (interquartile range of all richness or evenness values observed in reference conditions) for designating a surveillance threshold, at which greater attention to the situation would be paid, and a broader NRV for designating management thresholds, at which action would be instigated.
Creating Impact Functions to Estimate the Domestic Effects of Global Climate Action
Quantifying and monetizing the impacts of climate change can be challenging due to the complexity of impacts, availability of data, variability across geographic and temporal time scales, sources of uncertainty, and computational constraints. Recent advancements in using consist...
ENANTIOMERIC RATIOS OF CHIRAL PCB ATROPISOMERS IN RADIODATED SEDIMENT CORES
Enantiomeric ratios (ERs)) of chiral polychlorinated biphenyl (PCB) atropisomers were quantified in radiodated sediment cores of Lake Hartwell SC, a reservoir heavily impacted by PCBS, to study spatial and temporal changes in chirality. A chiral analysis of cores showed accumulat...
Development of a multispectral sensor for crop canopy temperature measurement
USDA-ARS?s Scientific Manuscript database
Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric...
Temporal complexity in emission from Anderson localized lasers
NASA Astrophysics Data System (ADS)
Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil
2017-12-01
Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.
Effects of temporal correlations in social multiplex networks.
Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo
2017-08-17
Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.
NASA Astrophysics Data System (ADS)
Torres, A. D.; Keppel-Aleks, G.; Doney, S. C.; Feng, S.; Lauvaux, T.; Fendrock, M. A.; Rheuben, J.
2017-12-01
Remote sensing instruments provide an unprecedented density of observations of the atmospheric CO2 column average mole fraction (denoted as XCO2), which can be used to constrain regional scale carbon fluxes. Inferring fluxes from XCO2 observations is challenging, as measurements and inversion methods are sensitive to not only the imprint local and large-scale fluxes, but also mesoscale and synoptic-scale atmospheric transport. Quantifying the fine-scale variability in XCO2 from mesoscale and synoptic-scale atmospheric transport will likely improve overall error estimates from flux inversions by improving estimates of representation errors that occur when XCO2 observations are compared to modeled XCO2 in relatively coarse transport models. Here, we utilize various statistical methods to quantify the imprint of atmospheric transport on XCO2 observations. We compare spatial variations along Orbiting Carbon Observatory (OCO-2) satellite tracks to temporal variations observed by the Total Column Carbon Observing Network (TCCON). We observe a coherent seasonal cycle of both within-day temporal and fine-scale spatial variability (of order 10 km) of XCO2 from these two datasets, suggestive of the imprint of mesoscale systems. To account for other potential sources of error in XCO2 retrieval, we compare observed temporal and spatial variations of XCO2 to high-resolution output from the Weather Research and Forecasting (WRF) model run at 9 km resolution. In both simulations and observations, the Northern hemisphere mid-latitude XCO2 showed peak variability during the growing season when atmospheric gradients are largest. These results are qualitatively consistent with our expectations of seasonal variations of the imprint of synoptic and mesoscale atmospheric transport on XCO2 observations; suggesting that these statistical methods could be sensitive to the imprint of atmospheric transport on XCO2 observations.
How spatio-temporal habitat connectivity affects amphibian genetic structure
Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.
2015-01-01
Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094
Dripps, W.R.; Bradbury, K.R.
2007-01-01
Quantifying the spatial and temporal distribution of natural groundwater recharge is usually a prerequisite for effective groundwater modeling and management. As flow models become increasingly utilized for management decisions, there is an increased need for simple, practical methods to delineate recharge zones and quantify recharge rates. Existing models for estimating recharge distributions are data intensive, require extensive parameterization, and take a significant investment of time in order to establish. The Wisconsin Geological and Natural History Survey (WGNHS) has developed a simple daily soil-water balance (SWB) model that uses readily available soil, land cover, topographic, and climatic data in conjunction with a geographic information system (GIS) to estimate the temporal and spatial distribution of groundwater recharge at the watershed scale for temperate humid areas. To demonstrate the methodology and the applicability and performance of the model, two case studies are presented: one for the forested Trout Lake watershed of north central Wisconsin, USA and the other for the urban-agricultural Pheasant Branch Creek watershed of south central Wisconsin, USA. Overall, the SWB model performs well and presents modelers and planners with a practical tool for providing recharge estimates for modeling and water resource planning purposes in humid areas. ?? Springer-Verlag 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Aaron M.; DeVore, Matthew S.; Stich, Dominik G.
Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering itmore » within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.« less
Keller, Aaron M.; DeVore, Matthew S.; Stich, Dominik G.; ...
2018-04-19
Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering itmore » within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.« less
Quantification of EEG reactivity in comatose patients.
Hermans, Mathilde C; Westover, M Brandon; van Putten, Michel J A M; Hirsch, Lawrence J; Gaspard, Nicolas
2016-01-01
EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet's AC1: 65-70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts' agreement regarding reactivity for each individual case. Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
A method for examining temporal changes in cyanobacterial ...
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here
How spatio-temporal habitat connectivity affects amphibian genetic structure
Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.
2015-01-01
Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.
Todman, L. C.; Fraser, F. C.; Corstanje, R.; Deeks, L. K.; Harris, J. A.; Pawlett, M.; Ritz, K.; Whitmore, A. P.
2016-01-01
There are several conceptual definitions of resilience pertaining to environmental systems and, even if resilience is clearly defined in a particular context, it is challenging to quantify. We identify four characteristics of the response of a system function to disturbance that relate to “resilience”: (1) degree of return of the function to a reference level; (2) time taken to reach a new quasi-stable state; (3) rate (i.e. gradient) at which the function reaches the new state; (4) cumulative magnitude of the function (i.e. area under the curve) before a new state is reached. We develop metrics to quantify these characteristics based on an analogy with a mechanical spring and damper system. Using the example of the response of a soil function (respiration) to disturbance, we demonstrate that these metrics effectively discriminate key features of the dynamic response. Although any one of these characteristics could define resilience, each may lead to different insights and conclusions. The salient properties of a resilient response must thus be identified for different contexts. Because the temporal resolution of data affects the accurate determination of these metrics, we recommend that at least twelve measurements are made over the temporal range for which the response is expected. PMID:27329053
Hill, Mary Catherine
1992-01-01
This report documents a new version of the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model (MODFLOW) which, with the new Parameter-Estimation Package that also is documented in this report, can be used to estimate parameters by nonlinear regression. The new version of MODFLOW is called MODFLOWP (pronounced MOD-FLOW*P), and functions nearly identically to MODFLOW when the ParameterEstimation Package is not used. Parameters are estimated by minimizing a weighted least-squares objective function by the modified Gauss-Newton method or by a conjugate-direction method. Parameters used to calculate the following MODFLOW model inputs can be estimated: Transmissivity and storage coefficient of confined layers; hydraulic conductivity and specific yield of unconfined layers; vertical leakance; vertical anisotropy (used to calculate vertical leakance); horizontal anisotropy; hydraulic conductance of the River, Streamflow-Routing, General-Head Boundary, and Drain Packages; areal recharge rates; maximum evapotranspiration; pumpage rates; and the hydraulic head at constant-head boundaries. Any spatial variation in parameters can be defined by the user. Data used to estimate parameters can include existing independent estimates of parameter values, observed hydraulic heads or temporal changes in hydraulic heads, and observed gains and losses along head-dependent boundaries (such as streams). Model output includes statistics for analyzing the parameter estimates and the model; these statistics can be used to quantify the reliability of the resulting model, to suggest changes in model construction, and to compare results of models constructed in different ways.
Oil spills and their impacts on sand beach invertebrate communities: A literature review.
Bejarano, Adriana C; Michel, Jacqueline
2016-11-01
Sand beaches are highly dynamic habitats that can experience considerable impacts from oil spills. This review provides a synthesis of the scientific literature on major oil spills and their impacts on sand beaches, with emphasis on studies documenting effects and recoveries of intertidal invertebrate communities. One of the key observations arising from this review is that more attention has generally been given to studying the impacts of oil spills on invertebrates (mostly macrobenthos), and not to documenting their biological recovery. Biological recovery of sand beach invertebrates is highly dynamic, depending on several factors including site-specific physical properties and processes (e.g., sand grain size, beach exposure), the degree of oiling, depth of oil burial, and biological factors (e.g., species-specific life-history traits). Recovery of affected communities ranges from several weeks to several years, with longer recoveries generally associated with physical factors that facilitate oil persistence, or when cleanup activities are absent on heavily oiled beaches. There are considerable challenges in quantifying impacts from spills on sand beach invertebrates because of insufficient baseline information (e.g., distribution, abundance and composition), knowledge gaps in their natural variability (spatial and temporal), and inadequate sampling and replication during and after oil spills. Thus, environment assessments of impacts and recovery require a rigorous experimental design that controls for confounding sources of variability. General recommendations on sampling strategies and toxicity testing, and a preliminary framework for incorporating species-specific life history traits into future assessments are also provided. Copyright © 2016 Elsevier Ltd. All rights reserved.
Models, Entropy and Information of Temporal Social Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Karsai, Márton; Bianconi, Ginestra
Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.
Program Monitoring with LTL in EAGLE
NASA Technical Reports Server (NTRS)
Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik
2004-01-01
We briefly present a rule-based framework called EAGLE, shown to be capable of defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics (MTL), interval logics, forms of quantified temporal logics, and so on. In this paper we focus on a linear temporal logic (LTL) specialization of EAGLE. For an initial formula of size m, we establish upper bounds of O(m(sup 2)2(sup m)log m) and O(m(sup 4)2(sup 2m)log(sup 2) m) for the space and time complexity, respectively, of single step evaluation over an input trace. This bound is close to the lower bound O(2(sup square root m) for future-time LTL presented. EAGLE has been successfully used, in both LTL and metric LTL forms, to test a real-time controller of an experimental NASA planetary rover.
Zircon age-temperature-compositional spectra in plutonic rocks
Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie; ...
2017-08-23
We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less
Diet dynamics of the adult piscivorous fish community in Spirit Lake, Iowa, USA 1995-1997
Liao, H.; Pierce, C.L.; Larscheid, J.G.
2002-01-01
Diets of adults of six important piscivorous fish species, black crappie Pomoxis nigromaculatus, largemouth bass Micropterus salmoides, northern pike Esox lucius, smallmouth bass Micropterus dolomieui, walleye Stizostedion vitreum, and yellow perch Perca flavescens were quantified in Spirit Lake, Iowa, USA from May to October in 1995-1997. Forty-one prey taxa were found in the diets of these species, including 19 species of fish. The most important prey taxa overall were yellow perch, amphipods and dipterans. Diets of northern pike and walleye were dominated by yellow perch. Largemouth bass diets included large percentages of both yellow perch and black bullhead Ameiurus melas. Smallmouth bass diets included large percentages of both yellow perch and crayfish. Black crappie and yellow perch diets were dominated by invertebrates, primarily amphipods and dipterans. There were pronounced differences in diets among species, among size classes within species and over time. Most of the dominant prey taxa we documented in the diets of piscivorous species were in accordance with previous studies, but a few deviated significantly from expectations. Many of the temporal diet changes were asynchronous among piscivorous species and size classes, suggesting different responses to common prey resources over time.
Incorporating climate change and morphological uncertainty into coastal change hazard assessments
Baron, Heather M.; Ruggiero, Peter; Wood, Nathan J.; Harris, Erica L.; Allan, Jonathan; Komar, Paul D.; Corcoran, Patrick
2015-01-01
Documented and forecasted trends in rising sea levels and changes in storminess patterns have the potential to increase the frequency, magnitude, and spatial extent of coastal change hazards. To develop realistic adaptation strategies, coastal planners need information about coastal change hazards that recognizes the dynamic temporal and spatial scales of beach morphology, the climate controls on coastal change hazards, and the uncertainties surrounding the drivers and impacts of climate change. We present a probabilistic approach for quantifying and mapping coastal change hazards that incorporates the uncertainty associated with both climate change and morphological variability. To demonstrate the approach, coastal change hazard zones of arbitrary confidence levels are developed for the Tillamook County (State of Oregon, USA) coastline using a suite of simple models and a range of possible climate futures related to wave climate, sea-level rise projections, and the frequency of major El Niño events. Extreme total water levels are more influenced by wave height variability, whereas the magnitude of erosion is more influenced by sea-level rise scenarios. Morphological variability has a stronger influence on the width of coastal hazard zones than the uncertainty associated with the range of climate change scenarios.
Zircon age-temperature-compositional spectra in plutonic rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie
We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less
USDA-ARS?s Scientific Manuscript database
Spatio-temporal measurements of landform evolution provide the basis for process-based theory formulation and validation. Overtime, field measurement of landforms has increased significantly worldwide, driven primarily by the availability of new surveying technologies. However, there is not a standa...
Agricultural land use alters the seasonality and magnitude of stream metabolism
Streams are active processors of organic carbon; however, spatial and temporal variation in the rates and controls on metabolism are not well quantified in streams draining intensively-farmed landscapes. We present a comprehensive dataset of gross primary production (GPP) and ec...
STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS
Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slosman, D.; Susskind, H.; Bossuyt, A.
1986-03-01
Ventilation imaging can be improved by gating scintigraphic data with the respiratory cycle using temporal Fourier analysis (TFA) to quantify the temporal behavior of the ventilation. Sixteen consecutive images, representing equal-time increments of an average respiratory cycle, were produced by TFA in the posterior view on a pixel-by-pixel basis. An Efficiency Index (EFF), defined as the ratio of the summation of all the differences between maximum and minimum counts for each pixel to that for the entire lung during the respiratory cycle, was derived to describe the pattern of ventilation. The gated ventilation studies were carried out with Xe-127 inmore » 12 subjects: normal lung function (4), small airway disease (2), COPD (5), and restrictive disease (1). EFF for the first three harmonics correlated linearly with FEV1 (r = 0.701, p< 0.01). This approach is suggested as a very sensitive method to quantify the extent and regional distribution of airway obstruction.« less
Wesolowski, Amy; Stresman, Gillian; Eagle, Nathan; Stevenson, Jennifer; Owaga, Chrispin; Marube, Elizabeth; Bousema, Teun; Drakeley, Christopher; Cox, Jonathan; Buckee, Caroline O.
2014-01-01
Human travel impacts the spread of infectious diseases across spatial and temporal scales, with broad implications for the biological and social sciences. Individual data on travel patterns have been difficult to obtain, particularly in low-income countries. Travel survey data provide detailed demographic information, but sample sizes are often small and travel histories are hard to validate. Mobile phone records can provide vast quantities of spatio-temporal travel data but vary in spatial resolution and explicitly do not include individual information in order to protect the privacy of subscribers. Here we compare and contrast both sources of data over the same time period in a rural area of Kenya. Although both data sets are able to quantify broad travel patterns and distinguish regional differences in travel, each provides different insights that can be combined to form a more detailed picture of travel in low-income settings to understand the spread of infectious diseases. PMID:25022440
Wesolowski, Amy; Stresman, Gillian; Eagle, Nathan; Stevenson, Jennifer; Owaga, Chrispin; Marube, Elizabeth; Bousema, Teun; Drakeley, Christopher; Cox, Jonathan; Buckee, Caroline O
2014-07-14
Human travel impacts the spread of infectious diseases across spatial and temporal scales, with broad implications for the biological and social sciences. Individual data on travel patterns have been difficult to obtain, particularly in low-income countries. Travel survey data provide detailed demographic information, but sample sizes are often small and travel histories are hard to validate. Mobile phone records can provide vast quantities of spatio-temporal travel data but vary in spatial resolution and explicitly do not include individual information in order to protect the privacy of subscribers. Here we compare and contrast both sources of data over the same time period in a rural area of Kenya. Although both data sets are able to quantify broad travel patterns and distinguish regional differences in travel, each provides different insights that can be combined to form a more detailed picture of travel in low-income settings to understand the spread of infectious diseases.
Word embeddings quantify 100 years of gender and ethnic stereotypes.
Garg, Nikhil; Schiebinger, Londa; Jurafsky, Dan; Zou, James
2018-04-17
Word embeddings are a powerful machine-learning framework that represents each English word by a vector. The geometric relationship between these vectors captures meaningful semantic relationships between the corresponding words. In this paper, we develop a framework to demonstrate how the temporal dynamics of the embedding helps to quantify changes in stereotypes and attitudes toward women and ethnic minorities in the 20th and 21st centuries in the United States. We integrate word embeddings trained on 100 y of text data with the US Census to show that changes in the embedding track closely with demographic and occupation shifts over time. The embedding captures societal shifts-e.g., the women's movement in the 1960s and Asian immigration into the United States-and also illuminates how specific adjectives and occupations became more closely associated with certain populations over time. Our framework for temporal analysis of word embedding opens up a fruitful intersection between machine learning and quantitative social science.
Olsen, Emil; Suiter, Emma Jane; Pfau, Thilo; McGonnell, Imelda M; Matiasek, Kaspar; Giejda, Anna; Volk, Holger Andreas
2017-06-06
Chiari-like malformation in the Cavalier King Charles Spaniel is a herniation of the cerebellum and brainstem into or through the foramen magnum. This condition predisposes to Syringomyelia; fluid filled syrinxes within the spinal cord. The resulting pathology in spinal cord and cerebellum create neuropathic pain and changes in gait. This study aims to quantify the changes in gait for Cavalier King Charles Spaniel with Chiari-like malformation and Syringomyelia. We compared Cavalier King Charles Spaniel with Chiari-like malformation with (n = 9) and without (n = 8) Syringomyelia to Border Terriers (n = 8). Two video cameras and manual tracking was used to quantify gait parameters. We found a significant increase in coefficient of variation for the spatio-temporal characteristics and ipsilateral distance between paws and a wider base of support in the thoracic limbs but not in the pelvic limbs for Cavalier King Charles Spaniels compared with the border terrier.
Quantifying Differential Privacy under Temporal Correlations
Cao, Yang; Yoshikawa, Masatoshi; Xiao, Yonghui; Xiong, Li
2017-01-01
Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuous generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy loss of a DP mechanism may accumulate and increase over time. We call it temporal privacy leakage. Second, to measure such privacy loss, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective. PMID:28883711
NASA Astrophysics Data System (ADS)
Bennett, S. E. K.; DuRoss, C. B.; Reitman, N. G.; Devore, J. R.; Hiscock, A.; Gold, R. D.; Briggs, R. W.; Personius, S. F.
2014-12-01
Paleoseismic data near fault segment boundaries constrain the extent of past surface ruptures and the persistence of rupture termination at segment boundaries. Paleoseismic evidence for large (M≥7.0) earthquakes on the central Holocene-active fault segments of the 350-km-long Wasatch fault zone (WFZ) generally supports single-segment ruptures but also permits multi-segment rupture scenarios. The extent and frequency of ruptures that span segment boundaries remains poorly known, adding uncertainty to seismic hazard models for this populated region of Utah. To address these uncertainties we conducted four paleoseismic investigations near the Salt Lake City-Provo and Provo-Nephi segment boundaries of the WFZ. We examined an exposure of the WFZ at Maple Canyon (Woodland Hills, UT) and excavated the Flat Canyon trench (Salem, UT), 7 and 11 km, respectively, from the southern tip of the Provo segment. We document evidence for at least five earthquakes at Maple Canyon and four to seven earthquakes that post-date mid-Holocene fan deposits at Flat Canyon. These earthquake chronologies will be compared to seven earthquakes observed in previous trenches on the northern Nephi segment to assess rupture correlation across the Provo-Nephi segment boundary. To assess rupture correlation across the Salt Lake City-Provo segment boundary we excavated the Alpine trench (Alpine, UT), 1 km from the northern tip of the Provo segment, and the Corner Canyon trench (Draper, UT) 1 km from the southern tip of the Salt Lake City segment. We document evidence for six earthquakes at both sites. Ongoing geochronologic analysis (14C, optically stimulated luminescence) will constrain earthquake chronologies and help identify through-going ruptures across these segment boundaries. Analysis of new high-resolution (0.5m) airborne LiDAR along the entire WFZ will quantify latest Quaternary displacements and slip rates and document spatial and temporal slip patterns near fault segment boundaries.
Optimisation approaches for concurrent transmitted light imaging during confocal microscopy.
Collings, David A
2015-01-01
The transmitted light detectors present on most modern confocal microscopes are an under-utilised tool for the live imaging of plant cells. As the light forming the image in this detector is not passed through a pinhole, out-of-focus light is not removed. It is this extended focus that allows the transmitted light image to provide cellular and organismal context for fluorescence optical sections generated confocally. More importantly, the transmitted light detector provides images that have spatial and temporal registration with the fluorescence images, unlike images taken with a separately-mounted camera. Because plants often provide difficulties for taking transmitted light images, with the presence of pigments and air pockets in leaves, this study documents several approaches to improving transmitted light images beginning with ensuring that the light paths through the microscope are correctly aligned (Köhler illumination). Pigmented samples can be imaged in real colour using sequential scanning with red, green and blue lasers. The resulting transmitted light images can be optimised and merged in ImageJ to generate colour images that maintain registration with concurrent fluorescence images. For faster imaging of pigmented samples, transmitted light images can be formed with non-absorbed wavelengths. Transmitted light images of Arabidopsis leaves expressing GFP can be improved by concurrent illumination with green and blue light. If the blue light used for YFP excitation is blocked from the transmitted light detector with a cheap, coloured glass filters, the non-absorbed green light will form an improved transmitted light image. Changes in sample colour can be quantified by transmitted light imaging. This has been documented in red onion epidermal cells where changes in vacuolar pH triggered by the weak base methylamine result in measurable colour changes in the vacuolar anthocyanin. Many plant cells contain visible levels of pigment. The transmitted light detector provides a useful tool for documenting and measuring changes in these pigments while maintaining registration with confocal imaging.
Kurt H. Riitters
2011-01-01
Land cover patterns inventoried from a national land cover map provide information about the landscape context and fragmentation of the Nationâs forests, grasslands, and shrublands. This inventory is required to quantify, map, and evaluate the capacities of landscapes to provide ecological goods and services sustainably. This report documents the procedures to...
An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application
Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo
2014-01-01
This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651
An action-based fine-grained access control mechanism for structured documents and its application.
Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo
2014-01-01
This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.
QUANTIFYING SEASONAL SHIFTS IN NITROGEN SOURCES TO OREGON ESTUARIES: PART II: TRANSPORT MODELING
Identifying the sources of dissolved inorganic nitrogen (DIN) in estuaries is complicated by the multiple sources, temporal variability in inputs, and variations in transport. We used a hydrodynamic model to simulate the transport and uptake of three sources of DIN (oceanic, riv...
Spatial and temporal variability in the water column nutrients and pesticides of Jobos Bay
USDA-ARS?s Scientific Manuscript database
The Conservation Effects Assessment Project (CEAP) is a national, multi-agency effort to quantify the environmental benefits of best management practices used by agricultural producers participating in selected U.S. Department of Agriculture (USDA) conservation programs, including programs such as t...
The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies
USDA-ARS?s Scientific Manuscript database
Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70...
Statistical modeling of yield and variance instability in conventional and organic cropping systems
USDA-ARS?s Scientific Manuscript database
Cropping systems research was undertaken to address declining crop diversity and verify competitiveness of alternatives to the predominant conventional cropping system in the northern Corn Belt. To understand and capitalize on temporal yield variability within corn and soybean fields, we quantified ...
Discriminating Dysarthria Type from Envelope Modulation Spectra
ERIC Educational Resources Information Center
Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.
2010-01-01
Purpose: Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the…
Quantifying discharge uncertainty from remotely sensed precipitation data products in Puerto Rico
NASA Astrophysics Data System (ADS)
Weerasinghe, H.; Raoufi, R.; Yoon, Y.; Beighley, E., II; Alshawabkeh, A.
2014-12-01
Preterm birth is a serious health issue in the United States that contributes to over one-third of all infant deaths. Puerto Rico being one of the hot spots, preliminary research found that the high preterm birth rate can be associated with exposure to some contaminants in water used on daily basis. Puerto Rico has more than 200 contaminated sites including 16 active Superfund sites. Risk of exposure to contaminants is aggravated by unlined landfills lying over the karst regions, highly mobile and dynamic nature of the karst aquifers, and direct contact with surface water through sinkholes and springs. Much of the population in the island is getting water from natural springs or artesian wells that are connected with many of these potentially contaminated karst aquifers. Mobility of contaminants through surface water flows and reservoirs are largely known and are highly correlated with the variations in hydrologic events and conditions. In this study, we quantify the spatial and temporal distribution of Puerto Rico's surface water stores and fluxes to better understand potential impacts on the distribution of groundwater contamination. To quantify and characterize Puerto Rico's surface waters, hydrologic modeling, remote sensing and field measurements are combined. Streamflow measurements are available from 27 U.S. Geological Survey (USGS) gauging stations with drainage areas ranging from 2 to 510 km2. Hillslope River Routing (HRR) model is used to simulate hourly streamflow from watersheds larger than 1 km2 that discharge to ocean. HRR model simulates vertical water balance, lateral surface and subsurface runoff and river discharge. The model consists of 4418 sub-catchments with a mean model unit area (i.e., sub-catchment) of 1.8 km2. Using gauged streamflow measurements for validation, we first assess model results for simulated discharge using three precipitation products: TRMM-3B42 (3 hour temporal resolution, 0.25 degree spatial resolution); NWS stage-III radar rainfall (~ 5 min temporal resolution and 4 km spatial resolution); and gauge measurements from 37 rainfall stations for the period 2000-2012. We then explore methods for combining each product to improve overall model performance. Effects of varied spatial and temporal rainfall resolutions on simulated discharge are also investigated.
NASA Technical Reports Server (NTRS)
Deloach, Richard; Obara, Clifford J.; Goodman, Wesley L.
2012-01-01
This paper documents a check standard wind tunnel test conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3M TCT) that was designed and analyzed using the Modern Design of Experiments (MDOE). The test designed to partition the unexplained variance of typical wind tunnel data samples into two constituent components, one attributable to ordinary random error, and one attributable to systematic error induced by covariate effects. Covariate effects in wind tunnel testing are discussed, with examples. The impact of systematic (non-random) unexplained variance on the statistical independence of sequential measurements is reviewed. The corresponding correlation among experimental errors is discussed, as is the impact of such correlation on experimental results generally. The specific experiment documented herein was organized as a formal test for the presence of unexplained variance in representative samples of wind tunnel data, in order to quantify the frequency with which such systematic error was detected, and its magnitude relative to ordinary random error. Levels of systematic and random error reported here are representative of those quantified in other facilities, as cited in the references.
Quantifying Biomass and Bare Earth Changes from the Hayman Fire Using Multi-temporal Lidar
NASA Astrophysics Data System (ADS)
Stoker, J. M.; Kaufmann, M. R.; Greenlee, S. K.
2007-12-01
Small-footprint multiple-return lidar data collected in the Cheesman Lake property prior to the 2002 Hayman fire in Colorado provided an excellent opportunity to evaluate Lidar as a tool to predict and analyze fire effects on both soil erosion and overstory structure. Re-measuring this area and applying change detection techniques allowed for analyses at a high level of detail. Our primary objectives focused on the use of change detection techniques using multi-temporal lidar data to: (1) evaluate the effectiveness of change detection to identify and quantify areas of erosion or deposition caused by post-fire rain events and rehab activities; (2) identify and quantify areas of biomass loss or forest structure change due to the Hayman fire; and (3) examine effects of pre-fire fuels and vegetation structure derived from lidar data on patterns of burn severity. While we were successful in identifying areas where changes occurred, the original error bounds on the variation in actual elevations made it difficult, if not misleading to quantify volumes of material changed on a per pixel basis. In order to minimize these variations in the two datasets, we investigated several correction and co-registration methodologies. The lessons learned from this project highlight the need for a high level of flight planning and understanding of errors in a lidar dataset in order to correctly estimate and report quantities of vertical change. Directly measuring vertical change using only lidar without ancillary information can provide errors that could make quantifications confusing, especially in areas with steep slopes.
Using nitrate to quantify quick flow in a karst aquifer
Mahler, B.J.; Garner, B.D.
2009-01-01
In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with ??18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The ??18O- based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems. ?? 2008 National Ground Water Association.
Severe amnesia following a unilateral temporal lobe stroke.
Grewal, Raji P
2003-01-01
A 60 year old right-handed man developed severe amnesia following a left medial temporal stroke as documented by cerebral MRI, MRA and SPECT scans. Neuropsychological evaluation 13 weeks after the stroke showed a profound retrograde amnesia characterised by memory loss for public facts and events over the previous four decades. In addition, autobiographical memory showed selective loss of personal episodic memory with relative preservation of personal semantic memory. The development of this degree of amnesia with these features following a unilateral temporal lobe lesion is unusual. The possible neuroanatomical mechanisms underlying the amnesia and how they relate to current theories of memory loss are discussed.
Acousto-Optic Processing of 2-D Signals Using Temporal and Spatial Integration.
1983-05-31
Documents includes data on: Architectures; Coherence Properties of Pulsed Laser Diodes; Acousto - optic device data; Dynamic Range Issues; Image correlation; Synthetic aperture radar; 2-D Fourier transform; and Moments.
Karns, Christina M; Stevens, Courtney; Dow, Mark W; Schorr, Emily M; Neville, Helen J
2017-01-01
Considerable research documents the cross-modal reorganization of auditory cortices as a consequence of congenital deafness, with remapped functions that include visual and somatosensory processing of both linguistic and nonlinguistic information. Structural changes accompany this cross-modal neuroplasticity, but precisely which specific structural changes accompany congenital and early deafness and whether there are group differences in hemispheric asymmetries remain to be established. Here, we used diffusion tensor imaging (DTI) to examine microstructural white matter changes accompanying cross-modal reorganization in 23 deaf adults who were genetically, profoundly, and congenitally deaf, having learned sign language from infancy with 26 hearing controls who participated in our previous fMRI studies of cross-modal neuroplasticity. In contrast to prior literature using a whole-brain approach, we introduce a semiautomatic method for demarcating auditory regions in which regions of interest (ROIs) are defined on the normalized white matter skeleton for all participants, projected into each participants native space, and manually constrained to anatomical boundaries. White-matter ROIs were left and right Heschl's gyrus (HG), left and right anterior superior temporal gyrus (aSTG), left and right posterior superior temporal gyrus (pSTG), as well as one tractography-defined region in the splenium of the corpus callosum connecting homologous left and right superior temporal regions (pCC). Within these regions, we measured fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and white-matter volume. Congenitally deaf adults had reduced FA and volume in white matter structures underlying bilateral HG, aSTG, pSTG, and reduced FA in pCC. In HG and pCC, this reduction in FA corresponded with increased RD, but differences in aSTG and pSTG could not be localized to alterations in RD or AD. Direct statistical tests of hemispheric asymmetries in these differences indicated the most prominent effects in pSTG, where the largest differences between groups occurred in the right hemisphere. Other regions did not show significant hemispheric asymmetries in group differences. Taken together, these results indicate that atypical white matter microstructure and reduced volume underlies regions of superior temporal primary and association auditory cortex and introduce a robust method for quantifying volumetric and white matter microstructural differences that can be applied to future studies of special populations. Published by Elsevier B.V.
Snedden, Gregg A.; Swenson, Erick M.
2012-01-01
Hourly time-series salinity and water-level data are collected at all stations within the Coastwide Reference Monitoring System (CRMS) network across coastal Louisiana. These data, in addition to vegetation and soils data collected as part of CRMS, are used to develop a suite of metrics and indices to assess wetland condition in coastal Louisiana. This document addresses the primary objectives of the CRMS hydrologic analytical team, which were to (1) adopt standard time-series analytical techniques that could effectively assess spatial and temporal variability in hydrologic characteristics across the Louisiana coastal zone on site, project, basin, and coastwide scales and (2) develop and apply an index based on wetland hydrology that can describe the suitability of local hydrology in the context of maximizing the productivity of wetland plant communities. Approaches to quantifying tidal variability (least squares harmonic analysis) and partitioning variability of time-series data to various time scales (spectral analysis) are presented. The relation between marsh elevation and the tidal frame of a given hydrograph is described. A hydrologic index that integrates water-level and salinity data, which are collected hourly, with vegetation data that are collected annually is developed. To demonstrate its utility, the hydrologic index is applied to 173 CRMS sites across the coast, and variability in index scores across marsh vegetation types (fresh, intermediate, brackish, and saline) is assessed. The index is also applied to 11 sites located in three Coastal Wetlands Planning, Protection and Restoration Act projects, and the ability of the index to convey temporal hydrologic variability in response to climatic stressors and restoration measures, as well as the effect that this community may have on wetland plant productivity, is illustrated.
NASA Astrophysics Data System (ADS)
Warren-Smith, Emily; Fry, Bill; Kaneko, Yoshihiro; Chamberlain, Calum J.
2018-01-01
We analyze the preparatory period of the September 2016 MW7.1 Te Araroa foreshock-mainshock sequence in the Northern Hikurangi margin, New Zealand, and subsequent reinvigoration of Te Araroa aftershocks driven by a large distant earthquake (the November 2016 MW7.8 Kaikōura earthquake). By adopting a matched-filter detection workflow using 582 well-defined template events, we generate an improved foreshock and aftershock catalog for the Te Araroa sequence (>8,000 earthquakes over 66 d). Templates characteristic of the MW7.1 sequence (including the mainshock template) detect several highly correlating events (ML2.5-3.5) starting 12 min after a MW5.7 foreshock. These pre-cursory events occurred within ∼1 km of the mainshock and migrate bilaterally, suggesting precursory slip was triggered by the foreshock on the MW7.1 fault patch prior to mainshock failure. We extend our matched-filter routine to examine the interactions between high dynamic stresses resulting from passing surface waves of the November 2016 MW7.8 Kaikōura earthquake, and the evolution of the Te Araroa aftershock sequence. We observe a sudden spike in moment release of the aftershock sequence immediately following peak dynamic Coulomb stresses of 50-150 kPa on the MW7.1 fault plane. The triggered increase in moment release culminated in a MW5.1 event, immediately followed by a ∼3 h temporal stress shadow. Our observations document the preparatory period of a major subduction margin earthquake following a significant foreshock, and quantify dynamic reinvigoration of a distant on-going major aftershock sequence amid a period of temporal clustering of seismic activity in New Zealand.
A Comparison of Hyporheic Transport at a Cross-Vane Structure and Natural Riffle.
Smidt, Samuel J; Cullin, Joseph A; Ward, Adam S; Robinson, Jesse; Zimmer, Margaret A; Lautz, Laura K; Endreny, Theodore A
2015-01-01
While restoring hyporheic flowpaths has been cited as a benefit to stream restoration structures, little documentation exists confirming that constructed restoration structures induce comparable hyporheic exchange to natural stream features. This study compares a stream restoration structure (cross-vane) to a natural feature (riffle) concurrently in the same stream reach using time-lapsed electrical resistivity (ER) tomography. Using this hydrogeophysical approach, we were able to quantify hyporheic extent and transport beneath the cross-vane structure and the riffle. We interpret from the geophysical data that the cross-vane and the natural riffle induced spatially and temporally unique hyporheic extent and transport, and the cross-vane created both spatially larger and temporally longer hyporheic flowpaths than the natural riffle. Tracer from the 4.67-h injection was detected along flowpaths for 4.6 h at the cross-vane and 4.2 h at the riffle. The spatial extent of the hyporheic zone at the cross-vane was 12% larger than that at the riffle. We compare ER results of this study to vertical fluxes calculated from temperature profiles and conclude significant differences in the interpretation of hyporheic transport from these different field techniques. Results of this study demonstrate a high degree of heterogeneity in transport metrics at both the cross-vane and the riffle and differences between the hyporheic flowpath networks at the two different features. Our results suggest that restoration structures may be capable of creating sufficient exchange flux and timescales of transport to achieve the same ecological functions as natural features, but engineering of the physical and biogeochemical environment may be necessary to realize these benefits. © 2014, National Ground Water Association.
Hydrologic controls of methane dynamics in a karst subterranean estuary
NASA Astrophysics Data System (ADS)
Brankovits, D.; Pohlman, J.; Ganju, N. K.; Lowell, N. S.; Roth, E.; Lapham, L.
2017-12-01
Subterranean estuaries extend into carbonate landmasses where abundant cave networks influence the hydrology and biogeochemistry of the coastal aquifer environment. Enhanced density stratification between meteoric freshwater and saline groundwater facilitates the development of sharp salinity and redox gradients associated with the production and consumption of methane, a potent greenhouse gas. These processes impact methane-dynamics in the coastal zone and provide nutritive resources for the cave-adapted estuarine food web in this oligotrophic habitat. These observations were based on sampling in discrete time periods, leaving questions about the effects of temporally dynamic hydrology on the production, consumption and transport of methane. In this study, we evaluated hydro-biogeochemical controls of methane dynamics in a subterranean estuary to quantify the magnitude of the methane sink in the coastal karst platform of the Yucatan Peninsula, Mexico. We deployed osmotically-driven sampling devices (OsmoSamplers) in flooded cave passages to document temporal variability in methane concentrations and δ13C values, as well as major ions in the groundwater. Water level, current velocities, water and air temperatures, and precipitation were also monitored. Using these records, we built an integrated model to provide a first-order calculation on methane consumption rates for the coastal aquifer. The year-long water chemistry record reveals higher source concentrations of methane in the dry season (5849 ± 1198 nM) than in the wet season (4265 ± 778 nM) with depleted δ13C values (-65.4 ± 2.1 ‰) throughout the year. Our analyses suggest the methane sink potential and ecosystem function are significantly affected by precipitation induced hydrological changes within the tropical subterranean karst estuary.
NASA Astrophysics Data System (ADS)
Bachelet, D. M.
2012-12-01
Public land managers are under increasing pressure to consider the potential impacts of climate change but they often lack access to the necessary scientific information and the support to interpret projections. Over 27% of the United States land area are designated as protected areas (e.g. National Parks and Wilderness Areas) including 76,900,000 ha of National Forests areas for which management plans need to be revised to prepare for climate change. Projections of warmer drier conditions raise concerns about extended summer drought, increased fire risks and potential pest/insect outbreaks threatening the carbon sequestration potential of the region as well as late summer water availability. Downscaled climate projections, soil vulnerability indices, and simulated climate change impacts on vegetation cover, fire frequency, carbon stocks, as well as species range shifts, have been uploaded in databasin.org to provide easy access to documented information that can be displayed, shared, and freely manipulated on line. We have uploaded NARCCAP scenarios and provided animations and time series display to look at regional and temporal trends in climate projections. We have uploaded simulation results of vegetation shifts from the global scale to local national parks and shared results with concerned managers. We have used combinations of vegetation models and niche models to evaluate wildlife resilience to future conditions. We have designed fuzzy logic models for ecological assessment projects and made them available on the Data Basin web site. We describe how we have used all this information to quantify climate change vulnerability for a variety of ecosystems, developing new web tools to provide comparative summaries of the various types of spatial and temporal data available for different regions.
Use of cameras for monitoring visibility impairment
NASA Astrophysics Data System (ADS)
Malm, William; Cismoski, Scott; Prenni, Anthony; Peters, Melanie
2018-02-01
Webcams and automated, color photography cameras have been routinely operated in many U.S. national parks and other federal lands as far back as 1988, with a general goal of meeting interpretive needs within the public lands system and communicating effects of haze on scenic vistas to the general public, policy makers, and scientists. Additionally, it would be desirable to extract quantifiable information from these images to document how visibility conditions change over time and space and to further reflect the effects of haze on a scene, in the form of atmospheric extinction, independent of changing lighting conditions due to time of day, year, or cloud cover. Many studies have demonstrated a link between image indexes and visual range or extinction in urban settings where visibility is significantly degraded and where scenes tend to be gray and devoid of color. In relatively clean, clear atmospheric conditions, clouds and lighting conditions can sometimes affect the image radiance field as much or more than the effects of haze. In addition, over the course of many years, cameras have been replaced many times as technology improved or older systems wore out, and therefore camera image pixel density has changed dramatically. It is shown that gradient operators are very sensitive to image resolution while contrast indexes are not. Furthermore, temporal averaging and time of day restrictions allow for developing quantitative relationships between atmospheric extinction and contrast-type indexes even when image resolution has varied over time. Temporal averaging effectively removes the variability of visibility indexes associated with changing cloud cover and weather conditions, and changes in lighting conditions resulting from sun angle effects are best compensated for by restricting averaging to only certain times of the day.
Sea Ice Pressure Ridge Height Distributions for the Arctic Ocean in Winter, Just Prior to Melt
NASA Astrophysics Data System (ADS)
Duncan, K.; Farrell, S. L.; Richter-Menge, J.; Hutchings, J.; Dominguez, R.; Connor, L. N.
2016-12-01
Pressure ridges are one of the most dominant morphological features of the Arctic sea ice pack. An impediment to navigation, pressure ridges are also of climatological interest since they impact the mass, energy and momentum transfer budgets for the Arctic Ocean. Understanding the regional and seasonal distributions of ridge sail heights, and their variability, is important for quantifying total sea ice mass, and for improved treatment of sea ice dynamics in high-resolution numerical models. Observations of sail heights from airborne and ship-based platforms have been documented in previous studies, however studies with both high spatial and temporal resolution, across multiple regions of the Arctic, are only recently possible with the advent of dedicated airborne surveys of the Arctic Ocean. In this study we present results from the high-resolution Digital Mapping System (DMS), flown as part of NASA's Operation IceBridge missions. We use DMS imagery to calculate ridge sail heights, derived from the shadows they cast combined with the solar elevation angle and the known pixel size of each image. Our analyses describe sea ice conditions at the end of winter, during the months of March and April, over a period spanning seven years, from 2010 to 2016. The high spatial resolution (0.1m) and temporal extent (seven years) of the DMS data set provides, for the first time, the full sail-height distributions of both first-year and multi-year sea ice. We present the inter-annual variability in sail height distributions for both the Central Arctic and the Beaufort and Chukchi Seas. We validate our results via comparison with spatially coincident high-resolution SAR imagery and airborne laser altimeter elevations.
Pugash, D; Lehman, A M; Langlois, S
2014-09-01
Thanatophoric dysplasia, hypochondroplasia and achondroplasia are all caused by FGFR3 (fibroblast growth factor receptor 3) mutations. Neuropathological findings of temporal lobe dysplasia are found in thanatophoric dysplasia, and temporal and occipital lobe abnormalities have been described recently in brain imaging studies of children with hypochondroplasia. We describe twins discordant for achondroplasia, in one of whom the prenatal diagnosis was based on ultrasound and fetal MRI documentation of temporal and occipital lobe abnormalities characteristic of hypochondroplasia, in addition to the finding of short long bones. Despite the intracranial findings suggestive of hypochondroplasia, achondroplasia was confirmed following postnatal clinical and genetic testing. These intracranial abnormalities have not been previously described in a fetus with achondroplasia. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
Response of fish assemblages to decreasing acid deposition in Adirondack Mountain lakes
Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.
2016-01-01
The CAA and other federal regulations have clearly reduced emissions of NOx and SOx, acidic deposition, and the acidity and toxicity of waters in the ALTM lakes, but these changes have not triggered widespread recovery of brook trout populations or fish communities. The lack of detectable biological recovery appears to result from relatively recent chemical recovery and an insufficient period for species populations to take advantage of improved water quality. Recovery of extirpated species’ populations may simply require more time for individuals to migrate to and repopulate formerly occupied lakes. Supplemental stocking of selected species may be required in some lakes with no remnant (or nearby) populations or with physical barriers between the recovered lake and source populations. The lack of detectable biological recovery could also be related to our inability to calculate measures of uncertainty or error and, thus, examine temporal changes or differences in populations and community metrics in more depth (e.g., within individual lakes) using existing datasets. Indeed, recovery of brook trout populations and partial recovery of fish communities are documented in several lakes of the region, both with and without human intervention. Multiple fish surveys (annually or within the same year) or the use of mark and recapture methods within individual lakes would help alleviate the issue (provide measures of error for key fishery metrics) within the context of a more focused sampling strategy. Efforts to evaluate and detect recovery in fish assemblages from streams may be more effective than in lakes because various life stages, species’ populations, and entire assemblages are easier to quantify, with known levels of error, in streams than in lakes. Such long-term monitoring efforts could increase our ability to detect and quantify biological recovery in recovering (neutralizing) surface waters throughout the Adirondack Region.
Increasing crop diversity mitigates weather variations and improves yield stability.
Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William
2015-01-01
Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments.
NASA Astrophysics Data System (ADS)
Martin, J.; Laughlin, M. M.; Olson, E.
2017-12-01
Canopy processes can be viewed at many scales and through many lenses. Fundamentally, we may wish to start by treating each canopy as a unique surface, an ecosystem unto itself. By doing so, we can may make some important observations that greatly influence our ability to scale canopies to landscape, regional and global scales. This work summarizes an ongoing endeavor to quantify various canopy level processes on individual old and large Eastern white pine trees (Pinus strobus). Our work shows that these canopies contain complex structures that vary with height and as the tree ages. This phenomenon complicates the allometric scaling of these large trees using standard methods, but detailed measurements from within the canopy provided a method to constrain scaling equations. We also quantified how these canopies change and respond to canopy disturbance, and documented disproportionate variation of growth compared to the lower stem as the trees develop. Additionally, the complex shape and surface area allow these canopies to act like ecosystems themselves; despite being relatively young and more commonplace when compared to the more notable canopies of the tropics and the Pacific Northwestern US. The white pines of these relatively simple, near boreal forests appear to house various species including many lichens. The lichen species can cover significant portions of the canopy surface area (which may be only 25 to 50 years old) and are a sizable source of potential nitrogen additions to the soils below, as well as a modulator to hydrologic cycles by holding significant amounts of precipitation. Lastly, the combined complex surface area and focused verticality offers important habitat to numerous animal species, some of which are quite surprising.
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Kathy, S. L.; Dennison, P. E.; Cook, B.; Hanavan, R. P.; Serbin, S.
2016-12-01
As a primary disturbance agent, fire significantly influences forest ecosystems, including the modification or resetting of vegetation composition and structure, which can then significantly impact landscape-scale plant function and carbon stocks. Most ecological processes associated with fire effects (e.g. tree damage, mortality, and vegetation recovery) display fine-scale, species specific responses but can also vary spatially within the boundary of the perturbation. For example, both oak and pine species are fire-adapted, but fire can still induce changes in composition, structure, and dominance in a mixed pine-oak forest, mainly because of their varying degrees of fire adaption. Evidence of post-fire shifts in dominance between oak and pine species has been documented in mixed pine-oak forests, but these processes have been poorly investigated in a spatially explicit manner. In addition, traditional field-based means of quantifying the response of partially damaged trees across space and time is logistically challenging. Here we show how combining high resolution satellite imagery (i.e. Worldview-2,WV-2) and airborne imaging spectroscopy and LiDAR (i.e. NASA Goddard's Lidar, Hyperspectral and Thermal airborne imager, G-LiHT) can be effectively used to remotely quantify spatial and temporal patterns of vegetation recovery following a top-killing fire that occurred in 2012 within mixed pine-oak forests in the Long Island Central Pine Barrens Region, New York. We explore the following questions: 1) what are the impacts of fire on species composition, dominance, plant health, and vertical structure; 2) what are the recovery trajectories of forest biomass, structure, and spectral properties for three years following the fire; and 3) to what extent can fire impacts be captured and characterized by multi-sensor remote sensing techniques from active and passive optical remote sensing.
NASA Astrophysics Data System (ADS)
Fink, David
2015-04-01
Ice volume changes at the coastal margins of Antarctica during the global LGM are uncertain. The little evidence available suggests that behaviour of the East and West Antarctic Ice Sheets are markedly different and complex. It is hypothesised that during interglacials, thinning of the Ross Ice Shelf, a more open-water environment and increased precipitation, allowed outlet glaciers draining the Transantarctic Mnts and fed by interior Ice Sheets to advance during moist warmer periods, out of phase with colder arid periods. In contrast, glacier dynamics along the vast coastal perimeter of East Antarctica is strongly influenced by Southern Ocean conditions. Cosmogenic 10Be and 26Al chronologies, although restricted to ice-free oasis and mountains flanking drainage glaciers, has become an invaluable, if not unique, tool to quantify spatial and temporal Pleistocene ice sheet variability over the past 2 Ma. Despite an increasing number of well documented areas, extracting reliable ages from glacial deposits in polar regions is problematic. Recycling of previously exposed/ buried debris and continual post-depositional modification leads to age ambiguities for a coeval glacial landform. More importantly, passage of cold-based ice can leave a landform unmodified resulting in young erratics deposited on ancient bedrock. Advances in delivering in-situ radiocarbon to routine application offer some relief. Exposure ages from different localities throughout East Antarctica (Framnes Mnts, Lutzow-Holm Bay, Vestfold Hills) and West Antarctica (Denton Ranges, Hatherton Glacier, Shackleton Range) highlight some of the new findings. This talk presents results which quantify the magnitude and timing of paleo-ice sheet thickness changes, questions the validity of an Antarctic LGM and discusses the complexities encountered in the often excessive spread in exposure ages.
An Analytic Equation Partitioning Climate Variation and Human Impacts on River Sediment Load
NASA Astrophysics Data System (ADS)
Zhang, J.; Gao, G.; Fu, B.
2017-12-01
Spatial or temporal patterns and process-based equations could co-exist in hydrologic model. Yet, existing approaches quantifying the impacts of those variables on river sediment load (RSL) changes are found to be severely limited, and new ways to evaluate the contribution of these variables are thus needed. Actually, the Newtonian modeling is hardly achievable for this process due to the limitation of both observations and knowledge of mechanisms, whereas laws based on the Darwinian approach could provide one component of a developed hydrologic model. Since that streamflow is the carrier of suspended sediment, sediment load changes are documented in changes of streamflow and suspended sediment concentration (SSC) - water discharge relationships. Consequently, an analytic equation for river sediment load changes are proposed to explicitly quantify the relative contributions of climate variation and direct human impacts on river sediment load changes. Initially, the sediment rating curve, which is of great significance in RSL changes analysis, was decomposed as probability distribution of streamflow and the corresponding SSC - water discharge relationships at equally spaced discharge classes. Furthermore, a proposed segmentation algorithm based on the fractal theory was used to decompose RSL changes attributed to these two portions. Additionally, the water balance framework was utilized and the corresponding elastic parameters were calculated. Finally, changes in climate variables (i.e. precipitation and potential evapotranspiration) and direct human impacts on river sediment load could be figured out. By data simulation, the efficiency of the segmentation algorithm was verified. The analytic equation provides a superior Darwinian approach partitioning climate and human impacts on RSL changes, as only data series of precipitation, potential evapotranspiration and SSC - water discharge are demanded.
Identifying the sources of dissolved inorganic nitrogen (DIN) in estuaries is complicated by the multiple sources, temporal variability in inputs, and variations in transport. We used a hydrodynamic model to simulate the transport and uptake of three sources of DIN (oceanic, riv...
This manuscript addresses the difficult issue of identifying the origin of particulate organic matter (POM) in estuaries . . . The objectives of this study were to quantify spatial and temporal variability of the C and N stable isotope composition of suspended POM, and to identif...
Remote sensing techniques were used to characterize and quantify spatial and temporal variation in water quality of the Great Miami River in Ohio. An initial feasibility study was conducted in the summer of 1999 using a non-imaging hand-held spectroradiometer to ascertain the pr...
Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict sea...
strengths, limitations, and uncertainties of these two approaches. Because US landfills are highly-engineered and composed of daily, intermediate, and final cover areas with differing thicknesses, composition, and implementation of gas recovery, we also expected different emissi...
Probabilistic and spatially variable niches inferred from demography
Jeffrey M. Diez; Itamar Giladi; Robert Warren; H. Ronald Pulliam
2014-01-01
Summary 1. Mismatches between species distributions and habitat suitability are predicted by niche theory and have important implications for forecasting how species may respond to environmental changes. Quantifying these mismatches is challenging, however, due to the high dimensionality of species niches and the large spatial and temporal variability in population...
Cross-scale analysis of fire regimes
Donald A. Falk; Carol Miller; Donald McKenzie; Anne E. Black
2007-01-01
Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire...
Quantifying uncertainty in forest nutrient budgets
Ruth D. Yanai; Carrie R. Levine; Mark B. Green; John L. Campbell
2012-01-01
Nutrient budgets for forested ecosystems have rarely included error analysis, in spite of the importance of uncertainty to interpretation and extrapolation of the results. Uncertainty derives from natural spatial and temporal variation and also from knowledge uncertainty in measurement and models. For example, when estimating forest biomass, researchers commonly report...
Ecohydrological coupling at the watershed scale is poorly characterized. While soil-water storage is dynamic and strongly influenced by plants, few integrated tools exist for quantifying the spatial and temporal dynamics and interactions among the major components of the terrestr...
Modeling is a useful tool for quantifying ecosystem services and understanding their temporal dynamics. Here we describe a hybrid regional modeling approach for sub-basins of the Calapooia watershed that incorporates both a precipitation-runoff model and an indexed regression mo...
HYPERSPECTRAL TECHNIQUE AS AN INDICATOR OF EUTROPHICATION AND SEDIMENT LOAD FOR DEEP RIVERS
Remote sensing techniques were used to characterize and quantify spatial and temporal variation in water quality of the Great Miami River in Ohio. An initial feasibility study was conducted in the summer of 1999 using a non-imaging hand-held spectroradiometer to ascertain the pre...
ERIC Educational Resources Information Center
Busey, Thomas; Yu, Chen; Wyatte, Dean; Vanderkolk, John
2013-01-01
Perceptual tasks such as object matching, mammogram interpretation, mental rotation, and satellite imagery change detection often require the assignment of correspondences to fuse information across views. We apply techniques developed for machine translation to the gaze data recorded from a complex perceptual matching task modeled after…
Envisioning, quantifying, and managing thermal regimes on river networks
E. Ashley Steel; Timothy J. Beechie; Christian E. Torgersen; Aimee H. Fullerton
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival....
USDA-ARS?s Scientific Manuscript database
Accurately measuring soil organic C (SOC) stock changes over time is essential for verifying agronomic management effects on C sequestration. This study quantified the spatial and temporal changes in SOC stocks on adjacent 65-ha corn silage-alfalfa production fields receiving liquid dairy manure in...
Proulx, Raphaël; Wirth, Christian; Voigt, Winfried; Weigelt, Alexandra; Roscher, Christiane; Attinger, Sabine; Baade, Jussi; Barnard, Romain L; Buchmann, Nina; Buscot, François; Eisenhauer, Nico; Fischer, Markus; Gleixner, Gerd; Halle, Stefan; Hildebrandt, Anke; Kowalski, Esther; Kuu, Annely; Lange, Markus; Milcu, Alex; Niklaus, Pascal A; Oelmann, Yvonne; Rosenkranz, Stephan; Sabais, Alexander; Scherber, Christoph; Scherer-Lorenzen, Michael; Scheu, Stefan; Schulze, Ernst-Detlef; Schumacher, Jens; Schwichtenberg, Guido; Soussana, Jean-François; Temperton, Vicky M; Weisser, Wolfgang W; Wilcke, Wolfgang; Schmid, Bernhard
2010-10-13
The diversity-stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands.
Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)
NASA Astrophysics Data System (ADS)
Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.
2013-12-01
Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.
NASA Astrophysics Data System (ADS)
Broich, Mark
Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single best Landsat images. Such an approach does not provide timely results, and cloud cover reduces the utility of map outputs. In a second study, I develop a method to exhaustively mine the recently opened Landsat archive for cloud-free observations and automatically map forest cover loss for Sumatra and Kalimantan for the 2000-2005 interval. In a comparison with a reference dataset consisting of 64 Landsat sample blocks, I show that my method, using per pixel time-series, provides more accurate forest cover loss maps for multiyear intervals than approaches using image composites. In a third study, I disaggregate Landsat-mapped forest cover loss, mapped over a multiyear interval, by year using annual forest cover loss maps generated from coarse spatial, high temporal resolution MODIS imagery. I further disaggregate and analyze forest cover loss by forest land use, and provinces. Forest cover loss trends show high spatial and temporal variability. These results underline the importance of annual mapping for the quantification of forest cover loss in Indonesia, specifically in the light of the developing Reducing Emissions from Deforestation and Forest Degradation in Developing Countries policy framework (REDD). All three studies highlight the advances in quantifying forest cover loss in the humid tropics made by integrating coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data. The three methods presented can be combined into an integrated monitoring strategy.
NASA Astrophysics Data System (ADS)
Booth, A. M.; LaHusen, S. R.; Duvall, A. R.; Montgomery, D. R.
2016-12-01
Landslides are commonly triggered by prolonged or intense precipitation and earthquakes, suggesting that a region's record of landsliding reflects its climatic and tectonic history. Deciphering that history by documenting spatial and temporal patterns of past landsliding is an essential step in quantifying a region's landslide hazard as well as the contribution of landslides to landscape evolution over geomorphic time. While routine landslide inventories can map spatial distributions, lack of dateable material, landslide reactivations, or time, access, and cost constraints generally limit dating large numbers of landslides to analyze temporal patterns. Here, we quantify the record of the Holocene history of deep-seated landsliding in glacial sediment along a 25 km stretch of the North Fork Stillaguamish River, Washington State, USA, including the 2014 Oso landslide, which killed 43 people. Climate at the study site has shifted from relatively cool and dry ( 16-10 kybp), to relatively warm and dry ( 10-6 kybp), to the cool, wet, maritime climate the region experiences today. We estimate the ages of 219 deep-seated landslides spanning these climate shifts by defining an empirical relationship between landslide deposit age from radiocarbon dating and landslide deposit surface roughness. Roughness systematically decreases with age as a function of topographic wavelength, consistent with disturbance-driven soil transport theory. The nonlinear age-roughness relationship suggests that changing regional climate and the process of vegetation recolonizing an initially bare landslide deposit has affected the efficiency of soil transport through bioturbation. The age-roughness model predicts that only 3% of the mapped landslide deposits are older than 6 kybp, likely reflecting a combination of preservation bias and local climate transitioning to cooler and wetter at that time. More recently, there is a broad peak in landslide frequency between 1200 and 600 cal. ybp, and then very few landslide deposits younger than 100 ybp. All of these recent landslides have occurred where channels actively interact with the toes of hillslopes composed of glacial sediments, suggesting that lateral channel migration, as modulated by climate, is a primary control on the location of past and future landslides in the valley.
Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.
Wirtssohn, Sarah; Ronacher, Bernhard
2015-04-01
Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. Copyright © 2015 the American Physiological Society.
Sampling of temporal networks: Methods and biases
NASA Astrophysics Data System (ADS)
Rocha, Luis E. C.; Masuda, Naoki; Holme, Petter
2017-11-01
Temporal networks have been increasingly used to model a diversity of systems that evolve in time; for example, human contact structures over which dynamic processes such as epidemics take place. A fundamental aspect of real-life networks is that they are sampled within temporal and spatial frames. Furthermore, one might wish to subsample networks to reduce their size for better visualization or to perform computationally intensive simulations. The sampling method may affect the network structure and thus caution is necessary to generalize results based on samples. In this paper, we study four sampling strategies applied to a variety of real-life temporal networks. We quantify the biases generated by each sampling strategy on a number of relevant statistics such as link activity, temporal paths and epidemic spread. We find that some biases are common in a variety of networks and statistics, but one strategy, uniform sampling of nodes, shows improved performance in most scenarios. Given the particularities of temporal network data and the variety of network structures, we recommend that the choice of sampling methods be problem oriented to minimize the potential biases for the specific research questions on hand. Our results help researchers to better design network data collection protocols and to understand the limitations of sampled temporal network data.
Mind the gap: temporal discrimination and dystonia.
Sadnicka, A; Daum, C; Cordivari, C; Bhatia, K P; Rothwell, J C; Manohar, S; Edwards, M J
2017-06-01
One of the most widely studied perceptual measures of sensory dysfunction in dystonia is the temporal discrimination threshold (TDT) (the shortest interval at which subjects can perceive that there are two stimuli rather than one). However the elevated thresholds described may be due to a number of potential mechanisms as current paradigms test not only temporal discrimination but also extraneous sensory and decision-making parameters. In this study two paradigms designed to better quantify temporal processing are presented and a decision-making model is used to assess the influence of decision strategy. 22 patients with cervical dystonia and 22 age-matched controls completed two tasks (i) temporal resolution (a randomized, automated version of existing TDT paradigms) and (ii) interval discrimination (rating the length of two consecutive intervals). In the temporal resolution task patients had delayed (P = 0.021) and more variable (P = 0.013) response times but equivalent discrimination thresholds. Modelling these effects suggested this was due to an increased perceptual decision boundary in dystonia with patients requiring greater evidence before committing to decisions (P = 0.020). Patient performance on the interval discrimination task was normal. Our work suggests that previously observed abnormalities in TDT may not be due to a selective sensory deficit of temporal processing as decision-making itself is abnormal in cervical dystonia. © 2017 EAN.
Sanz-García, Ancor; Vega-Zelaya, Lorena; Pastor, Jesús; Torres, Cristina V.; Sola, Rafael G.; Ortega, Guillermo J.
2016-01-01
Approximately 30% of epilepsy patients are refractory to antiepileptic drugs. In these cases, surgery is the only alternative to eliminate/control seizures. However, a significant minority of patients continues to exhibit post-operative seizures, even in those cases in which the suspected source of seizures has been correctly localized and resected. The protocol presented here combines a clinical procedure routinely employed during the pre-operative evaluation of temporal lobe epilepsy (TLE) patients with a novel technique for network analysis. The method allows for the evaluation of the temporal evolution of mesial network parameters. The bilateral insertion of foramen ovale electrodes (FOE) into the ambient cistern simultaneously records electrocortical activity at several mesial areas in the temporal lobe. Furthermore, network methodology applied to the recorded time series tracks the temporal evolution of the mesial networks both interictally and during the seizures. In this way, the presented protocol offers a unique way to visualize and quantify measures that considers the relationships between several mesial areas instead of a single area. PMID:28060326
Awad, I A; Katz, A; Hahn, J F; Kong, A K; Ahl, J; Lüders, H
1989-01-01
The extent of resection was assessed in 45 temporal lobectomies for medically intractable epilepsy with mapped temporal lobe foci. Postoperative magnetic resonance imaging (MRI) in the coronal plane was used to quantify the extent of resection of superior lateral, inferior lateral, basal, and medial structures, including the amygdalohippocampal complex. A new 20-compartment model of the temporal lobe was used for this assessment. Blinded interobserver variability was minimal. Intraoperative measurements and maps routinely overestimated the actual extent of resection, especially of medial structures. One year after surgery, 70% of patients remained seizure-free (except for auras). Seizure-free outcome was accomplished despite varying degrees of resection, but was more likely achieved with more extensive resections in all compartments. Among patients with mesiobasal foci, seizure-free outcome correlated significantly with extent of resection of amygdalohippocampal complex. We conclude that assessment of extent of resection by postoperative MRI provides an objective basis of evaluating outcome after temporal lobectomy. It allows a rational approach to understanding of operative failures and is potentially useful in comparing efficacy of various surgical approaches.
Whisking mechanics and active sensing
Bush, Nicholas E; Solla, Sara A
2017-01-01
We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem (‘where’ is an object) and the feature extraction problem (‘what’ is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the ‘windowed sampling’ hypothesis for active sensing: that rats can estimate an object’s spatial features by integrating mechanical information across whiskers during brief (25–60 ms) windows of ‘haptic enclosure’ with the whiskers, a motion that resembles a hand grasp. PMID:27632212
Whisking mechanics and active sensing.
Bush, Nicholas E; Solla, Sara A; Hartmann, Mitra Jz
2016-10-01
We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Manore, C.; Conrad, J.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Generous, E. N.
2017-12-01
Mosquito-borne diseases such as Zika, dengue, and chikungunya viruses have dynamics coupled to weather, ecology, human infrastructure, socio-economic demographics, and behavior. We use time-varying remote sensing and weather data, along with demographics and ecozones to predict risk through time for Zika, dengue, and chikungunya outbreaks in Brazil. We use distributed lag methods to quantify the lag between outbreaks and weather. Our statistical model indicates that the relationships between the variables are complex, but that quantifying risk is possible with the right data at appropriate spatio-temporal scales.
Isolation by Time During an Arctic Phytoplankton Spring Bloom.
Tammilehto, Anna; Watts, Phillip C; Lundholm, Nina
2017-03-01
The arctic phytoplankton spring bloom, which is often diatom-dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample-specific F ST ) decreased between time points as the bloom progressed, with the most drastic changes in F ST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean H E = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample-specific F ST . On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
Ort, Christoph; van Nuijs, Alexander L N; Berset, Jean-Daniel; Bijlsma, Lubertus; Castiglioni, Sara; Covaci, Adrian; de Voogt, Pim; Emke, Erik; Fatta-Kassinos, Despo; Griffiths, Paul; Hernández, Félix; González-Mariño, Iria; Grabic, Roman; Kasprzyk-Hordern, Barbara; Mastroianni, Nicola; Meierjohann, Axel; Nefau, Thomas; Ostman, Marcus; Pico, Yolanda; Racamonde, Ines; Reid, Malcolm; Slobodnik, Jaroslav; Terzic, Senka; Thomaidis, Nikolaos; Thomas, Kevin V
2014-08-01
To perform wastewater analyses to assess spatial differences and temporal changes of illicit drug use in a large European population. Analyses of raw wastewater over a 1-week period in 2012 and 2013. Catchment areas of wastewater treatment plants (WWTPs) across Europe, as follows: 2012: 25 WWTPs in 11 countries (23 cities, total population 11.50 million); 2013: 47 WWTPs in 21 countries (42 cities, total population 24.74 million). Excretion products of five illicit drugs (cocaine, amphetamine, ecstasy, methamphetamine, cannabis) were quantified in wastewater samples using methods based on liquid chromatography coupled to mass spectrometry. Spatial differences were assessed and confirmed to vary greatly across European metropolitan areas. In general, results were in agreement with traditional surveillance data, where available. While temporal changes were substantial in individual cities and years (P ranging from insignificant to <10(-3) ), overall means were relatively stable. The overall mean of methamphetamine was an exception (apparent decline in 2012), as it was influenced mainly by four cities. Wastewater analysis performed across Europe provides complementary evidence on illicit drug consumption and generally concurs with traditional surveillance data. Wastewater analysis can measure total illicit drug use more quickly and regularly than is the current norm for national surveys, and creates estimates where such data does not exist. © 2014 Society for the Study of Addiction.
NASA Astrophysics Data System (ADS)
Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.
2017-12-01
Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.
Temporal variability and memory in sediment transport in an experimental step-pool channel
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael
2015-11-01
Temporal dynamics of sediment transport in steep channels using two experiments performed in a steep flume (8%) with natural sediment composed of 12 grain sizes are studied. High-resolution (1 s) time series of sediment transport were measured for individual grain-size classes at the outlet of the flume for different combinations of sediment input rates and flow discharges. Our aim in this paper is to quantify (a) the relation of discharge and sediment transport and (b) the nature and strength of memory in grain-size-dependent transport. None of the simple statistical descriptors of sediment transport (mean, extreme values, and quantiles) display a clear relation with water discharge, in fact a large variability between discharge and sediment transport is observed. Instantaneous transport rates have probability density functions with heavy tails. Bed load bursts have a coarser grain-size distribution than that of the entire experiment. We quantify the strength and nature of memory in sediment transport rates by estimating the Hurst exponent and the autocorrelation coefficient of the time series for different grain sizes. Our results show the presence of the Hurst phenomenon in transport rates, indicating long-term memory which is grain-size dependent. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling duration of bed load transport rates in natural streams, especially for large fractions.
Ort, Christoph; van Nuijs, Alexander L N; Berset, Jean-Daniel; Bijlsma, Lubertus; Castiglioni, Sara; Covaci, Adrian; de Voogt, Pim; Emke, Erik; Fatta-Kassinos, Despo; Griffiths, Paul; Hernández, Félix; González-Mariño, Iria; Grabic, Roman; Kasprzyk-Hordern, Barbara; Mastroianni, Nicola; Meierjohann, Axel; Nefau, Thomas; Östman, Marcus; Pico, Yolanda; Racamonde, Ines; Reid, Malcolm; Slobodnik, Jaroslav; Terzic, Senka; Thomaidis, Nikolaos; Thomas, Kevin V
2014-01-01
Aims To perform wastewater analyses to assess spatial differences and temporal changes of illicit drug use in a large European population. Design Analyses of raw wastewater over a 1-week period in 2012 and 2013. Setting and Participants Catchment areas of wastewater treatment plants (WWTPs) across Europe, as follows: 2012: 25 WWTPs in 11 countries (23 cities, total population 11.50 million); 2013: 47 WWTPs in 21 countries (42 cities, total population 24.74 million). Measurements Excretion products of five illicit drugs (cocaine, amphetamine, ecstasy, methamphetamine, cannabis) were quantified in wastewater samples using methods based on liquid chromatography coupled to mass spectrometry. Findings Spatial differences were assessed and confirmed to vary greatly across European metropolitan areas. In general, results were in agreement with traditional surveillance data, where available. While temporal changes were substantial in individual cities and years (P ranging from insignificant to <10−3), overall means were relatively stable. The overall mean of methamphetamine was an exception (apparent decline in 2012), as it was influenced mainly by four cities. Conclusions Wastewater analysis performed across Europe provides complementary evidence on illicit drug consumption and generally concurs with traditional surveillance data. Wastewater analysis can measure total illicit drug use more quickly and regularly than is the current norm for national surveys, and creates estimates where such data does not exist. PMID:24861844
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
NASA Astrophysics Data System (ADS)
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.J. Miller; G. Elias; N.C. Schmitt
2010-06-01
High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that weremore » used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.« less
NASA Technical Reports Server (NTRS)
Peddle, Derek R.; Huemmrich, K. Fred; Hall, Forrest G.; Masek, Jeffrey G.; Soenen, Scott A.; Jackson, Chris D.
2011-01-01
Canopy reflectance model inversion using look-up table approaches provides powerful and flexible options for deriving improved forest biophysical structural information (BSI) compared with traditional statistical empirical methods. The BIOPHYS algorithm is an improved, physically-based inversion approach for deriving BSI for independent use and validation and for monitoring, inventory and quantifying forest disturbance as well as input to ecosystem, climate and carbon models. Based on the multiple-forward mode (MFM) inversion approach, BIOPHYS results were summarized from different studies (Minnesota/NASA COVER; Virginia/LEDAPS; Saskatchewan/BOREAS), sensors (airborne MMR; Landsat; MODIS) and models (GeoSail; GOMS). Applications output included forest density, height, crown dimension, branch and green leaf area, canopy cover, disturbance estimates based on multi-temporal chronosequences, and structural change following recovery from forest fires over the last century. Good correspondences with validation field data were obtained. Integrated analyses of multiple solar and view angle imagery further improved retrievals compared with single pass data. Quantifying ecosystem dynamics such as the area and percent of forest disturbance, early regrowth and succession provide essential inputs to process-driven models of carbon flux. BIOPHYS is well suited for large-area, multi-temporal applications involving multiple image sets and mosaics for assessing vegetation disturbance and quantifying biophysical structural dynamics and change. It is also suitable for integration with forest inventory, monitoring, updating, and other programs.
NASA Astrophysics Data System (ADS)
Koo, Bon Joo; Kwon, Kae Kyoung; Hyun, Jung-Ho
2007-11-01
We quantified the increase in the sediment-water interface created by the burrowing activities of the resident macrofaunal community and its variation with respect to the physical conditions of the habitat on a tidal fat. We investigated environmental factors and dimensions of macrofaunal burrows with respect to tidal height and vegetation during spring and summer at three sites. A resin-casting method was used to quantify the dimensions of all burrows at each site. The dimensions of macrofaunal burrows varied both temporally and spatially and the increase in the sediment-water interface reached a maximum of 311%, ranging from 20 to 255% under different habitat conditions. The sediment-water interface depended on the duration of exposure resulting from tidal height, increased temperatures resulting from seasonality, and marsh plant density. Burrows were deeper and more expansive at both higher tidal levels and higher temperatures in summer. Burrow dimensions were sharply reduced with the disappearance of adult macrofauna in areas where the roots of the marsh plant Suaeda japonica were dense. The significance of this study lies in quantifying the burrow dimensions of the entire macrofaunal community, rather than just a single population, and confirming their spatial and temporal variation with respect to physical conditions of the habitat. Environmental factors responsible for variation in burrow dimensions are discussed.
Regolith Gardening Caused by Recent Lunar Impacts Observed by the Lunar Reconnaissance Obiter Camera
NASA Astrophysics Data System (ADS)
Speyerer, E. J.
2016-12-01
Temporal observations by the Lunar Reconnaissance Obiter Camera (LROC) Narrow Angle Camera (NAC) enable us to map and measure the spatial distribution of ejecta as well as quantify faint distal zones that may be the result of early stage jetting caused by meteoroid impacts. These detailed before and after observations enable the examination of surface reflectance changes as well as the analysis of nearby features (i.e. highly degraded craters, secondary craters, and new/spatially shifted boulders). In addition, NAC temporal pairs reveal numerous areas where the regolith has been churned and modified. These features, which we refer to as splotches, are most likely caused by small secondary impacts due to their high population near recent impact events [Robinson et al., 2015]. Using over 14,000 NAC temporal pairs, we identified over 47,000 splotches and quantified their spatial coverage and rate of formation. Based on the observed size frequency distribution, our models indicate that 99% of the entire lunar surface is modified by 1 m in diameter and larger splotches over a period of 8.1x10^4 years. These splotches have the potential to churn the upper few cm of regolith, which influence the local surface roughness and ultimately the surface reflectance observed from orbit. This new churning rate estimate is consistent with previous analysis of regolith properties within drive core samples acquired during the Apollo missions; these cores reveal that the upper 2 cm was rapidly and continuously modified over periods of <=10^5 years [Fruchter et al., 1977]. Overall, the examination of LROC NAC temporal pairs enables detailed studies of the impact process on a scale that exceeds laboratory experiments. Continued collection of NAC temporal pairs during the LRO Cornerstone Mission and future extended missions will aid in the discovery of new, larger impact craters and other contemporary surface changes. References:Fruchter et al. 1977. Proc. Lunar Planet Sci. Conf. 8th. pp. 3595-3605. Robinson et al. 2015. Icarus 252, 229-235.
IMPAIRED VERBAL COMPREHENSION OF QUANTIFIERS IN CORTICOBASAL SYNDROME
Troiani, Vanessa; Clark, Robin; Grossman, Murray
2011-01-01
Objective Patients with Corticobasal Syndrome (CBS) have atrophy in posterior parietal cortex. This region of atrophy has been previously linked with their quantifier comprehension difficulty, but previous studies used visual stimuli, making it difficult to account for potential visuospatial deficits in CBS patients. The current study evaluated comprehension of generalized quantifiers using strictly verbal materials. Method CBS patients, a brain-damaged control group (consisting of Alzheimer's Disease and frontotemporal dementia), and age-matched controls participated in this study. We assessed familiar temporal, spatial, and monetary domains of verbal knowledge comparatively. Judgment accuracy was only evaluated in statements for which patients demonstrated accurate factual knowledge about the target domain. Results We found that patients with CBS are significantly impaired in their ability to evaluate quantifiers compared to healthy seniors and a brain-damaged control group, even in this strictly visual task. This impairment was seen in the vast majority of individual CBS patients. Conclusions These findings offer additional evidence of quantifier impairment in CBS patients and emphasize that this impairment cannot be attributed to potential spatial processing impairments in patients with parietal disease. PMID:21381823
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vignaud, J.; Jardin, C.; Rosen, L.
1986-01-01
This is an English translation of volume 17-1 of Traite de radiodiagnostic and represents a reasonably complete documentation of the diseases of the temporal bone that have imaging manifestations. The book begins with chapters on embryology, anatomy and radiography anatomy; it continues with blood supply and an overview of temporal bone pathology. Subsequent chapters cover malformations, trauma, infections, tumors, postoperative changes, glomus tumors, vertebasilar insufficiency, and facial nerve canal lesions. A final chapter demonstrates and discusses magnetic resonance images of the ear and cerebellopontine angle.
Using Temporal Logic to Specify and Verify Cryptographic Protocols (Progress Report)
1995-01-01
know, Meadows’ 1Supported by grant HKUST 608/94E from the Hong Kong Research Grants Council. 1 Report Documentation Page Form ApprovedOMB No. 0704... 1 Introduction We have started work on a project to apply temporal logic to reason about cryptographic protocols. Some of the goals of the project...are as follows. 1 . Allow the user to state and prove that the penetrator cannot use logical or algebraic techniques (e.g., we are disregarding
Acute auditory agnosia as the presenting hearing disorder in MELAS.
Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella
2008-12-01
MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.
Ultrafast Science Opportunities with Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durr, Hermann
X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less
WalkThrough Example Procedures for MAMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggiero, Christy E.; Gaschen, Brian Keith; Bloch, Jeffrey Joseph
This documentation is a growing set of walk through examples of analyses using the MAMA V2.0 software. It does not cover all the features or possibilities with the MAMA software, but will address using many of the basic analysis tools to quantify particle size and shape in an image. This document will continue to evolve as additional procedures and examples are added. The starting assumption is that the MAMA software has been successfully installed.
Temporalis muscle hypertrophy and reduced skull eccentricity in Duchenne muscular dystrophy.
Straathof, C S M; Doorenweerd, N; Wokke, B H A; Dumas, E M; van den Bergen, J C; van Buchem, M A; Hendriksen, J G M; Verschuuren, J J G M; Kan, H E
2014-10-01
Muscle hypertrophy and muscle weakness are well known in Duchenne muscular dystrophy. Decreased muscle force can have secondary effects on skeletal growth and development such as facial and dental morphology changes. In this study, we quantified temporal muscle thickness, circumference, and eccentricity of the skull and the head on T1-weighted magnetic resonance imaging (MRI) scans of the head of 15 Duchenne muscular dystrophy patients and 15 controls. Average temporal muscle thickness was significantly increased in patients (12.9 ± 5.2 mm) compared to controls (6.8 ± 1.4 mm) (P < .0001), whereas the shape of the skull was significantly rounder compared to controls. Temporal muscle thickness and skull eccentricity were significantly negatively correlated in patients, and positively in controls. Hypertrophy of the temporal muscles and changes in skull eccentricity appear to occur early in the course of Duchenne muscular dystrophy. Further studies in younger patients are needed to confirm a causal relationship. © The Author(s) 2014.
Jeagle: a JAVA Runtime Verification Tool
NASA Technical Reports Server (NTRS)
DAmorim, Marcelo; Havelund, Klaus
2005-01-01
We introduce the temporal logic Jeagle and its supporting tool for runtime verification of Java programs. A monitor for an Jeagle formula checks if a finite trace of program events satisfies the formula. Jeagle is a programming oriented extension of the rule-based powerful Eagle logic that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace. Jeagle extends Eagle with constructs for capturing parameterized program events such as method calls and method returns. Parameters can be the objects that methods are called upon, arguments to methods, and return values. Jeagle allows one to refer to these in formulas. The tool performs automated program instrumentation using AspectJ. We show the transformational semantics of Jeagle.
Spatio-temporal variability of faunal and floral assemblages in Mediterranean temporary wetlands.
Rouissi, Maya; Boix, Dani; Muller, Serge D; Gascón, Stéphanie; Ruhí, Albert; Sala, Jordi; Bouattour, Ali; Ben Haj Jilani, Imtinen; Ghrabi-Gammar, Zeineb; Ben Saad-Limam, Samia; Daoud-Bouattour, Amina
2014-12-01
Six temporary wetlands in the region of Sejenane (Mogods, NW Tunisia) were studied in order to characterize the aquatic flora and fauna and to quantify their spatio-temporal variability. Samplings of aquatic fauna, phytosociological relevés, and measurements of the physicochemical parameters of water were taken during four different field visits carried out during the four seasons of the year (November 2009-July 2010). Despite the strong anthropic pressures on them, these temporary wetlands are home to rich and diversified biodiversity, including rare and endangered species. Spatial and temporal variations affect fauna and flora differently, as temporal variability influences the fauna rather more than the plants, which are relatively more dependent on spatial factors. These results demonstrate the interest of small water bodies for maintaining biodiversity at the regional level, and thus underscore the conservation issues of Mediterranean temporary wetlands that are declining on an ongoing basis currently. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss
NASA Astrophysics Data System (ADS)
Blum, L. W.
2017-12-01
Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.
Kinematic Diversity in Rorqual Whale Feeding Mechanisms.
Cade, David E; Friedlaender, Ari S; Calambokidis, John; Goldbogen, Jeremy A
2016-10-10
Rorqual whales exhibit an extreme lunge filter-feeding strategy characterized by acceleration to high speed and engulfment of a large volume of prey-laden water [1-4]. Although tagging studies have quantified the kinematics of lunge feeding, the timing of engulfment relative to body acceleration has been modeled conflictingly because it could never be directly measured [5-7]. The temporal coordination of these processes has a major impact on the hydrodynamics and energetics of this high-cost feeding strategy [5-9]. If engulfment and body acceleration are temporally distinct, the overall cost of this dynamic feeding event would be minimized. However, greater temporal overlap of these two phases would theoretically result in higher drag and greater energetic costs. To address this discrepancy, we used animal-borne synchronized video and 3D movement sensors to quantify the kinematics of both the skull and body during feeding events. Krill-feeding blue and humpback whales exhibited temporally distinct acceleration and engulfment phases, with humpback whales reaching maximum gape earlier than blue whales. In these whales, engulfment coincided largely with body deceleration; however, humpback whales pursuing more agile fish demonstrated highly variable coordination of skull and body kinematics in the context of complex prey-herding techniques. These data suggest that rorquals modulate the coordination of acceleration and engulfment to optimize foraging efficiency by minimizing locomotor costs and maximizing prey capture. Moreover, this newfound kinematic diversity observed among rorquals indicates that the energetic efficiency of foraging is driven both by the whale's engulfment capacity and the comparative locomotor capabilities of predator and prey. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Allroggen, Niklas
2017-04-01
The missing vision into the subsurface appears to be a major limiting factor for our hydrological process understanding and theory development. Today, hydrology-related sciences have collected tremendous evidence for soils acting as drainage network and retention stores simultaneously in structured and self-organising domains. However, our present observation technology relies mainly on point-scale sensors, which integrate over a volume of unknown structures and is blind for their distribution. Although heterogeneity is acknowledged at all scales, it is rarely seen as inherent system property. At small scales (soil moisture probe) and at large scales (neutron probe) our measurements leave quite some ambiguity. Consequently, spatially and temporally continuous measurement of soil water states is essential for advancing our understanding and development of subsurface process theories. We present results from several irrigation experiments accompanied by 2D and 3D time-lapse GPR for the development of a novel technique to visualise and quantify water dynamics in the subsurface. Through the comparison of TDR, tracer and gravimetric measurement of soil moisture it becomes apparent that all sensor-based techniques are capable to record temporal dynamics, but are challenged to precisely quantify the measurements and to extrapolate them in space. At the same time excavative methods are very limited in temporal and spatial resolution. The application of non-invasive 4D GPR measurements complements the existing techniques and reveals structural and temporal dynamics simultaneously. By consequently increasing the density of the GPR data recordings in time and space, we find means to process the data also in the time-dimension. This opens ways to quantitatively analyse soil water dynamics in complex settings.
NASA Astrophysics Data System (ADS)
Drótos, Gábor; Bódai, Tamás; Tél, Tamás
2016-08-01
In nonautonomous dynamical systems, like in climate dynamics, an ensemble of trajectories initiated in the remote past defines a unique probability distribution, the natural measure of a snapshot attractor, for any instant of time, but this distribution typically changes in time. In cases with an aperiodic driving, temporal averages taken along a single trajectory would differ from the corresponding ensemble averages even in the infinite-time limit: ergodicity does not hold. It is worth considering this difference, which we call the nonergodic mismatch, by taking time windows of finite length for temporal averaging. We point out that the probability distribution of the nonergodic mismatch is qualitatively different in ergodic and nonergodic cases: its average is zero and typically nonzero, respectively. A main conclusion is that the difference of the average from zero, which we call the bias, is a useful measure of nonergodicity, for any window length. In contrast, the standard deviation of the nonergodic mismatch, which characterizes the spread between different realizations, exhibits a power-law decrease with increasing window length in both ergodic and nonergodic cases, and this implies that temporal and ensemble averages differ in dynamical systems with finite window lengths. It is the average modulus of the nonergodic mismatch, which we call the ergodicity deficit, that represents the expected deviation from fulfilling the equality of temporal and ensemble averages. As an important finding, we demonstrate that the ergodicity deficit cannot be reduced arbitrarily in nonergodic systems. We illustrate via a conceptual climate model that the nonergodic framework may be useful in Earth system dynamics, within which we propose the measure of nonergodicity, i.e., the bias, as an order-parameter-like quantifier of climate change.
Accident Analyses in Support of the Sludge Water System Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
FINFROCK, S.H.
This document quantifies the potential health effects of the unmitigated hazards identified Hey (2002) for retrieval of sludge from the KE basin. It also identifies potential controls and any supporting mitigative analyses.
Terhune, Claire E; Kimbel, William H; Lockwood, Charles A
2013-08-01
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three-dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non-human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three-dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Alam, Edris; Dominey-Howes, Dale; Chagué-Goff, Catherine; Goff, James
2012-08-01
The 2004 Indian Ocean Tsunami (2004 IOT) challenged assumptions about the level of regional hazard. Significantly, there has been some debate about the hypothesis that the northern Bay of Bengal may be capable of generating large tsunamis similar to the 2004 IOT. To test this hypothesis, we documented historical and palaeotsunamis in the northeast Indian Ocean. Using multiple sources, we identified 135 purported tsunamis. After completing a process of validity assessment, we categorised 31 definite tsunamis, 27 probable tsunamis, 51 doubtful tsunamis and 20 events that only caused a seiche or disturbance in an inland river. Six of the purported events were identified as either cyclones or earthquakes without any associated tsunamis. Using the reported list of 135 events, we identified different tsunamigenic regions and explored the temporal distribution of past events, with the oldest event dated to around 38,000BC (although the dated material is most likely reworked and this was probably a Holocene event). The second oldest event dated to 3000-2000BC. Historical records indicate that only one definite tsunami, occurring in AD1762, was generated in the northern Bay of Bengal. We encountered a number of significant challenges in reviewing and analysing data contained within the documents and sources we consulted. Statistical analysis of tsunami data from AD1710 to AD2010 suggests that the occurrence of a tsunami affecting the coasts of Bangladesh and Myanmar is 0.99% in any given year, and 63% in a century. We recognise that this incomplete tsunami dataset limits the capacity to fully quantify the hazard. As such, we recommend further 'deep' archival research coupled with regional palaeotsunami studies to gain a more sophisticated understanding of the hazard.
NASA Astrophysics Data System (ADS)
Valkaniotis, Sotirios; Ganas, Athanassios; Papathanassiou, George
2017-04-01
Documentation of landslides is a very critical issue because effective protection and mitigation measures can be designed only if they are based on the accuracy of the provided information. Such a documentation aims at a detailed description of the basic geomorphological features e.g. edge, traces, scarp etc. while variables such as the landslide area and the volume of the area (that moved) are also measured. However, it is well known that the mapping of these features is not always feasible due to several adverse factors e.g. vertical slopes, high risk. In order to overcome this issue, remote sensing techniques were applied during the last decades. In particular, Interferometric Synthetic Aperture Radar (InSAR), Light Detection and Ranging (LiDAR) and photogrammetric surveys are used for geomorphic mapping in order to quantify landslide processes. The latter one, photogrammetric survey, is frequently conducted by use of Unmanned Aerial Vehicles (UAV), such as multicopters that are flexible in operating conditions and can be equipped with webcams, digital cameras and other sensors. In addition, UAV is considered as a low-cost imaging technique that offers a very high spatial-temporal resolution and flexibility in data acquisition programming. The goal of this study is to provide quantitative data regarding a deep-seated landslide triggered by the 17 November 2015, Greece earthquake (M=6.5; Ganas et al., 2016) in a coastal area of Lefkada, that was not accessible by foot and accordingly, a UAV was used in order to collect the essential information. Ganas, A., et al., Tectonophysics, http://dx.doi.org/10.1016/j.tecto.2016.08.012
NASA Astrophysics Data System (ADS)
Hawbaker, T. J.; Vanderhoof, M.; Beal, Y. J. G.; Takacs, J. D.; Schmidt, G.; Falgout, J.; Brunner, N. M.; Caldwell, M. K.; Picotte, J. J.; Howard, S. M.; Stitt, S.; Dwyer, J. L.
2016-12-01
Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, many existing fire datasets in the United States are known to be incomplete and that complicates efforts to understand burned area patterns and introduces a large amount of uncertainty in efforts to identify their driving processes and impacts. Because of this, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables. To help meet this need, we developed a novel algorithm that automatically identifies burned areas in temporally-dense time series of Landsat image stacks to produce Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Outputs of the BAECV algorithm, generated for the conterminous United States for 1984 through 2015, consist of burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability, burn classification, and the Julian date of the first Landsat scene a burn was observed. The BAECV products document patterns of fire occurrence that are not well characterized by existing fire datasets in the United States. We anticipate that these data could help to better understand past patterns of fire occurrence, the drivers that created them, and the impacts fires had on natural and human systems.
USDA-ARS?s Scientific Manuscript database
Accurately measuring soil organic C (SOC) stock changes over time is essential for verifying agronomic management effects on C sequestration. This study quantified the spatial and temporal changes in SOC stocks on adjacent 65-ha corn silage-alfalfa production fields receiving liquid dairy manure in...
Demonstrating vegetation dynamics using SIMPPLLE
Glenda Scott; Jimmie D. Chew
1997-01-01
Understanding vegetation dynamics, both spatially and temporally, is essential to the management of natural resources. SIMPPLLE has been designed to help us quantify and communicate these concepts: What levels of process, i.e., fire or insect and disease, to expect; how they spread; what the vegetative distribution and composition is over time; and how silvicultural...
Variability of furrow infiltration and irrigation performance in a macroporous soil
USDA-ARS?s Scientific Manuscript database
The study of spatial and temporal variations of infiltration in furrows is essential for the design and management of surface irrigation. A key difficulty in quantifying the process is that infiltration is dependent on the depth of flow, which varies along a furrow and with time. An additional diffi...
Space--time patterns during the establishmentof a nonindigenous species
Patrick C. Tobin
2007-01-01
Increasing rates of global trade and travel have the invariable consequence of an increase in the likelihood of nonindigenous species arrival, and some new arrivals are successful in establishing themselves. Quantifying the pattern of establishment of nonindigenous species across both spatial and temporal scales is paramount in early detection efforts, yet very...
Global rainfall erosivity assessment based on high-temporal resolution rainfall records
USDA-ARS?s Scientific Manuscript database
Rainfall erosivity quantifies the climatic effect on water erosion. In the framework of the Universal Soil Loss Equation, rainfall erosivity, also known as the R-factor, is defined as the mean annual sum of event erosivity values. For a new global soil erosion assessment, also in the broad context...
USDA-ARS?s Scientific Manuscript database
The Evaporative Stress Index (ESI) quantifies temporal anomalies in a normalized evapotranspiration (ET) metric describing the ratio of actual-to-reference ET (fRET) as derived from satellite remote sensing. At coarse, regional scales (5-10 km resolution), the ESI has demonstrated capacity to captur...
Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have conducted a...
Intertidal native eelgrass Zostera marina and non-indigenous dwarf eelgrass Z. japonica in lower Yaquina estuary, Oregon were mapped between 1997 and 2012. Annual color infrared aerial photographs acquired annually between 1997 and 2007 were used to classify distributions of the...
Using fluidized bed and flume experiments to quantify cohesion development from aging and drainage
USDA-ARS?s Scientific Manuscript database
Temporal variations in soil erosion resistance are often the result of a decrease in soil cohesion due to physical disruption followed by a regain of soil cohesion through a process analogous to a thixotropic sol-gel reaction also called aging, stabilization or consolidation. The goal of this study ...
A field comparison of multiple techniques to quantify groundwater - surface-water interactions
González-Pinzón, Ricardo; Ward, Adam S; Hatch, Christine E; Wlostowski, Adam N; Singha, Kamini; Gooseff, Michael N.; Haggerty, Roy; Harvey, Judson; Cirpka, Olaf A; Brock, James T
2015-01-01
Groundwater–surface-water (GW-SW) interactions in streams are difficult to quantify because of heterogeneity in hydraulic and reactive processes across a range of spatial and temporal scales. The challenge of quantifying these interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied conservative and smart reactive solute-tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the stream bed, and electrical resistivity imaging in a 450-m reach of a 3rd-order stream. GW-SW interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the reach. NaCl and resazurin tracers suggested different surface–subsurface exchange patterns in the upper ⅔ and lower ⅓ of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10- to 20-cm deep hyporheic zone with chemical reactivity of the resazurin tracer indicated at 3-, 6-, and 9-cm sampling depths. Monitoring of hydraulic gradients along transects with MINIPOINT streambed samplers starting ∼40 m from the stream indicated that groundwater discharge prevented development of a larger hyporheic zone, which progressively decreased from the stream thalweg toward the banks. Distributed temperature sensing did not detect extensive inflow of ground water to the stream, and electrical resistivity imaging showed limited large-scale hyporheic exchange. We recommend choosing technique(s) based on: 1) clear definition of the questions to be addressed (physical, biological, or chemical processes), 2) explicit identification of the spatial and temporal scales to be covered and those required to provide an appropriate context for interpretation, and 3) maximizing generation of mechanistic understanding and reducing costs of implementing multiple techniques through collaborative research.
Quantifying the Spatial and Temporal Properties of Microbursts with Multi-spacecraft Missions
NASA Astrophysics Data System (ADS)
Shumko, M.; Turner, D. L.; Sample, J. G.; O'Brien, T. P., III; Claudepierre, S. G.; Fennell, J. F.; Johnson, A.; Blake, J. B.; Agapitov, O. V.; Crew, A. B.; Klumpar, D. M.; Spence, H. E.
2017-12-01
The outer electron Van Allen radiation belt is highly variable, and is at times, depleted on the order of one day or less. One loss mechanism potentially capable of depleting the belts on such timescales is electron microbursts, a sporadic and sudden burst of electrons, routinely observed in Low Earth Orbit (LEO). To quantify their contribution to radiation belt electron loss, their spatio-temporal morphology must be well characterized and constrained. These properties can be investigated by multi-spacecraft missions e.g. Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD-II), AeroCube 6 (AC6) and the Van Allen Probes (VAP). We present results of microburst scale sizes derived using FIREBIRD-II and AC-6 CubeSats pairs. In addition, we present results of a conjunction between AC6 and VAP at L 5. Lower band chorus was observed by the EMFISIS instrument, while microbursts were observed with its MagEIS instrument, and AC6 in LEO. We believe that this MagEIS observation is the first known measurement of an electron microburst outside of LEO.
Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W
2017-01-01
Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.
Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.
2017-01-01
Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943
Ascher, John S.; Holway, David A.
2017-01-01
Despite a large number of ecological studies that document diversity loss resulting from anthropogenic disturbance, surprisingly few consider how disturbance affects temporal patterns of diversity that result from seasonal turnover of species. Temporal dynamics can play an important role in the structure and function of biological assemblages. Here, we investigate the temporal diversity patterns of bee faunas in Southern California coastal sage scrub ecosystems that have been extensively fragmented by urbanization. Using a two-year dataset of 235 bee species (n = 12,036 specimens), we compared 1-ha plots in scrub fragments and scrub reserves with respect to three components of temporal diversity: overall plot-level diversity pooled over time (temporal gamma diversity), diversity at discrete points in time (temporal alpha diversity), and seasonal turnover in assemblage composition (temporal beta diversity). Compared to reserves, fragments harbored bee assemblages with lower species richness and assemblage evenness both when summed across temporal samples (i.e., lower temporal gamma diversity) and at single points in time (i.e., lower temporal alpha diversity). Bee assemblages in fragments also exhibited reduced seasonal turnover (i.e., lower temporal beta diversity). While fragments and reserves did not differ in overall bee abundance, bee abundance in fragments peaked later in the season compared to that in reserves. Our results argue for an increased awareness of temporal diversity patterns, as information about the distinct components of temporal diversity is essential both for characterizing the assemblage dynamics of seasonal organisms and for identifying potential impacts of anthropogenic disturbance on ecosystem function through its effects on assemblage dynamics. PMID:28854229
Proulx, Raphaël; Wirth, Christian; Voigt, Winfried; Weigelt, Alexandra; Roscher, Christiane; Attinger, Sabine; Baade, Jussi; Barnard, Romain L.; Buchmann, Nina; Buscot, François; Eisenhauer, Nico; Fischer, Markus; Gleixner, Gerd; Halle, Stefan; Hildebrandt, Anke; Kowalski, Esther; Kuu, Annely; Lange, Markus; Milcu, Alex; Niklaus, Pascal A.; Oelmann, Yvonne; Rosenkranz, Stephan; Sabais, Alexander; Scherber, Christoph; Scherer-Lorenzen, Michael; Scheu, Stefan; Schulze, Ernst-Detlef; Schumacher, Jens; Schwichtenberg, Guido; Soussana, Jean-François; Temperton, Vicky M.; Weisser, Wolfgang W.; Wilcke, Wolfgang; Schmid, Bernhard
2010-01-01
The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands. PMID:20967213
EAGLE Monitors by Collecting Facts and Generating Obligations
NASA Technical Reports Server (NTRS)
Barrnger, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik
2003-01-01
We present a rule-based framework, called EAGLE, that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. A monitor for an EAGLE formula checks if a finite trace of states satisfies the given formula. We present, in details, an algorithm for the synthesis of monitors for EAGLE. The algorithm is implemented as a Java application and involves novel techniques for rule definition, manipulation and execution. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace of states. Our initial experiments have been successful as EAGLE detected a previously unknown bug while testing a planetary rover controller.
Valuation of Electric Power System Services and Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintner-Meyer, Michael C. W.; Homer, Juliet S.; Balducci, Patrick J.
Accurate valuation of existing and new technologies and grid services has been recognized to be important to stimulate investment in grid modernization. Clear, transparent, and accepted methods for estimating the total value (i.e., total benefits minus cost) of grid technologies and services are necessary for decision makers to make informed decisions. This applies to home owners interested in distributed energy technologies, as well as to service providers offering new demand response services, and utility executives evaluating best investment strategies to meet their service obligation. However, current valuation methods lack consistency, methodological rigor, and often the capabilities to identify and quantifymore » multiple benefits of grid assets or new and innovative services. Distributed grid assets often have multiple benefits that are difficult to quantify because of the locational context in which they operate. The value is temporally, operationally, and spatially specific. It varies widely by distribution systems, transmission network topology, and the composition of the generation mix. The Electric Power Research Institute (EPRI) recently established a benefit-cost framework that proposes a process for estimating multiple benefits of distributed energy resources (DERs) and the associated cost. This document proposes an extension of this endeavor that offers a generalizable framework for valuation that quantifies the broad set of values for a wide range of technologies (including energy efficiency options, distributed resources, transmission, and generation) as well as policy options that affect all aspects of the entire generation and delivery system of the electricity infrastructure. The extension includes a comprehensive valuation framework of monetizable and non-monetizable benefits of new technologies and services beyond the traditional reliability objectives. The benefits are characterized into the following categories: sustainability, affordability, and security, flexibility, and resilience. This document defines the elements of a generic valuation framework and process as well as system properties and metrics by which value streams can be derived. The valuation process can be applied to determine the value on the margin of incremental system changes. This process is typically performed when estimating the value of a particular project (e.g., value of a merchant generator, or a distributed photovoltaic (PV) rooftop installation). Alternatively, the framework can be used when a widespread change in the grid operation, generation mix, or transmission topology is to be valued. In this case a comprehensive system analysis is required.« less
NASA Astrophysics Data System (ADS)
Bair, R.; Segura, C.; Lorion, C.
2015-12-01
Large wood (LW) additions are often part of fish habitat restorations in the PNW where historic forest clear-cutting limited natural wood recruitment. These efforts' relative successes are rarely reported in terms of ecological significance to different life stages of fish. Understanding the effectiveness of LW additions will contribute to successfully managing forest land. In this study we quantify the geomorphic change of a restoration project involving LW additions to three alluvial reaches in Mill Creek, OR. The reaches are 110-130m in plane-bed morphology and drain 2-16km2. We quantify the change in available habitat to different life stages of coho salmon in terms of velocity (v), shear stress (t), flow depth, and grain size distributions (GSD) considering existing thresholds in the literature for acceptable habitat. Flow conditions before and after LW additions are assessed using a 2D hydrodynamic model (FaSTMECH). Model inputs include detailed channel topography, discharge, and surface GSD. The spatial-temporal variability of sediment transport was also quantified based the modeled t distributions and the GSD to document changes in the overall geomorphic regime. Initial modeling results for pre wood conditions show mean t and v values ranging between 0 and 26N/m2 and between 0 and 2.4m/s, respectively for up to bankfull flow (Qbf). The distributions of both t and v become progressively wider and peak at higher values as flow increases with the notable exception at Qbf for which the area of low velocity increases noticeably. The spatial distributions of velocity results indicates that the extent of suitable habitat for adult coho decreased by 18% between flows 30 and 55% of BF. However the area of suitable habitat increased by 15% between 0.55Qbf and Qbf as the flow spreads from the channel into the floodplain. We expect the LW will enhance floodplain connectivity and thus available habitat by creating additional areas of low v during winter flows.
Tracking Geomorphic Signatures of Watershed Suburbanization with Multi-Temporal LiDAR
Urban development practices redistribute surface materials through filling, grading and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-t...
Yovcheva, Zornitza; van Elzakker, Corné P J M; Köbben, Barend
2013-11-01
Web-based tools developed in the last couple of years offer unique opportunities to effectively support scientists in their effort to collaborate. Communication among environmental researchers often involves not only work with geographical (spatial), but also with temporal data and information. Literature still provides limited documentation when it comes to user requirements for effective geo-collaborative work with spatio-temporal data. To start filling this gap, our study adopted a User-Centered Design approach and first explored the user requirements of environmental researchers working on distributed research projects for collaborative dissemination, exchange and work with spatio-temporal data. Our results show that system design will be mainly influenced by the nature and type of data users work with. From the end-users' perspective, optimal conversion of huge files of spatio-temporal data for further dissemination, accuracy of conversion, organization of content and security have a key role for effective geo-collaboration. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Computation Methods for NASA Data-streams for Agricultural Efficiency Applications
NASA Astrophysics Data System (ADS)
Shrestha, B.; O'Hara, C. G.; Mali, P.
2007-12-01
Temporal Map Algebra (TMA) is a novel technique for analyzing time-series of satellite imageries using simple algebraic operators that treats time-series imageries as a three-dimensional dataset, where two dimensions encode planimetric position on earth surface and the third dimension encodes time. Spatio-temporal analytical processing methods such as TMA that utilize moderate spatial resolution satellite imagery having high temporal resolution to create multi-temporal composites are data intensive as well as computationally intensive. TMA analysis for multi-temporal composites provides dramatically enhanced usefulness that will yield previously unavailable capabilities to user communities, if deployment is coupled with significant High Performance Computing (HPC) capabilities; and interfaces are designed to deliver the full potential for these new technological developments. In this research, cross-platform data fusion and adaptive filtering using TMA was employed to create highly useful daily datasets and cloud-free high-temporal resolution vegetation index (VI) composites with enhanced information content for vegetation and bio-productivity monitoring, surveillance, and modeling. Fusion of Normalized Difference Vegetation Index (NDVI) data created from Aqua and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) surface-reflectance data (MOD09) enables the creation of daily composites which are of immense value to a broad spectrum of global and national applications. Additionally these products are highly desired by many natural resources agencies like USDA/FAS/PECAD. Utilizing data streams collected by similar sensors on different platforms that transit the same areas at slightly different times of the day offers the opportunity to develop fused data products that have enhanced cloud-free and reduced noise characteristics. Establishing a Fusion Quality Confidence Code (FQCC) provides a metadata product that quantifies the method of fusion for a given pixel and enables a relative quality and confidence factor to be established for a given daily pixel value. When coupled with metadata that quantify the source sensor, day and time of acquisition, and the fusion method of each pixel to create the daily product; a wealth of information is available to assist in deriving new data and information products. These newly developed abilities to create highly useful daily data sets imply that temporal composites for a geographic area of interest may be created for user-defined temporal intervals that emphasize a user designated day of interest. At GeoResources Institute, Mississippi State University, solutions have been developed to create custom composites and cross-platform satellite data fusion using TMA which are useful for National Aeronautics and Space Administration (NASA) Rapid Prototyping Capability (RPC) and Integrated System Solutions (ISS) experiments for agricultural applications.
Desaules, André
2012-11-01
It is crucial for environmental monitoring to fully control temporal bias, which is the distortion of real data evolution by varying bias through time. Temporal bias cannot be fully controlled by statistics alone but requires appropriate and sufficient metadata, which should be under rigorous and continuous quality assurance and control (QA/QC) to reliably document the degree of consistency of the monitoring system. All presented strategies to detect and control temporal data bias (QA/QC, harmonisation/homogenisation/standardisation, mass balance approach, use of tracers and analogues and control of changing boundary conditions) rely on metadata. The Will Rogers phenomenon, due to subsequent reclassification, is a particular source of temporal data bias introduced to environmental monitoring here. Sources and effects of temporal data bias are illustrated by examples from the Swiss soil monitoring network. The attempt to make a comprehensive compilation and assessment of required metadata for soil contamination monitoring reveals that most metadata are still far from being reliable. This leads to the conclusion that progress in environmental monitoring means further development of the concept of environmental metadata for the sake of temporal data bias control as a prerequisite for reliable interpretations and decisions.
Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics
NASA Astrophysics Data System (ADS)
Eamer, Jordan B. R.; Walker, Ian J.
2013-06-01
Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee, despite erosion on the stoss slope and dune toe. Generally, the foredune became wider by landward extension and the seaward slope recovered from erosion to a similar height and form to that of pre-restoration despite remaining essentially free of vegetation.
Henry, Kenneth S.; Kale, Sushrut; Heinz, Michael G.
2014-01-01
While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20–30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1–2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli. PMID:24596545
Earth-Referenced Aircraft Navigation and Surveillance Analysis
DOT National Transportation Integrated Search
2016-06-01
This document addresses a basic function of aircraft (and other vehicle) surveillance and navi-gation systems analyses quantifying the geometric relationship of two or more locations relative to each other and to the earth. Here, geometry means d...
Final June Revisions Rule State Budgets and New Unit Set-Asides TSD
This technical support document (TSD) for the final revisions to the Transport Rule shows the underlying data and calculations used to quantify the state budget revisions and new unit set-aside revisions.
Dersch, Simon; Graumann, Peter L
2018-06-01
We are witnessing a breathtaking development in light (fluorescence) microscopy, where structures can be resolved down to the size of a ribosome within cells. This has already yielded surprising insight into the subcellular structure of cells, including the smallest cells, bacteria. Moreover, it has become possible to visualize and track single fluorescent protein fusions in real time, and quantify molecule numbers within individual cells. Combined, super resolution and single molecule tracking are pushing the limits of our understanding of the spatio-temporal organization even of the smallest cells to an unprecedented depth. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2001-01-01
The Geospace Electrodynamic Connections (GEC) mission is a multispacecraft Solar-Terrestrial Probe that has been specifically designed to advance the level of physical insight of our understanding of the coupling among the ionosphere, thermosphere, and magnetosphere. GEC is NASA's fifth Solar-Terrestrial Probe. Through multipoint measurements in the Earth's ionosphere-thermosphere (I-T) system, GEC will (i) discover the spatial and temporal scales on which magnetospheric energy input into the I-T region occurs, (ii) determine the spatial and temporal scales for the response of the I-T system to this input of energy, and (iii) quantify the altitude dependence of the response.
Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard A. Ferrare; David D. Turner
Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.
Muzzle flash issues related to the Waco FLIR analysis
NASA Astrophysics Data System (ADS)
Grant, Barbara G.; Hardy, David T.
2001-09-01
The controversy surrounding the origin of flashes on the Mt. Carmel FLIR videotape acquired on April 19, 1993, is introduced. The characteristics of muzzle flash are reviewed. A comparative weapons description is offered. The temporal, spatial, and radiance characteristics of thermal infrared muzzle flash are addressed. Data acquired from a field experiment are presented. The authors conclude that the spatial characteristics of muzzle flash enable its detection by equipment such as the FLIR in use at Mt. Carmel on April 19, 1993; that while flashes obtained in the field appear highly radiant, measurements are necessary to quantify their values; and that the temporal behavior of muzzle flash deserves further study.
Free-living and laboratory gait characteristics in patients with multiple sclerosis
Nair, K. P. S.; Clarke, Alison J.; Van der Meulen, Jill M.; Mazzà, Claudia
2018-01-01
Background Wearable sensors offer the potential to bring new knowledge to inform interventions in patients affected by multiple sclerosis (MS) by thoroughly quantifying gait characteristics and gait deficits from prolonged daily living measurements. The aim of this study was to characterise gait in both laboratory and daily life conditions for a group of patients with moderate to severe ambulatory impairment due to MS. To this purpose, algorithms to detect and characterise gait from wearable inertial sensors data were also validated. Methods Fourteen patients with MS were divided into two groups according to their disability level (EDSS 6.5–6.0 and EDSS 5.5–5.0, respectively). They performed both intermittent and continuous walking bouts (WBs) in a gait laboratory wearing waist and shank mounted inertial sensors. An algorithm (W-CWT) to estimate gait events and temporal parameters (mean and variability values) using data recorded from the waist mounted sensor (Dynaport, Mc Roberts) was tested against a reference algorithm (S-REF) based on the shank-worn sensors (OPAL, APDM). Subsequently, the accuracy of another algorithm (W-PAM) to detect and classify WBs was also tested. The validated algorithms were then used to quantify gait characteristics during short (sWB, 5–50 steps), intermediate (iWB, 51–100 steps) and long (lWB, >100 steps) daily living WBs and laboratory walking. Group means were compared using a two-way ANOVA. Results W-CWT compared to S-REF showed good gait event accuracy (0.05–0.10 s absolute error) and was not influenced by disability level. It slightly overestimated stride time in intermittent walking (0.012 s) and overestimated highly variability of temporal parameters in both intermittent (17.5%–58.2%) and continuous walking (11.2%–76.7%). The accuracy of W-PAM was speed-dependent and decreased with increasing disability. The ANOVA analysis showed that patients walked at a slower pace in daily living than in the laboratory. In daily living gait, all mean temporal parameters decreased as the WB duration increased. In the sWB, the patients with a lower disability score showed, on average, lower values of the temporal parameters. Variability decreased as the WB duration increased. Conclusions This study validated a method to quantify walking in real life in people with MS and showed how gait characteristics estimated from short walking bouts during daily living may be the most informative to quantify level of disability and effects of interventions in patients moderately affected by MS. The study provides a robust approach for the quantification of recognised clinically relevant outcomes and an innovative perspective in the study of real life walking. PMID:29715279
Tyler, Carrie L; Kowalewski, Michał
2017-03-15
Rigorous documentation of spatial heterogeneity (β-diversity) in present-day and preindustrial ecosystems is required to assess how marine communities respond to environmental and anthropogenic drivers. However, the overwhelming majority of contemporary and palaeontological assessments have centred on single higher taxa. To evaluate the validity of single taxa as community surrogates and palaeontological proxies, we compared macrobenthic communities and sympatric death assemblages at 52 localities in Onslow Bay (NC, USA). Compositional heterogeneity did not differ significantly across datasets based on live molluscs, live non-molluscs, and all live organisms. Death assemblages were less heterogeneous spatially, likely reflecting homogenization by time-averaging. Nevertheless, live and dead datasets were greater than 80% congruent in pairwise comparisons to the literature estimates of β-diversity in other marine ecosystems, yielded concordant bathymetric gradients, and produced nearly identical ordinations consistently delineating habitats. Congruent estimates from molluscs and non-molluscs suggest that single groups can serve as reliable community proxies. High spatial fidelity of death assemblages supports the emerging paradigm of Conservation Palaeobiology. Integrated analyses of ecological and palaeontological data based on surrogate taxa can quantify anthropogenic changes in marine ecosystems and advance our understanding of spatial and temporal aspects of biodiversity. © 2017 The Author(s).
Park, Junghyun; Stump, Brian W.; Hayward, Chris; ...
2016-07-14
This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonablymore » variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. As a result, this suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.« less
Park, Junghyun; Stump, Brian W; Hayward, Chris; Arrowsmith, Stephen J; Che, Il-Young; Drob, Douglas P
2016-07-01
This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonably variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. This suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.
NASA Technical Reports Server (NTRS)
Paegle, J.; Kalnay, E.; Baker, W. E.
1981-01-01
The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.
TEMPORAL DISTURBANCES IN INTRACELLULAR CA2+ HOMEOSTASIS INDUCED BY AROCLOR 1254.
Introduction
Despite their well documented association with developmental neurotoxicity, the mechanisms of action of polychlorinated biphenyls (PCBs) on neurons are not well understood. While many different possible mechanisms have been proposed, disruption of Ca2+ homeostasis...
Cross-cultural caregiving and the temporal dimension.
Escandon, Socorro
2013-11-01
The caregiving research literature has explored and documented findings from psychological, clinical, and policy/program perspectives, but little is known regarding the contextual perspectives of caregiving. Temporal factors influence the structure and functioning of the caregiving family. The proposed paradigm adaptation extends a contextual perspective that addresses the exploration of the caregiving process as a temporal, dynamic, progressive process over time, in which decisions made by caregivers may not always be based on observable tasks but, nevertheless, may have important consequences. When cultures cross, attitudes and behaviors are modified, resulting from contact with a different set of values and beliefs. Cross-cultural research aims to explore these changes that take place over time. Future research should consider the inclusion of measures that assess the temporal aspect of caregiving and the acculturation considerations of family caregivers. These measures are especially needed because of the increased influence of international migration, economic globalization, and political conflicts in today's multicultural societies.
Travelling waves and spatial hierarchies in measles epidemics
NASA Astrophysics Data System (ADS)
Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.
2001-12-01
Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.
NASA Astrophysics Data System (ADS)
Dorigo, Wouter; Lucieer, Arko; Podobnikar, Tomaž; Čarni, Andraž
2012-10-01
Japanese knotweed (Fallopia japonica) is listed among 100 of the World's worst invasive alien species and poses an increasing threat to ecosystems and agriculture in Northern America, Europe, and Oceania. This study proposes a remote sensing method to detect local occurrences of F. japonica from low-cost digital orthophotos taken in early spring and summer by concurrently exploring its temporal, spectral, and spatial characteristics. Temporal characteristics of the species are quantified by a band ratio calculated from the green and red spectral channels of both images. The normalized difference vegetation index was used to capture the high near-infrared (NIR) reflectance of F. japonica in summer while the characteristic texture of F. japonica is quantified by calculating gray level co-occurrence matrix (GLCM) measures. After establishing the optimum kernel size to quantify texture, the different input features (spectral, spatial, and texture) were stacked and used as input to the random forest (RF) classifier. The proposed method was tested for a built-up and semi-natural area in Slovenia. The spectral, spatial, and temporal provided an equally important contribution for differentiating F. japonica from other land cover types. The combination of all signatures resulted in a producer accuracy of 90.3% and a user accuracy of 98.1% for F. japonica when validation was based on independent regions of interest. A producer accuracy of 61.4% was obtained for F. japonica when comparing the classification result with all occurrences of F. japonica identified during a field validation campaign. This is an encouraging result given the very small patches in which the species usually occur and the high degree of intermingling with other plants. All hot spots were identified and even likely infestations of F. japonica that had remained undiscovered during the field campaign were detected. The probability images resulting from the RF classifier can be used to reduce the relatively large number of false alarms and may assist in targeted eradication measures. Classification skill only slightly reduced when NIR information was not considered, which is an important recognition with regard to transferability of the method to the most basic type of digital color orthophotos. The possibility to use orthophotos, which at most municipalities are commonly available and easily accessible, facilitates an immediate implementation of the approach in situations where intervention is urgent.
NASA Astrophysics Data System (ADS)
Smart, L.; Taillie, P. J.; Smith, J. W.; Meentemeyer, R. K.
2017-12-01
Sound coastal land-use policy and management decisions to mitigate or adapt to sea level rise impacts depend on understanding vegetation responses to sea level rise over large extents. Accurate methodologies to quantify these changes are necessary to understand the continued production of the ecosystem services upon which human health and well-being depend. This research quantifies spatio-temporal changes in aboveground biomass altered by sea level rise across North Carolina's coastal plain using a combination of repeat-acquisition lidar data and multi-temporal satellite imagery. Using field data from across the study area, we evaluated the reliability of multi-temporal lidar data with disparate densities and accuracies to detect changes along a coastal vegetation gradient from marsh to forested wetland. Despite an 18 fold increase in lidar point density between survey years (2001, 2014), the relationships between lidar-derived heights and field-measured heights were similar (adjusted r2; 0.6 -0.7). Random Forest, a machine learning algorithm, was used to separately predict above-ground biomass pools at the landscape-scale for the two time periods using the 98 field plots as reference data. Models performed well for both years (adjusted r2; 0.67-0.85). The 2001 model required the addition of Landsat spectral indices to meet the same adjusted r2 values as the 2014 model, which utilized lidar-derived metrics alone. Of the many potential lidar-derived predictor metrics, median and mean vegetation height were the best predictors in both time periods. To measure the spatial patterns of biomass change across the landscape, we subtracted the 2001 biomass model from the 2014 model and found significant spatial heterogeneity in biomass change across both the vegetation gradient and across the peninsula over the 12-year time period. In forested areas, we found a mean increase in aboveground biomass whereas in transition zones, marshes and freshwater emergent wetlands we found overall decreases in aboveground biomass. These changes were correlated with distance to estuarine shoreline - areas closest to the shoreline exhibiting the strongest biomass declines. Results from this study have allowed us to better understand climate change-related vegetation dynamics in a sensitive coastal region.
NASA Astrophysics Data System (ADS)
Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.
2018-04-01
River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.
Toward Medical Documentation That Enhances Situational Awareness Learning
Lenert, Leslie A.
2016-01-01
The purpose of writing medical notes in a computer system goes beyond documentation for medical-legal purposes or billing. The structure of documentation is a checklist that serves as a cognitive aid and a potential index to retrieve information for learning from the record. For the past 50 years, one of the primary organizing structures for physicians’ clinical documentation have been the SOAP note (Subjective, Objective, Assessment, Plan). The cognitive check list is well-suited to differential diagnosis but may not support detection of changes in systems and/or learning from cases. We describe an alternative cognitive checklist called the OODA Loop (Observe, Orient, Decide, Act. Through incorporation of projections of anticipated course events with and without treatment and by making “Decisions” an explicit category of documentation in the medical record in the context of a variable temporal cycle for observations, OODA may enhance opportunities to learn from clinical care. PMID:28269872
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks.
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O; Cohn, Emily; Mekaru, Sumiko R; Brownstein, John S; Ramakrishnan, Naren
2017-01-19
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks
NASA Astrophysics Data System (ADS)
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren
2017-01-01
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren
2017-01-01
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations. PMID:28102319
Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm
NASA Astrophysics Data System (ADS)
Conlin, William; Yu, Paulo; Durgesh, Vibhav
2017-11-01
An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.
Quantifying the effectiveness of air quality mitigation measures.
DOT National Transportation Integrated Search
2011-01-01
Before Caltrans can deliver any transportation project, the potential air quality impacts from the operation : of the project must be disclosed in its environmental document. If the air emissions are deemed : significant or would contribute to a viol...
Benefits of controller-pilot data link ATC communications in terminal airspace : final report
DOT National Transportation Integrated Search
1996-09-30
This report documents a Federal Aviation Administration (FAA) study that was : conducted to demonstrate and quantify benefits associated with the implementation of controller-pilot Data Link communications in terminal : airspace. The study was suppor...
Deciphering Scavenging Propensity Among Arthropod Predators.
USDA-ARS?s Scientific Manuscript database
Scavenging is a well documented feeding behavior among many arthrop predators. However, quantifying scavenging feeding activity is not well understood because many predators are small elusive. This makes directly observing predation events in nature almost impossible. If predators prefer dead prey ...
Concept design and analysis of intermodal freight systems : volume II : Methodology and Results
DOT National Transportation Integrated Search
1980-01-01
This report documents the concept design and analysis of intermodal freight systems. The primary objective of this project was to quantify the various tradeoffs and relationships between fundamental system design parameters and operating strategies, ...
Concept design and analysis of intermodal freight systems : volume I : executive summary
DOT National Transportation Integrated Search
1980-01-01
This report documents the concept design and analysis of intermodal freight systems. The primary objective of this project was to quantify the various tradeoffs and relationships between fundamental system design parameters and operating strategies, ...
NASA Astrophysics Data System (ADS)
Statella, Thiago; Pina, Pedro; da Silva, Erivaldo Antônio
2015-04-01
We have developed a method to compute the albedo contrast between dust devil tracks and their surrounding regions on Mars. It is mainly based on Mathematical Morphology operators and uses all the points of the edges of the tracks to compute the values of the albedo contrast. It permits the extraction of more accurate and complete information, when compared to traditional point sampling, not only providing better statistics but also permitting the analysis of local variations along the entirety of the tracks. This measure of contrast, based on relative quantities, is much more adequate to establish comparisons at regional scales and in multi-temporal basis using imagery acquired in rather different environmental and operational conditions. Also, the substantial increase in the details extracted may permit quantifying differential depositions of dust by computing local temporal fading of the tracks with consequences on a better estimation of the thickness of the top most layer of dust and the minimum value needed to create dust devils tracks. The developed tool is tested on 110 HiRISE images depicting regions in the Aeolis, Argyre, Eridania, Noachis and Hellas quadrangles. As a complementary evaluation, we also performed a temporal analysis of the albedo in a region of Russell crater, where high seasonal dust devil activity was already observed before, comprising the years 2007-2012. The mean albedo of the Russell crater is in this case indicative of dust devil tracks presence and, therefore, can be used to quantify dust devil activity.
Estimating recharge rates with analytic element models and parameter estimation
Dripps, W.R.; Hunt, R.J.; Anderson, M.P.
2006-01-01
Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).
Quantifying space-time dynamics of flood event types
NASA Astrophysics Data System (ADS)
Viglione, Alberto; Chirico, Giovanni Battista; Komma, Jürgen; Woods, Ross; Borga, Marco; Blöschl, Günter
2010-11-01
SummaryA generalised framework of space-time variability in flood response is used to characterise five flood events of different type in the Kamp area in Austria: one long-rain event, two short-rain events, one rain-on-snow event and one snowmelt event. Specifically, the framework quantifies the contributions of the space-time variability of rainfall/snowmelt, runoff coefficient, hillslope and channel routing to the flood runoff volume and the delay and spread of the resulting hydrograph. The results indicate that the components obtained by the framework clearly reflect the individual processes which characterise the event types. For the short-rain events, temporal, spatial and movement components can all be important in runoff generation and routing, which would be expected because of their local nature in time and, particularly, in space. For the long-rain event, the temporal components tend to be more important for runoff generation, because of the more uniform spatial coverage of rainfall, while for routing the spatial distribution of the produced runoff, which is not uniform, is also important. For the rain-on-snow and snowmelt events, the spatio-temporal variability terms typically do not play much role in runoff generation and the spread of the hydrograph is mainly due to the duration of the event. As an outcome of the framework, a dimensionless response number is proposed that represents the joint effect of runoff coefficient and hydrograph peakedness and captures the absolute magnitudes of the observed flood peaks.
Toddle temporal-spatial deviation index: Assessment of pediatric gait.
Cahill-Rowley, Katelyn; Rose, Jessica
2016-09-01
This research aims to develop a gait index for use in the pediatric clinic as well as research, that quantifies gait deviation in 18-22 month-old children: the Toddle Temporal-spatial Deviation Index (Toddle TDI). 81 preterm children (≤32 weeks) with very-low-birth-weights (≤1500g) and 42 full-term TD children aged 18-22 months, adjusted for prematurity, walked on a pressure-sensitive mat. Preterm children were administered the Bayley Scales of Infant Development-3rd Edition (BSID-III). Principle component analysis of TD children's temporal-spatial gait parameters quantified raw gait deviation from typical, normalized to an average(standard deviation) Toddle TDI score of 100(10), and calculated for all participants. The Toddle TDI was significantly lower for preterm versus TD children (86 vs. 100, p=0.003), and lower in preterm children with <85 vs. ≥85 BSID-III motor composite scores (66 vs. 89, p=0.004). The Toddle TDI, which by design plateaus at typical average (BSID-III gross motor 8-12), correlated with BSID-III gross motor (r=0.60, p<0.001) and not fine motor (r=0.08, p=0.65) in preterm children with gross motor scores ≤8, suggesting sensitivity to gross motor development. The Toddle TDI demonstrated sensitivity and specificity to gross motor function in very-low-birth-weight preterm children aged 18-22 months, and has been potential as an easily-administered, revealing clinical gait metric. Copyright © 2016 Elsevier B.V. All rights reserved.
Subregional neuroanatomical change as a biomarker for Alzheimer's disease
Holland, Dominic; Brewer, James B.; Hagler, Donald J.; Fennema-Notestine, Christine; Dale, Anders M.; Weiner, Michael; Thal, Leon; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowki, John; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Gamst, Anthony; Potter, William Z.; Montine, Tom; Anders, Dale; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Shaw, Les; Lee, Virginia M.-Y.; Korecka, Magdalena; Crawford, Karen; Neu, Scott; Harvey, Danielle; Kornak, John; Kachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Vorobik, Remi; Quinn, Joseph; Schneider, Lon; Pawluczyk, Sonia; Spann, Bryan; Fleisher, Adam S.; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Badger, Beverly; Grossman, Hillel; Tang, Cheuk; Stern, Jessica; deToledo-Morrell, Leyla; Shah, Raj C.; Bach, Julie; Duara, Ranjan; Isaacson, Richard; Strauman, Silvia; Albert, Marilyn S.; Pedroso, Julia; Toroney, Jaimie; Rusinek, Henry; de Leon, Mony J.; De Santi, Susan M.; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Aiello, Marilyn; Clark, Christopher M.; Pham, Cassie; Nunez, Jessica; Smith, Charles D.; Given, Curtis A.; Hardy, Peter; DeKosky, Steven T.; Oakley, MaryAnn; Simpson, Donna M.; Ismail, M. Saleem; Porsteinsson, Anton; McCallum, Colleen; Cramer, Steven C.; Mulnard, Ruth A.; McAdams-Ortiz, Catherine; Diaz-Arrastia, Ramon; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Laubinger, Mary M.; Bartzokis, George; Silverman, Daniel H. S.; Lu, Po H.; Fletcher, Rita; Parfitt, Francine; Johnson, Heather; Farlow, Martin; Herring, Scott; Hake, Ann M.; van Dyck, Christopher H.; MacAvoy, Martha G.; Bifano, Laurel A.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Graham, Simon; Caldwell, Curtis; Feldman, Howard; Assaly, Michele; Hsiung, Ging-Yuek R.; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Gitelman, Darren; Johnson, Nancy; Mesulam, Marsel; Sadowsky, Carl; Villena, Teresa; Mesner, Scott; Aisen, Paul S.; Johnson, Kathleen B.; Behan, Kelly E.; Sperling, Reisa A.; Rentz, Dorene M.; Johnson, Keith A.; Rosen, Allyson; Tinklenberg, Jared; Ashford, Wes; Sabbagh, Marwan; Connor, Donald; Obradov, Sanja; Killiany, Ron; Norbash, Alex; Obisesan, Thomas O.; Jayam-Trouth, Annapurni; Wang, Paul; Auchus, Alexander P.; Huang, Juebin; Friedland, Robert P.; DeCarli, Charles; Fletcher, Evan; Carmichael, Owen; Kittur, Smita; Mirje, Seema; Johnson, Sterling C.; Borrie, Michael; Lee, T.-Y.; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Highum, Diane; Preda, Adrian; Nguyen, Dana; Tariot, Pierre N.; Hendin, Barry A.; Scharre, Douglas W.; Kataki, Maria; Beversdorf, David Q.; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Gandy, Sam; Marenberg, Marjorie E.; Rovner, Barry W.; Pearlson, Godfrey; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Pare, Nadia; Williamson, Jeff D.; Sink, Kaycee M.; Potter, Huntington; Ashok Raj, B.; Giordano, Amy; Ott, Brian R.; Wu, Chuang-Kuo; Cohen, Ronald; Wilks, Kerri L.; Safirstein, Beth E.
2009-01-01
Regions of the temporal and parietal lobes are particularly damaged in Alzheimer's disease (AD), and this leads to a predictable pattern of brain atrophy. In vivo quantification of subregional atrophy, such as changes in cortical thickness or structure volume, could lead to improved diagnosis and better assessment of the neuroprotective effects of a therapy. Toward this end, we have developed a fast and robust method for accurately quantifying cerebral structural changes in several cortical and subcortical regions using serial MRI scans. In 169 healthy controls, 299 subjects with mild cognitive impairment (MCI), and 129 subjects with AD, we measured rates of subregional cerebral volume change for each cohort and performed power calculations to identify regions that would provide the most sensitive outcome measures in clinical trials of disease-modifying agents. Consistent with regional specificity of AD, temporal-lobe cortical regions showed the greatest disease-related changes and significantly outperformed any of the clinical or cognitive measures examined for both AD and MCI. Global measures of change in brain structure, including whole-brain and ventricular volumes, were also elevated in AD and MCI, but were less salient when compared to changes in normal subjects. Therefore, these biomarkers are less powerful for quantifying disease-modifying effects of compounds that target AD pathology. The findings indicate that regional temporal lobe cortical changes would have great utility as outcome measures in clinical trials and may also have utility in clinical practice for aiding early diagnosis of neurodegenerative disease. PMID:19996185
Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields
Lee, Christopher M.; Osman, Ahmad F.; Volgushev, Maxim; Escabí, Monty A.
2016-01-01
Mammals perceive a wide range of temporal cues in natural sounds, and the auditory cortex is essential for their detection and discrimination. The rat primary (A1), ventral (VAF), and caudal suprarhinal (cSRAF) auditory cortical fields have separate thalamocortical pathways that may support unique temporal cue sensitivities. To explore this, we record responses of single neurons in the three fields to variations in envelope shape and modulation frequency of periodic noise sequences. Spike rate, relative synchrony, and first-spike latency metrics have previously been used to quantify neural sensitivities to temporal sound cues; however, such metrics do not measure absolute spike timing of sustained responses to sound shape. To address this, in this study we quantify two forms of spike-timing precision, jitter, and reliability. In all three fields, we find that jitter decreases logarithmically with increase in the basis spline (B-spline) cutoff frequency used to shape the sound envelope. In contrast, reliability decreases logarithmically with increase in sound envelope modulation frequency. In A1, jitter and reliability vary independently, whereas in ventral cortical fields, jitter and reliability covary. Jitter time scales increase (A1 < VAF < cSRAF) and modulation frequency upper cutoffs decrease (A1 > VAF > cSRAF) with ventral progression from A1. These results suggest a transition from independent encoding of shape and periodicity sound cues on short time scales in A1 to a joint encoding of these same cues on longer time scales in ventral nonprimary cortices. PMID:26843599
Subregional neuroanatomical change as a biomarker for Alzheimer's disease.
Holland, Dominic; Brewer, James B; Hagler, Donald J; Fennema-Notestine, Christine; Fenema-Notestine, Christine; Dale, Anders M
2009-12-08
Regions of the temporal and parietal lobes are particularly damaged in Alzheimer's disease (AD), and this leads to a predictable pattern of brain atrophy. In vivo quantification of subregional atrophy, such as changes in cortical thickness or structure volume, could lead to improved diagnosis and better assessment of the neuroprotective effects of a therapy. Toward this end, we have developed a fast and robust method for accurately quantifying cerebral structural changes in several cortical and subcortical regions using serial MRI scans. In 169 healthy controls, 299 subjects with mild cognitive impairment (MCI), and 129 subjects with AD, we measured rates of subregional cerebral volume change for each cohort and performed power calculations to identify regions that would provide the most sensitive outcome measures in clinical trials of disease-modifying agents. Consistent with regional specificity of AD, temporal-lobe cortical regions showed the greatest disease-related changes and significantly outperformed any of the clinical or cognitive measures examined for both AD and MCI. Global measures of change in brain structure, including whole-brain and ventricular volumes, were also elevated in AD and MCI, but were less salient when compared to changes in normal subjects. Therefore, these biomarkers are less powerful for quantifying disease-modifying effects of compounds that target AD pathology. The findings indicate that regional temporal lobe cortical changes would have great utility as outcome measures in clinical trials and may also have utility in clinical practice for aiding early diagnosis of neurodegenerative disease.
Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo
2010-01-01
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.
Estimating aboveground net primary productivity in forest-dominated ecosystems
Brian D. Kloeppel; Mark E. Harmon; Timothy J. Fahey
2007-01-01
The measurement of net primary productivity (NPP) in forest ecosystems presents a variety of challenges because of the large and complex dimensions of trees and the difficulties of quantifying several components of NPP. As summarized by Clark et al. (2001a), these methodological challenges can be overcome, and more reliable spatial and temporal comparisons can be...
Quantifying greenhouse gas sources and sinks in managed wetland systems
Stephen M Ogle; Patrick Hunt; Carl Trettin
2014-01-01
This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions and sinks at the entity scale for managed wetland systems. More specifically, it focuses on methods for managed palustrine wetlands.1 Section 4.1 provides an overview of wetland systems and resulting GHG emissions, system boundaries and temporal scale, a summary of the...
A framework for developing urban forest ecosystem services and goods indicators
Cynnamon Dobbs; Francisco J. Escobedo; Wayne C. Zipperer
2011-01-01
The social and ecological processes impacting on urban forests have been studied at multiple temporal and spatial scales in order to help us quantify, monitor, and value the ecosystem services that benefit people. Few studies have comprehensively analyzed the full suite of ecosystem services, goods (ESG), and ecosystem disservices provided by an urban forest....
Biophysical control of whole tree transpiration under an urban environment in Northern China
Lixin Chen; Zhiqiang Zhang; Zhandong Li; Jianwu Tang; Peter Caldwell; et al
2011-01-01
Urban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined...
Soil organic matter as sole indicator of soil degradation
S.E. Obalum; G.U. Chibuike; S. Peth; Ying Ouyang
2017-01-01
Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a...
Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades
Christina Tague; Gordon Grant; Mike Farrell; Janet Choate; Anne Jefferson
2008-01-01
Recent studies predict that projected climate change will lead to significant reductions in summer streamflow in the mountainous regions of the Western United States. Hydrologic modeling directed at quantifying these potential changes has focused on the magnitude and timing of spring snowmelt as the key control on the spatial temporal pattern of summer streamflow. We...
Remote sensing fire and fuels in southern California
Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen
2011-01-01
Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...
USDA-ARS?s Scientific Manuscript database
A pilot-scale, recirculating-flow-through, non-steady-state (RFT-NSS) chamber system was designed for quantifying nitrous oxide (N2O) emissions from simulated open-lot beef cattle feedlot pens. The system employed five 1 square meter steel pans. A lid was placed systematically on each pan and heads...
Fire metrology: Current and future directions in physics-based measurements
Robert L. Kremens; Alistair M.S. Smith; Matthew B. Dickinson
2010-01-01
The robust evaluation of fire impacts on the biota, soil, and atmosphere requires measurement and analysis methods that can characterize combustion processes across a range of temporal and spatial scales. Numerous challenges are apparent in the literature. These challenges have led to novel research to quantify the 1) structure and heterogeneity of the pre-fire...
Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.
Ellis, Paul A; Mackay, Rae; Rivett, Michael O
2007-04-01
Groundwater-river exchanges in an urban setting have been investigated through long term field monitoring and detailed modelling of a 7 km reach of the Tame river as it traverses the unconfined Triassic Sandstone aquifer that lies beneath the City of Birmingham, UK. Field investigations and numerical modelling have been completed at a range of spatial and temporal scales from the metre to the kilometre scale and from event (hourly) to multi-annual time scales. The objective has been to quantify the spatial and temporal flow distributions governing mixing processes at the aquifer-river interface that can affect the chemical activity in the hyporheic zone of this urbanised river. The hyporheic zone is defined to be the zone of physical mixing of river and aquifer water. The results highlight the multi-scale controls that govern the fluid exchange distributions that influence the thickness of the mixing zone between urban rivers and groundwater and the patterns of groundwater flow through the bed of the river. The morphologies of the urban river bed and the adjacent river bank sediments are found to be particularly influential in developing the mixing zone at the interface between river and groundwater. Pressure transients in the river are also found to exert an influence on velocity distribution in the bed material. Areas of significant mixing do not appear to be related to the areas of greatest groundwater discharge and therefore this relationship requires further investigation to quantify the actual remedial capacity of the physical hyporheic zone.
Global Water Surface Dynamics: Toward a Near Real Time Monitoring Using Landsat and Sentinel Data
NASA Astrophysics Data System (ADS)
Pekel, J. F.; Belward, A.; Gorelick, N.
2017-12-01
Global surface water dynamics and its long-term changes have been documented at 30m spatial resolution using the entire multi-temporal orthorectified Landsat 5, 7 and 8 archive for the years 1984 to 2015. This validated dataset recorded the months and years when water was present, where occurrence changed and what form changes took (in terms of seasonality), documents inter-annual variability, and multi-annual trends. This information is freely available from the global surface water explorer https://global-surface-water.appspot.com. Here we extend this work (doi:10.1038/nature20584 ) by combining post 2015 Landsat 7 and 8 data with imagery from the Copernicus program's Sentinel 2a and b satellites. Using these data in combination improves the spatial resolution (from 30m to a nominal 10m) and temporal resolution (from 8 days to 4 days revisit time at the equator). The improved geographic and temporal completeness of the combined Landsat / Sentinel dataset also offers new opportunities for the identification and characterization of seasonally occurring waterbodies. These improvements are also being examined in the light of reporting progress against Agenda 2030's Sustainable Development Goal 6, especially the indicator used to measure 'change in the extent of water-related ecosystems over time'.
Ictal verbal help-seeking: Occurrence and the underlying etiology.
Asadi-Pooya, Ali A; Asadollahi, Marjan; Bujarski, Krzysztof; Rabiei, Amin H; Aminian, Narsis; Wyeth, Dale; Sperling, Michael R
2016-11-01
Ictal verbal help-seeking has never been systematically studied before. In this study, we evaluated a series of patients with ictal verbal help-seeking to characterize its frequency and underlying etiology. We retrospectively reviewed all the long-term video-EEG reports from Jefferson Comprehensive Epilepsy Center over a 12-year period (2004-2015) for the occurrence of the term "help" in the text body. All the extracted reports were reviewed and patients with at least one episode of documented ictal verbal help-seeking in epilepsy monitoring unit (EMU) were studied. For each patient, the data were reviewed from the electronic medical records, EMU report, and neuroimaging records. During the study period, 5133 patients were investigated in our EMU. Twelve patients (0.23%) had at least one episode of documented ictal verbal help-seeking. Nine patients (six women and three men) had epilepsy and three patients (two women and one man) had psychogenic nonepileptic seizures (PNES). Seven out of nine patients with epilepsy had temporal lobe epilepsy; six patients had right temporal lobe epilepsy. Ictal verbal help-seeking is a rare finding among patients evaluated in epilepsy monitoring units. Ictal verbal help-seeking may suggest that seizures arise in or propagate to the right temporal lobe. Copyright © 2016 Elsevier Inc. All rights reserved.
Phytoplankton plasticity drives large variability in carbon fixation efficiency
NASA Astrophysics Data System (ADS)
Ayata, Sakina-Dorothée.; Lévy, Marina; Aumont, Olivier; Resplandy, Laure; Tagliabue, Alessandro; Sciandra, Antoine; Bernard, Olivier
2014-12-01
Phytoplankton C:N stoichiometry is highly flexible due to physiological plasticity, which could lead to high variations in carbon fixation efficiency (carbon consumption relative to nitrogen). However, the magnitude, as well as the spatial and temporal scales of variability, remains poorly constrained. We used a high-resolution biogeochemical model resolving various scales from small to high, spatially and temporally, in order to quantify and better understand this variability. We find that phytoplankton C:N ratio is highly variable at all spatial and temporal scales (5-12 molC/molN), from mesoscale to regional scale, and is mainly driven by nitrogen supply. Carbon fixation efficiency varies accordingly at all scales (±30%), with higher values under oligotrophic conditions and lower values under eutrophic conditions. Hence, phytoplankton plasticity may act as a buffer by attenuating carbon sequestration variability. Our results have implications for in situ estimations of C:N ratios and for future predictions under high CO2 world.
Functional Nonlinear Mixed Effects Models For Longitudinal Image Data
Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu
2015-01-01
Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453
Scribner, Kim T.; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.
2015-01-01
Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.
Abstract Linguistic Structure Correlates with Temporal Activity during Naturalistic Comprehension
Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming; Hale, John T.
2016-01-01
Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do not detail the information flowing through them. We investigate syntactic information. Does brain activity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing models. We compare processing-complexity predictions from these states against fMRI timecourses from regions that have been implicated in sentence comprehension. We find that hierarchical grammars independently predict timecourses from left anterior and posterior temporal lobe. Markov models are predictive in these regions and across a broader network that includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical syntactic representations. PMID:27208858
Statistical properties of edge plasma turbulence in the Large Helical Device
NASA Astrophysics Data System (ADS)
Dewhurst, J. M.; Hnat, B.; Ohno, N.; Dendy, R. O.; Masuzaki, S.; Morisaki, T.; Komori, A.
2008-09-01
Ion saturation current (Isat) measurements made by three tips of a Langmuir probe array in the Large Helical Device are analysed for two plasma discharges. Absolute moment analysis is used to quantify properties on different temporal scales of the measured signals, which are bursty and intermittent. Strong coherent modes in some datasets are found to distort this analysis and are consequently removed from the time series by applying bandstop filters. Absolute moment analysis of the filtered data reveals two regions of power-law scaling, with the temporal scale τ ≈ 40 µs separating the two regimes. A comparison is made with similar results from the Mega-Amp Spherical Tokamak. The probability density function is studied and a monotonic relationship between connection length and skewness is found. Conditional averaging is used to characterize the average temporal shape of the largest intermittent bursts.
Temporal Geophysical Signatures Due to Contaminant Mass Remediation
Geophysical surveys acquired over a ten year period are used to document changes in bulk electrical conductivity associated with the attenuation of hydrocarbon contaminants at the former fire training facility (FT-02) Wurtsmith Air Force base (WAFB), Oscoda, MI, USA. Initial inv...
NASA Astrophysics Data System (ADS)
Macente, Alice; Fusseis, Florian; Butler, Ian; Tudisco, Erika; Hall, Stephen; Andò, Edward
2016-04-01
Pressure-solution creep is a common deformation mechanism in the upper crust. It represents a mass transfer via dissolution-reprecipitation that critically affects the hydraulic properties of rocks. Successful management of safe radioactive storage sites in rock-salt deposits critically depends on an accurate knowledge of the hydro-mechanical behaviour of salt deposits. Despite numerous lab experiments that have been conducted, many aspects of pressure-solution are still poorly understood. There is little knowledge about the spatio-temporal evolution of porosity and permeability during pressure-solution creep. While rates of pressure-solution creep in silicates and carbonates are slow, which makes laboratory investigations of these materials impractical, compaction experiments have demonstrated that NaCl samples deform sufficiently fast to study pressure-solution creep in a lab environment at room temperature and modest loads. We present results from novel experiments that quantify the 4-dimensional (three spatial dimensions plus time) evolution of pressure-solution processes using in-situ x-ray microtomography. Our experiments are performed in custom made x-ray transparent presses. 5 mm diameter NaCl powder samples with a grain size of 250-300 μm are loaded dry into the press and pre-compacted to produce a starting aggregated material. The sample is then flooded with saturated NaCl solution and loaded uniaxially by means of a pneumatic actuator to a constant uniaxial stress. Different sample mixtures were tested, as well as different uniaxial loads. The resulting deformation of the samples is documented in 3-dimensional microtomographic datasets, acquired at regular time intervals. Image analysis allowed characterization of the microstructural evolution of the NaCl grains and the spatio-temporal distribution of porosity during ongoing mechanical and chemical compaction. The microtomography data have also been analysed with 3D Digital Image Correlation (3D-DIC or DVC) to quantify the fields of displacements in each direction, as well as volumetric and maximum shear strain fields. Following the approach described above, we have been able to quantify and characterize in 4D the evolution of pressure-solution creep and porosity distribution in relation to different sample materials and increasing uniaxial load. The presence of phyllosilicates (biotite) and more competent materials (glass beads) allowed pressure-solution to develop in a much shorter time compared to pure halite sample. The same trend is observed in samples experiencing bigger uniaxial loads (6.6 MPa v 1.6 MPa). We also found that, in the presence of phyllosilicates (biotite), pore size distribution clearly reflects the localisation of pressure-solution processes, as for natural stylolites. In the presence of glass beads, pressure-solution has a greater effect on the pore orientations rather than pore sizes. Our results extend the current understanding of the effect of pressure-solution creep on the mechanical and hydraulic properties of rocks, with implications for natural rock-salt, salt-based repository systems (nuclear and chemical waste storage) and salt mining.
DOT National Transportation Integrated Search
2011-03-01
Studying public perception of public transportation and the environment in which it operates is crucial to understanding the symbiotic relationship : between transportation and the built environment. This report documents research completed to quanti...
Significant Contribution Assessment of Proposed Revisions Technical Support Document (TSD)
This TSD demonstrates EPA’s analysis to quantify the SO2 emissions that significantly contribute to nonattainment or interfere with maintenance of the National Ambient Air Quality Standards in downwind states for the Revisions to the Transport Rule.
Developing safety performance measures for roundabout applications in the state of Oregon.
DOT National Transportation Integrated Search
2013-04-01
This report documents the research effort to quantify the safety performance of roundabouts in the State of Oregon. : The primary goal of this research is to provide the Oregon Department of Transportation (ODOT) with safety : performance functions (...
Habitat assessment, Missouri River at Hermann, Missouri
Jacobson, Robert B.; Laustrup, Mark S.; Reuter, Joanna M.
2002-01-01
This report documents methods and results of aquatic habitat assessment in the Missouri River near Hermann, Missouri. The assessment is intended to improve understanding of spatial and temporal variability of aquatic habitat, including habitats thought to be critical for the endangered pallid sturgeon (Scaphirhynchus albus). Physical aquatic habitat - depth, velocity, and substrate - was assessed around 9 wing dikes and adjacent to the U.S. Route 19 bridge, at discharges varying from 44,000 cubic feet per second (cfs) to 146, 000 cfs during August 2000-May, 2001. For the river as a whole, velocities are bi-modally distributed with distinct peaks relating to navigation channel and wing-dike environments. Velocities predictably showed an increasing trend with increasing discharge. Substrate within wing dikes was dominated by mud at low discharges, whereas the navigation channel had patches of transporting sand, rippled sand, and coarse sand. Discharges that overtopped the wing dikes (about 93,000 cfs, March 2001) were associated with increases of patchy sand, rippled sand, and coarse sand within the wing dikes. When flows were substantially over the wing dikes (146,000 cfs, May 2001) substrates within most wing dikes showed substantial reorganization and coarsening. The habitat assessment provides a geospatial database that can be used to query wing dikes for distributions of depth, velocity, and substrate for comparison with fish samples collected by US Fish and Wildlife Service biologists (Grady and others, 2001). In addition, the assessment documented spatial and temporal variation in habitat within the Hermann reach and over a range of discharges. Measurable geomorphic change--alteration of substrate conditions plus substantial erosion and deposition--was associated with flows equaled or exceeded 12-40% of the time (40-140 days per year). Documented geomorphic change associated with high-frequency flows underscores the natural temporal variability of physical habitat in the Lower Missouri River.
Atoh, M
1994-10-01
"The [1994] International Conference on Population and Development was held in Cairo, Egypt.... In this essay I briefly described global population trends and [their] economic and ecological implications, stated the temporal progress from arguments in the three Preparatory Committees toward the achievement of consensus at the end of the Cairo Conference, summarized and commented [on] each chapter of the Programme of Action, clarified the major characteristics of the Cairo document compared to the documents in Bucharest and Mexico City, and finally discussed the effectiveness of the strategy suggested in the Cairo document for addressing population and development issues in the context of sustainability." (SUMMARY IN ENG) excerpt
Shoulder dystocia documentation: an evaluation of a documentation training intervention.
LeRiche, Tammy; Oppenheimer, Lawrence; Caughey, Sharon; Fell, Deshayne; Walker, Mark
2015-03-01
To evaluate the quality and content of nurse and physician shoulder dystocia delivery documentation before and after MORE training in shoulder dystocia management skills and documentation. Approximately 384 charts at the Ottawa Hospital General Campus involving a diagnosis of shoulder dystocia between the years of 2000 and 2006 excluding the training year of 2003 were identified. The charts were evaluated for 14 key components derived from a validated instrument. The delivery notes were then scored based on these components by 2 separate investigators who were blinded to delivery note author, date, and patient identification to further quantify delivery record quality. Approximately 346 charts were reviewed for physician and nurse delivery documentation. The average score for physician notes was 6 (maximum possible score of 14) both before and after the training intervention. The nurses' average score was 5 before and after the training intervention. Negligible improvement was observed in the content and quality of shoulder dystocia documentation before and after nurse and physician training.
Wang, Cheng; Yang, Zhongfang; Zhong, Cong; Ji, Junfeng
2016-09-01
The contributions of major driving forces on temporal changes of heavy metals in the soil in a representative river-alluviation area at the lower of Yangtze River were successfully quantified by combining geostatistics analysis with the modified principal component scores & multiple linear regressions approach (PCS-MLR). The results showed that the temporal (2003-2014) changes of Cu, Zn, Ni and Cr presented a similar spatial distribution pattern, whereas the Cd and Hg showed the distinctive patterns. The temporal changes of soil Cu, Zn, Ni and Cr may be predominated by the emission of the shipbuilding industry, whereas the significant changes of Cd and Hg were possibly predominated by the geochemical and geographical processes, such as the erosion of the Yangtze River water and leaching because of soil acidification. The emission of metal-bearing shipbuilding industry contributed an estimated 74%-83% of the changes in concentrations of Cu, Zn, Ni and Cr, whereas the geochemical and geographical processes may contribute 58% of change of Cd in the soil and 59% of decrease of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synchronization in Random Pulse Oscillator Networks
NASA Astrophysics Data System (ADS)
Brown, Kevin; Hermundstad, Ann
Motivated by synchronization phenomena in neural systems, we study synchronization of random networks of coupled pulse oscillators. We begin by considering binomial random networks whose nodes have intrinsic linear dynamics. We quantify order in the network spiking dynamics using a new measure: the normalized Lev-Zimpel complexity (LZC) of the nodes' spike trains. Starting from a globally-synchronized state, we see two broad classes of behaviors. In one (''temporally random''), the LZC is high and nodes spike independently with no coherent pattern. In another (''temporally regular''), the network does not globally synchronize but instead forms coherent, repeating population firing patterns with low LZC. No topological feature of the network reliably predicts whether an individual network will show temporally random or regular behavior; however, we find evidence that degree heterogeneity in binomial networks has a strong effect on the resulting state. To confirm these findings, we generate random networks with independently-adjustable degree mean and variance. We find that the likelihood of temporally-random behavior increases as degree variance increases. Our results indicate the subtle and complex relationship between network structure and dynamics.
Presence of nonlinearity in intracranial EEG recordings: detected by Lyapunov exponents
NASA Astrophysics Data System (ADS)
Liu, Chang-Chia; Shiau, Deng-Shan; Chaovalitwongse, W. Art; Pardalos, Panos M.; Sackellares, J. C.
2007-11-01
In this communication, we performed nonlinearity analysis in the EEG signals recorded from patients with temporal lobe epilepsy (TLE). The largest Lyapunov exponent (Lmax) and phase randomization surrogate data technique were employed to form the statistical test. EEG recordings were acquired invasively from three patients in six brain regions (left and right temporal depth, sub-temporal and orbitofrontal) with 28-32 depth electrodes placed in depth and subdural of the brain. All three patients in this study have unilateral epileptic focus region on the right hippocampus(RH). Nonlinearity was detected by comparing the Lmax profiles of the EEG recordings to its surrogates. The nonlinearity was seen in all different states of the patient with the highest found in post-ictal state. Further our results for all patients exhibited higher degree of differences, quantified by paired t-test, in Lmax values between original and its surrogate from EEG signals recorded from epileptic focus regions. The results of this study demonstrated the Lmax is capable to capture spatio-temporal dynamics that may not be able to detect by linear measurements in the intracranial EEG recordings.
Naimo, T.J.; Atchison, G.J.; Holland Bartels, L. E.
1992-01-01
Several physiological responses have been used to evaluate the effects of contaminants on marine bivalves. Respiration rate, food clearance rate, ammonia excretion rate, and food assimilation efficiency can be quantified and incorporated into a bioenergetics model known as scope for growth. This model estimates an organism's instantaneous energy budget and quantifies the available energy for growth and reproduction. We applied some of these physiological techniques to freshwater mussels to determine the sublethal effects of cadmium. The objective of our study was to quantify the physiological responses of adult pocketbook mussels, Lampsilis ventricosa , exposed to sublethal concentrations of cadmium. We selected L. ventricosa for study because it is abundant in the upper Mississippi River and its life history has been partially documented.
NASA Astrophysics Data System (ADS)
Cowgill, E.; Gold, R. D.; Arrowsmith, R.; Friedrich, A. M.
2015-12-01
In elastic rebound theory, hazard increases as interseismic strain rebuilds after rupture. This model is challenged by the temporal variation in the pacing of major earthquakes that is both predicted by mechanical models and suggested by some long paleoseismic records (e.g., 1-3). However, the extent of such behavior remains unclear due to a lack of long (5-25 ky) records of fault slip. Using Monte Carlo analysis of 11 offset landforms, we determined a 16-ky record of fault slip for the active, left-lateral Altyn Tagh fault, which bounds the NW margin of the Tibetan Plateau. This history reveals a pulse of accelerated slip between 6.4 and 6.0 ka, during which the fault slipped 9 +14/-2 m at a rate of 23 +35/-5 mm/y, or ~3x the 16 ky average of 8.1 +1.2/-0.9mm/y. These two modes of earthquake behavior suggest temporal variation in the rates of stress storage and release. The simplest explanation for the pulse is a cluster of 2-8 Mw > 7.5 earthquakes. Such supercyclicity has been reported for the Sunda (4) and Cascadia (3) megathrusts, but contrasts with steady slip along the strike-slip Alpine fault (5), for example. A second possibility is that the pulse reflects a single, unusually large rupture. However, this Black Swan event is unlikely: empirical scaling relationships require a Mw 8.2 rupture of the entire 1200-km-long ATF to produce 7 m of average slip. Likewise, Coulomb stress change from rupture on the adjacent North Altyn fault is of modest magnitude and overlap with the ATF. Poor temporal correlation between precipitation and the slip pulse argues against climatically modulated changes in surface loading (lakes/ice) or pore-fluid pressure. "Paleoslip" studies such as this sacrifice the single-event resolution of paleoseismology in exchange for long records that quantify both the timing and magnitude of fault slip averaged over multiple ruptures, and are essential for documenting temporal variations in fault slip as we begin to use calibrated physical models of the earthquake cycle to forecast time-dependent earthquake hazard (e.g., 6,7). 1. Weldon et al., 2004 GSA Today 14, 4; 2. Rockwell et al., 2015, PAGEOPH, 172, 1143; 3. Goldfinger et al., 2013, SRL, 84, 24; 4. Sieh et al., 2008, Science, 322, 1674; 5. Berryman et l., 2012, Science, 336, 1690; 6. Barbot et al., 2012, Science, 336, 707; 7. Field, 2015, BSSA, 105, 544.
TES/Aura L3 Nitric Acid (HNO3) Daily V4 (TL3HNOD)
Atmospheric Science Data Center
2018-02-28
... 37 x 23 km Spatial Resolution: 2.3 x 23 km Temporal Coverage: 08/22/2004 - 04/10/2005 ... Guide Documents: Data User's Guide (PDF): Level 3 Level 3 Algorithms, Requirements, & Products (PDF) ...
Calculations Supporting Management Zones
USDA-ARS?s Scientific Manuscript database
Since the early 1990’s the tools of precision farming (GPS, yield monitors, soil sensors, etc.) have documented how spatial and temporal variability are important factors impacting crop yield response. For precision farming, variability can be measured then used to divide up a field so that manageme...
Technology Assessment in Support of the Presidential Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Weisbin, Charles R.; Lincoln, William; Mrozinski, Joe; Hua, Hook; Merida, Sofia; Shelton, Kacie; Adumitroaie, Virgil; Derleth, Jason; Silberg, Robert
2006-01-01
This document is a viewgraph presentation that contains: (1) pictorial description of lunar context, (2) Definition of base case, (3) Optimization results, (4) Effects of cost uncertainties for base case and different assumed annual budget levels and (5) Effects of temporal optimization.
NASA Astrophysics Data System (ADS)
Pasquarella, Valerie J.
Just as the carbon dioxide observations that form the Keeling curve revolutionized the study of the global carbon cycle, free and open access to all available Landsat imagery is fundamentally changing how the Landsat record is being used to study ecosystems and ecological dynamics. This dissertation advances the use of Landsat time series for visualization, classification, and detection of changes in terrestrial ecological processes. More specifically, it includes new examples of how complex ecological patterns manifest in time series of Landsat observations, as well as novel approaches for detecting and quantifying these patterns. Exploration of the complexity of spectral-temporal patterns in the Landsat record reveals both seasonal variability and longer-term trajectories difficult to characterize using conventional bi-temporal or even annual observations. These examples provide empirical evidence of hypothetical ecosystem response functions proposed by Kennedy et al. (2014). Quantifying observed seasonal and phenological differences in the spectral reflectance of Massachusetts' forest communities by combining existing harmonic curve fitting and phenology detection algorithms produces stable feature sets that consistently out-performed more traditional approaches for detailed forest type classification. This study addresses the current lack of species-level forest data at Landsat resolutions, demonstrating the advantages of spectral-temporal features as classification inputs. Development of a targeted change detection method using transformations of time series data improves spatial and temporal information on the occurrence of flood events in landscapes actively modified by recovering North American beaver (Castor canadensis) populations. These results indicate the utility of the Landsat record for the study of species-habitat relationships, even in complex wetland environments. Overall, this dissertation confirms the value of the Landsat archive as a continuous record of terrestrial ecosystem state and dynamics. Given the global coverage of remote sensing datasets, the time series visualization and analysis approaches presented here can be extended to other areas. These approaches will also be improved by more frequent collection of moderate resolution imagery, as planned by the Landsat and Sentinel-2 programs. In the modern era of global environmental change, use of the Landsat spectral-temporal domain presents new and exciting opportunities for the long-term large-scale study of ecosystem extent, composition, condition, and change.
NASA Astrophysics Data System (ADS)
Williams, C. A.; Gu, H.
2016-12-01
Protecting forest carbon stores and uptake is central to national and international policies aimed at mitigating climate change. The success of such polices relies on high quality, accurate reporting (Tier 3) that earns the greatest financial value of carbon credits and hence incentivizes forest conservation and protection. Methods for Tier 3 Measuring, Reporting, and Verification (MRV) are still in development, generally involving some combination of direct remote sensing, ground based inventorying, and computer modeling, but have tended to emphasize assessments of live aboveground carbon stocks with a less clear connection to the real target of MRV which is carbon emissions and removals. Most existing methods are also ambiguous as to the mechanisms that underlie carbon accumulation, and any have limited capacity for forecasting carbon dynamics over time. This paper reports on the design and implementation of a new method for Tier 3 MRV, decision support, and forecasting that is being applied to assess forest carbon dynamics across the conterminous US. The method involves parameterization of a carbon cycle model (CASA) to match yield data from the US forest inventory (FIA). A range of disturbance types and severities are imposed in the model to estimate resulting carbon emissions, carbon uptake, and carbon stock changes post-disturbance. Resulting trajectories are then applied to landscapes at the 30-m pixel level based on two remote-sensing based data products. One documents the year, type, and severity of disturbance in recent decades. The second documents aboveground biomass which is used to estimate time since disturbance and associated carbon fluxes and stocks. Results will highlight high-resolution (30 m) annual carbon stocks and fluxes from 1990 to 2010 for select regions of interest across the US. Spatial analyses reveal regional patterns in US forest carbon stocks and fluxes as they respond to forest types, climate, and disturbances. Temporal analyses document effects of recent disturbance trends and demonstrate the method's capacity for quantifying changes in forest carbon over time as needed for UNFCCC reporting.
Automatic multimodal detection for long-term seizure documentation in epilepsy.
Fürbass, F; Kampusch, S; Kaniusas, E; Koren, J; Pirker, S; Hopfengärtner, R; Stefan, H; Kluge, T; Baumgartner, C
2017-08-01
This study investigated sensitivity and false detection rate of a multimodal automatic seizure detection algorithm and the applicability to reduced electrode montages for long-term seizure documentation in epilepsy patients. An automatic seizure detection algorithm based on EEG, EMG, and ECG signals was developed. EEG/ECG recordings of 92 patients from two epilepsy monitoring units including 494 seizures were used to assess detection performance. EMG data were extracted by bandpass filtering of EEG signals. Sensitivity and false detection rate were evaluated for each signal modality and for reduced electrode montages. All focal seizures evolving to bilateral tonic-clonic (BTCS, n=50) and 89% of focal seizures (FS, n=139) were detected. Average sensitivity in temporal lobe epilepsy (TLE) patients was 94% and 74% in extratemporal lobe epilepsy (XTLE) patients. Overall detection sensitivity was 86%. Average false detection rate was 12.8 false detections in 24h (FD/24h) for TLE and 22 FD/24h in XTLE patients. Utilization of 8 frontal and temporal electrodes reduced average sensitivity from 86% to 81%. Our automatic multimodal seizure detection algorithm shows high sensitivity with full and reduced electrode montages. Evaluation of different signal modalities and electrode montages paces the way for semi-automatic seizure documentation systems. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Chapman, Brian E.; Lee, Sean; Kang, Hyunseok Peter; Chapman, Wendy W.
2011-01-01
In this paper we describe an application called peFinder for document-level classification of CT pulmonary angiography reports. peFinder is based on a generalized version of the ConText algorithm, a simple text processing algorithm for identifying features in clinical report documents. peFinder was used to answer questions about the disease state (pulmonary emboli present or absent), the certainty state of the diagnosis (uncertainty present or absent), the temporal state of an identified pulmonary embolus (acute or chronic), and the technical quality state of the exam (diagnostic or not diagnostic). Gold standard answers for each question were determined from the consensus classifications of three human annotators. peFinder results were compared to naive Bayes’ classifiers using unigrams and bigrams. The sensitivities (and positive predictive values) for peFinder were 0.98(0.83), 0.86(0.96), 0.94(0.93), and 0.60(0.90) for disease state, quality state, certainty state, and temporal state respectively, compared to 0.68(0.77), 0.67(0.87), 0.62(0.82), and 0.04(0.25) for the naive Bayes’ classifier using unigrams, and 0.75(0.79), 0.52(0.69), 0.59(0.84), and 0.04(0.25) for the naive Bayes’ classifier using bigrams. PMID:21459155
Uncertainties in detecting decadal change in extractable soil elements in Northern Forests
NASA Astrophysics Data System (ADS)
Bartlett, O.; Bailey, S. W.; Ducey, M. J.
2016-12-01
Northern Forest ecosystems have been or are being impacted by land use change, forest harvesting, acid deposition, atmospheric CO2 enrichment, and climate change. Each of these has the potential to modify soil forming processes, and the resulting chemical stocks. Horizontal and vertical variations in concentrations complicate determination of temporal change. This study evaluates sample design, sample size, and differences among observers as sources of uncertainty when quantifying soil temporal change over regional scales. Forty permanent, northern hardwood, monitoring plots were established on the White Mountain National Forest in central New Hampshire and western Maine. Soil pits were characterized and sampled by genetic horizon at plot center in 2001 and resampled again in 2014 two-meters on contour from the original sampling location. Each soil horizon was characterized by depth, color, texture, structure, consistency, boundaries, coarse fragments, and roots from the forest floor to the upper C horizon, the relatively unaltered glacial till parent material. Laboratory analyses included pH in 0.01 M CaCl2 solution and extractable Ca, Mg, Na, K, Al, Mn, and P in 1 M NH4OAc solution buffered at pH 4.8. Significant elemental differences were identified by genetic horizon from paired t-tests (p ≤ 0.05) indicate temporal change across the study region. Power analysis, 0.9 power (α = 0.05), revealed sampling size was appropriate within this region to detect concentration change by genetic horizon using a stratified sample design based on topographic metrics. There were no significant differences between observers' descriptions of physical properties. As physical properties would not be expected to change over a decade, this suggests spatial variation in physical properties between the pairs of sampling pits did not detract from our ability to detect temporal change. These results suggest that resampling efforts within a site, repeated across a region, to quantify elemental change by carefully described genetic horizons is an appropriate method of detecting soil temporal change in this region. Sample size and design considerations from this project will have direct implications for future monitoring programs to characterize change in soil chemistry.
Global Climate Change and NEPA: The Difficulty with Cumulative Impacts Analysis
2008-05-18
This paper will provide a survey of the current requirements under the law for addressing global climate change in NEPA documents, along with various...methodologies for quantifying the potential global climate change impacts of federal actions subject to NEPA.
Applying TEAM in Regional Sketch Planning: Three Case Studies in Atlanta, Orlando, St. Louis
This EPA report documents 3 case studies of the application of TEAM (Travel Efficiency Assessment Method) to develop, assess and quantify regional greenhouse gas and criteria pollutant emission reductions from travel efficiency strategies in a cost effecti
Performance of preventive maintenance treatments for flexible pavements in Texas.
DOT National Transportation Integrated Search
2017-03-01
This report documents the work performed in the first year of the Texas Department of TxDOT Project 0-6878. : The main objective of this project is to quantify the effectiveness of various popular preventive maintenance : (PM) treatments under varyin...
Scaling-up of CO2 fluxes to assess carbon sequestration in rangelands of Central Asia
Bruce K. Wylie; Tagir G. Gilmanov; Douglas A. Johnson; Nicanor Z. Saliendra; Larry L. Tieszen; Ruth Anne F. Doyle; Emilio A. Laca
2006-01-01
Flux towers provide temporal quantification of local carbon dynamics at specific sites. The number and distribution of flux towers, however, are generally inadequate to quantify carbon fluxes across a landscape or ecoregion. Thus, scaling up of flux tower measurements through use of algorithms developed from remote sensing and GIS data is needed for spatial...
Haiganoush K. Preisler; Jeffrey A. Hicke; Alan A. Ager; Jane L. Hayes
2012-01-01
Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process...
Denys Yemshanov; Frank H. Koch; Daniel W. McKenney; Marla C. Downing; Frank Sapio
2009-01-01
Nonindigenous species have caused significant impacts to North American forests despite past and present international phytosanitary efforts. Though broadly acknowledged, the risks of pest invasions are difficult to quantify as they involve interactions between many factors that operate across a range of spatial and temporal scales: the transmission of invading...
D.S. Ross; S.W. Bailey; R.D. Briggs; J. Curry; I.J. Fernandez; G. Fredriksen; C.L. Goodale; P.W. Hazlett; P.R. Heine; C.E. Johnson; J.T. Larson; G.B. Lawrence; R.K. Kolka; R. Ouimet; D. Pare; D. deB Richter; C.D. Schirmer; R.A. Warby
2015-01-01
Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from...
Jan C. Thomas; Eric V. Mueller; Simon Santamaria; Michael Gallagher; Mohamad El Houssami; Alexander Filkov; Kenneth Clark; Nicholas Skowronski; Rory M. Hadden; William Mell; Albert Simeoni
2017-01-01
An experimental approach has been developed to quantify the characteristics and flux of firebrands during a management-scale wildfire in a pine-dominated ecosystem. By characterizing the local fire behavior and measuring the temporal and spatial variation in firebrand collection, the flux of firebrands has been related to the fire behavior for the first time. This...
Patrick M.A. James; Barry Cooke; Bryan M.T. Brunet; Lisa M. Lumley; Felix A.H. Sperling; Marie-Josee Fortin; Vanessa S. Quinn; Brian R. Sturtevant
2015-01-01
Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio-temporal variability in genetic...
Crystal L. Raymond; Donald McKenzie
2014-01-01
We quantified carbon (C) dynamics of forests in Washington, US using theoretical models of C dynamics as a function of forest age. We fit empirical models to chronosequences of forest inventory data at two scales: a coarse-scale ecosystem classification (ecosections) and forest types (potential vegetation) within ecosections. We hypothesized that analysis at the finer...
Guoyi Zhou; Ge Sun; Xu Wang; Chuanyan Zhou; Steven G. McNulty; James M. Vose; Devendra M. Amatya
2008-01-01
It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi-empirical ET modeled using a dimension analysis method that...
Predicting longleaf pine coarse root decomposition in the southeastern US
Peter H. Anderson; Kurt H. Johnsen; John R. Butnor; Carlos A. Gonzalez-Benecke; Lisa J. Samuelson
2018-01-01
Storage of belowground carbon (C) is an important component of total forest C. However, belowground C changes temporally due to forest growth and tree mortality (natural and via harvesting) and these fluctuations are critical for modeling C in forests under varying management regimes. To date, little progress has been made in quantifying the rate of decay of southern...
A temporal analysis of urban forest carbon storage using remote sensing
Soojeong Myeong; David J. Nowak; Michael J. Duggin
2006-01-01
Quantifying the carbon storage, distribution, and change of urban trees is vital to understanding the role of vegetation in the urban environment. At present, this is mostly achieved through ground study. This paper presents a method based on the satellite image time series, which can save time and money and greatly speed the process of urban forest carbon storage...
Woody debris volume depletion through decay: Implications for biomass and carbon accounting
Shawn Fraver; Amy M. Milo; John B. Bradford; Anthony W. D’Amato; Laura Kenefic; Brian J. Palik; Christopher W. Woodall; John Brissette
2013-01-01
Woody debris decay rates have recently received much attention because of the need to quantify temporal changes in forest carbon stocks. Published decay rates, available for many species, are commonly used to characterize deadwood biomass and carbon depletion. However, decay rates are often derived from reductions in wood density through time, which when used to model...
USDA-ARS?s Scientific Manuscript database
Severe droughts in the Southern Great Plains (SGP: Kansas, Oklahoma, and Texas) in recent years have reduced the productivity of tallgrass prairie and resulted in substantial economic losses to the beef cattle industry in this region. Understanding spatial and temporal patterns of agricultural droug...
Quantifying the ecological success of a community-based wildlife conservation area in Tanzania.
Lee, Derek E; Bond, Monica L
2018-04-03
In Tanzania, community-based natural resource management of wildlife occurs through the creation of Wildlife Management Areas (WMAs). WMAs consist of multiple villages designating land for wildlife conservation, and sharing a portion of subsequent tourism revenues. Nineteen WMAs are currently operating, encompassing 7% of Tanzania's land area, with 19 more WMAs planned. The ecological success or failure of WMAs for wildlife conservation has yet to be quantified. We defined ecological success in this case as significantly greater densities of wildlife and significantly lower densities of livestock in the WMA relative to the control site, after the WMA was established. We used 4 years of distance sampling surveys conducted 6 times per year for wild and domestic ungulates to quantify wildlife and livestock densities before and after the establishment and implementation of management efforts at Randilen WMA, relative to a control site on adjacent land of similar vegetation and habitat types. We documented similarity between the sites before WMA establishment, when both sites were managed by the same authority. After WMA establishment, we documented significantly higher densities of resident wildlife (giraffes and dik-diks) and lower densities of cattle in the WMA, relative to the control site, indicating short-term ecological success. Continued monitoring is necessary to determine longer-term effects, and to evaluate management decisions.
Bicuspid aortic valve hemodynamics: a fluid-structure interaction study
NASA Astrophysics Data System (ADS)
Chandra, Santanu; Seaman, Clara; Sucosky, Philippe
2011-11-01
The bicuspid aortic valve (BAV) is a congenital defect in which the aortic valve forms with two leaflets instead of three. While calcific aortic valve disease (CAVD) also develops in the normal tricuspid aortic valve (TAV), its progression in the BAV is more rapid. Although studies have suggested a mechano-potential root for the disease, the native BAV hemodynamics remains largely unknown. This study aimed at characterizing BAV hemodynamics and quantifying the degree of wall-shear stress (WSS) abnormality on BAV leaflets. Fluid-structure interaction models validated with particle-image velocimetry were designed to predict the flow and leaflet dynamics in idealized TAV and BAV anatomies. Valvular function was quantified in terms of the effective orifice area. The regional leaflet WSS was characterized in terms of oscillatory shear index, temporal shear magnitude and temporal shear gradient. The predictions indicate the intrinsic degree of stenosis of the BAV anatomy, reveal drastic differences in shear stress magnitude and pulsatility on BAV and TAV leaflets and confirm the side- and site-specificity of the leaflet WSS. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, these results support the existence of a mechano-etiology of CAVD in the BAV.
Ozaki, Yu-ichi; Uda, Shinsuke; Saito, Takeshi H; Chung, Jaehoon; Kubota, Hiroyuki; Kuroda, Shinya
2010-04-01
Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.
NASA Astrophysics Data System (ADS)
Ortiz, M.; Graber, H. C.; Wilkinson, J.; Nyman, L. M.; Lund, B.
2017-12-01
Much work has been done on determining changes in summer ice albedo and morphological properties of melt ponds such as depth, shape and distribution using in-situ measurements and satellite-based sensors. Although these studies have dedicated much pioneering work in this area, there still lacks sufficient spatial and temporal scales. We present a prototype algorithm using Linear Support Vector Machines (LSVMs) designed to quantify the evolution of melt pond fraction from a recently government-declassified high-resolution panchromatic optical dataset. The study area of interest lies within the Beaufort marginal ice zone (MIZ), where several in-situ instruments were deployed by the British Antarctic Survey in joint with the MIZ Program, from April-September, 2014. The LSVM uses four dimensional feature data from the intensity image itself, and from various textures calculated from a modified first-order histogram technique using probability density of occurrences. We explore both the temporal evolution of melt ponds and spatial statistics such as pond fraction, pond area, and number pond density, to name a few. We also introduce a linear regression model that can potentially be used to estimate average pond area by ingesting several melt pond statistics and shape parameters.
Asher, Lucy; Collins, Lisa M.; Ortiz-Pelaez, Angel; Drewe, Julian A.; Nicol, Christine J.; Pfeiffer, Dirk U.
2009-01-01
While the incorporation of mathematical and engineering methods has greatly advanced in other areas of the life sciences, they have been under-utilized in the field of animal welfare. Exceptions are beginning to emerge and share a common motivation to quantify ‘hidden’ aspects in the structure of the behaviour of an individual, or group of animals. Such analyses have the potential to quantify behavioural markers of pain and stress and quantify abnormal behaviour objectively. This review seeks to explore the scope of such analytical methods as behavioural indicators of welfare. We outline four classes of analyses that can be used to quantify aspects of behavioural organization. The underlying principles, possible applications and limitations are described for: fractal analysis, temporal methods, social network analysis, and agent-based modelling and simulation. We hope to encourage further application of analyses of behavioural organization by highlighting potential applications in the assessment of animal welfare, and increasing awareness of the scope for the development of new mathematical methods in this area. PMID:19740922
Hough, Augustus; Vartan, Christine M; Groppi, Julie A; Reyes, Sonia; Beckey, Nick P
2013-07-01
The development of an electronic tool to quantify and characterize the interventions made by clinical pharmacy specialists (CPSs) in a primary care setting is described. An electronic clinical tool was developed to document the clinical pharmacy interventions made by CPSs at the Veterans Affairs Medical Center in West Palm Beach, Florida. The tool, embedded into the electronic medical record, utilizes a novel reminder dialogue to complete pharmacotherapy visit encounters and allows CPSs to document interventions made during patient care visits. Interventions are documented using specific electronic health factors so that the type and number of interventions made for both disease-specific and other pharmacotherapy interventions can be tracked. These interventions were assessed and analyzed to evaluate the impact of CPSs in the primary care setting. From February 2011 through January 2012, a total of 16,494 pharmacotherapy interventions (therapeutic changes and goals attained) were recorded. The average numbers of interventions documented per patient encounter were 0.96 for the management of diabetes mellitus, hypertension, dyslipidemia, and heart failure and 1.36 for non-disease-specific interventions, independent of those interventions being made by the primary physician or other members of the primary care team. A clinical reminder tool developed to quantify and characterize the interventions provided by CPSs found that for every visit with a CPS, approximately one disease-specific intervention and one additional pharmacotherapy intervention were made, independent of those interventions being made by the primary physician or other members of the primary care team.
Spotswood, Erica N.; Bartolome, James W.; Allen-Diaz, Barbara
2015-01-01
Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery. PMID:26222069
Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara
2015-01-01
Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.
CoinCalc-A new R package for quantifying simultaneities of event series
NASA Astrophysics Data System (ADS)
Siegmund, Jonatan F.; Siegmund, Nicole; Donner, Reik V.
2017-01-01
We present the new R package CoinCalc for performing event coincidence analysis (ECA), a novel statistical method to quantify the simultaneity of events contained in two series of observations, either as simultaneous or lagged coincidences within a user-specific temporal tolerance window. The package also provides different analytical as well as surrogate-based significance tests (valid under different assumptions about the nature of the observed event series) as well as an intuitive visualization of the identified coincidences. We demonstrate the usage of CoinCalc based on two typical geoscientific example problems addressing the relationship between meteorological extremes and plant phenology as well as that between soil properties and land cover.
Axioms for Obligation and Robustness with Temporal Logic
NASA Astrophysics Data System (ADS)
French, Tim; McCabe-Dansted, John C.; Reynolds, Mark
RoCTL* was proposed to model and specify the robustness of reactive systems. RoCTL* extended CTL* with the addition of Obligatory and Robustly operators, which quantify over failure-free paths and paths with one more failure respectively. This paper gives an axiomatisation for all the operators of RoCTL* with the exception of the Until operator; this fragment is able to express similar contrary-to-duty obligations to the full RoCTL* logic. We call this formal system NORA, and give a completeness proof. We also consider the fragments of the language containing only path quantifiers (but where variables are dependent on histories). We examine semantic properties and potential axiomatisations for these fragments.
Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura
2017-01-01
Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.
Changes in temporal variability of precipitation over land due to anthropogenic forcings
Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby
2017-02-02
This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcings (ALL) with simulations of natural forcings only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005,more » our results indicate that anthropogenic forcings have resulted in decreased uniformity (i.e., increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. Lastly, the results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.« less
Schäfer, Katharina; Ludwig, Björn; Meyer-Gutknecht, Hannes; Schott, Timm Cornelius
2015-02-01
The aim of this study was to quantify the wear times of removable appliances during active orthodontic treatment. The wear times of 141 orthodontic patients treated with active removable appliances in different locations were documented over a period of 3 months using an incorporated microsensor. Gender, age, treatment location, health insurance status, and type of device were evaluated with respect to wear time. Significant associations between wear times and patient factors were calculated using non-parametric tests. The median daily wear time was 9.7 hours/day for the entire cohort, far less than the 15 hours/day prescribed. Younger patients wore their appliances for longer than older patients (7-9 years 12.1 hours/day, 10-12 years 9.8 hours/day, and 13-15 years 8.5 hours/day; P < 0.0001). The median wear time for females (10.6 hours/day) was 1.4 hours/day longer than males (9.3 hours/day; P = 0.017). Patients treated at different locations wore their devices with a difference of up to 5.0 hours/day. Privately insured patients had significantly longer median wear times than statutorily insured patients. No significant difference in wear time was noted according to device type. The daily wear time of removable appliances during the active phase of orthodontic therapy can be routinely quantified using integrated microelectronic sensors. The relationship between orthodontist and patient seems to play a key role in patient adherence. Wear-time documentation provides the basis for more individualized wear-time recommendations for patients with removable appliances. This could result in a more efficient, shorter, and less painful orthodontic therapy. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Vascular Abnormalities Associated with Thermal and Electrical Trauma,
1992-01-01
Knippenberg, R,W.: Temporal relationships among immunologic alterations in a guinea pig model of thermal injury. J. Infect, Dis., 153:1098, 1986. 7...decompression venous access to 72 hr in thermally injured patients of the stomach and alimentation provided either by is supported by the documented
Glossary Precipitation Frequency Data Server GIS Grids Maps Time Series Temporals Documents Probable provides a measure of the average time between years (and not events) in which a particular value is RECCURENCE INTERVAL). ANNUAL MAXIMUM SERIES (AMS) - Time series of the largest precipitation amounts in a
From museum cases to the classroom: Emerging opportunities for specimen-based education
USDA-ARS?s Scientific Manuscript database
Natural history collections are one of the most powerful resources available for documenting the effects of changing environmental conditions on global biodiversity. Worldwide, more than 1.5 billion specimens are contained in natural history museums. These materials, collected over vast temporal and...
Human Behavior from a Chronobiological Perspective.
ERIC Educational Resources Information Center
Hoskins, Carol Noll
1980-01-01
The rhythmic patterning of man's biochemical, physiological, and psychological behavior and the temporal relationships among various functions are the province of chronobiology. Citing animal and human studies, the author documents the progress of this new science and poses complex questions that it may answer about human behavior. (Editor/SJL)
NASA Astrophysics Data System (ADS)
Ashraf, Faisal Bin; Marttila, Hannu; Torabi Haghighi, Ali; Alfredsen, Knut; Riml, Joakim; Kløve, Bjørn
2017-04-01
Increasing national and international demands for more flexible management of the energy resources with more non-storable renewables being used in adapting to the ongoing climate change will influence hydropower operations. Damming and regulation practices of river systems causes homogenization of long term river dynamics but also higher temporal sub-daily flow variations i.e. hydropeaking. In Nordic countries, many major rivers and lakes are regulated for hydropower purposes, which have caused considerable changes in river biotic, hydrologic and morphologic structures. Due to rapidly changing energy markets in the Nordic countries (deregulation of the power market and adding of renewable but intermittent sources of energy like, wind, solar, etc.) sub-daily flow conditions are under change within regulated river systems due to the increased demand on hydropower for providing balancing power. However, holistic analysis from changes in energy markets and its effect on sub-daily river regimes is lacking. This study analyzes the effects of hydropeaking on river regime in Finland, Sweden and Norway using long term high resolution data (15 minutes to hourly time interval) from 72 pristine and 136 regulated rivers with large spatial coverage across Fennoscandia. Since the sub-daily discharge variation is masked through the monthly or daily analyzes, in order to quantify these changes high resolution data is needed. In our study we will document, characterize and classify the impacts of sub-daily flow variation due to regulation and climatic variation on various river systems in Fennoscandia. Further, with increasing social demands for ecosystem services in regulated rivers, it is important to evaluate the new demand and update hydropower operation plan accordingly. We will analyse ecological response relationships along gradients of hydrological alteration for the biological communities, processes of river ecosystems and climate boundaries together with considering the new energy demands and consumptions in the Nordic energy market. For assessing sub-daily flow data various already available indices will be used which measure the magnitude of hydropeaking and temporal rate of discharge changes. For the impact quantification, the hydropeaking pressure will be calculated and set for each of the impact class. Also work will be done to formulate some new indices which will specifically quantify sub-daily change in the boreal rivers. We select representative case-studies, future scenarios and develop optimization methods to reduce impacts on aquatic ecosystems and maximizing the economic benefits from hydropower generation for stakeholders.
Robust Kriged Kalman Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baingana, Brian; Dall'Anese, Emiliano; Mateos, Gonzalo
2015-11-11
Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel l1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.
Invasive European green crab (Carcinus maenus) populations have exploded with devastating losses to Maine’s intertidal resources including soft-shell clams, eelgrass beds, and salt marshes. This project quantified the green crab abundance in three different marsh locations ...
We report the first documented observation of the potentially toxic cyanobacterium Cylindrospermopsis in lake Erie and Sandusky Bay in 2005 and quantify the physical and chemical parameters and the cyanobacterial community composition contemporaneous to its occurrence. We hypothe...
Final Revisions Rule State Budgets and New Unit Set-Asides TSD
This technical support document shows the underlying data and calculations used to quantify the state budget revisions and new unit set-aside revisions made in the final revisions rule, as well as those revisions included in the direct final revisions rule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby
This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcings (ALL) with simulations of natural forcings only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005,more » our results indicate that anthropogenic forcings have resulted in decreased uniformity (i.e., increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. Lastly, the results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.« less
Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.
2008-01-01
Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.
Shaikhouni, Ammar
2017-01-01
Converging evidence suggests that reinstatement of neural activity underlies our ability to successfully retrieve memories. However, the temporal dynamics of reinstatement in the human cortex remain poorly understood. One possibility is that neural activity during memory retrieval, like replay of spiking neurons in the hippocampus, occurs at a faster timescale than during encoding. We tested this hypothesis in 34 participants who performed a verbal episodic memory task while we recorded high gamma (62–100 Hz) activity from subdural electrodes implanted for seizure monitoring. We show that reinstatement of distributed patterns of high gamma activity occurs faster than during encoding. Using a time-warping algorithm, we quantify the timescale of the reinstatement and identify brain regions that show significant timescale differences between encoding and retrieval. Our data suggest that temporally compressed reinstatement of cortical activity is a feature of cued memory retrieval. SIGNIFICANCE STATEMENT We show that cued memory retrieval reinstates neural activity on a faster timescale than was present during encoding. Our data therefore provide a link between reinstatement of neural activity in the cortex and spontaneous replay of cortical and hippocampal spiking activity, which also exhibits temporal compression, and suggest that temporal compression may be a universal feature of memory retrieval. PMID:28336569
Annual changes in seasonal river water temperatures in the eastern and western United States
Wagner, Tyler; Midway, Stephen R.; Whittier, Joanna B.; DeWeber, Jefferson T.; Paukert, Craig P.
2017-01-01
Changes in river water temperatures are anticipated to have direct effects on thermal habitat and fish population vital rates, and therefore, understanding temporal trends in water temperatures may be necessary for predicting changes in thermal habitat and how species might respond to such changes. However, many investigations into trends in water temperatures use regression methods that assume long-term monotonic changes in temperature, when in fact changes are likely to be nonmonotonic. Therefore, our objective was to highlight the need and provide an example of an analytical method to better quantify the short-term, nonmonotonic temporal changes in thermal habitat that are likely necessary to determine the effects of changing thermal conditions on fish populations and communities. To achieve this objective, this study uses Bayesian dynamic linear models (DLMs) to examine seasonal trends in river water temperatures from sites located in the eastern and western United States, regions that have dramatically different riverine habitats and fish communities. We estimated the annual rate of change in water temperature and found little evidence of seasonal changes in water temperatures in the eastern U.S. We found more evidence of warming for river sites located in the western U.S., particularly during the fall and winter seasons. Use of DLMs provided a more detailed view of temporal dynamics in river thermal habitat compared to more traditional methods by quantifying year-to-year changes and associated uncertainty, providing managers with the information needed to adapt decision making to short-term changes in habitat conditions that may be necessary for conserving aquatic resources in the face of a changing climate.
The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies
NASA Astrophysics Data System (ADS)
Gall, H. E.; Schultz, D.; Mejia, A.; Harman, C. J.; Raj, C.; Goslee, S.; Veith, T.; Patterson, P. H.
2017-12-01
Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70 - 95%); however, these values are typically calculated as an average of removal efficiencies observed or simulated for individual events. We argue that due to: (i) positively correlated sediment concentration-discharge relationships; (ii) strong temporal inequality exhibited by sediment transport; and (iii) decreasing VFS performance with increasing flow rates, VFS removal efficiencies over annual time scales may be significantly lower than the per-event values or averages typically reported in the literature and used in decision-making models. By applying a stochastic approach to a two-component VFS model, we investigated the extent of the disparity between two calculation methods: averaging efficiencies from each event over the course of one year, versus reporting the total annual load reduction. We examined the effects of soil texture, concentration-discharge relationship, and VFS slope to reveal the potential errors that may be incurred by ignoring the effects of temporal inequality in quantifying VFS performance. Simulation results suggest that errors can be as low as < 2% and as high as > 20%, with the differences between the two methods of removal efficiency calculations greatest for: (i) soils with high percentage of fine particulates; (ii) VFSs with higher slopes; and (iii) strongly positive concentration-discharge relationships. These results can aid in annual-scale decision making for achieving downstream water quality goals.
Inverse analysis and regularisation in conditional source-term estimation modelling
NASA Astrophysics Data System (ADS)
Labahn, Jeffrey W.; Devaud, Cecile B.; Sipkens, Timothy A.; Daun, Kyle J.
2014-05-01
Conditional Source-term Estimation (CSE) obtains the conditional species mass fractions by inverting a Fredholm integral equation of the first kind. In the present work, a Bayesian framework is used to compare two different regularisation methods: zeroth-order temporal Tikhonov regulatisation and first-order spatial Tikhonov regularisation. The objectives of the current study are: (i) to elucidate the ill-posedness of the inverse problem; (ii) to understand the origin of the perturbations in the data and quantify their magnitude; (iii) to quantify the uncertainty in the solution using different priors; and (iv) to determine the regularisation method best suited to this problem. A singular value decomposition shows that the current inverse problem is ill-posed. Perturbations to the data may be caused by the use of a discrete mixture fraction grid for calculating the mixture fraction PDF. The magnitude of the perturbations is estimated using a box filter and the uncertainty in the solution is determined based on the width of the credible intervals. The width of the credible intervals is significantly reduced with the inclusion of a smoothing prior and the recovered solution is in better agreement with the exact solution. The credible intervals for temporal and spatial smoothing are shown to be similar. Credible intervals for temporal smoothing depend on the solution from the previous time step and a smooth solution is not guaranteed. For spatial smoothing, the credible intervals are not dependent upon a previous solution and better predict characteristics for higher mixture fraction values. These characteristics make spatial smoothing a promising alternative method for recovering a solution from the CSE inversion process.
Endogenous and exogenous control of ecosystem function: N cycling in headwater streams.
Valett, H M; Thomas, S A; Mulholland, P J; Webster, J R; Dahm, C N; Fellows, C S; Crenshaw, C L; Peterson, C G
2008-12-01
Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of 15N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in 15N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; microg N x m(-2) x s(-1)) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v(f); mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.
Urquhart, Erin A; Schaeffer, Blake A; Stumpf, Richard P; Loftin, Keith A; Werdell, P Jeremy
2017-07-01
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization's (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Adu, Michael O; Chatot, Antoine; Wiesel, Lea; Bennett, Malcolm J; Broadley, Martin R; White, Philip J; Dupuy, Lionel X
2014-05-01
The potential exists to breed for root system architectures that optimize resource acquisition. However, this requires the ability to screen root system development quantitatively, with high resolution, in as natural an environment as possible, with high throughput. This paper describes the construction of a low-cost, high-resolution root phenotyping platform, requiring no sophisticated equipment and adaptable to most laboratory and glasshouse environments, and its application to quantify environmental and temporal variation in root traits between genotypes of Brassica rapa L. Plants were supplied with a complete nutrient solution through the wick of a germination paper. Images of root systems were acquired without manual intervention, over extended periods, using multiple scanners controlled by customized software. Mixed-effects models were used to describe the sources of variation in root traits contributing to root system architecture estimated from digital images. It was calculated that between one and 43 replicates would be required to detect a significant difference (95% CI 50% difference between traits). Broad-sense heritability was highest for shoot biomass traits (>0.60), intermediate (0.25-0.60) for the length and diameter of primary roots and lateral root branching density on the primary root, and lower (<0.25) for other root traits. Models demonstrate that root traits show temporal variations of various types. The phenotyping platform described here can be used to quantify environmental and temporal variation in traits contributing to root system architecture in B. rapa and can be extended to screen the large populations required for breeding for efficient resource acquisition.
Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.
2013-01-01
Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.
Urquhart, Erin A.; Schaeffer, Blake A.; Stumpf, Richard P.; Loftin, Keith A.; Werdell, P. Jeremy
2017-01-01
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions.
Morgan, Brianna; Gross, Rachel; Clark, Robin; Dreyfuss, Michael; Boller, Ashley; Camp, Emily; Liang, Tsao-Wei; Avants, Brian; McMillan, Corey; Grossman, Murray
2011-01-01
Quantifiers are very common in everyday speech, but we know little about their cognitive basis or neural representation. The present study examined comprehension of three classes of quantifiers that depend on different cognitive components in patients with focal neurodegenerative diseases. Patients evaluated the truth-value of a sentence containing a quantifier relative to a picture illustrating a small number of familiar objects, and performance was related to MRI grey matter atrophy using voxel-based morphometry. We found that patients with corticobasal syndrome (CBS) and posterior cortical atrophy (PCA) are significantly impaired in their comprehension of Cardinal Quantifiers (e.g. “At least three birds are on the branch”), due in part to their deficit in quantity knowledge. MRI analyses related this deficit to temporal-parietal atrophy found in CBS/PCA. We also found that patients with behavioral variant frontotemporal dementia (bvFTD) are significantly impaired in their comprehension of Logical Quantifiers (e.g. “Some the birds are on the branch”), associated with a simple form of perceptual logic, and this correlated with their deficit on executive measures. This deficit was related to disease in rostral prefrontal cortex in bvFTD. These patients were also impaired in their comprehension of Majority Quantifiers (e.g. “At least half of the birds are on the branch”), and this too was correlated with their deficit on executive measures. This was related to disease in the basal ganglia interrupting a frontal-striatal loop critical for executive functioning. These findings suggest that a large-scale frontal-parietal neural network plays a crucial role in quantifier comprehension, and that comprehension of specific classes of quantifiers may be selectively impaired in patients with focal neurodegenerative conditions in these areas. PMID:21930136
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Lopez, Anthony
This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurementmore » stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for DNI; however, the scatter (root mean square error [RMSE]) difference is higher for the hourly averages.« less
NASA Astrophysics Data System (ADS)
Nissanka, I. D.; Richter, D. H.
2017-12-01
Previous studies have shown that sea spray droplets can play a significant role in air-sea heat and moisture exchange. The larger spray droplets have potential to transfer considerable amount of mass, momentum and heat, however they remain closer to surface and their residence times are shorter due to the faster settling. On the other hand, smaller droplets have high vertical mobility which allows sufficient time for droplets to adjust to ambient conditions. Hence, to study the heat and moisture characteristics of sea spray droplets it is important to understand how different droplet sizes behave in the Marine Atmospheric Boundary Layer (MABL), especially their temporal evolutions. In this study sea spray droplet transport in the MABL is simulated using Large Eddy Simulation combined with a Lagrangian Particle model which represents spray droplets of varying size. The individual droplets are tracked while their radius and temperature evolve based on local ambient conditions. The particles are advected based on the local resolved velocities and the particle dispersion due to sub-filtered scale motions are modeled using a Lagrangian stochastic model. In this study a series of simulations are conducted with the focus of understanding fundamental droplet microphysics, which will help characterize and quantify the lifetime and airborne concentrations of spray droplets in the MABL, thus elucidating ongoing knowledge gaps which are impossible to fill using observations alone. We measure the size resolved spray droplet vertical concentrations, particle residence times, and temporal evolution of droplet radius and temperature to explain the behavior of sea spry droplets in MABL. The PDF of residence time of different initial droplet sizes and joint PDFs of droplet life time and radius and temperature for different droplet sizes are calculated to further quantify the temporal and spatial behavior of sea spray droplets in the MABL, which can be used as inputs into bulk models of air-sea transfer.
Ishii, M; Jones, M; Shiota, T; Yamada, I; Sinclair, B; Heinrich, R S; Yoganathan, A P; Sahn, D J
1998-11-01
The purpose of our study was to determine the temporal variability of regurgitant color Doppler jet areas and the width of the color Doppler imaged vena contracta for evaluating the severity of aortic regurgitation. Twenty-nine hemodynamically different states were obtained pharmacologically in 8 sheep 20 weeks after surgery to produce aortic regurgitation. Aortic regurgitation was quantified by peak and mean regurgitant flow rates, regurgitant stroke volumes, and regurgitant fractions determined using pulmonary and aortic electromagnetic flow probes and meters balanced against each other. The regurgitant jet areas and the widths of color Doppler imaged vena contracta were measured at 4 different times during diastole to determine the temporal variability of this parameter. When measured at 4 different temporal points in diastole, a significant change was observed in the size of the color Doppler imaged regurgitant jet (percent of difference: from 31.1% to 904%; 233% +/- 245%). Simple linear regression analysis between each color jet area at 4 different periods in diastole and flow meter-based severity of the aortic regurgitation showed only weak correlation (0.23 < r < 0.49). In contrast, for most conditions only a slight change was observed in the width of the color Doppler imaged vena contracta during the diastolic regurgitant period (percent of difference, vena contracta: from 2.4% to 12.9%, 5.8% +/- 3.2%). In addition, for each period the width of the color Doppler imaged vena contracta at the 4 different time periods in diastole correlated quite strongly with volumetric measures of the severity of aortic regurgitation (0.81 < r < 0.90) and with the instantaneous flow rate for the corresponding period (0.85 < r < 0.87). Color Doppler imaged vena contracta may provide a simple, practical, and accurate method for quantifying aortic regurgitation, even when using a single frame color Doppler flow mapping image.
NASA Astrophysics Data System (ADS)
Pan, Feng; Pachepsky, Yakov A.; Guber, Andrey K.; McPherson, Brian J.; Hill, Robert L.
2012-01-01
SummaryUnderstanding streamflow patterns in space and time is important for improving flood and drought forecasting, water resources management, and predictions of ecological changes. Objectives of this work include (a) to characterize the spatial and temporal patterns of streamflow using information theory-based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those measures. We selected two USDA experimental watersheds to serve as case study examples, including the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds and more than 30 years of continuous data records of precipitation and streamflow. Information content measures (metric entropy and mean information gain) and complexity measures (effective measure complexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information content measures of streamflow time series are much smaller than those for precipitation data, and the streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of the precipitation information that leads to the observed additional complexity in streamflow measures. Correlation coefficients between the information-theory-based measures and time intervals are close to 0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial scale effects on streamflow patterns are observed with absolute values of correlation coefficients between the measures and sub-watershed area varying from 0.2 to 0.6 in the two watersheds. We conclude that temporal effects must be evaluated and accounted for when the information theory-based methods are used for performance evaluation and comparison of hydrological models.
Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Lopez, Anthony
This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurementmore » stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for DNI; however, the scatter (root mean square error [RMSE]) difference is higher for the hourly averages.« less
Impacts of climatic variation on trout: A global synthesis and path forward
Kovach, Ryan; Muhlfeld, Clint C.; Al-Chokhachy, Robert K.; Dunham, Jason B.; Letcher, Benjamin; Kershner, Jeffrey L.
2016-01-01
Despite increasing concern that climate change may negatively impact trout—a globally distributed group of fish with major economic, ecological, and cultural value—a synthetic assessment of empirical data quantifying relationships between climatic variation and trout ecology does not exist. We conducted a systematic review to describe how temporal variation in temperature and streamflow influences trout ecology in freshwater ecosystems. Few studies (n = 42) have quantified relationships between temperature or streamflow and trout demography, growth, or phenology, and nearly all estimates (96 %) were for Salvelinus fontinalis and Salmo trutta. Only seven studies used temporal data to quantify climate-driven changes in trout ecology. Results from these studies were beset with limitations that prohibited quantitatively rigorous meta-analysis, a concerning inadequacy given major investment in trout conservation and management worldwide. Nevertheless, consistent patterns emerged from our synthesis, particularly a positive effect of summer streamflow on trout demography and growth; 64 % of estimates were positive and significant across studies, age classes, species, and locations, highlighting that climate-induced changes in hydrology may have numerous consequences for trout. To a lesser degree, summer and fall temperatures were negatively related to population demography (51 and 53 % of estimates, respectively), but temperature was rarely related to growth. To address limitations and uncertainties, we recommend: (1) systematically improving data collection, description, and sharing; (2) appropriately integrating climate impacts with other intrinsic and extrinsic drivers over the entire lifecycle; (3) describing indirect consequences of climate change; and (4) acknowledging and describing intrinsic resiliency.
Liu, Shuguang; Bond-Lamberty, Ben; Hicke, Jeffrey A.; Vargas, Rodrigo; Zhao, Shuqing; Chen, Jing; Edburg, Steven L.; Hu, Yueming; Liu, Jinxun; McGuire, A. David; Xiao, Jingfeng; Keane, Robert; Yuan, Wenping; Tang, Jianwu; Luo, Yiqi; Potter, Christopher; Oeding, Jennifer
2011-01-01
Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some major advances and challenges. First, significant advances have been made in representation, scaling, and characterization of disturbances that should be included in regional modeling efforts. Second, there is a need to develop effective and comprehensive process‐based procedures and algorithms to quantify the immediate and long‐term impacts of disturbances on ecosystem succession, soils, microclimate, and cycles of carbon, water, and nutrients. Third, our capability to simulate the occurrences and severity of disturbances is very limited. Fourth, scaling issues have rarely been addressed in continental scale model applications. It is not fully understood which finer scale processes and properties need to be scaled to coarser spatial and temporal scales. Fifth, there are inadequate databases on disturbances at the continental scale to support the quantification of their effects on the carbon balance in North America. Finally, procedures are needed to quantify the uncertainty of model inputs, model parameters, and model structures, and thus to estimate their impacts on overall model uncertainty. Working together, the scientific community interested in disturbance and its impacts can identify the most uncertain issues surrounding the role of disturbance in the North American carbon budget and develop working hypotheses to reduce the uncertainty
"God has sent me to you": Right temporal epilepsy, left prefrontal psychosis.
Arzy, Shahar; Schurr, Roey
2016-07-01
Religious experiences have long been documented in patients with epilepsy, though their exact underlying neural mechanisms are still unclear. Here, we had the rare opportunity to record a delusional religious conversion in real time in a patient with right temporal lobe epilepsy undergoing continuous video-EEG. In this patient, a messianic revelation experience occurred several hours after a complex partial seizure of temporal origin, compatible with postictal psychosis (PIP). We analyzed the recorded resting-state EEG epochs separately for each of the conventional frequency bands. Topographical analysis of the bandpass filtered EEG epochs revealed increased activity in the low-gamma range (30-40Hz) during religious conversion compared with activity during the patient's habitual state. The brain generator underlying this activity was localized to the left prefrontal cortex. This suggests that religious conversion in PIP is related to control mechanisms in the prefrontal lobe-related processes rather than medial temporal lobe-related processes. Copyright © 2016 Elsevier Inc. All rights reserved.
A guide to calculating habitat-quality metrics to inform conservation of highly mobile species
Bieri, Joanna A.; Sample, Christine; Thogmartin, Wayne E.; Diffendorfer, James E.; Earl, Julia E.; Erickson, Richard A.; Federico, Paula; Flockhart, D. T. Tyler; Nicol, Sam; Semmens, Darius J.; Skraber, T.; Wiederholt, Ruscena; Mattsson, Brady J.
2018-01-01
Many metrics exist for quantifying the relative value of habitats and pathways used by highly mobile species. Properly selecting and applying such metrics requires substantial background in mathematics and understanding the relevant management arena. To address this multidimensional challenge, we demonstrate and compare three measurements of habitat quality: graph-, occupancy-, and demographic-based metrics. Each metric provides insights into system dynamics, at the expense of increasing amounts and complexity of data and models. Our descriptions and comparisons of diverse habitat-quality metrics provide means for practitioners to overcome the modeling challenges associated with management or conservation of such highly mobile species. Whereas previous guidance for applying habitat-quality metrics has been scattered in diversified tracks of literature, we have brought this information together into an approachable format including accessible descriptions and a modeling case study for a typical example that conservation professionals can adapt for their own decision contexts and focal populations.Considerations for Resource ManagersManagement objectives, proposed actions, data availability and quality, and model assumptions are all relevant considerations when applying and interpreting habitat-quality metrics.Graph-based metrics answer questions related to habitat centrality and connectivity, are suitable for populations with any movement pattern, quantify basic spatial and temporal patterns of occupancy and movement, and require the least data.Occupancy-based metrics answer questions about likelihood of persistence or colonization, are suitable for populations that undergo localized extinctions, quantify spatial and temporal patterns of occupancy and movement, and require a moderate amount of data.Demographic-based metrics answer questions about relative or absolute population size, are suitable for populations with any movement pattern, quantify demographic processes and population dynamics, and require the most data.More real-world examples applying occupancy-based, agent-based, and continuous-based metrics to seasonally migratory species are needed to better understand challenges and opportunities for applying these metrics more broadly.
One approach to developing nitrogen (N) criteria for coastal waters is to determine quantitative relationships between N loading and ecological effects, such as hypoxia. Hypoxia may vary significantly within estuaries, making it difficult to document over large spatial and tempor...
Environmental drivers of anuran calling phenology in a seasonal neotropical ecosystem
Christopher M. Schalk; Dan Saenz
2015-01-01
Temporal variation represents an important component in understanding the structure of ecological communities and species coexistence. We examined calling phenology of an assemblage of anurans in the Gran Chaco ecoregion of Bolivia by deploying automated recording devices to document nocturnally vocalizing amphibians nightly at seven...
Using the DPSIR Framework to Develop a Conceptual Model: Technical Support Document
Modern problems (e.g., pollution, urban sprawl, environmental equity) are complex and often transcend spatial and temporal scales. Systems thinking is an approach to problem solving that is based on the belief that the component parts of a system are best understood in the contex...
Technical Note: Orientation of cracks and hydrology in a shrink-swell soil
USDA-ARS?s Scientific Manuscript database
Crack orientations are an important soil physical property that affects water flow, particularly in vertic soils. However, the spatial and temporal variability of crack orientations across different land uses and gilgai features is not well-documented and addressed in hydrology models. Thus there is...
ABSTRACT: The application of geostatistics to spatial interpolation of time-invariant properties in ground-water studies (such as transmissivity or aquifer thickness) is well documented. The use of geostatistics on time-variant conditions such as ground-water quality is also be...
The Tactile Continuity Illusion
ERIC Educational Resources Information Center
Kitagawa, Norimichi; Igarashi, Yuka; Kashino, Makio
2009-01-01
We can perceive the continuity of an object or event by integrating spatially/temporally discrete sensory inputs. The mechanism underlying this perception of continuity has intrigued many researchers and has been well documented in both the visual and auditory modalities. The present study shows for the first time to our knowledge that an illusion…
Variation in Soil Respiration across Soil and Vegetation Types in an Alpine Valley
Rubin, Aurélie
2016-01-01
Background and Aims Soils of mountain regions and their associated plant communities are highly diverse over short spatial scales due to the heterogeneity of geological substrates and highly dynamic geomorphic processes. The consequences of this heterogeneity for biogeochemical transfers, however, remain poorly documented. The objective of this study was to quantify the variability of soil-surface carbon dioxide efflux, known as soil respiration (Rs), across soil and vegetation types in an Alpine valley. To this aim, we measured Rs rates during the peak and late growing season (July-October) in 48 plots located in pastoral areas of a small valley of the Swiss Alps. Findings Four herbaceous vegetation types were identified, three corresponding to different stages of primary succession (Petasition paradoxi in pioneer conditions, Seslerion in more advanced stages and Poion alpinae replacing the climactic forests), as well as one (Rumicion alpinae) corresponding to eutrophic grasslands in intensively grazed areas. Soils were developed on calcareous alluvial and colluvial fan deposits and were classified into six types including three Fluvisols grades and three Cambisols grades. Plant and soil types had a high level of co-occurrence. The strongest predictor of Rs was soil temperature, yet we detected additional explanatory power of sampling month, showing that temporal variation was not entirely reducible to variations in temperature. Vegetation and soil types were also major determinants of Rs. During the warmest month (August), Rs rates varied by over a factor three between soil and vegetation types, ranging from 2.5 μmol m-2 s-1 in pioneer environments (Petasition on Very Young Fluvisols) to 8.5 μmol m-2 s-1 in differentiated soils supporting nitrophilous species (Rumicion on Calcaric Cambisols). Conclusions Overall, this study provides quantitative estimates of spatial and temporal variability in Rs in the mountain environment, and demonstrates that estimations of soil carbon efflux at the watershed scale in complex geomorphic terrain have to account for soil and vegetation heterogeneity. PMID:27685955
NASA Astrophysics Data System (ADS)
Davis, C. V.; Thunell, R.; Astor, Y. M.
2017-12-01
The trace element to calcium ratios (TE/Ca) of planktic foraminifera shells are a valuable tool for paleoceanographic reconstructions, and represent a combination of environmental, ecological and biological signals. We present here a three-year record (2010-2013) of TE/Ca (Mg, Sr, Ba, Mn) from four species of foraminifera (Orbulina universa, Globigerina ruber, Globigerinella siphonifera, and Globorotalia menardii) collected by plankton tow in the modern Cariaco basin. Each tow is paired with in situ measurements of water column properties, allowing a direct comparison between shell geochemistry and calcification environment. A combination of Laser Ablation and solution ICP-MS analyses are used to document seasonality, primarily due to the alternating influence of wind-driven coastal upwelling and riverine inputs, in shell TE/Ca. Individual shell data further allows for the quantification of trace element heterogeneity among individual shells within single tows. All TE/Ca ratios vary temporally and show inter-individual variability within single tows. The spread in TE/Ca differs between element and species, with Mg/Ca ratios being the most variable. Despite this, Mg/Ca still tracks temperature changes in G. ruber, O. universa, and G. menardii, with G. ruber most closely reproducing sea surface temperature. Some species show chamber-to-chamber differences in trace element ratios, with G. ruber Mg/Ca and Ba/Ca decreasing in younger chambers (but not other elements) and Mg/Ca, Mn/Ca and Ba/Ca decreasing in younger chambers in G. siphonifera. We find the original Mn/Ca to be variable both temporally and between species, with G. menardii in some samples having extremely high ratios (100 μmol/mol). Assessing seasonal trends and environmental drivers of TE/Ca variability and quantifying the extent of inter-individual heterogeneity in these species will inform the use of their shells as geochemical proxies.
Landscape fragmentation, severe drought, and the new Amazon forest fire regime.
Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E
2015-09-01
Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.
Dasgupta, Nabarun; Mandl, Kenneth D; Brownstein, John S
2009-11-18
Historical studies of news media have suggested an association between reporting and increased drug abuse. Period effects for substance use have been documented for different classes of legal and illicit substances, with the suspicion that media publicity may have played major roles in their emergence. Previous analyses have drawn primarily from qualitative evidence; the temporal relationship between media reporting volume and adverse health consequences has not been quantified nationally. We set out to explore whether we could find a quantitative relationship between media reports about prescription opioid abuse and overdose mortality associated with these drugs. We assessed whether increases in news media reports occurred before or after increases in overdose deaths. Our ecological study compared a monthly time series of unintentional poisoning deaths involving short-acting prescription opioid substances, from 1999 to 2005 using multiple cause-of-death data published by the National Center for Health Statistics, to monthly counts of English-language news articles mentioning generic and branded names of prescription opioids obtained from Google News Archives from 1999 to 2005. We estimated the association between media volume and mortality rates by time-lagged regression analyses. There were 24,272 articles and 30,916 deaths involving prescription opioids during the seven-year study period. Nationally, the number of articles mentioning prescription opioids increased dramatically starting in early 2001, following prominent coverage about the nonmedical use of OxyContin. We found a significant association between news reports and deaths, with media reporting preceding fatal opioid poisonings by two to six months and explaining 88% (p<0.0001, df 78) of the variation in mortality. While availability, structural, and individual predispositions are key factors influencing substance use, news reporting may enhance the popularity of psychoactive substances. Albeit ecological in nature, our finding suggests the need for further evaluation of the influence of news media on health. Reporting on prescription opioids conforms to historical patterns of news reporting on other psychoactive substances.
Dynamics of Sylvatic Chagas Disease Vectors in Coastal Ecuador Is Driven by Changes in Land Cover
Grijalva, Mario J.; Terán, David; Dangles, Olivier
2014-01-01
Background Chagas disease is a serious public health problem in Latin America where about ten million individuals show Trypanosoma cruzi infection. Despite significant success in controlling domiciliated triatomines, sylvatic populations frequently infest houses after insecticide treatment which hampers long term control prospects in vast geographical areas where vectorial transmission is endemic. As a key issue, the spatio-temporal dynamics of sylvatic populations is likely influenced by landscape yet evidence showing this effect is rare. The aim of this work is to examine the role of land cover changes in sylvatic triatomine ecology, based on an exhaustive field survey of pathogens, vectors, hosts, and microhabitat characteristics' dynamics. Methodology and Principal Findings The study was performed in agricultural landscapes of coastal Ecuador as a study model. Over one year, a spatially-randomized sampling design (490 collection points) allowed quantifying triatomine densities in natural, cultivated and domestic habitats. We also assessed infection of the bugs with trypanosomes, documented their microhabitats and potential hosts, and recorded changes in landscape characteristics. In total we collected 886 individuals, mainly represented by nymphal stages of one triatomine species Rhodnius ecuadoriensis. As main results, we found that 1) sylvatic triatomines had very high T. cruzi infection rates (71%) and 2) densities of T. cruzi-infected sylvatic triatomines varied predictably over time due to changes in land cover and occurrence of associated rodent hosts. Conclusion We propose a framework for identifying the factors affecting the yearly distribution of sylvatic T. cruzi vectors. Beyond providing key basic information for the control of human habitat colonization by sylvatic vector populations, our framework highlights the importance of both environmental and sociological factors in shaping the spatio-temporal population dynamics of triatomines. A better understanding of the dynamics of such socio-ecological systems is a crucial, yet poorly considered, issue for the long-term control of Chagas disease. PMID:24968118
Christopher M. Gough; John R. Seiler
2004-01-01
While the effect of soil temperature and rnoisture on soil C02 efflux (Ec) has becn widely investigated, the relationship between Ec and soil carbon (C). root, and stand parameters has not been comprehensively examined or quantified across extensive spatial and temporal scales. Wle measured E
Luitgard Schwendenmann; Edzo Veldkamp; Tania Brenes; Joseph J. O' Brien; Jens Mackensen
2003-01-01
Our objectives were to quantify and compare soil CO2, efflux of two doininant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental Factors on CO2, release. We measured soil CO2 efflux from eight permanent soil chamhers on...
Michael C. Stambaugh; Richard P. Guyette; Joseph M. Marschall; Daniel C. Dey
2016-01-01
Characterization of scale dependence of fire intervals could inform interpretations of fire history and improve fire prescriptions that aim to mimic historical fire regime conditions. We quantified the temporal variability in fire regimes and described the spatial dependence of fire intervals through the analysis of multi-century fire scar records (8 study sites, 332...
Using DNA to test the utility of pellet-group counts as an index of deer counts
T. J. Brinkman; D. K. Person; W. Smith; F. Stuart Chapin; K. McCoy; M. Leonawicz; K. Hundertmark
2013-01-01
Despite widespread use of fecal pellet-group counts as an index of ungulate density, techniques used to convert pellet-group numbers to ungulate numbers rarely are based on counts of known individuals, seldom evaluated across spatial and temporal scales, and precision is infrequently quantified. Using DNA from fecal pellets to identify individual deer, we evaluated the...
Samuel A. Cushman; Kevin McGarigal
2007-01-01
Integrating temporal variabilily into spatial analyses is one of the abiding challenges in landscape ecology. In this chapter we use landscape trajectory analysis to assess changes in landscape patterns over time. Landscape trajectory analysis is an approach to quantify changes in landscape structure over time. There are three key concepts which underlie the...
Shuguang Liu; Ben Bond-Lamberty; Jeffrey A. Hicke; Rodrigo Vargas; Shuqing Zhao; Jing Chen; Steven L. Edburg; Yueming Hu; Jinxun Liu; A. David McGuire; Jingfeng Xiao; Robert Keane; Wenping Yuan; Jianwu Tang; Yiqi Luo; Christopher Potter; Jennifer Oeding
2011-01-01
Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some...
David P Turner; William D Ritts; Robert E Kennedy; Andrew N Gray; Zhiqiang Yang
2015-01-01
Background: Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at...
Joseph A. Antos; Charles B. Halpern; Richard E. Miller; Kermit Cromack; Melora G. Halaj
2003-01-01
We used 135 permanent plots (4 m2) nested within 15 blocks (121 m2) to quantify changes in concentration and spatial variation of carbon (C) and nitrogen (N) in the mineral soil (0- to 10-cm depth) after logging and broadcast burning of an old-growth, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)...
Temporal Comparisons of Internet Topology
2014-06-01
Number CAIDA Cooperative Association of Internet Data Analysis CDN Content Delivery Network CI Confidence Interval DoS denial of service GMT Greenwich...the CAIDA data. Our methods include analysis of graph theoretical measures as well as complex network and statistical measures that will quantify the...tool that probes the Internet for topology analysis and performance [26]. Scamper uses network diagnostic tools, such as traceroute and ping, to probe
Peter U. Kennedy; Victor B. Shelburne
2002-01-01
Geographic Information Systems (GIS) data and historical plats ranging from 1716 to 1894 in the Coastal Flatwoods Region of South Carolina were used to quantify changes on a temporal scale. Combining the historic plats and associated witness trees (trees marking the boundaries of historic plats) with an existing database of the soils and other attributes was the basis...
Defining Early Markers of Neurodevelopmental Disorders in Infants With TSC
2013-10-01
in (1) children with autism and tuberous sclerosis complex and (2) children with temporal lobe tubers. This study is the first to quantify atypical...Furthermore, we hypothesize that it is the dynamic interplay between aberrant functional connectivity and physiological stressors, such as epilepsy ...neurodevelopmental disorders in children with TSC, particularly the interaction between clinical factors (such as epilepsy or tuber burden) and cognitive and
Volker C. Radeloff; Roger B. Hammer; Susan I. Stewart
2005-01-01
Housing growth and its environmental effects pose major conservation challenges. We sought to (]) quantify spatial and temporal patterns of housing growth across the US. Midwest from 1940-2000, (2) identify ecoregions strongly affected by housing growth, (3) assess the extent to which forests occur near housing, and (4) relate housing to forest fragmentation. We used...
Voice Acoustical Measurement of the Severity of Major Depression
ERIC Educational Resources Information Center
Cannizzaro, Michael; Harel, Brian; Reilly, Nicole; Chappell, Phillip; Snyder, Peter J.
2004-01-01
A number of empirical studies have documented the relationship between quantifiable and objective acoustical measures of voice and speech, and clinical subjective ratings of severity of Major Depression. To further explore this relationship, speech samples were extracted from videotape recordings of structured interviews made during the…
DOT National Transportation Integrated Search
2011-09-01
This paper will describe an integrated approach to documenting and quantifying the impacts of bypasses : on small communities, with a focus on what economic impacts, if any, occur, and how these impacts : change over time. Two similarly sized communi...
Intentionally Short-Range Communications (ISRC) exploratory development plan
NASA Astrophysics Data System (ADS)
Yen, J.
1992-06-01
This document is an exploratory development plan for the Intentionally Short-Range Communications (ISRC) project. The USMC requirements and project objectives are quantified, then possible solutions identified and developed. Some of these ideas will be attempted to determine the best option(s) satisfying the USMC requirements.
NASA Astrophysics Data System (ADS)
Ye, X.; Lauvaux, T.; Kort, E. A.; Lin, J. C.; Oda, T.; Yang, E.; Wu, D.
2016-12-01
Rapid economic development has given rise to a steady increase of global carbon emissions, which have accumulated in the atmosphere for the past 200 years. Urbanization has concentrated about 70% of the global fossil-fuel CO2 emissions in large metropolitan areas distributed around the world, which represents the most significant anthropogenic contribution to climate change. However, highly uncertain quantifications of urban CO2 emissions are commonplace for numerous cities because of poorly-documented inventories of energy consumption. Therefore, accurate estimates of carbon emissions from global observing systems are a necessity if mitigation strategies are meant to be implemented at global scales. Space-based observations of total column averaged CO2 concentration (XCO2) provide a very promising and powerful tool to quantify urban CO2 fluxes. For the first time, measurements from the Orbiting Carbon Observatory 2 (OCO-2) mission are assimilated in a high resolution inverse modeling system to quantify fossil-fuel CO2 emissions of multiple cities around the globe. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission inventory is employed as a first guess, while the atmospheric transport is simulated using the WRF-Chem model at 1-km resolution. Emission detection and quantification is performed with an Ensemble Kalman Filter method. We demonstrate here the potential of the inverse approach for assimilating thousands of OCO-2 retrievals along tracks near metropolitan areas. We present the detection potential of the system with real-case applications near power plants and present inverse emissions using actual OCO-2 measurements on various urban landscapes. Finally, we will discuss the potential of OCO-2-like satellite instruments for monitoring temporal variations of fossil-fuel CO2 emissions over multiple years, which can provide valuable insights for future satellite observation strategies.
Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, Michael P.
2009-01-01
We present an analysis of lava dome growth during the 2004–2008 eruption of Mount St. Helens using oblique terrestrial images from a network of remotely placed cameras. This underutilized monitoring tool augmented more traditional monitoring techniques, and was used to provide a robust assessment of the nature, pace, and state of the eruption and to quantify the kinematics of dome growth. Eruption monitoring using terrestrial photography began with a single camera deployed at the mouth of the volcano's crater during the first year of activity. Analysis of those images indicates that the average lineal extrusion rate decayed approximately logarithmically from about 8 m/d to about 2 m/d (± 2 m/d) from November 2004 through December 2005, and suggests that the extrusion rate fluctuated on time scales of days to weeks. From May 2006 through September 2007, imagery from multiple cameras deployed around the volcano allowed determination of 3-dimensional motion across the dome complex. Analysis of the multi-camera imagery shows spatially differential, but remarkably steady to gradually slowing, motion, from about 1–2 m/d from May through October 2006, to about 0.2–1.0 m/d from May through September 2007. In contrast to the fluctuations in lineal extrusion rate documented during the first year of eruption, dome motion from May 2006 through September 2007 was monotonic (± 0.10 m/d) to gradually slowing on time scales of weeks to months. The ability to measure spatial and temporal rates of motion of the effusing lava dome from oblique terrestrial photographs provided a significant, and sometimes the sole, means of identifying and quantifying dome growth during the eruption, and it demonstrates the utility of using frequent, long-term terrestrial photography to monitor and study volcanic eruptions.
Current spring warming as a driver of selection on reproductive timing in a wild passerine.
Marrot, Pascal; Charmantier, Anne; Blondel, Jacques; Garant, Dany
2018-05-01
Evolutionary adaptation as a response to climate change is expected for fitness-related traits affected by climate and exhibiting genetic variance. Although the relationship between warmer spring temperature and earlier timing of reproduction is well documented, quantifications and predictions of the impact of global warming on natural selection acting on phenology in wild populations remain rare. If global warming affects fitness in a similar way across individuals within a population, or if fitness consequences are independent of phenotypic variation in key-adaptive traits, then no evolutionary response is expected for these traits. Here, we quantified the selection pressures acting on laying date during a 24-year monitoring of blue tits in southern Mediterranean France, a hot spot of climate warming. We explored the temporal fluctuation in annual selection gradients and we determined its temperature-related drivers. We first investigated the month-specific warming since 1970 in our study site and tested its influence on selection pressures, using a model averaging approach. Then, we quantified the selection strength associated with temperature anomalies experienced by the blue tit population. We found that natural selection acting on laying date significantly fluctuated both in magnitude and in sign across years. After identifying a significant warming in spring and summer, we showed that warmer daily maximum temperatures in April were significantly associated with stronger selection pressures for reproductive timing. Our results indicated an increase in the strength of selection by 46% for every +1°C anomaly. Our results confirm the general assumption that recent climate change translates into strong selection favouring earlier breeders in passerine birds. Our findings also suggest that differences in fitness among individuals varying in their breeding phenology increase with climate warming. Such climate-driven influence on the strength of directional selection acting on laying date could favour an adaptive response in this trait, since it is heritable. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Otero, Jaime; Jensen, Arne J.; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr.; Storvik, Geir O.; Vøllestad, Leif Asbjørn
2011-01-01
Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979–2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species. PMID:21897867
Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability
Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William
2015-01-01
Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments. PMID:25658914
NASA Astrophysics Data System (ADS)
Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.
2014-12-01
Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Roeder, James; Kelsch, Richard; Wernet, Mark; Machalick, Walt; Reuter, James; Witkowski, Al
2008-01-01
Supersonic wind tunnel testing of 0.813 m diameter Disk-Gap-Band parachutes is being conducted in the NASA Glenn Research Center (GRC) 10' x 10' wind-tunnel. The tests are conducted in support of the Mars Science Laboratory Parachute Decelerator System development and qualification. Four percent of full-scale parachutes were constructed similarly to the flight-article in material and construction techniques. The parachutes are attached to a 4% scale MSL entry-vehicle to simulate the free-flight configuration. The parachutes are tested from Mach 2 to 2.5 over a Reynolds number (Re) range of 1 to 3 x 10(exp 6), representative of the MSL deployment envelope. Constrained and unconstrained test configurations are investigated to quantify the effects of parachute trim, suspension line interaction, and alignment with the capsule wake. The parachute is constrained horizontally through the vent region, to measure canopy breathing and wake interaction for fixed trim angles of 0 and 10 degrees from the velocity vector. In the unconstrained configuration the parachute is permitted to trim and cone, similar to the free-flight varying its alignment relative to the entry-vehicle wake. Test diagnostics were chosen to quantify parachute performance and to provide insight into the flow field structure. An in-line load cell provided measurement of unsteady and mean drag as a function of Mach and Re. High-speed shadowgraph video of the upstream parachute flow field was used to capture bow-shock motion and stand of distance. Particle image velocimetry of the upstream parachute flow field provides spatially and temporally resolved measurement velocity and turbulent statistics. Multiple high speed video views of targets placed in the interior of the canopy enable photo-grammetric measurement of the fabric motion in time and space from reflective. High speed video is also used to document the supersonic inflation and measure trim angle, projected area, and frequency of area oscillations.
Otero, Jaime; Jensen, Arne J; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr; Storvik, Geir O; Vøllestad, Leif Asbjørn
2011-01-01
Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979-2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species.
Extraction of temporal information in functional MRI
NASA Astrophysics Data System (ADS)
Singh, M.; Sungkarat, W.; Jeong, Jeong-Won; Zhou, Yongxia
2002-10-01
The temporal resolution of functional MRI (fMRI) is limited by the shape of the haemodynamic response function (hrf) and the vascular architecture underlying the activated regions. Typically, the temporal resolution of fMRI is on the order of 1 s. We have developed a new data processing approach to extract temporal information on a pixel-by-pixel basis at the level of 100 ms from fMRI data. Instead of correlating or fitting the time-course of each pixel to a single reference function, which is the common practice in fMRI, we correlate each pixel's time-course to a series of reference functions that are shifted with respect to each other by 100 ms. The reference function yielding the highest correlation coefficient for a pixel is then used as a time marker for that pixel. A Monte Carlo simulation and experimental study of this approach were performed to estimate the temporal resolution as a function of signal-to-noise ratio (SNR) in the time-course of a pixel. Assuming a known and stationary hrf, the simulation and experimental studies suggest a lower limit in the temporal resolution of approximately 100 ms at an SNR of 3. The multireference function approach was also applied to extract timing information from an event-related motor movement study where the subjects flexed a finger on cue. The event was repeated 19 times with the event's presentation staggered to yield an approximately 100-ms temporal sampling of the haemodynamic response over the entire presentation cycle. The timing differences among different regions of the brain activated by the motor task were clearly visualized and quantified by this method. The results suggest that it is possible to achieve a temporal resolution of /spl sim/200 ms in practice with this approach.
Karmakar, Chandan K; Khandoker, Ahsan H; Voss, Andreas; Palaniswami, Marimuthu
2011-03-03
A novel descriptor (Complex Correlation Measure (CCM)) for measuring the variability in the temporal structure of Poincaré plot has been developed to characterize or distinguish between Poincaré plots with similar shapes. This study was designed to assess the changes in temporal structure of the Poincaré plot using CCM during atropine infusion, 70° head-up tilt and scopolamine administration in healthy human subjects. CCM quantifies the point-to-point variation of the signal rather than gross description of the Poincaré plot. The physiological relevance of CCM was demonstrated by comparing the changes in CCM values with autonomic perturbation during all phases of the experiment. The sensitivities of short term variability (SD1), long term variability (SD2) and variability in temporal structure (CCM) were analyzed by changing the temporal structure by shuffling the sequences of points of the Poincaré plot. Surrogate analysis was used to show CCM as a measure of changes in temporal structure rather than random noise and sensitivity of CCM with changes in parasympathetic activity. CCM was found to be most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2. The values of all descriptors decreased with decrease in parasympathetic activity during atropine infusion and 70° head-up tilt phase. In contrast, values of all descriptors increased with increase in parasympathetic activity during scopolamine administration. The concordant reduction and enhancement in CCM values with parasympathetic activity indicates that the temporal variability of Poincaré plot is modulated by the parasympathetic activity which correlates with changes in CCM values. CCM is more sensitive than SD1 and SD2 to changes of parasympathetic activity.
Blankenship, Tashauna L; Keith, Kayla; Calkins, Susan D; Bell, Martha Ann
2018-01-01
Associations between working memory and academic achievement (math and reading) are well documented. Surprisingly, little is known of the contributions of episodic memory, segmented into temporal memory (recollection proxy) and item recognition (familiarity proxy), to academic achievement. This is the first study to observe these associations in typically developing 6-year old children. Overlap in neural correlates exists between working memory, episodic memory, and math and reading achievement. We attempted to tease apart the neural contributions of working memory, temporal memory, and item recognition to math and reading achievement. Results suggest that working memory and temporal memory, but not item recognition, are important contributors to both math and reading achievement, and that EEG power during a working memory task contributes to performance on tests of academic achievement.
A geographic data model for representing ground water systems.
Strassberg, Gil; Maidment, David R; Jones, Norm L
2007-01-01
The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.
Holcombe, Alex O; Chen, Wei-Ying
2013-01-09
Overall performance when tracking moving targets is known to be poorer for larger numbers of targets, but the specific effect on tracking's temporal resolution has never been investigated. We document a broad range of display parameters for which visual tracking is limited by temporal frequency (the interval between when a target is at each location and a distracter moves in and replaces it) rather than by object speed. We tested tracking of one, two, and three moving targets while the eyes remained fixed. Variation of the number of distracters and their speed revealed both speed limits and temporal frequency limits on tracking. The temporal frequency limit fell from 7 Hz with one target to 4 Hz with two targets and 2.6 Hz with three targets. The large size of this performance decrease implies that in the two-target condition participants would have done better by tracking only one of the two targets and ignoring the other. These effects are predicted by serial models involving a single tracking focus that must switch among the targets, sampling the position of only one target at a time. If parallel processing theories are to explain why dividing the tracking resource reduces temporal resolution so markedly, supplemental assumptions will be required.
Musical intervention enhances infants’ neural processing of temporal structure in music and speech
Zhao, T. Christina; Kuhl, Patricia K.
2016-01-01
Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants’ neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants’ neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants’ neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants’ ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing. PMID:27114512
Musical intervention enhances infants' neural processing of temporal structure in music and speech.
Zhao, T Christina; Kuhl, Patricia K
2016-05-10
Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants' neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants' neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants' neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants' ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.
Attempting to physically explain space-time correlation of extremes
NASA Astrophysics Data System (ADS)
Bernardara, Pietro; Gailhard, Joel
2010-05-01
Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.
The Ocean's Role in Outlet Glacier Variability: A Case Study from Uummannaq, Greenland
NASA Astrophysics Data System (ADS)
Sutherland, D.; Catania, G. A.; Bartholomaus, T. C.; Nash, J. D.; Shroyer, E.; Walker, R. T.; Stearns, L. A.
2014-12-01
The dynamics controlling the coupling between fjord circulation and outlet glacier movement are poorly understood. Here, we use oceanographic data collected from 2013-2014 from two west Greenland fjords, Rink Isbrae and Kangerdlugssup Sermerssua, to constrain the spatial and temporal variability observed in fjord circulation. We aim to quantify the ocean's role, if any, in explaining the marked differences in glacier behavior from two systems that are in close proximity to one another. Combining time series data from a set of subsurface moorings with repeat transects in each fjord allows an unprecedented look at the temporal and spatial variability in circulation. We find significant differences in the variability in each fjord and discuss the implications for the glaciers.
Crowdsourcing the Measurement of Interstate Conflict
2016-01-01
Much of the data used to measure conflict is extracted from news reports. This is typically accomplished using either expert coders to quantify the relevant information or machine coders to automatically extract data from documents. Although expert coding is costly, it produces quality data. Machine coding is fast and inexpensive, but the data are noisy. To diminish the severity of this tradeoff, we introduce a method for analyzing news documents that uses crowdsourcing, supplemented with computational approaches. The new method is tested on documents about Militarized Interstate Disputes, and its accuracy ranges between about 68 and 76 percent. This is shown to be a considerable improvement over automated coding, and to cost less and be much faster than expert coding. PMID:27310427
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement. PMID:24340080
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement.
Initiating an ergonomic analysis. A process for jobs with highly variable tasks.
Conrad, K M; Lavender, S A; Reichelt, P A; Meyer, F T
2000-09-01
Occupational health nurses play a vital role in addressing ergonomic problems in the workplace. Describing and documenting exposure to ergonomic risk factors is a relatively straightforward process in jobs in which the work is repetitive. In other types of work, the analysis becomes much more challenging because tasks may be repeated infrequently, or at irregular time intervals, or under different environmental and temporal conditions, thereby making it difficult to observe a "representative" sample of the work performed. This article describes a process used to identify highly variable job tasks for ergonomic analyses. The identification of tasks for ergonomic analysis was a two step process involving interviews and a survey of firefighters and paramedics from a consortium of 14 suburban fire departments. The interviews were used to generate a list of frequently performed, physically strenuous job tasks and to capture clear descriptions of those tasks and associated roles. The goals of the survey were to confirm the interview findings across the entire target population and to quantify the frequency and degree of strenuousness of each task. In turn, the quantitative results from the survey were used to prioritize job tasks for simulation. Although this process was used to study firefighters and paramedics, the approach is likely to be suitable for many other types of occupations in which the tasks are highly variable in content and irregular in frequency.
Two-Dimensional Imaging Velocimetry of Heterogeneous Flow and Brittle Failure in Diamond
NASA Astrophysics Data System (ADS)
Ali, S. J.; Smith, R.; Erskine, D.; Eggert, J.; Celliers, P. M.; Collins, G. W.; Jeanloz, R.
2014-12-01
Understanding the nature and dynamics of heterogeneous flow in diamond subjected to shock compression is important for many fields of research, from inertial confinement fusion to the study of carbon rich planets. Waves propagating through a shocked material can be significantly altered by the various deformation mechanisms present in shocked materials, including anisotropic sound speeds, phase transformations, plastic/inelastic flow and brittle failure. Quantifying the spatial and temporal effects of these deformation mechanisms has been limited by a lack of diagnostics capable of obtaining simultaneous micron resolution spatial measurements and nanosecond resolution time measurements. We have utilized the 2D Janus High Resolution Velocimeter at LLNL to study the time and space dependence of fracture in shock-compressed diamond above the Hugoniot elastic limit. Previous work on the OMEGA laser facility (Rochester) has shown that the free-surface reflectivity of μm-grained diamond samples drops linearly with increasing sample pressure, whereas under the same conditions the reflectivity of nm-grained samples remains unaffected. These disparate observations can be understood by way of better documenting fracture in high-strain compression of diamond. To this end, we have imaged the development and evolution of elastic-wave propagation, plastic-wave propagation and fracture networks in the three primary orientations of single-crystal diamond, as well as in microcrystalline and nanocrystalline diamond, and find that the deformation behavior depends sensitively on the orientation and crystallinity of the diamonds.